The nucleus is the target for radiation-induced chromosomal instability
NASA Technical Reports Server (NTRS)
Kaplan, M. I.; Morgan, W. F.
1998-01-01
We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.
Decay instability of an electron plasma wave in a dusty plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.; Ferdous, T.; Salimullah, M.
1996-03-01
The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru
The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.
Perturbation solutions of combustion instability problems
NASA Technical Reports Server (NTRS)
Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.
1979-01-01
A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
Studies of central interactions of Si ions at 14.5 x A GeV/c in Au and Cu
NASA Astrophysics Data System (ADS)
Eiseman, S. E.; Etkin, A.; Foley, K. J.; Hackenburg, R. W.; Longacre, R. S.; Love, W. A.; Morris, T. W.; Platner, E. D.; Saulys, A. C.; Lindenbaum, S. J.
Understanding the growth and saturation of parametric instabilities in laser-produced plasmas requires knowledge of the nonlinear properties of the instabilities and their interaction with each other. Nonlinear behavior of parametric instabilities, which are usually associated with unique optical features, were evidenced in numerous experiments on a variety of laser facilities. Four examples of nonlinear behavior in laser-produced plasmas are discussed: nonlinear stimulated Brillouin scattering spectra, suppression of stimulated Raman scattering by stimulated Brillouin scattering, the parametric decay instability and the onset of turbulence, and the transition to bursting behavior of the two-plasmon decay instability. Experiments are discussed that demonstrate the nonlinear effects which occur as a consequence.
NASA Technical Reports Server (NTRS)
Noble, S. T.; Gordon, W. E.; Djuth, F. T.; Jost, R. J.; Hedberg, A.
1987-01-01
This paper discusses the results of the September 1983 observations of artificial field-aligned irregularities (AFAIs) in the Tromso, Norway region, made by backscatter radars operating at 46.9, 143.8, 21.4, and 140.0 MHz. Four classes of resonant instability processes at work in the E and F regions are examined in detail: (1) the coupling of parametric decay instability waves across geomagnetic field lines, (2) thermal parametric instability, (3) four-wave interaction thermal parametric instability, and (4) the resonance instability. The characteristics of the AFAI scatter are described, with special attention given to the growth and decay time constants, functional dependence on the heater power and polarization, and the scattering cross sections of the irregularities.
Future prospects of baryon istability search in p-decay and n n(bar) oscillation experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, S.J.; Kamyshkov, Y.A.
1996-11-01
These proceedings contain thirty-one papers which review both the theoretical and the experimental status and near future of baryon instability research. Baryon instability is investigated from the vantage point of supersymmetric and unified theories. The interplay between baryogenesis and antimatter is examined. Double beta decay experiments are discussed. The huge Icarus experiment is described with its proton decay capabilities. Neutron-antineutron oscillations investigations are presented, especially efforts with ultra-cold neutrons. Individual papers are indexed separately on the Energy Data Base.
NASA Astrophysics Data System (ADS)
Bandulet, H. C.; Labaune, C.; Lewis, K.; Depierreux, S.
2004-07-01
Thomson scattering (TS) has been used to investigate the two-ion decay instability of ion acoustic waves generated by stimulated Brillouin scattering in an underdense CH plasma. Two complementary TS diagnostics, spectrally and spatially resolved, demonstrate the occurrence of the subharmonic decay of the primary ion acoustic wave into two secondary waves. The study of the laser intensity dependence shows that the secondary ion acoustic waves are correlated with the SBS reflectivity saturation, at a level of a few percent.
NASA Technical Reports Server (NTRS)
Wong, H. K.; Goldstein, M. L.
1986-01-01
A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.
Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, D.F.; Rose, H.A.; Russell, D.
1995-12-01
Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where themore » weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.« less
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV
Modulational instability of finite-amplitude, circularly polarized Alfven waves
NASA Technical Reports Server (NTRS)
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team
2017-10-01
In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.
Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.
2016-01-01
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, G.O.; Saba, M.M.F.; Division of Space Geophysics, National Space Research Institute, 12227-010, Sao Jose dos Campos, SP
2005-09-15
Formation of beaded structures in triggered lightning discharges is considered in the framework of both magnetohydrodynamic (MHD) and hydrodynamic instabilities. It is shown that the space periodicity of the structures can be explained in terms of the kink and sausage type instabilities in a cylindrical discharge with anomalous viscosity. In particular, the fast growth rate of the hydrodynamic Rayleigh-Taylor instability, which is driven by the backflow of air into the channel of the decaying return stroke, dominates the initial evolution of perturbations during the decay of the return current. This instability is responsible for a significant enhancement of the anomalousmore » viscosity above the classical level. Eventually, the damping introduced at the current channel edge by the high level of anomalous viscous stresses defines the final length scale of bead lightning. Later, during the continuing current stage of the lightning flash, the MHD pinch instability persists, although with a much smaller growth rate that can be enhanced in a M-component event. The combined effect of these instabilities may explain various aspects of bead lightning.« less
NASA Astrophysics Data System (ADS)
Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.
2018-06-01
We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.
NASA Technical Reports Server (NTRS)
Cairns, Iver H.; Robinson, P. A.
1998-01-01
Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Andrews, Malcolm J.
2011-04-01
We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.88.134502 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.
A decades-long fast-rise-exponential-decay flare in low-luminosity AGN NGC 7213
NASA Astrophysics Data System (ADS)
Yan, Zhen; Xie, Fu-Guo
2018-03-01
We analysed the four-decades-long X-ray light curve of the low-luminosity active galactic nucleus (LLAGN) NGC 7213 and discovered a fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased by a factor of ≈4 within 200 d, and then decreased exponentially with an e-folding time ≈8116 d (≈22.2 yr). For the theoretical understanding of the observations, we examined three variability models proposed in the literature: the thermal-viscous disc instability model, the radiation pressure instability model, and the TDE model. We find that a delayed tidal disruption of a main-sequence star is most favourable; either the thermal-viscous disc instability model or radiation pressure instability model fails to explain some key properties observed, thus we argue them unlikely.
The Geomagnetic Field as a Transient: Constraints From Paleomagnetic Intensity Data
NASA Astrophysics Data System (ADS)
Aldridge, K. D.; Baker, R.; McMillan, D. G.
2009-12-01
Measurement of Earth’s magnetic field intensity from sedimentary rocks confirms that the field is a transient on millennial time scales. In accounting for this observation, parameters from dynamo models need to be compared with those obtained from observations. Here we model temporal changes in intensity of the geomagnetic field as either growths or decays, sometimes separated by stationary states. In order to obtain temporal properties of the geomagnetic field, our model, developed as a Matlab algorithm, searches records of relative paleointensity to measure objectively the rates of growth and decay of the field. Here we report on the application of our algorithm to six records of relative paleointensity obtained from oceanic cores. Our model for the fluid velocity field in Earth’s core is based on parametric instability produced externally through gradients of the gravitational field. It is well known that these gradients can lead to instability of the core fluid through both elliptical and shear straining of fluid streamlines. Such an instability will exist as long as the externally produced strain rate exceeds the dissipation rate in Earth’s fluid core. As known from both theoretical models and experimental observations that a sequence of alternately growing and decaying velocities will develop in the fluid, our algorithm has searched the records of relative paleointensity for exponential growths and decays. Since a balance may exist between strain and decay rates described above, our algorithm includes the possibility for a segment of relative paleointensity that is stationary. Such segments do indeed occur in the relative paleointensity record and are expected by the model of parametric instability. Results of the application of our algorithm spanning two Ma with broad geographical coverage will be presented.
Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration
NASA Astrophysics Data System (ADS)
Diamond, P. H.; Malkov, M. A.
2007-01-01
We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.
Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay
NASA Astrophysics Data System (ADS)
Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.
2018-02-01
Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.
Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.
Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H
2015-03-01
A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.
Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Edgell, D. H.; Henchen, R. J.
2015-03-26
A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPDmore » EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.« less
Instability and sound emission from a flow over a curved surface
NASA Technical Reports Server (NTRS)
Maestrello, L.; Parikh, P.; Bayliss, A.
1988-01-01
The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.
Soliton instabilities and vortex street formation in a polariton quantum fluid.
Grosso, G; Nardin, G; Morier-Genoud, F; Léger, Y; Deveaud-Plédran, B
2011-12-09
Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas.
Wong, A Y; Chen, J; Lee, L C; Liu, L Y
2009-03-13
A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources.
Harmonic generation and parametric decay in the ion cyclotron frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiff, F.N.; Wong, K.L.; Ono, M.
1984-06-01
Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.
Observational Signatures of Parametric Instability at 1AU
NASA Astrophysics Data System (ADS)
Bowen, T. A.; Bale, S. D.; Badman, S.
2017-12-01
Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.
Suppression of the n=2 rotational instability in field-reversed configurations
NASA Astrophysics Data System (ADS)
Hoffman, Alan L.; Slough, J.; Harding, Dennis G.
1983-06-01
Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.
SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona
NASA Technical Reports Server (NTRS)
Ofman, L.; Thompson, B. J.
2011-01-01
We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).
Hydrodynamic Model of Spatio-Temporal Evolution of Two-Plasmon Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, D. R.; Maluckov, A. A.
A hydrodynamic model of two-plasmon decay in a homogeneous plasma slab near the quarter-critical density is constructed in order to gain better insight into the spatio-temporal evolution of the daughter electron plasma waves in plasma in the course of the instability. The influence of laser and plasma parameters on the evolution of the amplitudes of the participating waves is discussed. The secondary coupling of two daughter electron plasma waves with an ion-acoustic wave is assumed to be the principal mechanism of saturation of the instability. The impact of the inherently nonresonant nature of this secondary coupling on the development ofmore » TPD is investigated and it is shown to significantly influence the electron plasma wave dynamics. Its inclusion leads to nonuniformity of the spatial profile of the instability and causes the burst-like pattern of the instability development, which should result in the burst-like hot-electron production in homogeneous plasma.« less
The Kepler Light Curve of V344 LYR: Constraining the Thermal-Viscous Limit Cycle Instability
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.
2010-01-01
We present time dependent modeling based on the accretion disk limit cycle model for a 90 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass a super outburst, preceded by three normal (i.e., short) outbursts and followed by two normal outbursts. The main decay of the super outburst is nearly perfectly exponential, decaying at a rate approx.12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. We show that the standard limit cycle model can account for the light curve, without the need for either the thermal-tidal instability or enhanced mass transfer.
Instabilities of Current Carrying Torus
NASA Astrophysics Data System (ADS)
Liu, Wenjuan; Qiu, J.
2010-05-01
We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.
Search for nucleon decays with EXO-200
NASA Astrophysics Data System (ADS)
Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hansen, E. V.; Hoessl, J.; Homiller, S.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, G. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Robinson, A. L.; Rowson, P. C.; Schmidt, S.; Schubert, A.; Sinclair, D.; Soma, A. K.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J.-L.; Wagenpfeil, M.; Waite, A.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wrede, G.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.; EXO-200 Collaboration
2018-04-01
A search for instability of nucleons bound in 136Xe nuclei is reported with 223 kg.yr exposure of 136Xe in the EXO-200 experiment. Lifetime limits of 3.3 ×1023 and 1.9 ×1023 yr are established for nucleon decay to 133Sb and 133Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively.
Regulation of cytoplasmic mRNA decay
Schoenberg, Daniel R.; Maquat, Lynne E.
2012-01-01
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217
The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco; Hellinger, Petr
2017-12-01
We study the stability of large-amplitude, circularly polarized Alfvén waves in an anisotropic plasma described by the double-adiabatic/CGL closure, and in particular the effect of a background thermal pressure anisotropy on the well-known properties of Alfvén wave parametric decay in magnetohydrodynamics (MHD). Anisotropy allows instability over a much wider range of values of parallel plasma beta (β ∥) when ξ = p 0⊥/p 0∥ > 1. When the pressure anisotropy exceeds a critical value, ξ ≥ ξ* with ξ* ≃ 2.7, there is a new regime in which the parametric instability is no longer quenched at high β ∥, and in the limit β ∥ ≫ 1, the growth rate becomes independent of β ∥. In the opposite case of ξ < ξ*, the instability is strongly suppressed with increasing parallel plasma beta, similarly to the MHD case. We analyze marginal stability conditions for parametric decay in the (ξ, β ∥) parameter space and discuss possible implications for Alfvénic turbulence in the solar wind.
NASA Astrophysics Data System (ADS)
Van de Moortel, Maxime
2018-05-01
We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.
Parametric instability induced by X-mode wave heating at EISCAT
NASA Astrophysics Data System (ADS)
Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-10-01
In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.
Longitudinal and Transverse Instability of Ion Acoustic Waves
NASA Astrophysics Data System (ADS)
Chapman, T.; Berger, R. L.; Cohen, B. I.; Banks, J. W.; Brunner, S.
2017-08-01
Ion acoustic waves are found to be susceptible to at least two distinct decay processes. Which process dominates depends on the parameters. In the cases examined, the decay channel where daughter modes propagate parallel to the mother mode is found to dominate at larger amplitudes, while the decay channel where the daughter modes propagate at angles to the mother mode dominates at smaller amplitudes. Both decay processes may occur simultaneously and with onset thresholds below those suggested by fluid theory, resulting in the eventual multidimensional collapse of the mother mode to a turbulent state.
Transverse instability of periodic and generalized solitary waves for a fifth-order KP model
NASA Astrophysics Data System (ADS)
Haragus, Mariana; Wahlén, Erik
2017-02-01
We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.
NASA Astrophysics Data System (ADS)
Yan, Rui; Cao, Shihui; Wan, Zhenhua; Hu, Guangyue; Zheng, Jian; Hao, Liang; Liu, Wenda; Ren, Chuang
2017-10-01
We push our FLAME project forward with a newly developed code FLAME-MD (Multi-Dimensional) based on the fluid model presented in Ref.. Simulations are performed to study two plasmon decay (TPD) instabilities and stimulated Raman scattering (SRS) in three dimensions (3D) with parameters relevant to ICF. 3D effects on the growth of TPD and SRS, including laser polarizations and multi beam configurations, are studied. This material is based upon work supported by National Natural Science Foundation of China (NSFC) under Grant No. 11642020, 11621202; by Science Challenge Project (No. JCKY2016212A505); and by DOE Office of Fusion Energy Sciences Grant DE-SC0014318.
Fast saturation of the two-plasmon-decay instability for shock-ignition conditions
NASA Astrophysics Data System (ADS)
Weber, S.; Riconda, C.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.
2012-01-01
Two-plasmon-decay (TPD) instability is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion. Two-dimensional particle-in-cell simulations show that in a hot, large-scale plasma, TPD develops in concomitance with stimulated Raman scattering (SRS). It is active only during the first picosecond of interaction, and then it is rapidly saturated due to plasma cavitation. TPD-excited plasma waves extend to small wavelengths, above the standard Landau cutoff. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below 100 keV, which should not be a danger for the fuel core preheat in the SI scenario.
Two-plasmon decay instability in inhomogeneous plasmas at oblique laser incidence
Wen, H.; Maximov, A. V.; Short, R. W.; ...
2016-09-30
The two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities have been studied in the region near the quarter-critical density in the plasmas of the laser-driven inertial confinement fusion for a wide range of laser angles of incidence. The theoretical analysis of the TPD for oblique laser incidence has been carried out. The theoretical growth rates and thresholds have been compared with the results of the fluid-type simulations, and a good agreement has been found. Here, in the modeling including both TPD and SRS, the spectra of the growing perturbations have multiple peaks, and the maximum growth may be influencedmore » by the interplay between TPD and SRS.« less
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Regan, S. P.; Seka, W.; Shaw, J.; Hohenberger, M.; Bates, J. W.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.
2016-05-01
The two-plasmon-decay (TPD) instability can be detrimental for direct-drive inertial confinement fusion because it generates high-energy electrons that can preheat the target, thereby reducing target performance. Hydrodynamic simulations to design a new experimental platform to investigate TPD and other laser-plasma instabilities relevant to direct-drive-ignition implosions at the National Ignition Facility are presented. The proposed experiments utilize planar plastic targets with an embedded Mo layer to characterize generation of hot electrons through Mo Kα fluorescence and hard x-ray emission. Different laser-irradiation geometries approximate conditions near both the equator and the pole of a polar-direct-drive implosion.
Search for nucleon decays with EXO-200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J. B.; Anton, G.; Badhrees, I.
In this paper, a search for instability of nucleons bound in 136Xe nuclei is reported with 223 kg·yr exposure of 136Xe in the EXO-200 experiment. Lifetime limits of 3.3 × 10 23 and 1.9 × 10 23 yr are established for nucleon decay to 133Sb and 133Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively.
Search for nucleon decays with EXO-200
Albert, J. B.; Anton, G.; Badhrees, I.; ...
2018-04-10
In this paper, a search for instability of nucleons bound in 136Xe nuclei is reported with 223 kg·yr exposure of 136Xe in the EXO-200 experiment. Lifetime limits of 3.3 × 10 23 and 1.9 × 10 23 yr are established for nucleon decay to 133Sb and 133Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively.
Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes
NASA Astrophysics Data System (ADS)
Rosa, João G.; Kephart, Thomas W.
2018-06-01
The superradiant instability can lead to the generation of extremely dense axion clouds around rotating black holes. We show that, despite the long lifetime of the QCD axion with respect to spontaneous decay into photon pairs, stimulated decay becomes significant above a minimum axion density and leads to extremely bright lasers. The lasing threshold can be attained for axion masses μ ≳10-8 eV , which implies superradiant instabilities around spinning primordial black holes with mass ≲0.01 M⊙. Although the latter are expected to be nonrotating at formation, a population of spinning black holes may result from subsequent mergers. We further show that lasing can be quenched by Schwinger pair production, which produces a critical electron-positron plasma within the axion cloud. Lasing can nevertheless restart once annihilation lowers the plasma density sufficiently, resulting in multiple laser bursts that repeat until the black hole spins down sufficiently to quench the superradiant instability. In particular, axions with a mass ˜10-5 eV and primordial black holes with mass ˜1024 kg , which may account for all the dark matter in the Universe, lead to millisecond bursts in the GHz radio-frequency range, with peak luminosities ˜1042 erg /s , suggesting a possible link to the observed fast radio bursts.
Thin-wall approximation in vacuum decay: A lemma
NASA Astrophysics Data System (ADS)
Brown, Adam R.
2018-05-01
The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.
NASA Astrophysics Data System (ADS)
Tompkins, Casey A.
A research team at University of Wisconsin - Madison designed and constructed a 1/4 height scaled experimental facility to study two-phase natural circulation cooling in a water-based reactor cavity cooling system (WRCCS) for decay heat removal in an advanced high temperature reactor. The facility is capable of natural circulation operation scaled for simulated decay heat removal (up to 28.5 kW m-2 (45 kW) input power, which is equivalent to 14.25 kW m-2 (6.8 MW) at full scale) and pressurized up to 2 bar. The UW-WRCCS facility has been used to study instabilities and oscillations observed during natural circulation flow due to evaporation of the water inventory. During two-phase operation, the system exhibits flow oscillations and excursions, which cause thermal oscillations in the structure. This can cause degradation in the mechanical structure at welds and limit heat transfer to the coolant. The facility is equipped with wire mesh sensors (WMS) that enable high-resolution measurements of the void fraction and steam velocities in order to study the instability's and oscillation's growth and decay during transient operation. Multiple perturbations to the system's operating point in pressure and inlet throttling have shown that the oscillatory behavior present under normal two-phase operating conditions can be damped and removed. Furthermore, with steady-state modeling it was discovered that a flow regime transition instability is the primary cause of oscillations in the UW-WRCCS facility under unperturbed conditions and that proper orifice selection can move the system into a stable operating regime.
NASA Astrophysics Data System (ADS)
Tolstov, Alexey; Nomoto, Ken'ichi; Blinnikov, Sergei; Sorokina, Elena; Quimby, Robert; Baklanov, Petr
2017-02-01
Being a superluminous supernova, PTF12dam can be explained by a 56Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of 56Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M⊙ ejecta and 20-40 M⊙ circumstellar medium. The ejected 56Ni mass is about 6 M⊙, which results from explosive nucleosynthesis with large explosion energy (2-3) × 1052 erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.
Oks, E; Dalimier, E; Faenov, A Ya; Angelo, P; Pikuz, S A; Tubman, E; Butler, N M H; Dance, R J; Pikuz, T A; Skobelev, I Yu; Alkhimova, M A; Booth, N; Green, J; Gregory, C; Andreev, A; Zhidkov, A; Kodama, R; McKenna, P; Woolsey, N
2017-02-06
By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.
Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.
Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F
2014-02-07
Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.; Sydora, R.
2013-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behavior of these waves has been extensively studied, non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in coronal heating and/or in establishing the spectrum of solar wind turbulence. Recent counter-propagating Alfvén wave experiments have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability. The resonance in the observed beat process has several features consistent with ponderomotive coupling to an ion acoustic mode, including the measured dispersion relation and spatial profile. Strong damping observed after the pump Alfvén waves are turned off is under investigation. New experiments and simulations also aim to identify decay instabilities from a single large-amplitude Alfvén wave. Supported by DOE and NSF.
The Apparent Critical Decay Index at the Onset of Solar Prominence Eruptions
NASA Astrophysics Data System (ADS)
Zuccarello, F. P.; Aulanier, G.; Gilchrist, S. A.
2016-04-01
A magnetic flux rope (MFR) embedded in a line-tied external magnetic field that decreases with height as {z}-n is unstable to perturbations if the decay index of the field n is larger than a critical value. The onset of this instability, called torus instability, is one of the main mechanisms that can initiate coronal mass ejections. Since flux ropes often possess magnetic dips that can support prominence plasma, this is also a valuable mechanism to trigger prominence eruptions. Magnetohydrodynamic (MHD) simulations of the formation and/or emergence of MFRs suggest a critical value for the onset of the instability in the range [1.4-2]. However, detailed observations of prominences suggest a value in the range [0.9-1.1]. In this Letter, by using a set of MHD simulations, we show why the large discrepancy between models and observations is only apparent. Our simulations indeed show that the critical decay index at the onset of the eruption is n=1.4+/- 0.1 when computed at the apex of the flux rope axis, while it is n=1.1+/- 0.1 when it is computed at the altitude of the topmost part of the distribution of magnetic dips. The discrepancy only arises because weakly twisted curved flux ropes do not have dips up to the altitude of their axis.
Navier-Stokes Entropy Controlled Combustion Instability Analysis for Liquid Propellants
NASA Technical Reports Server (NTRS)
Chung, T. J.; Yoon, W. S.
1990-01-01
Navier-Stokes solutions are used to calculate oscillatory components of pressure, velocity, and density, which in turn provide necessary data to compute energy growth factors to determine combustion instability. It is shown that wave instabilities are associated with changes in entropy and the space and time averages of oscillatory components of pressure, velocity and density, together with the mean flow field in the energy equation. Compressible laminar and turbulent flows and reacting flows with hydrogen/oxygen combustion are considered. The SSME combustion/thrust chamber is used for illustration of the theory. The analysis shows that the increase of mean pressure and disturbances consistently results in the increase of instability. It is shown that adequate combustion instability analysis requires at least third order nonlinearity in energy growth or decay.
Parametric Instabilities During High Power Helicon Wave Injection on DIII-D
NASA Astrophysics Data System (ADS)
Porkolab, M.; Pinsker, R. I.
2017-10-01
High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.
Saturation of Langmuir waves in laser-produced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, K.L.
1996-04-01
This dissertation deals with the interaction of an intense laser with a plasma (a quasineutral collection of electrons and ions). During this interaction, the laser drives large-amplitude waves through a class of processes known as parametric instabilities. Several such instabilities drive one type of wave, the Langmuir wave, which involves oscillations of the electrons relative to the nearly-stationary ions. There are a number of mechanisms which limit the amplitude to which Langmuir waves grow. In this dissertation, these mechanisms are examined to identify qualitative features which might be observed in experiments and/or simulations. In addition, a number of experiments aremore » proposed to specifically look for particular saturation mechanisms. In a plasma, a Langmuir wave can decay into an electromagnetic wave and an ion wave. This parametric instability is proposed as a source for electromagnetic emission near half of the incident laser frequency observed from laser-produced plasmas. This interpretation is shown to be consistent with existing experimental data and it is found that one of the previous mechanisms used to explain such emission is not. The scattering version of the electromagnetic decay instability is shown to provide an enhanced noise source of electromagnetic waves near the frequency of the incident laser.« less
Saturation of the magnetorotational instability at large Elsasser number
NASA Astrophysics Data System (ADS)
Jamroz, B.; Julien, K.; Knobloch, E.
2008-09-01
The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still but not negligible. The regime explored retains the condition that (viscous and ohmic) dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.
Saturation of the Magnetorotational Instability at Large Elssaser Number
NASA Astrophysics Data System (ADS)
Julien, Keith; Jamroz, Benjamin; Knobloch, Edgar
2009-11-01
The MRI is believed to play an important role in accretion disk physics in extracting angular momentum from the disk and allowing accretion to take place. The instability is investigated within the shearing box approximation under conditions of fundamental importance to astrophysical accretion disk theory. The shear is taken to be the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are suffiently weak that the Elsasser number is large. Thus dissipative forces do not play a role in the leading order linear instability mechanism. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from simulations of the model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these growth and decay laws conspire to achieve saturation of angular momentum transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei
2017-02-01
Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {submore » ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.« less
A Reduced Model for the Magnetorotational Instability
NASA Astrophysics Data System (ADS)
Jamroz, Ben; Julien, Keith; Knobloch, Edgar
2008-11-01
The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, J. B.; Anton, G.; Badhrees, I.
In this paper, a search for instability of nucleons bound in 136Xe nuclei is reported with 223 kg·yr exposure of 136Xe in the EXO-200 experiment. Lifetime limits of 3.3 × 10 23 and 1.9 × 10 23 yr are established for nucleon decay to 133Sb and 133Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively.
Excitation of a global plasma mode by an intense electron beam in a dc discharge
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.; ...
2018-01-01
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
Excitation of a global plasma mode by an intense electron beam in a dc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
Arctic Ocean Eddies and Baroclinic Instability.
1981-07-01
15 days with a half wavelenght of 37 km. This rapid growth rate indicates that mesoscale eddies should form in this area. The dimensions of the...icet brine convection accompanying sea ice growth , and an instability of the mean baroclinic current. Of these, the baroclinic insta- bility hypothesis...generally complex with the real part, C, representing the phase speed and the imagi- nary part, ci, representing the growth or decay of the wave. Positive
Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)
NASA Technical Reports Server (NTRS)
Jayanti, V.; Hollweg, Joseph V.
1994-01-01
We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.
Nonlinear wave interactions in shallow water magnetohydrodynamics of astrophysical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimachkov, D. A., E-mail: klimachkovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru
2016-05-15
The rotating magnetohydrodynamic flows of a thin layer of astrophysical and space plasmas with a free surface in a vertical external magnetic field are considered in the shallow water approximation. The presence of a vertical external magnetic field changes significantly the dynamics of wave processes in an astrophysical plasma, in contrast to a neutral fluid and a plasma layer in an external toroidal magnetic field. There are three-wave nonlinear interactions in the case under consideration. Using the asymptotic method of multiscale expansions, we have derived nonlinear equations for the interaction of wave packets: three magneto- Poincare waves, three magnetostrophic waves,more » two magneto-Poincare and one magnetostrophic waves, and two magnetostrophic and one magneto-Poincare waves. The existence of decay instabilities and parametric amplification is predicted. We show that a magneto-Poincare wave decays into two magneto-Poincare waves, a magnetostrophic wave decays into two magnetostrophic waves, a magneto-Poincare wave decays into one magneto-Poincare and one magnetostrophic waves, and a magnetostrophic wave decays into one magnetostrophic and one magneto-Poincare waves. There are the following parametric amplification mechanisms: the parametric amplification of magneto-Poincare waves, the parametric amplification of magnetostrophic waves, the amplification of a magneto-Poincare wave in the field of a magnetostrophic wave, and the amplification of a magnetostrophic wave in the field of a magneto-Poincare wave. The instability growth rates and parametric amplification factors have been found for the corresponding processes.« less
Parametric decay of an extraordinary electromagnetic wave in relativistic plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorofeenko, V. G.; Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2015-03-15
Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations showsmore » that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.« less
Progress in LPI Experiments at the NikeLaser
NASA Astrophysics Data System (ADS)
Weaver, J.; Kehne, D.; Obenschain, S.; Schmitt, A.; Serlin, V.; Oh, J.; Lehmberg, R.; Tsung, F.; McKenty, P.; Seely, J.
2014-10-01
The experimental program at the Nike laser facility at NRL is studying laser plasma instabilities (LPI) in the quarter critical region and cross-beam energy transport (CBET). The Nike krypton-fluorine (KrF) laser has unique characteristics that allow parametric studies of LPI. These features include short wavelength (248 nm), large bandwidth (~2-3 THz), beam smoothing by induced spatial incoherence (ISI), and full aperture focal spot zooming during the laser pulse. Nike also has a unique beam geometry that combines two widely separated beam arrays (145° in azimuth) with close beam-beam spacing (as low as 3.5°) within the main drive array. Particularly relevant for the CBET studies, recent campaigns have demonstrated the capability to alter the laser bandwidth by a factor of ~10 as well as shifts in the peak laser wavelength. An extensive LPI diagnostic suite is available for observation of stimulated Raman scattering, two-plasmon decay, stimulated Brillouin scattering, the parametric decay instability, and hard x-ray emission due to hot electrons. An overview of the observations of scattered laser light made during the previous studies of instabilities in the quarter critical region will be presented. Ongoing analysis of observed LPI emission from rotated targets will also be included. Plans for upcoming experiments related to quarter critical instabilities and CBET will be discussed. Work supported by DoE/NNSA.
Aircraft wake vortex transport model
DOT National Transportation Integrated Search
1974-03-31
A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...
NASA Technical Reports Server (NTRS)
Wurtele, Morton G.
1987-01-01
The development of instability configurations; the transition from unstable growth of these configurations into turbulence; a description of the nature of that turbulence; the question of decay of turbulence; and the existence of what is called fossil turbulence are discussed.
Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations.
Verscharen, D; Marsch, E; Motschmann, U; Müller, J
2012-08-01
Certain types of plasma waves are known to become parametrically unstable under specific plasma conditions, in which the pump wave will decay into several daughter waves with different wavenumbers and frequencies. In the past, the related plasma instabilities have been treated analytically for various parameter regimes and by use of various numerical methods, yet the oblique propagation with respect to the background magnetic field has rarely been dealt with in two dimensions, mainly because of the high computational demand. Here we present a hybrid-simulation study of the parametric decay of a moderately oblique Alfvén wave having elliptical polarization. It is found that such a compressive wave can decay into waves with higher and lower wavenumbers than the pump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Tsuyoshi; Asano, Katsuaki; Ioka, Kunihito, E-mail: inouety@phys.aoyama.ac.jp
2011-06-20
Relativistic astrophysical phenomena such as gamma-ray bursts (GRBs) and active galactic nuclei often require long-lived strong magnetic fields that cannot be achieved by shock compression alone. Here, we report on three-dimensional special-relativistic magnetohydrodynamic (MHD) simulations that we performed using a second-order Godunov-type conservative code to explore the amplification and decay of macroscopic turbulence dynamo excited by the so-called Richtmyer-Meshkov instability (RMI; a Rayleigh-Taylor-type instability). This instability is an inevitable outcome of interactions between shock and ambient density fluctuations. We find that the magnetic energy grows exponentially in a few eddy-turnover times because of field-line stretching and then, following the decaymore » of kinetic turbulence, decays with a temporal power-law exponent of -0.7. The magnetic energy fraction can reach {epsilon}{sub B} {approx} 0.1 but depends on the initial magnetic field strength, which can diversify the observed phenomena. We find that the magnetic energy grows by at least two orders of magnitude compared to the magnetic energy immediately behind the shock, provided the kinetic energy of turbulence injected by the RMI is greater than the magnetic energy. This minimum degree of amplification does not depend on the amplitude of the initial density fluctuations, while the growth timescale and the maximum magnetic energy depend on the degree of inhomogeneity in the density. The transition from Kolmogorov cascade to MHD critical balance cascade occurs at {approx}1/10th the initial inhomogeneity scale, which limits the maximum synchrotron polarization to less than {approx}2%. We derive analytical formulas for these numerical results and apply them to GRBs. New results include the avoidance of electron cooling with RMI turbulence, the turbulent photosphere model via RMI, and the shallow decay of the early afterglow from RMI. We also perform a simulation of freely decaying turbulence with relativistic velocity dispersion. We find that relativistic turbulence begins to decay much more quickly than one eddy-turnover time because of rapid shock dissipation, which does not support the relativistic turbulence model by Narayan and Kumar.« less
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Li, Hui; Guo, Fan; Li, Xiaocan; Roytershteyn, Vadim
2018-03-01
Evolution of the parametric decay instability (PDI) of a circularly polarized Alfvén wave in a turbulent low-beta plasma background is investigated using 3D hybrid simulations. It is shown that the turbulence reduces the growth rate of PDI as compared to the linear theory predictions, but PDI can still exist. Interestingly, the damping rate of the ion acoustic mode (as the product of PDI) is also reduced as compared to the linear Vlasov predictions. Nonetheless, significant heating of ions in the direction parallel to the background magnetic field is observed due to resonant Landau damping of the ion acoustic waves. In low-beta turbulent plasmas, PDI can provide an important channel for energy dissipation of low-frequency Alfvén waves at a scale much larger than the ion kinetic scales, different from the traditional turbulence dissipation models.
NASA Astrophysics Data System (ADS)
Shoda, Munehito; Yokoyama, Takaaki
2018-06-01
We conduct a 3D magnetohydrodynamic (MHD) simulation of the parametric decay instability of Alfvén waves and resultant compressible MHD turbulence, which is likely to develop in the solar wind acceleration region. Because of the presence of the mean magnetic field, the nonlinear stage is characterized by filament-like structuring and anisotropic cascading. By calculating the timescales of phase mixing and the evolution of Alfvén wave turbulence, we have found that the early nonlinear stage is dominated by phase mixing, while the later phase is dominated by imbalanced Alfvén wave turbulence. Our results indicate that the regions in the solar atmosphere with large density fluctuation, such as the coronal bottom and wind acceleration region, are heated by phase-mixed Alfvén waves, while the other regions are heated by Alfvén wave turbulence.
Nonlinear Decay and Plasma Heating by a Toroidal Alfvén Eigenmode
NASA Astrophysics Data System (ADS)
Qiu, Z.; Chen, L.; Zonca, F.; Chen, W.
2018-03-01
We demonstrate theoretically that a toroidal Alfvén eigenmode (TAE) can parametrically decay into a geodesic acoustic mode and kinetic TAE in a toroidal plasma. The corresponding threshold condition for the TAE amplitude is estimated to be |δ B⊥/B0|˜O (10-4). Here, δ B⊥ and B0 are, respectively, the perturbed magnetic field of the pump TAE and the equilibrium magnetic field. This novel decay process, in addition to contributing to the nonlinear saturation of energetic-particle or α -particle driven TAE instability, could also contribute to the heating as well as regulating the transports of thermal plasmas.
Characterization of Low-Frequency Combustion Stability of the Fastrac Engine
NASA Technical Reports Server (NTRS)
Rocker, Marvin; Jones, Preston (Technical Monitor)
2002-01-01
A series of tests were conducted to measure the combustion performance of the Fastrac engine thrust chamber. During mainstage, the thrust chamber exhibited no large-amplitude chamber pressure oscillations that could be identified as low-frequency combustion instability or 'chug'. However, during start-up and shutdown, the thrust chamber very briefly exhibited large-amplitude chamber pressure oscillations that were identified as chug. These instabilities during start-up and shutdown were regarded as benign due to their brevity. Linear models of the thrust chamber and the propellant feed systems were formulated for both the thrust chamber component tests and the flight engine tests. These linear models determined the frequency and decay rate of chamber pressure oscillations given the design and operating conditions of the thrust chamber and feed system. The frequency of chamber pressure oscillations determined from the model closely matched the frequency of low-amplitude, low-frequency chamber pressure oscillations exhibited in some of the later thrust chamber mainstage tests. The decay rate of the chamber pressure oscillations determined from the models indicated that these low-frequency oscillations were stable. Likewise, the decay rate, determined from the model of the flight engine tests indicated that the low-frequency chamber pressure oscillations would be stable.
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
Critical exponents of extremal Kerr perturbations
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.; Zimmerman, Peter
2018-05-01
We show that scalar, electromagnetic, and gravitational perturbations of extremal Kerr black holes are asymptotically self-similar under the near-horizon, late-time scaling symmetry of the background metric. This accounts for the Aretakis instability (growth of transverse derivatives) as a critical phenomenon associated with the emergent symmetry. We compute the critical exponent of each mode, which is equivalent to its decay rate. It follows from symmetry arguments that, despite the growth of transverse derivatives, all generally covariant scalar quantities decay to zero.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosso, G.; Nardin, G.; Morier-Genoud, F.
Exciton polaritons have been shown to be an optimal system in order to investigate the properties of bosonic quantum fluids. We report here on the observation of dark solitons in the wake of engineered circular obstacles and their decay into streets of quantized vortices. Our experiments provide a time-resolved access to the polariton phase and density, which allows for a quantitative study of instabilities of freely evolving polaritons. The decay of solitons is quantified and identified as an effect of disorder-induced transverse perturbations in the dissipative polariton gas.
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Theoretical studies of the solar atmosphere and interstellar pickup ions
NASA Technical Reports Server (NTRS)
1994-01-01
Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sati, Priti; Tripathi, V. K.
Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less
Critical Decay Index at the Onset of Solar Eruptions
NASA Astrophysics Data System (ADS)
Zuccarello, F. P.; Aulanier, G.; Gilchrist, S. A.
2015-12-01
Magnetic flux ropes are topological structures consisting of twisted magnetic field lines that globally wrap around an axis. The torus instability model predicts that a magnetic flux rope of major radius R undergoes an eruption when its axis reaches a location where the decay index -d({ln}{B}{ex})/d({ln}R) of the ambient magnetic field Bex is larger than a critical value. In the current-wire model, the critical value depends on the thickness and time evolution of the current channel. We use magnetohydrodynamic simulations to investigate whether the critical value of the decay index at the onset of the eruption is affected by the magnetic flux rope’s internal current profile and/or by the particular pre-eruptive photospheric dynamics. The evolution of an asymmetric, bipolar active region is driven by applying different classes of photospheric motions. We find that the critical value of the decay index at the onset of the eruption is not significantly affected by either the pre-erupitve photospheric evolution of the active region or the resulting different magnetic flux ropes. As in the case of the current-wire model, we find that there is a “critical range” [1.3-1.5], rather than a “critical value” for the onset of the torus instability. This range is in good agreement with the predictions of the current-wire model, despite the inclusion of line-tying effects and the occurrence of tether-cutting magnetic reconnection.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Generation of cyclotron harmonic waves in the ionospheric modification experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janabi, A.H.A.; Kumar, A.; Sharma, R.P.
1994-02-01
In the present paper, the parametric decay instability of the pump X-mode into electron Bernstein wave (EBW) near second harmonics of electron cyclotron frequency and IBW at different harmonics ([omega] < n[omega][sub ci];n = 2, 3, 4) is examined. Expressions are derived for homogeneous threshold, growth rate and convective threshold for this instability. Applications and relevances of the present investigation to ionospheric modification experiment in the F-layer of the ionosphere as well as during intense electron cyclotron resonance heating in the upcoming MTX tokamak have been given.
On consistency of hydrodynamic approximation for chiral media
NASA Astrophysics Data System (ADS)
Avdoshkin, A.; Kirilin, V. P.; Sadofyev, A. V.; Zakharov, V. I.
2016-04-01
We consider chiral liquids, that is liquids consisting of massless fermions and right-left asymmetric. In such media, one expects existence of electromagnetic current flowing along an external magnetic field, associated with the chiral anomaly. The current is predicted to be dissipation-free. We consider dynamics of chiral liquids, concentrating on the issues of possible instabilities and infrared sensitivity. Instabilities arise, generally speaking, already in the limit of vanishing electromagnetic constant, αel → 0. In particular, liquids with non-vanishing chiral chemical potential might decay into right-left asymmetric states containing vortices.
Surface waves in an incompressible fluid - Resonant instability due to velocity shear
NASA Technical Reports Server (NTRS)
Hollweg, Joseph V.; Yang, G.; Cadez, V. M.; Gakovic, B.
1990-01-01
The effects of velocity shear on the resonance absorption of incompressible MHD surface waves are studied. It is found that there are generally values of the velocity shear for which the surface wave decay rate becomes zero. In some cases, the resonance absorption goes to zero even for very small velocity shears. It is also found that the resonance absorption can be strongly enhanced at other values of the velocity shear, so the presence of flows may be generally important for determining the effects of resonance absorption, such as might occur in the interaction of p-modes with sunspots. Resonances leading to instability of the global surface mode can exist, and instability can occur for velocity shears significantly below the Kelvin-Helmholtz threshold. These instabilities may play a role in the development or turbulence in regions of strong velocity shear in the solar wind or the earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Romano, Annalisa; Boine-Frankenheim, Oliver; Buffat, Xavier; Iadarola, Giovanni; Rumolo, Giovanni
2018-06-01
At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC). Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, despite large chromaticity values and high strength of the Landau-damping octupole magnet. The instability exhibited several features characteristic of those induced by the electron cloud (EC). Indeed, when LHC operates with 25 ns bunch spacing, an EC builds up in a large fraction of the beam chambers, as revealed by several independent indicators. Numerical simulations have been carried out in order to investigate the role of the EC in the observed instabilities. It has been found that the beam intensity decay is unfavorable for the beam stability when LHC operates in a strong EC regime.
Mirror Instability in the Turbulent Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Landi, Simone; Verdini, Andrea
2017-04-01
The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leadsmore » to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.« less
Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions
NASA Astrophysics Data System (ADS)
Bais, F. A.; Striet, J.
2003-08-01
Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.
Albright, B. J.; Yin, L.; Bowers, K. J.; ...
2016-03-04
Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves(IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less
NASA Astrophysics Data System (ADS)
Bauer, Bruno; Hutchinson, Trevor; Awe, Thomas
2017-10-01
The stratified electrothermal instability (ETI) was recently observed on the surface of thick aluminum 6061 pulsed with rapidly rising lineal current density (3 ×1015 A m-1s-1) for 70 ns. A transparent 70- μm-thick Parylene-N coating tamped the aluminum expansion and suppressed surface plasma. The evolution of the aluminum surface emission pattern was recorded with time-resolved microscopy (3- μm resolution). The images were converted into a series of blackbody surface-temperature maps. Analysis of these temperature maps provides information on the evolution of temperature fluctuations, as a function of axial wavelength and azimuthal width. Perturbations with axial wavelength longer than 20 μm grow, while those with axial wavelength shorter than 10 μm decay. Comparing the spectral dependence of growth/decay rates with MHD simulations could test the modeling of ETI positive feedback and of damping by thermal conduction. Work supported by Sandia National Laboratories LDRD program, PO 1742766.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; ...
2018-03-30
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Dynamical Evolution of a Doubly Quantized Vortex Imprinted in a Bose-Einstein Condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mateo, A. Munoz; Delgado, V.
2006-11-03
The recent experiment by Shin et al. [Phys. Rev. Lett. 93, 160406 (2004)] on the decay of a doubly quantized vortex is analyzed by numerically solving the Gross-Pitaevskii equation. Our results demonstrate that the vortex decay is mainly a consequence of dynamical instability. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ~0.7% laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. In conclusion, this allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Suppressing Two-Plasmon Decay with Laser Frequency Detuning
NASA Astrophysics Data System (ADS)
Follett, R. K.; Shaw, J. G.; Myatt, J. F.; Palastro, J. P.; Short, R. W.; Froula, D. H.
2018-03-01
Three-dimensional laser-plasma interaction simulations show that laser frequency detuning by an amount achievable with current laser technology can be used to suppress the two-plasmon decay (TPD) instability and the corresponding hot-electron generation. For the plasma conditions and laser configuration in a direct-drive inertial confinement fusion implosion on the OMEGA laser, the simulations show that ˜0.7 % laser frequency detuning is sufficient to eliminate TPD-driven hot-electron generation in current experiments. This allows for higher ablation pressures in future implosion designs by using higher laser intensities.
Effect of wave localization on plasma instabilities. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levedahl, William Kirk
1987-01-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Thomson scattering diagnostics of decay processes of Ar/SF6 gas-blast arcs confined by a nozzle
NASA Astrophysics Data System (ADS)
Tomita, Kentaro; Gojima, Daisuke; Nagai, Kazuhiko; Uchino, Kiichiro; Kamimae, Ryo; Tanaka, Yasunori; Suzuki, Katsumi; Iijima, Takanori; Uchii, Toshiyuki; Shinkai, Takeshi
2013-09-01
Because of its instability, it is difficult to measure precisely the electron density (ne) of a long-gap decaying arc discharge in a circuit breaker. However, it is well known that it is an essential parameter for the determination of success or failure of the current interruption in a circuit breaker. In this paper, the spatiotemporal evolutions of the electron density were successfully measured in decaying SF6 gas-blast arc discharges formed with a long gap (50 mm) in a confined nozzle using laser Thomson scattering. Pure Ar gas and an 80%Ar/20%SF6 mixture gas were used as the arc quenching media at atmospheric pressure. After reducing the current to zero, both the measured ne and arc radius in the Ar/SF6 gas arc clearly decayed more rapidly than in the pure Ar gas arc.
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
Parametric Interactions between Alfven waves in LaPD
NASA Astrophysics Data System (ADS)
Brugman, B.; Carter, T. A.; Cowley, S. C.; Pribyl, P.; Lybarger, W.
2004-11-01
The physics governing interactions between large amplitude Alfvén waves, which are relevant to plasmas in space as well as the laboratory, is at present not well understood. A major class of such interactions which are believed to occur in compressible plasmas is referred to as parametric decay. We will present the results of a series of experiments involving the interactions of large amplitude LHP Alfvén wave conducted on the Large Plasma Device (LaPD); where β ≪ 1, n ˜ 10^12 frac1cm^3 and B0 in (200,2500) G. These experiments show strong signs of one form of parametric decay, known as the Modulational Instability, which represents the interaction of two Alfvén waves and a low frequency density perturbation. This interaction is believed to occur in plasmas with β < 1 as well as β > 1, over a broad range of wavevector space, and for RHP as well as LHP Alfvén waves - distinguishing it from the Beat and Decay instabilities. Details of this interaction, in particular the structure of the incident waves as well as that of their byproducts, will be shown in physical as well as wavevector space. The generation of large amplitude waves using both an Alfvén wave MASER and high current loop antennas will also be illustrated. Lastly theoretical descriptions of parametric decay will be presented and compared to observations. Future work will also include comparisons of experimental results with applicable simulations, such as GS2. Work supported by DOE grant number DE-FG03-02ER54688
Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics
NASA Astrophysics Data System (ADS)
Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.
2017-10-01
We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.
2013-02-01
The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-03-01
SN 2006gy radiated far more energy in visual light than any other supernova so far, and potential explanations for its energy demands have implications for galactic chemical evolution and the deaths of the first stars. It remained bright for over 200 days, longer than any normal supernova, and it radiated more than 1051 ergs of luminous energy at visual wavelengths. I argue that this Type IIn supernova was probably the explosion of an extremely massive star like Eta Carinae that retained its hydrogen envelope when it exploded, having suffered relatively little mass loss during its lifetime. That this occurred at roughly Solar metallicity challenges current paradigms for mass loss in massive-star evolution. I explore a few potential explanations for SN2006gy's power source, involving either circumstellar interaction, or instead, the decay of 56Ni to 56Co to 56Fe. If SN 2006gy was powered by the conversion of shock energy into light, then the conditions must be truly extraordinary and traditional interaction models don't work. If SN 2006gy was powered by radioactive decay, then the uncomfortably huge 56Ni mass requires that the star exploded as a pair instability supernova. The mere possibility of this makes SN 2006gy interesting, especially at this meeting, because it is the first good candidate for a genuine pair instability supernova.
Bending instability in galactic discs: advocacy of the linear theory
NASA Astrophysics Data System (ADS)
Rodionov, S. A.; Sotnikova, N. Ya.
2013-09-01
We demonstrate that in N-body simulations of isolated disc galaxies, there is numerical vertical heating which slowly increases the vertical velocity dispersion and the disc thickness. Even for models with over a million particles in a disc, this heating can be significant. Such an effect is just the same as in numerical experiments by Sellwood. We also show that in a stellar disc, outside a boxy/peanut bulge, if it presents, the saturation level of the bending instability is rather close to the value predicted by the linear theory. We pay attention to the fact that the bending instability develops and decays very fast, so it cannot play any role in secular vertical heating. However, the bending instability defines the minimal value of the ratio between the vertical and radial velocity dispersions σz/σR ≈ 0.3 (so indirectly the minimal thickness), which stellar discs in real galaxies may have. We demonstrate that observations confirm the last statement.
Particle acceleration and magnetic field generation in SNR shocks
NASA Astrophysics Data System (ADS)
Suslov, M.; Diamond, P. H.; Malkov, M. A.
2006-04-01
We discuss the diffusive acceleration mechanism in SNR shocks in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We analyze some problems of this scenario and suggest a different mechanism, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.
Parametric decay of plasma waves near the upper-hybrid resonance
Dodin, I. Y.; Arefiev, A. V.
2017-03-28
An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.
Nonthermal Radiation Processes in Interplanetary Plasmas
NASA Astrophysics Data System (ADS)
Chian, A. C. L.
1990-11-01
RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS
Parametric instability, inverse cascade and the range of solar-wind turbulence
NASA Astrophysics Data System (ADS)
Chandran, Benjamin D. G.
2018-02-01
In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy +\\gg e-$ , where +$ and -$ are the frequency ( ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If +$ initially has a peak frequency 0$ (at which +$ is maximized) and an `infrared' scaling p$ at smaller with , then +$ acquires an -1$ scaling throughout a range of frequencies that spreads out in both directions from 0$ . At the same time, -$ acquires an -2$ scaling within this same frequency range. If the plasma parameters and infrared +$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an +$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed -1$ scaling at -4~\\text{Hz}$ . The results of this paper suggest that the -1$ spectrum seen by Helios in the fast solar wind at -4~\\text{Hz}$ is produced in situ by parametric decay and that the -1$ range of +$ extends over an increasingly narrow range of frequencies as decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.
NASA Astrophysics Data System (ADS)
Myatt, J. F.; Shaw, J. G.; Solodov, A. A.; Maximov, A. V.; Short, R. W.; Seka, W.; Follett, R. K.; Edgell, D. H.; Froula, D. H.; Goncharov, V. N.
2015-11-01
Hot-electron preheat, caused by laser-plasma instabilities, can impair the performance of inertial confinement fusion implosions. It is therefore imperative to understand processes that can generate hot electrons and to design mitigation strategies should preheat be found to be excessive at the ignition scale (laser-plasma interactions do not follow hydrodynamic scaling). For this purpose, a new 3-D model [laser-plasma simulation environment (LPSE)] has been constructed that computes hot-electron generation in direct-drive plasmas based on the assumption that two-plasmon decay is the dominant, hot-electron-producing instability. It uses an established model of TPD-driven turbulence together with a new GPU based hybrid particle method of hot-electron production. The time-dependent hot-electron power, total energy, and energy spectrum are computed and compared with data from recent OMEGA implosion experiments that have sought to mitigate TPD by the use of multilayered (mid- Z) ablators. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
POD analysis of the instability mode of a low-speed streak in a laminar boundary layer
NASA Astrophysics Data System (ADS)
Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira
2017-12-01
The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.
Resistive tearing instability in electron MHD: application to neutron star crusts
NASA Astrophysics Data System (ADS)
Gourgouliatos, Konstantinos N.; Hollerbach, Rainer
2016-12-01
We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as γ ∝ B2/3σ-1/3, where B is the magnetic field and σ the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas.
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T. A.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.; Sydora, R. D.
2013-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in space plasmas. While the linear behavior of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar corona and solar wind. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in the coronal heating problem. Specifically, the decay of large-amplitude Alfvén waves propagating outward from the photosphere could lead to heating of the corona by the daughter ion acoustic modes [2]. As direct observational evidence of parametric decay is limited [3], laboratory experiments may play an important role in validating simple theoretical predictions and aiding in the interpretation of space measurements. Recent counter-propagating Alfvén wave experiments in the Large Plasma Device (LAPD) have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability [4]. A resonance in the beat wave response produced by the two launched Alfvén waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a nonlinear ponderomotive force. Strong damping observed after the pump Alfvén waves are turned off is under investigation; a novel ion acoustic wave launcher is under development to launch the mode directly for damping studies. New experiments also aim to identify decay instabilities from a single large-amplitude Alfvén wave. In conjunction with these experiments, gyrokinetic simulation efforts are underway to scope out the relevant parameter space. [1] W. Gekelman, et. al., Phys. Plasmas 18, 055501 (2011). [2] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [3] S. R. Spangler, et. al., Phys. Plasmas 4, 846 (1997). [4] S. Dorfman and T. Carter, Phys. Rev. Lett. 110, 195001 (2013).
Radiative instabilities and 1000 second fluctuations in astrophysical masers
NASA Technical Reports Server (NTRS)
Scappaticci, Gerardo A.; Watson, William D.
1992-01-01
A stability analysis for small (linear) perturbations is presented for the radiation in astrophysical masers treated in the usual, linear maser approximation. Instabilities that oscillate with a period of about L/c, where L is the length of the maser are found. They occur (1) when the maser is partly but not heavily saturated, (2) when the decay rate Gamma for the molecular states is near c/L, and (3) when the product of the brightness temperature T sub 0 of the incident radiation and the angle for the beaming is less than a critical value that depends upon the particular masing transition. A fourth parameter, the fractional inversion in the pumping multiplied by (T sub 0/frequency), determines the importance of spontaneous emission which can eliminate the instabilities. These instabilities are a likely cause for the fluctuations in the radiation from the 18 cm OH masers that have been reported to occur on time scales as short as 1000 s. The calculations are applicable to other types of astrophysical masers as well, and suggest that spontaneous emission will prevent similar instabilities in the H2O and SiO masers.
The antitumor agent 3-bromopyruvate has a short half-life at physiological conditions.
Glick, Matthew; Biddle, Perry; Jantzi, Josh; Weaver, Samantha; Schirch, Doug
2014-09-12
Clinical research is currently exploring the validity of the anti-tumor candidate 3-bromopyruvate (3-BP) as a novel treatment for several types of cancer. However, recent publications have overlooked rarely-cited earlier work about the instability of 3-BP and its decay to 3-hydroxypyruvate (3-HP) which have obvious implications for its mechanism of action against tumors, how it is administered, and for precautions when preparing solutions of 3-BP. This study found the first-order decay rate of 3-BP at physiological temperature and pH has a half-life of only 77 min. Lower buffer pH decreases the decay rate, while choice of buffer and concentration do not affect it. A method for preparing more stable solutions is also reported. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less
Nonlinear dynamics of beam-plasma instability in a finite magnetic field
NASA Astrophysics Data System (ADS)
Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.
2017-06-01
The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...
2015-08-01
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less
Studies of Resistive-Wall Instability with Space-Charge Dominated Electron Beams
NASA Astrophysics Data System (ADS)
Wang, J. G.; Suk, H.; Reiser, M.
1996-05-01
An experiment to study the resistive-wall instability with space-charge dominated electrom beams is underway at the University of Maryland. The beams with localized perturbations are launched from a gridded electron gun and are matched into a resistive channel focused by a uniform solenoid. The channel is made of a 1-m long glass tube coated with resistive material (ITO). Two different tubes with 5.4 kΩ and 10.1 kΩ resistance, respectively, have been employed. Two fast wall-current monitors at both the entrance and exit of the channel provide the information about the instability. Typical beam parameters are 3-8 keV in energy, 30-80 mA in current and 100 ns in duration. The experiment has shown the growth of localized slow waves and decay of fast waves. The results are presented and compared with theory. The status of the experiment and future work are also discussed.
Instability of Insulators near Quantum Phase Transitions
NASA Astrophysics Data System (ADS)
Doron, A.; Tamir, I.; Levinson, T.; Ovadia, M.; Sacépé, B.; Shahar, D.
2017-12-01
Thin films of amorphous indium oxide undergo a magnetic field driven superconducting to insulator quantum phase transition. In the insulating phase, the current-voltage characteristics show large current discontinuities due to overheating of electrons. We show that the onset voltage for the discontinuities vanishes as we approach the quantum critical point. As a result, the insulating phase becomes unstable with respect to any applied voltage making it, at least experimentally, immeasurable. We emphasize that unlike previous reports of the absence of linear response near quantum phase transitions, in our system, the departure from equilibrium is discontinuous. Because the conditions for these discontinuities are satisfied in most insulators at low temperatures, and due to the decay of all characteristic energy scales near quantum phase transitions, we believe that this instability is general and should occur in various systems while approaching their quantum critical point. Accounting for this instability is crucial for determining the critical behavior of systems near the transition.
Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves
NASA Astrophysics Data System (ADS)
Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2015-11-01
We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.
Onset of Darrieus-Landau Instability in Expanding Flames
NASA Astrophysics Data System (ADS)
Mohan, Shikhar; Matalon, Moshe
2017-11-01
The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.
NASA Astrophysics Data System (ADS)
Diamond, Patrick
2005-10-01
SNR shocks are the most probable source of galactic cosmic rays. We discuss the diffusive acceleration mechanism in terms of its potential to accelerate CRs to 10^18 eV, as observations imply. One possibility, currently discussed in the literature, is to resonantly generate a turbulent magnetic field via accelerated particles in excess of the background field. We indicate some difficulties of this scenario and suggest a different possibility, which is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves. The essential idea is an A-->A+S decay instability process, where one of the interacting scatterers (i.e. the sound, or S-waves) are driven by the Drury instability process. This rapidly generates longer wavelength Alfven waves, which in turn resonate with high energy CRs thus binding them to the shock and enabling their further acceleration.
Supersonic Coaxial Jets: Noise Predictions and Measurements
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Papamoschou, Dimitri; Hixon, Ray
1998-01-01
The noise from perfectly expanded coaxial jets was measured in an anechoic chamber for different operating conditions with the same total thrust, mass flow, and exit area. The shape of the measured noise spectrum at different angles to the jet axis was found to agree with spectral shapes for single, axisymmetric jets. Based on these spectra, the sound was characterized as being generated by large turbulent structures or fine-scale turbulence. Modeling the large scale structures as instability waves, a stability analysis was conducted for the coaxial jets to identify the growing and decaying instability waves in each shear layer and predict their noise radiation pattern outside the jet. When compared to measured directivity, the analysis identified the region downstream of the outer potential core, where the two shear layers were merging, as the source of the peak radiated noise where instability waves, with their origin in the inner shear layer, reach their maximum amplitude. Numerical computations were also performed using a linearized Euler equation solver. Those results were compared to both the results from the instability wave analysis and to measured data.
Laser plasma instability experiments with KrF lasersa)
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.
2007-05-01
Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.
Small-Amplitude Richtmyer-Meshkov Instability at a Re-Shocked Material Interface
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Zalesak, S. T.; Metzler, N.; Aglitskiy, Y.
2008-11-01
We report an exact small-amplitude theory of the Richtmyer-Meshkov (RM) instability developing at a re-shocked material interface and favorably compare it to our simulations. The re-shock is seen to restart the classical RM instability growth from a larger initial amplitude, at a higher rate, and change its direction from heavy-to-light to light-to heavy and vice versa. Similarly, if a Rayleigh-Taylor (RT) unstable interface is strongly re-shocked from either the heavy or light fluid side, the fast RM growth is triggered. If a RT-unstable ablation front is re-shocked, it exhibits the ablative RM-instability, that is, low-frequency decaying oscillations [V. N. Goncharov, PRL 82, 2091 (1998); Y. Aglitskiy et al., PRL 87, 265001 (2001)]. This is predicted for colliding foil experiments on the Nike laser, where a RT-unstable ablation front is re-shocked by the strong shock wave produced in the collision of the laser-driven plastic foil with a stationary foam layer. The re-shock stops the acceleration and switches the perturbation evolution from the ablative RT to the ablative RM regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji
2017-09-01
We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyser, T.B.
1994-06-01
A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less
β decays of the heaviest N =Z -1 nuclei and proton instability of 97In
NASA Astrophysics Data System (ADS)
Park, J.; Krücken, R.; Lubos, D.; Gernhäuser, R.; Lewitowicz, M.; Nishimura, S.; Ahn, D. S.; Baba, H.; Blank, B.; Blazhev, A.; Boutachkov, P.; Browne, F.; Čeliković, I.; de France, G.; Doornenbal, P.; Faestermann, T.; Fang, Y.; Fukuda, N.; Giovinazzo, J.; Goel, N.; Górska, M.; Grawe, H.; Ilieva, S.; Inabe, N.; Isobe, T.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Lorusso, G.; Moschner, K.; Murai, D.; Nishizuka, I.; Patel, Z.; Rajabali, M. M.; Rice, S.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Sinclair, L.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Wang, Z.; Watanabe, H.; Wu, J.; Xu, Z. Y.
2018-05-01
We report on new or more precise half-lives, β -decay endpoint energies, and β -delayed proton emission branching ratios of 91Pd, 95Cd, 97In, and 99Sn. The measured values are consistent with known mirror transitions in lighter Tz=-1 /2 nuclei, shell-model calculations, and various mass models. In addition to the β -decaying (9 /2+) ground state, circumstantial evidence for a short-lived, proton-emitting isomer with spin (1 /2-) was found in 97In. Based on the experimental data, a semiempirical theory on proton emission, and shell-model calculations, the proton separation energy of the 97In ground state was determined to be -0.10 ±0.19 MeV. The existence of the short-lived, proton-unstable (1 /2-) isomer in 97In establishes 96Cd as an r p -process waiting point.
NASA Astrophysics Data System (ADS)
Follett, R. K.; Myatt, J. F.; Shaw, J. G.; Michel, D. T.; Solodov, A. A.; Edgell, D. H.; Yaakobi, B.; Froula, D. H.
2017-10-01
Multibeam experiments relevant to direct-drive inertial confinement fusion show the importance of nonlinear saturation mechanisms in the common-wave two-plasmon-decay (TPD) instability. Planar-target experiments on the OMEGA laser used hard x-ray measurements to study the influence of the linear common-wave growth rate on TPD-driven hot-electron production in two drive-beam configurations and over a range of overlapped laser intensities from 3.6 to 15.2 × 1014 W/cm2. The beam configuration with the larger linear common-wave growth rate had a lower intensity threshold for the onset of hot-electron production, but the linear growth rate made no significant impact on hot-electron production at high intensities. The experiments were modeled in 3-D using a hybrid code LPSE (laser plasma simulation environment) that combines a wave solver with a particle tracker to self-consistently calculate the electron velocity distribution and evolve electron Landau damping. Good quantitative agreement was obtained between the simulated and measured hot-electron distributions using a novel technique to account for macroscopic spatial and temporal variations that were present in the experiments.
Follett, R. K.; Myatt, J. F.; Shaw, J. G.; ...
2017-10-30
We report that multiple-beam experiments relevant to direct-drive inertial confinement fusion show the importance of nonlinear saturation mechanisms in the common-wave two-plasmon-decay (TPD) instability. Planar target experiments on the OMEGA laser used hard-x-ray measurements to study the influence of the linear common-wave growth rate on TPD driven hot-electron production in two drive beam configurations and over a range of overlapped laser intensities from 3.6 to 15.2 x 10 14 W/cm 2. The beam configuration with the larger linear common-wave growth rate had a lower intensity threshold for the onset of hot-electron production, but the linear growth rate did not havemore » a significant impact on hot-electron production at high intensities. The experiments were modeled in 3-D using a hybrid code (LPSE) that combines a wave solver with a particle tracker to self-consistently calculate the electron velocity distribution and evolve electron Landau damping. Finally, good quantitative agreement was obtained between the simulated and measured hotel-electron distributions using a novel technique to account for macroscopic spatial and temporal variations that are present in the experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follett, R. K.; Myatt, J. F.; Shaw, J. G.
We report that multiple-beam experiments relevant to direct-drive inertial confinement fusion show the importance of nonlinear saturation mechanisms in the common-wave two-plasmon-decay (TPD) instability. Planar target experiments on the OMEGA laser used hard-x-ray measurements to study the influence of the linear common-wave growth rate on TPD driven hot-electron production in two drive beam configurations and over a range of overlapped laser intensities from 3.6 to 15.2 x 10 14 W/cm 2. The beam configuration with the larger linear common-wave growth rate had a lower intensity threshold for the onset of hot-electron production, but the linear growth rate did not havemore » a significant impact on hot-electron production at high intensities. The experiments were modeled in 3-D using a hybrid code (LPSE) that combines a wave solver with a particle tracker to self-consistently calculate the electron velocity distribution and evolve electron Landau damping. Finally, good quantitative agreement was obtained between the simulated and measured hotel-electron distributions using a novel technique to account for macroscopic spatial and temporal variations that are present in the experiments.« less
LPI Experiments at the Nike Laser*
NASA Astrophysics Data System (ADS)
Weaver, J.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Brown, C.; Karasik, M.; Serlin, V.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Brown, D.; Schmitt, A.; Velikovich, A.; Feldman, U.; Holland, G.; Aglitskiy, Y.
2007-11-01
Advanced implosion designs under development at NRL for direct drive inertial confinement fusion incorporate high intensity pulses from a krypton-fluoride (KrF) laser to achieve significant gain with lower total laser energy (Etot˜500 kJ). These designs will be affected by the thresholds and magnitudes of laser plasma instabilities (LPI). The Nike laser can create short, high intensity pulses (t <0.4 ns; I>10^15 W/cm^2) to explore how LPI will be influenced by the deep UV (248 nm), broad bandwidth (2-3 THz), and induced spatial incoherence beam smoothing of the NRL KrF laser systems. Previous results demonstrated no visible/VUV signatures of two-plasmon decay (2φp) for overlapped intensities ˜2x10^15 W/cm^2. We have increased the laser intensity and expanded the range of targets and diagnostics. Single and double pulse experiments are being planned with solid, foam, and cryogenic targets. In addition to spectrometers to study SRS, 2φp, SBS, and the parametric decay instability, hard x-ray spectrometers (hν>2 keV) and a scintillator/photomultiplier array (hν>10 keV) have been deployed to examine hot electron generation. *Work supported by U. S. DoE.
Rotation-induced nonlinear wavepackets in internal waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less
SN 1985f - Death of a Wolf-Rayet star
NASA Technical Reports Server (NTRS)
Begelman, M. C.; Sarazin, C. L.
1986-01-01
The optical spectrum of SN 1985f has been analyzed, and the supernova ejecta is shown to contain approximately 5 or more solar masses of oxygen and very little hydrogen. It is suggested that the explosion resulted from the pair instability supernova of a WO Wolf-Rayet star of about 50 solar masses, and that the optical luminosity of the supernova is powered by the radioactive decay of Co-56 synthesized in the explosion. As calculated from the rate of the optical emission decay, the explosion occurred about 350 days before its discovery in February, 1985. It is believed that some of the oxygen-rich supernova remnants may also have been produced by explosions of WO stars.
Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.
Chandran, Benjamin D G
2018-02-01
In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 < p < 1, then e + acquires an f -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .
NASA Astrophysics Data System (ADS)
Min, Kyungguk; Liu, Kaijun
2018-01-01
Maintaining the stability of pickup ions in the outer heliosheath is a critical element for the secondary energetic neutral atom (ENA) mechanism, a theory put forth to explain the nearly annular band of ENA emission observed by the Interstellar Boundary EXplorer. A recent study showed that a pickup ion ring can remain stable to the Alfvén/ion cyclotron (AC) instability at propagation parallel to the background magnetic field when the parallel thermal spread of the ring is comparable to that of a background population. This study investigates the potential role that the mirror or ion Bernstein (IB) instabilities can play in the stability of pickup ions when conditions are such that the AC instability is suppressed. Linear Vlasov theory predicts relatively fast mirror and IB instability growth even though AC instability growth is suppressed. For a few such cases, two-dimensional hybrid and macroscopic quasi-linear simulations are carried out to examine how the unstable mirror and IB modes evolve and affect the pickup ion ring beyond the linear theory picture. For the parameters used, the mirror mode dominates initially and leads to a rapid parallel heating of the pickup ions in excess of the parallel temperature of the background protons. The heated pickup ions subsequently trigger onset of the AC mode, which grows sufficiently large to be the dominant pitch angle scattering agent after the mirror mode has decayed away. The present results indicate that the pickup ion stability needed may not be guaranteed once the mirror and IB instabilities are taken into account.
On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation
NASA Astrophysics Data System (ADS)
Pommé, S.; Kossert, K.; Nähle, O.
2017-11-01
Recently, claims were made by Sturrock et al. ( Astropart. Phys. 42, 62, 2013), Sturrock, Fischbach, and Scargle ( Solar Phys. 291, 3467, 2016; arXiv http://arxiv.org/abs/arXiv:1705.03010, 2017) that beta decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. Transient modulations in residuals from a purely exponential decay curve were observed at frequencies near 11 a^{-1} and 12.7 a^{-1} in repeated activity measurements of a 36Cl source by Alburger, Harbottle, and Norton ( Earth Planet Sci. Lett. 78, 168, 1986) at Brookhaven National Laboratory in a period from 1984 to 1985. Sturrock et al. have speculatively associated them with rotational influence on the solar neutrino flux. In this work, more accurate 36Cl decay-rate measurements - performed at the Physikalisch-Technische Bundesanstalt Braunschweig in the period 2010 - 2013 by means of the triple-to-double coincidence ratio measurement technique - are scrutinised. The residuals from an exponential decay curve were analysed by a weighted Lomb-Scargle periodogram. The existence of modulations in the frequency range between 0.2 a^{-1} and 20 a^{-1} could be excluded down to an amplitude of about 0.0016%. The invariability of the 36Cl decay constant contradicts the speculations made about the deep solar interior on the basis of instabilities in former activity measurements.
The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation.
Zubiaga, A M; Belasco, J G; Greenberg, M E
1995-01-01
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process. PMID:7891716
Intermittent laser-plasma interactions and hot electron generation in shock ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Li, J.; Ren, C.
We study laser-plasma interactions and hot electron generation in the ignition phase of shock ignition through 1D and 2D particle-in-cell simulations in the regime of long density scale length and moderately high laser intensity. These long-term simulations show an intermittent bursting pattern of laser-plasma instabilities, resulting from a coupling of the modes near the quarter-critical-surface and those in the lower density region via plasma waves and laser pump depletion. The majority of the hot electrons are found to be from stimulated Raman scattering and of moderate energies. However, high energy electrons of preheating threat can still be generated from themore » two-plasmon-decay instability.« less
Critical Spin Superflow in a Spinor Bose-Einstein Condensate
NASA Astrophysics Data System (ADS)
Kim, Joon Hyun; Seo, Sang Won; Shin, Y.
2017-11-01
We investigate the critical dynamics of spin superflow in an easy-plane antiferromagnetic spinor Bose-Einstein condensate. Spin-dipole oscillations are induced in a trapped condensate by applying a linear magnetic field gradient and we observe that the damping rate increases rapidly as the field gradient increases above a certain critical value. The onset of dissipation is found to be associated with the generation of dark-bright solitons due to the modulation instability of the counterflow of two spin components. Spin turbulence emerges as the solitons decay because of their snake instability. We identify another critical point for spin superflow, in which transverse magnon excitations are dynamically generated via spin-exchanging collisions, which leads to the transient formation of axial polar spin domains.
Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability
NASA Astrophysics Data System (ADS)
Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed
2018-01-01
The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.
New Type of the Interface Evolution in the Richtmyer-Meshkov Instability
NASA Technical Reports Server (NTRS)
Abarzhi, S. I.; Herrmann, M.
2003-01-01
We performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, T.; Chiyonobu, S.; Fukazawa, Y.
We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emissionmore » region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.« less
Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R
2017-11-17
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.
Linear non-normality as the cause of nonlinear instability in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett; Carter, Troy; Umansky, Maxim
2013-10-01
A BOUT + + simulation using a Braginskii fluid model reproduces drift-wave turbulence in LAPD with high qualitative and quantitative agreement. The turbulent fluctuations in the simulation sustain themselves through a nonlinear instability mechanism that injects energy into k|| = 0 fluctuations despite the fact that all of the linear eigenmodes at k|| = 0 are stable. The reason for this is the high non-orthogonality of the eigenmodes caused by the non-normality of the linear operator, which is common in fluid and plasma models that contain equilibrium gradients. While individual stable eigenmodes must decay when acted upon by their linear operator, the sum of the eigenmodes may grow transiently with initial algebraic time dependence. This transient growth can inject energy into the system, and the nonlinearities can remix the eigenmode amplitudes to self-sustain the growth. Such a mechanism also acts in subcritical neutral fluid turbulence, and the self-sustainment process is quite similar, indicating the universality of this nonlinear instability.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
Ionospheric modifications in high frequency heating experiments
NASA Astrophysics Data System (ADS)
Kuo, Spencer P.
2015-01-01
Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.
Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer
NASA Astrophysics Data System (ADS)
Monschke, Jason; White, Edward
2015-11-01
Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.
PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávnícek, Pavel M.; Matteini, Lorenzo
The relationship between a decaying strong turbulence and kinetic instabilities in a slowly expanding plasma is investigated using two-dimensional (2D) hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and vanishing correlation between the two fields. A turbulent cascade rapidly develops; magnetic field fluctuations exhibit a power-law spectrum at large scales and a steeper spectrum at ion scales. The turbulent cascade leads to an overall anisotropic proton heating, protons are heatedmore » in the perpendicular direction, and, initially, also in the parallel direction. The imposed expansion leads to generation of a large parallel proton temperature anisotropy which is at later stages partly reduced by turbulence. The turbulent heating is not sufficient to overcome the expansion-driven perpendicular cooling and the system eventually drives the oblique firehose instability in a form of localized nonlinear wave packets which efficiently reduce the parallel temperature anisotropy. This work demonstrates that kinetic instabilities may coexist with strong plasma turbulence even in a constrained 2D regime.« less
NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp
2016-04-01
Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wavemore » with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.« less
Studies of the linear and nonlinear properties of Alfvén waves in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Tripathi, Shreekrishna; van Compernolle, Bart; Vincena, Steve; Rossi, Giovanni; Jenko, Frank
2015-11-01
An overview will be given of recent experimental research into linear and nonlinear properties of Alfvén waves in the Large Plasma Device (LAPD). The nonlinear three-wave interaction process at the heart of the parametric decay instability is studied by launching counter-propagating Alfvén waves from antennas placed at either end of LAPD, producing a damped ion acoustic mode. The decay of a lone, large amplitude Alfvén wave has been observed, producing co-propagating daughter waves with characteristics consistent with kinetic Alfvén waves. The process has an amplitude threshold and the frequency of the daughter modes varies with the amplitude of the pump. A new plasma source based on LaB6 cathode has been added to LAPD, enabling much higher density (x50), electron temperature (x2) and ion temperature (x6). This provides the opportunity to study the physics of waves and instabilities with space and astrophysically relevant β. Topics under investigation include the physics of Alfvén waves in increased β plasmas, electromagnetic effects in drift-Alfvén wave turbulence and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose. Supported by NSF and DOE.
Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred
2016-01-01
Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.
Generation of dark solitons and their instability dynamics in two-dimensional condensates
NASA Astrophysics Data System (ADS)
Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish
2017-04-01
We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.
Decay of the supersonic turbulent wakes from micro-ramps
NASA Astrophysics Data System (ADS)
Sun, Z.; Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.
2014-02-01
The wakes resulting from micro-ramps immersed in a supersonic turbulent boundary layer at Ma = 2.0 are investigated by means of particle image velocimetry. Two micro-ramps are investigated with height of 60% and 80% of the undisturbed boundary layer, respectively. The measurement domain is placed at the symmetry plane of the ramp and encompasses the range from 10 to 32 ramp heights downstream of the ramp. The decay of the flow field properties is evaluated in terms of time-averaged and root-mean-square (RMS) statistics. In the time-averaged flow field, the recovery from the imparted momentum deficit and the decay of upwash motion are analyzed. The RMS fluctuations of the velocity components exhibit strong anisotropy at the most upstream location and develop into a more isotropic regime downstream. The self-similarity properties of velocity components and fluctuation components along wall-normal direction are followed. The investigation of the unsteady large scale motion is carried out by means of snapshot analysis and by a statistical approach based on the spatial auto-correlation function. The Kelvin-Helmholtz (K-H) instability at the upper shear layer is observed to develop further with the onset of vortex pairing. The average distance between vortices is statistically estimated using the spatial auto-correlation. A marked transition with the wavelength increase is observed across the pairing regime. The K-H instability, initially observed only at the upper shear layer also begins to appear in the lower shear layer as soon as the wake is elevated sufficiently off the wall. The auto-correlation statistics confirm the coherence of counter-rotating vortices from the upper and lower sides, indicating the formation of vortex rings downstream of the pairing region.
NASA Astrophysics Data System (ADS)
Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Mares, J. A.; Beitlerova, A.; Nikl, M.
2017-01-01
The luminescence and scintillation properties of the gadolinium yttrium aluminium garnets, (Gd,Y)3Al5O12 doped with Ce3+ are investigated as a function of the Gd/Y ratio with the aim of an improved understanding of the luminescence quenching, energy transfer and phase stability in these materials. An increase of both crystal field strength and instability of the garnet phase with increasing content of Gd3+ is observed. The instability of the garnet phase results in an appearance of the perovskite phase inclusions incorporated into the garnet phase. The luminescence features of Ce3+ in the perovskite phase inclusions and in the main garnet phase are studied separately. The thermal quenching of the 5 d → 4f emission of Ce3+ in the latter phase is determined by temperature dependence of the photoluminescence decay time. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing gadolinium content. The measurements of temperature dependence of delayed radiative recombination do not reveal a clear evidence that the thermal quenching is caused by thermally induced ionization of the Ce3+ 5d1 excited state. Therefore, the main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between perovskite and garnet phases are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements. Thermally stimulated luminescence (TSL) studies in the temperature range 77-497 K and scintillation decays under γ excitation complete the material characterization.
NASA Astrophysics Data System (ADS)
Kohler, Jonathan; Gerber, Justin A.; Dowd, Emma; Stamper-Kurn, Dan M.
2018-01-01
We realize a spin-orbit interaction between the collective spin precession and center-of-mass motion of a trapped ultracold atomic gas, mediated by spin- and position-dependent dispersive coupling to a driven optical cavity. The collective spin, precessing near its highest-energy state in an applied magnetic field, can be approximated as a negative-mass harmonic oscillator. When the Larmor precession and mechanical motion are nearly resonant, cavity mediated coupling leads to a negative-mass instability, driving exponential growth of a correlated mode of the hybrid system. We observe this growth imprinted on modulations of the cavity field and estimate the full covariance of the resulting two-mode state by observing its transient decay during subsequent free evolution.
Chladni solitons and the onset of the snaking instability for dark solitons in confined superfluids.
Muñoz Mateo, A; Brand, J
2014-12-19
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ, and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Chladni Solitons and the Onset of the Snaking Instability for Dark Solitons in Confined Superfluids
NASA Astrophysics Data System (ADS)
Muñoz Mateo, A.; Brand, J.
2014-12-01
Complex solitary waves composed of intersecting vortex lines are predicted in a channeled superfluid. Their shapes in a cylindrical trap include a cross, spoke wheels, and Greek Φ , and trace the nodal lines of unstable vibration modes of a planar dark soliton in analogy to Chladni's figures of membrane vibrations. The stationary solitary waves extend a family of solutions that include the previously known solitonic vortex and vortex rings. Their bifurcation points from the dark soliton indicating the onset of new unstable modes of the snaking instability are predicted from scale separation for Bose-Einstein condensates (BECs) and superfluid Fermi gases across the BEC-BCS crossover, and confirmed by full numerical calculations. Chladni solitons could be observed in ultracold gas experiments by seeded decay of dark solitons.
Double Arc Instability in the Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiguro, N.; Kusano, K., E-mail: n-ishiguro@isee.nagoya-u.ac.jp
The stability of the magnetic field in the solar corona is important for understanding the causes of solar eruptions. Although various scenarios have been suggested to date, the tether-cutting reconnection scenario proposed by Moore et al. is one of the widely accepted models to explain the onset process of solar eruptions. Although the tether-cutting reconnection scenario proposes that the sigmoidal field formed by internal reconnection is the magnetic field in the pre-eruptive state, the stability of the sigmoidal field has not yet been investigated quantitatively. In this paper, in order to elucidate the stability problem of the pre-eruptive state, wemore » developed a simple numerical analysis in which the sigmoidal field is modeled by a double arc electric current loop and its stability is analyzed. As a result, we found that the double arc loop is more easily destabilized than the axisymmetric torus, and it becomes unstable even if the external field does not decay with altitude, which is in contrast to the axisymmetric torus instability. This suggests that tether-cutting reconnection may well work as the onset mechanism of solar eruptions, and if so, the critical condition for eruption under a certain geometry may be determined by a new type of instability rather than by the torus instability. Based on them, we propose a new type of instability called double arc instability (DAI). We discuss the critical conditions for DAI and derive a new parameter κ , defined as the product of the magnetic twist and the normalized flux of the tether-cutting reconnection.« less
Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet
NASA Astrophysics Data System (ADS)
Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio
2018-04-01
Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.
Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L
2017-09-01
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Melcher, J. C.; Morehead, Robert L.
2014-01-01
The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Malkus, W V
1968-04-19
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X. L.; Xue, Z. K.; Ma, L.
Kink instability is a possible mechanism for solar filament eruption. However, it is very difficult to directly measure the twist of the solar filament from observation. In this paper, we measured the twist of a solar filament by analyzing its leg rotation. An inverse S-shaped filament in the active region NOAA 11485 was observed by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory on 2012 May 22. During its eruption, the leg of the filament exhibited a significant rotation motion. The 304 Å images were used to uncurl the circles, the centers of which are the axis of themore » filament's leg. The result shows that the leg of the filament rotated up to about 510° (about 2.83π) around the axis of the filament within 23 minutes. The maximal rotation speed reached 100 degrees/minute (about 379.9 km s{sup –1} at radius 18''), which is the fastest rotation speed reported. We also calculated the decay index along the polarity inversion line in this active region and found that the decline of the overlying field with height is not fast enough to trigger the torus instability. According to the kink instability condition, this indicates that the kink instability is the trigger mechanism for the solar filament eruption.« less
Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.
2011-10-01
The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.
Krishnamurthy, K S
2014-05-01
The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.
Coupling of magnetopause-boundary layer to the polar ionosphere
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.
1993-01-01
The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.
Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...
2017-11-17
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less
Reynolds number effects on the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Walchli, B.; Thornber, B.
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256 . Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009), 10.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001), 10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002), 10.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993), 10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013), 10.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less
Non-thermal plasma instabilities induced by deformation of the electron energy distribution function
NASA Astrophysics Data System (ADS)
Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.
2014-08-01
Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.
Mid-latitude Narrowband Stimulated Electromagnetic Emissions (NSEE): New Observations and Modeling
NASA Astrophysics Data System (ADS)
Nossa, E.; Mahmoudian, A.; Isham, B.; Bernhardt, P. A.; Briczinski, S. J., Jr.
2017-12-01
High power electromagnetic waves (EM) transmitted from the ground interact with the local plasma in the ionosphere and can produce Stimulated Electromagnetic Emissions (SEE) through the parametric decay instability (PDI). The classical SEE features known as wideband SEE (WSEE) with frequency offset of 1 kHz up to 100 kHz have been observed and studied in detail in the 1980s and 1990s. A new era of ionospheric remote sensing techniques was begun after the recent update of the HF transmitter at the HAARP. Sideband emissions of unprecedented strength have been reported during recent campaigns at HAARP, reaching up to 10 dB relative to the reflected pump wave which are by far the strongest spectral features of secondary radiation that have been reported. These emissions known as narrowband SEE (NSEE) are shifted by only up to a few tens of Hertz from radio-waves transmitted at several megahertz. One of these new NSEE features are emission lines within 100 Hz of the pump frequency and are produced through magnetized stimulated Brillouin scatter (MSBS) process. Stimulated Brillouin Scatter (SBS) is a strong SEE mode involving a direct parametric decay of the pump wave into an electrostatic wave (ES) and a secondary EM wave that sometimes could be stronger than the HF pump. SBS has been studied in laboratory plasma experiments by the interaction of high power lasers with plasmas. The SBS instability in magnetized ionospheric plasma was observed for the first time at HAARP in 2010. Our recent work at HAARP has shown that MSBS emission lines can be used to asses electron temperature in the heated region, ion mass spectrometry, determine minor ion species and their densities in the ionosphere, study the physics associated with electron acceleration and artificial airglow. Here, we present new observations of narrowband SEE (NSEE) features at the new mid-latitude heating facility at Arecibo. This includes the direct mode conversion of pump wave through MSBS process. Collected data using ground-based SEE receiver, incoherent scatter radar (ISR), ionospgram, as well as satellite observations will be discussed. The different characteristics of parametric decay instabilities in the high and mid-latitude will be compared. Preliminary theoretical and computational modeling of mid-latitude NSEE will be presented.
Cosmic censorship in Lovelock theory
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Edelstein, José D.
2013-11-01
In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many novel features have been observed. The existence of finite radius singularities, a mass gap in the black hole spectrum and solutions displaying multiple horizons are noteworthy examples. Naively, in all these cases, the appearance of naked singularities seems unavoidable, leading to the question of whether these theories are consistent gravity theories. We address this question and show that whenever the cosmic censorship conjecture is threaten, an instability generically shows up driving the system to a new configuration with presumably no naked singularities. Also, the same kind of instability shows up in the process of spherical black holes evaporation in these theories, suggesting a new phase for their decay. We find circumstantial evidence indicating that, contrary to many claims in the literature, the cosmic censorship hypothesis holds in Lovelock theory.
Observation of LPI Thresholds for the Nike Laser
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Afeyan, B.; Charbonneau-Lefort, M.; Phillips, L.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.
2008-11-01
The Nike laser is being used to study thresholds for laser plasma instabilities (LPI) at intensities (10^15-10^16 W/cm^2) relevant to advanced implosion designs for direct drive inertial confinement fusion. The combination of short wavelength (248 nm), large bandwidth (1-2 THz), and beam smoothing by induced spatial incoherence available with this krypton-fluoride laser make these experiments unique among current facilities. This talk will present an overview of results with an emphasis on the two-plasmon decay instability (2φp). Measurements of x-rays and emission near ^1/2φo and ^3/2 φo harmonics of the laser wavelength have been collected over a wide range of intensities for both solid and foam targets. Data indicate collective multiple-angle driven excitation compatible with previous observations using solid planar targets.
Electromagnetic Modeling of the Passive Stabilization Loop at EAST
NASA Astrophysics Data System (ADS)
Ji, Xiang; Song, Yuntao; Wu, Songtao; Wang, Zhibin; Shen, Guang; Liu, Xufeng; Cao, Lei; Zhou, Zibo; Peng, Xuebing; Wang, Chenghao
2012-09-01
A passive stabilization loop (PSL) has been designed and manufactured in order to enhance the control of vertical instability and accommodate the new stage for high-performance plasma at EAST. Eddy currents are induced by vertical displacement events (VDEs) and disruption, which can produce a magnetic field to control the vertical instability of the plasma in a short timescale. A finite element model is created and meshed using ANSYS software. Based on the simulation of plasma VDEs and disruption, the distribution and decay curve of the eddy currents on the PSL are obtained. The largest eddy current is 200 kA and the stress is 68 MPa at the outer current bridge, which is the weakest point of the PSL because of the eddy currents and the magnetic fields. The analysis results provide the supporting data for the structural design.
NASA Technical Reports Server (NTRS)
Bateman, H
1923-01-01
The principal result obtained in this report is a generalization of Taylor's formula for a simple eddy. The discussion of the properties of the eddy indicates that there is a slight analogy between the theory of eddies in a viscous fluid and the quantum theory of radiation. Another exact solution of the equations of motion of viscous fluid yields a result which reminds one of the well-known condition for instability in the case of a horizontally stratified atmosphere.
On the experimental prediction of the stability threshold speed caused by rotating damping
NASA Astrophysics Data System (ADS)
Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.
2016-08-01
An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.
The growth and decay of equatorial backscatter plumes
NASA Astrophysics Data System (ADS)
Tsunoda, R. T.
1980-02-01
During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.
Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes
NASA Astrophysics Data System (ADS)
Denisov, E. T.; Shestakov, A. F.
2018-05-01
Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.
Theory of type 3b solar radio bursts. [plasma interaction and electron beams
NASA Technical Reports Server (NTRS)
Smith, R. A.; Delanoee, J.
1975-01-01
During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.
Energy dissipation rate as a determiner of Langmuir Wave turbulence in Stimulated Raman Scattering
NASA Astrophysics Data System (ADS)
Rose, Harvey A.
1998-11-01
In the steady state, the Manley Rowe relation relates the spatial growth of backscattered SRS to the local rate of Langmuir wave (LW) energy dissipation, ɛ. Past some threshold, the beating of the laser and the backscatter generates LW turbulence (LWT). Numerical simulations of SRS support the thesis that the LWT properties, such as various energy densities and enhanced LW decay rate, ν _eff, are determined primarily by ɛ, in the "inertial regime", where ν _eff>>ν_0, the linear rate, thus providing the basis for an SRS-LWT model. Energy conservation and turbulent stabilization of the SRS daughter LW against the decay instability imply that (ν_eff)^2>ω _pɛ /(16ν_ianT_e). Simulations reveal that, qualitatively, the inequality may be replaced by equality if the factor of 16 is replaced by 8.
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Parise, Mario
2010-05-01
Natural and anthropogenic caves may represent a potential hazard for the built-up environment, due to the occurrence of underground instability processes, that may propagate upward and eventually reach the ground surface, thus inducing the occurrence of sinkholes. Especially when the caves are at shallow depth, the effects at the ground surface may result extremely severe. In the Apulia region of southern Italy, there are many sites where underground quarrying developed in the past, due to presence at a certain depth of rock of good quality for building purposes. Development of underground quarries, rather than open pit mines, was also favoured by the preservation of the terrains on the ground surface for agricultural practices. The Pliocene-Pleistocene calcarenite (a typical soft rock) was therefore quarried underground, by digging extensive networks of galleries in those levels within the local geological succession most suitable for the quarrying activity. With time, these underground activities have progressively been abandoned, and later on many quarries were used for other purposes, including illegal discharge of solid and liquid wastes. Many Apulian towns are nowadays located just above these caves, due to urban expansion in the last decades and loss of memory of the presence of the underground quarries. Thus, a serious risk exists for civil society, which should not be left uninvestigated. The present contribution deals with the analysis of the main factors at the origin of the instability processes described, also including those causing weathering of the soft rock wihich induces gradual decay of the physical and mechanical properties of the rock mass. Aimed at exploring the evolution with time of the stability conditions within the cavities, numerical analysis have been implemented by using finite element methods with respect to ideal situations which are representative of typical case studies in Apulia. Both the effects of local instability processes occurring within the underground case and the effects of the progressive enlargement of the caves have been explored. Sensitivity analyses have been carried out to evaluate the influence of the rock properties on the cave stability. Moreover, decay processes of the mechanical properties of the rock mass as a consequence of wetting and weathering phenomena in the areas surrounding the caves have been simulated. The results achieved from the numerical analyses have been then compared to what has been observed in situ during several field surveys and a satisfactory agreement between the numerical simulations and the instability processes detected in the field has been noticed.
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-12-01
We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.
NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw
The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
NASA Astrophysics Data System (ADS)
Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.
2017-12-01
We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.
Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)
NASA Astrophysics Data System (ADS)
Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.
2017-12-01
In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave.
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Li, Tao; Chen, Tingdi
2016-03-01
The quasi 2 day wave (QTDW) observed during 2007 austral summer period is well reproduced in an reanalysis produced by the data assimilation version of the Whole Atmosphere Community Climate Model (WACCM + Data Assimilation Research Testbed) developed at National Center for Atmospheric Research (NCAR). It is found that the QTDW peaked 3 times from January to February but with different zonal wave numbers. Diagnostic analysis shows that the mean flow instabilities, refractive index, and critical layers of QTDWs are fundamental for their propagation and amplification, and thus, the temporal variations of the background wind are responsible for the different wave number structures at different times. The westward propagating wave number 2 mode (W2) grew and maximized in the first half of January, when the mean flow instabilities related to the summer easterly jet were enclosed by the critical layers of the westward propagating wave number 3 (W3) and wave number 4 (W4) modes. This prevented W3 and W4 from approaching and extracting energy from the unstable region. The W2 decayed rapidly thereafter due to the recession of critical layer and thus the lack of additional amplification by the mean flow instability. The W3 peaked in late January, when the instabilities were still encircled by the critical layer of W4. The attenuation of W3 afterward was also due to the disappearance of critical layer and thus the lack of overreflection. Finally, the W4 peaked in late February when both the instability and critical layer were appropriate.
Time-domain simulation of nonlinear radiofrequency phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.
Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.
Time-domain simulation of nonlinear radiofrequency phenomena
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.; Loverich, John; Hakim, Ammar H.
2013-01-01
Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.
Parametric instability of optical non-Hermitian systems near the exceptional point
Zyablovsky, A. A.; Andrianov, E. S.; Pukhov, A. A.
2016-01-01
In contrast to Hermitian systems, the modes of non-Hermitian systems are generally nonorthogonal. As a result, the power of the system signal depends not only on the mode amplitudes but also on the phase shift between them. In this work, we show that it is possible to increase the mode amplitudes without increasing the power of the signal. Moreover, we demonstrate that when the system is at the exceptional point, any infinitesimally small change in the system parameters increases the mode amplitudes. As a result, the system becomes unstable with respect to such perturbation. We show such instability by using the example of two coupled waveguides in which loss prevails over gain and all modes are decaying. This phenomenon enables compensation for losses in dissipative systems and opens a wide range of applications in optics, plasmonics, and optoelectronics, in which loss is an inevitable problem and plays a crucial role. PMID:27405541
Effect of buoyancy on appearance and characteristics of surface tension repeated auto-oscillations.
Kovalchuk, N M; Vollhardt, D
2005-08-11
The effect of buoyancy on spontaneous repeated nonlinear oscillations of surface tension, which appear at the free liquid interface by dissolution of a surfactant droplet under the interface, is considered on the basis of direct numerical simulation of the model system behavior. The oscillations are the result of periodically rising and fading Marangoni instability. The buoyancy force per se cannot lead to the oscillatory behavior in the considered system, but it influences strongly both the onset and decay of the instability and therefore, affects appearance and characteristics of the oscillations. If the surfactant solution density is smaller than the density of the pure liquid, then the buoyancy force leads to a considerable decrease of the induction period and the period of oscillations. The buoyancy force affects also the dependence of the oscillation characteristics on the system dimensions. The results of the simulations are compared with the available experimental data.
Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.
2017-10-01
We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.
Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.
2017-11-01
We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.
Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.
2008-04-15
The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK blackmore » holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.« less
Nonlinear Landau damping in the ionosphere
NASA Technical Reports Server (NTRS)
Kiwamoto, Y.; Benson, R. F.
1978-01-01
A model is presented to explain the non-resonant waves which give rise to the diffuse resonance observed near 3/2 f sub H by the Alouette and ISIS topside sounders, where f sub H is the ambient electron cyclotron frequency. In a strictly linear analysis, these instability driven waves will decay due to Landau damping on a time scale much shorter than the observed time duration of the diffuse resonance. Calculations of the nonlinear wave particle coupling coefficients, however, indicate that the diffuse resonance wave can be maintained by the nonlinear Landau damping of the sounder stimulated 2f sub H wave. The time duration of the diffuse resonance is determined by the transit time of the instability generated and nonlinearly maintained diffuse resonance wave from the remote short lived hot region back to the antenna. The model is consistent with the Alouette/ISIS observations, and clearly demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Mode-medium instability and its correction with a Gaussian-reflectivity mirror
NASA Technical Reports Server (NTRS)
Webster, K. L.; Sung, C. C.
1992-01-01
A high-power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity-dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.
Mode-medium instability and its correction with a Gaussian reflectivity mirror
NASA Technical Reports Server (NTRS)
Webster, K. L.; Sung, C. C.
1990-01-01
A high power CO2 laser beam is known to deteriorate after a few microseconds due to a mode-medium instability (MMI) which results from an intensity dependent heating rate related to the vibrational-to-translational decay of the upper and lower CO2 lasing levels. An iterative numerical technique is developed to model the time evolution of the beam as it is affected by the MMI. The technique is used to study the MMI in an unstable CO2 resonator with a hard-edge output mirror for different parameters like the Fresnel number and the gas density. The results show that the mode of the hard edge unstable resonator deteriorates because of the diffraction ripples in the mode. A Gaussian-reflectivity mirror was used to correct the MMI. This mirror produces a smoother intensity profile which significantly reduces the effects of the MMI. Quantitative results on peak density variation and beam quality are presented.
Reduction of LDI threshold by electron trapping
NASA Astrophysics Data System (ADS)
Rose, Harvey A.; Russell, David
2000-10-01
The effect of trapped electrons on the Langmuir wave decay instability (LDI), considered as a secondary instability to SRS, is twofold. First, for a given level of SRS, the Langmuir wave (LW) response, LW_0, may increase compared to that predicted by the linearized Vlasov equation because of electrons trapped by LW_0, and second, given LW_0, the threshold for LDI is lowered^* by electrons trapped in the LDI daughter wave, LW_1. When kλ D for LW0 is large, say greater than 0.30, then its harmonics, and those of LW_1, are very weakly excited and a complete catalog of nonlinear periodic solutions arising from the LDI is possible. Dependence of the nonlinear LDI threshold on kλ D for a CH plasma will be presented. *This possibility has also been discussed by D. Mourenas, Phys. Plasmas 6, 1258 (1999).
The Extensional Rheology of Non-Newtonian Materials
NASA Technical Reports Server (NTRS)
Spiegelberg, Stephen H.; McKinley, Gareth H.
1996-01-01
The evolution of the transient extensional stresses in dilute and semi-dilute viscoelastic polymer solutions are measured with a filament stretching rheometer of a design similar to that first introduced by Sridhar, et al. The solutions are polystyrene-based (PS) Boger fluids that are stretched at constant strain rates ranging from 0.6 less than or equal to epsilon(0) less than or equal to 4s(exp -1) and to Hencky strains of epsilon greater than 4. The test fluids all strain harden and Trouton ratios exceeding 1000 are obtained at high strains. The experimental data strain hardens at lower strain levels than predicted by bead-spring FENE models. In addition to measuring the transient tensile stress growth, we also monitor the decay of the tensile viscoelastic stress difference in the fluid column following cessation of uniaxial elongation as a function of the total imposed Hencky strain and the strain rate. The extensional stresses initially decay very rapidly upon cessation of uniaxial elongation followed by a slower viscoelastic relaxation, and deviate significantly from FENE relaxation predictions. The relaxation at long times t is greater than or equal to 5 s, is compromised by gravitational draining leading to non-uniform filament profiles. For the most elastic fluids, partial decohension of the fluid filament from the endplates of the rheometer is observed in tests conducted at high strain rates. This elastic instability is initiated near the rigid endplate fixtures of the device and it results in the progressive breakup of the fluid column into individual threads or 'fibrils' with a regular azimuthal spacing. These fibrils elongate and bifurcate as the fluid sample is elongated further. Flow visualization experiments using a modified stretching device show that the instability develops as a consequence of an axisymmetry-breaking meniscus instability in the nonhomogeneous region of highly deformed fluid near the rigid endplate.
Reynolds number effects on the single-mode Richtmyer-Meshkov instability.
Walchli, B; Thornber, B
2017-01-01
The Reynolds number effects on the nonlinear growth rates of the Richtmyer-Meshkov instability are investigated using two-dimensional numerical simulations. A decrease in Reynolds number gives an increased time to reach nonlinear saturation, with Reynolds number effects only significant in the range Re<256. Within this range there is a sharp change in instability properties. The bubble and spike amplitudes move towards equal size at lower Reynolds numbers and the bubble velocities decay faster than predicted by Sohn's model [S.-I. Sohn, Phys. Rev. E 80, 055302 (2009)PLEEE81539-375510.1103/PhysRevE.80.055302]. Predicted amplitudes show reasonable agreement with the existing theory of Carles and Popinet [P. Carles and S. Popinet, Phys. Fluids Lett. 13, 1833 (2001)10.1063/1.1377863; Eur. J. Mech. B 21, 511 (2002)EJBFEV0997-754610.1016/S0997-7546(02)01199-8] and Mikaelian [K. O. Mikaelian, Phys. Rev. E 47, 375 (1993)1063-651X10.1103/PhysRevE.47.375; K. O. Mikaelian, Phys. Rev. E 87, 031003 (2013)PLEEE81539-375510.1103/PhysRevE.87.031003], with the former being the closest match to the current computations.
Strain Induced Elastomer Buckling Instability for Mechanical Measurements (SIEBIMM)
NASA Astrophysics Data System (ADS)
Harrison, Christopher; Stafford, Christopher M.; Amis, Eric J.; Karim, Alamgir
2003-03-01
We introduce a new technique (SIEBIMM) for high-throughput measurements of the mechanical properties of thin polymeric films. This technique relies upon a highly periodic strain-induced buckling instability that arises from a mismatch of the moduli of a relatively stiff polymer coating on a soft silicone sheet. The modulus-dependent buckling wavelength, typically 1-10 microns for 100 nm thick glassy films, is rapidly measured by conventional light scattering. The SIEBIMM-measured modulus is shown to agree with that measured by conventional Instron-like techniques. We directly show that the buckling instability is highly sinusoidal at low strain thereby insuring the suitability of simple mechanical analysis. Utilizing our expertise in preparing thickness gradients via flow coating, we demonstrate that the flexural rigidities of thin films having a wide range of thicknesses can be measured in minutes. By measuring the temporal decay of strain-induced diffraction peaks for plasticized coatings we show that this technique can evaluate viscoelastic properties, such as creep. We demonstrate SIEBIMM's capability with several academic and industrially-relevant polymeric systems, including polystyrene loaded with a wide range of plasticizer, a blend of block copolymers with polystyrene and polyisoprene blocks (Vector 4215 and 4411), and a thiolene-based ultraviolet curing adhesive.
Long-wavelength Instability of Trailing Vortices Behind a Delta Wing
NASA Astrophysics Data System (ADS)
Miller, G. D.; Williamson, C. H. K.
1996-11-01
The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.
Generation and Radiation of Acoustic Waves from a 2D Shear Layer
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable. Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the downstream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic. Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of noise. The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness is constant. With the source amplitude small enough, the problem is governed by the following set of linear equations given in dimensional form.
OGLE14-073 - a promising pair-instability supernova candidate
NASA Astrophysics Data System (ADS)
Kozyreva, Alexandra; Kromer, Markus; Noebauer, Ulrich M.; Hirschi, Raphael
2018-05-01
The recently discovered bright type II supernova OGLE14-073 evolved very slowly. The light curve rose to maximum for 90 days from discovery and then declined at a rate compatible with the radioactive decay of 56Co. In this study, we show that a pair-instability supernova is a plausible mechanism for this event. We calculate explosion models and light curves with the radiation hydrodynamics code STELLA starting from two MZAMS = 150 M⊙, Z=0.001 progenitors. We obtain satisfactory fits to OGLE14-073 broadband light curves by including additional 56Ni in the centre of the models and mixing hydrogen down into the inner layers of the ejecta to a radial mass coordinate of 10 M⊙. The extra 56Ni required points to a slightly more massive progenitor star. The mixing of hydrogen could be due to large scale mixing during the explosion. We also present synthetic spectra for our models simulated with the Monte Carlo radiative transfer code ARTIS. The synthetic spectra reproduce the main features of the observed spectra of OGLE14-073. We conclude that OGLE14-073 is one of the most promising candidates for a pair-instability explosion.
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries
Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo
2016-01-01
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048
Amplification of large scale magnetic fields in a decaying MHD system
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-10-01
Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.
Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma
2010-06-18
We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.
The theory of ionospheric focused heating
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Duncan, L. M.
1987-01-01
Ionospheric modification by high power radio waves and by chemical releases are combined in a theoretical study of ionospheric focused heating. The release of materials which promote electron-ion recombination creates a hole in the bottomside ionosphere. The ionospheric hole focuses high power radio waves from a ground-based transmitter to give a 20 dB or greater enhancement in power density. The intense radio beam excites atomic oxygen by collisions with accelerated electrons. Airglow from the excited oxygen provides a visible trace of the focused beam. The large increase in the intensity of the radio beam stimulates new wave-plasma interactions. Numerical simulations show that the threshold for the two-plasmon decay instability is exceeded. The interaction of the pump electromagnetic wave with the backward plasmon produces a scattered electromagnetic wave at 3/2 the pump frequency. The scattered wave provides a unique signature of the two-plasmon decay process for ground-based detection.
Self-sustained radial oscillating flows between parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Yang, W.-J.
1985-05-01
It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.
Cosmological abundance of the QCD axion coupled to hidden photons
NASA Astrophysics Data System (ADS)
Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu
2018-06-01
We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.
Predictions and Observations of Two-Plasmon Decay on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, James; Oh, J.; Schmitt, A. J.; Obenschain, S.; Velikovich, A.
2011-10-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The short wavelength and large bandwidth of the NIKE laser is predicted to raise the threshold of parametric instabilities such as two-plasmon decay (TPD). We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have allowed us to explore the validity of simple threshold formulas and demonstrate the advantages of the KrF wavelength in suppressing LPI. We consider proposed high-gain shock ignition designs and show, through analytic estimates and simulations, that we can explore the relevant scalelength-temperature regime, providing an experimental method to study the LPI threat to these targets at a small fraction of their designed input energies. This research is funded by the US DOE, NRL, and ONR.
Hot Electrons from Two-Plasmon Decay
NASA Astrophysics Data System (ADS)
Russell, D. A.; Dubois, D. F.
2000-10-01
We solve, self-consistently, the relativistic quasilinear diffusion equation and Zakharov's model equations of Langmuir wave (LW) and ion acoustic wave (IAW) turbulence, in two dimensions, for saturated states of the Two-Plasmon Decay instability. Parameters are those of the shorter gradient scale-length (50 microns) high temperature (4 keV) inhomogeneous plasmas anticipated at LLE’s Omega laser facility. We calculate the fraction of incident laser power absorbed in hot electron production as a function of laser intensity for a plane-wave laser field propagating parallel to the background density gradient. Two distinct regimes are identified: In the strong-turbulent regime, hot electron bursts occur intermittently in time, well correlated with collapse in the LW and IAW fields. A significant fraction of the incident laser power ( ~10%) is absorbed by hot electrons during a single burst. In the weak or convective regime, relatively constant rates of hot electron production are observed at much reduced intensities.
NASA Technical Reports Server (NTRS)
Starr, David O. (Technical Monitor); Smith, Eric A.
2002-01-01
Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.
Electron Heating in a Relativistic, Weibel-unstable Plasma
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Eichler, David; Gedalin, Michael
2015-06-01
The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion-electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.
Dynamics and stability of relativistic gamma-ray-bursts blast waves
NASA Astrophysics Data System (ADS)
Meliani, Z.; Keppens, R.
2010-09-01
Aims: In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stability properties of its frontal shock. Methods: We carried out a grid-adaptive relativistic 2D hydro-simulation at extreme resolving power, following the GRB jet during the entire afterglow phase. We investigate the effect of the finite initial jet opening angle on the deceleration of the blast wave, and identify the growth of various instabilities throughout the coasting shock front. Results: We find that during the relativistic phase, the blast wave is subject to pressure-ram pressure instabilities that ripple and fragment the frontal shock. These instabilities manifest themselves in the ultra-relativistic phase alone, remain in full agreement with causality arguments, and decay slowly to finally disappear in the near-Newtonian phase as the shell Lorentz factor drops below 3. From then on, the compression rate decreases to levels predicted to be stable by a linear analysis of the Sedov phase. Our simulations confirm previous findings that the shell also spreads laterally because a rarefaction wave slowly propagates to the jet axis, inducing a clear shell deformation from its initial spherical shape. The blast front becomes meridionally stratified, with decreasing speed from axis to jet edge. In the wings of the jetted flow, Kelvin-Helmholtz instabilities occur, which are of negligible importance from the energetic viewpoint. Conclusions: Relativistic blast waves are subject to hydrodynamical instabilities that can significantly affect their deceleration properties. Future work will quantify their effect on the afterglow light curves.
Browns Ferry-1 single-loop operation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
March-Leuba, J.; Wood, R.T.; Otaduy, P.J.
1985-09-01
This report documents the results of the stability tests performed on February 9, 1985, at the Browns Ferry Nuclear Power Plant Unit 1 under single-loop operating conditions. The observed increase in neutron noise during single-loop operation is solely due to an increase in flow noise. The Browns Ferry-1 reactor has been found to be stable in all modes of operation attained during the present tests. The most unstable test plateau corresponded to minimum recirculation pump speed in single-loop operation (test BFTP3). This operating condition had the minimum flow and maximum power-to-flow ratio. The estimated decay ratio in this plateau ismore » 0.53. The decay ratio decreased as the flow was increased during single-loop operation (down to 0.34 for test plateau BFTP6). This observation implies that the core-wide reactor stability follows the same trends in single-loop as it does in two-loop operation. Finally, no local or higher mode instabilities were found in the data taken from local power range monitors. The decay ratios estimated from the local power range monitors were not significantly different from those estimated from the average power range monitors.« less
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.
NASA Astrophysics Data System (ADS)
Becerra, L.; Rueda, J. A.; Lorén-Aguilar, P.; García-Berro, E.
2018-04-01
The evolution of the remnant of the merger of two white dwarfs is still an open problem. Furthermore, few studies have addressed the case in which the remnant is a magnetic white dwarf with a mass larger than the Chandrasekhar limiting mass. Angular momentum losses might bring the remnant of the merger to the physical conditions suitable for developing a thermonuclear explosion. Alternatively, the remnant may be prone to gravitational or rotational instabilities, depending on the initial conditions reached after the coalescence. Dipole magnetic braking is one of the mechanisms that can drive such losses of angular momentum. However, the timescale on which these losses occur depends on several parameters, like the strength of the magnetic field. In addition, the coalescence leaves a surrounding Keplerian disk that can be accreted by the newly formed white dwarf. Here we compute the post-merger evolution of a super-Chandrasekhar magnetized white dwarf taking into account all the relevant physical processes. These include magnetic torques acting on the star, accretion from the Keplerian disk, the threading of the magnetic field lines through the disk, and the thermal evolution of the white dwarf core. We find that the central remnant can reach the conditions suitable to develop a thermonuclear explosion before other instabilities (such as the inverse beta-decay instability or the secular axisymmetric instability) are reached, which would instead lead to gravitational collapse of the magnetized remnant.
Disk irradiation and light curves of x ray novae
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Wheeler, J. C.; Mineshige, S.
1994-01-01
We study the disk instability and the effect of irradiation on outbursts in the black hole X-ray nova system. In both the optical and soft X-rays, the light curves of several X-ray novae, A0620-00, GH 2000+25, Nova Muscae 1991 (GS 1124-68), and GRO J0422+32, show a main peak, a phase of exponential decline, a secondary maximum or reflare, and a final bump in the late decay followed by a rapid decline. Basic disk thermal limit cycle instabilities can account for the rapid rise and overall decline, but not the reflare and final bump. The rise time of the reflare, about 10 days, is too short to represent a viscous time, so this event is unlikely to be due to increased mass flow from the companion star. We explore the possibility that irradiation by X-rays produced in the inner disk can produce these secondary effects by enhancing the mass flow rate within the disk. Two plausible mechanisms of irradiation of the disk are considered: direct irradiation from the inner hot disk and reflected radiation from a corona or other structure above the disk. Both of these processes will be time dependent in the context of the disk instability model and result in more complex time-dependent behavior of the disk structure. We test both disk instability and mass transfer burst models for the secondary flares in the presence of irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr
2016-06-15
The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less
Instability of a planar expansion wave.
Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G
2005-10-01
An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 < 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.
Mixing of a passive scalar by the instability of a differentially rotating axial pinch
NASA Astrophysics Data System (ADS)
Paredes, A.; Gellert, M.; Rüdiger, G.
2016-04-01
The mean-field diffusion of passive scalars such as lithium, beryllium or temperature dispersals due to the magnetic Tayler instability of a rotating axial pinch is considered. Our study is carried out within a Taylor-Couette setup for two rotation laws: solid-body quasi-Kepler rotation. The minimum magnetic Prandtl number used is 0.05, and the molecular Schmidt number Sc of the fluid varies between 0.1 and 2. An effective diffusivity coefficient for the mixing is numerically measured by the decay of a prescribed concentration peak located between both cylinder walls. We find that only models with Sc exceeding 0.1 basically provide finite instability-induced diffusivity values. We also find that for quasi-Kepler rotation at a magnetic Mach number Mm ≃ 2, the flow transits from the slow-rotation regime to the fast-rotation regime that is dominated by the Taylor-Proudman theorem. For fixed Reynolds number, the relation between the normalized turbulent diffusivity and the Schmidt number of the fluid is always linear so that also a linear relation between the instability-induced diffusivity and the molecular viscosity results, just in the sense proposed by Schatzman (1977, A&A, 573, 80). The numerical value of the coefficient in this relation reaches a maximum at Mm ≃ 2 and decreases for larger Mm, implying that only toroidal magnetic fields on the order of 1 kG can exist in the solar tachocline.
On the three-dimensional instability of laminar boundary layers on concave walls
NASA Technical Reports Server (NTRS)
Gortler, Henry
1954-01-01
A study is made of the stability of laminar boundary-layer profiles on slightly curved walls relative to small disturbances that result from vortices whose axes are parallel to the principal direction of flow. The result is an eigenvalue problem by which, for a given undisturbed flow at a prescribed wall, the amplification or decay is computed for each Reynolds number and each vortex thickness. For neutral disturbances (zero amplification) a critical Reynolds number is determined for each vortex distribution. The numerical calculation produces amplified disturbances on concave walls only.
New Kaluza-Klein instantons and the decay of AdS vacua
Ooguri, Hirosi; Spodyneiko, Lev
2017-07-19
We construct a generalization of Witten’s Kaluza-Klein instanton, where a higher-dimensional sphere (rather than a circle as in Witten’s instanton) collapses to zero size and the geometry terminates at a bubble of nothing, in a low energy effective theory of M theory. We then use the solution to exhibit the instability of nonsupersymmetric AdS 5 vacua in M theory compactified on positive Kähler-Einstein spaces, providing further evidence for the recent conjecture that any nonsupersymmetric anti–de Sitter vacuum supported by fluxes must be unstable.
Current drive by spheromak injection into a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.R.; Bellan, P.M.
1990-04-30
We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma ({ital {bar n}}{sub 3} increases by a factor of 6) then becomes hollow, suggestive of an interchange instability.
Normal-Mode Splitting in a Weakly Coupled Optomechanical System
NASA Astrophysics Data System (ADS)
Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David
2018-02-01
Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Liu, Mingzhe; Liu, Ying D.; Yang, Zhongwei; Wilson, L. B., III; Hu, Huidong
2018-05-01
We investigate the kinetic properties of a typical fast-mode shock inside an interplanetary coronal mass ejection (ICME) observed on 1998 August 6 at 1 au, including particle distributions and wave analysis with the in situ measurements from Wind. Key results are obtained concerning the shock and the shock–ICME interaction at kinetic scales: (1) gyrating ions, which may provide energy dissipation at the shock in addition to wave-particle interactions, are observed around the shock ramp; (2) despite the enhanced proton temperature anisotropy of the shocked plasma, the low plasma β inside the ICME constrains the shocked plasma under the thresholds of the ion cyclotron and mirror-mode instabilities; (3) whistler heat flux instabilities, which can pitch-angle scatter halo electrons through a cyclotron resonance, are observed around the shock, and can explain the disappearance of bi-directional electrons (BDEs) inside the ICME together with normal betatron acceleration; (4) whistler waves near the shock are likely associated with the whistler heat flux instabilities excited at the shock ramp, which is consistent with the result that the waves may originate from the shock ramp; (5) the whistlers share a similar characteristic with the shocklet whistlers observed by Wilson et al., providing possible evidence that the shock is decaying because of the strong magnetic field inside the ICME.
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...
2017-03-20
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Studies of bandwidth dependence of laser plasma instabilities driven by the Nike laser
NASA Astrophysics Data System (ADS)
Weaver, J.; Kehne, D.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Brown, C. M.; Seely, J.; Feldman, U.
2012-10-01
Experiments at the Nike laser facility of the Naval Research Laboratory are exploring the influence of laser bandwidth on laser plasma instabilities (LPI) driven by a deep ultraviolet pump (248 nm) that incorporates beam smoothing by induced spatial incoherence (ISI). In early ISI studies with longer wavelength Nd:glass lasers (1054 nm and 527 nm),footnotetextObenschain, PRL 62(1989);Mostovych, PRL 62(1987);Peyser, Phys. Fluids B 3(1991). stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν/ν˜0.03-0.19%) pulses irradiated targets at moderate to high intensities (10^14-10^15 W/cm^2). The current studies will compare the emission signatures of LPI from planar CH targets during Nike operation at large bandwidth (δν˜1THz) to observations for narrower bandwidth operation (δν˜0.1-0.3THz). These studies will help clarify the relative importance of the short wavelength and wide bandwidth to the increased LPI intensity thresholds observed at Nike. New pulse shapes are being used to generate plasmas with larger electron density scale-lengths that are closer to conditions during pellet implosions for direct drive inertial confinement fusion.
Vacuum stability in the early universe and the backreaction of classical gravity.
Markkanen, Tommi
2018-03-06
In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
The nature of photoinduced phase transition and metastable states in vanadium dioxide
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...
2016-12-16
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less
Turbulence closure for mixing length theories
NASA Astrophysics Data System (ADS)
Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.
2018-05-01
We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.
The nature of photoinduced phase transition and metastable states in vanadium dioxide
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu
2016-01-01
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066
NASA Astrophysics Data System (ADS)
Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.
2018-01-01
In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.
Regulation of pressure anisotropy in the solar wind: processes within inertial range of turbulence
NASA Astrophysics Data System (ADS)
Strumik, M.; Schekochihin, A. A.; Squire, J.; Bale, S. D.
2016-12-01
Dynamics of weakly collisional plasmas may lead to thermal pressure anisotropies that are driven by velocity shear, plasma expansion/compression or temperature gradients. The pressure anisotropies can provide free energy for the growth of micro-scale instabilities, like the mirror of firehose instabilities, that are commonly believed to constrain the pressure anisotropy in the solar wind if appropriate thresholds are exceeded. We discuss possible alternative mechanisms of regulation of the pressure anisotropy in the inertial range of solar wind turbulence that provide β-dependent constraints on the amplitude of fluctuations of pressure components and other quantities. In particular it is shown that double-adiabatic (CGL) closure for magnetohydrodynamic regime leads to 1/β scaling of the amplitude of the pressure component fluctuations and the pressure anisotropy. Both freely decaying and forced turbulence are discussed based on results of 3D numerical simulations and analytical theoretical predictions. The theoretical results are contrasted with WIND spacecraft measurements.
Stability and instability towards delocalization in many-body localization systems
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Huveneers, François
2017-04-01
We propose a theory that describes quantitatively the (in)stability of fully many-body localization (MBL) systems due to ergodic, i.e., delocalized, grains, that can be, for example, due to disorder fluctuations. The theory is based on the ETH hypothesis and elementary notions of perturbation theory. The main idea is that we assume as much chaoticity as is consistent with conservation laws. The theory describes correctly—even without relying on the theory of local integrals of motion (LIOM)—the MBL phase in one dimension at strong disorder. It yields an explicit and quantitative picture of the spatial boundary between localized and ergodic systems. We provide numerical evidence for this picture. When the theory is taken to its extreme logical consequences, it predicts that the MBL phase is destabilised in the long time limit whenever (1) interactions decay slower than exponentially in d =1 and (2) always in d >1 . Finer numerics is required to assess these predictions.
The nature of photoinduced phase transition and metastable states in vanadium dioxide
NASA Astrophysics Data System (ADS)
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu
2016-12-01
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.
Vacuum stability in the early universe and the backreaction of classical gravity
NASA Astrophysics Data System (ADS)
Markkanen, Tommi
2018-01-01
In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.
Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less
On the evolution of vortices in massive protoplanetary discs
NASA Astrophysics Data System (ADS)
Pierens, Arnaud; Lin, Min-Kai
2018-05-01
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
NASA Astrophysics Data System (ADS)
Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.
2018-06-01
Using numerical simulations we investigate the onset and suppression of parametric decay instability (PDI) in the solar wind, focusing on the suppression effect by the wind acceleration and expansion. Wave propagation and dissipation from the coronal base to 1 au is solved numerically in a self-consistent manner; we take into account the feedback of wave energy and pressure in the background. Monochromatic waves with various injection frequencies, f 0, are injected to discuss the suppression of PDI, while broadband waves are applied to compare the numerical results with observation. We find that high-frequency ({f}0≳ {10}-3 {Hz}) Alfvén waves are subject to PDI. Meanwhile, the maximum growth rate of the PDI of low-frequency ({f}0≲ {10}-4 {Hz}) Alfvén waves becomes negative due to acceleration and expansion effects. Medium-frequency ({f}0≈ {10}-3.5 {Hz}) Alfvén waves have a positive growth rate but do not show the signature of PDI up to 1 au because the growth rate is too small. The medium-frequency waves experience neither PDI nor reflection so they propagate through the solar wind most efficiently. The solar wind is shown to possess a frequency-filtering mechanism with respect to Alfvén waves. The simulations with broadband waves indicate that the observed trend of the density fluctuation is well explained by the evolution of PDI while the observed cross-helicity evolution is in agreement with low-frequency wave propagation.
Östberg, Anna-Lena; Kjellström, Anna N; Petzold, Max
2017-06-01
The objective was to examine associations between a primary Care Need Index (CNI) and dental caries experience. Dental journal records for 300 988 individuals in western Sweden, aged 3-19 years in 2007-09, were completed with official socioeconomic information. The CNI (independent variable), originally developed for assessing primary care need, was calculated for residential areas (small areas, parishes, dental clinics) based on markers of material deprivation, sociodemographic characteristics, social instability and cultural needs. Dental caries (dependent variable) was registered using the decayed, missing, filled teeth (DMFT) system. Multilevel Poisson regression and logistic regression models were used. All analyses were adjusted for age and gender. In the most deprived areas, the incidence rate ratio (IRR) for dental caries was up to five times higher than in the most affluent areas (reference); in small areas, the IRR for decayed teeth (DT) was 3.74 (95% CI: 3.39-4.12) and 5.11 (CI: 4.45-5.87) for decayed surfaces approximally (DSa). Caries indices including fillings (decayed filled teeth [DFT], decayed filled surfaces approximally [DFSa]) produced lower IRRs, with similar pictures at the parish and dental clinic level. The intracluster correlation was low overall, but stronger at lower geographical levels. The odds ratios for ≥3 caries lesions in the two most deprived areas of the CNI deciles were high, with a DT OR of 3.55 in small areas (95% CI: 3.39-3.73), compared with the eight more affluent deciles. There were strong associations between an index for assessing need in primary care, the CNI and dental caries in Swedish children and adolescents. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An investigation of self-subtraction holography in LiNbO3
NASA Technical Reports Server (NTRS)
Vahey, D. W.; Kenan, R. P.; Hartman, N. F.; Sherman, R. C.
1981-01-01
A sample having self subtraction characteristics that were very promising was tested in depth: hologram formation times were on the order of 150 sec, the null signal was less than 2.5% of the peak signal, and no fatigue nor instability was detected over the span of the experiments. Another sample, fabricated with, at most, slight modifications did not perform nearly as well. In all samples, attempts to improve self subtraction characteristics by various thermal treatments had no effects or adverse effects, with one exception in which improvement was noted after a time delay of several days. A theory developed to describe self subtraction showed the observed decrease in beam intensity with time, but the shape of the predicted decay curve was oscillatory in contrast to the exponential like decay observed. The theory was also inadequate to account for the experimental sensitivity of self subtraction to the Bragg angle of the hologram. It is concluded that self subtraction is a viable method for optical processing systems requiring background discrimination.
Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.
Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D
2015-07-31
Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.
NASA Astrophysics Data System (ADS)
Opie, Saul
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
Detecting, anticipating, and predicting critical transitions in spatially extended systems.
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Nature of the wiggle instability of galactic spiral shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr
Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less
NASA Astrophysics Data System (ADS)
Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.
2009-11-01
With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellan, Paul M.
If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less
NASA Astrophysics Data System (ADS)
Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team
2017-11-01
We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.
Detecting, anticipating, and predicting critical transitions in spatially extended systems
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.
1998-01-01
Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q.; Zong, H. S.; Huang, Y. F., E-mail: zonghs@nju.edu.cn, E-mail: hyf@nju.edu.cn
2016-06-01
The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ∼0.8, followed by a steep drop at around 10{sup 5} s with a slope of ∼6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which themore » magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.« less
NASA Astrophysics Data System (ADS)
Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.
2018-03-01
The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, Y. F.; Zong, H. S.
2016-06-01
The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.
NASA Astrophysics Data System (ADS)
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
PLASMA JETS AND ERUPTIONS IN SOLAR CORONAL HOLES: A THREE-DIMENSIONAL FLUX EMERGENCE EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno-Insertis, F.; Galsgaard, K.
2013-07-01
A three-dimensional (3D) numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, andmore » its rise and decay phases, lasting for some 15-20 minutes each. Particular attention is devoted to the field line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears to encircle the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong-field concentrations at the surface. They show a twisted, {Omega}-loop-like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M.J.; Muller, S.J.
1996-12-31
The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less
NASA Astrophysics Data System (ADS)
Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.
2017-01-01
A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.
Global stability behaviour for the BEK family of rotating boundary layers
NASA Astrophysics Data System (ADS)
Davies, Christopher; Thomas, Christian
2017-12-01
Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.
Two-fluid description of wave-particle interactions in strong Buneman turbulence
NASA Astrophysics Data System (ADS)
Che, H.
2014-06-01
To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.
Mixing driven by transient buoyancy flows. I. Kinematics
NASA Astrophysics Data System (ADS)
Duval, W. M. B.; Zhong, H.; Batur, C.
2018-05-01
Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.
NASA Astrophysics Data System (ADS)
Li, Fang; Yin, Xie-Yuan; Yin, Xie-Zhen
2016-05-01
A one-dimensional electrified viscoelastic model is built to study the nonlinear behavior of a slightly viscoelastic, perfectly conducting liquid jet under a radial electric field. The equations are solved numerically using an implicit finite difference scheme together with a boundary element method. The electrified viscoelastic jet is found to evolve into a beads-on-string structure in the presence of the radial electric field. Although the radial electric field greatly enhances the linear instability of the jet, its influence on the decay of the filament thickness is limited during the nonlinear evolution of the jet. On the other hand, the radial electric field induces axial non-uniformity of the first normal stress difference within the filament. The first normal stress difference in the center region of the filament may be greatly decreased by the radial electric field. The regions with/without satellite droplets are illuminated on the χ (the electrical Bond number)-k (the dimensionless wave number) plane. Satellite droplets may be formed for larger wave numbers at larger radial electric fields.
Fate of inflation and the natural reduction of vacuum energy
NASA Astrophysics Data System (ADS)
Nakamichi, Akika; Morikawa, Masahiro
2014-04-01
In the standard cosmology, an artificial fine tuning of the potential is inevitable for vanishing cosmological constant, though slow-rolling uniform scalar field easily causes cosmic inflation. We focus on the general fact that any potential with negative region can temporally halt the cosmic expansion at the end of inflation, where the field tends to diverge. This violent evolution naturally causes particle production and strong instability of the uniform configuration of the fields. Decaying of this uniform scalar field would leave vanishing cosmological constant as well as locally collapsed objects. The universe then continues to evolve into the standard Freedman model. We study the detail of the instability, based on the linear analysis, and the subsequent fate of the scalar field, based on the non-linear numerical analysis. The collapsed scalar field would easily exceed the Kaup limiting mass and forms primordial black holes, which may play an important role in galaxy formation in later stages of cosmic expansion. We systematically describe the above scenario by identifying the scalar field as the boson field condensation (BEC) and the inflation as the process of phase transition of them.
Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor
NASA Astrophysics Data System (ADS)
Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.
2006-10-01
The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.
Evolution of the magnetorotational instability on initially tangled magnetic fields
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.; Subramanian, Kandaswamy
2017-12-01
The initial magnetic field of previous magnetorotational instability (MRI) simulations has always included a significant system-scale component, even if stochastic. However, it is of conceptual and practical interest to assess whether the MRI can grow when the initial field is turbulent. The ubiquitous presence of turbulent or random flows in astrophysical plasmas generically leads to a small-scale dynamo (SSD), which would provide initial seed turbulent velocity and magnetic fields in the plasma that becomes an accretion disc. Can the MRI grow from these more realistic initial conditions? To address this, we supply a standard shearing box with isotropically forced SSD generated magnetic and velocity fields as initial conditions and remove the forcing. We find that if the initially supplied fields are too weak or too incoherent, they decay from the initial turbulent cascade faster than they can grow via the MRI. When the initially supplied fields are sufficient to allow MRI growth and sustenance, the saturated stresses, large-scale fields and power spectra match those of the standard zero net flux MRI simulation with an initial large-scale vertical field.
Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser
NASA Astrophysics Data System (ADS)
Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.
2008-11-01
With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2017-10-01
We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.
2010-11-01
With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.
Harmonic oscillators and resonance series generated by a periodic unstable classical orbit
NASA Technical Reports Server (NTRS)
Kazansky, A. K.; Ostrovsky, Valentin N.
1995-01-01
The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.
The observed life cycle of a baroclinic instability
NASA Technical Reports Server (NTRS)
Randel, W. J.; Stanford, J. L.
1985-01-01
Medium-scale waves (zonal wavenumbers 4-7) frequently dominate Southern Hemisphere summer circulation patterns. Randel and Stanford have studied the dynamics of these features, demonstrating that the medium-scale waves result from baroclinic excitation and exhibit well-defined life cycles. This study details the evolution of the medium-scale waves during a particular life cycle. The specific case chosen exhibits a high degree of zonal symmetry, prompting study based upon zonally averaged diagnostics. An analysis of the medium-scale wave energetics reveals a well-defined life cycle of baroclinic growth, maturity, and barotropic decay. Eliassen-Palm flux diagrams detail the daily wave structure and its interaction with the zonally-averaged flow.
NASA Astrophysics Data System (ADS)
Kelley, M. C.; Dao, E. V.
2018-05-01
With the increase in solar activity, the Communication/Outage Forecast System satellite decayed on orbit to below the F peak. As such, we can study the development of convective ionospheric storms and, most importantly, study large-scale seeding of the responsible instability. For decades, gravity has been suggested as being responsible for the long wavelengths in the range of 200 to 1,000 km, as are commonly observed using airglow and satellite data. Here we suggest that convective thunderstorms are a likely source of gravity waves and point out that recent theoretical analysis has shown this connection to be quite possible.
Capillary droplet propulsion on a fibre.
Haefner, Sabrina; Bäumchen, Oliver; Jacobs, Karin
2015-09-21
A viscous liquid film coating a fibre becomes unstable and decays into droplets due to the Rayleigh-Plateau instability (RPI). Here, we report on the generation of uniform droplets on a hydrophobized fibre by taking advantage of this effect. In the late stages of liquid column breakup, a three-phase contact line can be formed at one side of the droplet by spontaneous rupture of the thinning film. The resulting capillary imbalance leads to droplet propulsion along the fibre. We study the dynamics and the dewetting speed of the droplet as a function of molecular weight as well as temperature and compare to a force balance model based on purely viscous dissipation.
Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis.
Crisp, Peter A; Ganguly, Diep R; Smith, Aaron B; Murray, Kevin D; Estavillo, Gonzalo M; Searle, Iain; Ford, Ethan; Bogdanović, Ozren; Lister, Ryan; Borevitz, Justin O; Eichten, Steven R; Pogson, Barry J
2017-08-01
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants ( k ) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. © 2017 American Society of Plant Biologists. All rights reserved.
Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis[OPEN
Estavillo, Gonzalo M.
2017-01-01
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5ʹ-3ʹ RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. PMID:28705956
NASA Astrophysics Data System (ADS)
Chumakova, Lyubov; Rzeznik, Andrew; Rosales, Rodolfo R.
2017-11-01
In many dispersive/conservative wave problems, waves carry energy outside of the domain of interest and never return. Inside the domain of interest, this wave leakage acts as an effective dissipation mechanism, causing solutions to decay. In classical geophysical fluid dynamics problems this scenario occurs in the troposphere, if one assumes a homogeneous stratosphere. In this talk we present several classic GFD problems, where we seek the solution in the troposphere alone. Assuming that upward propagating waves that reach the stratosphere never return, we demonstrate how classic baroclinic modes become leaky, with characteristic decay time-scales that can be calculated. We also show how damping due to wave leakage changes the classic baroclinic instability problem in the presence of shear. This presentation is a part of a joint project. The mathematical approach used here relies on extending the classical concept of group velocity to leaky waves with complex wavenumber and frequency, which will be presented at this meeting by A. Rzeznik in the talk ``Group Velocity for Leaky Waves''. This research is funded by the Royal Soc. of Edinburgh, Scottish Government, and NSF.
a Theoretical and Experimental Investigation of 1/F Noise in the Alpha Decay Rates of AMERICIUM-241.
NASA Astrophysics Data System (ADS)
Pepper, Gary T.
New experimental methods and data analysis techniques were used to investigate the hypothesis of the existence of 1/f noise in a alpha particle emission rates for ^{241}Am. Experimental estimates of the flicker floor were found to be almost two orders of magnitude less than Handel's theoretical prediction and previous measurements. The existence of a flicker floor for ^{57}Co decay, a process for which no charged particles are emitted, indicate that instrumental instability is likely responsible for the values of the flicker floor obtained. The experimental results and the theoretical arguments presented indicate that a re-examination of Handel's theory of 1/f noise is appropriate. Methods of numerical simulation of noise processes with a 1/f^{rm n} power spectral density were developed. These were used to investigate various statistical aspects of 1/f ^{rm n} noise. The probability density function for the Allan variance was investigated in order to establish confidence limits for the observations made. The effect of using grouped (correlated) data, for evaluating the Allan variance, was also investigated.
Pyragas, K; Lange, F; Letz, T; Parisi, J; Kittel, A
2001-01-01
We suggest a quantitatively correct procedure for reducing the spatial degrees of freedom of the space-dependent rate equations of a multimode laser that describe the dynamics of the population inversion of the active medium and the mode intensities of the standing waves in the laser cavity. The key idea of that reduction is to take advantage of the small value of the parameter that defines the ratio between the population inversion decay rate and the cavity decay rate. We generalize the reduction procedure for the case of an intracavity frequency doubled laser. Frequency conversion performed by an optically nonlinear crystal placed inside the laser cavity may cause a pronounced instability in the laser performance, leading to chaotic oscillations of the output intensity. Based on the reduced equations, we analyze the dynamical properties of the system as well as the problem of stabilizing the steady state. The numerical analysis is performed considering the specific system of a Nd:YAG (neodymium-doped yttrium aluminum garnet) laser with an intracavity KTP (potassium titanyl phosphate) crystal.
Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.
2012-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.
Fractional hereditariness of lipid membranes: Instabilities and linearized evolution.
Deseri, L; Pollaci, P; Zingales, M; Dayal, K
2016-05-01
In this work lipid ordering phase changes arising in planar membrane bilayers is investigated both accounting for elasticity alone and for effective viscoelastic response of such assemblies. The mechanical response of such membranes is studied by minimizing the Gibbs free energy which penalizes perturbations of the changes of areal stretch and their gradients only (Deseri and Zurlo, 2013). As material instabilities arise whenever areal stretches characterizing homogeneous configurations lie inside the spinoidal zone of the free energy density, bifurcations from such configurations are shown to occur as oscillatory perturbations of the in-plane displacement. Experimental observations (Espinosa et al., 2011) show a power-law in-plane viscous behavior of lipid structures allowing for an effective viscoelastic behavior of lipid membranes, which falls in the framework of Fractional Hereditariness. A suitable generalization of the variational principle invoked for the elasticity is applied in this case, and the corresponding Euler-Lagrange equation is found together with a set of boundary and initial conditions. Separation of variables allows for showing how Fractional Hereditariness owes bifurcated modes with a larger number of spatial oscillations than the corresponding elastic analog. Indeed, the available range of areal stresses for material instabilities is found to increase with respect to the purely elastic case. Nevertheless, the time evolution of the perturbations solving the Euler-Lagrange equation above exhibits time-decay and the large number of spatial oscillation slowly relaxes, thereby keeping the features of a long-tail type time-response. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, V.N.; Knauer, J.P.; McKenty, P.W.
(B204)Hydrodynamic instabilities seeded by laser imprint and surface roughness limit the compression ratio and neutron yield in the direct-drive inertial confinement fusion target designs. New improved-performance designs use adiabat shaping to increase the entropy of only the outer portion of the shell, reducing the instability growth. The inner portion of the shell is kept on a lower entropy to maximize shell compressibility. The adiabat shaping is implemented using a high-intensity picket in front of the main-drive pulse. The picket launches a strong shock that decays as it propagates through the shell. This increases the ablation velocity and reduces the Rayleigh-Taylormore » growth rates. In addition, as shown earlier [T.J.B. Collis and S. Skupsky, Phys. Plasmas 9 275 (2002)], the picket reduces the instability seed due to the laser imprint. To test the results of calculations, a series of the picket pulse implosions of CH capsules were performed on the OMEGA laser system [T.R. Boehly, D .L. Brown, R.S. Craxton, et al., Opt. Commun. 133, 495 (1997)]. The experiments demonstrated a significant improvement in target yields for the pulses with the picket compared to the pulses without the picket. Results of the theory and experiments with adiabat shaping are being extended to future OMEGA and the National Ignition Facility's [J.A. Paisner, J.D. Boyes, S.A. Kumpan, W.H. Lowdermilk, and M.S. Sorem, Laser Focus World 30, 75 (1994)] cryogenic target designs.« less
Krishnamurthy, K S
2015-09-01
The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.
Modeling of Nonacoustic Combustion Instability in Simulations of Hybrid Motor Tests
NASA Technical Reports Server (NTRS)
Rocker, M.
2000-01-01
A transient model of a hybrid motor was formulated to study the cause and elimination of nonacoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne, and Martin Marietta at NASA Marshall Space Flight Center (MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5-Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5-Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in elimination of combustion instability with the installation of an orifice immediately upstream of the injector. Formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom. and Claflin. The previous model simulated an unstable independent research and development (IR&D) hybrid motor test performed by Thiokol. There was very good agreement between the model and test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, tests performed at MSFC under the HPTLVB program were actually simulated. ln the current model, the hybrid motor, consisting of the liquid oxygen (lox) injector, the multiport solid fuel grain, and nozzle, was simulated. The lox feedsystem, consisting of the tank, venturi. valve, and feed lines, was also simulated in the model. All components of the hybrid motor and lox feedsystem are treated by a lumped-parameter approach. Agreement between the results of the transient model and actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes: 1. a lox feed system of insufficient stiffness, and 2. a lox injector with an impedance (it pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.
Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Rocker, Marvin
1999-01-01
A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASAIMSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.
Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Rocker, Marvin
1999-01-01
A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASA/MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.
Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources
NASA Astrophysics Data System (ADS)
Fein, Jeffrey R.
This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced by increasing the atomic number of the irradiated components in the pinhole imagers. Using higher-Z materials we demonstrate significant reduction in x-rays between 30-70 keV and 70% increase in the signal-to-background ratio. Based on this, a proposed backlighter and detector setup predicts a signal-to-background ratio of up to 4.5:1.
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa
2013-01-01
Active region eruption of 1 June 2011. Ejective eruption. GOES class C4.1 flare. SDO/AIA, various filters (94, 131, 171, 193, 211, 304, 335 Ang.) High time cadence (24 s) and high spatial resolution (0 .6 pixels). SDO/HMI line-of-sight magnetograms. Hinode observed the onset, and the later decay phase. There are two filament eruptions (filament 1 and filament 2). Filament 1 has slow rise with steps, as in several previous cases. GOES "episodes" play role of "microflares" in other events; that is, filament jumps <=> intensity peaks. Episode 1 brightening: Accompanied by filament 1 s initial motions. (Rest of talk.) Filament 1 becomes unstable, and.. Episode 2 brightening: Flare ribbons following filament 1 s fast liftoff. This destabilizes neighboring filament 2, and... Episode 3 brightening: Flare ribbons of whole system following filament 2 s eruption.Something leads to reconnection; not totally clear what. Reconnection -> twisted flux rope in approx.20 min; episode 1 microflare (flare ribbons; TC) and filament jump. Twist -> writhe, via kink instability; filament-trajectory plateau, approx. 20 min. Writhe -> jump and eruption of filament 1, via instability; episode 2 microflare (flare ribbons; TC). (E.g., Williams et al.) First eruption -> second filament eruption (episode 3 flare ribbons; TC). (E.g., Sterling, Moore; Liu et al.; Torok et al.; Schrijver & Title.). Estimate amount of free energy in newly-twisted field (cf. Moore 1988): where we have taken L and r = 50, 3 arcsec. Energy of the total system is likely 1030 ergs or more. So "no" is answer to question. Additional energy comes from remainder of sheared large loop, shear (free energy) of second filament, etc. (Normally assumed situation.) Some history of twist-induced instability in filament eruptions: e.g., Sakurai, Torok & Kliem, Fan & Gibson, Gilbert et al., van Driel-Gesztelyi et al. Criterion : Kink instability for line-tied tube (Hood & Priest): 2.5pi; for Titov & Demoulin loop (Torok et al): approx.3.5pi We observe here: approx.1.5 turns (3.0pi) over 50. => consistent with kink instability acting. (Cf. Srivastava et al. (2010): Small flare seen in TRACE and Hinode: approx.6.0pi)
Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi
2014-06-11
Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.
Application of a Flip-Flop Nozzle on Plume Mixing Enhancement
NASA Technical Reports Server (NTRS)
Schreck, Stefan; Michaelian, Mark; Ho, Chih-Ming
1999-01-01
Mach wave radiation is a major source of noise in high speed jets. It is created by turbulent eddies which travel at supersonic speed within the shear layer of the jet. Downstream of the potential core, the convection speed of the eddies decays and noise production is reduced. Once the convection speeds drops below the speed of sound, eddy Mach wave radiation ceases. Mach wave radiation may be reduced by shortening the core length of the jet. This requires a faster growth of the shear layer, i.e. enhanced mixing in the jet. We investigated the possibility of mixing enhancement by the excitation of the instability waves in a supersonic rectangular jet.
Multi-dimensional PIC-simulations of parametric instabilities for shock-ignition conditions
NASA Astrophysics Data System (ADS)
Riconda, C.; Weber, S.; Klimo, O.; Héron, A.; Tikhonchuk, V. T.
2013-11-01
Laser-plasma interaction is investigated for conditions relevant for the shock-ignition (SI) scheme of inertial confinement fusion using two-dimensional particle-in-cell (PIC) simulations of an intense laser beam propagating in a hot, large-scale, non-uniform plasma. The temporal evolution and interdependence of Raman- (SRS), and Brillouin- (SBS), side/backscattering as well as Two-Plasmon-Decay (TPD) are studied. TPD is developing in concomitance with SRS creating a broad spectrum of plasma waves near the quarter-critical density. They are rapidly saturated due to plasma cavitation within a few picoseconds. The hot electron spectrum created by SRS and TPD is relatively soft, limited to energies below one hundred keV.
Pierre, Th
2013-01-01
In a new toroidal laboratory plasma device including a poloidal magnetic field created by an internal circular conductor, the confinement efficiency of the magnetized plasma and the turbulence level are studied in different situations. The plasma density is greatly enhanced when a sufficiently large poloidal magnetic field is established. Moreover, the instabilities and the turbulence usually found in toroidal devices without sheared magnetic field lines are suppressed by the finite rotational transform. The particle confinement time is estimated from the measurement of the plasma decay time. It is compared to the Bohm diffusion time and to the value predicted by different diffusion models, in particular neoclassical diffusion involving trapped particles.
Combustion stability analysis of preburners in liquid propellant rocket engines during shutdown
NASA Technical Reports Server (NTRS)
Lim, Kair-Chuan; George, Paul E., II
1987-01-01
A linearized one-dimensional lumped-parameter model capable of predicting the occurrence of the low frequency combustion instability (chugging) experienced during preburner shutdown in the Space Shuttle Main Engines is discussed, and predictions are compared with NASA experimental results. Results from a parametric study of parameters including chamber pressure, fuel and oxygen temperatures, and the effective bulk modulus of the liquid oxidizer suggest that chugging is probably affected by conditions at shutdown through the fuel and oxidizer temperatures. It is suggested that chugging is initiated when the fuel, oxidizer, and helium temperature and flow rates pass into an unstable region, and that chugging may be terminated by decaying pressures.
MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. I. SUPERLUMINOUS SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur, E-mail: ken.chen@nao.ac.jp
2016-11-20
Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input bymore » the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn
The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less
NASA Technical Reports Server (NTRS)
Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.
1992-01-01
The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.
Nonparallel linear stability analysis of unconfined vortices
NASA Astrophysics Data System (ADS)
Herrada, M. A.; Barrero, A.
2004-10-01
Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona
NASA Astrophysics Data System (ADS)
James, Alexander W.; Valori, Gherardo; Green, Lucie M.; Liu, Yang; Cheung, Mark C. M.; Guo, Yang; van Driel-Gesztelyi, Lidia
2018-03-01
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the coronae of stars. Understanding the plasma processes involved in CME initiation has applications for space weather forecasting and laboratory plasma experiments. James et al. used extreme-ultraviolet (EUV) observations to conclude that a magnetic flux rope formed in the solar corona above NOAA Active Region 11504 before it erupted on 2012 June 14 (SOL2012-06-14). In this work, we use data from the Solar Dynamics Observatory (SDO) to model the coronal magnetic field of the active region one hour prior to eruption using a nonlinear force-free field extrapolation, and find a flux rope reaching a maximum height of 150 Mm above the photosphere. Estimations of the average twist of the strongly asymmetric extrapolated flux rope are between 1.35 and 1.88 turns, depending on the choice of axis, although the erupting structure was not observed to kink. The decay index near the apex of the axis of the extrapolated flux rope is comparable to typical critical values required for the onset of the torus instability, so we suggest that the torus instability drove the eruption.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Chan, L.-Y.; Serlin, V.
2011-10-01
Previous experiments with Nike KrF laser (λ = 248 nm , Δν ~ 1 THz) observed LPI signatures near quarter critical density (nc / 4) in CH plasmas, however, detailed measurement of the temperature (Te) and density (ne) profiles was missing. The current Nike LPI campaign will perform experimental determination of the plasma profiles. A side-on grid imaging refractometer (GIR) is the main diagnostic to resolve Te and ne in space taking 2D snapshots of probe laser (λ = 266 nm , Δt = 8 psec) beamlets (50 μm spacing) refracted by the plasma at laser peak time. Ray tracing of the beamlets through hydrodynamically simulated (FASTRAD3D) plasma profiles estimates the refractometer may access densities up to ~ 0 . 2nc . With the measured Te and ne profiles in the plasma corona, we will discuss analysis of light data radiated from the plasmas in spectral ranges relevant to two plasmon decay and convective Raman instabilities. Validity of the (Te ,ne) data will also be discussed for the thermal transport study. Work supported by DoE/NNSA and ONR and performed at NRL.
Rupture of thin liquid films on structured surfaces
NASA Astrophysics Data System (ADS)
Ajaev, Vladimir S.; Gatapova, Elizaveta Ya.; Kabov, Oleg A.
2011-10-01
We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.
Homogeneous wave turbulence driven by tidal flows
NASA Astrophysics Data System (ADS)
Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.
2017-12-01
When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.
Nucleation and triggering of earthquake slip: effect of periodic stresses
Dieterich, J.H.
1987-01-01
Results of stability analyses for spring and slider systems, with state variable constitutive properties, are applied to slip on embedded fault patches. Unstable slip may nucleate only if the slipping patch exceeds some minimum size. Subsequent to the onset of instability the earthquake slip may propagate well beyond the patch. It is proposed that the seismicity of a volume of the earth's crust is determined by the distribution of initial conditions on the population of fault patches that nucleate earthquake slip, and the loading history acting upon the volume. Patches with constitutive properties inferred from laboratory experiments are characterized by an interval of self-driven accelerating slip prior to instability, if initial stress exceeds a minimum threshold. This delayed instability of the patches provides an explanation for the occurrence of aftershocks and foreshocks including decay of earthquake rates by time-1. A population of patches subjected to loading with a periodic component results in periodic variation of the rate of occurrence of instabilities. The change of the rate of seismicity for a sinusoidal load is proportional to the amplitude of the periodic stress component and inversely proportional to both the normal stress acting on the fault patches and the constitutive parameter, A1, that controls the direct velocity dependence of fault slip. Values of A1 representative of laboratory experiments indicate that in a homogeneous crust, correlation of earthquake rates with earth tides should not be detectable at normal stresses in excess of about 8 MPa. Correlation of earthquakes with tides at higher normal stresses can be explained if there exist inhomogeneities that locally amplify the magnitude of the tidal stresses. Such amplification might occur near magma chambers or other soft inclusions in the crust and possibly near the ends of creeping fault segments if the creep or afterslip rates vary in response to tides. Observations of seismicity rate variations associated with seasonal fluctuations of reservoir levels appear to be consistent with the model. ?? 1987.
Is the Earth's magnetic field heading for a flip? Hints from the past
NASA Astrophysics Data System (ADS)
Laj, C. E.; Kissel, C.
2017-12-01
The magnitude of the Earth's dipole magnetic field has decreased significantly over the last centuries at a mean rate of 16 nT/y. This decrease, which correlates with the growth of the South Atlantic Anomaly (SAA) therefore occurs at a rate which is about 10 times larger than expected from a free Ohmic decay process. This situation has led to speculations that an attempt to a reversal or a geomagnetic excursion might be underway. We investigate this hypothesis by examining past geomagnetic instabilities, focussing on the well documented Laschamp and Mono Lake excursions. We have selected high accumulation sedimentary records with very precise age model, leading to unprecedented temporal resolution, and accurate calibration of RPI between 20 and 75 kyr B.P. We also used the 10Be and 36Cl records from the Greenland ice cores. The rate of decay of the field intensity during these two excursions is virtually identical to that observed over the last centuries and much higher than that observed for another period of low intensity (around 65 kyr BP) not associated with a polarity change. Moreover, the global morphology of the Laschamp excursion obtained by Bayesian inversion (Leonhardt et al. (2009) is that reverse magnetic field patches at the core-mantle boundary are formed near the equator and then move poleward, a scenario reminiscent of that described for the present field in the litterature. Therefore, although these results from two excursions do not provide undisputable information on future evolution of the field, they show similarities with several aspects of the present-day geomagnetic field. Assuming that the dynamo processes for an eventual future instability would be similar to those of the past two excursions, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, some 1000 years would be needed for the directional changes to start to be significant.
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
NASA Astrophysics Data System (ADS)
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
TRACE/PARCS analysis of the OECD/NEA Oskarshamn-2 BWR stability benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlowski, T.; Downar, T.; Xu, Y.
2012-07-01
On February 25, 1999, the Oskarshamn-2 NPP experienced a stability event which culminated in diverging power oscillations with a decay ratio of about 1.4. The event was successfully modeled by the TRACE/PARCS coupled code system, and further analysis of the event is described in this paper. The results show very good agreement with the plant data, capturing the entire behavior of the transient including the onset of instability, growth of the oscillations (decay ratio) and oscillation frequency. This provides confidence in the prediction of other parameters which are not available from the plant records. The event provides coupled code validationmore » for a challenging BWR stability event, which involves the accurate simulation of neutron kinetics (NK), thermal-hydraulics (TH), and TH/NK. coupling. The success of this work has demonstrated the ability of the 3-D coupled systems code TRACE/PARCS to capture the complex behavior of BWR stability events. The problem was released as an international OECD/NEA benchmark, and it is the first benchmark based on measured plant data for a stability event with a DR greater than one. Interested participants are invited to contact authors for more information. (authors)« less
NASA Technical Reports Server (NTRS)
Chernov, A. A.
2004-01-01
Crystallites, droplets and amorphous precipitates growing from supersaturated solution are surrounded by zones, which are depleted with respect to the molecules they are built of. If two such particles of colloidal size are separated by a distance comparable to their diameters, then the depletion within the gap between particles is deeper than that at the outer portion of the particles. This will cause depletion attraction between the particles should appear. It may cause particle coagulation and decay of the originally homogeneous particle distribution into a system of clouds within which the particle number density is higher, separated by the region of the lower number density. Stability criterion, Q = 4 pi R(exp 3)c/3 >> 1, was analytically found along with typical particle density distribution wavevector q = (Q/I)(exp 1/2)(a/R)(exp 1/4). Here, R and a are the particle and molecular radii, respectively, c is the average molecular number density in solution and I is the squared diffusion length covered by a molecule during a typical time characterizing decay of molecular concentration in solution due to consumption of the molecules by the growing particles.
Coherence resonance in low-density jets
NASA Astrophysics Data System (ADS)
Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.
2017-11-01
Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Orbital period changes in Centaurus X-3
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Rappaport, S.; Clark, G. W.; Petro, L. D.
1983-01-01
Two new times of mid-X-ray eclipse for Cen X-3 are presented on the basis of pulse arrival time analyses of pointed observations with SAS 3. When combined with all other published eclipse times based on Doppler delay measurements, the results show that the 2.1d binary period is decreasing at an average rate of 1.8 x 10 to the -6th/yr. The decrease, however, is seen as having significant fluctuations about a smooth, linear decrease. The changes observed in the orbital period can be accounted for by mass loss from the system through the L2 point, although the rates required are implausibly high. It is also shown that the long-term overall orbital decay can readily be interpreted as the result of torques exerted by the tidally distorted companion star (Krzeminski's star) on the orbiting neutron star. It is noted that the inferred asynchronism between the orbital frequency and the rotation frequency of the companion star may be maintained by mass and angular momentum loss in a stellar wind or by a tidal instability related to the Darwin effect. However, this would not provide a natural explanation for any short-term deviations from a constant rate of orbital decay.
Characterization of onset of parametric decay instability of lower hybrid waves
NASA Astrophysics Data System (ADS)
Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C.
2014-02-01
The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n¯e) increases above 1020m-3. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n¯e≈1.2×1020m-3. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH(r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.
The life cycles of persistent anomalies and blocking over the North Pacific
NASA Technical Reports Server (NTRS)
Dole, Randall M.
1986-01-01
The evolution of persistent anomaly patterns over the central North Pacific is investigated. Composite time evolution fields of the 500-mbar anomaly patterns are constructed from low-pass and unfiltered height anomaly data; the time scales for the development and decay of these persistent anomalies are analyzed. The relationship between zonal flow in the Pacific jet region and the development of the anomaly patterns is examined. The effect of baroclinic instabilities on the development of the anomalies is studied. The vertical structure and synoptic characteristics of the evolution of the anomalies are described. It is noted that the initial rapid growth of the main center may be associated with a propagating, intensifying, synoptic-scale disturbance which originates in the midlatitudes over eastern Asia.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Di Stefano, Carlos A.; Malamud, G.; Kuranz, C. C.; ...
2015-10-19
Here, we present experiments observing Richtmyer–Meshkov mode coupling and bubble competition in a system arising from well-characterized initial conditions and driven by a strong (Mach ~ 8) shock. These measurements and the analysis method developed to interpret them provide an important step toward the possibility of observing self-similarity under such conditions, as well as a general platform for performing and analyzing hydrodynamic instability experiments. A key feature of these experiments is that the shock is sustained sufficiently long that this nonlinear behavior occurs without decay of the shock velocity or other hydrodynamic properties of the system, which facilitates analysis andmore » allows the results to be used in the study of analytic models.« less
Kinetics of relativistic runaway electrons
NASA Astrophysics Data System (ADS)
Breizman, B. N.; Aleynikov, P. B.
2017-12-01
This overview covers recent developments in the theory of runaway electrons in tokamaks. Its main purpose is to outline the intuitive basis for first-principle advancements in runaway electron physics. The overview highlights the following physics aspects of the runaway evolution: (1) survival and acceleration of initially hot electrons during thermal quench, (2) effect of magnetic perturbations on runaway confinement, (3) multiplication of the runaways via knock-on collisions with the bulk electrons, (4) slow decay of the runaway current, and (5) runaway-driven micro-instabilities. The scope of the reported studies is governed by the need to understand the behavior of runaway electrons as an essential physics element of the disruption events in ITER in order to develop an effective runaway mitigation scheme. ).
LLE review. Volume 61, Quarterly report, October--December 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
This volume of the LLE review, covering the period of October--December 1994, contains articles on a diagnostic method employing krypton spectroscopy for measurement of temperature and shell-fuel mixing in high-temperature implosions; the first direct assessment of the ion-acoustic decay instability in a large-scale length, hot plasma; measurements of polarization mode dispersion and group-velocity walkaway in birefringent media using a frequency domain interferometer; an evaluation of the magnetic flux dynamics occurring in an optically triggered, thin-film superconducting switch; the effect of slurry fluid chemistry on particle size distribution during aqueous polishing of optical glass; and the influence of thermal and mechanicalmore » processing history in the preparation of well-ordered liquid crystal elastomer systems.« less
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye; Thornber, Ben
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology andmore » wind tunnel experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolin, P.; De Moortel, I.; Van Doorsselaere, T.
2016-10-20
In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work,more » we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.« less
NASA Astrophysics Data System (ADS)
Nayfeh, A. H.
1983-09-01
An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.
A synoptic climatology of derecho producing mesoscale convective systems in the North-Central Plains
NASA Astrophysics Data System (ADS)
Bentley, Mace L.; Mote, Thomas L.; Byrd, Stephen F.
2000-09-01
Synoptic-scale environments favourable for producing derechos, or widespread convectively induced windstorms, in the North-Central Plains are examined with the goal of providing pattern-recognition/diagnosis techniques. Fifteen derechos were identified across the North-Central Plains region during 1986-1995. The synoptic environment at the initiation, mid-point and decay of each derecho was then evaluated using surface, upper-air and National Center for Atmospheric Research (NCAR)/National Center for Environmental Prediction (NCEP) reanalysis datasets.Results suggest that the synoptic environment is critical in maintaining derecho producing mesoscale convective systems (DMCSs). The synoptic environment in place downstream of the MCS initiation region determines the movement and potential strength of the system. Circulation around surface low pressure increased the instability gradient and maximized leading edge convergence in the initiation region of nearly all events regardless of DMCS location or movement. Other commonalities in the environments of these events include the presence of a weak thermal boundary, high convective instability and a layer of dry low-to-mid-tropospheric air. Of the two corridors sampled, northeastward moving derechos tend to initiate east of synoptic-scale troughs, while southeastward moving derechos form on the northeast periphery of a synoptic-scale ridge. Other differences between these two DMCS events are also discussed.
Forensic Assessment on Ground Instability Using Electrical Resistivity Imaging (ERI)
NASA Astrophysics Data System (ADS)
Hazreek, Z. A. M.; Azhar, A. T. S.; Aziman, M.; Fauzan, S. M. S. A.; Ikhwan, J. M.; Aishah, M. A. N.
2017-02-01
Electrical resistivity imaging (ERI) was used to evaluate the ground settlement in local scale at housing areas. ERI and Borehole results were used to interpret the condition of the problematic subsurface profile due to its differential stiffness. Electrical resistivity of the subsurface profile was measured using ABEM SAS4000 equipment set. ERI results using electrical resistivity anomaly on subsurface materials resistivity shows the subsurface profile exhibited low (1 - 100 Ωm) and medium (> 100 Ωm) value (ERV) representing weak to firm materials. The occurrences of soft to medium cohesive material (SPT N value = 2 - 7) and stiff cohesive material (SPT N ≥ 8) in local scale has created inconsistency of the ground stability condition. Moreover, it was found that a layer of organic decayed wood (ERV = 43 ˜ 29 Ωm & SPT N = 15 ˜ 9) has been buried within the subsurface profile thus weaken the ground structure and finally promoting to the ground settlement. The heterogeneous of the subsurface material presented using integrated analysis of ERI and borehole data enabled ground settlement in this area to be evaluated. This is the major factor evaluating ground instability in the local scale. The result was applicable to assist in planning a strategy for sustainable ground improvement of local scale in fast, low cost, and large data coverage.
Plasmoid formation in the elongated current sheet during transient CHI on HIST
NASA Astrophysics Data System (ADS)
Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi
2016-10-01
The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.
NASA Astrophysics Data System (ADS)
de Andrea González, Ángel; González-Gutiérrez, Leo M.
2017-09-01
The Rayleigh-Taylor instability (RTI) in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP), so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes), a set of continuum modes (internal RTI modes) also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum) into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.
Viscous-resistive layer in Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Silveira, F. E. M.; Orlandi, H. I.
2017-03-01
In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2013-10-01
Knowing spatial profiles of electron density (ne) in the underdense coronal region (n
Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium
NASA Astrophysics Data System (ADS)
Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei
2017-11-01
Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.
Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades
NASA Technical Reports Server (NTRS)
Tan, Choon S.
2003-01-01
This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.
Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold
2013-05-01
High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
Numerical Simulation of Rotation-Driven Plasma Transport In the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Wolf, Richard A.
1997-01-01
A Jupiter version of the Rice Convection Model (RCM-J) was developed with support of an earlier NASA SR&T grant. The conversion from Earth to Jupiter included adding currents driven by centrifugal force, reversing the planetary magnetic field, and rescaling various parameters. A series of informative runs was carried out, all of them solving initial value problems. The simulations followed an initial plasma torus configuration as it fell apart by interchange instability. Some conclusions from the simulations were the following: 1. We confirmed that, for conventional values of the torus density and ionospheric conductance, the torus disintegrates by interchange instability on a time scale of approx. one day, which is 1-2 orders of magnitude shorter than the best estimates of the average residence time of plasma in the torus. 2. In the model, the instability could be slowed to an arbitrary degree by the addition of sufficient impounding energetic particles, as suggested earlier by Siscoe et al (1981). However, the observed energetic particles do not seem sufficient to guarantee impoundment (e.g., Mauk et al., 1996). 3. Whether inhibited by impoundment or not, the interchange was found to proceed by the formation of long fingers, which get thinner as they get longer. This picture differed dramatically from the conventional radial-diffusion picture (e.g., Siscoe and Summers (1981)), more superficially with the outward-moving-blob picture (Pontius and Hill, 1989). The obvious limitation of the original RCM-J was that it could not represent a plasma source. We could represent the decay of a pre-existing torus, but we could not represent the way ionization of material from Io continually replenishes the plasma. We consequently were precluded from studying a whole set of fundamental issues of torus theory, including whether the system can come to a steady state.
Morgan, R. V.; Likhachev, O. A.; Jacobs, J. W.
2016-02-15
Theory and experiments are reported that explore the behaviour of the Rayleigh–Taylor instability initiated with a diffuse interface. Experiments are performed in which an interface between two gases of differing density is made unstable by acceleration generated by a rarefaction wave. Well-controlled, diffuse, two-dimensional and three-dimensional, single-mode perturbations are generated by oscillating the gases either side to side, or vertically for the three-dimensional perturbations. The puncturing of a diaphragm separating a vacuum tank beneath the test section generates a rarefaction wave that travels upwards and accelerates the interface downwards. This rarefaction wave generates a large, but non-constant, acceleration of the order ofmore » $$1000g_{0}$$, where$$g_{0}$$is the acceleration due to gravity. Initial interface thicknesses are measured using a Rayleigh scattering diagnostic and the instability is visualized using planar laser-induced Mie scattering. Growth rates agree well with theoretical values, and with the inviscid, dynamic diffusion model of Duffet al. (Phys. Fluids, vol. 5, 1962, pp. 417–425) when diffusion thickness is accounted for, and the acceleration is weighted using inviscid Rayleigh–Taylor theory. The linear stability formulation of Chandrasekhar (Proc. Camb. Phil. Soc., vol. 51, 1955, pp. 162–178) is solved numerically with an error function diffusion profile using the Riccati method. This technique exhibits good agreement with the dynamic diffusion model of Duffet al. for small wavenumbers, but produces larger growth rates for large-wavenumber perturbations. Asymptotic analysis shows a$$1/k^{2}$$decay in growth rates as$$k\\rightarrow \\infty$$for large-wavenumber perturbations.« less
Statistical comparisons of gravity wave features derived from OH airglow and SABER data
NASA Astrophysics Data System (ADS)
Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.
2017-12-01
The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.
Feedback-Assisted Extension of the Tokamak Operating Space to Low Safety Factor
NASA Astrophysics Data System (ADS)
Hanson, J. M.
2013-10-01
Recent DIII-D experiments have demonstrated stable operation at very low edge safety factor, q95 <~ 2 through the use of magnetic feedback to control the n = 1 resistive wall mode (RWM) instability. The performance of tokamak fusion devices may benefit from increased plasma current, and thus, decreased q. However, disruptive stability limits are commonly encountered in experiments at qedge ~ 2 (limited plasmas) and q95 ~ 2 (diverted plasmas), limiting exploration of low q regimes. In the recent DIII-D experiments, the impact and control of key disruptive instabilities was studied. Locked n = 1 modes with exponential growth times on the order of the wall eddy current decay timescale τw preceded disruptions at q95 = 2 . The instabilities have a poloidal structure that is consistent with VALEN simulations of the RWM mode structure at q95 = 2 . Applying proportional gain magnetic feedback control of the n = 1 mode resulted in stabilized operation with q95 reaching 1.9, and an extension of the discharge lifetime for > 100τw . Loss of feedback control was accompanied by power supply saturation, followed by a rapidly growing n = 1 mode and disruption. Comparisons of the feedback dynamics with VALEN simulations will be presented. The DIII-D results complement and will be discussed alongside recent RFX-MOD demonstrations of RWM control using magnetic feedback in limited tokamak discharges with qedge < 2. These results call attention to the utility of magnetic feedback in significantly extending the tokamak operational space and potentially opening a new route to economical fusion power production. Supported by the US Department of Energy under DE-FG02-04ER54761 and DE-FC02-04ER54698.
Direct-drive inertial confinement fusion: A review
NASA Astrophysics Data System (ADS)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.
2015-11-01
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.
A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.
Ejection mechanisms in the sublayer of a turbulent channel
NASA Technical Reports Server (NTRS)
Jimenez, J.; Moin, P.; Moser, R. D.; Keefe, L. R.
1987-01-01
A possible model for the inception of vorticity ejections in the viscous sublayer of a turbulent rectangular channel is presented. It was shown that this part of the flow is dominated by protruding strong shear layers of z-vorticity, and it was proposed as a mechanism for their maintenance and reproduction which is essentially equivalent to that responsible for the instability of 2-D Tollmien-Schlichting waves. The efforts to isolate computationally a single structure for its study have failed up to now, since it appears that single structures decay in the absence of external forcing, but a convenient computation model was identified in the form of a long and narrow periodic computational box containing at each moment only a few structures. Further work in the identification of better reduced systems is in progress.
Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.
Stimulated Raman scattering of sub-millimeter waves in bismuth
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Tripathi, V. K.
2007-12-01
A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.
Perturbations and moduli space dynamics of tachyon kinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindmarsh, Mark; Li Huiquan
2008-03-15
The dynamic process of unstable D-branes decaying into stable ones with one dimension lower can be described by a tachyon field with a Dirac-Born-Infeld effective action. In this paper we investigate the fluctuation modes of the tachyon field around a two-parameter family of static solutions representing an array of brane-antibrane pairs. Besides a pair of zero modes associated with the parameters of the solution, and instabilities associated with annihilation of the brane-antibrane pairs, we find states corresponding to excitations of the tachyon field around the brane and in the bulk. In the limit that the brane thickness tends to zero,more » the support of the eigenmodes is limited to the brane, consistent with the idea that propagating tachyon modes drop out of the spectrum as the tachyon field approaches its ground state. The zero modes, and other low-lying excited states, show a fourfold degeneracy in this limit, which can be identified with some of the massless superstring modes in the brane-antibrane system. Finally, we also discuss the slow motion of the solution corresponding to the decay process in the moduli space, finding a trajectory which oscillates periodically between the unstable D-brane and the brane-antibrane pairs of one dimension lower.« less
RELATIONSHIP BETWEEN DISTRIBUTION OF MAGNETIC DECAY INDEX AND FILAMENT ERUPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H.; Liu, Y.; Elmhamdi, A.
2016-10-20
The decay index n of a horizontal magnetic field is considered to be an important parameter in judging the stability of a flux rope. However, the spatial distribution of this parameter has not been extensively explored so far. In this paper, we present a delineative study of the three-dimensional maps of n for two eruptive events, in which filaments underwent asymmetrical eruptions. The corresponding n -distributions are both found to show that the filaments tend to erupt at abnormal regions (dubbed ABN regions) of n . These ABN regions appear to be divided into two subregions, with larger and smallermore » n . Moreover, an analysis of the magnetic topological configuration of the ABN regions has been also performed. The results indicate that these ABN regions are associated with a kind of special quasi-separatrix layer across which the connectivity of magnetic field is discontinuous. The presented observations and analyses strongly suggest that the torus instability in ABN regions may play a crucial role for the triggering of an asymmetrical eruption. Additionally, our investigation can provide a way of forecasting how a filament might erupt, and predicting the location for an asymmetrically eruptive filament to be split through analyzing the spatial structure of n .« less
Peculiar Behaviors of Faint Galactic Bulge Transients
NASA Technical Reports Server (NTRS)
Swank, J. H.
2004-01-01
The Rossi X-ray Timing Explorer PCA scans of the Galactic bulge (galactic longitude plus or minus 11 degrees) have detected 8 recent transients which have peak intensities of 10 to 400 mCrab. Some of the transient events have a fast rise and slow decay typical of accretion disk instabilities. It is common for these decays to be oscillatory, rather than steady, as if there are waves within the disk. There are also outbursts with symmetric light curves. In particular, the source in Terzan 2 which had a very long (decade) doubling of intensity peaking near the beginning of 1997, in 2004 has had two 30 day brightenings by a factor of 5 only 100 days apart. During each of these a burst was observed in snapshot observations near the peak. The source SLX 1735-269, also a burster, though not in our observations, has had irregularly repeated occurrences of fast swings between close to zero and 2-4 times normal. Some examples, such as the increase, drop, and slow recovery of GS 1826-238 suggest a change in the accretion disk such as emptying and refilling or a peculiar alignment. Follow up observations have provided deeper information about these transient sources and possible explanations for their behavior will be addressed.
Discovery of decaHz flaring in SAX J1808.4-3658
NASA Astrophysics Data System (ADS)
Bult, P.
2014-01-01
We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10 Hz variability has a fractional rms amplitude of 20 to 30 percent, well in excess of the 8 to 12 percent rms broad-band noise usually seen in power spectra of SAX J1808 in this frequency range. Coherent 401 Hz pulsations are seen throughout the observations in which the decaHz flaring is detected. We find that the absolute amplitude of the pulsations varies with the flux modulation of the decaHz flaring, indicating that the flaring is caused by an accretion rate modulation already present in the accretion flow prior to matter entering the accretion funnel. We suggest that the decaHz flaring is the result of the Spruit-Taam instability [1]. This instability arises when the inner accretion disk approaches co-rotation. The rotation of the stellar magnetosphere then acts as a propeller, suppressing accretion onto the neutron star. A matter reservoir forms in the inner accretion disk, which episodically empties onto the neutron star, causing flares at a decaHz timescale. A similar explanation was proposed earlier for 1 Hz flaring occurring late in three of five outbursts, mutually exclusive with the decaHz flaring. The 1 Hz flaring was observed at luminosities a factor 5 to 10 below where we see the decaHz flaring. That a different branch of the Spruit-Taam instability could also act at the much higher luminosity levels of the decaHz flaring had recently been predicted by D'Angelo & Spruit [2, 3]. We discuss these findings in the context of the parameters of the Spruit-Taam-d'Angelo model of the instability. If confirmed, after millisecond pulsations, 1 Hz and decaHz flaring would be another diagnostic of the presence of a magnetosphere in accreting low-magnetic field neutron stars.
Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models
NASA Astrophysics Data System (ADS)
De Cruz, Lesley; Schubert, Sebastian; Demaeyer, Jonathan; Lucarini, Valerio; Vannitsem, Stéphane
2018-05-01
The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation scheme, and the resolution on the spectra of LEs. The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the Newtonian forcing to the temperature field. The increase in the gradient gives rise to a higher baroclinicity and stronger instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension of the attractor increases as well. The convergence rate of the rate function for the large deviation law of the finite-time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut atmospheric timescale separation in such a model. The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. However, the dynamics of the central manifold, which is mostly associated with the ocean dynamics, is not fully resolved because of its associated long timescales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling coefficient or introducing a turbulent diffusion parametrisation reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy. In all considered configurations, we are not yet in the regime in which one can robustly define large deviation laws describing the statistics of the FTLEs. This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating rate of growth and decay of perturbations with the physical modes described using the formalism of the covariant Lyapunov vectors and considering long integrations in order to disentangle the dynamical processes occurring at all timescales.
NASA Astrophysics Data System (ADS)
DeHart, Jennifer C.
Airborne radar reflectivity data and numerical simulations are examined to determine how tropical cyclone precipitation processes are impacted by landfall over a continental mountain range. Analysis of the high-resolution radar data collected within Hurricane Karl (2010) during the Genesis and Rapid Intensification Processes (GRIP) shows that radar reflectivity enhancement in regions of upslope flow is constrained to low-levels. Reflectivity enhancement is not uniform and discrete regions of enhanced precipitation are embedded within a broad echo. In conjunction with an upstream dropsonde that exhibits weak instability, the radar data suggest a mix of gentle ascent and shallow convection occur. Regions of downslope flow are characterized by precipitation originating further aloft with little modification near low levels. Satellite data further indicate that deep convection develops after the high clouds dissipate, indicating that the evolving thermodynamic environment favors orographic modification processes beyond collection of orographically-generated cloud water. Numerical simulations examine how modification processes controlling precipitation are affected by the height of an idealized plateau. When terrain is minimal, the tropical cyclone decays slowly, the upper-level warm core remains robust, the moist neutral environment persists, and precipitation processes are largely concentrated within the eyewall and rainband. Movement over a tall topographic barrier induces rapid decay, which erodes the warm core and moist neutral environment. A mix of forced ascent and buoyant motions contribute to enhanced warm rain processes over the terrain. Overall, all microphysical quantities are greater for the tall plateau storm, but concentrations within the innermost core decay rapidly along with the storm. It is shown that the simulated tropical cyclone precipitation is heavily influenced by overestimated graupel production, which is a common problem of microphysical schemes. Surface precipitation is comparable between the two experiments, suggesting that strong decay of the storm affects the upper limit of precipitation. Similar precipitation patterns between the observations and tall plateau simulation suggest that the model obtains realistic precipitation through incorrect microphysical processes, but a lack of microphysical observations prevent full assessment of that hypothesis. Overall, this dissertation demonstrates that decay due to landfall over complex terrain affects the inner core thermodynamic and kinematic environment, which in turn affects the type and organization of precipitation processes that occur.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles
2007-09-01
We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.
Characterization of onset of parametric decay instability of lower hybrid waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, S. G.; Bonoli, P. T.; Parker, R. R.
2014-02-12
The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nМ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmasmore » 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nМ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the J{sub LH}(r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.« less
LPI studies with grazing incidence irradiation at the Nike laser
NASA Astrophysics Data System (ADS)
Weaver, J.; Kehne, D.; Schmitt, A.; Obenschain, S.; Serlin, V.; Oh, J.; Lehmberg, R.; Seely, J.
2013-10-01
Studies of laser plasma instabilities (LPI) at the Nike laser facility at NRL have previously concentrated on planar targets irradiated with their surface normal aligned to the central axis of the laser. Shots with planar targets rotated up 60° to the laser have shown changes in thresholds for the two-plasmon decay instability and stimulated Raman scattering near the quarter critical region. In the case of rotated low-Z targets, spectra were observed to shift to lower wavelength and were substantially stronger in the visible and ultraviolet spectral ranges. The low-Z target data show growth at an incident intensity slightly below (~30%) the threshold values observed at normal incidence. A rapid rise in signal level over the same laser intensities was also observed in the hard x-ray data which serve as an overall indicator of LPI activity. Shots with rotated planar high-Z targets showed that the visible and ultraviolet emissions dropped significantly when compared to low-Z targets in the same geometry. This presentation will include results from upcoming experiments to determine the LPI signal for low-Z, high-Z, and high-Z coated targets at lower laser intensities for several angles of target rotation. Shots with widely separated laser beams are also planned to explore cross beam energy transport at Nike. Work supported by DoE/NNSA.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.
2012-10-01
ExperimentsfootnotetextJ. Oh, et al, GO5.4, APS DPP (2010).^,footnotetextJ. L. Weaver, et al, GO5.3, APS DPP (2010). using Nike KrF laser observed LPI signatures from CH plasmas at the laser intensities above ˜1x10^15 W/cm^2. Knowing spatial profiles of temperature (Te) and density (ne) in the underdense coronal region (0 < n < nc/4) of the plasma is essential to understanding the LPI observation. However, numerical simulation was the only way to access the profiles for the previous experiments. In the current Nike LPI experiment, a side-on grid imaging refractometer (GIR)footnotetextR. S. Craxton, et al, Phys. Fluids B 5, 4419 (1993). is being deployed for measuring the underdense plasma profiles. The GIR will resolve Te and ne in space taking a 2D snapshot of probe laser (λ= 263 nm, δt = 10 psec) beamlets (50μm spacing) refracted by the plasma at a selected time during the laser illumination. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera will simultaneously monitor light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay (TDP) instabilities. The experimental study of effects of the plasma profiles on the LPI initiation will be presented.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Whelan, D. A.
1982-01-01
The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.
A theoretical evaluation of rigid baffles in suppression of combustion instability
NASA Technical Reports Server (NTRS)
Baer, M. R.; Mitchell, C. E.
1976-01-01
An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. A three dimensional combustor model characterized by a concentrated combustion source at the chamber injector and a constant Mach number nozzle is used. The linearized partial differential equations describing the unsteady flow field are solved by an eigenfunction matching method. Boundary layer corrections to this unsteady flow are used to evaluate viscous and turbulence effects within the flow. An integral stability relationship is then employed to predict the decay rate of the oscillations. Results show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number and oscillation amplitude is examined.
Opening up the QCD axion window
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Marques-Tavares, Gustavo; Xue, Wei
2018-03-01
We present a new mechanism to deplete the energy density of the QCD axion, making decay constants as high as f a ≃ 1017 GeV viable for generic initial conditions. In our setup, the axion couples to a massless dark photon with a coupling that is moderately stronger than the axion coupling to gluons. Dark photons are produced copiously through a tachyonic instability when the axion field starts oscillating, and an exponential suppression of the axion density can be achieved. For a large part of the parameter space this dark radiation component of the universe can be observable in upcoming CMB experiments. Such dynamical depletion of the axion density ameliorates the isocurvature bound on the scale of inflation. The depletion also amplifies the power spectrum at scales that enter the horizon before particle production begins, potentially leading to axion miniclusters.
Axionic landscape for Higgs coupling near-criticality
NASA Astrophysics Data System (ADS)
Cline, James M.; Espinosa, José R.
2018-02-01
The measured value of the Higgs quartic coupling λ is peculiarly close to the critical value above which the Higgs potential becomes unstable, when extrapolated to high scales by renormalization group running. It is tempting to speculate that there is an anthropic reason behind this near-criticality. We show how an axionic field can provide a landscape of vacuum states in which λ scans. These states are populated during inflation to create a multiverse with different quartic couplings, with a probability distribution P that can be computed. If P is peaked in the anthropically forbidden region of Higgs instability, then the most probable universe compatible with observers would be close to the boundary, as observed. We discuss three scenarios depending on the Higgs vacuum selection mechanism: decay by quantum tunneling, by thermal fluctuations, or by inflationary fluctuations.
Structural Evolution of a Warm Frontal Precipitation Band During GCPEx
NASA Technical Reports Server (NTRS)
Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen
2015-01-01
A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).
Cosmic R-string, R-tube and vacuum instability
NASA Astrophysics Data System (ADS)
Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka
2013-03-01
We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
Evidence for an oscillating soliton/vortex ring by density engineering of a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Shomroni, I.; Lahoud, E.; Levy, S.; Steinhauer, J.
2009-03-01
When two Bose-Einstein condensates collide with high collisional energy, the celebrated matter-wave interference pattern appears. For lower collisional energies, the repulsive interaction energy becomes significant, and the interference pattern evolves into an array of grey solitons. But the lowest collisional energies, producing a single pair of solitons, have not been probed so far. Here, we report on experiments using density engineering on the healing length scale to produce such a pair of solitons. We see evidence that the solitons evolve periodically between vortex rings and solitons. The stable, periodic evolution is in sharp contrast to the behaviour seen in previous experiments in which the solitons decay irreversibly into vortex rings through the so-called snake instability. The evolution can be understood in terms of conservation of mass and energy in a narrow condensate.
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermalmore » electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 μm—the third harmonic of the Nd:glass laser—and 0.248 μm (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Direct-drive inertial confinement fusion: A review
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; ...
2015-11-25
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
Direct-drive inertial confinement fusion: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore » problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 μm and 1/4 μm. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dong; Liu, Rui; Wang, Yuming
We studied the background field for 60 two-ribbon flares of M-and-above classes during 2011–2015. These flares are categorized into two groups, i.e., eruptive and confined flares, based on whether a flare is associated with a coronal mass ejection or not. The background field of source active regions is approximated by a potential field extrapolated from the B {sub z} component of vector magnetograms provided by the Helioseismic and Magnetic Imager. We calculated the decay index n of the background field above the flaring polarity inversion line, and defined a critical height h {sub crit} corresponding to the theoretical threshold (more » n {sub crit} = 1.5) of the torus instability. We found that h {sub crit} is approximately half of the distance between the centroids of opposite polarities in active regions and that the distribution of h {sub crit} is bimodal: it is significantly higher for confined flares than for eruptive ones. The decay index increases monotonously with increasing height for 86% (84%) of the eruptive (confined) flares but displays a saddle-like profile for the rest, 14% (16%), which are found exclusively in active regions of multipolar field configuration. Moreover, n at the saddle bottom is significantly smaller in confined flares than that in eruptive ones. These results highlight the critical role of background field in regulating the eruptive behavior of two-ribbon flares.« less
Submesoscale CO2 variability across an upwelling front off Peru
NASA Astrophysics Data System (ADS)
Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten
2017-12-01
As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.
Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting.
Benítez-Del-Castillo, José; Labetoulle, Marc; Baudouin, Christophe; Rolando, Maurizio; Akova, Yonca A; Aragona, Pasquale; Geerling, Gerd; Merayo-Lloves, Jesús; Messmer, Elisabeth M; Boboridis, Kostas
2017-04-01
Dry eye disease (DED) results in tear film instability and hyperosmolarity, inflammation of the ocular surface and, ultimately, visual disturbance that can significantly impact a patient's quality of life. The effects on visual acuity result in difficulties with driving, reading and computer use and negatively impact psychological health. These effects also extend to the workplace, with a loss of productivity and quality of work causing substantial economic losses. The effects of DED and the impact on vision experienced by patients may not be given sufficient importance by ophthalmologists. Functional visual acuity (FVA) is a measure of visual acuity after sustained eye opening without blinking for at least 10 s and mimics the sustained visual acuity of daily life. Measuring dynamic FVA allows the detection of impaired visual function in patients with DED who may display normal conventional visual acuity. There are currently several tests and methods that can be used to measure dynamic visual function: the SSC-350 FVA measurement system, assessment of best-corrected visual acuity decay using the interblink visual acuity decay test, serial measurements of ocular and corneal higher order aberrations, and measurement of dynamic vision quality using the Optical Quality Analysis System. Although the equipment for these methods may be too large or unaffordable for use in clinical practice, FVA testing is an important assessment for DED. Copyright © 2016 Elsevier Inc. All rights reserved.
Two Types of Long-duration Quasi-static Evolution of Solar Filaments
NASA Astrophysics Data System (ADS)
Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.
2018-04-01
In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.
Nescerecka, Alina; Juhna, Talis; Hammes, Frederik
2018-05-15
Changes in bacterial concentration and composition in drinking water during distribution are often attributed to biological (in)stability. Here we assessed temporal biological stability in a full-scale distribution network (DN) supplied with different types of source water: treated and chlorinated surface water and chlorinated groundwater produced at three water treatment plants (WTP). Monitoring was performed weekly during 12 months in two locations in the DN. Flow cytometric total and intact cell concentration (ICC) measurements showed considerable seasonal fluctuations, which were different for two locations. ICC varied between 0.1-3.75 × 10 5 cells mL -1 and 0.69-4.37 × 10 5 cells mL -1 at two locations respectively, with ICC increases attributed to temperature-dependent bacterial growth during distribution. Chlorinated water from the different WTP was further analysed with a modified growth potential method, identifying primary and secondary growth limiting compounds. It was observed that bacterial growth in the surface water sample after chlorination was primarily inhibited by phosphorus limitation and secondly by organic carbon limitation, while carbon was limiting in the chlorinated groundwater samples. However, the ratio of available nutrients changed during distribution, and together with disinfection residual decay, this resulted in higher bacterial growth potential detected in the DN than at the WTP. In this study, bacterial growth was found to be higher (i) at higher water temperatures, (ii) in samples with lower chlorine residuals and (iii) in samples with less nutrient (carbon, phosphorus, nitrogen, iron) limitation, while this was significantly different between the samples of different origin. Thus drinking water microbiological quality and biological stability could change during different seasons, and the extent of these changes depends on water temperature, the water source and treatment. Furthermore, differences in primary growth limiting nutrients in different water sources could contribute to biological instability in the network, where mixing occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thornber, B.; Griffond, J.; Poujade, O.; Attal, N.; Varshochi, H.; Bigdelou, P.; Ramaprabhu, P.; Olson, B.; Greenough, J.; Zhou, Y.; Schilling, O.; Garside, K. A.; Williams, R. J. R.; Batha, C. A.; Kuchugov, P. A.; Ladonkina, M. E.; Tishkin, V. F.; Zmitrenko, N. V.; Rozanov, V. B.; Youngs, D. L.
2017-10-01
Turbulent Richtmyer-Meshkov instability (RMI) is investigated through a series of high resolution three-dimensional simulations of two initial conditions with eight independent codes. The simulations are initialised with a narrowband perturbation such that instability growth is due to non-linear coupling/backscatter from the energetic modes, thus generating the lowest expected growth rate from a pure RMI. By independently assessing the results from each algorithm and computing ensemble averages of multiple algorithms, the results allow a quantification of key flow properties as well as the uncertainty due to differing numerical approaches. A new analytical model predicting the initial layer growth for a multimode narrowband perturbation is presented, along with two models for the linear and non-linear regimes combined. Overall, the growth rate exponent is determined as θ =0.292 ±0.009 , in good agreement with prior studies; however, the exponent is decaying slowly in time. Also, θ is shown to be relatively insensitive to the choice of mixing layer width measurements. The asymptotic integral molecular mixing measures Θ =0.792 ±0.014 , Ξ =0.800 ±0.014 , and Ψ =0.782 ±0.013 are lower than some experimental measurements but within the range of prior numerical studies. The flow field is shown to be persistently anisotropic for all algorithms, at the latest time having between 49% and 66% higher kinetic energy in the shock parallel direction compared to perpendicular and does not show any return to isotropy. The plane averaged volume fraction profiles at different time instants collapse reasonably well when scaled by the integral width, implying that the layer can be described by a single length scale and thus a single θ. Quantitative data given for both ensemble averages and individual algorithms provide useful benchmark results for future research.
A Proof of Friedman's Ergosphere Instability for Scalar Waves
NASA Astrophysics Data System (ADS)
Moschidis, Georgios
2018-03-01
Let {(M^{3+1},g)} be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion E and no future event horizon H}^{+. In Friedman (Commun Math Phys 63(3):243-255, 1978), Friedman observed that, on such spacetimes, there exist solutions φ to the wave equation \\squaregφ=0 such that their local energy does not decay to 0 as time increases. In addition, Friedman provided a heuristic argument that the energy of such solutions actually grows to +∞. In this paper, we provide a rigorous proof of Friedman's instability. Our setting is, in fact, more general. We consider smooth spacetimes {(M^{d+1},g)}, for any {d≥2}, not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary partial{E} of E on a small neighborhood of a point p\\inpartialE. This condition always holds if {(M,g)} is analytic in that neighborhood of p, but it can also be inferred in the case when {(M,g)} possesses a second Killing field {Φ} such that the span of {Φ} and the stationary Killing field T is timelike on partial{E}. We also allow the spacetimes {(M,g)} under consideration to possess a (possibly empty) future event horizon H}^{+, such that, however, {H+\\cap E=\\emptyset} (excluding, thus, the Kerr exterior family). As an application of our theorem, we infer an instability result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014). Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on the vector field method, of a Carleman-type estimate on the exterior of the ergoregion for a general class of stationary and asymptotically flat spacetimes. Applications of this estimate include a Morawetz-type bound for solutions φ of \\squaregφ=0 with frequency support bounded away from {{ω}=0} and {{ω}=±∞}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua, E-mail: nevin@mit.edu
2013-06-01
A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω {sub a} excites a pair of secondary waves of frequency ω {sub b} + ω {sub c} ≅ ω {sub a}. Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω {sub b} + ω {sub c} >> ω {sub a}. We show that a p-mode can couple so stronglymore » to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f {sub gw} ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f {sub gw} ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10{sup 10} K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously thought.« less
NASA Astrophysics Data System (ADS)
Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-07-01
We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the cylinder over one quasi-period of the slowly decaying response and find that vortex elongation is associated with a sign change of that measure, indicating that a reversal of the direction of energy transfer, with the cylinder ;leaking energy back; to the flow, is responsible for partial stabilization and elongation of the wake. We interpret these findings in terms of the spatial structure and energy distribution of the POD modes, and relate them to the mechanism of transient resonance capture into a slow invariant manifold of the fluid-structure interaction dynamics.
Dynamic of Langmuir and Ion-Sound Waves in Type 3 Solar Radio Sources
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Willes, A. J.; Cairns, I. H.
1993-01-01
The evolution of Langmuir and ion-sound waves in type 3 sources is investigated, incorporating linear growth, linear damping, and nonlinear electrostatic decay. Improved estimates are obtained for the wavenumber range of growing waves and the nonlinear coupling coefficient for the decay process. The resulting prediction for the electrostatic decay threshold is consistent with the observed high-field cutoff in the Langmuir field distribution. It is shown that the conditions in the solar wind do not allow a steady state to be attained; rather, bursty linear and nonlinear interactions take place, consistent with the highly inhomogeneous and impulsive waves actually observed. Nonlinear growth is found to be fast enough to saturate the growth of the parent Langmuir waves in the available interaction time. The resulting levels of product Langmuir and ion-sound waves are estimated theoretically and shown to be consistent with in situ ISEE 3 observations of type 3 events at 1 AU. Nonlinear interactions slave the growth and decay of product sound waves to that of the product Langmuir waves. The resulting probability distribution of ion-sound field strengths is predicted to have a flat tail extending to a high-field cutoff. This prediction is consistent with statistics derived here from ISEE 3 observations. Agreement is also found between the frequencies of the observed waves and predictions for the product S waves. The competing processes of nonlinear wave collapse and quasilinear relaxation are discussed, and it is concluded that neither is responsible for the saturation of Langmuir growth. When wave and beam inhomogeneities are accounted for, arguments from quasi-linear relaxation yield an upper bound on the Langmuir fields that is too high to be relevant. Nor are the criteria for direct wave collapse of the beam-driven waves met, consistent with earlier simulation results that imply that this process is not responsible for saturation of the beam instability. Indeed, even if the highest observed Langmuir fields are assumed to he part of a long-wavelength 'condensate' produced via electrostatic decay, they still fall short of the relevant requirements for wave collapse. The most stringent requirement for collapse is that collapsing wave packets not be disrupted by ambient density fluctuations in the solar wind. Fields of several mV m(exp -1) extending over several hundred km would be needed to satisfy this requirement; at 1 AU such fields are rare at best.
Surface protection coating material for controlling the decay of major construction stone
NASA Astrophysics Data System (ADS)
Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.
2017-05-01
Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.
Producing the deuteron in stars: anthropic limits on fundamental constants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Luke A.; Lewis, Geraint F., E-mail: luke.barnes@sydney.edu.au, E-mail: gfl@physics.usyd.edu.au
2017-07-01
Stellar nucleosynthesis proceeds via the deuteron (D), but only a small change in the fundamental constants of nature is required to unbind it. Here, we investigate the effect of altering the binding energy of the deuteron on proton burning in stars. We find that the most definitive boundary in parameter space that divides probably life-permitting universes from probably life-prohibiting ones is between a bound and unbound deuteron. Due to neutrino losses, a ball of gas will undergo rapid cooling or stabilization by electron degeneracy pressure before it can form a stable, nuclear reaction-sustaining star. We also consider a less-bound deuteron,more » which changes the energetics of the pp and pep reactions. The transition to endothermic pp and pep reactions, and the resulting beta-decay instability of the deuteron, do not seem to present catastrophic problems for life.« less
Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.
2000-01-01
The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.
NASA Astrophysics Data System (ADS)
Ješe, U.; Skotak, A.; Mikulašek, J.
2017-04-01
Reversible pump-turbines used in Pumped Storage Power Plants are among the most cost-efficient solutions for storing and recovering large amount of energy in short time. Presented paper is focused on the pump-turbine pumping mode part-load instabilities, among them the rotating stall and the cavitating vortex in the distributor region. Rotating stall can be described as a periodic occurrence and decay of the recirculation zones in the distributor with its own rotational characteristics frequency. Unstable behaviour can result in high radial forces, high pressure fluctuations and local velocity fluctuations that can in some cases lead into the occurrence of the cavitating vortex in the distributor region, even though the distributor is located in the high pressure region. Computationally demanding calculations have been performed using commercial CFD code. Analysed results have been compared to the experimental data obtained in the ČKD Blansko Engineering hydraulic laboratory.
Observation of Langmuir Cascade in Single Hot Spot Laser-Plasma Experiments
NASA Astrophysics Data System (ADS)
Johnson, R. P.; Montgomery, D. S.; Fernandez, J. C.; Focia, R. J.
2001-10-01
We present results from the sixth in a series of experiments designed to investigate the interaction of a single laser hot spot, or speckle, with a preformed, quasi-homogeneous plasma. The experiments were conducted at the Los Alamos National Laboratory (LANL) using the TRIDENT laser. Thomson scattering was used to probe plasma waves driven by stimulated Raman scattering (SRS) and structure was observed in the scattered spectra consistent with multiple steps of the Langmuir decay instability (LDI).(R. J. Focia et al., PSFC Report PSFC/JA-01-17, M.I.T.) The experimental setup is described. The Thomson scattered spectra, resolved in both wavelength versus time and wavelength versus wave vector (effectively ω vs. k), are well-correlated with measurements of the backscattered SRS light and calculations based on linear theory. Parameter regimes are identified in which the LDI cascade exists.
Resolving runaway electron distributions in space, time, and energy
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.
2018-05-01
Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.
Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity
NASA Technical Reports Server (NTRS)
Aharon, I.; Shaw, B. D.
1995-01-01
This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.
Theoretical study of optical pump process in solid gain medium based on four-energy-level model
NASA Astrophysics Data System (ADS)
Ma, Yongjun; Fan, Zhongwei; Zhang, Bin; Yu, Jin; Zhang, Hongbo
2018-04-01
A semiclassical algorithm is explored to a four-energy level model, aiming to find out the factors that affect the dynamics behavior during the pump process. The impacts of pump intensity Ω p , non-radiative transition rate γ 43 and decay rate of electric dipole δ 14 are discussed in detail. The calculation results show that large γ 43, small δ 14, and strong pumping Ω p are beneficial to the establishing of population inversion. Under strong pumping conditions, the entire pump process can be divided into four different phases, tentatively named far-from-equilibrium process, Rabi oscillation process, quasi dynamic equilibrium process and ‘equilibrium’ process. The Rabi oscillation can slow the pumping process and cause some instability. Moreover, the duration of the entire process is negatively related to Ω p and γ 43 whereas positively related to δ 14.
Density engineering of an oscillating soliton/vortex ring in a Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Levy, Shahar; Shomroni, Itay; Lahoud, Elias; Steinhauer, Jeff
2008-05-01
We study solitons in a Bose-Einstein condensate by engineering a density minimum on the healing length scale, using a far off-resonant laser beam. This results in a pair of counterpropagating solitons, which is the low collisional energy version of the celebrated matter wave interference pattern [M. R. Andrews et al., Science 275, 637 (1997)]. The solitons subsequently evolve into a pair of periodic soliton/vortex rings. We image the vortex rings and solitons in-situ on the healing length scale. This stable periodic evolution is in sharp contrast to the behavior of previous experiments in which the solitons decay irreversibly into vortex rings via the snake instability. The periodic oscillation between two qualitatively different forms seems to be a rare phenomenon in nature. We explain this phenomenon in terms of conservation of mass and energy in a narrow condensate.
NASA Technical Reports Server (NTRS)
Mather, John C.
2012-01-01
What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess experimentation would not be able to produce life elsewhere -- but we don't know for sure. And life went on to cause new Instabilities, constantly evolving, with living things in an extraordinary range of environments, changing the global environment, with boom-and-bust cycles. with predators for every kInd of prey, with criminals for every possible crime, with governments to prevent them, and instabilities of the governments themselves. One of the instabilities Is that humans demand new weapons and new products of all sort, leading to serious investments in science and technology. So the natural/human world of competition and combat is structured to lead to advanced weaponry and cell phones. So here we are In 2012, with people writing essays and wondering whether their descendents will be artificial life forms travelling back into space. And, pondering what are the origins of those forces of nature that give rise to everything. Verllnde has argued that gravitation, the one force that has so far resisted our efforts at a Quantum description, is not even a fundamental force, but is itself it a statistical force, like osmosis. What an amazing turn of events! But after all I've just said, I should not be surprised a bit.
Linear and nonlinear dynamo properties of time-dependent ABC flows
NASA Astrophysics Data System (ADS)
Brummell, N. H.; Cattaneo, F.; Tobias, S. M.
2001-04-01
The linear and nonlinear dynamo properties of a class of periodically forced flows is considered. The forcing functions are chosen to drive, in the absence of magnetic effects (kinematic regime), a time-dependent version of the ABC flow with A= B= C=1. The time-dependence consists of a harmonic displacement of the origin along the line x= y= z=1 with amplitude ɛ and frequency Ω. The finite-time Lyapunov exponents are computed for several values of ɛ and Ω. It is found that for values of these parameters near unity chaotic streamlines occupy most of the volume. In this parameter range, and for moderate kinetic and magnetic Reynolds numbers, the basic flow is both hydrodynamically and hydromagnetically unstable. However, the dynamo instability has a higher growth rate than the hydrodynamic one, so that the nonlinear regime can be reached with negligible departures from the basic ABC flow. In the nonlinear regime, two distinct classes of behaviour are observed. In one, the exponential growth of the magnetic field saturates and the dynamo settles to a stationary state whereby the magnetic energy is maintained indefinitely. In the other the velocity field evolves to a nondynamo state and the magnetic field, following an initial amplification, decays to zero. The transition from the dynamo to the nondynamo state can be mediated by the hydrodynamic instability or by magnetic perturbations. The properties of the ensuing nonlinear dynamo states are investigated for different parameter values. The implications for a general theory of nonlinear dynamos are discussed.
The Aeroacoustics of Supersonic Coaxial Jets
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
1994-01-01
Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.
NASA Astrophysics Data System (ADS)
Cohen, B. I.
2005-10-01
Two-dimensional simulations of stimulated Brillouin backscattering (SBBS) with the BZOHAR^1 code have been extended to include ion-ion collisions and spatial nonuniformity in the mean ion flow. BZOHAR hybrid simulations (particle-in-cell kinetic ions and Boltzmann fluid electrons) have shown^2 that SBBS saturation is dominated by ion trapping effects and secondary instability of the primary ion wave (decay into subharmonic ion waves and ion quasi-modes). Here we address the effects of ion collisions^3 on SBBS saturation and employ the efficient Langevin ion collision algorithm of Ref. 4 and the Fokker-Planck collision operator of Ref. 5. We also report simulations of SBBS with a linear gradient in the mean ion drift, which in conjunction with the nonlinear frequency shift due to ion trapping can introduce auto-resonance effects that may enhance reflectivities.^6 For SBBS in a high-gain limit with ion collisions or inhomogeneity, we find that ion trapping and secondary ion wave instabilities are robust saturation mechanisms. *Work performed for US DOE by UC LLNL under Contr. W-7405-ENG-48. ^1B.I. Cohen, et al., Phys. Plasmas 4, 956 (1997). ^2B.I. Cohen, et al., Phys. Plasmas, 12, 052703 (2005),. ^ 3P.W. Rambo, et al., Phys. Rev. Lett. 79, 83 (1997). ^ 4M.E. Jones, et al., J. Comp. Phys. 123, 169, (1996). ^ 5W. M. Manheimer, et al., J. Comp. Phys. 138, 563 (1997). ^ 6E.A. Williams, et al., Phys. Plasmas 11, 231 (2004).
Nanoscale Morphology Evolution Under Ion Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Michael J.
We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, andmore » upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.« less
NASA Astrophysics Data System (ADS)
Xiao, C. Z.; Zhuo, H. B.; Yin, Y.; Liu, Z. J.; Zheng, C. Y.; Zhao, Y.; He, X. T.
2018-02-01
Stimulated Raman sidescattering (SRSS) in inhomogeneous plasma is comprehensively revisited on both theoretical and numerical aspects due to the increasing concern of its detriments to inertial confinement fusion. Firstly, two linear mechanisms of finite beam width and collisional effects that could suppress SRSS are investigated theoretically. Thresholds for the eigenmode and wave packet in a finite-width beam are derived as a supplement to the theory proposed by Mostrom and Kaufman (1979 Phys. Rev. Lett. 42 644). Collisional absorption of SRSS is efficient at high-density plasma and high-Z material, otherwise, it allows emission of sidescattering. Secondly, we have performed the first three-dimensional particle-in-cell simulations in the context of SRSS to investigate its linear and nonlinear effects. Simulation results are qualitatively agreed with the linear theory. SRSS with the maximum growth gain is excited at various densities, grows to an amplitude that is comparable with the pump laser, and evolutes to lower densities with a large angle of emergence. Competitions between SRSS and other parametric instabilities such as stimulated Raman backscattering, two-plasmon decay, and stimulated Brillouin scattering are discussed. These interaction processes are determined by gains, occurrence sites, scattering geometries of each instability, and will affect subsequent evolutions. Nonlinear effects of self-focusing and azimuthal magnetic field generation are observed to be accompanied with SRSS. In addition, it is found that SRSS is insensitive to ion motion, collision (low-Z material), and electron temperature.
Simulation Analysis of Zero Mean Flow Edge Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Friedman, Brett Cory
I model, simulate, and analyze the turbulence in a particular experiment on the Large Plasma Device (LAPD) at UCLA. The experiment, conducted by Schaffner et al. [D. Schaffner et al., Phys. Rev. Lett. 109, 135002 (2012)], nulls out the intrinsic mean flow in LAPD by limiter biasing. The model that I use in the simulation is an electrostatic reduced Braginskii two-fluid model that describes the time evolution of density, electron temperature, electrostatic potential, and parallel electron velocity fluctuations in the edge region of LAPD. The spatial domain is annular, encompassing the radial coordinates over which a significant equilibrium density gradient exists. My model breaks the independent variables in the equations into time-independent equilibrium parts and time-dependent fluctuating parts, and I use experimentally obtained values as input for the equilibrium parts. After an initial exponential growth period due to a linear drift wave instability, the fluctuations saturate and the frequency and azimuthal wavenumber spectra become broadband with no visible coherent peaks, at which point the fluctuations become turbulent. The turbulence develops intermittent pressure and flow filamentary structures that grow and dissipate, but look much different than the unstable linear drift waves, primarily in the extremely long axial wavelengths that the filaments possess. An energy dynamics analysis that I derive reveals the mechanism that drives these structures. The long k|| ˜ 0 intermittent potential filaments convect equilibrium density across the equilibrium density gradient, setting up local density filaments. These density filaments, also with k || ˜ 0, produce azimuthal density gradients, which drive radially propagating secondary drift waves. These finite k|| drift waves nonlinearly couple to one another and reinforce the original convective filament, allowing the process to bootstrap itself. The growth of these structures is by nonlinear instability because they require a finite amplitude to start, and they require nonlinear terms in the equations to sustain their growth. The reason why k|| ˜ 0 structures can grow and support themselves in a dynamical system with no k|| = 0 linear instability is because the linear eigenmodes of the system are nonorthogonal. Nonorthogonal eigenmodes that individually decay under linear dynamics can transiently inject energy into the system, allowing for instability. The instability, however, can only occur when the fluctuations have a finite starting amplitude, and nonlinearities are available to mix energy among eigenmodes. Finally, I attempt to figure out how many effective degrees of freedom control the turbulence to determine whether it is stochastic or deterministic. Using two different methods - permutation entropy analysis by means of time delay trajectory reconstruction and Proper Orthogonal Decomposition - I determine that more than a few degrees of freedom, possibly even dozens or hundreds, are all active. The turbulence, while not stochastic, is not a manifestation of low-dimensional chaos - it is high-dimensional.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Shen, Shaohua
1998-01-01
In support of the wake vortex effect of the Terminal Area Productivity program, we have put forward four tasks to be accomplished in our proposal. The first task is validation of two-dimensional wake vortex-turbulence interaction. The second task is investigation of three-dimensional interaction between wake vortices and atmospheric boundary layer (ABL) turbulence. The third task is ABL studies. The, fourth task is addition of a Klemp-Durran condition at the top boundary for TASS model. The accomplishment of these tasks will increase our understanding of the dynamics of wake vortex and improve forecasting systems responsible for air safety and efficiency. The first two tasks include following three parts: (a) Determine significant length scale for vortex decay and transport, especially the length scales associated with the onset of Crow instability (Crow, 1970); (b) Study the effects of atmospheric turbulence on the decay of the wake vortices; and (c) Determine the relationships between decay rate, transport properties and atmospheric parameters based on large eddy simulation (LES) results and the observational data. These parameters may include turbulence kinetic energy, dissipation rate, wind shear and atmospheric stratification. The ABL studies cover LES modeling of turbulence structure within planetary boundary layer under transition and stable stratification conditions. Evidences have shown that the turbulence in the stable boundary layer can be highly intermittent and the length scales of eddies are very small compared to those in convective case. We proposed to develop a nesting grid mesh scheme and a modified Klemp-Durran conditions (Klemp and Wilhelmson, 1978) at the top boundary for TASS model to simulate planetary boundary layer under stable stratification conditions. During the past year, our group has made great efforts to carry out the above mentioned four tasks simultaneously. The work accomplished in the last year will be described in the next section.
New Observation of Wave Excitation and Inverse Cascade in the Foreshock Region
NASA Astrophysics Data System (ADS)
He, Jiansen; Duan, Die; Yan, Limei; Huang, Shiyong; Tu, Chuanyi; Marsch, Eckart; Wang, Linghua; Tian, Hui
2016-04-01
Foreshock with nascent plasma turbulence is regarded as a fascinating region to understand the basic plasma physical processes, e.g., wave-particle interactions as well as wave-wave couplings. Although there have been a bunch of intensive studies on this topic, some key clues about the chain of the physical processes still lacks from observations, e.g., the co-existence of upstream energetic particles as the free energy source, excited pump waves as the wave seed, inverse cascaded daughter waves, and scattered energetic particles as the end of nonlinear processes. A relatively comprehensive case study with some new observations is presented in this work. In our case, upstream energetic protons drifting at tens of Alfvén speed with respect to the background plasma protons is observed from 3DP/PESA-High onboard the WIND spacecraft. When looking at the wave magnetic activities, we are surprised to find the co-existence of high-frequency (0.1-0.5 Hz) large-amplitude right-hand polarized (RHP) waves and low-frequency (0.02-0.1 Hz) small-amplitude left-hand polarized (LHP) waves in the spacecraft (SC) frame. The anti-correlation between magnetic and velocity fluctuations along with the sunward magnetic field direction indicates the low-frequency LHP waves in the SC frame is in fact the sunward upstream RHP waves in the solar wind frame. This new observation lays solid foundation for the applicability of plasma non-resonance instability theory and inverse cascade theory to the foreshock region, in which the downstream high-frequency RHP pump waves are excited by the upstream reflected energetic protons through non-resonance instability and low-frequency RHP daughter waves are generated by the pump waves due to nonlinear parametric decay. The weak signal of alpha particle flux in the foreshock region concerned is also favorable to the occurrence of nonlinear decay process. Furthermore, enhanced downstream energetic proton fluxes are found and inferred to be scattered by the nascent turbulent fluctuations. Therefore, some key clues about the newborn turbulence in the foreshock are supplemented in this work. Nevertheless, the more complete scenario about the fundamental plasma physical processes in the foreshock is left for the newly launched MMS project and the proposed THOR mission.
On the interaction between turbulence and a planar rarefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Bryan M.
2014-04-01
The modeling of turbulence, whether it be numerical or analytical, is a difficult challenge. Turbulence is amenable to analysis with linear theory if it is subject to rapid distortions, i.e., motions occurring on a timescale that is short compared to the timescale for nonlinear interactions. Such an approach (referred to as rapid distortion theory) could prove useful for understanding aspects of astrophysical turbulence, which is often subject to rapid distortions, such as supernova explosions or the free-fall associated with gravitational instability. As a proof of principle, a particularly simple problem is considered here: the evolution of vorticity due to amore » planar rarefaction in an ideal gas. Analytical solutions are obtained for incompressive modes having a wave vector perpendicular to the distortion; as in the case of gradient-driven instabilities, these are the modes that couple most strongly to the mean flow. Vorticity can either grow or decay in the wake of a rarefaction front, and there are two competing effects that determine which outcome occurs: entropy fluctuations couple to the mean pressure gradient to produce vorticity via baroclinic effects, whereas vorticity is damped due to the conservation of angular momentum as the fluid expands. Whether vorticity grows or decays depends upon the ratio of entropic to vortical fluctuations at the location of the front; growth occurs if this ratio is of order unity or larger. In the limit of purely entropic fluctuations in the ambient fluid, a strong rarefaction generates vorticity with a turbulent Mach number on the order of the rms of the ambient entropy fluctuations. The analytical results are shown to compare well with results from two- and three-dimensional numerical simulations. Analytical solutions are also derived in the linear regime of Reynolds-averaged turbulence models. This highlights an inconsistency in standard turbulence models that prevents them from accurately capturing the physics of rarefaction-turbulence interaction. In addition to providing physical insight, the solutions derived here can be used to verify algorithms of both the Reynolds-averaged and direct numerical simulation variety. Finally, dimensional analysis of the equations indicates that rapid distortion of turbulence can give rise to two distinct regimes in the turbulent spectrum: a distortion range at large scales where linear distortion effects dominate, and an inertial range at small scales where nonlinear effects dominate.« less
NASA Astrophysics Data System (ADS)
Bernhardt, Paul; Selcher, Craig A.
High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
Squire, J.; Kunz, M. W.; Quataert, E.; ...
2017-10-12
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Kunz, M. W.; Quataert, E.
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-12-01
In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.
Obstructive sleep apnea alters sleep stage transition dynamics.
Bianchi, Matt T; Cash, Sydney S; Mietus, Joseph; Peng, Chung-Kang; Thomas, Robert
2010-06-28
Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity. We analyzed hypnograms from Sleep Heart Health Study (SHHS) participants using the following stage designations: wake after sleep onset (WASO), non-rapid eye movement (NREM) sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA), medical co-morbidities, or sleepiness (n = 374) with mild (n = 496) or severe OSA (n = 338). WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution. OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.
Mixing of passive tracers in the decay Batchelor regime of a channel flow
NASA Astrophysics Data System (ADS)
Jun, Yonggun; Steinberg, Victor
2010-12-01
We report detailed quantitative studies of passive scalar mixing in a curvilinear channel flow, where elastic turbulence in a dilute polymer solution of high molecular weight polyacrylamide in a high viscosity water-sugar solvent was achieved. For quantitative investigation of mixing, a detailed study of the profiles of mean longitudinal and radial components of the velocity in the channel as a function of Wi was carried out. Besides, a maximum of the average value as well as a rms of the longitudinal velocity was used to determine the threshold of the elastic instability in the channel flow. The rms of the radial derivatives of the longitudinal and radial velocity components was utilized to define the control parameters of the problem, the Weissenberg Wiloc and the Péclet Pe numbers. The main result of these studies is the quantitative test of the theoretical prediction about the value of the mixing length in the decay Batchelor regime. The experiment shows large quantitative discrepancy, more than 200 times in the value of the coefficient C, which appears in the theoretical expression for the mixing length, but with the predicted scaling relation. There are two possible reasons to this discrepancy. First is the assumption made in the theory about the δ-correlated velocity field, which is in odds with the experimental observations. Second, and probably a more relevant suggestion for the significantly increased mixing length and thus reduced mixing efficiency, is the observed jets, the rare, localized, and vigorous ejection of the scalar trapped near the wall, which protrudes into the peripheral region as well as the bulk. They are first found in the recent numerical calculations and then observed in the experiment reported. The jets definitely strongly reduce the mixing efficiency in particular in the peripheral region and so can lead to considerable increase of the mixing length. We hope that this result will initiate further numerical calculations of the mixing length. Finally, we analyze statistical properties of the mixing in the decay Batchelor regime by studying the power spectra, the decay exponents scaling, the structure functions of a tracer and moments of PDF of passive scalar increments, and the temporal and spatial correlation functions and find rather satisfactory agreement with theory.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
Stability and instability of Ellis and phantom wormholes: Are there ghosts?
NASA Astrophysics Data System (ADS)
Nandi, K. K.; Potapov, A. A.; Izmailov, R. N.; Tamang, A.; Evans, J. C.
2016-05-01
It is concluded in the literature that the Ellis wormhole is unstable under small perturbations and would either decay to the Schwarzschild black hole or expand away to infinity. While this deterministic conclusion of instability is correct, we show that the Ellis wormhole reduces to the Schwarzschild black hole only when the Ellis solution parameter γ assumes a complex value -i . We shall then reexamine the stability of Ellis and phantom wormholes from the viewpoint of local and asymptotic observers by using a completely different approach, viz., we adapt Tangherlini's nondeterministic, prequantal statistical simulation about photon motion in the real optical medium to an effective medium reformulation of motions obtained via Hamilton's optical-mechanical analogy in a gravity field. A crucial component of Tangherlini's idea is the observed increase of momentum of the photons entering a real medium. We show that this fact has a heuristic parallel in the effective medium version of the Pound-Rebka experiment in gravity. Our conclusion is that there is a nonzero probability that Ellis and phantom wormholes could appear stable or unstable depending on the location of observers and on the values of γ , leading to the possibility of ghost wormholes (like ghost stars). The Schwarzschild horizon, however, would always certainly appear to be stable (R =1 , T =0 ) to observers regardless of their location. Phantom wormholes of bounded mass in the extreme limit a →-1 are also shown to be stable just as the Schwarzschild black hole is. We shall propose a thought experiment showing that our nondeterministic results could be numerically translated into observable deterministic signatures of ghost wormholes.
Sumption, Natalia; Goodhead, Dudley T.; Anderson, Rhona M.
2015-01-01
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure. PMID:26252014
Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability
NASA Astrophysics Data System (ADS)
Zhao, Dan; Reyhanoglu, Mahmut
2014-08-01
Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.
Non-modal linear stability analysis of thin film spreading by Marangoni stresses
NASA Astrophysics Data System (ADS)
Fischer, Benjamin John
The spontaneous spreading and stability characteristics of a thin Newtonian liquid film partially coated by an insoluble surfactant monolayer are investigated in this thesis. Thin films sheared by Marangoni stresses ire characterized by film thinning in the upstream region near the terminating edge of the initial monolayer and an advancing ridge further downstream. For sufficiently thin films, experiments have shown there develops dendritic fingering patterns upstream of the ridge. To probe the mechanisms responsible for unstable flow, a non-modal linear stability analysis is required because the base-states describing these flows are space and time-dependent. A new measure of disturbance amplification is introduced, based on the relative kinetic energy of the perturbations to the base-states, to analyze surfactant monolayers spreading either from a finite or infinite source. These studies reveal that disturbance amplification is most significant in highly curved regions of the film characterized by a large: change in the shear stress, which can develop at the advancing ridge and at the edge of the initial monolayer. For spreading from both a finite and infinite source, disturbances that convect through the ridge undergo transient amplification but eventually decay to restore film stability. By contrast, disturbances that localize to the thinned region undergo sustained amplification when surfactant is continuously supplied to the liquid film thereby promoting film instability. By focusing on these susceptible regions, the relevant evolution equations are simplified to extract more information about the mechanism leading to instability. The length-scale controlling these "inner" regions represents the balance of viscous, capillary and Marangoni stresses. Simplification of these equations allows identification of steady travelling wave solutions whose linearized stability behavior shows that a flat film subject to a jump increase in shear stress is asymptotically unstable. This thesis concludes by comparing recent experiments in our laboratory of a droplet of low surface tension liquid (oleic acid) spreading on a thin Newtonian film (glycerol) before the onset of instability with numerical simulations. Similar power law behavior for the ridge advance and qualitatively similar film profiles shapes occur when the simulations utilize a non-linear equation of state for the surfactant monolayer.
NASA Astrophysics Data System (ADS)
Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael
2016-12-01
A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings.
2004-01-01
IL-1F7b, a novel homologue of the IL-1 (interleukin 1) family, was discovered by computational cloning. We demonstrated that IL-1F7b shares critical amino acid residues with IL-18 and binds to the IL-18-binding protein enhancing its ability to inhibit IL-18-induced interferon-γ. We also showed that low levels of IL-1F7b are constitutively present intracellularly in human blood monocytes. In this study, we demonstrate that similar to IL-18, both mRNA and intracellular protein expression of IL-1F7b are up-regulated by LPS (lipopolysaccharide) in human monocytes. In stable transfectants of murine RAW264.7 macrophage cells, there was no IL-1F7b protein expression despite a highly active CMV promoter. We found that IL-1F7b-specific mRNA was rapidly degraded in transfected cells, via a 3′-UTR (untranslated region)-independent control of IL-1F7b transcript stability. After LPS stimulation, there was a rapid transient increase in IL-1F7b-specific mRNA and concomitant protein levels. Using sequence alignment, we found a conserved ten-nucleotide homology box within the open reading frame of IL-F7b, which is flanking the coding region instability elements of some selective genes. In-frame deletion of downstream exon 5 from the full-length IL-1F7b cDNA markedly increased the levels of IL-1F7b mRNA. A similar coding region element is located in IL-18. When transfected into RAW264.7 macrophages, IL-18 mRNA was also unstable unless treated with LPS. These results indicate that both IL-1F7b and IL-18 mRNA contain functional instability determinants within their coding region, which influence mRNA decay as a novel mechanism to regulate the expression of IL-1 family members. PMID:15046617
Mode switching and linear stability analysis of resonant acoustic flows
NASA Astrophysics Data System (ADS)
Panickar, Praveen
Resonant acoustic flows occur in a wide variety of practical, aerospace-related applications and are a rich source of complex flow-physics. The primary concern associated with these types of flows is the high-amplitude fluctuating pressures associated with the resonant tones that could lead to sonic fatigue failure of sensitive components in the vicinity of such flows. However, before attempting to devise methods to suppress the resonant tones, it is imperative to understand the physics governing these flows in the hope that such an understanding will lead to more robust and effective suppression techniques. To this end, an in-depth study of various resonant acoustic flows was undertaken in this thesis, the main aim being to bring about a better understanding of such flows by revealing physically relevant information. Starting with the resonant acoustic mechanism in underexpanded jets from two-dimensional nozzles, it was shown that, for a variety of flow situations (geometries, shock-cell structures and orientations) in such jets, the nonlinear interaction density acted as a faithful precursor to a, hitherto unpredictable, spanwise instability mode switch. Following this, a study of the occurrence of, previously undocumented and theoretically unexpected, helical instabilities in subsonic impinging jets was undertaken. Using metrics from linear stability analysis, it was shown that the presence of the helical modes was justified. The results from this study on impinging jets are directly applicable to modern Stationary Take-Off and Vertical Landing (STOVL) aircraft that have twin, closely spaced exhausts. Finally, a novel technique that yielded dramatic suppression of resonant acoustic tones using high frequency excitation, in subsonic flows over open cavities, was investigated. Linear stability calculations of the experimentally measured baseline and excited velocity profiles showed that the instability of the high frequency excitation corresponded to a spatially decaying mode, which in turn lead to the resonance suppression associated with this mechanism. The experimental results showed good agreement with linear stability calculations for the measured mean velocity profiles. It is hoped that the work presented in this thesis will further the understanding of resonant acoustic flows and provide insights that can lead to better control techniques in the future.
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, H.; Ronning, F.; Hattori, T.
Here, we have used nuclear quadrupole resonance (NQR) to probe microscopically the response of a prototypical quantum critical metal CeCoIn 5 to substitutions of small amounts of Cd for In. Approximately half of the Cd substituents induce local Ce moments in their close proximity, as observed by site-dependent longitudinal nuclear spin relaxation rates 1/T 1. In order to reaffirm that localized f moments are induced around the Cd substituents, we find a Gaussian spin-echo decay rate 1/T 2G of transverse nuclear spin relaxation. Furthermore,more » $${T}_{1}T/{T}_{2\\text{G}}^{2}$$ for the NQR subpeak is found to be proportional to temperatures, again indicating local moments fluctuations around the Cd substituents, while that for the NQR main peak shows a T 0.7-dependence. The latter temperature dependence is close to 0.75 in pure CeCoIn 5 and indicates that the bulk electronic state is located close to a two dimensional quantum critical instability.« less
Tidal interactions of inspiraling compact binaries
NASA Technical Reports Server (NTRS)
Bildsten, Lars; Cutler, Curt
1992-01-01
We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.
The human cardiovascular system during space flight
NASA Astrophysics Data System (ADS)
Grigoriev, A. I.; Kotovskaya, A. R.; Fomina, G. A.
2011-05-01
Purpose of the work is to analyze and to summarize the data of investigations into human hemodynamics performed over 20 years aboard orbital stations Salyut-7 and Mir with participation of 26 cosmonauts on space flights (SF) from 8 to 438 days in duration. The ultrasonic techniques and occlusive plethysmography demonstrated dynamics of changes in the cardiovascular system during SF of various durations. The parameters of general hemodynamics, the pumping function of the heart and arterial circulation in the brain remained stable in all the space flights; however, there were alterations in peripheral circulation associated with blood redistribution and hypovolemie in microgravity. The anti-gravity distribution of the vascular tone decayed gradually as unneeded. The most considerable changes were observed in leg vessels, equally in arteries (decrease in resistance) and veins (increase in maximum capacity). The lower body negative pressure test (LBNP) revealed deterioration of the gravity-dependent reactions that changed for the worse as SF duration extended. The cardiovascular deconditioning showed itself as loss of descent acceleration tolerance and orthostatic instability in the postflight period.
Overview of Spontaneous Frequency Chirping in Confined Plasmas
NASA Astrophysics Data System (ADS)
Berk, Herbert
2012-10-01
Spontaneous rapid frequency chirping is now a commonly observed phenomenon in plasmas with an energetic particle component. These particles typically induce so called weak instabilities, where they excite background waves that the plasma can support such as shear Alfven waves. The explanation for this phenomenon attributes the frequency chirping to the formation of phase space structures in the form of holes and clumps. Normally a saturated mode, in the presence of background dissipation, would be expected decay after saturation as the background plasma absorbs the energy of the excited wave. However the phase space structures take an alternate route, and move to a regions of phase space that are lower energy states of the energetic particle distribution. Through the wave-resonant particle interaction, this movement is locked to the frequency observed by the wave. This phenomenon implies that alternate mechanisms for plasma relaxation need to be considered for plasma states new marginal stability. It is also possible that these chirping mechanisms can be used to advantage to externally control states of plasma.
Resolving runaway electron distributions in space, time, and energy
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...
2018-05-01
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
Resolving runaway electron distributions in space, time, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.
Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less
NASA Astrophysics Data System (ADS)
Ma, Xulin; He, Jie; Ge, Xuyang
2017-09-01
In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.
2014-06-15
We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less
Classical confinement and outward convection of impurity ions in the MST RFP
NASA Astrophysics Data System (ADS)
Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.
2012-05-01
Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.
NASA Astrophysics Data System (ADS)
Seiler, J. M.; Rameau, B.
Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.
On nonlinear Tollmien-Schlichting/vortex interaction in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Davis, Dominic A. R.; Smith, Frank T.
1993-01-01
The instability of an incompressible three-dimensional boundary layer (that is, one with cross-flow) is considered theoretically and computationally in the context of vortex/wave interactions. Specifically the work centers on two low amplitude, lower-branch Tollmien-Schlichting waves which mutually interact to induce a weak longitudinal vortex flow; the vortex motion, in turn, gives rise to significant wave-modulation via wall-shear forcing. The characteristic Reynolds number is taken as a large parameter and, as a consequence, the waves' and the vortex motion are governed primarily by triple-deck theory. The nonlinear interaction is captured by a viscous partial-differential system for the vortex coupled with a pair of amplitude equations for each wave pressure. Three distinct possibilities were found to emerge for the nonlinear behavior of the flow solution downstream - an algebraic finite-distance singularity, far downstream saturation or far-downstream wave-decay (leaving pure vortex flow) - depending on the input conditions, the wave angles, and the size of the cross-flow.
NASA Astrophysics Data System (ADS)
Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark
2016-09-01
The energetics of the atmosphere of the northern hemisphere of Mars during the pre-winter solstice period are explored using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation, with the quasi-geostrophic omega equation providing vertical velocities. Traveling waves are typically triggered by geopotential flux convergence. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a global-scale dust storm. During the non-GDS years, results agree with that of a previous study using a general circulation model simulation. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
Two-Plasmon Decay: Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.; Colombant, D.
2009-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other issues arising in the research toward inertial fusion energy. The relatively small KrF wavelength, according to widely used theories, raises the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments. By post-processing the results of the simulations we have designed experiments that have explored the use of simple threshold formulas (from developing theories) and help establish the soundness of our simulational approach. Turning to the targets proposed for ICF energy research, we have found that among the designs for the proposed Fusion Test Facility (Obenschain et al., Phys. Plasmas 13 056320 (2006)), are some that are below LPI thresholds. We have also studied high-gain KrF shock ignition designs and found that they are below LPI thresholds for most of the implosion, becoming susceptible to TPD only late in the pulse.
Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System
NASA Astrophysics Data System (ADS)
Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.
2010-11-01
NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.
Santangelo, Philip S; Reinhard, Iris; Koudela-Hamila, Susanne; Bohus, Martin; Holtmann, Jana; Eid, Michael; Ebner-Priemer, Ulrich W
2017-11-01
Borderline personality disorder (BPD) is defined by a pervasive pattern of instability. Although there is ample empirical evidence that unstable self-esteem is associated with a myriad of BPD-like symptoms, self-esteem instability and its temporal dynamics have received little empirical attention in patients with BPD. Even worse, the temporal interplay of affective instability and self-esteem instability has been neglected completely, although it has been hypothesized recently that the lack of specificity of affective instability in association with BPD might be explained by the highly intertwined temporal relationship between affective and self-esteem instability. To investigate self-esteem instability, its temporal interplay with affective instability, and its association with psychopathology, 60 patients with BPD and 60 healthy controls (HCs) completed electronic diaries for 4 consecutive days during their everyday lives. Participants reported their current self-esteem, valence, and tense arousal levels 12 times a day in approximately one-hr intervals. We used multiple state-of-the-art statistical techniques and graphical approaches to reveal patterns of instability, clarify group differences, and examine the temporal interplay of self-esteem instability and affective instability. As hypothesized, instability in both self-esteem and affect was clearly elevated in the patients with BPD. In addition, self-esteem instability and affective instability were highly correlated. Both types of instability were related to general psychopathology. Because self-esteem instability could not fully explain affective instability and vice versa and neither affective instability nor self-esteem instability was able to explain psychopathology completely, our findings suggest that these types of instability represent unique facets of BPD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Hall, Philip; Balakumar, P.
1990-01-01
A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time.
From degree-correlated to payoff-correlated activity for an optimal resolution of social dilemmas
NASA Astrophysics Data System (ADS)
Aleta, Alberto; Meloni, Sandro; Perc, Matjaž; Moreno, Yamir
2016-12-01
An active participation of players in evolutionary games depends on several factors, ranging from personal stakes to the properties of the interaction network. Diverse activity patterns thus have to be taken into account when studying the evolution of cooperation in social dilemmas. Here we study the weak prisoner's dilemma game, where the activity of each player is determined in a probabilistic manner either by its degree or by its payoff. While degree-correlated activity introduces cascading failures of cooperation that are particularly severe on scale-free networks with frequently inactive hubs, payoff-correlated activity provides a more nuanced activity profile, which ultimately hinders systemic breakdowns of cooperation. To determine optimal conditions for the evolution of cooperation, we introduce an exponential decay to payoff-correlated activity that determines how fast the activity of a player returns to its default state. We show that there exists an intermediate decay rate at which the resolution of the social dilemma is optimal. This can be explained by the emerging activity patterns of players, where the inactivity of hubs is compensated effectively by the increased activity of average-degree players, who through their collective influence in the network sustain a higher level of cooperation. The sudden drops in the fraction of cooperators observed with degree-correlated activity therefore vanish, and so does the need for the lengthy spatiotemporal reorganization of compact cooperative clusters. The absence of such asymmetric dynamic instabilities thus leads to an optimal resolution of social dilemmas, especially when the conditions for the evolution of cooperation are strongly adverse.
Neural field model to reconcile structure with function in primary visual cortex.
Rankin, James; Chavane, Frédéric
2017-10-01
Voltage-sensitive dye imaging experiments in primary visual cortex (V1) have shown that local, oriented visual stimuli elicit stable orientation-selective activation within the stimulus retinotopic footprint. The cortical activation dynamically extends far beyond the retinotopic footprint, but the peripheral spread stays non-selective-a surprising finding given a number of anatomo-functional studies showing the orientation specificity of long-range connections. Here we use a computational model to investigate this apparent discrepancy by studying the expected population response using known published anatomical constraints. The dynamics of input-driven localized states were simulated in a planar neural field model with multiple sub-populations encoding orientation. The realistic connectivity profile has parameters controlling the clustering of long-range connections and their orientation bias. We found substantial overlap between the anatomically relevant parameter range and a steep decay in orientation selective activation that is consistent with the imaging experiments. In this way our study reconciles the reported orientation bias of long-range connections with the functional expression of orientation selective neural activity. Our results demonstrate this sharp decay is contingent on three factors, that long-range connections are sufficiently diffuse, that the orientation bias of these connections is in an intermediate range (consistent with anatomy) and that excitation is sufficiently balanced by inhibition. Conversely, our modelling results predict that, for reduced inhibition strength, spurious orientation selective activation could be generated through long-range lateral connections. Furthermore, if the orientation bias of lateral connections is very strong, or if inhibition is particularly weak, the network operates close to an instability leading to unbounded cortical activation.
Crisis of the chaotic attractor of a climate model: a transfer operator approach
NASA Astrophysics Data System (ADS)
Tantet, Alexis; Lucarini, Valerio; Lunkeit, Frank; Dijkstra, Henk A.
2018-05-01
The destruction of a chaotic attractor leading to rough changes in the dynamics of a dynamical system is studied. Local bifurcations are known to be characterised by a single or a pair of characteristic exponents crossing the imaginary axis. As a result, the approach of such bifurcations in the presence of noise can be inferred from the slowing down of the decay of correlations (Held and Kleinen 2004 Geophys. Res. Lett. 31 1–4). On the other hand, little is known about global bifurcations involving high-dimensional attractors with several positive Lyapunov exponents. It is known that the global stability of chaotic attractors may be characterised by the spectral properties of the Koopman (Mauroy and Mezić 2016 IEEE Trans. Autom. Control 61 3356–69) or the transfer operators governing the evolution of statistical ensembles. Accordingly, it has recently been shown (Tantet 2017 J. Stat. Phys. 1–33) that a boundary crisis in the Lorenz flow coincides with the approach to the unit circle of the eigenvalues of these operators associated with motions about the attractor, the stable resonances. A second class of resonances, the unstable resonances, are responsible for the decay of correlations and mixing on the attractor. In the deterministic case, these cannot be expected to be affected by general boundary crises. Here, however, we give an example of a chaotic system in which slowing down of the decay of correlations of some observables does occur at the approach of a boundary crisis. The system considered is a high-dimensional, chaotic climate model of physical relevance. Moreover, coarse-grained approximations of the transfer operators on a reduced space, constructed from a long time series of the system, give evidence that this behaviour is due to the approach of unstable resonances to the unit circle. That the unstable resonances are affected by the crisis can be physically understood from the fact that the process responsible for the instability, the ice-albedo feedback, is also active on the attractor. Finally, we discuss implications regarding response theory and the design of early-warning signals.
Dispersion of ferrofluid aggregates in steady flows
NASA Astrophysics Data System (ADS)
Williams, Alicia M.; Vlachos, Pavlos P.
2011-12-01
Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 × 105 and 2.4 × 105 A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number following a power law curve and can be scaled for different magnetic fields using the magnetic induction at the inner wall of the vessel. In addition, the decay rate of the ferrofluid is shown to be proportional to the wall shear rate. Finally, a dimensionless parameter, which scales the inertia-driven flow pressures, relative to the applied magnetic pressures, reveals a power law decay relationship with respect to the incident bulk flow.
Intermittency and Topology of Shock Induced Mixing
NASA Astrophysics Data System (ADS)
Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa
2016-04-01
The advance of a Rayleigh-Taylor front is described in Linden & Redondo (1991),[1-3] and may be shown to follow a quadratic law in time where the width of the growing region of instability depends on the local mixing efficiency of the different density fluids that accelerate against each other g is the acceleration and A is the Atwood number defined as the diference of densities divided by their sum. This results show the independence of the large amplitude structures on the initial conditions the width of the mixing region depends also on the intermittency of the turbulence. Then dimensional analysis may also depend on the relevant reduced acceleration driven time and the molecular reactive time akin to Damkholer number and the fractal structure of the contact zone [2,4]. Detailed experiments and simulations on RT and RM shock induced fronts analized with respect to structure functions are able to determine which mechanisms are most effective in local mixing which increase the effective fractal dimension, as well as the effect of higher order geometrical parameters, such as the structure functions, in non-homogeneous fluids (Mahjoub et al 1998)[5]. The structure of a Mixing blob shows a relatively sharp head with most of the mixing taking place at the sides due to what seems to be shear instability very similar to the Kelvin-Helmholtz instabilities, but with sideways accelerations. The formation of the blobs and spikes with their secondary instabilities produces a turbulent cascade, evident just after about 1 non-dimensional time unit, from a virtual time origin that takes into account the linear growth phase, as can be seen by the growth of the fractal dimension for different volume fractions. Two-dimensional cuts of the 3D flow also show that vortex flows have closed or spiral streamlines around their core. Examples of such flows can be also seen in the laboratory, for example at the interface of atwo-layer stratified fluid in a tank in which case streamlines are more regular. Mixing in turbulent flows remains less well understood, and in spite research some basic problems are still virtually unexplored. Th e indications suggest that mixing in non-decaying and accelerating turbulent flows are different from those in vortical and steady flows. Fluid element pairs separate, neither linearly nor exponentially but according to a generalized intermittent Richardson's law. Fractal analysis in the laboratory shows that fluid element pairs travel close to each other for a long time until they separate quite suddenly suggest that straining regions around hyperbolic points play an important role in the violent turbulent stirring and in the mechanisms by which turbulence causes fluid element pairs to move apart [6,7]. So the eddies that are most effective in separating fluid elements are those that have a size comparable to the instantaneous separation between the two fluid elements. This is seen in both RT and RM instabilities. For a constant acceleration, the RT instability is found to grow self -similarly according to mixing coefficients which when measured over a comprehensive range of density ratio (Atwood nubers)show that the results are found applicable to supernova exlposions.For an impulsive acceleration (RM), there are two components. The RM impulse from a shock is greatly reduced at high Mach number due to compressive effects in reasonable agreement with linear theory. The ensuing motion is essentially incompressible and described by a power law However, the exponents obtained from the compressible RM experiments are larger than those obtained from incompressible RT experiments. The discrepancy is not well understood but intermittency differences could explain the role of compressibility in fractal media. [1] Linden P.F., Redondo J.M. and Youngs D. (1994) Molecular mixing in Rayleigh-Taylor Instability. Jour. Fluid Mech. 265, 97-124. [2] Redondo, J.M., 1990. The structure of density interfaces. Ph.D. Thesis. DAMTP, University of Cambridge. Cambridge [3] Redondo J.M. (1996) Vertical microstructure and mixing in stratified flows. Advances in Turbulence VI. Eds. S. Gavrilakis et al. 605-608. [4] Redondo J.M.,M.A. Sanchez y R. Castilla (2000) Vortical structures in stratified turbulent flows, Turbulent diffusion in the environment. Eds. Redondo J.M. and Babiano A. 113-120. [5] Mahjoub, O. B., Babiano A. and Redondo, J. M.: Structure functions in complex flows, Flow, Turbulence and Combustion, 59,299-313, 1998. [6] Malik, N.A. Vassilicos, J.C. 1999 A Lagrangian model of turbulent dispersion with turbulent-like flow structure: comparison with direct numerical simulation for two-particle statistics. Phys. Fluids, 11, 1572-1580. [7] Fung, J.C.H., Hunt, J.C.R., Malik, N.A. and Perkins, R.J.(1992. Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech.236-281. [8] Tarquis, A. M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M., & Redondo, J. M. (2014). Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlinear Processes in Geophysics, 21(2), 439-450. [9] Fraunie, P., Berreba, S., Chashechkin, Y. D., Velasco, D., & Redondo, J. M. (2008). Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows. Nuovo Cimento C, 31, 909-930.
Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts
NASA Astrophysics Data System (ADS)
Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang
2017-05-01
Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.
NASA Astrophysics Data System (ADS)
Gizzi, Fabrizio; Leucci, Giovanni; Masini, Nicola; Persico, Raffaele; Quarta, Giovanni
2015-04-01
The paper shows the results of a diagnostics survey, based on the ground penetrating radar (GPR), seismic tomography and microtremor horizontal-to-vertical ratio (HVSR) method, to understand the causes of some static instability problems affecting the Church of San Francesco della Scarpa in Lecce (Apulia region, Southern Italy). The prospecting falls within the more general framework of a diagnostic investigation campaign for the restoration of the monument. This study case points out the great effectiveness of the employed diagnostic methods, when used in an integrated way, for detecting cracks and inhomogeneities in the inner structure of masonry building elements [1-2]. With regard to GPR prospecting, in order to better evidence the micro-fracture, a new algorithm, based on a clutter removal technique, has been used. In particular, it removes various unwanted signals such as cross talk, initial ground reflection and antenna ringing. Moreover, seismic tomographies provided complementary information on the mediocre state of conservation of some load bearing structures of the church. Finally, HVSR method allowed to study the relationship between decay patterns, instability problems and seismic response of the monument. Reference [1] Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08. [2] Calia A., Leucci G., Masini N., Matera L., Persico R., Sileo M., 2012. Integrated prospecting in the Crypt of the Basilica of Saint Nicholas in Bari, Italy. Journal of Geophysics and Engineering, 9(3), 271-281, doi:10.1088/1742-2132/9/3/271.
Double-Diffusive Finger Convection: Flow Field Evolution in a Hele-Shaw Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
COOPER,CLAY A.; GLASS JR.,ROBERT J.; TYLER,SCOTT W.
Double-diffusive finger convection is a hydrodynamic instability that can occur when two components with different diffusivities are oppositely stratified with respect to the fluid density gradient as a critical condition is exceeded. Laboratory experiments were designed using sodium chloride and sucrose solutions in a Hele-Shaw cell. A high resolution, full field, light transmission technique was used to study the development of the instability. The initial buoyancy ratio (R{sub p}), which is a ratio of fluid density contributions by the two solutes, was varied systematically in the experiments so that the range of parameter space spanned conditions that were nearly stablemore » (R{sub p} = 2.8) to those that were moderately unstable (R{sub p} = 1.4). In systems of low R{sub p}, fingers develop within several minutes, merge with adjacent fingers, form conduits, and stall before newer-generated fingers travel through the conduits and continue the process. Solute fluxes in low R{sub p} systems quickly reach steady state and are on the order of 10{sup {minus}6} m{sup 2} sec{sup {minus}1}. In the higher R{sub p} experiments, fingers are slower to evolve and do not interact as dynamically as in the lower R{sub p} systems. Our experiment with initial R{sub p} = 2.8 exhibited flux on the order of that expected for a similar diffusive system (i.e., 10{sup {minus}7} m{sup 2} sec{sup {minus}1}), although the structures were very different than the pattern of transport expected in a diffusing system. Mass flux decayed as t{sup 1/2} in two experiments each with initial R{sub p} = 2.4 and 2.8.« less
The disappearance and reformation of the accretion disc during a low state of FO Aquarii
NASA Astrophysics Data System (ADS)
Hameury, J.-M.; Lasota, J.-P.
2017-09-01
Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.
Large-scale dynamos in rapidly rotating plane layer convection
NASA Astrophysics Data System (ADS)
Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.
2018-05-01
Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.
Interaction of vortex ring with a stratified finite thickness interface
NASA Astrophysics Data System (ADS)
Advaith, S.; Manu, K. V.; Tinaikar, Aashay; Chetia, Utpal Kumar; Basu, Saptarshi
2017-09-01
This work experimentally investigates the dynamics of interaction between a propagating vortex ring and density stratified interface of finite thickness. The flow evolution has been quantified using a high speed shadowgraph technique and particle image velocimetry. The spatial and temporal behaviours of the vortex in the near and far field of the interface and the plume structure formed due to buoyancy are investigated systematically by varying the vortex strength (Reynolds number, Re) and the degree of stratification (Atwood number, At). Maximum penetration length (Lpmax) of the vortex ring through the interface is measured over a range of Reynolds (1350 ≤ Re ≤ 4600) and Richardson (0.1 ≤ Ri ≤ 4) numbers. It is found that for low Froude number values, the maximum penetration length varies linearly with the Froude number as in the study of Orlandi et al. ["Vortex rings descending in a stratified fluid," Phys. Fluids 10, 2819-2827 (1998)]. However, for high Reynolds and Richardson numbers (Ri), anomalous behaviour in maximum penetration is observed. The Lpmax value is used to characterize the vortex-interface interactions into non-penetrative, partially-penetrative, and extensively penetrative regimes. Flow visualization revealed the occurrence of short-wavelength instability of a plume structure, particularly in a partially penetrative regime. Fluid motion exhibits chaotic behaviour in an extensively penetrative regime. Detailed analyses of plume structure propagation are performed by measuring the plume length and plume rise. Appropriate scaling for the plume length and plume rise is derived, which allows universal collapse of the data for different flow conditions. Some information concerning the instability of the plume structure and decay of the vortex ring is obtained using proper orthogonal decomposition.
Jeans instability in a universe with dissipation
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Richarte, Martín G.; Teston, Felipe
2018-01-01
The problem of Jeans gravitational instability is investigated for static and expanding universes within the context of the five and thirteen field theories which account for viscous and thermal effects. For the five-field theory a general dispersion relation has been derived with the help of relevant linearized perturbation equations, showing that the shear viscosity parameter alters the propagating modes for large and small wavelengths. The behavior of density and temperature contrasts are analyzed for the hard-sphere model in detail. In the small wavelengths regime, increasing the amount of shear viscosity into the system forces the harmonic perturbations to damp faster, however, in the opposite limit larger values of shear viscosity lead to smaller values of density and temperature contrasts. We also consider the hyperbolic case associated with the thirteen-field theory which involves two related parameters, namely the shear viscosity and the collision frequency, the last one is due to the production terms which appear in the Grad method. The dispersion relation becomes a polynomial in the frequency with two orders higher in relation to the five-field theory, indicating that the effects associated with the shear viscosity and heat flux are nontrivial. The profile of Jeans mass in terms of the temperature and number density is explored by contrasting with several data of molecular clouds. Regarding the dynamical evolution of the density, temperature, stress and heat flux contrasts for a universe dominated by pressureless matter, we obtain also damped harmonic waves for small wavelengths. In the case of large wavelengths, the density and temperature contrasts grow with time (due to the Jeans mechanism) while the stress and heat flux contrasts heavily decay with time. For an expanding universe, the Jeans mass and Jeans length are obtained and their physical consequences are explored.
Cooling Requirements for the Vertical Shear Instability in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Lin, Min-Kai; Youdin, Andrew N.
2015-09-01
The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disk’s orbital motion, but must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale tc needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with {t}{{c}}\\lt {{{Ω }}}{{K}}-1h| q| /(γ -1) in terms of the Keplerian orbital frequency, {{{Ω }}}{{K}}, the disk’s aspect-ratio, h\\ll 1, the radial power-law temperature gradient, q, and the adiabatic index, γ. For longer tc, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where tc is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from ∼5 to ∼50 AU with a characteristic growth time of ∼30 local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.
Yuuki, Arata; Muneta, Takeshi; Ohara, Toshiyuki; Sekiya, Ichiro; Koga, Hideyuki
2017-03-01
Associations of lateral/medial knee instability with anterior cruciate ligament (ACL) injury have not been thoroughly investigated. The purposes of this study were to investigate whether lateral/medial knee instability is associated with ACL injury, and to clarify relevant factors for lateral/medial knee instability in ACL-injured knees. One hundred and nineteen patients with unilateral ACL-injured knees were included. Lateral/medial knee instability was assessed with varus/valgus stress X-ray examination for both injured and uninjured knees by measuring varus/valgus angle, lateral/medial joint opening, and lateral/medial joint opening index. Manual knee instability tests for ACL were evaluated to investigate associations between lateral/medial knee instability and anterior and/or rotational instabilities. Patients' backgrounds were evaluated to identify relevant factors for lateral/medial knee instability. Damage on the lateral collateral ligament (LCL) on MRI was also evaluated. All parameters regarding lateral knee instability in injured knees were significantly greater than in uninjured knees. There were significant correlations between lateral knee instability and the Lachman test as well as the pivot shift test. Patients with LCL damage had significantly greater lateral joint opening than those without LCL damage on MRI. Sensitivity of LCL damage on MRI to lateral joint opening was 100%, while its specificity was 36%. No other relevant factors were identified. In medial knee instability, there were also correlations between medial knee instability and the Lachman test/pivot shift test. However, the correlations were weak and other parameters were not significant. Lateral knee instability was greater in ACL-deficient knees than in uninjured knees. Lateral knee instability was associated with ACL-related instabilities as well as LCL damage on MRI, whereas MRI had low specificity to lateral knee instability. On the other hand, the association of medial knee instability on ACL-related instability was less than that of lateral knee instability. Level IV, case series with no comparison group. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Numerical MHD study for plasmoid instability in uniform resistivity
NASA Astrophysics Data System (ADS)
Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji
2017-11-01
The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.
Nonlinear Waves, Instabilities and Singularities in Plasma and Hydrodynamics
NASA Astrophysics Data System (ADS)
Silantyev, Denis Albertovich
Nonlinear effects are present in almost every area of science as soon as one tries to go beyond the first order approximation. In particular, nonlinear waves emerge in such areas as hydrodynamics, nonlinear optics, plasma physics, quantum physics, etc. The results of this work are related to nonlinear waves in two areas, plasma physics and hydrodynamics, united by concepts of instability, singularity and advanced numerical methods used for their investigation. The first part of this work concentrates on Langmuir wave filamentation instability in the kinetic regime of plasma. In Internal Confinement Fusion Experiments (ICF) at National Ignition Facility (NIF), where attempts are made to achieve fusion by compressing a small target by many powerful lasers to extremely high temperatures and pressures, plasma is created in the first moments of the laser reaching the target and undergoes complicated dynamics. Some of the most challenging difficulties arise from various plasma instabilities that occur due to interaction of the laser beam and a plasma surrounding the target. In this work we consider one of such instabilities that describes a decay of nonlinear plasma wave, initially excited due to interaction of the laser beam with the plasma, into many filaments in direction perpendicular to the laser beam, therefore named Langmuir filamentation instability. This instability occurs in the kinetic regime of plasma, klambda D > 0.2, where k is the wavenumber and lambda D is the Debye length. The filamentation of Langmuir waves in turn leads to the saturation of the stimulated Raman scattering (SRS) in laser-plasma interaction experiments which plays an essential role in ICF experiments. The challenging part of this work was that unlike in hydrodynamics we needed to use fully kinetic description of plasma to capture the physics in question properly, meaning that we needed to consider the distribution function of charged particles and its evolution in time not only with respect to spatial coordinates but with respect to velocities as well. To study Langmuir filamentation instability in its simplest form we performed 2D+2V numerical simulations. Taking into account that the distribution function in question was 4-dimensional function, making these simulation quite challenging, we developed an efficient numerical method making these simulations possible on modern desktop computers. Using the developed numerical method we studied how Langmuir wave filamentation instability depends on the parameters of the Langmuir wave such as wave length and amplitude that are relevant to ICF experiments. We considered several types of Langmuir waves, including nonlinear Langmuir waves exited by external electric field as well as an idealized approximation of such Langmuir waves by a particular family of Bernstein-Greene-Kruskal (BGK) modes that bifurcates from the linear Langmuir wave. The results of these simulations were compared to the theoretical predictions in our recent papers. An alternative approach to overcome computational difficulty of this problem was considered by our research group in Ref. It involves reducing the number of transverse direction in the model therefore lowering computational difficulty at a cost of lesser accuracy of the model. The second part of this work concentrates on 2D free surface hydrodynamics and in particular on computing Stokes waves with high-precision using conformal maps and spectral methods. Stokes waves are fully nonlinear periodic gravity waves propagating with the constant velocity on a free surface of two-dimensional potential flow of the ideal incompressible fluid of infinite depth. The increase of the scaled wave height H/lambda, where H is the wave height and lambda is the wavelength, from H/lambda = 0 to the critical value Hmax/lambda marks the transition from almost linear wave to a strongly nonlinear limiting Stokes wave. The Stokes wave of the greatest height H = Hmax has an angle of 120° at the crest. To obtain Stokes wave fully nonlinear Euler equations describing the flow can be reformulated in terms of conformal map of the fluid domain into the complex lower half-plane, with fluid free surface mapped into the real line. This description is convenient for analysis and numerical simulations since the whole problem is then reduced to a single nonlinear equation on the real line. Having computed solutions on the real line we extend them to the rest of the complex plane to analyze the singularities above real line. The distance vc from the closest singularity in the upper half-plane to the real line goes to zero as we approach the limiting Stokes wave with maximum hight Hmax/lambda, which is the reason for the widening of the solution's Fourier spectrum. (Abstract shortened by ProQuest.).
Electrothermal instability growth in magnetically driven pulsed power liners
NASA Astrophysics Data System (ADS)
Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles
2012-09-01
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.
Modelling of NSTX hot vertical displacement events using M 3 D -C 1
NASA Astrophysics Data System (ADS)
Pfefferlé, D.; Ferraro, N.; Jardin, S. C.; Krebs, I.; Bhattacharjee, A.
2018-05-01
The main results of an intense vertical displacement event (VDE) modelling activity using the implicit 3D extended MHD code M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers. The break-up of flux-surfaces results in a progressive stochastisation of field-lines precipitating the thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large currents in the halo region and the wall. Analysis of normal currents flowing in and out of the divertor plate reveals rich time-varying patterns.
Turbulent swirling jets with excitation
NASA Technical Reports Server (NTRS)
Taghavi, Rahmat; Farokhi, Saeed
1988-01-01
An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.
On the Factors Determining the Eruptive Character of Solar Flares
NASA Astrophysics Data System (ADS)
Baumgartner, Christian; Thalmann, Julia K.; Veronig, Astrid M.
2018-02-01
We investigated how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs. We analyzed 44 flares of GOES class M5.0 and larger that occurred during 2011–2015. We used 3D potential magnetic field models to study their location (using the flare distance from the flux-weighted AR center d FC) and the strength of the magnetic field in the corona above (via decay index n and flux ratio). We also present a first systematic study of the orientation of the coronal magnetic field, using the orientation φ of the flare-relevant polarity inversion line as a measure. We analyzed all quantities with respect to the size of the underlying dipole field, characterized by the distance between the opposite-polarity centers, d PC. Flares originating from underneath the AR dipole (d FC/d PC < 0.5) tend to be eruptive if launched from compact ARs (d PC ≤ 60 Mm) and confined if launched from extended ARs. Flares ejected from the periphery of ARs (d FC/d PC > 0.5) are predominantly eruptive. In confined events, the flare-relevant field adjusts its orientation quickly to that of the underlying dipole with height (Δφ ≳ 40° until the apex of the dipole field), in contrast to eruptive events where it changes more slowly with height. The critical height for torus instability, h crit = h(n = 1.5), discriminates best between confined (h crit ≳ 40 Mm) and eruptive flares (h crit ≲ 40 Mm). It discriminates better than Δφ, implying that the decay of the confining field plays a stronger role than its orientation at different heights.
Axisymmetric Shearing Box Models of Magnetized Disks
NASA Astrophysics Data System (ADS)
Guan, Xiaoyue; Gammie, Charles F.
2008-01-01
The local model, or shearing box, has proven a useful model for studying the dynamics of astrophysical disks. Here we consider the evolution of magnetohydrodynamic (MHD) turbulence in an axisymmetric local model in order to evaluate the limitations of global axisymmetric models. An exploration of the model parameter space shows the following: (1) The magnetic energy and α-decay approximately exponentially after an initial burst of turbulence. For our code, HAM, the decay time τ propto Res , where Res/2 is the number of zones per scale height. (2) In the initial burst of turbulence the magnetic energy is amplified by a factor proportional to Res3/4λR, where λR is the radial scale of the initial field. This scaling applies only if the most unstable wavelength of the magnetorotational instability is resolved and the final field is subthermal. (3) The shearing box is a resonant cavity and in linear theory exhibits a discrete set of compressive modes. These modes are excited by the MHD turbulence and are visible as quasi-periodic oscillations (QPOs) in temporal power spectra of fluid variables at low spatial resolution. At high resolution the QPOs are hidden by a noise continuum. (4) In axisymmetry disk turbulence is local. The correlation function of the turbulence is limited in radial extent, and the peak magnetic energy density is independent of the radial extent of the box LR for LR > 2H. (5) Similar results are obtained for the HAM, ZEUS, and ATHENA codes; ATHENA has an effective resolution that is nearly double that of HAM and ZEUS. (6) Similar results are obtained for 2D and 3D runs at similar resolution, but only for particular choices of the initial field strength and radial scale of the initial magnetic field.
Mechanical properties of metal dihydrides
Schultz, Peter A.; Snow, Clark S.
2016-02-04
First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less
Wave Energetics of the Atmosphere of Mars
NASA Astrophysics Data System (ADS)
Battalio, Joseph Michael
A comprehensive assessment of the energetics of transient waves is presented for the atmosphere of Mars using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. Each hemisphere is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for each of the three Mars years available. Northern hemisphere fall and spring eddy energetics is similar with some inter-annual and inter-seasonal variability, but winter eddy kinetic energy and its transport are strongly reduced in intensity as a result of the winter solstitial pause in wave activity. Barotropic energy conversion acts as a sink of eddy kinetic energy throughout each year with little reduction in amplitude during the solstitial pause. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter period as a result of the stabilized vertical temperature profile around winter solstice. Traveling waves are typically triggered by geopotential flux convergence. Individual waves decay through a combination of barotropic conversion of the kinetic energy from the waves to the mean flow, geopotential flux divergence, and dissipation. The southern hemisphere energetics is similar to the northern hemisphere in timing, but wave energetics is much weaker as a result of the high and zonally asymmetric topography. The effect of dust on baroclinic instability is examined by comparing a year with a global-scale dust storm (GDS) to two years without a GDS. In the GDS year, waves develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Though the total amount of eddy kinetic energy generated by baroclinic energy conversion is lower during the GDS year, the maximum eddy intensity is not diminished. Instead, the number of intense eddies is reduced by about 50%.
NASA Astrophysics Data System (ADS)
Sarkar, Ranadeep; Srivastava, Nandita
2018-02-01
We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.
Boundary layer transition studies
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1995-01-01
A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Hopkins, Philip F.
2018-04-01
We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.
Simulations relevant to the beam instability in the foreshock
NASA Technical Reports Server (NTRS)
Cairns, I. H.; Nishikawa, K.-I.
1989-01-01
The results presently obtained from two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions are noted to be consistent with recent suggestions that electrons backstreaming into earth's foreshock have steep-sided cutoff distributions, which are initially unstable to the reactive instability, and that the back-reaction to the wave growth causes the instability to pass into its kinetic phase. It is demonstrated that the reactive instability is a bunching instability, and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.
NASA Astrophysics Data System (ADS)
Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael
2017-04-01
A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Centre (DFD) of the German Aerospace Centre (DLR) at Oberpfaffenhofen (48.09 ° N, 11.28 ° E), Germany. The spatial resolution of the instrument is 17 m/pixel in zenith direction with a field of view (FOV) of 11.1 km x 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 ° and 0 °) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the Maximum Entropy Method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4th to 5th April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM airglow imager provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings. Parts of this research received funding from the Bavarian State Ministry of the Environment and Consumer Protection.
On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea
NASA Astrophysics Data System (ADS)
Bashmachnikov, I. L.; Sokolovskiy, M. A.; Belonenko, T. V.; Volkov, D. L.; Isachsen, P. E.; Carton, X.
2017-10-01
The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal decreases in amplitude while the radius increases by as much as 25-30% relative to the values in the core. Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard configurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography. The QG results show a number of common features with those of the primitive equation model. Thus, among the azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of perturbations, only 10-30% volume loss during the same period is detected. Taking into account the gently sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of development of instability close to that in the primitive equation model. Some remaining differences in the two models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.
Transition of unsteady velocity profiles with reverse flow
NASA Astrophysics Data System (ADS)
Das, Debopam; Arakeri, Jaywant H.
1998-11-01
This paper deals with the stability and transition to turbulence of wall-bounded unsteady velocity profiles with reverse flow. Such flows occur, for example, during unsteady boundary layer separation and in oscillating pipe flow. The main focus is on results from experiments in time-developing flow in a long pipe, which is decelerated rapidly. The flow is generated by the controlled motion of a piston. We obtain analytical solutions for laminar flow in the pipe and in a two-dimensional channel for arbitrary piston motions. By changing the piston speed and the length of piston travel we cover a range of values of Reynolds number and boundary layer thickness. The velocity profiles during the decay of the flow are unsteady with reverse flow near the wall, and are highly unstable due to their inflectional nature. In the pipe, we observe from flow visualization that the flow becomes unstable with the formation of what appears to be a helical vortex. The wavelength of the instability [simeq R: similar, equals]3[delta] where [delta] is the average boundary layer thickness, the average being taken over the time the flow is unstable. The time of formation of the vortices scales with the average convective time scale and is [simeq R: similar, equals]39/([Delta]u/[delta]), where [Delta]u=(umax[minus sign]umin) and umax, umin and [delta] are the maximum velocity, minimum velocity and boundary layer thickness respectively at each instant of time. The time to transition to turbulence is [simeq R: similar, equals]33/([Delta]u/[delta]). Quasi-steady linear stability analysis of the velocity profiles brings out two important results. First that the stability characteristics of velocity profiles with reverse flow near the wall collapse when scaled with the above variables. Second that the wavenumber corresponding to maximum growth does not change much during the instability even though the velocity profile does change substantially. Using the results from the experiments and the stability analysis, we are able to explain many aspects of transition in oscillating pipe flow. We postulate that unsteady boundary layer separation at high Reynolds numbers is probably related to instability of the reverse flow region.
Shoulder instability in professional football players.
Leclere, Lance E; Asnis, Peter D; Griffith, Matthew H; Granito, David; Berkson, Eric M; Gill, Thomas J
2013-09-01
Shoulder instability is a common problem in American football players entering the National Football League (NFL). Treatment options include nonoperative and surgical stabilization. This study evaluated how the method of treatment of pre-NFL shoulder instability affects the rate of recurrence and the time elapsed until recurrence in players on 1 NFL team. Retrospective cohort. Medical records from 1980 to 2008 for 1 NFL team were reviewed. There were 328 players included in the study who started their career on the team and remained on the team for at least 2 years (mean, 3.9 years; range, 2-14 years). The history of instability prior to entering the NFL and the method of treatment were collected. Data on the occurrence of instability while in the NFL were recorded to determine the rate and timing of recurrence. Thirty-one players (9.5%) had a history of instability prior to entering the NFL. Of the 297 players with no history of instability, 39 (13.1%) had a primary event at a mean of 18.4 ± 22.2 months (range, 0-102 months) after joining the team. In the group of players with prior instability treated with surgical stabilization, there was no statistical difference in the rate of recurrence (10.5%) or the timing to the instability episode (mean, 26 months) compared with players with no history of instability. Twelve players had shoulder instability treated nonoperatively prior to the NFL. Five of these players (41.7%) had recurrent instability at a mean of 4.4 ± 7.0 months (range, 0-16 months). The patients treated nonoperatively had a significantly higher rate of recurrence (P = 0.02) and an earlier time of recurrence (P = 0.04). The rate of contralateral instability was 25.8%, occurring at a mean of 8.6 months. Recurrent shoulder instability is more common in NFL players with a history of nonoperative treatment. Surgical stabilization appears to restore the rate and timing of instability to that of players with no prior history of instability.
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1988-01-01
Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.
Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries
Ko, Minseong; Chae, Sujong; Cho, Jaephil
2015-01-01
Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems. PMID:27525208
Determining Acceptable Limits of Fast-Electron Preheat in Polar-Drive-Ignition Designs
NASA Astrophysics Data System (ADS)
Delettrez, J. A.; Collins, T. J. B.; Ye, C.
2014-10-01
In direct-drive-ignition designs, preheat by fast electrons created by the two-plasmon-decay instability at the quarter-critical density surface can increase the adiabat in the fuel layer and prevent ignition. Since eliminating the preheat entirely is not possible, it is necessary to understand the levels of preheat our targets can withstand before ignition is precluded. The current polar-drive point design is used as the basis for examining the effects of increasing the levels of fast electrons using the one-dimensional, radiation-hydrodynamics code LILAC. Once ignition failure is obtained, the design is then reoptimized using Telios, a downhill simplex method program, to recover ignition. This cycle is repeated until the design can no longer be reoptimized to produce ignition. Mappings of these final results provide insight into ignition failure caused by preheat and what specific target parameters serve to best stave off the effects of the preheat. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Spontaneous decay of periodic magnetostatic equilibria
East, William E.; Zrake, Jonathan; Yuan, Yajie; ...
2015-08-28
In order to understand the conditions which lead a highly magnetized, relativistic plasma to become unstable, and in such cases how the plasma evolves, we study a prototypical class of magnetostatic equilibria where the magnetic field satisfies ∇ x B = αB , where \\alpha is spatially uniform, on a periodic domain. Using numerical solutions we show that generic examples of such equilibria are unstable to ideal modes (including incompressible ones) which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures,more » and explicitly demonstrate its instability using the energy principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field, liberating magnetic energy on dynamical timescales and eventually settling into a configuration with the largest allowable wavelength. Furthermore, these properties make such solutions a promising setting for exploring the mechanisms behind extreme cosmic sources of gamma rays.« less
NASA Astrophysics Data System (ADS)
Bordikar, M. R.; Scales, W. A.; Samimi, A. R.; Bernhardt, P. A.; Brizcinski, S.; McCarrick, M. J.
2013-04-01
This work presents the first observations of unique narrowband emissions ordered near the hydrogen ion (H+) gyrofrequency (fcH) in the stimulated electromagnetic emission spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during ionospheric modification experiments. The frequency structuring of these newly discovered emission lines is quite unexpected since H+ is known to be a minor constituent in the interaction region which is near 160 km altitude. The spectral lines are typically shifted from the pump wave frequency by harmonics of a frequency about 10% less than fcH (≈ 800 Hz) and have a bandwidth of less than 50 Hz which is near the O+ gyrofrequency fcO. A theory is proposed to explain these emissions in terms of a parametric decay instability in a multi-ion species plasma due to possible proton precipitation associated with the disturbed conditions during the heating experiment. The observations can be explained by including several percent H+ ions into the background plasma. The implications are new possibilities for characterizing proton precipitation events during ionospheric heating experiments.
Apanasenko, Irina E; Selyutina, Olga Yu; Polyakov, Nikolay E; Suntsova, Lyubov P; Meteleva, Elizaveta S; Dushkin, Alexander V; Vachali, Preejith; Bernstein, Paul S
2015-04-15
Xanthophyll carotenoids zeaxanthin and lutein play a special role in the prevention and treatment of visual diseases. These carotenoids are not produced by the human body and must be consumed in the diet. On the other hand, extremely low water solubility of these carotenoids and their instability restrict their practical application as components of food or medicinal formulations. Preparation of supramolecular complexes of zeaxanthin and lutein with glycyrrhizic acid, its disodium salt and the natural polysaccharide arabinogalactan allows one to minimize the aforementioned disadvantages when carotenoids are used in food processing as well as for production of therapeutic formulations with enhanced solubility and stability. In the present study, the formation of supramolecular complexes was investigated by NMR relaxation, surface plasmon resonance (SPR) and optical absorption techniques. The complexes increase carotenoid solubility more than 1000-fold. The kinetics of carotenoid decay in reactions with ozone molecules, hydroperoxyl radicals and metal ions were measured in water and organic solutions, and significant increases in oxidation stability of lutein and zeaxanthin in arabinogalactan and glycyrrhizin complexes were detected. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Guoxing; Sun, Jinhua; Hou, Wenpeng; Jiang, Shidong; Huang, Yong; Geng, Jianxin
2016-01-01
Sulfur is a promising cathode material for lithium–sulfur batteries because of its high theoretical capacity (1,675 mA h g−1); however, its low electrical conductivity and the instability of sulfur-based electrodes limit its practical application. Here we report a facile in situ method for preparing three-dimensional porous graphitic carbon composites containing sulfur nanoparticles (3D S@PGC). With this strategy, the sulfur content of the composites can be tuned to a high level (up to 90 wt%). Because of the high sulfur content, the nanoscale distribution of the sulfur particles, and the covalent bonding between the sulfur and the PGC, the developed 3D S@PGC cathodes exhibit excellent performance, with a high sulfur utilization, high specific capacity (1,382, 1,242 and 1,115 mA h g−1 at 0.5, 1 and 2 C, respectively), long cycling life (small capacity decay of 0.039% per cycle over 1,000 cycles at 2 C) and excellent rate capability at a high charge/discharge current. PMID:26830732
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael L.; Han, Jongil
2000-01-01
The fundamental objective of this research is study behavior of aircraft wake vortices within atmospheric boundary layer (ABL) in support of developing the system, Aircraft VOrtex Spacing System (AVOSS), under NASA's Terminal Area Productivity (TAR) program that will control aircraft spacing within the narrow approach corridors of airports. The purpose of the AVOSS system is to increase airport capacity by providing a safe reduction in separation of aircraft compared to the now-existing flight rules. In our first funding period (7 January 19994 - 6 April 1997), we have accomplished extensive model development and validation of ABL simulations. Using the validated model, in our second funding period (7 April 1997 - 6 April 2000) we have investigated the effects of ambient atmospheric turbulence on vortex decay and descent, Crow instability, and wake vortex interaction with the ground. Recognizing the crucial influence of ABL turbulence on wake vortex behavior, we have also developed a software generating vertical profiles of turbulent kinetic energy (TKE) or energy dissipation rate (EDR), which are, in turn, used as input data in the AVOSS prediction algorithms.
Dynamical formation of a hairy black hole in a cavity from the decay of unstable solitons
NASA Astrophysics Data System (ADS)
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.; Herdeiro, Carlos; Radu, Eugen
2017-08-01
Recent numerical relativity simulations within the Einstein-Maxwell-(charged-)Klein-Gordon (EMcKG) system have shown that the non-linear evolution of a superradiantly unstable Reissner-Nordström black hole (BH) enclosed in a cavity, leads to the formation of a BH with scalar hair. Perturbative evidence for the stability of such hairy BHs has been independently established, confirming they are the true endpoints of superradiant instability. The same EMcKG system admits also charged scalar soliton-type solutions, which can be either stable or unstable. Using numerical relativity techniques, we provide evidence that the time evolution of some of these unstable solitons leads, again, to the formation of a hairy BH. In some other cases, unstable solitons evolve into a (bald) Reissner-Nordström BH. These results establish that the system admits two distinct channels to form hairy BHs at the threshold of superradiance: growing hair from an unstable (bald) BH, or growing a horizon from an unstable (horizonless) soliton. Some parallelism with the case of asymptotically flat boson stars and Kerr BHs with scalar hair is drawn.
A brief history of the most remarkable numbers e, i and γ in mathematical sciences with applications
NASA Astrophysics Data System (ADS)
Debnath, Lokenath
2015-08-01
This paper deals with a brief history of the most remarkable Euler numbers e, i and γ in mathematical sciences. Included are many properties of the constants e, i and γ and their applications in algebra, geometry, physics, chemistry, ecology, business and industry. Special attention is given to the growth and decay phenomena in many real-world problems including stability and instability of their solutions. Some specific and modern applications of logarithms, complex numbers and complex exponential functions to electrical circuits and mechanical systems are presented with examples. Included are the use of complex numbers and complex functions in the description and analysis of chaos and fractals with the aid of modern computer technology. In addition, the phasor method is described with examples of applications in engineering science. The major focus of this paper is to provide basic information through historical approach to mathematics teaching and learning of the fundamental knowledge and skills required for students and teachers at all levels so that they can understand the concepts of mathematics, and mathematics education in science and technology.
Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator
NASA Technical Reports Server (NTRS)
Liu, Siuying Raymond
1993-01-01
The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Maximov, A. V.; Short, R. W.
The fraction of laser energy converted into hot electrons by the two-plasmon-decay instability is found to have different overlapped intensity thresholds for various configurations on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); J. H. Kelly et al., J. Phys. IV 133, 75 (2006)]. A factor-of-2 difference in the overlapped intensity threshold is observed between two- and four-beam configurations. The overlapped intensity threshold increases by a factor of 2 between the 4- and 18-beam configurations and by a factor of 3 between the 4- and 60-beam configurations. This is explained by a linear common-wavemore » model where multiple laser beams drive a common electron-plasma wave in a wavevector region that bisects the laser beams (resonant common-wave region in k-space). These experimental results indicate that the hot-electron threshold depends on the hydrodynamic parameters at the quarter-critical density surface, the configuration of the laser beams, and the sum of the intensity of the beams that share the same angle with the common-wave vector.« less
Revealing the physicochemical mechanism for ultrasonic separation of alcohol-water mixtures
NASA Astrophysics Data System (ADS)
Kirpalani, D. M.; Toll, F.
2002-08-01
The selective separation of ethanol from ethanol-water mixtures by ultrasonic atomization has been reported recently by Sato, Matsuura, and Fujii [J. Chem. Phys. 114, 2382 (2001)]. In that work, experimental data were reported that confirmed the generation of an ethanol-rich droplet mist and attempted to explain the selective separation in terms of parametric decay instability of the capillary wave formed during sonication. In the present work, an alternate mechanism based on the conjunction theory has been postulated for the process of ultrasonic atomization. This mechanism involves the formation of cavitating bubbles in the liquid during sonication and their eventual collapse at the liquid surface into a cloud of microbubbles that moves upwards in a capillary fountain jet. The selective separation of alcohols has been explained as a corollary effect of the physical mechanism resulting in a surface excess of alcohol molecules formed at the surface of the microbubbles. The alcohol molecules vaporize into the microbubbles and release an alcohol-rich mist on their collapse in regions of high accumulation of acoustic energy.
NASA Astrophysics Data System (ADS)
Jang, Jaewoong; Yamamoto, Masashi; Uesaka, Mitsuru
2017-10-01
The most frequently used radionuclide in diagnostic nuclear medicine, 99mTc, is generally obtained by the decay of its parent radionuclide, 99Mo. Recently, concerns have been raised over shortages of 99Mo/99mTc, owing to aging of the research reactors which have been supplying practically all of the global demand for 99Mo in a centralized fashion. In an effort to prevent such 99Mo/99mTc supply disruption and, furthermore, to ameliorate the underlying instability of the centralized 99Mo/99mTc supply chain, we designed an X -band electron linear accelerator which can be distributed over multiple regions, whereby 99Mo/99mTc can be supplied with improved accessibility. The electron beam energy was designed to be 35 MeV, at which an average beam power of 9.1 kW was calculated by the following beam dynamics analysis. Subsequent radioactivity modeling suggests that 11 of the designed electron linear accelerators can realize self-sufficiency of 99Mo/99mTc in Japan.
Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber.
Hoye, Robert L Z; Brandt, Riley E; Osherov, Anna; Stevanović, Vladan; Stranks, Samuel D; Wilson, Mark W B; Kim, Hyunho; Akey, Austin J; Perkins, John D; Kurchin, Rachel C; Poindexter, Jeremy R; Wang, Evelyn N; Bawendi, Moungi G; Bulović, Vladimir; Buonassisi, Tonio
2016-02-18
Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.
2010-04-01
The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.
Pinch dynamics in a low-β plasma
NASA Astrophysics Data System (ADS)
Moffatt, H. K.; Mizerski, K.
2018-02-01
The relaxation of a helical magnetic field {B}({x},t) in a high-conductivity plasma contained in the annulus between two perfectly conducting coaxial cylinders is considered. The plasma is of low density and its pressure is negligible compared with the magnetic pressure; the flow of the plasma is driven by the Lorentz force and energy is dissipated primarily by the viscosity of the medium. The axial and toroidal fluxes of magnetic field are conserved in the perfect-conductivity limit, as is the mass per unit axial length. The magnetic field relaxes during a rapid initial stage to a force-free state, and then decays slowly, due to the effect of weak resistivity η, while constrained to remain approximately force-free. Interest centres on whether the relaxed field may attain a Taylor state; but under the assumed conditions with axial and toroidal flux conserved inside every cylindrical Lagrangian surface, this is not possible. The effect of an additional α-effect associated with instabilities and turbulence in the plasma is therefore investigated in exploratory manner. An assumed pseudo-scalar form of α proportional to q η ({j}\\cdot {B}) is adopted, where {j}={{\
On the r-mode spectrum of relativistic stars: the inclusion of the radiation reaction
NASA Astrophysics Data System (ADS)
Ruoff, Johannes; Kokkotas, Kostas D.
2002-03-01
We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n, and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n, we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n, the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2016-10-01
We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.
Modeling Laser-Plasma Interactions in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Los, Eva; Strozzi, D. J.; Chapman, T.; Farmer, W. A.; Cohen, B. I.
2017-10-01
We consider how laser-plasma interactions, namely stimulated Raman and Brillouin scattering, develop in the presence of a background magnetic field. Externally-launched waves in magnetized plasma have been studied in magnetic fusion devices for several decades, with relatively little work on their parametric decay. The topic has received scant attention in the laser-plasma and high-energy-density fields, but is becoming timely. The MagLIF pulsed-power scheme relies on an imposed axial field and laser-preheat [S. Slutz et al., Phys. Rev. Lett. 2012]. Imposing a field on a hohlraum to reduce hotspot losses has also been proposed [L. J. Perkins et al., Phys. Plasmas 2013]. We consider how the field affects the linear light waves in a plasma, e.g. by decoupling the left- and right- circular polarizations (Faraday rotation). Parametric instability growth rates are presented, as functions of plasma conditions, field strength, and geometry. The scattered-light spectrum, which is routinely measured, is also found. Work performed under auspices of US DoE by LLNL under Contract DE-AC52-07NA27344.
Gravitational radiation from rapidly rotating nascent neutron stars
NASA Technical Reports Server (NTRS)
Lai, Dong; Shapiro, Stuart L.
1995-01-01
We study the secular evolution and gravitational wave signature of a newly formed, rapidly rotating neutron star. The neutron star may arise from core collapse in a massive star or from the accretion-induced collapse of a white dwarf. After a brief dynamical phase, the nascent neutron star settles into an axisymmetric, secularly unstable state. Gravitational radiation drives the star to a nonaxisymmetric, stationary equilibrium configuration via the bar-mode instability. The emitted quasi-periodic gravitational waves have a unique signature: the wave frequency sweeps downward from a few hundred Hertz to zero, while the wave amplitude increase from zero to a maximum and then decays back to zero. Such a wave signal could detected by broadband gravitational wave interferometers currently being constructed. We also characterize two other types of gravitational wave signals that could arise in principle from a rapidly rotating, secularly unstable neutron star: a high-frequency (f greater than or approximately = 1000 Hz) wave which increases the pattern-speed of the star, and a wave that actually increases the angular momentum of the star.
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
NASA Astrophysics Data System (ADS)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; Keiter, P. A.; Edgell, D. H.; Froula, D. H.; Haberberger, D.; Frank, Y.; Fraenkel, M.; Raicher, E.; Shvarts, D.; Drake, R. P.
2017-03-01
Hard x-ray measurements are used to infer production of hot electrons in laser-irradiated planar foils of materials ranging from low- to high-Z. The fraction of laser energy converted to hot electrons, fhot , was reduced by a factor of 103 going from low-Z CH to high-Z Au, and hot electron temperatures were reduced from 40 to ˜20 keV. The reduction in fhot correlates with steepening electron density gradient length-scales inferred from plasma refraction measurements. Radiation hydrodynamic simulations predicted electron density profiles in reasonable agreement with those from measurements. Both multi-beam two-plasmon decay (TPD) and multi-beam stimulated Raman scattering (SRS) were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased electron plasma wave collisional and Landau damping. The results add to the evidence that SRS may play a comparable or a greater role relative to TPD in generating hot electrons in multi-beam experiments.
Oscillations of Accretion Disks in Cataclysmic Variable Stars
NASA Astrophysics Data System (ADS)
Osaki, Y.
2013-12-01
The disk instability model for the outbursts of dwarf novae is reviewed, with particular attention given to the superoutburst of SU UMa stars. Two intrinsic instabilities in accretion disks of dwarf novae are known; the thermal instability and the tidal instability. The thermal-tidal instability model (abbreviated the TTI model), which combines these two instabilities, was first proposed in 1989 by Osaki (1989) to explain the superoutburst phenomenon of SU UMa stars. Recent Kepler observations of one SU UMa star, V1504 Cyg, have dramatically demonstrated that the superoutburst phenomenon of the SU UMa stars is explained by the thermal-tidal instability model.
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Regularization of instabilities in gravity theories
NASA Astrophysics Data System (ADS)
Ramazanoǧlu, Fethi M.
2018-01-01
We investigate instabilities and their regularization in theories of gravitation. Instabilities can be beneficial since their growth often leads to prominent observable signatures, which makes them especially relevant to relatively low signal-to-noise ratio measurements such as gravitational wave detections. An indefinitely growing instability usually renders a theory unphysical; hence, a desirable instability should also come with underlying physical machinery that stops the growth at finite values, i.e., regularization mechanisms. The prototypical gravity theory that presents such an instability is the spontaneous scalarization phenomena of scalar-tensor theories, which feature a tachyonic instability. We identify the regularization mechanisms in this theory and show that they can be utilized to regularize other instabilities as well. Namely, we present theories in which spontaneous growth is triggered by a ghost rather than a tachyon and numerically calculate stationary solutions of scalarized neutron stars in these theories. We speculate on the possibility of regularizing known divergent instabilities in certain gravity theories using our findings and discuss alternative theories of gravitation in which regularized instabilities may be present. Even though we study many specific examples, our main point is the recognition of regularized instabilities as a common theme and unifying mechanism in a vast array of gravity theories.
Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP.
Warth, Arne; Kloor, Matthias; Schirmacher, Peter; Bläker, Hendrik
2011-04-01
Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barminova, H. Y., E-mail: barminova@mephi.ru; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Paxson, Daniel E.
2008-01-01
Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
The Spinal Instability Neoplastic Score: Impact on Oncologic Decision-Making.
Versteeg, Anne L; Verlaan, Jorrit-Jan; Sahgal, Arjun; Mendel, Ehud; Quraishi, Nasir A; Fourney, Daryl R; Fisher, Charles G
2016-10-15
Systematic literature review. To address the following questions in a systematic literature review: 1. How is spinal neoplastic instability defined or classified in the literature before and after the introduction of the Spinal Instability Neoplastic Score (SINS)? 2. How has SINS affected daily clinical practice? 3. Can SINS be used as a prognostic tool? Spinal neoplastic-related instability was defined in 2010 and simultaneously SINS was introduced as a novel tool with criteria agreed upon by expert consensus to assess the degree of spinal stability. PubMed, Embase, and clinical trial databases were searched with the key words "spinal neoplasm," "spinal instability," "spinal instability neoplastic score," and synonyms. Studies describing spinal neoplastic-related instability were eligible for inclusion. Primary outcomes included studies describing and/or defining neoplastic-related instability, SINS, and studies using SINS as a prognostic factor. The search identified 1414 articles, of which 51 met the inclusion criteria. No precise definition or validated assessment tool was used specific to spinal neoplastic-related instability prior to the introduction of SINS. Since the publication of SINS in 2010, the vast majority of the literature regarding spinal instability has used SINS to assess or describe instability. Twelve studies specifically investigated the prognostic value of SINS in patients who underwent radiotherapy or surgery. No consensus could be determined regarding the definition, assessment, or reporting of neoplastic-related instability before introduction of SINS. Defining spinal neoplastic-related instability and the introduction of SINS have led to improved uniform reporting within the spinal neoplastic literature. Currently, the prognostic value of SINS is controversial. N/A.
Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Paxson, Daniel E.
2008-01-01
Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
Insights into the Streaming Instability in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin
2017-10-01
The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.
2013-03-01
Direct-drive-ignition designs with plastic CH ablators create plasmas of long density scale lengths (Ln ≥ 500 μm) at the quarter-critical density (Nqc) region of the driving laser. The two-plasmon-decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation-hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of Ln approaching ˜400 μm have been created; (2) the density scale length at Nqc scales as Ln(μm)≃(RDPP×I1/4/2); and (3) the electron temperature Te at Nqc scales as Te(keV)≃0.95×√I , with the incident intensity (I) measured in 1014 W/cm2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (RDPP) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons fhot is found to have a similar behavior for both configurations: a rapid growth [fhot≃fc×(Gc/4)6 for Gc < 4] followed by a saturation of the form, fhot≃fc×(Gc/4)1.2 for Gc ≥ 4, with the common wave gain is defined as Gc=3 × 10-2×IqcLnλ0/Te, where the laser intensity contributing to common-wave gain Iqc, Ln, Te at Nqc, and the laser wavelength λ0 are, respectively, measured in [1014 W/cm2], [μm], [keV], and [μm]. The saturation level fc is observed to be fc ≃ 10-2 at around Gc ≃ 4. The hot-electron temperature scales roughly linear with Gc. Furthermore, to mitigate TPD instability in long-scale-length plasmas, different ablator materials such as saran and aluminum have been investigated on OMEGA EP. Hot-electron generation has been reduced by a factor of 3-10 for saran and aluminum plasmas, compared to the CH case at the same incident laser intensity. draco simulations suggest that saran might be a better ablator for direct-drive-ignition designs as it balances TPD mitigation with an acceptable hydro-efficiency.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1982-01-01
Rotor dynamic instability problems in high performance turbomachinery are reviewed. Mechanical instability mechanisms are discussed. Seal forces and working fluid forces in turbomachinery are discussed. Control of rotor instability is also investigated.
... and vertebral instability. Vertebral instability due to acute traumatic injury or cervical disc herniation is often treated by ... and vertebral instability. Vertebral instability due to acute traumatic injury or cervical disc herniation is often treated by ...
Genetic instability in urinary bladder cancer: An evolving hallmark.
Wadhwa, N; Mathew, B B; Jatawa, S K; Tiwari, A
2013-01-01
Bladder cancer is a major health-care concern. A successful treatment of bladder cancer depends on its early diagnosis at the initial stage. Genetic instability is an essential early step toward the development of bladder cancer. This instability is found more often at the chromosomal level than at the nucleotide level. Microsatellite and chromosomal instability markers can be used as a prognostic marker for screening bladder cancer. Bladder cancer can be distinguished in two different categories according to genetic instability: Cancers with chromosomal level instability and cancers with nucleotide level instability. Deoxyribonucleic acid (DNA) mismatch repair (MMR) system and its correlation with other biologic pathway, both are essential to understand the basic mechanisms of cancer development. Microsatellite instability occurs due to defects in DNA MMR genes, including human mutL homolog 1 and human mutL homolog 2. Chromosomal alterations including deletions on chromosome 3, 8, 9, 11, 13, 17 have been detected in bladder cancer. In the current review, the most recent literature of genetic instability in urinary bladder cancer has been summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Xiang, E-mail: xzhai@caltech.edu; Bellan, Paul M., E-mail: pbellan@caltech.edu
We present an MHD theory of Rayleigh-Taylor instability on the surface of a magnetically confined cylindrical plasma flux rope in a lateral external gravity field. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability that cannot be described by either of the two instabilities alone. The lateral gravity breaks the axisymmetry of the system and couples all azimuthal modes together. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring atmore » a two-dimensional planar interface. The theory successfully explains the lateral Rayleigh-Taylor instability observed in the Caltech plasma jet experiment [Moser and Bellan, Nature 482, 379 (2012)]. Potential applications of the theory include magnetic controlled fusion, solar emerging flux, solar prominences, coronal mass ejections, and other space and astrophysical plasma processes.« less