Science.gov

Sample records for decay spectrometer perkeo

  1. beta. -decay asymmetry of the free neutron

    SciTech Connect

    Bopp, P.; Dubbers, D.; Klemt, E.; Last, J.; Schuetze, H.; Weibler, W.; Freedman, S.J.; Schaerpf, O.

    1983-01-01

    The ..beta..-decay of polarized neutrons has been studied with the new superconducting spectrometer PERKEO at the ILL. The energy dependence of the ..beta..-decay asymmetry has been measured for the first time. From the measured ..beta..-asymmetry parameter we obtain a new value for the ratio of weak coupling constants g/sub A//g/sub V/. 11 references.

  2. The Beta-, Neutrino- and Proton-Asymmetry in Neutron β-Decay

    PubMed Central

    Abele, H.; Baeßler, S.; Deissenroth, M.; Glück, F.; Krempel, J.; Kreuz, M.; Märkisch, B.; Mund, D.; Schumann, M.; Soldner, T.

    2005-01-01

    This article describes measurements of angular-correlation coefficients in the decay of free neutrons with the superconducting spectrometer PERKEO II. A method for measuring the β-asymmetry coefficient A is presented, as well as a new method for determining the neutrino-asymmetry coefficient B, which allows a value for the proton-asymmetry coefficient C to be obtained for the first time. An ongoing experiment is trying to improve the accuracy of these quantities. PMID:27308153

  3. A decay total absorption spectrometer for DESPEC at FAIR

    NASA Astrophysics Data System (ADS)

    Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Pizá, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyák, Zs.; Regan, P.; Simpson, J.; Smith, A. J.; Strachan, J.

    2015-12-01

    This paper presents the design of a total absorption γ-ray spectrometer for the determination of β-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on NaI(Tl) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 × 15 × 25cm3 crystals for the NaI(Tl) option and one hundred and twenty-eight 5.5 × 5.5 × 11cm3 crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring β-delayed neutron emitters, was investigated by means of Monte Carlo simulations.

  4. Development of the NPL gamma-ray spectrometer NANA for traceable nuclear decay and structure studies.

    PubMed

    Lorusso, G; Shearman, R; Regan, P H; Judge, S M; Bell, S; Collins, S M; Larijani, C; Ivanov, P; Jerome, S M; Keightley, J D; Lalkovski, S; Pearce, A K; Podolyak, Zs

    2016-03-01

    We present a brief report on the progress towards the construction of the National Nuclear Array (NANA), a gamma-ray coincidence spectrometer for discrete-line nuclear structure and decay measurements. The proposed spectrometer will combine a gamma-ray energy resolution of approximately 3% at 1MeV with sub-nanosecond timing discrimination between successive gamma rays in mutually coincident decay cascades. We also review a number of recent measurements using coincidence fast-timing gamma-ray spectroscopy for nuclear structure studies, which have helped to inform the design criteria for the NANA spectrometer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Measurement of τ decays with the spectrometer ARGUS

    NASA Astrophysics Data System (ADS)

    Živko, Tomi

    1995-07-01

    Using the ARGUS detector at the e+e- storage ring DORIS II at DESY, we have studied lepton energy spectra in τ decays. We present a ``pseudo-rest-frame'' technique in which the second τ in the event, decaying into a heavy hadronic system, is used as reference. This method allows for the first measurement of the Michel Parameter η in τ decays. We also determine the Michel Parameter ρ in τ→eν¯ν decays with a precision comparable to the present world average. The measured values of the parameters ρ=0.735±0.036±0.020 and η=0.03±0.18±0.12 are in good agreement with standard V-A coupling at the τ-ν-W vertex.

  6. Characterization of a new modular decay total absorption gamma-ray spectrometer (DTAS) for FAIR

    SciTech Connect

    Montaner Piza, A.; Tain, J. L.; Agramunt, J.; Algora, A.; Guadilla, V.; Marin, E.; Rice, S.; Rubio, B.

    2013-06-10

    Beta-decay studies are one of the main goals of the DEcay SPECtroscopy experiment (DESPEC) to be installed at the future Facility for Antiproton and Ion Research (FAIR). DESPEC aims at the study of nuclear structure of exotic nuclei. A new modular Decay Total Absorption gamma-ray Spectrometer (DTAS) is being built at IFIC and is specially adapted to studies at fragmentation facilities such as the Super Fragment Separator (Super-FRS) at FAIR. The designed spectrometer is composed of 16 identical NaI(Tl) scintillation crystals. This work focuses on the characterization of these independent modules, as an initial step for the characterization of the full spectrometer. Monte Carlo simulations have been performed in order to understand the detector response.

  7. Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE

    NASA Astrophysics Data System (ADS)

    Rubio, B.; Gelletly, W.; Algora, A.; Nacher, E.; Tain, J. L.

    2017-08-01

    Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4π scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure β-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of β-decaying nuclei by measuring their β decay strength distributions as a function of excitation energy in the daughter nucleus, are presented. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.

  8. New search for double electron capture in {sup 106}Cd decay with the TGV-2 spectrometer

    SciTech Connect

    Briançon, Ch.; Brudanin, V. B.; Egorov, V. G.; Jose, J. M.; Klimenko, A. A.; Kovalik, A.; Rosov, S. V.; Rukhadze, E. N.; Rukhadze, N. I. Salamatin, A. V.; Timkin, V. V.; Fajt, L.; Hodak, R.; Šimkovic, F.; Shitov, Yu. A.; Špavorova, M.; Štekl, I.; Yakushev, E. A.

    2015-09-15

    A new experiment devoted to searches for double electron capture in {sup 106}Cd decay is being performed at the Modane underground laboratory (4800 mwe) with the 32-detector TGV-2 spectrometer. The limit T{sub 1/2}(2νEC/EC) > 2.0×10{sup 20} yr at a 90%confidence level (C.L.) was obtained from a preliminary analysis of data obtained over 2250 h of measurements with about 23.2 g sample enriched in the isotope {sup 106}Cd to 99.57%. The limits T{sub 1/2}(KL, 2741 keV) > 0.9 × 10{sup 20} yr and T{sub 1/2}(KK, 2718 keV) ≫ 1.4 × 10{sup 20} yr at a 90% C.L. on the neutrinoless decay of {sup 106}Cd were obtained from measurements performed with the Obelix low-background spectrometer from high-purity germanium (HPGe spectrometer) for a sample of mass about 23.2 g enriched in the isotope {sup 106}Cd.

  9. The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects

    NASA Astrophysics Data System (ADS)

    Glück, F.; Baeßler, S.; Byrne, J.; van der Grinten, M. G. D.; Hartmann, F. J.; Heil, W.; Konorov, I.; Petzoldt, G.; Sobolev, Yu.; Zimmer, O.

    2005-01-01

    The apparatus described here, aSPECT, will be used for a measurement of the neutrino-electron angular correlation coefficient a in the decay of free neutrons. The idea of the aSPECT spectrometer is to measure the integrated proton energy spectrum very accurately using an energy filter by electrostatic retardation and magnetic adiabatic collimation. The main ideas of the spectrometer are presented, followed by an explanation of the adiabatic transmission function. Details of the superconducting coil and of the electrode system are given, as well as a discussion of the most important systematic effects: magnetic field and electrostatic potential inhomogeneities, deviation from adiabatic motion, scattering in the residual gas, background, Doppler effect, edge effect, and detector efficiency. Using this spectrometer, the parameter a is planned to be measured with an absolute experimental uncertainty of δ a ≈ 3 . 10-4, from which the axial vector to vector coupling constant ratio λ can be determined with an accuracy of δλ ≈ 0.001.

  10. Homestake tracking spectrometer: a one-mile deep 1400-ton liquid-scintillation nucleon-decay detector

    SciTech Connect

    Cherry, M.L.; Davidson, I.; Lande, K.; Lee, C.K.; Marshall, E.; Steinberg, R.I.; Cleveland, B.; Davis, R. Jr.; Lowenstein, D.

    1982-01-01

    We describe a proposed nucleon decay detector able to demonstrate the existence of nucleon decay for lifetimes up to 5 x 10/sup 32/ yr. The proposed instrument is a self-vetoed completely-active 1400-ton liquid scintillation Tracking Spectrometer to be located in the Homestake Mine at a depth of 4200 mwe, where the cosmic ray muon flux is only 1100/m/sup 2//yr, more than 10/sup 7/ times lower than the flux at the earth's surface. Based on computer simulations and laboratory measurements, the Tracking Spectrometer will have a spatial resolution of +- 15 cm (0.32 radiation lengths); energy resolution of +- 4.2%; and time resolution of +-1.3 ns. Because liquid scintillator responds to total ionization energy, all neutrinoless nucleon decay modes will produce a sharp (+- 4.2%) total energy peak at approximately 938 MeV, thereby allowing clear separation of nucleon decay events from atmospheric neutrino and other backgrounds. The instrument will be about equally sensitive to most nucleon decay modes. It will be able to identify most of the likely decay modes (including n ..-->.. ..nu.. + K/sub s//sup 0/ as suggested by supersymmetric grand unified theories), as well as determine the charge of lepton secondaries and the polarization of secondary muons.

  11. Conversion electrons from high-statistics β-decay measurements with the 8π spectrometer at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Jigmeddorj, B.; Radich, A. J.; Andreoiu, C.; Ball, G. C.; Bangay, J. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Green, K. L.; Hackman, G.; Hadinia, B.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2016-09-01

    The 8π spectrometer, located at TRIUMF-ISAC, was the world's most powerful spectrometer dedicated to β-decay studies until its decommissioning in early 2014 for replacement with the GRIFFIN array. An integral part of the 8π spectrometer was the Pentagonal Array for Conversion Electron Spectroscopy (PACES) consisting of 5 Si(Li) detectors used for charged-particle detection. PACES enabled both γ - e- and e- - e- coincidence measurements, which were crucial for increasing the sensitivity for discrete e- lines in the presence of large backgrounds. Examples from a 124Cs decay experiment, where the data were vital for the expansion of the 124Cs decay scheme, are shown. With suffcient statistics, measurements of conversion coeffcients can be used to extract the E0 components of Jπ → Jπ transitions for J ≠ 0, which is demonstrated for data obtained in 110In→110Cd decay. With knowledge of the shapes of the states involved, as obtained, for example, from the use of Kumar-Cline shape invariants, the mixing of the states can be extracted.

  12. Influence of the thorium decay series on the background of high-resolution gamma-ray spectrometers.

    PubMed

    Bučar, K; Korun, M; Vodenik, B

    2012-06-01

    The background induced by the members of the thorium decay sequence in six high-resolution, gamma-ray spectrometers was analyzed. For the analysis, the count rates in the peaks of the background spectra, normalized to the unit of emission probability and detection probability, were used. The energy dependence of these normalized count rates carries information about the location of the sources of contamination. The contributions of the detector contamination, the contamination of the shielding material and the radiation penetrating the shield were calculated. The comparison of these contributions among the spectrometers pointed to the weaknesses of some shields, making such a comparison a useful tool for assessing the effectiveness of the shields.

  13. Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν¯e flux calculation

    NASA Astrophysics Data System (ADS)

    Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Rasco, B. C.; Grzywacz, R.; Gross, C. J.; Wolińska-Cichocka, M.; Goetz, K. C.; Stracener, D. W.; Bielewski, W.; Goans, R.; Hamilton, J. H.; Johnson, J. W.; Jost, C.; Madurga, M.; Miernik, K.; Miller, D.; Padgett, S. W.; Paulauskas, S. V.; Ramayya, A. V.; Zganjar, E. F.

    2017-08-01

    We report the results of a β -decay study of fission products Br 86 , Kr 89 , Rb 89 , Rb 90 g s , Rbm90 , Kr 90 , Rb 92 , Xe 139 , and Cs 142 performed with the Modular Total Absorption Spectrometer (MTAS) and on-line mass-separated ion beams. These radioactivities were assessed by the Nuclear Energy Agency as having high priority for decay heat analysis during a nuclear fuel cycle. We observe a substantial increase in β feeding to high excited states in all daughter isotopes in comparison to earlier data. This increases the average γ -ray energy emitted by the decay of fission fragments during the first 10 000 s after fission of U 235 and Pu 239 by approximately 2% and 1%, respectively, improving agreement between results of calculations and direct observations. New MTAS results reduce the reference reactor ν¯e flux used to analyze reactor ν¯e interaction with detector matter. The reduction determined by the ab initio method for the four nuclear fuel components, U 235 , U 238 , Pu 239 , and Pu 241 , amounts to 0.976, 0.986, 0.983, and 0.984, respectively.

  14. Measurements of optical loss in transparent solids using a novel spectrometer based on optical cavity decay

    SciTech Connect

    Milanovich, F.P.; Hunt, J.T.; Roe, J.N.

    1988-12-14

    Recent advances in High Average Power (HAP) solid state lasers and the development of new concept lasers with the potential of ultra- high average power output have put increasing demands on the transparency of optical window materials. To gain a better understanding of the current status of window materials and to direct research toward more nearly transparent materials, we have constructed an optical characterization facility with the purpose of making quantitative optical loss measurements in the sensitivity range of 10/sup /minus/3/ to 10/sup /minus/6/ cm/sup /minus/1/. The cornerstone of this facility is a scanning optical lossmeter in which loss is determined by comparing the decay time of an optical cavity with and without a transparent solid present. The lossmeter has been successfully applied to measurements of the optical loss of witness samples of highly transparent fused silica. A description of the lossmeter and a compilation of preliminary loss measurements are presented here. 3 refs.

  15. Monolithic spectrometer

    DOEpatents

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  16. Monolithic spectrometer

    DOEpatents

    Rajic, Slobodan; Egert, Charles M.; Kahl, William K.; Snyder, Jr., William B.; Evans, III, Boyd M.; Marlar, Troy A.; Cunningham, Joseph P.

    1998-01-01

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

  17. The GRIFFIN spectrometer

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Garnsworthy, A. B.

    2014-01-01

    Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency γ-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) γ-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

  18. Applications of a matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometer. l. Metastable decay and collision-induced dissociation for sequencing peptides.

    PubMed

    Ackloo, Suzanne; Loboda, Alexandre

    2005-01-01

    The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.

  19. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  20. Multidimensional spectrometer

    SciTech Connect

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  1. Neutron beta decay studies with Nab

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barrón-Palos, L.; Bowman, J. D.; Bychkov, M. A.; Byrne, J.; Calarco, J. R.; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlež, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-10-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  2. Development of detector technologies for neutron beta decay measurements

    NASA Astrophysics Data System (ADS)

    Choi, Jin Ha; Cude-Woods, Chris; Young, Albert; Los Alamos UCN Collaboration Collaboration

    2016-09-01

    In the past year we have developed two detector technologies for neutron beta decay measurements. The first is designed specifically to detect the recoil proton from neutron decay. In particular, the PERKEO III experiments planned for the Institut Laue Langevin require detectors with active area greater than about 600 cm2 area to achieve the targeted statistical sensitivity. We have developed an implementation of transmission foil detectors utilizing free standing foils of roughly 100 nm thickness and 700 cm2 area, coated with LiF converting crystal. These foils are placed in an accelerating electric field geometry to first accelerate the protons to 30 kV and then convert them to an electron shower which can be detected with conventional semiconductor or scintillator detectors. We've also begun development of technology that is designed to detect charged particles from neutron-capture reaction on 10B. The UCNtau experiment at the Los Alamos National Laboratories requires non-magnetic neutron sensors that can be used to measure the density of neutrons in a magnetic trap. We are employing a multilayer surface detector recently developed at Los Alamos for the UCN flux monitoring, adapting it for a compact, 1 cm2 detector and ultralow dark rates. The detector consists of 10B on ZnS scintillating sheet that will be adhered to both faces of an acrylic plate with scintillating optical fibers embedded into it. The optical fibers will be coupled to 2, Hamamatsu micro-PMTs for coincident detection of a neutron event.

  3. Schwarzschild spectrometer.

    PubMed

    Mouriz, M Dolores; Lago, Elena López; Prieto-Blanco, Xesús; González-Núñez, Héctor; de la Fuente, Raúl

    2011-06-01

    This is a proposal and description of a new spectrometer based on the Schwarzschild optical system. The proposed design contains two Schwarzschild optical systems. Light diverging from the spectrometer entrance slit is collimated by the first one; the collimated light beam hits a planar diffraction grating and the light dispersed from the grating is focused by the second system, which is concentric with the first. A very simple procedure obtains designs that are anastigmatic for the center of the slit and for a particular wavelength. A specific example shows the performance of this type of spectrometer.

  4. SCINTILLATION SPECTROMETER

    DOEpatents

    Bell, P.R.; Francis, J.E.

    1960-06-21

    A portable scintillation spectrometer is described which is especially useful in radio-biological studies for determining the uptake and distribution of gamma -emitting substances in tissue. The spectrometer includes a collimator having a plurality of apertures that are hexagonal in cross section. Two crystals are provided: one is activated to respond to incident rays from the collimator; the other is not activated and shields the first from external radiation.

  5. Spectrometer gun

    DOEpatents

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  6. Spectrometer gun

    DOEpatents

    Waechter, David A.; Wolf, Michael A.; Umbarger, C. John

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  7. HISS spectrometer

    SciTech Connect

    Greiner, D.E.

    1984-11-01

    This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented.

  8. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  9. The Spectrometer

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2012-03-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating ), and I began to realize that inside was some familiar old technology. In this paper I would like to discuss its ancestors.

  10. The Spectrometer

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2012-01-01

    In the fall of 1999 I was shown an Ocean Optics spectrometer-in-the-computer at St. Patricks College at Maynooth, Ireland, and thought that I had seen heaven. Of course, it could not resolve the sodium D-lines (I had done that many years before with a homemade wire diffraction grating), and I began to realize that inside was some familiar old…

  11. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  12. Computer Spectrometers

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2017-06-01

    Ideally, the cataloguing of spectroscopic linelists would not demand laborious and expensive experiments. Whatever an experiment might achieve, the same information would be attainable by running a calculation on a computer. Kolos and Wolniewicz were the first to demonstrate that calculations on a computer can outperform even the most sophisticated molecular spectroscopic experiments of the time, when their 1964 calculations of the dissociation energies of H_2 and D_{2} were found to be more than 1 cm^{-1} larger than the best experiments by Gerhard Herzberg, suggesting the experiment violated a strict variational principle. As explained in his Nobel Lecture, it took 5 more years for Herzberg to perform an experiment which caught up to the accuracy of the 1964 calculations. Today, numerical solutions to the Schrödinger equation, supplemented with relativistic and higher-order quantum electrodynamics (QED) corrections can provide ro-vibrational spectra for molecules that we strongly believe to be correct, even in the absence of experimental data. Why do we believe these calculated spectra are correct if we do not have experiments against which to test them? All evidence seen so far suggests that corrections due to gravity or other forces are not needed for a computer simulated QED spectrum of ro-vibrational energy transitions to be correct at the precision of typical spectrometers. Therefore a computer-generated spectrum can be considered to be as good as one coming from a more conventional spectrometer, and this has been shown to be true not just for the H_2 energies back in 1964, but now also for several other molecules. So are we at the stage where we can launch an array of calculations, each with just the atomic number changed in the input file, to reproduce the NIST energy level databases? Not quite. But I will show that for the 6e^- molecule Li_2, we have reproduced the vibrational spacings to within 0.001 cm^{-1} of the experimental spectrum, and I will

  13. Background processes in the KATRIN main spectrometer

    NASA Astrophysics Data System (ADS)

    Fraenkle, F. M.; KATRIN collaboration

    2017-09-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment which aims for the model-independent determination of the effective mass of electron anti-neutrinos with a sensitivity of 200 meV/c2. It investigates the kinematics of electrons from tritium β-decay close to the endpoint of the energy spectrum. Low statistics at the endpoint requires an equally low background rate below 0.01 counts per second. The measurement setup consists of a high luminosity windowless gaseous molecular tritium source (WGTS), a differential and cryogenic pumped electron transport and tritium retention section, a tandem spectrometer section (pre-spectrometer and main spectrometer) for energy analysis, followed by a detector system for counting transmitted beta decay electrons. The background characteristics of the KATRIN main spectrometer were investigated in detail during two commissioning measurement phases. Of particular interest were backgrounds due to the decay of radon in the volume of the spectrometer, cosmic-muon-induced backgrounds, backgrounds due to natural radioactivity and Penning-discharge-related backgrounds. This proceeding will present results of the commissioning measurements and focuses on different background processes and their contribution to the overall background of the KATRIN experiment.

  14. Deconvolution method for fluorescence decays

    NASA Astrophysics Data System (ADS)

    Apanasovich, V. V.; Novikov, E. G.

    1990-09-01

    A new method for fluorescence decay deconvolution is offered. It has acceptable accuracy, high speed of deconvolution, and allows to estimate the number of exponentials. Some results of statistical experiments, using a simulation model of a pulsed fluorescence spectrometer, are introduced.

  15. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  16. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  17. Experiment M408: Beta spectrometer

    NASA Technical Reports Server (NTRS)

    Marbach, J. R.

    1971-01-01

    The beta spectrometer functioned as planned throughout the Gemini 10 mission. The cool temperatures that were recorded from the instrument during the mission were indicative that the evaporative cooler, coupled with apparently lower-than-expected spacecraft-adapter temperatures, maintained ideal operating conditions. The data facilitate a good analysis of the electron directional distribution. The omnidirectional flux that was calculated is apparently consistent with previous measurements. Representative electron spectra, measured during the Gemini 12 mission, established the apparent decay of the artificially injected electrons (from the Starfish high altitude nuclear test) to such low levels that natural trapped electrons were becoming detectable.

  18. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  19. Tropospheric Emission Spectrometer and Airborne Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Glavich, T.; Beer, R.

    1996-01-01

    The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

  20. Tooth Decay

    MedlinePlus

    You call it a cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole in your tooth. The cause of tooth decay is plaque, a sticky substance in your mouth made up mostly of germs. Tooth decay starts in the outer layer, called the enamel. Without ...

  1. Trunk decays

    Treesearch

    Alex L. Shigo

    1989-01-01

    Trunk decays are major causes of low quality wood-wood with little or no economic value. As a forest practitioner you should be able to recognize trees at high risk for decay and remove them if timber production is your primary objective. Remember, however, that decayed trees often develop into den trees or nesting sites and provide essential habitat for wildlife....

  2. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  3. Electronics for a Spectrometer

    NASA Image and Video Library

    2014-01-24

    NASA has provided part of the electronics package for an instrument called the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis ROSINA instrument.

  4. Compact Infrared Spectrometers

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2009-01-01

    Concentric spectrometer forms are advantageous for constructing a variety of systems spanning the entire visible to infrared range. Spectrometer examples are given, including broadband or high resolution forms. Some issues associated with the Dyson catadioptric type are also discussed.

  5. Feasibility studies for the Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Biernat, Jacek; P¯ANDA Collaboration

    2015-04-01

    The Forward Spectrometer designed for the P¯ANDA detector will consist of many different detector systems allowing for precise track reconstruction and particle identification. Feasibility studies for Forward Spectrometer done by means of specific reactions will be presented. In the first part of the paper, results of simulations focussing on rate estimates of the tracking stations based on straw tubes will be presented. Next, the importance of the Forward Tracker will be demonstrated through the reconstruction of the ψ(4040) → DD¯ decay. Finally, results from the analysis of the experimental data collected with a straw tube prototype designed and constructed at the Research Center in Juelich will be discussed.

  6. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  7. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  8. The aCORN backscatter-suppressed beta spectrometer

    NASA Astrophysics Data System (ADS)

    Hassan, M. T.; Bateman, F.; Collett, B.; Darius, G.; DeAngelis, C.; Dewey, M. S.; Jones, G. L.; Komives, A.; Laptev, A.; Mendenhall, M. P.; Nico, J. S.; Noid, G.; Stephenson, E. J.; Stern, I.; Trull, C.; Wietfeldt, F. E.

    2017-09-01

    Backscatter of electrons from a beta detector, with incomplete energy deposition, can lead to undesirable effects in many types of experiments. We present and discuss the design and operation of a backscatter-suppressed beta spectrometer that was developed as part of a program to measure the electron-antineutrino correlation coefficient in neutron beta decay (aCORN). An array of backscatter veto detectors surrounds a plastic scintillator beta energy detector. The spectrometer contains an axial magnetic field gradient, so electrons are efficiently admitted but have a low probability for escaping back through the entrance after backscattering. The design, construction, calibration, and performance of the spectrometer are discussed.

  9. Decay Studies of NEPTUNIUM-237.

    NASA Astrophysics Data System (ADS)

    Woods, S. A.

    Available from UMI in association with The British Library. Requires signed TDF. The decay of ^{237}Np (T_{1over2} = 2.14 times 10^6 years) has been investigated from singles and coincidence gamma-ray spectra acquired using Ge detectors and also from internal conversion electron spectra acquired using an iron-free, pi/2 double-focusing, beta-ray spectrometer. Such a long-lived nucleus has a very low specific activity which has previously made the determination of the internal conversion following its decay extremely difficult. In order to overcome this problem, the luminosity of the beta -ray spectrometer has been increased by utilising the multistrip source technique of Bergkvist in conjunction with a sixteen-element proportional counter. Twenty-four gamma-rays have been observed in the singles studies, with four additional gamma -rays observed in the coincidence studies alone, all of which have been placed in the level scheme of ^{233}Pa. The coincidence data also indicates the presence of two unobserved transitions of low energy. The absolute conversion coefficients and multipolarity of five gamma-ray transitions following the decay of ^{237} Np, together with those of seven gamma -ray transitions following the decay of the daughter nucleus, ^{233}Pa, have been determined and the levels of ^{233 }Pa assigned within the framework of the Nilsson Model.

  10. The imaging spectrometer approach

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1982-01-01

    Two important sensor design drivers are the requirement for spatial registration of the spectral components and the implementation of the advanced multispectral capability, including spectral band width, number of bands and programmability. The dispersive approach, fundamental to the imaging spectrometer concept, achieves these capabilities by utilizing a spectrometer to disperse the spectral content while preserving the spatial identity of the information in the cross-track direction. Area array detectors in the spectrometer focal plane detect and store the spatial and multispectral content for each line of the image. The choice of spectral bands, image IFOV and swath width is implemented by programmed readout of the focal plane. These choices in conjunction with data compression are used to match the output data rate with the telemetry link capability. Progress in the key technologies of optics, focal plane detector arrays, onboard processing, and focal plane cooling supports the viability of the imaging spectrometer approach.

  11. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  12. AUTOMATIC MASS SPECTROMETER

    DOEpatents

    Hanson, M.L.; Tabor, C.D. Jr.

    1961-12-01

    A mass spectrometer for analyzing the components of a gas is designed which is capable of continuous automatic operation such as analysis of samples of process gas from a continuous production system where the gas content may be changing. (AEC)

  13. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  14. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  15. A Simple Raman Spectrometer.

    ERIC Educational Resources Information Center

    Blond, J. P.; Boggett, D. M.

    1980-01-01

    Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

  16. A mobile magnetic sensor unit for the KATRIN main spectrometer

    NASA Astrophysics Data System (ADS)

    Osipowicz, A.; Seller, W.; Letnev, J.; Marte, P.; Müller, A.; Spengler, A.; Unru, A.

    2012-06-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the electron neutrino mass with an unprecedented sensitivity of 0.2 eV/c2, using β decay electrons from tritium decay. For the control of magnetic field in the main spectrometer area of the KATRIN experiment a mobile magnetic sensor unit is constructed and tested at the KATRIN main spectrometer site. The unit moves on inner rails of the support structures of the low field shaping coils which are arranged along the the main spectrometer. The unit propagates on a caterpillar drive and contains an electro motor, battery pack, board electronics, 2 triaxial flux gate sensors and 2 inclination senors. During operation all relevant data are stored on board and transmitted to the master station after the docking station is reached.

  17. Spectrometer technology recommendations

    NASA Astrophysics Data System (ADS)

    Wilson, William J.

    1988-08-01

    A typical heterodyne remote sensing system contains three major elements: the antenna, the radiometer, and the spectrometer. The radiometer consists of the local oscillator, the mixer, and the intermediate frequency amplifiers. This subsystem performs the function of down converting the high frequency incident thermal emission signal to a lower intermediate frequency. The spectrometer measures the power spectrum of the down-converted signal simultaneously in many contiguous frequency channels. Typical spectrum analysis requirements involve measurement of signal bandwidths of 100 to 1000 MHz with a channel resolution of 0.5 to 10 MHz. Three general approaches are used for spectrometers: (1) filter banks, (2) Acousto-Optic Spectrometers (AOS's), and (3) digital autocorrelators. In contrast to the two frequency domain techniques, an autocorrelator works in the time domain. The autocorrelation function (ACF) of the incoming signal is computed and averaged over the integration time. The averaged ACF is then Fourier transformed to obtain the signal power spectrum. Significant progress was made in the development of sub mm antennas and radiometers. It is now time to begin research in the development of low power spaceborne spectrometers and to reduce their size and weight. The near-term research goal will be to develop a prototype digital autocorrelation spectrometer, using VLSI gate array technology, which will have a small size, low power requirements, and can be used in spacecraft mm and sub mm radiometer systems. The long-range objective of this technology development is to make extremely low power, less than 10 mW/channel, small and stable wideband spectrometers which can be used in future mm and sub mm wavelength space missions such as the Large Deployable Reflector.

  18. Spectrometer technology recommendations

    NASA Technical Reports Server (NTRS)

    Wilson, William J.

    1988-01-01

    A typical heterodyne remote sensing system contains three major elements: the antenna, the radiometer, and the spectrometer. The radiometer consists of the local oscillator, the mixer, and the intermediate frequency amplifiers. This subsystem performs the function of down converting the high frequency incident thermal emission signal to a lower intermediate frequency. The spectrometer measures the power spectrum of the down-converted signal simultaneously in many contiguous frequency channels. Typical spectrum analysis requirements involve measurement of signal bandwidths of 100 to 1000 MHz with a channel resolution of 0.5 to 10 MHz. Three general approaches are used for spectrometers: (1) filter banks, (2) Acousto-Optic Spectrometers (AOS's), and (3) digital autocorrelators. In contrast to the two frequency domain techniques, an autocorrelator works in the time domain. The autocorrelation function (ACF) of the incoming signal is computed and averaged over the integration time. The averaged ACF is then Fourier transformed to obtain the signal power spectrum. Significant progress was made in the development of sub mm antennas and radiometers. It is now time to begin research in the development of low power spaceborne spectrometers and to reduce their size and weight. The near-term research goal will be to develop a prototype digital autocorrelation spectrometer, using VLSI gate array technology, which will have a small size, low power requirements, and can be used in spacecraft mm and sub mm radiometer systems. The long-range objective of this technology development is to make extremely low power, less than 10 mW/channel, small and stable wideband spectrometers which can be used in future mm and sub mm wavelength space missions such as the Large Deployable Reflector.

  19. Neutrino mass from triton decay

    NASA Astrophysics Data System (ADS)

    Weinheimer, Christian

    2006-07-01

    Since the discovery of neutrino flavor oscillation in different fields and by many different experiments we believe that neutrinos have non-vanishing masses in contrast to their current description within the Standard Model of particle physics. However, the absolute values of the neutrino masses, which are as important for particle physics as they are for cosmology and astrophysics, cannot be determined by oscillation experiments alone. There are a few ways to determine the neutrino mass scale, but the only model-independent method is the investigation of the electron energy spectrum of a β decay near its endpoint with tritium being the ideal isotope for the classical spectrometer set-up. The tritium β decay experiments at Mainz and Troitsk have recently been finished. At Mainz all relevant systematic uncertainties have been investigated by dedicated experiments yielding an upper limit of m(ν)<2.3eV/c (90% C.L.). The new Karlsruhe Tritium Neutrino Experiment (KATRIN) will enhance the sensitivity on the neutrino mass by an ultra-precise measurement of the tritium β decay spectrum near the endpoint by another order of magnitude down to 0.2 eV/c2 by using a very strong windowless gaseous molecular tritium source and a huge ultra-high resolution electrostatic spectrometer of MAC-E-Filter type. The recent achievements in test experiments show, that this very challenging experiment is feasible.

  20. Remote Active Spectrometer

    NASA Astrophysics Data System (ADS)

    Cernius, J. V.; Elser, D. A.; Fox, J.

    1989-01-01

    The Remote Active Spectrometer is a compact, lightweight sensor designed to demonstrate remote detection of chemical vapors. A prototype model was developed by Hughes Aircraft Company for the U.S. Army's Center For Night Vision and Electro-Optics, and the Chemical Research Development and Engineering Center. The Remote Active Spectrometer is comprised of four, frequency agile, CO2 laser transmitters (each operating at a rate of 10 hertz), optics for transmission, pointing, reception, and calibration, and detectors and electronics for information processing and recording. To provide a visual record of the scene observed a TV Sensor is integrated with the system. In this paper the Remote Active Spectrometer is described, and its performance in the field discussed.

  1. Electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.

    1973-01-01

    An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

  2. Comparison of imaging spectrometers

    SciTech Connect

    Bennett, C

    2000-01-09

    Realistic signal to noise performance estimates for the various types of instruments being considered for NGST are compared, based on the point source detection values quoted in the available ISIM final reports. The corresponding sensitivity of the various types of spectrometers operating in a full field imaging mode, for both emission line objects and broad spectral distribution objects, is computed and displayed. For the purpose of seeing the earliest galaxies, or the faintest possible emission line sources, the imaging Fourier transform spectrometer emerges superior to all others, by orders of magnitude in speed.

  3. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  4. Portable reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Graham, R. A.; Ozawa, T. (Inventor)

    1977-01-01

    A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 to 2.5 micrometers without requiring coventional substitution of filter elements. The electronic recording unit includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to be manually portable.

  5. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  6. The Apollo Alpha Spectrometer.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

    1973-01-01

    Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

  7. Miniaturised TOF mass spectrometer

    NASA Astrophysics Data System (ADS)

    Rohner, U.; Wurz, P.; Whitby, J.

    2003-04-01

    For the BepiColombo misson of ESA to Mercury, we built a prototype of a miniaturised Time of Flight mass spectrometer with a low mass and low power consumption. Particles will be set free form the surface and ionized by short laser pluses. The mass spectrometer is dedicated to measure the elemental and isotopic composition of almost all elements of Mercurys planetary surface with an adequate dynamique range, mass range and mass resolution. We will present first results of our prototype and future designs.

  8. Proton decay studies at HRIBF

    SciTech Connect

    Batchelder, J. C.; Bingham, C. R.; Rykaczewski, K.; Toth, K. S.; Mas, J. F.; McConnell, J. W.; Yu, C.-H.; Davinson, T.; Slinger, R. C.; Woods, P. J.; Ginter, T. N.; Gross, C. J.; Grzywacz, R.; Kim, S. H.; Weintraub, W.; Janas, Z.; Karny, M.; MacDonald, B. D.; Piechaczek, A.; Zganjar, E. F.

    1998-12-21

    A double-sided Si-strip detector system has been installed and commissioned at the focal plane of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. The system can be used for heavy charged particle emission studies with half-lives as low as a few {mu}sec. In this paper we present identification and study of the decay properties of the five new proton emitters: {sup 140}Ho, {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu.

  9. Proton decay studies at HRIBF

    SciTech Connect

    Batchelder, J.C.; Bingham, C.R.; Rykaczewski, K.; Toth, K.S.; Mas, J.F.; McConnell, J.W.; Yu, C.; Bingham, C.R.; Grzywacz, R.; Kim, S.H.; Weintraub, W.; Rykaczewski, K.; Janas, Z.; Karny, M.; Davinson, T.; Slinger, R.C.; Woods, P.J.; Ginter, T.N.; Gross, C.J.; MacDonald, B.D.; Piechaczek, A.; Zganjar, E.F.; Ressler, J.J.; Walters, W.B.; Szerypo, J.

    1998-12-01

    A double-sided Si-strip detector system has been installed and commissioned at the focal plane of the Recoil Mass Spectrometer at the Holifield Radioactive Ion Beam Facility. The system can be used for heavy charged particle emission studies with half-lives as low as a few {mu}sec. In this paper we present identification and study of the decay properties of the five new proton emitters: {sup 140}Ho, {sup 141m}Ho, {sup 145}Tm, {sup 150m}Lu and {sup 151m}Lu. {copyright} {ital 1998 American Institute of Physics.}

  10. Novel interference spectrometer

    NASA Astrophysics Data System (ADS)

    Chen, Weiwen; Lin, Zhong; Zhang, Zhilian

    1994-01-01

    A modification of the conventional Michelson interference spectrometer is proposed that replaces the extremely precise translational motion with a single uniform velocity rotation of one perpendicular double mirror. The formulas of the optical path difference and the light displacement are deduced. The calculated data show that the path difference has good linearity with the rotation angle. The characteristics of this design are also analyzed.

  11. Mass Spectrometers in Space!

    NASA Technical Reports Server (NTRS)

    Brinckerhoff, William B.

    2012-01-01

    Exploration of our solar system over several decades has benefitted greatly from the sensitive chemical analyses offered by spaceflight mass spectrometers. When dealing with an unknown environment, the broadband detection capabilities of mass analyzers have proven extremely valuable in determining the composition and thereby the basic nature of space environments, including the outer reaches of Earth s atmosphere, interplanetary space, the Moon, and the planets and their satellites. Numerous mass analyzer types, including quadrupole, monopole, sector, ion trap, and time-of-flight have been incorporated in flight instruments and delivered robotically to a variety of planetary environments. All such instruments went through a rigorous process of application-specific development, often including significant miniaturization, testing, and qualification for the space environment. Upcoming missions to Mars and opportunities for missions to Venus, Europa, Saturn, Titan, asteroids, and comets provide new challenges for flight mass spectrometers that push to state of the art in fundamental analytical technique. The Sample Analysis at Mars (SAM) investigation on the recently-launch Mars Science Laboratory (MSL) rover mission incorporates a quadrupole analyzer to support direct evolved gas as well as gas chromatograph-based analysis of martian rocks and atmosphere, seeking signs of a past or present habitable environment. A next-generation linear ion trap mass spectrometer, using both electron impact and laser ionization, is being incorporated into the Mars Organic Molecule Analyzer (MOMA) instrument, which will be flown to Mars in 2018. These and other mass spectrometers and mission concepts at various stages of development will be described.

  12. Tropospheric and Airborne Emission Spectrometers

    NASA Technical Reports Server (NTRS)

    Glavich, Thomas; Beer, Reinhard

    1996-01-01

    X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

  13. Smartphone spectrometer for colorimetric biosensing.

    PubMed

    Wang, Yi; Liu, Xiaohu; Chen, Peng; Tran, Nhung Thi; Zhang, Jinling; Chia, Wei Sheng; Boujday, Souhir; Liedberg, Bo

    2016-05-23

    We report on a smartphone spectrometer for colorimetric biosensing applications. The spectrometer relies on a sample cell with an integrated grating substrate, and the smartphone's built-in light-emitting diode flash and camera. The feasibility of the smartphone spectrometer is demonstrated for detection of glucose and human cardiac troponin I, the latter in conjunction with peptide-functionalized gold nanoparticles.

  14. Grille spectrometer (grille)

    NASA Technical Reports Server (NTRS)

    Ackerman, M.; Besson, J.

    1988-01-01

    The Grille spectrometer was designed and flown on Spaceklab 1 by two organizations: The Office National d'Etudes et de Recherches Aerospatiales in France and the Belgian Institute for Space Aeronomy in Belgium. Its purpose is to study, on a global scale, atmospheric parameters between 15 and 150 km altitude. The investigation uses high-resolution (better than 0.1/cm) spectroscopic observations of the earth's limb in the wavelength range characteristic of the vibrational-rotational lines of the relevant atmospheric constituents. Characteristics and proposed modifications of the grille spectrometer are described. This instrument will be part of the atmospheric science research payload flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission planned for late 1990.

  15. FAST NEUTRON SPECTROMETER

    DOEpatents

    Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.

    1959-08-18

    An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.

  16. The ALPHA Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Viertel, G. M.; Capell, M.

    1998-12-01

    The ALPHA Magnetic Spectrometer (AMS) will be the first large magnetic spectrometer in space. It is scheduled to be installed on the future International Space Station ALPHA (ISSA) in the year 2002 to perform measurements of the charged particle composition to answer fundamental questions in particle physics and astrophysics. Before installation on ISSA, AMS will fly on the shuttle DISCOVERY for a period of 10 days starting in May 1998. This will enable AMS to perform a test of the apparatus and first measurements. The AMS detector has five major components: A permanent NdFeB magnet, six planes of Silicon double-sided microstrip detectors, a plastic scintillator time of flight hodoscope, a plastic scintillator anticoincidence counter and an Aerogel Cherenkov threshold counter. In addition, there are electronics, support infrastructure and interfaces.

  17. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  18. A Sagnac Fourier spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2017-03-09

    A spectrometer based on a Sagnac interferometer, where one of the mirrors is replaced by a transmission grating, is introduced. Since the action of a transmission grating is reversible, both directions experience the same diffraction at a given wavelength. At the output, the crossed wavefronts are imaged onto a camera, where their Fizeau fringe pattern is recorded. Each spectral element produces a unique spatial frequency, hence the Fourier transform of the recorded interferogram contains the spectrum. Since the grating is tuned to place zero spatial frequency at a selected wavelength, the adjoining spectrum is heterodyned with respect to this wavelength.more » This spectrum can then be discriminated at a high spectral resolution from relatively low spatial frequencies. The spectrometer can be designed without moving parts for a relatively narrow spectral range or with a rotatable grating. As a result, the latter version bears the potential to be calibrated without a calibrated light source.« less

  19. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  20. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  1. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J (Inventor); Stimac, Robert M. (Inventor)

    2017-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer (IMS) achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250 degrees Centigrade, and is uniquely sensitive, particularly to explosive chemicals.

  2. Miniaturized Ion Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Kaye, William J. (Inventor); Stimac, Robert M. (Inventor)

    2015-01-01

    By utilizing the combination of a unique electronic ion injection control circuit in conjunction with a particularly designed drift cell construction, the instantly disclosed ion mobility spectrometer achieves increased levels of sensitivity, while achieving significant reductions in size and weight. The instant IMS is of a much simpler and easy to manufacture design, rugged and hermetically sealed, capable of operation at high temperatures to at least 250.degree. C., and is uniquely sensitive, particularly to explosive chemicals.

  3. Demonstration AOTF Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Cheng, Li-Jen

    1993-01-01

    Spectral images of high quality obtained. Acousto-optical-tunable-filter (AOTF) imaging spectrometer is optical system in which AOTF serves as spectrally dispersive element causing image on final focal plane to be shifted on plane by distance depending on wavelength of light emanating from scene. Useful in several applications involving identification, via characteristic spectras, of substances in observed scenes: examples include prospecting for minerals and detecting chemical pollutants.

  4. Beta decay of 99Tcm

    NASA Astrophysics Data System (ADS)

    Alburger, D. E.; Richards, P.; Ku, T. H.

    1980-02-01

    The emission of β rays from 6.02-h 99Tcm has been detected with an intermediate-image magnetic spectrometer. β-ray components with end-point energies of 434.8+/-2.6 keV (β0) to the 99Ru ground state and 346.7+/-2.0 keV (β1) to the 90-keV state were found with intensities per decay of (1.0+/-0.3) × 10-5 for β0 and (2.6+/-0.5) × 10-5 for β1. In the Kurie plot analysis the unique first-forbidden "α" shape was assumed for β0 and an allowed shape was assumed for β1. Values of f1t=9.39+/-0.11 for β0 and f0t=8.66+/-0.08 for β1 were derived. γ rays of 322, 233, and 140 keV were observed in a calibrated Ge(Li) detector with relative source intensities of I322:I233:I140=(1.13+/-0.09)×10-6:(0.95+/-0.17)×10-7:1.000. The total β-ray branching of 3.7 × 10-5 results in a negligible correction to dosage calculations in the use of 99Tcm for diagnostic nuclear medicine. RADIOACTIVITY 99Tcm: measured Eβ, Iβ, and Iγ magnetic spectrometer, Ge(Li); deduced decay scheme.

  5. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  6. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  7. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  8. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  9. A measurement of the branching ratio of K+-- ->pi+--mu+mu- decays in the Hyper CP experiment

    SciTech Connect

    Zyla, Piotr; other HyperCP Collaborators

    2001-11-26

    Large samples of hyperon and kaon decays were collected with the Hyper CP spectrometer during two fixed-target runs at Fermilab. Based on an analysis of 110 million K pm decays from the 1997 data sample we present a branching ratio for K pm right arrow pi pm mu+ mu-. This is the first observation of K- right arrow pi- mu+ mu- decay.

  10. Cassini Plasma Spectrometer Investigation

    NASA Astrophysics Data System (ADS)

    Young, D. T.; Berthelier, J. J.; Blanc, M.; Burch, J. L.; Coates, A. J.; Goldstein, R.; Grande, M.; Hill, T. W.; Johnson, R. E.; Kelha, V.; McComas, D. J.; Sittler, E. C.; Svenes, K. R.; Szegö, K.; Tanskanen, P.; Ahola, K.; Anderson, D.; Bakshi, S.; Baragiola, R. A.; Barraclough, B. L.; Black, R. K.; Bolton, S.; Booker, T.; Bowman, R.; Casey, P.; Crary, F. J.; Delapp, D.; Dirks, G.; Eaker, N.; Funsten, H.; Furman, J. D.; Gosling, J. T.; Hannula, H.; Holmlund, C.; Huomo, H.; Illiano, J. M.; Jensen, P.; Johnson, M. A.; Linder, D. R.; Luntama, T.; Maurice, S.; McCabe, K. P.; Mursula, K.; Narheim, B. T.; Nordholt, J. E.; Preece, A.; Rudzki, J.; Ruitberg, A.; Smith, K.; Szalai, S.; Thomsen, M. F.; Viherkanto, K.; Vilppola, J.; Vollmer, T.; Wahl, T. E.; Wüest, M.; Ylikorpi, T.; Zinsmeyer, C.

    2004-09-01

    The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ˜70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ˜2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

  11. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  12. The GRANIT spectrometer

    SciTech Connect

    Baessler, Stefan; Beau, M; Kreuz, Michael; Nesvizhevsky, V.; Kurlov, V; Pignol, G; Protasov, K.; Vezzu, Francis; Voronin, Vladimir

    2011-01-01

    The existence of quantum states of matter in a gravitational field was demonstrated recently in the Institut Laue-Langevin (ILL), Grenoble, in a series of experiments with ultra cold neutrons (UCN). UCN in low quantum states is an excellent probe for fundamental physics, in particular for constraining extra short-range forces; as well as a tool in quantum optics and surface physics. The GRANIT is a follow-up project based on a second-generation spectrometer with ultra-high energy resolution, permanently installed in ILL. It has been constructed in framework of an ANR grant; and will become operational in 2011.

  13. Gas Chromatic Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Wey, Chowen

    1995-01-01

    Gas chromatograph/mass spectrometer (GC/MS) used to measure and identify combustion species present in trace concentration. Advanced extractive diagnostic method measures to parts per billion (PPB), as well as differentiates between different types of hydrocarbons. Applicable for petrochemical, waste incinerator, diesel transporation, and electric utility companies in accurately monitoring types of hydrocarbon emissions generated by fuel combustion, in order to meet stricter environmental requirements. Other potential applications include manufacturing processes requiring precise detection of toxic gaseous chemicals, biomedical applications requiring precise identification of accumulative gaseous species, and gas utility operations requiring high-sensitivity leak detection.

  14. Astronomical Fourier spectrometer.

    PubMed

    Connes, P; Michel, G

    1975-09-01

    A high resolution near ir Fourier spectrometer with the same general design as previously described laboratory instruments has been built for astronomical observations at a coudé focus. Present spectral range is 0.8-3.5 microm with PbS and Ge detectors and maximum path difference 1 m. The servo system can accommodate various recording modes: stepping or continuous scan, path difference modulation, sky chopping. A real time computer is incorporated into the system, which has been set up at the Hale 500-cm telescope on Mount Palomar. Samples of the results are given.

  15. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  16. Detection of colorectal cancer using time-resolved autofluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Kwek, Leong-Chuan; Chia, Teck-Chee; Lim, Chu-Sing; Tang, Choong-Leong; Ang, Wuan-Suan; Zhou, Miao-Chang; Loke, Po-Ling

    2006-04-01

    As we know Quantum mechanics is a mathematical theory that can describe the behavior of objects that are at microscopic level. Time-resolved autofluorescence spectrometer monitors events that occur during the lifetime of the excited state. This time ranges from a few picoseconds to hundreds of nanoseconds. That is an extremely important advance as it allows environmental parameters to be monitored in a spatially defined manner in the specimen under study. This technique is based on the application of Quantum Mechanics. This principle is applied in our project as we are trying to use different fluorescence spectra to detect biological molecules commonly found in cancerous colorectal tissue and thereby differentiate the cancerous and non-cancerous colorectal polyps more accurately and specifically. In this paper, we use Fluorescence Lifetime Spectrometer (Edinburgh Instruments FL920) to measure decay time of autofluorescence of colorectal cancerous and normal tissue sample. All specimens are from Department of Colorectal Surgery, Singapore General Hospital. The tissues are placed in the time-resolved autofluorescence instrument, which records and calculates the decay time of the autofluorescence in the tissue sample at the excitation and emission wavelengths pre-determined from a conventional spectrometer. By studying the decay time,τ, etc. for cancerous and normal tissue, we aim to present time-resolved autofluorescence as a feasible technique for earlier detection of malignant colorectal tissues. By using this concept, we try to contribute an algorithm even an application tool for real time early diagnosis of colorectal cancer for clinical services.

  17. Search for the CP forbidden decay eta-->4pi(0)

    PubMed

    Prakhov; Tippens; Allgower; Bekrenev; Berger; Briscoe; Clajus; Comfort; Craig; Grosnick; Huber; Isenhower; Knecht; Koetke; Koulbardis; Kozlenko; Kruglov; Kycia; Lolos; Lopatin; Manley; Marusic; Manweiler; McDonald; Nefkens; Olmsted

    2000-05-22

    We report the first determination of the upper limit for the branching ratio of the CP forbidden decay eta-->4pi(0). No events were observed in a sample of 3.0x10(7) eta decays. The experiment was performed with the Crystal Ball multiphoton spectrometer installed in a separated pi(-) beam at the AGS (Alternating Gradient Synchrotron). At the 90% confidence limit, B(eta-->4pi(0))

  18. Prospects for rare and forbidden hyperon decays at BESIII

    NASA Astrophysics Data System (ADS)

    Li, Hai-Bo

    2017-10-01

    The study of hyperon decays at the Beijing Electron Spectrometer III (BESIII) is proposed to investigate the events of J/ ψ decay into hyperon pairs, which provide a pristine experimental environment at the Beijing Electron-Positron Collider II. About 106-108 hyperons, i.e., Λ, Σ, Ξ, and Ω, will be produced in the J/ ψ and ψ(2 S) decays with the proposed data samples at BESIII. Based on these samples, the measurement sensitivity of the branching fractions of the hyperon decays is in the range of 10-5-10-8. In addition, with the known center-of-mass energy and "tag technique", rare decays and decays with invisible final states can be probed.

  19. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  20. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  1. Optical fiber interferometric spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Baosheng; Liu, Yan; Zhai, Yufeng; Wang, An

    2006-02-01

    We design an optical fiber spectrometer based on optical fiber Mach-Zehnder interferometer. In optical fiber Fourier transform spectrometer spectra information is obtained by Fourier transform of interferogram, which recording intensity change vs. optical path difference. Optical path difference is generated by stretching one fiber arm which wound around fiber stretch drive by high power supply. Information from detector is linear with time rather than with optical path difference. In order to obtain high accuracy wavenumber, reference beam is used to control the optical path difference. Optical path difference is measured by reference laser interference fringe. Interferogram vs. optical path difference is resampled by Brault algorithm with information from reference beam and test beam. In the same condition, one-sided interferogram has higher resolution than that of two-sided interferogram. For one-sided interferogram, zero path difference position must be determined as accurately as possible, small shift will result in phase error. For practical experiment in laboratory, position shift is inevitable, so phase error correction must be considered. Zero order fringe is determined by curve fitting. Spectrum of light source is obtained from one-sided interferogram by Fourier cosine transform. A spectral resolution of about ~3.1 cm -1 is achieved. In practice, higher resolution is needed. This compact equipment will be used in emission spectra and absorption spectra, especially in infrared region.

  2. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  3. Spatial heterodyne spectrometer for FLEX

    NASA Astrophysics Data System (ADS)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  4. Research highlights with the spin spectrometer

    SciTech Connect

    Sarantites, D.G.; Jaeaeskelaeinen, M.; Dilmanian, F.A.; Puchta, H.; Woodward, R.; Beene, J.R.; Hensley, D.C.; Halbert, M.L.; Hattula, J.; Barker, J.H.

    1982-01-01

    The excitation energy and angular momentum dependence of the entry states in fusion reactions measured with the spin spectrometer is discussed. A new decay mode involving the onset of localized stretched dipole radiation at half the accompanying stretched E2 collective radiation is found in /sup 157 -161/Yb. The appearance of this mode correlates smoothly with neutron number and spin. Possible interpretations are presented in terms of the evolution of the nuclear shapes from prolate to aligned-quasiparticle oblate to collective oblate and then to triaxial. Evidence for nuclear deformation that increases with spin at very high excitation is presented based on ..cap alpha..-particle angular distributions measured relative to the spin direction, using a new method for deriving the spin alignment.

  5. Dilepton Analysis in the Hades Spectrometer for 12C+12C at 2 Agev

    NASA Astrophysics Data System (ADS)

    Otwinowski, J.; Agakichiev, G.; Agodi, C.; Alvarez-Poll, H.; Balanda, A.; Bellia, G.; Bielcik, J.; Bömer, M.; Bokemeyer, H.; Boyard, J.; Braun-Munzinger, P.; Chernenko, S.; Christ, T.; Coniglione, R.; Djeridi, R.; Dohrmann, F.; Durán, I.; Eberl, T.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Friese, J.; Fröhlich, I.; Garzón, J.; Gernhäuser, R.; Golubeva, M.; Gonzalez, D.; Grosse, E.; Gruber, F.; Hennino, T.; Hlavac, S.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Jaskuła, M.; Jurkovic, M.; Kämpfer, B.; Kanaki, K.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B.; Kopf, U.; Kotte, R.; Kotulic-Bunta, J.; Krücken, R.; Kugler, A.; Kühn, W.; Kulessa, R.; Kurepin, A.; Lang, S.; Lehnert, J.; Maiolino, C.; Market, J.; Metag, V.; Mousa, J.; Münch, M.; Müntz, C.; Naumann, L.; Novotny, J.; Novotný, J.; Pachmayer, Y.; Pant, L. M.; Pechenov, V.; Pérez, T.; Pietraszko, J.; Pleskač, R.; Pospíšil, V.; Przygoda, W.; Rabin, N.; Ramstein, B.; Reshetin, A.; Ritman, J.; Roy-Stephan, M.; Rustamov, A.; Sadovsky, A.; Sailer, B.; Salabura, P.; Sánchez, M.; Sapienza, P.; Schmah, A.; Simon, R.; Smolyanikin, V.; Smykov, L.; Spataro, S.; Stroebele, H.; Stroth, J.; Sturm, C.; Sudol, M.; Tlustý, P.; Toia, A.; Traxler, M.; Tsertos, H.; Wagner, V.; Wiśniowski, M.; Wójcik, T.; Wüstenfeld, J.; Zanevsky, Y.; Žoviniec, D.; Zumbruch, P.

    The identification of the light mesons in the HADES spectrometer is based on an invariant mass reconstruction of their decay into e+e- pairs. In the dilepton (e+e-) signal reconstruction, particularly important is the reduction of a huge combinatorial background arising from wrong combinations of e+ and e- to unlike sign pairs. Methods of the dilepton signal and combinatorial background reconstruction in the HADES spectrometer will be presented.

  6. Particle Spectrometers for FRIB

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.

    2014-09-01

    FRIB promises to dramatically expand the variety of nuclear systems available for direct experimental study by providing rates of many rare isotopes orders of magnitude higher than those currently available. A new generation of experimental systems, including new particle spectrometers will be critical to our ability to take full advantage of the scientific opportunities offered by FRIB. The High-Rigidity Spectrometer (HRS) will allow for experiments with the most neutron-rich and short-lived isotopes produced by in-flight fragmentation at FRIB. The bending capability of the HRS (8 Tm) matches to the rigidity for which rare isotopes are produced at the highest intensity in the FRIB fragment separator. The experimental program will be focused on nuclear structure and astrophysics, and allow for the use of other cutting-edge detection systems for gamma, neutron, and charged-particle detection. Stopped and reaccelerated beam studies will be an important compliment to in-flight techniques at FRIB, providing world-unique, high quality, intense rare isotope beams at low energies up to and beyond the Coulomb barrier--with the completion of ReA12--and serving many of the science goals of the broader facility, from nuclear structure and astrophysics to applications. Two specialized recoil spectrometers are being developed for studies with reaccelerated beams. SECAR, the Separator for Capture Reactions, will be built following ReA3, coupled to a windowless gas jet target, JENSA, and will focus on radiative capture reactions for astrophysics, particularly those needed to improve our understanding of novae and X-ray bursts. A recoil separator following ReA12 is proposed to address a variety of physics cases based on fusion-evaporation, Coulomb excitation, transfer, and deep-inelastic reactions by providing a large angular, momentum and charge state acceptance; a high mass resolving power; and the flexibility to couple to a variety of auxiliary detector systems. Two designs

  7. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  8. Lead iodide nuclear spectrometers

    SciTech Connect

    Lund, J.C.; Shah, K.S.; Squillante, M.R.; Sinclair, F.

    1988-02-01

    This paper discusses the preparation of radiation detectors from the semiconductor lead iodide, PbI/sub 2/, and evaluates the performance of these devices as x-ray and gamma ray spectrometers. It was found that lead iodide detectors prepared from melt grown crystals exhibited good energy resolution for low energy (<10 keV) x-rays. The energy resolution for higher energy photons was less, consistent with the measured values of the electron and hole mobility-lifetime products. The performance of the PbI/sub 2/ detectors at elevated temperatures was also measured and it was found that the detectors continued to operate well at temperatures over 100/sup 0/C.

  9. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  10. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  11. Thermoluminescence emission spectrometer.

    PubMed

    Prescott, J R; Fox, P J; Akber, R A; Jensen, H E

    1988-08-15

    A sensitive thermoluminescence (TL) emission spectrometer based on Fourier transform spectroscopy is described. It employs a modified scanning Twyman-Green interferometer with photomultiplier detection in a photon-counting mode. The etendue is 180pi mm(2), and it covers the 350-600-nm wavelength range. The output can be displayed either as a 3-D isometric plot of intensity vs temperature and wavelength, as a contour diagram, or as a conventional TL glow curve of intensity vs temperature. It is sufficiently sensitive to record thermoluminescence spectra of dosimeter phosphors and minerals for thermoluminescence dating at levels corresponding to those found during actual use as radiation monitors or in dating. Examples of actual spectra are given.

  12. Bolometers as particle spectrometers

    NASA Astrophysics Data System (ADS)

    Stroke, H. H.; Artzner, G.; Coron, N.; Dambier, G.; Hansen, P. G.

    1986-02-01

    A spectrometer based on low-temperature calorimetry has been under development since 1983. The present detector, capable of recording individual alpha and beta particles and X-ray photons, is based on a composite diamond-germanium bolometer. The advantage of a composite bolometer is that it separates the absorption and detection functions. Diamond, as an absorber, is of particular advantage because of its low heat capacity and high thermal diffusivity. The goal is a theoretical energy resolution of a few eV at 0.1 K. Initial experiments at 1.3 K and 0.9 K, which give resolutions in the keV range, are still noise-limited. High-resolution applications, such as in X-ray astronomy and nuclear physics (in particular, neutron mass measurements) are foreseen.

  13. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  14. Far From 'Easy' Spectroscopy with the 8 pi and GRIFFIN Spectrometers at TRIUMF-ISAC

    SciTech Connect

    Garrett, Paul; Radich, A.J.; Allmond, James M; Andreoiu, C.; Ball, G.C.; Bender, P.C.; Bianco, L.; Bildstein, V.; Bidaman, H.; Braid, R.; Burbadge, C.; Chagnon-Lessard, S.; Cross, D.S.; Deng, G.; Demand, G.A.; Diaz Varela, A.; Dunlop, R.; Dunlop, M.R.; Finlay, P.; Garnsworthy, A.B.; Grinyer, G.F.; Hackman, G.; Hadinia, B.; Ilyushkin, S.; Jigmeddorj, B.; Kisliuk, D.; Kuhn, K.; Laffoley, A.T.; Leach, K.G.; Maclean, A.D.; Michetti-Wilson, J.; Miller, D.; Moore, W.; Olaizola, B.; Orce, J.N.; Pearson, C.J.; Pore, J.L.; Rajabali, M.M.; Rand, E.T.; Sarazin, F.; Smith, J.K.; Starosta, K.; Sumithrarachchi, C.S.; Svensson, C.E.; Triambak, S.; Turko, J.; Wang, Z.M.; Wood, J. L.; Wong, J.; Williams, S.J.; Yates, S.W.; Zganjar, E. F.

    2015-01-01

    The 8 pi spectrometer, installed at the TRIUMF-ISAC facility, was the world's most sensitive gamma-ray spectrometer dedicated to beta-decay studies. A description is given of the 8 pi spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for beta-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of Cs-124 to study the nuclear structure of Xe-124, and how the beta-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0(+) bands in Xe-124. As a by-product, the decay scheme of the (7(+)) Cs-124 isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8 pi spectrometer, is given.

  15. Tunable Snapshot Spectrometer Feasibility Study

    DTIC Science & Technology

    2004-09-30

    tunable snapshot imaging spectrometer has been demonstrated. A liquid crystal spatial light modulator (LC SLM) has been integrated into a...integrate a liquid crystal spatial light modulator into a CTIS instrument and characterize its performance as a tunable CTIS disperser, and (2) to...Spectrometer Liquid Crystal Spatial Light Modulator Computer Generated Hologram 15. NUMBER OF PAGES 138

  16. Short-orbit spectrometer for Hall C at CEBAF

    SciTech Connect

    Jackson, H.E.; Potterveld, D.H.; Zeidman, B.

    1995-08-01

    An examination of the proposed experimental program for Hall C at CEBAF reveals a major emphasis on coincidence experiments involving a {open_quotes}core{close_quotes} spectrometer and a second arm capable of detecting particles with momenta < 2 GeV/c with moderate energy and angular resolution. In most cases, the core spectrometer serves to tag a virtual photon, which induces a reaction in a nuclear target resulting in the ejection of a hadron in the energy range (0.2-2.0 GeV) which is observed in the second spectrometer. Nuclear physics topics addressed in these experiments include color transparency, nucleon propagation, pion electroproduction, and hyperon physics. All of these programs require an acceptance in the hadron spectrometer as large as possible in solid angle and momentum to maximize operational efficiency. In addition, relatively short spectrometer drift lengths are required in experiments involving detection of pions or kaons in order to minimize decay losses. Because the requirements for energy resolution in this class of experiments is moderate, typically {approximately} 10{sup -3}, an optimized design with a short optical length less than 10 m will provide a well-matched spectrometer capability. Excellent particle discrimination will be essential for detection of pions and kaons in the presence of high backgrounds. Operation at luminosities as high as 10{sup 38}/cm{sup 2} sec will be required frequently. To provide this second-arm capability, the Argonne group has built, under contract to CEBAF, a short-orbit spectrometer, the SOS, based on a QD{bar D} design. The QD{bar D} configuration provides a large momentum acceptance, with good energy resolution and solid-angle acceptance in a very compact geometry which can meet the needs of a broad spectrum of studies appropriate for Hall C at CEBAF.

  17. Lunar orbital mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Lord, W. P.

    1971-01-01

    The design, development, manufacture, test and calibration of five lunar orbital mass spectrometers with the four associated ground support equipment test sets are discussed. A mass spectrometer was installed in the Apollo 15 and one in the Apollo 16 Scientific Instrument Module within the Service Module. The Apollo 15 mass spectrometer was operated with collection of 38 hours of mass spectra data during lunar orbit and 50 hours of data were collected during transearth coast. The Apollo 16 mass spectrometer was operated with collection of 76 hours of mass spectra data during lunar orbit. However, the Apollo 16 mass spectrometer was ejected into lunar orbit upon malfunction of spacecraft boom system just prior to transearth insection and no transearth coast data was possible.

  18. Neutron decay of the Giant Pairing Vibration in 15C

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Agodi, C.; Assié, M.; Azaiez, F.; Cappuzzello, F.; Carbone, D.; de Séréville, N.; Foti, A.; Pandola, L.; Scarpaci, J. A.; Sgouros, O.; Soukeras, V.

    2016-06-01

    The neutron decay of the resonant states of light neutron-rich nuclei is an important and poorly explored property, useful to extract valuable nuclear structure information. The neutron decay of the 15C resonances populated via the two-neutron transfer reaction 13C(18O,16O n) at 84 MeV incident energy is studied using an innovative technique which couples the MAGNEX magnetic spectrometer and the EDEN neutron detector array. The data show that the recently observed 15C Giant Pairing Vibration at 13.7 MeV mainly decays via two-neutron emission.

  19. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Tain, J. L.; Jordan, M. D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Podolyak, Zs.; Regan, P. H.; Gelletly, W.; Bowry, M.; Mason, P.; Farrelly, G. F.; Rissanen, J.; Eronen, T.; Moore, I.; Penttila, H.; Aysto, J.; Eloma, V.; Hakala, J.; Jokinen, A.; Kolkinen, V.; Reponen, M.; Sonnenschein, V.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Garcia, A. R.; Gomez-Hornillos, M. B.; Gorlychev, V.; Caballero-Folch, R.; Kondev, F. G.; Sonzogni, A. A.

    2014-06-01

    We present an overview of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br using a new segmented total absorption spectrometer are presented. Our measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  20. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  1. Messenger RNA Decay.

    PubMed

    Kushner, Sidney R

    2007-04-01

    This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.

  2. An acoustic dielectric and mechanical spectrometer.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-06-21

    In this report, the dielectric constant of glycerol solutions (0-70% (w/w)) and the mechanical transitions of poly(2-hydroxylethyl methacrylate-co-methacrylic acid) films (600-800 nm, 1.5-10 mol% cross-linker) have been investigated by the magnetic acoustic resonance sensor (MARS), which is an electrode-free acoustic sensor and operates over a continuous frequency spectrum (6-200 MHz). When a glycerol solution was loaded, the response of the MARS decayed exponentially as the operating frequency was increased. The decay rate against frequency as a function of the glycerol concentration reflects the change of the dielectric property of the glycerol solutions. In addition, mechanical relaxation of the poly(2-hydroxylethyl methacrylate-co-methacrylic acid) film has been observed on the MARS and the corresponding viscoelastic transition frequency has been estimated. The viscoelastic transition frequency increased as the polymer was more highly cross-linked. The MARS system behaved as a dielectric and mechanical spectrometer, monitoring the electrical and mechanical properties of viscoelastic materials or on the solid-liquid interfaces simultaneously, which has prospective application in studies of biomaterials, molecular interactions and drug deliveries.

  3. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  4. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  5. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  6. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  7. VEGAS: VErsatile GBT Astronomical Spectrometer

    NASA Astrophysics Data System (ADS)

    Bussa, Srikanth; VEGAS Development Team

    2012-01-01

    The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.

  8. Gamma-Ray Transitions In the Decay of the Superallowed Beta Emitter 62Ga

    SciTech Connect

    Hyland, B.; Svensson, C. E.; Andreoiu, C.; Garrett, P. E.; Grinyer, G. F.; Phillips, A. A.; Schumaker, M. A.; Valiente-Dobon, J. J.; Ball, G. C.; Albers, D.; Bricault, P.; Churchman, R.; Dombsky, M.; Hackman, G.; Hanemaayer, V.; Lassen, J.; Morton, A. C.; Pearson, C. J.; Pearson, M.; Leslie, J. R.

    2006-03-13

    A measurement of the ground state {beta}-decay branching ratio of 62Ga has been made as part of a program of high-precision superallowed Fermi {beta} decay studies at the ISAC radioactive beam facility. The experiment was conducted by detecting {gamma} rays and {beta} particles from the decay of 62Ga using the 8{pi} {gamma}-ray spectrometer and the SCEPTAR plastic scintillator array.

  9. Method for calibrating mass spectrometers

    DOEpatents

    Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

    2002-12-24

    A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

  10. Multiple order common path spectrometer

    NASA Technical Reports Server (NTRS)

    Newbury, Amy B. (Inventor)

    2010-01-01

    The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

  11. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  12. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  13. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  14. Fast-neutron spectrometer developments

    NASA Technical Reports Server (NTRS)

    Moler, R. B.; Zagotta, W. E.; Baker, S. I.

    1973-01-01

    Li6 sandwich-type neutron spectrometer is equipped with proportional counter for particle identification. System uses current-sensitive preamplifiers to minimize pile-up of gamma-ray and particle pulses.

  15. Versatile cluster based photoelectron spectrometer

    SciTech Connect

    Knappenberger, K. L. Jr.; Jones, C. E. Jr.; Sobhy, M. A.; Castleman, A. W. Jr.

    2006-12-15

    A recently constructed cluster based photoelectron spectrometer is described. This instrumentation is unique in that it enables the kinetic energy analysis of electrons ejected from both anions and neutral clusters. This capability permits the investigation of discrete electronic levels in all charge states (anionic, neutral, and cationic). A laser vaporization plasma reactor cluster source affixed with a sublimation cell is employed to produce a variety of metal clusters, and the resulting cluster distributions are analyzed with time-of-flight mass spectrometry. The corresponding electronic structure is analyzed with a 'magnetic bottle' photoelectron spectrometer. Examples of instrument performance operating in both anion photodetachment and neutral multiphoton ionization (MPI) modes are provided. In the case of neutral MPI, the corresponding product distribution is collected with a Wiley-McLaren [Rev. Sci. Instrum. 26, 1150 (1955)] mass spectrometer mounted perpendicular to the magnetic bottle photoelectron spectrometer.

  16. Alpha Magnetic Spectrometer (AMS) Overview

    NASA Image and Video Library

    The Alpha Magnetic Spectrometer (AMS) is flying to the station on STS-134. The AMS experiment is a state-of-the-art particle physics detector being operated by an international team composed of 60 ...

  17. Micromachined Slits for Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Kenny, James; White, Victor

    2008-01-01

    Slits for imaging spectrometers can now be fabricated to a precision much greater than previously attainable. What makes this possible is a micromachining process that involves the use of microlithographic techniques.

  18. The GRAVITY spectrometers: optical qualification

    NASA Astrophysics Data System (ADS)

    Yazici, Senol; Straubmeier, Christian; Wiest, Michael; Wank, Imke; Fischer, Sebastian; Horrobin, Matthew; Eisenhauer, Frank; Perrin, Guy; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY1 is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument2 (BCI) four Fiber Couplers3 (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer4 (FT) and a science channel for the science spectrometer4 (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept.5 The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics6 (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors7 (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism.8 The Science spectrometer is more diverse and allows to choose from three different spectral resolutions8 (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the ux in 2 × 2 pixel (36 × 36 μm2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present

  19. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2004-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single

  20. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    SciTech Connect

    Arenz, M.; Babutzka, M.; Bahr, M.; Barrett, J. P.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Besserer, U.; Blümer, J.; Bodine, L. I.; Bokeloh, K.; Bonn, J.; Bornschein, B.; Bornschein, L.; Büsch, S.; Burritt, T. H.; Chilingaryan, S.; Corona, T. J.; Viveiros, L. De; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Ebenhöch, S.; Eitel, K.; Ellinger, E.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Felden, A.; Fischer, S.; Formaggio, J. A.; Fränkle, F.; Furse, D.; Ghilea, M.; Gil, W.; Glück, F.; Ureña, A. Gonzalez; Görhardt, S.; Groh, S.; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillen, B.; Höhn, T.; Holzapfel, B.; Hötzel, M.; Howe, M. A.; Huber, A.; Jansen, A.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Kosmider, A.; Kovalík, A.; Krasch, B.; Kraus, M.; Krause, H.; Krause, M.; Kuckert, L.; Kuffner, B.; Cascio, L. La; Lebeda, O.; Leiber, B.; Letnev, J.; Lobashev, V. M.; Lokhov, A.; Malcherek, E.; Mark, M.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Müller, K.; Neuberger, M.; Neumann, H.; Niemes, S.; Noe, M.; Oblath, N. S.; Off, A.; Ortjohann, H. -W.; Osipowicz, A.; Otten, E.; Parno, D. S.; Plischke, P.; Poon, A. W. P.; Prall, M.; Priester, F.; Ranitzsch, P. C. -O.; Reich, J.; Rest, O.; Robertson, R. G. H.; Röllig, M.; Rosendahl, S.; Rupp, S.; Ryšavý, M.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Schwarz, J.; Seiler, W.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Skasyrskaya, A.; Slezák, M.; Špalek, A.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suesser, M.; Telle, H. H.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Unru, A.; Valerius, K.; Vénos, D.; Vianden, R.; Vöcking, S.; Wall, B. L.; Wandkowsky, N.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wierman, K. L.; Wilkerson, J. F.; Winzen, D.; Wolf, J.; Wüstling, S.; Zacher, M.; Zadoroghny, S.; Zbořil, M.

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10-11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.

  1. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE PAGES

    Arenz, M.; Babutzka, M.; Bahr, M.; ...

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps and 3more » km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10-11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  2. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Babutzka, M.; Bahr, M.; Barrett, J. P.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Besserer, U.; Blümer, J.; Bodine, L. I.; Bokeloh, K.; Bonn, J.; Bornschein, B.; Bornschein, L.; Büsch, S.; Burritt, T. H.; Chilingaryan, S.; Corona, T. J.; De Viveiros, L.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Ebenhöch, S.; Eitel, K.; Ellinger, E.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Felden, A.; Fischer, S.; Formaggio, J. A.; Fränkle, F.; Furse, D.; Ghilea, M.; Gil, W.; Glück, F.; Gonzalez Ureña, A.; Görhardt, S.; Groh, S.; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillen, B.; Höhn, T.; Holzapfel, B.; Hötzel, M.; Howe, M. A.; Huber, A.; Jansen, A.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Kosmider, A.; Kovalík, A.; Krasch, B.; Kraus, M.; Krause, H.; Krause, M.; Kuckert, L.; Kuffner, B.; La Cascio, L.; Lebeda, O.; Leiber, B.; Letnev, J.; Lobashev, V. M.; Lokhov, A.; Malcherek, E.; Mark, M.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Müller, K.; Neuberger, M.; Neumann, H.; Niemes, S.; Noe, M.; Oblath, N. S.; Off, A.; Ortjohann, H.-W.; Osipowicz, A.; Otten, E.; Parno, D. S.; Plischke, P.; Poon, A. W. P.; Prall, M.; Priester, F.; Ranitzsch, P. C.-O.; Reich, J.; Rest, O.; Robertson, R. G. H.; Röllig, M.; Rosendahl, S.; Rupp, S.; Ryšavý, M.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Schwarz, J.; Seiler, W.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Skasyrskaya, A.; Slezák, M.; Špalek, A.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suesser, M.; Telle, H. H.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Unru, A.; Valerius, K.; Vénos, D.; Vianden, R.; Vöcking, S.; Wall, B. L.; Wandkowsky, N.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wierman, K. L.; Wilkerson, J. F.; Winzen, D.; Wolf, J.; Wüstling, S.; Zacher, M.; Zadoroghny, S.; Zbořil, M.

    2016-04-01

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10-11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.

  3. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  4. aCORN Beta Spectrometer and Electrostatic Mirror

    NASA Astrophysics Data System (ADS)

    Hassan, Md; aCORN Collaboration

    2013-10-01

    aCORN uses a high efficiency backscatter suppressed beta spectrometer to measure the electron-antineutrino correlation in neutron beta decay. We measure the correlation by counting protons and beta electrons in coincidence with precisely determined electron energy. There are 19 photomultiplier tubes arranged in a hexagonal array coupled to a single phosphor doped polystyrene scintillator. The magnetic field is shaped so that electrons that backscatter without depositing their full energy strike a tulip-shaped array of scintillator paddles and these events are vetoed. The detailed construction, performance and calibration of this beta spectrometer will be presented. I will also present the simulation, construction, and features of our novel electrostatic mirror. This work was supported by the National Science Foundation and the NIST Center for Neutron Research.

  5. The MAGNEX spectrometer: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  6. On-chip random spectrometer

    NASA Astrophysics Data System (ADS)

    Redding, B.; Liew, S. F.; Sarma, R.; Cao, H.

    2014-05-01

    Spectrometers are widely used tools in chemical and biological sensing, material analysis, and light source characterization. The development of a high-resolution on-chip spectrometer could enable compact, low-cost spectroscopy for portable sensing as well as increasing lab-on-a-chip functionality. However, the spectral resolution of traditional grating-based spectrometers scales with the optical pathlength, which translates to the linear dimension or footprint of the system, which is limited on-chip. In this work, we utilize multiple scattering in a random photonic structure fabricated on a silicon chip to fold the optical path, making the effective pathlength much longer than the linear dimension of the system and enabling high spectral resolution with a small footprint. Of course, the random spectrometer also requires a different operating paradigm, since different wavelengths are not spatially separated by the random structure, as they would be by a grating. Instead, light transmitted through the random structure produces a wavelengthdependent speckle pattern which can be used as a fingerprint to identify the input spectra after calibration. In practice, these wavelength-dependent speckle patterns are experimentally measured and stored in a transmission matrix, which describes the spectral-to-spatial mapping of the spectrometer. After calibrating the transmission matrix, an arbitrary input spectrum can be reconstructed from its speckle pattern. We achieved sub-nm resolution with 25 nm bandwidth at a wavelength of 1500 nm using a scattering medium with largest dimension of merely 50 μm.

  7. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  8. Resolution-enhanced Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

    1993-01-01

    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

  9. Two RICH detectors as velocity spectrometers in the CKM experiment

    SciTech Connect

    Jurgen Engelfried et al.

    2002-09-04

    We present the design of two velocity spectrometers, to be used in the recently approved CKM experiment. CKM's main goal is the measurement of the branching ratio of K{sup +} {yields} {pi}{sup +} {nu}{bar {nu}} with a precision of 10%, via decays in flight of the K{sup +}. The design of both RICH detectors is based on the SELEX Phototube RICH. We will discuss the design and the expected performance, based on studies with SELEX data and Monte Carlo Simulations.

  10. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  11. Mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  12. Mobile spectrometer measures radar backscatter

    NASA Technical Reports Server (NTRS)

    Gogineni, S.; Moore, R. K.; Onstott, R. G.; Kim, Y. S.; Bushnell, D.

    1984-01-01

    The present article is concerned with a helicopter-borne spectrometer (Heloscat), which has been developed to permit high-quality scattering measurements from a mobile platform at remote sites. The term 'spectrometer' referes to a class of scatterometers. The term 'scatterometer' is employed to denote a specialized radar for measuring scattering coefficients as a function of angle. A spectrometer, on the other hand, is a scatterometer which can measure backscatter at several frequencies. The Heloscat system is discussed, taking into account two antennas, RF hardware, and an externally mounted pendulum for angle encoding. A dual-antenna configuration is used for cross-polarized measurements, while a single-antenna system is used for like-polarized measurements. Attention is also given to oscillator characteristics, efficient data handling, and aspects of calibration.

  13. The GRAVITY spectrometers: mechanical design

    NASA Astrophysics Data System (ADS)

    Fischer, Sebastian; Wiest, Michael; Straubmeier, Christian; Yazici, Senol; Araujo-Hauck, Constanza; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2010-07-01

    Operating on 6 interferometric baselines, i.e. using all 4 UTs, the 2nd generation VLTI instrument GRAVITY will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. Within the international GRAVITY consortium, the Cologne institute is responsible for the development and construction of the two spectrometers: one for the science object, and one for the fringe tracking object. Optically two individual components, both spectrometers are two separate units with their own housing and interfaces inside the vacuum vessel of GRAVITY. The general design of the spectrometers, however, is similar. The optical layout is separated into beam collimator (with integrated optics and metrology laser injection) and camera system (with detector, dispersive element, & Wollaston filter wheel). Mechanically, this transfers to two regions which are separated by a solid baffle wall incorporating the blocking filter for the metrology Laser wavelength. The optical subunits are mounted in individual rigid tubes which pay respect to the individual shape, size and thermal expansion of the lenses. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the GRAVITY vacuum dewar. The integrated optics beam combiner and the metrology laser injection, which are operated at 200/240K, are mounted thermally isolated to the cold housing of the spectrometers. The optical design has shown that the alignment of the detector is crucial to the performance of the spectrometers. Therefore, in addition to four wheel mechanisms, six cryogenic positioning mechanisms are included in the mechanical design of the detector mount.

  14. The GRAVITY spectrometers: thermal behaviour

    NASA Astrophysics Data System (ADS)

    Wank, Imke; Straubmeier, Christian; Wiest, Michael; Yazici, Senol; Fischer, Sebastian; Eisenhauer, Frank; Perrin, Guy S.; Perraut, Karine; Brandner, Wolfgang; Amorim, Antonio; Schöller, Markus; Eckart, Andreas

    2014-07-01

    GRAVITY is a 2nd generation VLTI Instrument o which operates on 6 interferometric baselines by using all 4 Unit Telescopes. It will deliver narrow angle astrometry with 10μas accuracy at the infrared K-band. At the 1. Physikalische Institut of the University of Cologne, which is part of the international GRAVITY consortium, two spectrometers, one for the sciene object, and one for the fringe tracking object, have been designed, manufactured and tested. These spectrometers are two individual devices, each with own housing and interfaces. For a minimized thermal background, the spectrometers are actively cooled down to an operating temperature of 80K in the ambient temperature environment of the Beam Combiner Instrument (BCI) cryostat. The outer casings are mounted thermal isolated to the base plate by glass fiber reinforced plastic (GRP) stands, copper cooling structures conduct the cold inside the spectrometers where it is routed to components via Cu cooling stripes. The spectrometers are covered with shells made of multi insulation foil. There will be shown and compared 3 cooling installations: setups in the Cologne test dewar, in the BCI dewar and in a mock-up cad model. There are some striking differences between the setup in the 2 different dewars. In the Cologne Test dewar the spectrometers are connected to the coldplate (80K); a Cu cooling structure and the thermal isolating GRP stands are bolted to the coldplate. In the BCI dewer Cu cooling structure is connected to the bottom of the nitrogen tank (80K), the GRP stands are bolted to the base plate (240K). The period of time during the cooldown process will be analyzed.

  15. Towed seabed gamma ray spectrometer

    SciTech Connect

    Jones, D.G. )

    1994-08-01

    For more than 50 years, the measurement of radioactivity has been used for onshore geological surveys and in laboratories. The British Geological Survey (BGS) has extended the use of this type of equipment to the marine environment with the development of seabed gamma ray spectrometer systems. The present seabed gamma ray spectrometer, known as the Eel, has been successfully used for sediment and solid rock mapping, mineral exploration, and radioactive pollution studies. The range of applications for the system continues to expand. This paper examines the technological aspects of the Eel and some of the applications for which it has been used.

  16. Mass spectrometers and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Hunton, D. E.; Trzcinski, E.; Cross, J. B.; Spangler, L. H.; Hoffbauer, M. H.; Archuleta, F. H.; Visentine, J. T.

    1987-01-01

    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized.

  17. A cometary ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Simpson, D. A.

    1984-01-01

    The development of flight suitable analyzer units for that part of the GIOTTO Ion Mass Spectrometer (IMS) experiment designated the High Energy Range Spectrometer (HERS) is discussed. Topics covered include: design of the total ion-optical system for the HERS analyzer; the preparation of the design of analyzing magnet; the evaluation of microchannel plate detectors and associated two-dimensional anode arrays; and the fabrication and evaluation of two flight-suitable units of the complete ion-optical analyzer system including two-dimensional imaging detectors and associated image encoding electronics.

  18. Portable smartphone optical fibre spectrometer

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Jamalipour, Abbas

    2015-09-01

    A low cost, optical fibre based spectrometer has been developed on a smartphone platform for field-portable spectral analysis. Light of visible wavelength is collected using a multimode optical fibre and diffracted by a low cost nanoimprinted diffraction grating. A measurement range over 300 nm span (λ = 400 to 700 nm) is obtained using the smartphone CMOS chip. The spectral resolution is Δλ ~ 0.42 nm/screen pixel. A customized Android application processed the spectra on the same platform and shares with other devices. The results compare well with commercially available spectrometer.

  19. Light Meson Decays from Photon-Induced Reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael; CLAS Collaboration; Light Meson Decay (LMD) Team

    2015-04-01

    Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η ' via conversion decays can be performed using a line shape analysis on the invariant mass of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. In addition, the data allows for a search for dark matter, such as the heavy photon via conversion decays of light mesons and physics beyond the Standard Model can be searched for via invisible decays of η mesons. An overview of the first results and future prospects will be given.

  20. Radiative decays at LHCb

    NASA Astrophysics Data System (ADS)

    Giubega, L. E.

    2016-12-01

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B 0 → K *0 γ and B s → ϕ γ, the direct CP asymmetry in B 0 → K *0 γ decay channel and the observation of the photon polarization in the B ± → K ±π∓π± γ decay, are included. The first two measurements were performed in 1 fb-1 of pp collisions data and the third one in 3 fb-1 of data, respectively.

  1. Is decay constant?

    PubMed

    Pommé, S; Stroh, H; Altzitzoglou, T; Paepen, J; Van Ammel, R; Kossert, K; Nähle, O; Keightley, J D; Ferreira, K M; Verheyen, L; Bruggeman, M

    2017-09-07

    Some authors have raised doubt about the invariability of decay constants, which would invalidate the exponential-decay law and the foundation on which the common measurement system for radioactivity is based. Claims were made about a new interaction - the fifth force - by which neutrinos could affect decay constants, thus predicting changes in decay rates in correlation with the variations of the solar neutrino flux. Their argument is based on the observation of permille-sized annual modulations in particular decay rate measurements, as well as transient oscillations at frequencies near 11 year(-1) and 12.7 year(-1) which they speculatively associate with dynamics of the solar interior. In this work, 12 data sets of precise long-term decay rate measurements have been investigated for the presence of systematic modulations at frequencies between 0.08 and 20 year(-1). Besides small annual effects, no common oscillations could be observed among α, β(-), β(+) or EC decaying nuclides. The amplitudes of fitted oscillations to residuals from exponential decay do not exceed 3 times their standard uncertainty, which varies from 0.00023 % to 0.023 %. This contradicts the assertion that 'neutrino-induced' beta decay provides information about the deep solar interior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A high-throughput neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Stampfl, Anton; Noakes, Terry; Bartsch, Friedl; Bertinshaw, Joel; Veliscek-Carolan, Jessica; Nateghi, Ebrahim; Raeside, Tyler; Yethiraj, Mohana; Danilkin, Sergey; Kearley, Gordon

    2010-03-01

    A cross-disciplinary high-throughput neutron spectrometer is currently under construction at OPAL, ANSTO's open pool light-water research reactor. The spectrometer is based on the design of a Be-filter spectrometer (FANS) that is operating at the National Institute of Standards research reactor in the USA. The ANSTO filter-spectrometer will be switched in and out with another neutron spectrometer, the triple-axis spectrometer, Taipan. Thus two distinct types of neutron spectrometers will be accessible: one specialised to perform phonon dispersion analysis and the other, the filter-spectrometer, designed specifically to measure vibrational density of states. A summary of the design will be given along with a detailed ray-tracing analysis. Some preliminary results will be presented from the spectrometer.

  3. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    SciTech Connect

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  4. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    NASA Astrophysics Data System (ADS)

    Adamov, Alexey; Viidanoja, Jyrki; Kärpänoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-04-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  5. Far From ‘Easy’ Spectroscopy with the 8π and GRIFFIN Spectrometers at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Radich, A. J.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bender, P. C.; Bianco, L.; Bildstein, V.; Bidaman, H.; Braid, R.; Burbadge, C.; Chagnon-Lessard, S.; Cross, D. S.; Deng, G.; Demand, G. A.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Ilyushkin, S.; Jigmeddorj, B.; Kisliuk, D.; Kuhn, K.; Laffoley, A. T.; Leach, K. G.; MacLean, A. D.; Michetti-Wilson, J.; Miller, D.; Moore, W.; Olaizola, B.; Orce, J. N.; Pearson, C. J.; Pore, J. L.; Rajabali, M. M.; Rand, E. T.; Sarazin, F.; Smith, J. K.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Turko, J.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.; Zganjar, E. F.

    2015-09-01

    The 8π spectrometer, installed at the TRIUMF-ISAC facility, was the world's most sensitive γ-ray spectrometer dedicated to β-decay studies. A description is given of the 8π spectrometer and its auxiliary detectors including the plastic scintillator array SCEPTAR used for β-particle tagging and the Si(Li) array PACES for conversion electron measurements, its moving tape collector, and its data acquisition system. The recent investigation of the decay of 124Cs to study the nuclear structure of 124Xe, and how the β-decay measurements complemented previous Coulomb excitation studies, is highlighted, including the extraction of the deformation parameters for the excited 0+ bands in 124Xe. As a by-product, the decay scheme of the (7+) 124Cs isomeric state, for which the data from the PACES detectors were vital, was studied. Finally, a description of the new GRIFFIN spectrometer, which uses the same auxiliary detectors as the 8π spectrometer, is given.

  6. Al Studies with INTEGRAL's Spectrometer SPI

    NASA Astrophysics Data System (ADS)

    Diehl, R.; Kretschmer, K.; Lichti, G.; Schönfelder, V.; Strong, A. W.; von Kienlin, A.; Knödlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Roques, J.-P.; Vedrenne, G.; Schanne, S.; Mowlavi, N.; Winkler, C.; Wunderer, C.

    2004-10-01

    26 Al radioactivity traces recent nucleosynthesis throughout the Galaxy, and is known to be produced in massive stars and novae. The map from its decay gamma-ray line suggests massive stars to dominate, but high-resolution line spectroscopy is expected to supplement imaging of 26 Al source regions and thus to help decide about the 26 Al injection process and interstellar environment, hence about the specific massive-star subgroup and phase which produces interstellar 26 Al. The INTEGRAL Spectrometer SPI has observed Galactic 26 Al radioactivity in its 1809 keV gamma-ray line during its first inner-Galaxy survey. Instrumental background lines make analysis difficult; yet, a clear signal from the inner Galaxy agrees with expectations. In particular, SPI has constrained the line width to exclude previously- reported line broadenings corresponding to velocities >500 km s-1 . The signal-to-background ratio of percent implies that detector response and background modeling need to be fine-tuned to eventually enable line shape deconvolution in order to extract source location information along the line of sight. Key words: nucleosynthesis; supernovae; novae; massive stars; instruments: gamma-ray telescopes.

  7. Time of flight mass spectrometer

    DOEpatents

    Ulbricht, Jr., William H.

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  8. IPNS-I chopper spectrometers

    SciTech Connect

    Price, D.L.; Carpenter, J.M.; Pelizzari, C.A.; Sinha, S.K.; Bresof, I.; Ostrowski, G.E.

    1982-01-01

    We briefly describe the layout and operation of the two chopper experiments at IPNS-I. The recent measurement on solid /sup 4/He by Hilleke et al. provides examples of time-of-flight data from the Low Resolution Chopper Spectrometer.

  9. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  10. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  11. Airborne spectrometer senses several gases

    NASA Technical Reports Server (NTRS)

    Mc Dowall, J.; Moffat, A. J.

    1970-01-01

    Spectrometer's variable shutter permits observation of a wide range of plume widths. Adjustable grating, counter, and access window enable operator to reset grating's position during flight by resetting the counter to a predetermined number. Quartz correlation mask and spectral-aperture instrument-function filter are mounted in a replaceable precision frame.

  12. Convex Diffraction Grating Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P. (Inventor)

    1999-01-01

    A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

  13. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  14. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  15. E781 Hyperon Spectrometer Constants

    SciTech Connect

    Joseph T. Lach

    2004-05-04

    This is a discussion of the physical measurements, sizes, distances and magnetic fields of the Hyperon Spectrometer Magnet and its components. Some we get from construction drawings (like the target dimensions) and others from measurements in differing coordinate systems. Included also are the properties of the hyperon productions targets used in E781.

  16. Acoustically-tuned optical spectrometer

    NASA Technical Reports Server (NTRS)

    Sklar, E.

    1981-01-01

    Lens arrangement corrects for aberrations and gives resolution of 0.7 seconds of arc. In spectrometer, light from telescope is relayed by doublet lens to acoustically tuned optical filter. Selected wavelengths are relayed by triplet lens to charge coupled device camera. Intervening cylindrical lens, tilted at 12 degree angle, corrects for astigmatism and coma introduced by two element birefringent crystal in filter.

  17. RF spectrometers for heterodyne receivers

    NASA Technical Reports Server (NTRS)

    Buhl, D.; Mumma, M. J.

    1980-01-01

    Several types of spectrometers developed for radio astronomy receivers which utilize RF filters, multiple oscillators and mixers, digital autocorrelators and acoustic/optic devices are considered. The RF spectrometer developed at GSFC to provide wide bandwidths (greater than 1 GHz) as well as high resolution (5MHz) is described. The 128 channel filter bank is divided into high and low resolution sections. The high resolution section is tunable by providing a second mixer ahead of the filter bank. This is necessary because infrared receivers which use gas lasers as local oscillators are only tunable to specific laser frequencies. To compensate for astronomical Doppler shifts and molecule frequency differences a second local oscillator and mixer is needed. A diagram of the RF section of the filter bank is shown. The RF spectrometer is shown to be the best means of achieving ultra-wide bandwidths for infrared heterodyne receivers. For high resolution with a large number of channels, the acousto/optical spectrometer is the principle instrument, particularly for balloon or space flight applications.

  18. Inventory Control: Multiport Student Spectrometer.

    ERIC Educational Resources Information Center

    Bishop, Carl B.

    1989-01-01

    Described is a spectrometer that can be used simultaneously by seven students to observe a single spectrum emitted by an element or compound in a single light tube against a calibrated screen. Included is a list of materials, directions for assembly, and procedures for use. (CW)

  19. Light meson decays from photon-induced reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael C.

    2016-05-01

    Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics for light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of the first results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.

  20. Light meson decays from photon-induced reactions with CLAS

    NASA Astrophysics Data System (ADS)

    Kunkel, Michael C.

    2016-11-01

    Photoproduction experiments with the CEBAF Large Acceptance Spectrometer CLAS at the Thomas Jefferson National Facility produce data sets with competitive statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of preliminary results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.

  1. Development of the ultra-low background HPGe spectrometer OBELIX at Modane underground laboratory

    NASA Astrophysics Data System (ADS)

    Brudanin, V. B.; Egorov, V. G.; Hodák, R.; Klimenko, A. A.; Loaiza, P.; Mamedov, F.; Piquemal, F.; Rukhadze, E.; Rukhadze, N.; Štekl, I.; Shitov, Yu. A.; Warot, G.; Yakushev, E. A.; Zampaolo, M.

    2017-02-01

    A new ultra low-background spectrometer based on a HPGe detector with a sensitive volume of 600 cm3 was developed to investigate rare nuclear processes, such as resonant neutrino-less double electron capture (0νEC/EC) and double beta decay processes (2ν2β-, 2νβ+EC, 2νEC/EC) to the excited states of daughter nuclei. The spectrometer was installed at the Modane underground laboratory (LSM, France, 4800 m w.e.). Sensitivity of the spectrometer and its background were tested. A new method for the efficiency calibration in measurements of low-active samples was developed. The spectrometer was used for the measurements of low active materials and samples. Results obtained in 395 h investigation of resonant 0νEC/EC decay of 106Cd to the 2718 keV and 2741 keV excited states of 106Pd with ~23.2 g of enriched 106Cd and 2ν2β- decay of 100Mo sample with a mass of 2588 g to the 0+, 1130 keV and 2+, 539.5 keV excited states of 100Ru are presented.

  2. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  3. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  4. Chapter 3: Wood Decay

    Treesearch

    Dan Cullen

    2014-01-01

    A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...

  5. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  6. Development of a method for activity measurements of 232Th daughters with a multidetector gamma-ray coincidence spectrometer.

    PubMed

    Antovic, N; Svrkota, N

    2009-06-01

    The method for activity measurements of the (232)Th daughters, developed at the six-crystal gamma-ray coincidence spectrometer PRIPYAT-2M and based on coincidence counting of the 583 and 2615 keV photons from cascade transitions which follow beta(-)-decay of (208)Tl, as well as on counting the 911 keV photons which follow beta(-)-decay of (228)Ac in the integral and non-coincidence mode of counting, is presented.

  7. Laser Magneto-Optic Rotation Spectrometer (LMORS)

    DTIC Science & Technology

    1998-01-01

    traditional method of measuring atomic concentrations uses atomic absorption spectroscopy (AAS), herein referred to as an AAS 15 spectrometer...MOR spectrometer of the present invention. Fig. 2 illustrates a calibration curve for a conventional 10 atomic absorption spectroscopy (AAS

  8. Measuring Transmission Efficiencies Of Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1989-01-01

    Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

  9. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  10. Sample rotating turntable kit for infrared spectrometers

    DOEpatents

    Eckels, Joel Del; Klunder, Gregory L.

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  11. Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers

    SciTech Connect

    Leiber, B.; Collaboration: KATRIN Collaboration

    2013-08-08

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup −2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, and electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup −11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA

  12. Gas densities near 230 km from orbital drag and mass spectrometer measurements - A comparison

    NASA Technical Reports Server (NTRS)

    Roemar, M.; Framke, W.; Krankowsky, D.; Spencer, N. W.

    1978-01-01

    Perigee density data near 230 km for the Aeros satellite are analyzed for more than 1000 orbits. A comparison method for such data was developed which is based on the observed rate of change of orbital period as compared with the orbital decay computed from mass-spectrometer data obtained at discrete positions along the orbit. In general, the method confirms the good agreement of the average ratio of in-situ and orbit-drag-inferred perigee densities. In the case of Aeros, absolute densities measured by the NATE mass spectrometer are confirmed.

  13. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  14. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  15. On-chip plasmonic spectrometer.

    PubMed

    Tsur, Yuval; Arie, Ady

    2016-08-01

    We report a numerical and experimental study of an on-chip optical spectrometer, utilizing propagating surface plasmon polaritons in the telecom spectral range. The device is based on two holographic gratings, one for coupling, and the other for decoupling free-space radiation with the surface plasmons. This 800 μm×100 μm on-chip spectrometer resolves 17 channels spectrally separated by 3.1 nm, spanning a freely tunable spectral window, and is based on standard lithography fabrication technology. We propose two potential applications for this new device; the first employs the holographic control over the amplitude and phase of the input spectrum, for intrinsically filtering unwanted frequencies, like pump radiation in Raman spectroscopy. The second prospect utilizes the unique plasmonic field enhancement at the metal-dielectric boundary for the spectral analysis of very small samples (e.g., Mie scatterers) placed between the two gratings.

  16. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  17. Concerning the Spatial Heterodyne Spectrometer

    SciTech Connect

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.

  18. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  19. Combinedatomic–nuclear decay

    SciTech Connect

    Dzyublik, A. Ya.

    2016-05-15

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  20. Fast Spectrometer Construction and Testing

    NASA Astrophysics Data System (ADS)

    Menke, John

    2012-05-01

    This paper describes the construction and operation of a medium resolution spectrometer used in the visual wavelength range. It is homebuilt, but has built in guiding and calibration, is fully remote operable, and operates at a resolution R=3000. It features a fast f3.5 system, which allows it to be used with a fast telescope (18 inch f3.5) with no Barlow or other optical matching devices.

  1. Raman Spectrometer with Microprobe Capability.

    DTIC Science & Technology

    1986-01-15

    CLASSIFICATION O UNCLASSIFIEOIUNLIMITED 0 SAME AS RPT. DTIC USERS Unclassified 22# NAME OF RESPONSIBLE oiNDiviDu? 2jkL TELEPHONE (Include Area Cd)2.OFFICE...spectrometer with microprobe capability. The microprobe capability allows Raman measurements to be performed on a localized area with a resolution of 1.0...first our purchase process. The instrument actually purchased is then described. Preliminary Raman spectral data in several of the above areas is

  2. Portable Tandem Mass Spectrometer Analyzer

    DTIC Science & Technology

    1991-07-01

    The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional

  3. Complete ? -decay pattern for the high-priority decay-heat isotopes I137 and Xe137 determined using total absorption spectroscopy

    DOE PAGES

    Rasco, B. C.; Rykaczewski, K. P.; Fijalkowska, A.; ...

    2017-05-31

    We measured the complete -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a novel technique for measuring the -delayed neutron energy spectrum, which also provides a measurement of the -neutron branching ratio, Pn.

  4. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  5. Charmless B Decays

    SciTech Connect

    Gradl, Wolfgang; /Edinburgh U.

    2007-03-06

    Rare charmless hadronic B decays are a good testing ground for the standard model. The dominant amplitudes contributing to this class of B decays are CKM suppressed tree diagrams and b {yields} s or b {yields} d loop diagrams (''penguins''). These decays can be used to study interfering standard model (SM) amplitudes and CP violation. They are sensitive to the presence of new particles in the loops, and they provide valuable information to constrain theoretical models of B decays. The B factories BABAR at SLAC and Belle at KEK produce B mesons in the reaction e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B}. So far they have collected integrated luminosities of about 406 fb{sup -1} and 600 fb{sup -1}, respectively. The results presented here are based on subsets of about 200-500 fb{sup -1} and are preliminary unless a journal reference is given.

  6. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  7. Radiative decays at LHCb

    SciTech Connect

    Giubega, L. E.; Collaboration: LHCb Collaboration

    2016-12-15

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B{sup 0} → K{sup *0}γ and B{sub s} → ϕγ, the direct CP asymmetry in B{sup 0} → K{sup *0}γ decay channel and the observation of the photon polarization in the B{sup ±} → K{sup ±}π{sup ∓}π{sup ±}γ decay, are included. The first two measurements were performed in 1 fb{sup –1} of pp collisions data and the third one in 3 fb{sup –1} of data, respectively.

  8. R×B drift momentum spectrometer with high resolution and large phase space acceptance.

    PubMed

    Wang, X; Konrad, G; Abele, H

    2013-02-11

    We propose a new type of momentum spectrometer, which uses the R×B drift effect to disperse the charged particles in a uniformly curved magnetic field, and measures the particles with large phase space acceptance and high resolution. This kind of R×B spectrometer is designed for the momentum analyses of the decay electrons and protons in the PERC (Proton and Electron Radiation Channel) beam station, which provides a strong magnetic field to guide the charged particles in the instrument. Instead of eliminating the guiding field, the R×B spectrometer evolves the field gradually to the analysing field, and the charged particles can be adiabatically transported during the dispersion and detection. The drifts of the particles have similar properties as their dispersion in the normal magnetic spectrometer. Besides, the R×B spectrometer is especially ideal for the measurements of particles with low momenta and large incident angles. We present a design of the R×B spectrometer, which can be used in PERC. For the particles with solid angle smaller than 88 msr, the maximum aberration is below 10(-4). The resolution of the momentum spectra can reach 14.4 keV/c, if the particle position measurements have a resolution of 1 mm.

  9. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  10. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time

  11. Delayed extraction time-of-flight mass spectrometer with electron impact for PAH studies

    NASA Astrophysics Data System (ADS)

    Najeeb, P. K.; Kadhane, U.

    2017-03-01

    A time-of-flight (ToF) mass spectrometer with a pulsed electron beam as well as pulsed extraction of the recoil ions, with variable delay is reported. The effectiveness of this technique is highlighted by studying the statistical decay of mono-cations over microsecond time scales. Various details of the design and operation are discussed in the context of electron impact ionization and fragmentation of naphthalene (C10H8). The temporal behavior of acetylene (C2H2) and diacetylene (C4H2) loss is observed and compared with the associated Arrhenius decay constant, internal energy and plasmon excitation energy.

  12. Search for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Mesquita de Medeiros, Michelle

    2016-09-01

    The SeaQuest E906 experiment is a fixed target Drell-Yan experiment which is aimed at studying the anti-quark distributions in the nucleon and nuclei. 120 GeV protons from the Main Injector at Fermilab could also be used to search for massive dark gauge bosons or dark photons in SeaQuest. The interactions of the proton beam with the 5m long iron beam dump can produce dark photons through processes such as proton bremsstrahlung and eta decay. These dark photons can decay into dimuons, and for dark photons with weak coupling to the EM sector, the decay vertex is significantly displaced from the dark photon production point, allowing for a very low background search. By detecting the dimuons with the SeaQuest spectrometer and analyzing its invariant mass distribution, one can search for signatures of these exotic processes. Exclusion limit projections for SeaQuest and preliminary results of the dark photon search will be presented. This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  13. Nuclear Structure Studies from Hg and Au Alpha Decay Chains

    NASA Astrophysics Data System (ADS)

    Goon, J. Tm.; Bingham, C. R.; Hartley, D. J.; Zhang, Jing-Ye; Riedinger, L. L.; Danchev, M.; Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Abu Saleem, K. H.; Ahmad, I.; Davids, C. N.; Heinz, A.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Poli, G. L.; Seweryniak, D.; Wiedenhover, I.; Ma, W. C.; Amro, H.; Reviol, W.; Cizewski, J. A.; Smith, M.

    2003-04-01

    Neutron deficient nuclei near the Z = 82 shell gap have been a source of great interest. This region is known to exhibit the phenomena of shape-coexistence and triaxiality. Alpha decay study of these nuclei coupled with gamma-rayspectroscopy data can give a better understanding of their nuclear structure properties. The decay chains of ^173-177Au and ^175-179Hg were studied following the bombardment of ^92,94,96Mo targets with ^84Sr beam from the ATLAS accelerator at the Argonne National Laboratory. The experiment utilized the Gammasphere array in conjunction with the Fragment Mass Analyzer (FMA) for mass identification and a Double-sided Silicon Strip Detector (DSSD) that was used to detect the recoiling implants and the alpha particles associated with each nuclide. An array of four Ge detectors and a low-energy photon spectrometer (LEPS) was used at the focal plane of the FMA to detect γ rays in coincidence with the α particles. This information was used to elucidate the α-decay fine structures. Inverse radioactive decay tagging was also useful in assigning certain fine structure α peaks to a particular nuclide. New α decay lines were observed and their energies, and half-lives were measured. These include fine structure lines in the α decays of ^174,176Au and ^173Pt. The decay schemes resulting from the fine structure observations will be presented. The α decay reduced widths are used to suggest spin and parity assignments. The structure of these states will be discussed in the framework of the Nilsson model and alpha decay selection rules. * This work is supported by the Department of Energy through contract numbers DE-FG02-96ER40983 (UT), W-31-109-ENG-38 (ANL), DE-FG02-95ER40939 (MSU), DE-FG05-88ER40406 (WU), and by the National Science Foundation (RU

  14. Strength loss in decayed wood

    Treesearch

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  15. The Pickup Ion Composition Spectrometer

    NASA Astrophysics Data System (ADS)

    Gilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven

    2016-06-01

    Observations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time-of-flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large-gap time-of-flight-energy sensor with a -100 kV high-voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid-state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.

  16. Complete β -decay pattern for the high-priority decay-heat isotopes 137I and 137Xe determined using total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Rykaczewski, K. P.; Fijałkowska, A.; Karny, M.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Gross, C. J.; Stracener, D. W.; Zganjar, E. F.; Blackmon, J. C.; Brewer, N. T.; Goetz, K. C.; Johnson, J. W.; Jost, C. U.; Hamilton, J. H.; Miernik, K.; Madurga, M.; Miller, D.; Padgett, S.; Paulauskas, S. V.; Ramayya, A. V.; Spejewski, E. H.

    2017-05-01

    Background: An assessment done under the auspices of the Nuclear Energy Agency in 2007 suggested that the β decays of abundant fission products in nuclear reactors may be incomplete. Many of the nuclei are potentially affected by the so called pandemonium effect and their β -γ decay heat should be restudied using the total absorption technique. The fission products 137I and 137Xe were assigned highest priority for restudy due to their large cumulative fission branching fractions. In addition, measuring β -delayed neutron emission probabilities is challenging and any new technique for measuring the β -neutron spectrum and the β -delayed neutron emission probabilities is an important addition to nuclear physics experimental techniques. Purpose: To obtain the complete β -decay pattern of 137I and 137Xe and determine their consequences for reactor decay heat and ν¯e emission. Complete β -decay feeding includes ground state to ground state β feeding with no associated γ rays, ground state to excited states β transitions followed by γ transitions to the daughter nucleus ground state, and β -delayed neutron emission from the daughter nucleus in the case of 137I. Method: We measured the complete β -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a technique for measuring the β -delayed neutron energy spectrum, which also provides a measurement of the β -neutron branching ratio, Pn. Results: We validate the current Evaluated Nuclear Structure Data File (ENSDF) evaluation of 137Xeβ decay. We find that major changes to the current ENSDF assessment of 137Iβ -decay intensity are required. The average γ energy per β decay for 137Iβ decaydecay heat) increases by 19%, from 1050-1250 keV, which increases the average γ energy per 235U fission by 0.11 % . We measure a β -delayed neutron branching fraction for 137Iβ decay of 7.9 ±0.2 (fit )±0.4 (sys )% and we provide a

  17. Automated mass spectrometer grows up

    SciTech Connect

    McInteer, B.B.; Montoya, J.G.; Stark, E.E.

    1984-01-01

    In 1980 we reported the development of an automated mass spectrometer for large scale batches of samples enriched in nitrogen-15 as ammonium salts. Since that time significant technical progress has been made in the instrument. Perhaps more significantly, administrative and institutional changes have permitted the entire effort to be transferred to the private sector from its original base at the Los Alamos National Laboratory. This has ensured the continuance of a needed service to the international scientific community as revealed by a development project at a national laboratory, and is an excellent example of beneficial technology transfer to private industry.

  18. Modular multichannel surface plasmon spectrometer

    NASA Astrophysics Data System (ADS)

    Neuert, G.; Kufer, S.; Benoit, M.; Gaub, H. E.

    2005-05-01

    We have developed a modular multichannel surface plasmon resonance (SPR) spectrometer on the basis of a commercially available hybrid sensor chip. Due to its modularity this inexpensive and easy to use setup can readily be adapted to different experimental environments. High temperature stability is achieved through efficient thermal coupling of individual SPR units. With standard systems the performance of the multichannel instrument was evaluated. The absorption kinetics of a cysteamine monolayer, as well as the concentration dependence of the specific receptor-ligand interaction between biotin and streptavidin was measured.

  19. Triple axis and spins spectrometers

    SciTech Connect

    Trevino, S.F.

    1993-01-01

    In the paper are described the triple axis and spin polarized inelastic neutron scattering (SPINS) spectrometers which are installed at the NIST Cold Neutron Research Facility (CNRF). The general principle of operation of these two instruments is described in sufficient detail to allow the reader to make an informed decision as to their usefulness for his needs. However, it is the intention of the staff at the CNRF to provide the expert resources for their efficient use in any given situation. Thus, the work is not intended as a user manual but rather as a guide into the range of applicability of the two instruments.

  20. Wide-range CCD spectrometer

    NASA Astrophysics Data System (ADS)

    Sokolova, Elena A.; Reyes Cortes, Santiago D.

    1996-08-01

    The utilization of wide range spectrometers is a very important feature for the design of optical diagnostics. This paper describes an innovative approach, based on charged coupled device, which allows to analyze different spectral intervals with the same diffraction grating. The spectral interval is varied by changing the position of the entrance slit when the grating is stationary. The optical system can also include a spherical mirror. In this case the geometric position of the mirror is calculated aiming at compensating the first order astigmatism and the meridional coma of the grating. This device is planned to be used in Thomson scattering diagnostic of the TOKAMAK of Instituto Superior Tecnico, Lisbon (ISTTOK).

  1. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  2. Portable neutron spectrometer and dosimeter

    DOEpatents

    Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  3. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  4. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  5. Comparison of atmospheric density data from mass spectrometers and atmospheric drag on the Aeros satellites

    NASA Technical Reports Server (NTRS)

    Roemer, M.; Framke, W.; Krankowsky, D.; Spencer, N. W.

    1979-01-01

    The comparison of perigee density data near 230 km for satellite Aeros-A has been extended to the complete mission time. The average ratio between orbital drag derived density and mass spectrometer measurements is very near to 1 with a large scatter reflected by a standard deviation of the order of 20%. A method of comparison was developed and tested which uses the observed rate of change of orbital period in comparison with the orbital decay computed from the actual mass spectrometer data measured at discrete positions along the orbit. This method proves that deviations from the average ratio of 1 between perigee densities from drag and mass spectrometers are due to the smoothing and poor resolution of the orbital drag technique.

  6. Measuring the radium-226 activity using a multidetector gamma-ray coincidence spectrometer.

    PubMed

    Antovic, N; Svrkota, N

    2009-10-01

    The method is based on coincidence counting of the 609 keV photons from two-, three- and four-step cascade transitions which follow beta(-)-decay of (214)Bi, developed on the six-crystal spectrometer PRIPYAT-2M. As regards the determination of the activity of (226)Ra and its decay products, the double coincidences mode of counting is the optimum one because of the highest spectrometer sensitivity. Minimum detectable radium activity concentration in that mode of counting in a soil sample is estimated to be 0.68 Bq kg(-1) for live measuring time of 897.4s, while it was 2.03 Bq kg(-1) over 10 002.9s in the case of the HPGe spectrometer. Using the double coincidences method, the (226)Ra activity was determined in soil and sand samples from the Coastal region of Montenegro. The measurements were performed much faster than when an HPGe spectrometer is used, and the results showed relatively low level of the radium activity concentration.

  7. Proton Spectrometer Belt Research (PSBR)

    NASA Astrophysics Data System (ADS)

    Byers, David

    The National Reconnaissance Office (NRO), NASA, the Air Force Research Laboratory (AFRL), the Aerospace Corporation, the Los Alamos National Laboratory (LANL) and the Naval Research Laboratory (NRL) have jointly formed the Proton Spectrometer Belt Research (PSBR) program to meet two primary objectives: to measure the high-energy proton spectrum by placing the Relativistic Proton Spectrometer (RPS) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft to measure the inner Van Allen belt protons with energies from 50 MeV to 2 GeV, and to produce the next generation radiation belt models. Presently, the intensity of trapped protons with energies beyond about 150 MeV is not well known and thought to be underestimated in existing specification models. Such protons are known to pose a number of hazards to astronauts and spacecraft; including total ionizing dose, displacement damage, single event effects, and nuclear activation. The RPS addresses a priority highly ranked by the scientific and technical community and will extend the measurement capability of the RBSP mission to a range beyond that originally planned. The PSBR program will use the RPS data, coupled with other data sets, to upgrade existing radiation belt models, significantly improving the radiation hazards specified by increasing the spectral and spatial coverage, and the time-correlated probability of occurrence statistics, quantifying the model accuracy and uncertainty.

  8. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  9. Automated mass spectrometer analysis system

    NASA Technical Reports Server (NTRS)

    Boettger, Heinz G. (Inventor); Giffin, Charles E. (Inventor); Dreyer, William J. (Inventor); Kuppermann, Aron (Inventor)

    1978-01-01

    An automated mass spectrometer analysis system is disclosed, in which samples are automatically processed in a sample processor and converted into volatilizable samples, or their characteristic volatilizable derivatives. Each volatizable sample is sequentially volatilized and analyzed in a double focusing mass spectrometer, whose output is in the form of separate ion beams all of which are simultaneously focused in a focal plane. Each ion beam is indicative of a different sample component or different fragments of one or more sample components and the beam intensity is related to the relative abundance of the sample component. The system includes an electro-optical ion detector which automatically and simultaneously converts the ion beams, first into electron beams which in turn produce a related image which is transferred to the target of a vidicon unit. The latter converts the images into electrical signals which are supplied to a data processor, whose output is a list of the components of the analyzed sample and their abundances. The system is under the control of a master control unit, which in addition to monitoring and controlling various power sources, controls the automatic operation of the system under expected and some unexpected conditions and further protects various critical parts of the system from damage due to particularly abnormal conditions.

  10. Pupil aberrations in Offner spectrometers.

    PubMed

    González-Núñez, Héctor; Prieto-Blanco, Xesús; de la Fuente, Raúl

    2012-04-01

    The light path function (LPF) of an Offner spectrometer is presented. The evaluation of the LPF of this spectrometer enables its imaging properties to be studied for arbitrary object and image positions, while avoiding the more complicated analysis of intermediate images generated by the diffraction grating, which is often involved. A power series expansion of the LPF on the grating coordinates directly determines pupil aberrations of the generated spectrum and facilitates the search for configurations with small low-order aberrations. This analysis not only confirms the possibility of reducing low-order aberrations in Rowland-type mounts, namely astigmatism and coma, as predicted in previous studies, but also proves that all third-order terms in the series expansion of the aberration function can be canceled at the image of the design point and for the corresponding design wavelength, when the design point is located on a plane orthogonal to the optical axis. Furthermore, fourth-order terms are computed and shown to represent the most relevant contribution to image blurring. Third- and fourth-order aberrations are also evaluated for Rowland mounts with the design point located outside the aforementioned plane. The study described in this manuscript is not restricted to small angles of incidence, and, therefore, it goes beyond Seidel and Buchdahl aberrations.

  11. New results from Compton spectrometer experiments

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda; Espy, Michelle; Haines, Todd; Webb, Timothy

    2016-09-01

    Over the past three years, a Compton spectrometer has successfully measured the x-ray spectra of intense radiographic sources. In this method, a collimated beam of x-rays incident on a convertor foil ejects Compton electrons. A collimator in the entrance to the spectrometer selects the forward-scattered electrons, which enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is proportional to the square root of their momentum, allowing the x-ray spectrum to be reconstructed. The spectrometer is a neodymium-iron magnet which measures spectra in the less than 1 MeV to 20 MeV energy range. In addition, a new spectrometer has been constructed that is a samarium-cobalt magnet with a calculated energy range of 50 keV to 4 MeV. The spectrometers have been fielded at both continuous and pulsed power facilities. Recent experimental results will be presented.

  12. Engine spectrometer probe and method of use

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, Sarkis (Inventor); Kittinger, Scott A. (Inventor)

    2006-01-01

    The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.

  13. Imaging spectrometer/camera having convex grating

    NASA Technical Reports Server (NTRS)

    Reininger, Francis M. (Inventor)

    2000-01-01

    An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

  14. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  15. NA62 spectrometer to search for K+ → π+ ν bar nu

    NASA Astrophysics Data System (ADS)

    Shkarovskiy, S.

    2017-02-01

    The NA62 experiment at CERN is aimed at measuring the ultra-rare decay K+→ π+ν bar nu with 10% accuracy. Since the branching fraction of this decay is O(10‑10), the detector must be able to suppress background events with branching ratios up to 10 orders of magnitude higher than the signal. In order to achieve this goal a set of modern detector systems has been designed and built. Among them is a low mass (~ 1.8% X0) spectrometer to detect charged kaon decay products. The spectrometer contains 7168 straw tubes operating in vacuum. The detector was successfully installed and commissioned in 2014–2015. The goal of this report is to give a general overview of the system. The track time resolution obtained from reconstructed data is also described.

  16. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  17. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  18. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    NASA Astrophysics Data System (ADS)

    Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.

    1993-03-01

    The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  19. Exotic Higgs decays

    NASA Astrophysics Data System (ADS)

    Kling, Felix

    Many models of physics beyond the Standard Model include an extended Higgs sector, responsible for electroweak symmetry breaking, and predict the existence of additional Higgs bosons. The Type II Two-Higgs-Doublet Model (2HDM) is a particularly well motivated scenario and a suitable framework for phenomenological studies of extended Higgs sectors. Its low energy spectrum includes two CP-even Higgses h and H, one CP-odd Higgs A, and a pair of charged Higgses H +/-. We study the implication of the LHC Higgs search re- sults on the Type II 2HDM and identify regions of parameter space which are consistent with all experimental and theoretical constraints and can accommo- date the observed 125 GeV Higgs signal. This includes parameter space with a distinctive mass hierarchy which permit a sizable mass splitting between the undiscovered non-Standard Model Higgs states. If this mass splitting is large enough, exotic Higgs decay channels into either a Higgs plus a Standard Model gauge boson or two lighter Higgses open up. This can significantly weaken the reach of the conventional Higgs decay channels into Standard Model particles but also provide the additional opportunity to search for exotic Higgs decay channels. We provide benchmark planes to explore exotic Higgs decay scenar- ios and perform detailed collider analyses to study the exotic decay channels H/A → AZ/HZ and H+/- → AW/HW. We find that these exotic decays offer complementary discovery channels to the conventional modes for both neutral and charged Higgs searches and permit exclusion and discovery in large regions of parameter space.

  20. Digital Spectrometers for Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  1. Digital Spectrometers for Interplanetary Science Missions

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

    2010-01-01

    A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

  2. [Hadamard transform spectrometer mixed pixels' unmixing method].

    PubMed

    Yan, Peng; Hu, Bing-Liang; Liu, Xue-Bin; Sun, Wei; Li, Li-Bo; Feng, Yu-Tao; Liu, Yong-Zheng

    2011-10-01

    Hadamard transform imaging spectrometer is a multi-channel digital transform spectrometer detection technology, this paper based on digital micromirror array device (DMD) of the Hadamard transform spectrometer working principle and instrument structure, obtained by the imaging sensor mixed pixel were analyzed, theory derived the solution of pixel aliasing hybrid method, simulation results show that the method is simple and effective to improve the accuracy of mixed pixel spectrum more than 10% recovery.

  3. Flavor changing nucleon decay

    NASA Astrophysics Data System (ADS)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-04-01

    Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.

  4. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  5. Neutrinoless Double Beta Decay:

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino

    0ν2β decay is a very powerful tool for probing the physics beyond the particle Standard Model. After the recent discovery of neutrino flavor oscillation, we know that neutrinos must have a mass (at least two of them). The 0ν2β decay discovery could fix the neutrino mass scale and its nature (Majorana particle). The unique characteristics of the Borexino detector and its Counting Test Facility (CTF) can be employed for high sensitivity studies of 116Cd 0ν2β decay: the CAMEO project. A first step foresees 24 enriched 116CdWO4 crystals for a total mass of 65 kg in the Counting Test Facility; then, 370 enriched 116CdWO4 crystals, for a total mass of 1 ton in the Borexino detector. Measurements of 116CdWO4 crystals and Monte Carlo simulations have shown that the CAMEO experiment sensitivity will be T1/20ν > 1026 y, for the 65 kg phase, and T1/20ν > 1027 y for the 1 ton phase; consequently the limit on the effective neutrino mass will be ≤ 60 meV, and ≤ 20 meV, respectively. This work is based upon the experiments performed by the INR (Kiev) (and from 1998 also by the University of Florence) at the Solotvina Underground Laboratory (Ukraine). The current status of 0ν2β, and future projects of 0ν2β decay research are also briefly reviewed.

  6. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  7. Discoloration & decay in oak

    Treesearch

    Alex L. Shigo

    1971-01-01

    Diseases that result in discoloration and decay of wood are major problems affecting all species of oak. Wounds often start the processes that can lead to these diseases. The type and severity of the wound, the vigor of the tree, the environment, and the aggressiveness of microorganisms that infect are some of the most important factors that determine the nature of the...

  8. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  9. The Giotto ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Fischer, J.; Geiss, J.; Meier, A.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.; Neugebauer, M.

    1986-01-01

    The Giotto Ion Mass Spectrometer (IMS) consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. The outer coma is characterized by the interaction between solar wind and comentary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. Both sensors feature mass imaging characteristics, permitting simultaneous measurements of several ion species by multidetector arrays. Resultant mass-per-charge resolution is greater than or = 20. Energy per charge, and the elevation and aximuth of incident ions are measured. Calibration and in-flight solar-wind data show that the IMS will meet its scientific goals for the Halley encounter.

  10. The Giotto ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Balsiger, H.; Altwegg, K.; Buehler, F.; Fischer, J.; Geiss, J.; Meier, A.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.; Neugebauer, M.

    1986-01-01

    The Giotto Ion Mass Spectrometer (IMS) consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. The outer coma is characterized by the interaction between solar wind and comentary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. Both sensors feature mass imaging characteristics, permitting simultaneous measurements of several ion species by multidetector arrays. Resultant mass-per-charge resolution is greater than or = 20. Energy per charge, and the elevation and aximuth of incident ions are measured. Calibration and in-flight solar-wind data show that the IMS will meet its scientific goals for the Halley encounter.

  11. Clementine RRELAX SRAM Particle Spectrometer

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Soli, G.; Blaes, B.; Ratliff, J.; Garrett, H.

    1994-01-01

    The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2 micron rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, b) is not affected by electrons, and c) detected microflares occurring with a 26.5 day period.

  12. Multichannel acousto-optical spectrometer

    NASA Astrophysics Data System (ADS)

    Carter, James A.; Pape, Dennis R.

    1992-08-01

    Photonic Systems Incorporated is currently fabricating a Multichannel Acousto-Optical Spectrometer (MCAOS) for NASA Goddard Space Flight Center. This instrument will be used as a frequency channelized radiometer for radio astronomy spectroscopy. It will analyze the spectrum of four independent radio frequency (RF) channels simultaneously and has potential for eight to as many as sixteen channels. Each channel will resolve the RF spectrum to one megahertz within its 1000 megahertz band. Dynamic range exceeding 30 dB will be achieved by quantizing detector photo-charge to 12 bits and accumulating data for large periods of time. Long time integration requires an optical bench optimized for stability and the use of temperature stabilization. System drift due to speckle interference is minimized by using a novel polarization switching Bragg cell.

  13. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  14. The Geostationary Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Kenneth; Rider, David; Wu, Yen-Hung (James)

    2012-09-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (~2.7km×2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  15. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  16. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  17. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  18. Fluorescence imaging spectrometer optical design

    NASA Astrophysics Data System (ADS)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  19. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  20. Development of a Cerium bromide gamma ray spectrometer for space applications

    NASA Astrophysics Data System (ADS)

    Panda, D. K.; Banerjee, D.; Goyal, S. K.; Patel, A. R.; Shukla, A. D.

    2017-09-01

    We present the development of a CeBr3 gamma ray spectrometer with the primary objective of determining the abundance and distribution of Th, U, K, Fe, Al and Si by measuring gamma ray signals produced by radioactive decay, neutron inelastic scattering and neutron capture reactions in the energy region 0.03-8 MeV. The energy resolution of the CeBr3 gamma ray spectrometer developed in-house has been measured at 662 and 1274 keV to be 4.0% and 2.8% respectively. The intrinsic activity count-rate for the 1″ × 1″ CeBr3 gamma ray spectrometer is ∼0.03 counts s-1 for the 40K energy window (1400-1520 keV), and ∼0.001 counts s-1 for the 232Th (2550-2700 keV) energy window. The U concentration of a sample (3A) from a granite rock was estimated to be ∼2.1 ppm and agrees with the 2.04 ppm value determined using a HPGe gamma ray spectrometer. The K concentration of sample 3A was estimated to be 3.8%, and is consistent with the 3.7% value determined independently using a HPGe gamma ray spectrometer.

  1. WINKLER - An imaging high resolution gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Nakano, G. H.; Sandie, W. G.; Kilner, J. R.; Pang, F.; Imai, B. B.

    1991-04-01

    The WINKLER high-resolution gamma-ray spectrometer was originally developed to fly on a high-altitude aircraft. Following the discovery of Supernova 1987A in the Large Magellanic Cloud, arrangements were made to perform balloon-borne observations of this event. The instrument was quickly adapted to fit on a gondola furnished by NASA/MSFC in a collaborative effort and was flown in a series of three successful flights from Alice Springs, Australia. The second flight on October 29-31, 1987 resulted in the first high-resolution detection of the 847-keV line emission from the decay of 56Co and provided definitive confirmation of the explosive nucleosynthesis process. WINKLER comprises an array of nine coaxial n-type germanium detectors which are housed in a common vaccuum cryostat and surrounded by an NaI(Tl) scintillator shield that suppresses Compton interactions and gamma-ray background. Gamma-ray images are obtained with a rotational modulation collimator system attached to the spectrometer. Collimator holes in the upper section of the shield define the angular field of view of the instrument to 22 deg FWHM. The energy range of the spectrometer is 20 eV to 8 MeV, and the composite energy resolution from all detectors is 1.5 keV at 100 keV and about 2.5 keV at 1.33 MeV. The total frontal area of the sensor array is 214 cm2 with a volume of 1177 cm3, providing sufficient detection sensitivity for gamma-ray astronomy as well as for land-based applications such as treaty verification monitoring.

  2. Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Goloubkov, D.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Meyer, M.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2016-07-01

    The OPERA long-baseline neutrino-oscillation experiment has observed the direct appearance of ντ in the CNGS νμ beam. Two large muon magnetic spectrometers are used to identify muons produced in the τ leptonic decay and in νμ CC interactions by measuring their charge and momentum. Besides the kinematic analysis of the τ decays, background resulting from the decay of charmed particles produced in νμ CC interactions is reduced by efficiently identifying the muon track. A new method for the charge sign determination has been applied, via a weighted angular matching of the straight track-segments reconstructed in the different parts of the dipole magnets. Results obtained for Monte Carlo and real data are presented. Comparison with a method where no matching is used shows a significant reduction of up to 40% of the fraction of wrongly determined charges.

  3. The high momentum spectrometer drift chambers

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Baker, O. K.; Beaufait, J.; Bennett, C.; Bryant, E.; Carlini, R.; Kross, B.; McCauley, A.; Naing, W.; Shin, T.; Vulcan, W.

    1992-12-01

    The High Momentum Spectrometer in Hall C will use planar drift chambers for charged particle track reconstruction. The chambers are constructed using well understood technology and a conventional gas mixture. Two (plus one spare) drift chambers will be constructed for this spectrometers. Each chamber will contain 6 planes of readout channels. This paper describes the chamber design and gas handling system used.

  4. Smaller, Lighter Magnetic Sector For Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Tomassian, Albert D.

    1993-01-01

    Miniature, lightweight focal-plane magnetic sector of mass spectrometer (Mattauch-Herzog type) developed. Magnetic sector integral part of portable gas-chromatograph/mass spectrometer (GC/MS). Focal plane covers nominal range of 40 to 240 atomic mass units for 1-keV ion energy. System used for analyzing pollutants in field environments.

  5. Advanced laboratory NMR spectrometer with applications

    NASA Astrophysics Data System (ADS)

    Biscegli, Clovis; Panepucci, Horacio; Farach, Horacio A.; Poole, Charles P.

    1982-01-01

    A description is given of an inexpensive NMR spectrometer that is suitable for use in an advanced laboratory course. The application of this spectrometer to the measurement of the oil content in corn seeds and the role of polymerization are presented.

  6. An improved nuclear magnetic resonance spectrometer

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Manatt, S. L.

    1967-01-01

    Cylindrical sample container provides a high degree of nuclear stabilization to a nuclear magnetic resonance /nmr/ spectrometer. It is placed coaxially about the nmr insert and contains reference sample that gives a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system.

  7. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  8. A Mass Spectrometer Simulator in Your Computer

    ERIC Educational Resources Information Center

    Gagnon, Michel

    2012-01-01

    Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

  9. Apodization Control of Line Shape in Spectrometer

    NASA Technical Reports Server (NTRS)

    Pires, Antonio; Niple, Edward; Evans, Nathan L.

    1987-01-01

    Kaiser-Bessel apodization function reduces unwanted sidebands. Report discusses apodization in Fourier-transform spectrometer (FTS) for Advanced Moisture and Temperature Sounder (AMTS). Purpose of apodization in instrument to control shape of spectrum in wavenumber space to keep radiation at other wavelengths in passband of spectrometer out of AMTS wavenumber channel.

  10. Spin Spectrometer at the ALS and APS

    SciTech Connect

    Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies; Morton, Simon A; Morton, Simon A; Tobin, James G; Yu, Sung Woo; Komesu, Takashi; Waddill, George D; Boyd, Peter

    2007-04-20

    A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

  11. Symmetry relations in nucleon decay

    NASA Astrophysics Data System (ADS)

    Hurlbert, Anya; Wilczek, Frank

    1980-05-01

    Some experimental consequences of the structure of the effective hamiltonian for nucleon decay are presented. New results concern relations among inclusive decay rates, a striking test of the kinship hypothesis involving μ+ polarization, and soft π theorems.

  12. Theory of weak hypernuclear decay

    SciTech Connect

    Dubach, J.F.; Feldman, G.B.; Holstein, B.R. |; de la Torre, L.

    1996-07-01

    The weak nomesonic decay of {Lambda}-hypernuclei is studied in the context of a one-meson-exchange model. Predictions are made for the decay rate, the {ital p}/{ital n} stimulation ratio and the asymmetry in polarized hypernuclear decay. Copyright {copyright} 1996 Academic Press, Inc.

  13. Protecting log cabins from decay

    Treesearch

    R. M. Rowell; J. M. Black; L. R. Gjovik; W. C. Feist

    1977-01-01

    This report answers the questions most often asked of the Forest Service on the protection of log cabins from decay, and on practices for the exterior finishing and maintenance of existing cabins. Causes of stain and decay are discussed, as are some basic techniques for building a cabin that will minimize decay. Selection and handling of logs, their preservative...

  14. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  15. Precision Measurement of Nuclear Electron Capture Decay

    NASA Astrophysics Data System (ADS)

    Koltick, David; Liu, Shih-Chieh; Wang, Haoyu; Heim, Jordan; Nistor, Jonathan

    2017-01-01

    The method of accurately measuring the radioactive decay constant of a isotope by measuring the decay rate as a function of time requires that both the detector and environment be stable over time periods comparable to the life-time of the isotope. In addition statistical accuracy requires initial counting rates be high but limited by the dead time capability of the data collection system and the detectors double-event resolving time. A High Purity Germanium (HPGe) spectrometer, sensitive to radiation from 3-KeV to over 3-MeV, has been built to measure radioactive decay constants to a level of 10-5 10-6 at a location only 6 meters from the core of the High Flux Isotope Reactor located at Oak Ridge National Laboratory. Such accuracy requires understanding of, background, signal-processing algorithms, and both the double and triple event pile-up in the observed spectrum. The approach taken is to fit the collected energy spectrum with invariant shapes, independent of event rate. By fixing the source-detector geometry and environmental conditions, the invariant shapes are (1) ideal energy spectrum without pile-up and background, (2) the ideal double event pile-up spectrum, (3) the ideal triple event pile-up spectrum, and (4) the stable background spectrum. A method is presented that finds these ideal shapes using the collected data in situ. Taking this approach the HPGe detector photopeak shape in the absence of background and pile-up is presented showing associated structure over a range of 7 orders of magnitude.

  16. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  17. Superallowed Fermi beta decay

    SciTech Connect

    Hardy, J. C.; Towner, I. S.

    1998-12-21

    Superallowed 0{sup +}{yields}0{sup +} nuclear beta decay provides a direct measure of the weak vector coupling constant, G{sub V}. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of {sup 10}C to that of {sup 54}Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.

  18. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  19. Radioactive decay data tables

    SciTech Connect

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  20. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  1. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  2. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  3. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  4. Large Isotope Spectrometer for Astromag

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Klarmann, J.; Israel, M. H.; Garrard, T. L.; Mewaldt, R. A.; Stone, E. C.; Ormes, J. F.; Streitmatter, R. E.; Rasmussen, I. L.; Wiedenbeck, M. E.

    1990-01-01

    The Large Isotope Spectrometer for Astromag (LISA) is an experiment designed to measure the isotopic composition and energy spectra of cosmic rays for elements extending from beryllium through zinc. The overall objectives of this investigation are to study the origin and evolution of galactic matter; the acceleration, transport, and time scales of cosmic rays in the galaxy; and search for heavy antinuclei in the cosmic radiation. To achieve these objectives, the LISA experiment will make the first identifications of individual heavy cosmic ray isotopes in the energy range from about 2.5 to 4 GeV/n where relativistic time dilation effects enhance the abundances of radioactive clocks and where the effects of solar modulation and cross-section variations are minimized. It will extend high resolution measurements of individual element abundances and their energy spectra to energies of nearly 1 TeV/n, and has the potential for discovering heavy anti-nuclei which could not have been formed except in extragalactic sources.

  5. MGS Thermal Emission Spectrometer Image

    NASA Image and Video Library

    1997-09-24

    This image shows the temperature of the martian surface measured by the Mars Global Surveyor Thermal Emission Spectrometer (TES) instrument. On September 15, 3 hours and 48 minutes after the spacecrafts third close approach to the planet, the TES instrument was commanded to point at Mars and measure the temperature of the surface during a four minute scan. At this time MGS was approximately 15,000 miles (~24,000 km) from the planet, with a view looking up from beneath the planet at the south polar region. The circular blue region (- 198 F) is the south polar cap of Mars that is composed of CO2 ice. The night side of the planet, shown with crosses, is generally cool (green). The sunlit side of the planet reaches temperatures near 15 F (yellow). Each square represents an individual observation acquired in 2 seconds with a ground resolution of ~125 miles (~200 km). The TES instrument will remain on and collect similar images every 100 minutes to monitor the temperature of the surface and atmosphere throughout the aerobraking phase of the MGS mission. http://photojournal.jpl.nasa.gov/catalog/PIA00937

  6. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  7. The characteristics of a low background germanium gamma ray spectrometer at China JinPing Underground Laboratory.

    PubMed

    Zeng, Zhi; Mi, Yuhao; Ma, Hao; Cheng, Jianping; Su, Jian; Yue, Qian

    2014-09-01

    A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing Underground Laboratory (CJPL). The integral background count rate of the spectrometer was 0.629 cpm between 40 and 2700 keV, the origins of which were studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Some samples of rare event experiments were measured and (137)Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter and double beta decay experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Handheld spectrometers: the state of the art

    NASA Astrophysics Data System (ADS)

    Crocombe, Richard A.

    2013-05-01

    "Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

  9. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  10. A >= 62 Superallowed Fermi β-decays and Future Prospects with GRIFFIN

    NASA Astrophysics Data System (ADS)

    Dunlop, Ryan; Griffin Collaboration

    2014-09-01

    Superallowed Fermi β decays of A >= 62 nuclei involve relatively large nucleus dependent isospin-symmetry-breaking corrections. The magnitudes of these corrections are of great interest, and the A >= 62 decays provide a demanding test of theoretical models. Branching ratio measurements for these decays involve a unique challenge as they have large QEC, and hence a high density of available states in the daughter nucleus, resulting in the Pandemonium effect in which weak feeding is distributed over a large number of states and is difficult to observe. Therefore, high-efficiency detectors are of paramount importance in determining the branching ratio for these decays. The 8 π spectrometer at TRIUMF's Isotope Separator and Accelerator (ISAC), has been used to establish high-precision branching ratios for 62Ga and 74Rb. The newly commissioned GRIFFIN spectrometer at ISAC provides an efficiency 17 times higher than the 8 π for 1 MeV γ-rays, and larger gains at higher energies which are of particular importance in resolving the Pandemonium effect. The recent branching ratio measurement for the superallowed Fermi β-decay of 74Rb will be discussed, as well as the importance of GRIFFIN for future superallowed β decay studies at ISAC.

  11. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  12. Development of Solenoid Spectrometer for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Fang, Xiao; Bucher, Brian; Howard, Alan; Li, Yunju; Kolata, James; Roberts, Amy; Tang, Xiaodong

    2012-10-01

    A Helios-type solenoid spectrometer has been successfully built using the existing TWINSOL facility at Notre Dame. This spectrometer has been tested using the ^12C+^12C fusion reaction in the energy of range of 4 MeV to 6 MeV in the center of mass frame. With this spectrometer, we have achieved 65 keV(FWHM) resolution for the excitation energy. A measurement with a clean background has been achieved at Ecm=4 MeV by using an aluminum degrader to absorb the scattered 12C particle. The preliminary result together with our future plan will be presented.

  13. An infrared grating spectrometer for GIRL

    NASA Astrophysics Data System (ADS)

    Knieling, Peter; Lange, Guenther; Offermann, Dirk; Grossmann, Klaus-Ulrich

    1986-08-01

    A grating spectrometer with medium spectral resolution was developed for the GIRL project (Experiment E3), for the determination of the emission of trace constituents in the Earth's atmosphere, and for planetary and astronomical measurements. The spectrometer consists of two Ebert-Fastie spectrometers covering the wavelength range between 2.5 and 100 micron. The engineering model of E3 is described, and the design data are given. The engineering model was verified during operation in a cryostat at liquid helium temperatures. The spectral channels and respective IR filters were designed. Stray light suppression during limb scan measurements is explained. Absorption and emission spectra of atmospheric trace gases were measured.

  14. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  15. Acousto-optic tunable filter imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

    1991-01-01

    A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

  16. Search for monenergetic gamma rays from psi /3684/ decay

    NASA Technical Reports Server (NTRS)

    Simpson, J. W.; Beron, B. L.; Ford, R. L.; Hofstadter, R.; Howell, R. L.; Hughes, E. B.; Liberman, A. D.; Martin, T. W.; Oneill, L. H.; Hilger, E.

    1975-01-01

    Results are reported of a search for monoenergetic gamma rays with energies above 50 MeV arising from psi (3684) decay. The measurements were made by operating an electron-positron storage ring at a center-of-mass energy of 3684 MeV and detecting the secondary gamma rays with large-crystal NaI(T1) spectrometers. No significant evidence is found for the emission of such radiation, and upper limits are placed on such emissions for energies above 50 MeV.

  17. Multielectron spectroscopy: the xenon 4d hole double auger decay.

    PubMed

    Penent, F; Palaudoux, J; Lablanquie, P; Andric, L; Feifel, R; Eland, J H D

    2005-08-19

    A magnetic bottle spectrometer of the type recently developed by Eland et al. [Phys. Rev. Lett. 90, 053003 (2003).] has been implemented for use with synchrotron radiation, allowing multidimensional electron spectroscopy. Its application to the Xe 4d double Auger decay reveals all the energy pathways involved. The dominant path is a cascade process with a rapid (6 fs) ejection of a first Auger electron followed by the slower (>23 fs) emission of a second Auger electron. Weaker processes implying 3 electron processes are also revealed, namely, direct double Auger and associated Rydberg series.

  18. Multielectron spectroscopy: Auger decays of the krypton 3d hole

    SciTech Connect

    Palaudoux, J.; Lablanquie, P.; Penent, F.; Andric, L.; Ito, K.; Shigemasa, E.; Eland, J. H. D.; Jonauskas, V.; Kucas, S.; Karazija, R.

    2010-10-15

    The emission of one or two Auger electrons, following Kr 3d inner-shell ionization by synchrotron light, has been investigated both experimentally and theoretically. All electrons emitted in the process are detected in coincidence and analyzed in energy thanks to a magnetic-bottle electron time-of-flight spectrometer. In addition, noncoincident high-resolution electron spectra have been measured to characterize the cascade double-Auger paths more fully. Combination of the two experimental approaches and of our calculations allows a full determination of the decay pathways and branching ratios in the case of Kr 3d single- and double-Auger decays. The Kr{sup 3+} threshold is found at 74.197{+-}0.020 eV.

  19. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  20. Spectrometer Observations Near Mawrth Vallis

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

    CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

    This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

    Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the

  1. Imaging Spectrometer on a Chip

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Zheng, Xinyu

    2007-01-01

    A proposed visible-light imaging spectrometer on a chip would be based on the concept of a heterostructure comprising multiple layers of silicon-based photodetectors interspersed with long-wavelength-pass optical filters. In a typical application, this heterostructure would be replicated in each pixel of an image-detecting integrated circuit of the active-pixel-sensor type (see figure). The design of the heterostructure would exploit the fact that within the visible portion of the spectrum, the characteristic depth of penetration of photons increases with wavelength. Proceeding from the front toward the back, each successive long-wavelength-pass filter would have a longer cutoff wavelength, and each successive photodetector would be made thicker to enable it to absorb a greater proportion of incident longer-wavelength photons. Incident light would pass through the first photodetector and encounter the first filter, which would reflect light having wavelengths shorter than its cutoff wavelength and pass light of longer wavelengths. A large portion of the incident and reflected shorter-wavelength light would be absorbed in the first photodetector. The light that had passed through the first photodetector/filter pair of layers would pass through the second photodetector and encounter the second filter, which would reflect light having wavelengths shorter than its cutoff wavelength while passing light of longer wavelengths. Thus, most of the light reflected by the second filter would lie in the wavelength band between the cutoff wavelengths of the first and second filters. Thus, further, most of the light absorbed in the second photodetector would lie in this wavelength band. In a similar manner, each successive photodetector would detect, predominantly, light in a successively longer wavelength band bounded by the shorter cutoff wavelength of the preceding filter and the longer cutoff wavelength of the following filter.

  2. An Active Orbiting Microwave Spectrometer

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Herman, B.; Frehlich, R.; Dvorak, S.

    2004-12-01

    We present an overview of a satellite-to-satellite occultation system concept operating at cm and mm wavelengths to profile atmospheric water, temperature, the geopotential of atmospheric pressure surfaces and clouds. The system is essentially an orbiting active microwave limb viewing spectrometer and with suitable choice of frequencies, it can characterize other constituents such as ozone. The unique features of this system are global and diurnal coverage, similar performance in clear and cloudy conditions, high vertical resolution (~200 m), a wide dynamic range such that it can profile water from near the surface to the mesopause, very high precision ~1-3% over most of this altitude range and absolute accuracy (perhaps to 1%) and lack of drift. Ozone profiles will have similar performance from the upper troposphere into the mesosphere. Our analysis indicates that such a system will yield dramatically higher vertical resolution, precision and accuracy than present and planned passive radiometric systems in both clear and cloudy air. It will complement other observations for weather applications and is particularly well suited for climate because of its self-calibrating nature. We will discuss the expected performance of such an orbiting system including in particular the effects of scintillations associated with atmospheric turbulence and how to mitigate them. Our simulations indicate that scintillations will not limit the performance in the upper troposphere and above but they will likely limit performance in lower troposphere particularly in the boundary layer with a strong tradeoff between precision and vertical resolution. Time permitting we will also discuss a proof of concept mission and a constellation of microsatellites carrying these instruments focused on the hydrological cycle and monitoring of climate.

  3. Multidetector calibration for mass spectrometers

    SciTech Connect

    Bayne, C.K.; Donohue, D.L.; Fiedler, R.

    1994-06-01

    The International Atomic Energy Agency`s Safeguards Analytical Laboratory has performed calibration experiments to measure the different efficiencies among multi-Faraday detectors for a Finnigan-MAT 261 mass spectrometer. Two types of calibration experiments were performed: (1) peak-shift experiments and (2) peak-jump experiments. For peak-shift experiments, the ion intensities were measured for all isotopes of an element in different Faraday detectors. Repeated measurements were made by shifting the isotopes to various Faraday detectors. Two different peak-shifting schemes were used to measure plutonium (UK Pu5/92138) samples. For peak-jump experiments, ion intensities were measured in a reference Faraday detector for a single isotope and compared with those measured in the other Faraday detectors. Repeated measurements were made by switching back-and-forth between the reference Faraday detector and a selected Faraday detector. This switching procedure is repeated for all Faraday detectors. Peak-jump experiments were performed with replicate measurements of {sup 239}Pu, {sup 187}Re, and {sup 238}U. Detector efficiency factors were estimated for both peak-jump and peak-shift experiments using a flexible calibration model to statistically analyze both types of multidetector calibration experiments. Calculated detector efficiency factors were shown to depend on both the material analyzed and the experimental conditions. A single detector efficiency factor is not recommended for each detector that would be used to correct routine sample analyses. An alternative three-run peak-shift sample analysis should be considered. A statistical analysis of the data from this peak-shift experiment can adjust the isotopic ratio estimates for detector differences due to each sample analysis.

  4. Is radioactive decay really exponential?

    NASA Astrophysics Data System (ADS)

    Aston, P. J.

    2012-03-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3000 years are in error, which is generally attributed to past variation in atmospheric levels of 14C. We note that predicted atmospheric variation (assuming exponential decay) does not agree with results from modelling, and that theoretical quantum mechanics does not predict exact exponential decay. We give mathematical arguments that non-exponential decay should be expected for slowly decaying isotopes and explore the consequences of non-exponential decay. We propose an experimental test of this prediction of non-exponential decay for 14C. If confirmed, a foundation stone of current dating methods will have been removed, requiring a radical reappraisal both of radioisotope dating methods and of currently predicted dates obtained using these methods.

  5. Long-Wave Infrared Dyson Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  6. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  7. Ultra High Mass Range Mass Spectrometer System

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  8. Direct detection submillimeter spectrometer for CCAT

    NASA Astrophysics Data System (ADS)

    Nikola, Thomas; Stacey, Gordon J.; Bradford, C. Matt

    2008-07-01

    We present a trade study for a submillimeter direct-detection spectrometer operating at the background limit for the Cornell Caltech Atacama Telescope (CCAT). In this study we compare the classical echelle spectrometer ZEUS with the waveguide grating spectrometer Z-Spec. The science driver for this instrument is spectroscopic investigation of high redshift galaxies as their far-IR fine structure line emission is redshifted into the telluric submillimeter windows. The baseline detector consists of SQUID multiplexed TES bolometers and the ideal spectrometer to detect weak lines from distant extragalactic sources is a grating with a resolution of ~103 and a large bandwidth, covering an entire telluric submillimeter window instantaneously. Since the density of high-z sources on the sky is ~100 within a 10'×10' field of view and a redshift range of Δz~0.2 we also explore multi-object (~50 objects) capability, including articulated mirrors and flexible waveguide fibers.

  9. A novel digital magnetic resonance imaging spectrometer.

    PubMed

    Liu, Zhengmin; Zhao, Cong; Zhou, Heqin; Feng, Huanqing

    2006-01-01

    Spectrometer is the essential part of magnetic resonance imaging (MRI) system. It controls the transmitting and receiving of signals. Many commercial spectrometers are now available. However, they are usually costly and complex. In this paper, a new digital spectrometer based on PCI extensions for instrumentation (PXI) architecture is presented. Radio frequency (RF) pulse is generated with the method of digital synthesis and its frequency and phase are continuously tunable. MR signal acquired by receiver coils is processed by digital quadrature detection and filtered to get the k-space data, which avoid the spectral distortion due to amplitude and phase errors between two channels of traditional detection. Compared to the conventional design, the presented spectrometer is built with general PXI platform and boards. This design works in a digital manner with features of low cost, high performance and accuracy. The experiments demonstrate its efficiency.

  10. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  11. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  12. Tunable Laser Spectrometers for Planetary Science

    NASA Astrophysics Data System (ADS)

    Webster, C. R.; Flesch, G. J.; Forouhar, S.; Christensen, L. E.; Briggs, R.; Keymeulen, D.; Blacksberg, J.; Alerstam, E.; Mahaffy, P. R.

    2016-10-01

    Tunable laser spectrometers enjoy a wide range of applications in scientific research, medicine, industry, Earth and planetary space missions. We will describe instruments for planetary probes, aircraft, balloon, landers and CubeSats.

  13. Long-Wave Infrared Dyson Spectrometer

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis Z.; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2008-01-01

    Preliminary results are presented for an ultra compact long-wave infrared slit spectrometer based on the dyson concentric design. The dyson spectrometer has been integrated in a dewar environment with a quantum well infrared photodetecor (QWIP), concave electron beam fabricated diffraction grating and ultra precision slit. The entire system is cooled to cryogenic temperatures to maximize signal to noise ratio performance, hence eliminating thermal signal from transmissive elements and internal stray light. All of this is done while maintaining QWIP thermal control. A general description is given of the spectrometer, alignment technique and predicated performance. The spectrometer has been designed for optimal performance with respect to smile and keystone distortion. A spectral calibration is performed with NIST traceable targets. A 2-point non-uniformity correction is performed with a precision blackbody source to provide radiometric accuracy. Preliminary laboratory results show excellent agreement with modeled noise equivalent delta temperature and detector linearity over a broad temperature range.

  14. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  15. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  16. Cassini Visual and Infrared Mapping Spectrometer

    NASA Image and Video Library

    2012-12-20

    This image shows the visual and infrared mapping spectrometer instrument just before it was attached to NASA Cassini spacecraft. Cassini launched in 1997 and has been exploring the Saturn system since 2004.

  17. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  18. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  19. The observation of decay

    NASA Astrophysics Data System (ADS)

    Sudbery, A.

    1984-10-01

    It is argued that the usual formulation of quantum mechanics does not satisfactorily describe physical change: the standard formula for a transition probability does not follow from the postulates. Instead, these yield the paradox that a watched pot never bolls (sometimes called "Zeno's paradox"). The paradox is reviewed and the possibility of avoiding it is discussed. A simple model of a decaying system is analysed; the system is then considered in continuous interaction with an apparatus designed to observe the time development of the system. In the light of this analysis, the possibility is considered of replacing the usual (diserete) projection postulate by a continuous projection postulate.

  20. Rare decays and CP asymmetries in charged B decays

    SciTech Connect

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b {yields} s{gamma} and b {yields} se{sup +}e{sup {minus}} decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered.

  1. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  2. Ruggedized Spectrometers Are Built for Tough Jobs

    NASA Technical Reports Server (NTRS)

    2015-01-01

    The Mars Curiosity Chemistry and Camera instrument, or ChemCam, analyzes the elemental composition of materials on the Red Planet by using a spectrometer to measure the wavelengths of light they emit. Principal investigator Roger Wiens worked with Ocean Optics, out of Dunedin, Florida, to rework the company's spectrometer to operate in cold and rowdy conditions and also during the stresses of liftoff. Those improvements have been incorporated into the firm's commercial product line.

  3. Exit slit mirrors for the ebert spectrometer.

    PubMed

    Fastie, W G

    1972-09-01

    The use of a very long straight entrance slit in an Ebert grating spectrometer with two plane mirrors at the shorter exit slit to increase the energy density is described. This system has been employed in a far uv rocket spectrometer to provide higher sensitivity than has been achieved previously. The imaging properties and required slit and mirror adjustments are presented. Experimental results are included.

  4. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  5. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  6. Mathematical methods of spectrometer resolution improvements

    SciTech Connect

    Chepurnov, A.S.; Efimkin, N.G.; Rodionov, D.A.

    1993-12-31

    The highly desired property of the nuclear spectrometer is the monochromativity. This property is very often restricted by the line width achievable for the detector and by the competing effects such as radiation rescattering. These restrictions make the data interpretation difficult. The idea of spectrum reconstruction from instrumentally obtained data by means of mathematical procedures is not new. In this report, we demonstrate the application of the method for the energy resolution improvement of a germanium-lithium gamma spectrometer.

  7. Optical Calibration For Jefferson Lab HKS Spectrometer

    SciTech Connect

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  8. Tolerancing a radial velocity spectrometer within Zemax

    NASA Astrophysics Data System (ADS)

    Gibson, Steven R.

    2016-08-01

    Techniques are described for tolerancing a radial velocity spectrometer system within Zemax, including: how to set up and verify the tolerancing model, performance metrics and tolerance operands used, as well as post- Zemax analysis methods. Use of the tolerancing model for various analyses will be discussed, such as: alignment sensitivity, radial velocity sensitivity, and sensitivity of the optical system to temperature changes. Tolerance results from the Keck Planet Finder project (a precision radial velocity spectrometer of asymmetric white pupil design) will be shown.

  9. The role of electron scattering from registration detector in the "Troitsk nu-mass" MAC-E type spectrometer

    NASA Astrophysics Data System (ADS)

    Grigorieva, P. V.; Nozik, A. A.; Pantuev, V. S.; Skasyrskaya, A. K.

    2016-10-01

    There is a proposal to search for a sterile neutrino in a few keV mass range by the "Troitsk nu-mass" facility. In order to estimate sterile neutrino mixing one needs to make precision spectrum measurements well below the endpoint using the existing electrostatic spectrometer with a magnetic adiabatic collimation, or MAC-E filter. The expected signature will be a kink in the electron energy spectrum in tritium beta-decay. In this paper we consider the systematic effect of electron backscattering on the detector used in the spectrometer. For this purpose we provide a set of Monte-Carlo simulation results of electron backscattering on a silicon detector with a thin golden window with realistic electric and magnetic fields in the spectrometer. We have found that the probability of such an effect reaches up to 20-30%. The scattered electron could be reflected backwards to the detector by electrostatic field or by magnetic mirror. There is also a few percent probability to escape from the spectrometer through its entrance. A time delay between the scattering on the detector and the return of the reflected electron can reach a couple of microseconds in the Troitsk spectrometer. Such estimations are critical for the planning upgrades of the detector and the registration electronics. All considered effects are relevant to any MAC-E type spectrometer with solid detector.

  10. A multi-functional apparatus for α and β spectroscopy utilizing a permanent ring-magnet β spectrometer

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Febbraro, M.; Riggins, J.; Torres-Isea, R. O.

    2016-11-01

    A multi-functional teaching apparatus has been developed for α and β spectroscopy utilizing a solid-state detector and associated electronics. The possible experiments include conventional measurements to determine α and β decay energies, half lives, characteristic energy loss of nuclear particles in matter, and limits on the β-neutrino mass set from endpoints in β-decay spectra. In addition, the relativistic mass increase of β particles is verified using a high-efficiency, axially symmetric permanent ring-magnet β spectrometer. The basic apparatus also can be adapted for experiments in Rutherford scattering and other nuclear measurements.

  11. NIST Calibration of a Neutron Spectrometer ROSPEC

    PubMed Central

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated 252Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements. PMID:27274944

  12. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  13. NIST Calibration of a Neutron Spectrometer ROSPEC.

    PubMed

    Heimbach, Craig

    2006-01-01

    A neutron spectrometer was acquired for use in the measurement of National Institute of Standards and Technology neutron fields. The spectrometer included options for the measurement of low and high energy neutrons, for a total measurement range from 0.01 eV up to 17 MeV. The spectrometer was evaluated in calibration fields and was used to determine the neutron spectrum of an Americium-Beryllium neutron source. The calibration fields used included bare and moderated (252)Cf, monoenergetic neutron fields of 2.5 MeV and 14 MeV, and a thermal-neutron beam. Using the calibration values determined in this exercise, the spectrometer gives a good approximation of the neutron spectrum, and excellent values for neutron fluence, for all NIST calibration fields. The spectrometer also measured an Americium-Beryllium neutron field in a NIST exposure facility and determined the field quite well. The spectrometer measured scattering effects in neutron spectra which previously could be determined only by calculation or integral measurements.

  14. Large-volume ultralow background germanium-germanium coincidence/anticoincidence gamma-ray spectrometer

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.; Avignone, F.T. III; Miley, H.S.; Moore, R.S.

    1984-03-01

    A large volume (approx. 1440 cm/sup 3/), multicrystal, high resolution intrinsic germanium gamma-ray spectrometer has been designed based on 3 generations of experiments. The background from construction materials used in standard commercial configurations has been reduced by at least two orders of magnitude. Data taken with a 132 cm/sup 3/ prototype detector, installed in the Homestake Gold Mine, are presented. The first application of the full scale detector will be an ultrasensitive search for neutrinoless and two-neutrino double beta decay of /sup 76/Ge. The size and geometrical configuration of the crystals is chosen to optimize detection of double decay to the first excited state of /sup 76/Se with subsequent emission of a 559 keV gamma ray. The detector will be sufficiently sensitive for measuring the neutrinoless double beta decay to the ground state to establish a minimum half life of 1.4.10/sup 24/ y. Application of the large spectrometer system to the analysis of low level environmental and biological samples is discussed.

  15. Total Absorption Spectroscopy of the 137Xe, 137I, and 92Rb β-Decays

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Wolińska-Cichocka, M.; Goetz, K. C.; Grzywacz, R. K.; Gross, C. J.; Miernik, K.; Stracener, D.

    2015-10-01

    The NaI(Tl) based Modular Total Absorption Spectrometer (MTAS) was constructed to measure improved β-decay feeding patterns from neutron-rich nuclei. It is difficult to measure β-decay feeding intensities with high precision γ-ray measurements due to the low efficiency of high precision detectors. There are several important applications of improved measurements of β-decay feeding patterns by total absorption spectroscopy; improve understanding of elemental abundances in the universe, help with stockpile stewardship, contribute to understanding of underlying nuclear structure, and improve β-decay feeding measurements to calculate accurately the νe spectra needed to evaluate precisely reactor neutrino measurements. We present β-decay feeding results for two ``priority one'' measurements, 137Xe and 137I, and for 92Rb, which is a large individual contributor to the νe uncertainty of the reactor anomaly. In addition to β- γ decays, 137I has a β-neutron decay channel which is measurable in MTAS. We will demonstrate techniques for analyzing MTAS γ-decay data. We will also describe β and neutron spectroscopy in MTAS. This work was supported by the US DOE by Award No. DE-FG02- 96ER40978 and by US DOE, Office of Nuclear Physics.

  16. Recoil-decay tagging spectroscopy of 74162W88

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧı, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2015-07-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo (78Kr,2α ) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α -decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a γ -soft minimum at β2≈0.15 . Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state α -decay energy and half-life were also performed. The observed α -decay energy agrees with previous measurements. The half-life of 162W was determined to be t1 /2=990 (30 ) ms. This value deviates significantly from the currently adopted value of t1 /2=1360 (70 ) ms. In addition, the α -decay energy and half-life of 166Os were measured and found to agree with the adopted values.

  17. Neutron decay widths of excited states of {sup 11}Be

    SciTech Connect

    Haigh, P. J.; Freer, M.; Ashwood, N. I.; Bloxham, T.; Curtis, N.; McEwan, P.; Bohlen, H. G.; Dorsch, T.; Kokalova, Tz.; Schulz, Ch.; Wheldon, C.

    2009-01-15

    The two-neutron transfer reaction {sup 9}Be({sup 16}O, {sup 14}O){sup 11}Be[{sup 10}Be +n] has been used to measure the branching ratios for the neutron decay of excited states of {sup 11}Be. The {sup 14}O ejectile was detected by a Q3D spectrometer at forward angles. The energies and angles of the {sup 10}Be fragments of the decaying {sup 11}Be* recoil were measured in coincidence with the {sup 14}O ejectile using a double-sided silicon strip detector array at backward angles. This enabled a kinematic reconstruction of the reaction to be performed. Theoretical decay branch ratios were calculated using barrier penetrability factors and were compared to the measured ratios to provide information on the relative reduced widths of the states. The decay widths have been used to link states in {sup 11}Be with a common structure and structurally to states in the daughter nucleus {sup 10}Be. The 3/2{sup -} 8.82-MeV state was identified as a candidate for a molecular band head.

  18. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  19. THOR Ion Mass Spectrometer (IMS)

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Ion Mass Spectrometer (IMS) onboard THOR will provide the first high-time resolution measurements of mass-resolved ions in near-Earth space, focusing on hot ions in the foreshock, shock and magnetosheath turbulent regions. These measurements are required to study how kinetic-scale turbulent fluctuations heat and accelerate different ion species. IMS will measure the full three-dimensional distribution functions of main ion species (H+, He++, O+) in the energy range 10 eV/q to 30 keV/q with energy resolution DE/E down to 10% and angular resolution down to 11.25˚ . The time resolution will be 150 ms for O+, 300 ms for He++ and ˜ 1s for O+, which correspond to ion scales in the the foreshock, shock and magnetosheath regions. Such high time resolution is achieved by mounting four identical IMS units phased by 90˚ in the spacecraft spin plane. Each IMS unit combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. Adequate mass-per-charge resolution (M/q)/(ΔM/q) (≥ 8 for He++ and ≥ 3 for O+) is obtained through a 6 cm long Time-of-Flight (TOF) section. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCPs) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification and discrimination and a discrete Time-to-Amplitude Converter (TAC) to determine the ion time of flight. A processor board will be used to for ion events formatting and will interface with the Particle Processing Unit (PPU), which will perform data processing for THOR particle detectors. The IMS instrument is being designed and will be built and calibrated by an international consortium of scientific institutes from France, USA, Germany and Japan and Switzerland.

  20. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  1. The JPL Field Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.; Kahle, Anne B.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) Field Emission Spectrometer (FES) was built by Designs and Prototypes based on a set of functional requirements supplied by JPL. The instrument has a spectral resolution of 6 wavenumbers (wn) and can acquire spectra from either the Mid Infrared (3-5 mu m) or the Thermal Infrared (8-12 pm) depending on whether the InSb or HgCdTe detector is installed respectively. The instrument consists of an optical head system unit and battery. The optical head which is tripod mounted includes the interferometer and detector dewar assembly. Wavelength calibration of the interferometer is achieved using a Helium-Neon laser diode. The dewar needs replenishing with liquid Nitrogen approximately every four hours. The system unit includes the controls for operation and the computer used for acquiring viewing and processing spectra. Radiometric calibration is achieved with an external temperature-controlled blackbody that mounts on the fore-optics of the instrument. The blackbody can be set at 5 C increments between 10 and 55 C. The instrument is compact and weighs about 33 kg. Both the wavelength calibration and radiometric calibration of the instrument have been evaluated. The wavelength calibration was checked by comparison of the position of water features in a spectrum of the sky with their position in the output from a high resolution atmospheric model. The results indicatethat the features in the sky spectrum are within 6-8 wn of their position ill the model spectrum. The radiometric calibration was checked by first calibrating the instrument using the external blackbody supplied with the instrument and then measuring the radiance from another external blackbody at a series of temperatures. The temperatures of these radiance spectra were then recovered by inventing Planck's law and the recovered temperatures compared lo the measured blackbody temperature. These results indicate that radiometric calibration is good to 0.5 C over the range of

  2. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  3. Rare beauty and charm decays

    NASA Astrophysics Data System (ADS)

    Blake, T.; LHCb Collaboration

    2017-07-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of ℓ- decay processes.

  4. Pure rotational spectrometers for trace-level VOC detection and chemical sensing

    NASA Astrophysics Data System (ADS)

    Neill, Justin L.; Harris, Brent J.; Pulliam, Robin L.; Muckle, Matt T.; Reynolds, Roger; McDaniel, David; Pate, Brooks H.

    2014-05-01

    Pure rotational spectroscopy in the centimeter, millimeter, and THz regions of the electromagnetic spectrum is a powerful technique for the characterization of polar molecules in the gas phase. Although this technology has a long history in the research sector for structural characterization, recent advances in digital electronics have only recently made commercial instruments competitive with established chemical analysis techniques. BrightSpec is introducing a platform of pure rotational spectrometers in response to critical unmet needs in chemical analysis. These instruments aim to deliver the operational simplicity of Fourier transform infrared spectrometers in conjunction with the chemical analysis capabilities of mass spectrometers. In particular, the BrightSpec ONE instrument a broadband gas mixture analyzer with full capabilities for chemical analysis. This instrument implements Fourier transform millimeter-wave emission spectroscopy, wherein a brief excitation pulse is applied to the sample, followed by the measurement of the coherent free induction decay responses of all molecular transitions within the excitation bandwidth. After sample injection and characterization, the spectrometer returns a list of all known species detected in the sample, along with their concentrations in the mixture. No prior knowledge about the sample composition is required. The instrument can then perform double-resonance measurements (analogous to 2-D COSY NMR), direct mass determination through analysis of the time profile of the molecular signal, and automated isotopic identification as part of a suite of tools that can return the structural identity of the unknowns in the sample.

  5. Measurement of |V_cs| Using W Decays at LEP2.

    NASA Astrophysics Data System (ADS)

    Eržen, Borut

    1998-04-01

    Copious production of W^± boson pairs at the LEP2 collider has been exploited to study their hadronic decays. A method, based on the impact parameter measurement and particle identification capabilities of the DELPHI spectrometer, was used to tag W^± decays into c and s quarks. Using the information from the silicon vertex detector and Rich counters, a single tagging variable was constructed, which separates decays into c and s quarks from the rest of hadronic W^± decays, thus enabling a direct measurement of V_cs magnitude. With the accumulated luminosity, taken at centre-of-mass energies from 161 to 184 GeV, and including the information on the value of hadronic and leptonic W^± branching ratios, measured on the same data, the accuracy of the |V_cs| determination already surpasses the present world average.

  6. Rare B Decays at Babar

    SciTech Connect

    Palombo, Fernando; Collaboration, for the BABAR

    2009-01-12

    The author presents some of the most recent BABAR measurements for rare B decays. These include rate asymmetries in the B decays to K{sup (*)}l{sup +}l{sup -} and K{sup +}{pi}{sup -} and branching fractions in the B decays to l{sup +}{nu}{sub l}, K{sub 1}(1270){sup +}{pi}{sup -} and K{sub 1}(1400){sup +}{pi}{sup -}. The author also reports a search for the B{sup +} decay to K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup +}.

  7. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  8. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  9. Construction of the Solenoid Spectrometer for Nuclear AstroPhysics (SSNAP) at Notre Dame

    NASA Astrophysics Data System (ADS)

    Allen, Jacob; Bardayan, Dan; Blankstein, Drew; Hall, Matthew; Hall, Oscar; Kolata, James; O'Malley, Patrick; Becchetti, Frederick; Blackmon, Jeffery; Pain, Steven

    2016-09-01

    The study of nucleon transfer reactions gives information about many nuclei involved in astrophysical processes. The design and use of new detector systems improves our ability to accurately characterize these nuclei. The Solenoid Spectrometer for Nuclear AstroPhysics (SSNAP) is a new helical orbit spectrometer being designed at the University of Notre Dame to study transfer reactions with high-energy light ion beams from the FN tandem accelerator. SSNAP incorporates a series of position-sensitive silicon detectors to be set on-axis inside the second TwinSol solenoid. SSNAP will be sensitive to light ions produced in different reactions and the charged-particle decay products from the exotic nuclei produced. Results of initial testing and future plans with this detector system will be shown in this presentation. This work is supported by the National Science Foundation and the Joint Institute for Nuclear Astrophysics.

  10. Primary electron spectrometer, 18:63 UE: Electrostatic analyzer description and energy spectrum determination

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1973-01-01

    The primary electron spectrometer used to detect auroral electrons on sounding rocket 18:63 UE is described. The spectrometer used exponentially decaying positive and negative voltages applied to spherical deflection plates for energy analysis. A method for determining the analyzer response which does not require the assumptions that the ratio of plate separation to mean radius, the entrance or the exit apertures are small is described. By comparison with experiment it is shown that the effect of neither entrance nor exit collimation can be ignored. The experimental and calculated values of the limiting orbits agree well. A non-iterative technique of unfolding the electron differential energy spectrum is described. This method does not require the usual assumption of a flat or histogram-type energy spectrum. The unfolded spectra using both this technique and one which assumes a flat spectrum are compared to actual input spectra. This technique is especially useful in analyzing peaked auroral electron energy spectra.

  11. Cluster decay in the superallowed α decay region

    NASA Astrophysics Data System (ADS)

    Bhagwat, A.; Liotta, R. J.

    2017-09-01

    The emissions of α particles and protons are the dominant decay channels in the neutron-deficient nuclei corresponding to the s d g major shell. The possibility of cluster emission is explored here. It is shown that the cluster decay mode has a small yet sizable branching ratio.

  12. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  13. An echelle diffraction grating for imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Minyue; Wang, Han; Li, Mingyu; He, Jian-Jun

    2016-09-01

    We demonstrate an echelle diffraction grating (EDG) of 17 input waveguides and 33 output waveguides. For each input waveguide, only 17 of 33 output waveguides are used, receiving light ranging from 1520 nm to 1600 nm wavelength. The channel spacing of the EDG is 5 nm, with loss of -6dB and crosstalk of -17dB for center input waveguide and -15dB for edge input waveguides. Based on the 3 μm SOI platform the device is polarization insensitive. As a simple version of EDG spectrometer it is designed to be a part of the on-chip spectroscopic system of the push-broom scanning imaging spectrometer. The whole on-chip spectrometer consists of an optical on-off switch array, a multi-input EDG and detector array. With the help of on-off switch array the multiple input waveguides of the EDG spectrometer could work in a time division multiplexed fashion. Since the switch can scan very fast (less than 10 microseconds), the imaging spectrometer can be operated in push-broom mode. Due to the CMOS compatibility, the 17_channel EDG scales 2.5×3 mm2. The full version of EDG spectrometer is designed to have 129 input waveguides and 257 output waveguides (129 output channel for each input waveguide), working in wavelength ranging from 1250 nm to 1750 nm, and had similar blazed facet size with the 17_channel one, which means similar fabrication tolerance in grating facets. The waveguide EDG based imaging spectrometer can provide a low-cost solution for remote sensing on unmanned aerial vehicles, with advantages of small size, light weight, vibration-proof, and high scalability.

  14. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  15. Accelerated Decay of Radioisotopes

    DTIC Science & Technology

    2013-01-01

    00-01 -2013 Technical June20 l l-June 2012 4 . TITLE AND SUBTITLE Sa. CONTRACT NUMBER DTRA MIPR 11-2362M Accelerated Decay of Radioisotopes Sb...268 x E +2 4.788 026 x E -2 6.894 757 4.535 924 x E -1 4.214 011 x E -2 1.601 846 x E +1 1.000 000 x E -2 2.579 760 x E - 4 1.000 000 x E -8...c a y o f R a d i o i s o t o p e s " P r o p o s a l # B R C A L L 0 7 - N - 2 - 0 0 4 7 I l l u s t r a t i o n o f \\ P F R P a s p o

  16. Double beta decay: Calorimeters

    NASA Astrophysics Data System (ADS)

    Brofferio, Chiara

    2008-11-01

    Calorimeters or, with a more specific definition, low temperature detectors, have been used by now for more than 15 years in Double Beta Decay (DBD) searches, with excellent results: they compete with Ge diodes for the rank of detectors with the highest sensitivity to the effective neutrino mass, which is defined as a linear combination of the neutrino mass eigenvalues. After a brief introduction to the argument, with some notes on DBD and on bolometers, an update on the now closed experiment CUORICINO and on its successor, CUORE, is given. The fundamental role of background is then revealed and commented, introducing in this way the importance of the specific experiment now under construction, CUORE-0, that will precede CUORE to help optimizing the struggle against surface background. The possible future of this technique is then commented, quoting important R&D studies that are going on, for active shielding bolometers and for scintillating bolometers coupled with light detecting bolometers.

  17. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2007-06-01

    The recent results showing the presence of neutrino oscillations clearly indicate that the difference between the squared mass of neutrinos of different flavors is different from zero, but are unable to determine the nature and the absolute value of the neutrino mass. Neutrinoless double beta decay (DBD) is at present the most powerful tool to ascertain if the neutrino is a Majorana particle and to determine under this condition the absolute value of its mass. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is Dirac or Majorana particle.

  18. Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Äysto, J.; Davinson, T.; Lotay, G.; Woods, P. J.; Pollacco, E.

    2012-02-01

    In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23Al, 27P, 31Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,γ)23Mg (crucial for the depletion of 22Na in novae), 26mAl(p,γ)27Si and 30P(p,γ)31S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.

  19. Decay of oscillating universes

    NASA Astrophysics Data System (ADS)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  20. Progress of the Hypernuclear Decay Pion Spectroscopy Program at MAMI-C

    NASA Astrophysics Data System (ADS)

    Nagao, Sho; Achenbach, Patrick; Arai, Naoki; Ayerbe Gayoso, Carlos; Böhm, Ralph; Borodina, Olga; Bosnar, Damir; Bozsurt, Vakkas; Devenjak, Luka; Distler, Michael O.; Esser, Anselm; Fujita, Manami; Friščič, Ivica; Fujii, Yuu; Gogami, Toshiyuki; Gómez Rodríguez, Mar; Hirose, Satoshi; Kanda, Hiroki; Kaneta, Masashi; Kim, Eunhee; Kusaka, Junichiro; Margaryan, Amur; Merkel, Harald; Müller, Ulrich; Nakamura, Satoshi N.; Pochodzalla, Josef; Rappold, Christophe; Reinhold, Joerg; Saito, Takehiko R.; Sanchez Lorente, Alicia; Sánchez Majos, Salvador; Sören Schlimme, Björn; Schoth, Matthias; Schulz, Florian; Sfienti, Concettina; Širca, Simon; Takahashi, Yuta; Tang, Liguang; Thiel, Michaela; Tsukada, Kyo; Uchiyama, Daisuke

    We have performed high resolution spectroscopies for binding energies of light Λ hypernuclei with newly established experimental technique "hypernuclear decay pion spectroscopy using electro-photo production". We identified successfully a first decay pion peak from Λ 4H in 2012 experiment. A spectrometer Kaos for K+ tagger was upgraded and suppressed large positron background using a lead wall in the experiment. We performed the next generation experiment with higher statistics in 2014. In this experiment, we achieved twice higher beam intensity and doubled the length of the beam-time with a lower background rate thanks to improvements for the lead wall and a trigger system.

  1. A novel approach for measuring the beta-neutrino angular correlation in nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Beck, M.; Ames, F.; Beck, D.; Delauré, B.; Deutsch, J.; Bollen, G.; Forstner, O.; Phalet, T.; Quint, W.; Schmidt, P.; Schuurmans, P.; Severijns, N.; Vereecke, B.; Versyck, S.

    2000-12-01

    The experiment described here will search for deviations from the V-A structure of the standard electroweak model. It is based on measuring the recoil energy spectrum in nuclear beta decay which is determined by the electron-neutrino angular correlation. For pure Fermi decays this is exactly known in the standard model and any deviation will point to additional scalar interaction. The experiment consists of a Penning trap coupled to a retardation spectrometer to measure the energy of the recoiling daughter nuclei. The current status will be presented.

  2. Nuclear structure analysis using the Orange Spectrometer

    SciTech Connect

    Regis, J.-M.; Pascovici, Gh.; Christen, S.; Meersschout, T.; Bernards, C.; Fransen, Ch.; Dewald, A.; Braun, N.; Heinze, S.; Thiel, S.; Jolie, J.; Materna, Th.

    2009-01-28

    Recently, an Orange spectrometer, a focusing iron-free magnetic spectrometer, has been installed at a beam line of the 10 MV Tandem accelerator of the IKP of the University of Cologne. The high efficiency of 15% of 4{pi} for the detection of conversion electrons and the energy resolution of 1% makes the Orange spectrometer a powerful instrument. From the conversion electron spectrum, transition multipolarities can be determined using the so called K to L ratio. In combination with an array of germanium and lanthanum bromide detectors, e{sup -}-{gamma}-coincidences can be performed to investigate the level scheme. Moreover, the very fast lanthanum bromide scintillator with an energy resolution of 3% allows e{sup -}-{gamma} lifetime measurements down to 0.3 ns. A second Orange spectrometer can be added to build the Double Orange Spectrometer for e{sup -}-e{sup -}-coincidences. It is indispensable for lifetime measurements of low intensity or nearby lying transitions as often occur in odd-A and odd-odd nuclei. The capabilities are illustrated with several examples.

  3. Recent results from Compton spectrometer experiments

    NASA Astrophysics Data System (ADS)

    Gehring, Amanda E.; Espy, Michelle A.; Haines, Todd J.; Webb, Timothy J.

    2016-09-01

    During the previous three years, a Compton spectrometer has successfully measured the x-ray spectra of both continuous and flash radiographic sources. In this method, a collimated beam of x-rays incident on a convertor foil ejects Compton electrons. A collimator in the entrance to the spectrometer selects the forward-scattered electrons, which enter the magnetic field region of the spectrometer. The position of the electrons at the magnet's focal plane is proportional to the square root of their momentum, allowing the x-ray spectrum to be reconstructed. The spectrometer is a neodymium-iron magnet which measures spectra in the <1 MeV to 20 MeV energy range. The energy resolution of the spectrometer was experimentally tested with the 44 MeV Short-Pulse Electron LINAC at the Idaho Accelerator Center. The measured values are mostly consistent with the design specification and historical values of the greater of 1% or 0.1 MeV. Experimental results from this study are presented in these proceedings.

  4. Imaging Spectrometers Using Concave Holographic Gratings

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Wang, S.

    1993-01-01

    Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers.

  5. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  6. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  7. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  8. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    NASA Technical Reports Server (NTRS)

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  9. Preliminary results from the lunar prospector alpha particle spectrometer

    SciTech Connect

    Lawson, S. L.

    2001-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrained in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be

  10. Particle decay in inflationary cosmology

    SciTech Connect

    Boyanovsky, D.; Vega, H.J. de

    2004-09-15

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form {eta}{sup {gamma}{sub 1}} with {eta} being conformal time and we give an explicit expression for {gamma}{sub 1} to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is <decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/{pi}M. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C({eta}) the scale factor and {alpha} determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  11. Tree Decay - An Expanded Concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to wounding and infection-compartmentalization-and the orderly infection of wounds by many microorganisms-successions. The heartrot concept must be abandoned because it deals only with decay-causing fungi and it...

  12. Tree decay an expanded concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    This publication is the final one in a series on tree decay developed in cooperation with Harold G. Marx, Research Application Staff Assistant, U.S. Department of Agriculture, Forest Service, Washington, D.C. The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to...

  13. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  14. Soudan 2 nucleon decay experiment

    SciTech Connect

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage.

  15. Particle decay in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.

    2004-09-01

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form ηΓ1 with η being conformal time and we give an explicit expression for Γ1 to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is ≪H then the decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/πM. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C(η) the scale factor and α determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  16. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation.

    PubMed

    Brown, Gordon G; Dian, Brian C; Douglass, Kevin O; Geyer, Scott M; Shipman, Steven T; Pate, Brooks H

    2008-05-01

    Designs for a broadband chirped pulse Fourier transform microwave (CP-FTMW) spectrometer are presented. The spectrometer is capable of measuring the 7-18 GHz region of a rotational spectrum in a single data acquisition. One design uses a 4.2 Gsampless arbitrary waveform generator (AWG) to produce a 1 mus duration chirped pulse with a linear frequency sweep of 1.375 GHz. This pulse is sent through a microwave circuit to multiply the bandwidth of the pulse by a factor of 8 and upconvert it to the 7.5-18.5 GHz range. The chirped pulse is amplified by a traveling wave tube amplifier and broadcast inside the spectrometer by using a double ridge standard gain horn antenna. The broadband molecular free induction decay (FID) is received by a second horn antenna, downconverted, and digitized by a 40 Gsampless (12 GHz hardware bandwidth) digital oscilloscope. The second design uses a simplified pulse generation and FID detection scheme, employing current state-of-the-art high-speed digital electronics. In this spectrometer, a chirped pulse with 12 GHz of bandwidth is directly generated by using a 20 Gsampless AWG and upconverted in a single step with an ultrabroadband mixer. The amplified molecular emission is directly detected by using a 50 Gsampless digital oscilloscope with 18 GHz bandwidth. In both designs, fast Fourier transform of the FID produces the frequency domain rotational spectrum in the 7-18 GHz range. The performance of the CP-FTMW spectrometer is compared to a Balle-Flygare-type cavity-FTMW spectrometer. The CP-FTMW spectrometer produces an equal sensitivity spectrum with a factor of 40 reduction in measurement time and a reduction in sample consumption by a factor of 20. The CP-FTMW spectrometer also displays good intensity accuracy for both sample number density and rotational transition moment. Strategies to reduce the CP-FTMW measurement time by another factor of 90 while simultaneously reducing the sample consumption by a factor of 30 are demonstrated.

  17. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  18. Measurement of lifetimes in {sup 46}V with the EUROBALL {gamma}-ray spectrometer

    SciTech Connect

    Jessen, K.; Moeller, O.; Dewald, A.; Brentano, P. von; Fitzler, A.; Jolie, J.; Saha, B.; Petkov, P.; Brandolini, F.; Gadea, A.; Lenzi, S. M.; De Angelis, G.; Farnea, E.; Napoli, D. R.; Gall, B. J. P.

    2006-08-15

    In {sup 46}V picosecond lifetimes were determined using the recoil distance Doppler-shift technique with the Cologne plunger device coupled to the EUROBALL IV spectrometer. The experiment was carried out using the {sup 24}Mg({sup 28}Si, {alpha}pn) reaction at 110 MeV at the Strasbourg VIVITRON accelerator. Subsequently the differential decay curve method in coincidence mode was employed to derive lifetimes for four excited states in the K{sup {pi}}=0{sup -} band. The resulting transition probabilities give a comparison of isospin allowed and forbidden E1 transitions, which clarifies the decay properties of the 2{sup -},T=0 state. Furthermore the B(E2) values within the K{sup {pi}}=0{sup -} band are discussed.

  19. Recent results on S = /minus/3 baryon spectroscopy from the LASS (Large Aperture Superconducting Solenoid) spectrometer

    SciTech Connect

    Aston, D.; Awaji, N.; Bienz, T.; Bird, F.; D'Amore, J.; Dunwoodie, W.; Endorf, R.; Fujii, K.; Hayashiii, H.; Iwata, S.

    1989-02-01

    Data demonstrating the existence of two ..cap omega../sup */minus// resonances produced in K/sup /minus//p interactions at 11 GeV/c in the LASS spectrometer are presented. The first state is seen in the ..xi../sup */degree//minus// decay channel with mass 2253 +- 13 MeV/c/sup 2/ and width 81 +- 38 MeV/c/sup 2/, and the second in the ..cap omega../sup /minus//..pi../sup +/..pi../sup /minus// system with mass 2474 +- 12 and width 72 +- 33 MeV/c/sup 2/. Inclusive cross sections corresponding to these decays corrected for unseen charge modes are estimated to be respectively 630 +- 180 and 290 +- 90 nb, respectively. 10 refs., 16 figs., 1 tab.

  20. Charged-pion spectrometer for the BNL gamma-ray-beam facility

    SciTech Connect

    LeVine, M.J.; Thorn, C.E.; Sandorfi, A.M.

    1982-01-01

    The (..gamma..,..pi../sup +-/) studies planned for the BNL Gamma Ray Beam Facility necessitate the detection of charged pions in the energy range 25 < T/sub pi/ < 150 MeV with a modest resolving power to match the photon beam energy resolution (27 MeV). The solid angle must be as large as possible, and the total path length must be as short as possible to minimize the losses due to pion decay. (The mean lifetime corresponds to L = 4.87 m for T/sub pi/ = 25 MeV). Finally, a means must be provided to reject pion decay products reaching the focal plane. A design for such a charged-pion spectrometer is presented. This design utilizes existing large aperture magnetic elements, and provides a momentum resolution of 0.68% at a solid angle of 50 msr, over a momentum range of 10%.

  1. Charm and bottom semileptonic decays

    NASA Astrophysics Data System (ADS)

    O'donnell, Patrick J.; Turan, Gürsevil

    1997-07-01

    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light-front frame at the kinematic point q2=0. This allows us to evaluate the form factors at the same value of q2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements is consistent with that obtained from the unitarity constraint, though a new measurement by the E687 Collaboration is about two standard deviations too high. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2 the SU(3)F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For B decays, the decay B-->K*ll¯ at q2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay B-->K*νν¯ as a possibility. As the mass of the decaying particle increases we note that the SU(3) symmetry becomes badly broken at q2=0.

  2. 140-GHz pulsed Fourier transform microwave spectrometer

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1985-01-01

    A pulsed microwave spectrometer operating in the vicinity of 140 GHz for the detection of rotational transitions in gaseous molecules is described. The spectrometer incorporates a tunable Fabry-Perot cavity and a subharmonically pumped superheterodyne receiver for the detection of the molecular emission signals. A 70-GHz source supplying a high-efficiency frequency doubler which is pulse modulated at 30 MHz produces sidebands of sufficient power at 140 GHz to excite the molecules. The cavity is tuned to one of the modulation sidebands. The operation of the spectrometer is illustrated by the detection of emission signals from the 6(2, 4)-6(1, 5) transition of SO2 gas. The generation of the electric dipole analog of nuclear-magnetic-resonance (NMR) ``spin-echo'' signals by a π/2-π pulse sequence is also described.

  3. An EUV spectrometer for atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Cotton, D. M.; Lampton, M.; Siegmund, O. H. W.; Link, R.

    1989-01-01

    This paper describes the Berkeley EUV Airglow Rocket Spectrometer (BEARS) experiment, designed to investigate the interactions between the solar ionizing radiation and the earth's upper atmosphere. The primary objective of this experiment is the verification the feasibility of using EUV observations as a quantitative diagnostic of the terrestrial atmosphere and its plasma environment. The expected information provided by spectroscopic measurements of EUV emission will include data on the excitation mechanisms, excitation rates, and branching ratios. The BEARS experimental package consists of a high-resolution EUV airglow spectrometer, a hydrogen Lyman-alpha photometer to measure both the solar radiations and the geocoronal emissions, and a moderate-resolution solar EUV spectrometer. In a test experiment, the instruments were carried aboard a four-stage sounding rocket to a peak altitude of about 960 km and obtained airglow spectra in the 980-1060 A range and in the 1300-1360 range.

  4. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  5. ExoMars Raman laser spectrometer overview

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Díaz, E.; Canora, C. P.; Moral, A. G.; Tato, C.; Colombo, M.; Belenguer, T.; Fernández, M.; Manfredi, J. A. R.; Canchal, R.; Dávila, B.; Jiménez, A.; Gallego, P.; Ibarmia, S.; Prieto, J. A. R.; Santiago, A.; Pla, J.; Ramos, G.; González, C.

    2010-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. The RLS Instrument will perform Raman spectroscopy on crushed powered samples deposited on a small container after crushing the cores obtained by the Rover's drill system. This is the first time that a Raman spectrometer will be launched in an out planetary mission. The Instrument will be accommodated and operate inside the Rover's ALD (Analytical Laboratory Drawer), complying with COSPAR (Committee on Space Research) Planetary Protection requirements. The RLS Instrument is composed by the following units: SPU (Spectrometer Unit); iOH: (Internal Optical Head); ICEU (Instrument Control and Excitation Unit). Other instrument units are EH (Electrical Harness), OH (Optical Harness) and RLS SW On-Board.

  6. Digital logarithmic airborne gamma ray spectrometer

    NASA Astrophysics Data System (ADS)

    Zeng, Guo-Qiang; Zhang, Qing-Xian; Li, Chen; Tan, Cheng-Jun; Ge, Liang-Quan; Gu, Yi; Cheng, Feng

    2014-07-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range because the low-energy pulse signal has a larger gain than the high-energy pulse signal. After energy calibration, the spectrometer can clearly distinguish photopeaks at 239, 352, 583 and 609 keV in the low-energy spectral sections. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, it is possible to effectively measure energy from 20 keV to 10 MeV.

  7. Landsat-Swath Imaging Spectrometer Design

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Green, Robert O.; Van Gorp, Byron; Moore, Lori; Wilson, Daniel W.; Bender, Holly A.

    2015-01-01

    We describe the design of a high-throughput pushbroom imaging spectrometer and telescope system that is capable of Landsat swath and resolution while providing better than 10 nm per pixel spectral resolution. The design is based on a 3200 x 480 element x 18 µm pixel size focal plane array, two of which are utilized to cover the full swath. At an optical speed of F/1.8, the system is the fastest proposed to date to our knowledge. The utilization of only two spectrometer modules fed from the same telescope reduces system complexity while providing a solution within achievable detector technology. Predictions of complete system response are shown. Also, it is shown that detailed ghost analysis is a requirement for this type of spectrometer and forms an essential part of a complete design.

  8. A compact multichannel spectrometer for Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te < 100 eV are achieved by a 2971 l/mm VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  9. A compact multichannel spectrometer for Thomson scattering.

    PubMed

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l∕mm VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  10. Performance of an INTEGRAL spectrometer model

    NASA Technical Reports Server (NTRS)

    Jean, P.; Naya, J. E.; vonBallmoos, P.; Vedrenne, G.; Teegarden, B.

    1997-01-01

    Model calculations for the INTEGRAL spectrometer (SPI) onboard the future INTErnational Gamma Ray Astrophysics Laboratory (INTEGAL) are presented, where the sensitivity for narrow lines is based on estimates of the background level and the detection efficiency. The instrumental background rates are explained as the sum of various components that depend on the cosmic ray intensity and the spectrometer characteristics, such as the mass distribution around the Ge detectors, the passive material, the characteristics of the detector system and the background reduction techniques. Extended background calculations were performed with Monte Carlo simulations and using semi-empirical and calculated neutron and proton cross sections. In order to improve the INTEGRAL spectrometer sensitivity, several designs and background reduction techniques were compared for an instrument with a fixed detector volume.

  11. Partial pressure measurements with an active spectrometer

    SciTech Connect

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra.

  12. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  13. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1986-01-01

    An automatic calibration system was designed for use in the vacuum facility at the Space Science Laboratory of the Marshall Space Flight Center. That system was developed and used in the intervening winter to calibrate the ion spectrometer that eventually flew in May 1986 aboard the NASA project, CRIT 1. During this summer, it is planned to implement the calibration of both an ion and electron spectrometer of a new design whose basic elements were conceived during the winter of 1985 to 1986. This spectrometer was completed in the summer and successfully mounted in the vacuum tank for calibration. However, the source gate valve malfunctioned, and, at the end of the summer, it still needed a replacement. During the inevitable delays in the experimental research, the numerical model of the Critical Velocity effect was completed and these results were presented.

  14. Portable instant display and analysis reflectance spectrometer

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H. (Inventor)

    1985-01-01

    A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.

  15. Degradation Free Spectrometers for Solar EUV Measurements

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.; McMullin, D. R.

    2011-12-01

    Solar EUV observations will be made using two new degradation-free EUV spectrometers on a sounding rocket flight scheduled for summer 2012. The two instruments, a rare gas photoionization-based Optics-Free Spectrometer (OFS) and a Dual Grating Spectrometer (DGS), are filter-free and optics-free. OFS can measure the solar EUV spectrum with a spectral resolution comparable to that of grating-based EUV spectrometers. The DGS selectable spectral bandwidth is designed to provide solar irradiance in a 10 nm band centered on the Lyman-alpha 121.6 nm line and a 4 nm band centered on the He-II 30.4 nm line to overlap EUV observations from the SDO/EUV Variability Experiment (EVE) and the SOHO/Solar EUV Monitor (SEM). A clone of the SOHO/SEM flight instrument and a Rare Gas Ionization Cell (RGIC) absolute EUV detector will also be flown to provide additional measurements for inter-comparison. Program delays related to the sounding rocket flight termination system, which was no longer approved by the White Sands Missile Range prevented the previously scheduled summer 2011 launch of these instruments. During this delay several enhancements have been made to the sounding rocket versions of the DFS instruments, including a lighter, simplified vacuum housing and gas system for the OFS and an improved mounting for the DGS, which allows more accurate co-alignment of the optical axes of the DGS, OFS, and the SOHO/SEM clone. Details of these enhancements and results from additional lab testing of the instruments are reported here. The spectrometers are being developed and demonstrated as part of the Degradation Free Spectrometers (DFS) project under NASA's Low Cost Access to Space (LCAS) program and are supported by NASA Grant NNX08BA12G.

  16. Decay rate of the second radiation belt

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  17. Decay rate of the second radiation belt

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Robbins, D. E.

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  18. Decay rate of the second radiation belt.

    PubMed

    Badhwar, G D; Robbins, D E

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  19. Total Absorption Gamma-ray Spectrometer (TAGS) Intensity Distributions from INL's Gamma-Ray Spectrometry Center

    DOE Data Explorer

    Greenwood, R. E.

    A 252Cf fission-product source and the INL on-line isotope separator were used to supply isotope-separated fission-product nuclides to a total absorption -ray spectrometer. This spectrometer consisted of a large (25.4-cm diameter x 30.5-cm long) NaI(Tl) detector with a 20.3-cm deep axial well in which is placed a 300-mm2 x 1.0-mm Si detector. The spectra from the NaI(Tl) detector are collected both in the singles mode and in coincidence with the B-events detected in the Si detector. Ideally, this detector would sum all the energy of the B- rays in each cascade following the population of daughter level by B- decay, so that the event could be directly associated with a particular daughter level. However, there are losses of energy from attenuation of the rays before they reach the detector, transmission of rays through the detector, escape of secondary photons from Compton scattering, escape of rays through the detector well, internal conversion, etc., and the measured spectra are thus more complicated than the ideal case and the analysis is more complex. Analysis methods have been developed to simulate all of these processes and thus provide a direct measure of the B- intensity distribution as a function of the excitation energy in the daughter nucleus. These data yield more accurate information on the B- distribution than conventional decay-scheme studies for complex decay schemes with large decay energies, because in the latter there are generally many unobserved and observed but unplaced rays. The TAGS data have been analyzed and published [R. E. Greenwood et al., Nucl Instr. and metho. A390(1997)] for 40 fission product-nuclides to determine the B- intensity distributions. [Copied from the TAGS page at http://www.inl.gov/gammaray/spectrometry/tags.shtml]. Those values are listed on this page for quick reference.

  20. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  1. SAMURAI spectrometer for RI beam experiments

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Chiga, N.; Isobe, T.; Kondo, Y.; Kubo, T.; Kusaka, K.; Motobayashi, T.; Nakamura, T.; Ohnishi, J.; Okuno, H.; Otsu, H.; Sako, T.; Sato, H.; Shimizu, Y.; Sekiguchi, K.; Takahashi, K.; Tanaka, R.; Yoneda, K.

    2013-12-01

    A large-acceptance multiparticle spectrometer SAMURAI has been constructed at the RIKEN RI Beam Factory (RIBF) for RI beam experiments. It was designed primarily for kinematically complete experiments such as the invariant-mass spectroscopy of particle-unbound states in exotic nuclei, by detecting heavy fragments and projectile-rapidity nucleons in coincidence. The system consists of a superconducting dipole magnet, beam line detectors, heavy fragment detectors, neutron detectors, and proton detectors. The SAMURAI spectrometer was commissioned in March 2012, and a rigidity resolution of about 1/1500 was obtained for RI beams up to 2.4 GeV/c.

  2. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  3. Compact Raman Spectrometers Would Detect Hydrogen

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Adler-Golden, Steven

    1993-01-01

    Compact Raman spectrometers developed to measure concentrations of hydrogen as low as hundreds of parts per million in air, nitrogen, or other carrier gases. Advantages include speed, dynamic range, and ease of calibration. Design concept incorporates Raman-scattering apparatus into compact instrument of hydrogen leaking into stream of gas or into gas enclosed in small space. Should hydrogen-fueled cars and trucks come into widespread use, instruments used to detect leaks from vehicles and supply equipment, to help prevent explosions. Similar spectrometers developed to detect other gases emitting characteristic Raman spectra.

  4. Combined hyperspatial and hyperspectral imaging spectrometer concept

    NASA Technical Reports Server (NTRS)

    Burke, Ian; Zwick, Harold

    1995-01-01

    There is a user need for increasing spatial and spectral resolution in Earth Observation (EO) optical instrumentation. Higher spectral resolution will be achieved by the introduction of spaceborne imaging spectrometers. Higher spatial resolutions of 1 - 3m will be achieved also, but at the expense of sensor redesign, higher communications bandwidth, high data processing volumes, and therefore, at the risk of time delays due to large volume data-handling bottlenecks. This paper discusses a design concept whereby the hyperspectral properties of a spaceborne imaging spectrometer can be used to increase the image spatial resolution, without such adverse cost impact.

  5. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  6. Streaked, x-ray-transmission-grating spectrometer

    SciTech Connect

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/..delta..lambda of 4 to 50, limited primarily by source size and collimation effects.

  7. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  8. High-time-resolution laser spectrometer

    NASA Astrophysics Data System (ADS)

    Kiryunikov, K. V.; Kochubeĭ, S. A.; Lisitsyn, V. N.; Chapovskiĭ, P. L.

    1980-04-01

    A pulsed laser spectrometer was developed on the basis of a tunable He-Ar high-pressure laser. The accuracy of synchronizing the laser with an object being investigated was ~ 1 nsec. In order to automate the measurements, pulse voltmeters having a wide dynamic range and devices for analog processing of the signals were developed. The spectrometer was used to investigate the characteristics of the 2p10-ls5 transition in argon, in a nanosecond electric-discharge plasma. Measurements were made of the time dependence of the gain at the center of the transition and of the collisional broadening due to the helium (19 GHz/atm).

  9. High-time-resolution laser spectrometer

    NASA Astrophysics Data System (ADS)

    Kiriunikov, K. V.; Kochubei, S. A.; Lisitsyn, V. N.; Chapovskii, P. L.

    1980-04-01

    The paper presents a pulsed laser spectrometer which employs a tunable high-pressure He-Ar laser. A synchronization accuracy of 1 ns is obtained between the tunable laser and the object under study. Automated measurements are achieved by means of pulsed voltmeters with a wide dynamic range and analog signal processors. The spectrometer was used to study the 2p(10)-1s(5) transition in argon in the plasma of a nanosecond electric discharge. Gain vs time in the center of the transition and the collisional broadening by helium (19 GHz/atm) have been measured.

  10. The Constellation-X Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Allen, Jean C.

    2006-01-01

    The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

  11. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  12. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  13. MICE Spectrometer Solenoid Magnetic Field Measurements

    SciTech Connect

    Leonova, M.

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  14. Time-of-flight Fourier UCN spectrometer

    NASA Astrophysics Data System (ADS)

    Kulin, G. V.; Frank, A. I.; Goryunov, S. V.; Kustov, D. V.; Geltenbort, P.; Jentschel, M.; Lauss, B.; Schmidt-Wellenburg, P.

    2016-05-01

    We describe a new time-of-flight Fourier spectrometer for investigation of UCN diffraction by a moving grating. The device operates in the regime of a discrete set of modulation frequencies. The results of the first experiments show that the spectrometer may be used for obtaining UCN energy spectra in the energy range of 60 - 200 neV with a resolution of about 5 neV. The accuracy of determination of the line position was estimated to be several units of 10-10 eV.

  15. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  16. Automated calibration of a flight particle spectrometer

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.

    1986-01-01

    A system for calibrating both electron and ion imaging particle spectrometers was devised to calibrate flight instruments in a large vacuum facility in the Space Science Laboratory at the Marshall Space Flight Center. An IBM-compatible computer was used to control, via an IEEE 488 buss protocol, a two-axis gimbled table, constructed to fit inside the tank. Test settings of various diagnostic voltages were also acquired via the buss. These spectrometers constructed by the author at UCSD were calibrated in an automatic procedure programmed on the small computer. Data was up-loaded to the SSL VAX where a program was developed to plot the results.

  17. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  18. The Offner imaging spectrometer in quadrature.

    PubMed

    Prieto-Blanco, Xesús; Montero-Orille, Carlos; González-Nuñez, Héctor; Mouriz, María Dolores; Lago, Elena López; de la Fuente, Raúl

    2010-06-07

    This is a proposal and description of a new configuration for an Offner imaging spectrometer based on the theory of aberrations of off-plane classical-ruled spherical diffraction gratings. This new spectrometer comprises a concave mirror used in double reflection and a convex reflection grating operating in quadrature, in a concentric layout. A very simple procedure obtains designs that are anastigmatic for a given point on the entrance slit and a given wavelength. Specific examples show that the performance of this type of system improves the performance of analogous conventional in-plane systems, when compactness and/or high spectral resolution is of fundamental importance.

  19. Improved real-time imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Chao, Tien-Hsin (Inventor); Yu, Jeffrey W. (Inventor); Cheng, Li-Jen (Inventor)

    1993-01-01

    An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns.

  20. Precision measurement of the muon momentum in pion decay at rest

    NASA Astrophysics Data System (ADS)

    Abela, R.; Daum, M.; Eaton, G. H.; Frosch, R.; Jost, B.; Kettle, P.-R.; Steiner, E.

    1984-10-01

    A new series of precision measurements of the muon momentum pμ+ in the decay π-->μ+vμ at rest have been made using a magnetic spectrometer. The result is pμ+=(29.79139 +/- 0.00083) MeV/c. The consequences of this value for the rest masses of the muon neutrino and of the charged pion are discussed.

  1. Measurement of charged kaon semileptonic decay branching fraction using ISTRA+ detector

    NASA Astrophysics Data System (ADS)

    Uvarov, V. A.; Akimenko, S. A.; Bolotov, V. N.; Britvich, G. I.; Duk, V. A.; Filin, A. P.; Inyakin, A. V.; Kholodenko, S. A.; Khudyakov, A. A.; Konstantinov, A. S.; Konstantinov, V. F.; Leontiev, V. M.; Makarov, A. I.; Obraztsov, V. F.; Polyakov, V. A.; Polyarush, A. Yu.; Popov, A. V.; Romanovsky, V. I.; Stenyakin, O. V.; Tchikilev, O. G.; Yushchenko, O. P.

    2014-06-01

    The ratio of branching fractions for and K - → π-π0 decays has been measured using the ISTRA+ spectrometer. The result of our measurement is the following: Using the current PDG value for the K 2π branching fraction, this result leads to the measured K e3 branching fraction of Br( K e3) = 0.0501 ± 0.0009 and to the value of | V us | f +(0) = 0.2115 ± 0.0021.

  2. 12C+16O: Properties of sub-barrier resonance γ-decay

    NASA Astrophysics Data System (ADS)

    Goasduff, A.; Courtin, S.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Fallis, J.; Ruiz, C.; Hutcheon, D. A.; Amandruz, P.-A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2012-10-01

    In a recent experiment performed at Triumf using the Dragon 0° spectrometer and its associated BGO array, the complete γ-decay of the radiative capture channel below the Coulomb barrier has been measured for the first time. This measurement has been performed at two energies Ec.m. = 6.6 and 7.2 MeV. A selective contribution of the entrance spins 2+ and 3- has been evidenced which is consistent with existing results above the barrier.

  3. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  4. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  5. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  6. Semileptonic and leptonic B decays, circa 2016

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giulia

    2017-02-01

    We summarize the status of semileptonic and leptonic B decays, including |Vcb| and |Vub| exclusive and inclusive determinations, decays to excited states of the charm meson spectrum and decays into τ leptons.

  7. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  8. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  9. Pseudoscalar Semileptonic Decays of the D0 Meson

    SciTech Connect

    Agostino, Lorenzo

    2004-01-01

    The FOCUS experiment is designed to investigate charm particle decays. These charm particles are produced by the interaction of a photon beam with an average energy of 175 GeV on a BeO target and travel an average of few millimeters before decaying in the spectrometer. By reconstructing the daughters from the decay, we can infer properties of the charm particles. Semileptonic decays have been used to measure many CKM matrix elements. These decays are interesting due to the simplicity of their theoretical description but they are experimentally challenging due to the fact that a neutrino is not detected. Analysis of semileptonic decays in the charm sector are of great interest because they provide an excellent environment to test and to calibrate theoretical calculation that can be implemented in the determination of poorly known matrix elements such as Vub. In this thesis we report an analysis of the decays D0 → π-μ+v and D0 → K- μ+v. We measure the relative branching ratio as well as the ratio of the form factors f$π\\atop{+}$0)/f$K\\atop{+}$(0). Using a weighting technique, we further report a parametric analysis of the q2 dependence for both the decay modes measuring the pole masses. For the decay D0 → K-μ+v, we report on the form factor ratio f$K\\atop{-}$(0)/f$K\\atop{+}$(0). Finally, they report a non-parametric study of the q2 dependence of the form factor for the decay D0 → K- μ+v.

  10. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2010-12-01

    Almost exactly seventy years ago and only one year before his tragic disappearance the ingenious idea of Ettore Majorana is becoming one of the most important step in the development of fundamental physics. The problem of the nature of the neutrino, namely if it is a massless Dirac particle different from its antineutrino or a Majorana particle with finite mass, is discussed. In fact the recent results showing the presence of neutrino oscillations clearly indicates that the difference between the squared mass of neutrinos of different flavours is finite. Neutrinoless double beta decay (DBD) is at present the most powerful tool to determine the effective value of the mass of a Majorana neutrino. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already at least partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is indeed a Majorana particle.

  11. Nonleptonic Bc→VV decays

    NASA Astrophysics Data System (ADS)

    Kar, Susmita; Dash, P. C.; Priyadarsini, M.; Naimuddin, Sk.; Barik, N.

    2013-11-01

    We study the exclusive nonleptonic Bc→VV decays, within the factorization approximation, in the framework of the relativistic independent quark model, based on a confining potential in the scalar-vector harmonic form. The weak form factors are extracted from the overlap integral of meson wave functions derived in the relativistic independent quark model. The predicted branching ratios for different Bc-meson decays are obtained in a wide range, from a tiny value of O(10-6) for Bc→D*D(s)* to a large value of 24.32% for Bc→Bs*ρ-, in general agreement with other dynamical-quark-model predictions. The decay modes Bc→Bs*ρ- and Bc→B*ρ- with high branching ratios of 24.32% and 1.73%, respectively, obtained in this model should be detectable at the LHC and Tevatron in the near future. The b→c, u induced decays are predicted predominantly in the longitudinal mode, whereas the c¯→s¯, d¯ induced decays are obtained in a slightly higher transverse mode. The CP-odd fractions (R⊥) for different decay modes are predicted and those for color-favored Bc→D*D*, D*Ds* decays indicate significant CP violation in this sector.

  12. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  13. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  14. Detailed Spectroscopy of 46Ca with the GRIFFIN Spectrometer

    NASA Astrophysics Data System (ADS)

    Pore, Jennifer; Griffin Collaboration Collaboration

    2016-09-01

    The neutron-rich calcium isotopes are currently a new frontier for modern ab-initio calculations based on NN and 3N forces. Detailed experimental data from these nuclei is necessary for a comprehensive understanding of the region. Many excited states in 46Ca have been previously identified by various reaction mechanisms, most notably from (p ,p') and (p , t) reactions, but many spins are only tentatively assigned or not measured and very few gamma-ray transitions have been placed in the level scheme. A high-statistics data set of the 46K decay into low-lying levels of 46Ca was taken with the new GRIFFIN spectrometer located at TRIUMF-ISAC. The level scheme of 46Ca has been greatly expanded to include 160 new gamma-ray transitions and 12 new excited states. Angular correlations between cascading gamma rays have been investigated to obtain information about the spins of the excited states. An overview of the experiment and a discussion of the results will be presented.

  15. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  16. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  17. New detector array - the HRIBF Modular Total Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  18. (Higgs) vacuum decay during inflation

    NASA Astrophysics Data System (ADS)

    Joti, Aris; Katsis, Aris; Loupas, Dimitris; Salvio, Alberto; Strumia, Alessandro; Tetradis, Nikolaos; Urbano, Alfredo

    2017-07-01

    We develop the formalism for computing gravitational corrections to vacuum decay from de Sitter space as a sub-Planckian perturbative expansion. Non-minimal coupling to gravity can be encoded in an effective potential. The Coleman bounce continuously deforms into the Hawking-Moss bounce, until they coincide for a critical value of the Hubble constant. As an application, we reconsider the decay of the electroweak Higgs vacuum during inflation. Our vacuum decay computation reproduces and improves bounds on the maximal inflationary Hubble scale previously computed through statistical techniques.

  19. Decays of the b quark

    NASA Astrophysics Data System (ADS)

    Thorndike, Edward H.; Poling, Ronald A.

    1988-01-01

    Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.

  20. Tensor interactions and τ decays

    NASA Astrophysics Data System (ADS)

    Godina Nava, J. J.; López Castro, G.

    1995-09-01

    We study the effects of charged tensor weak currents on the strangeness-changing decays of the τ lepton. First, we use the available information on the K+e3 form factors to obtain B(τ--->K-π0ντ)~10-4 when the Kπ system is produced in an antisymmetric tensor configuration. Then we propose a mechanism for the direct production of the K*2(1430) in τ decays. Using the current upper limit on this decay we set a bound on the symmetric tensor interactions.

  1. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  2. Optical alignment of a pupil imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Horchem, Stephen D.; Kohrman, Richard J.

    1989-01-01

    The GOES Sounder is a 19-channel discrete filter spectrometer with an additional channel for star sensing. This paper presents the GOES Sounder's instrument optics and compensations, alignment rationale, and alignment mechanism and sensitivities. The results of a line of sight tolerance analysis of the instrument are described, and the prealignment and instrument coregistration are addressed.

  3. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2010-06-01

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  4. Tropospheric Emission Spectrometer Product File Readers

    NASA Technical Reports Server (NTRS)

    Fisher, Brendan M.

    2010-01-01

    TES Product File Reader software extracts data from publicly available Tropospheric Emission Spectrometer (TES) HDF (Hierarchical Data Format) product data files using publicly available format specifications for scientific analysis in IDL (interactive data language). In this innovation, the software returns data fields as simple arrays for a given file. A file name is provided, and the contents are returned as simple IDL variables.

  5. Matching the Spectrometers on board ISO

    NASA Astrophysics Data System (ADS)

    Burgdorf, M.; Feuchtgruber, H.; Salama, A.; García-Lario, P.; Müller, T.; Lord, S.

    We report on the findings of the Spectral Matching Working Group, the main aim of which was to investigate discontinuities between SWS and LWS in complete ISO spectra from 2 - 200 μm. In order to check in a quantitative way the agreement between the two spectrometers, a software tool was developed which automatically selected observations made with SWS and LWS on the same coordinates and which calculated the ratio of the fluxes in the overlap region from the browser products. In this way all observations suitable for this cross-calibration exercise could be selected, provided that they were performed with standard Astronomical Observing Templates and covered the wavelength range that SWS and LWS have in common. 95% of those targets which were neither extended nor variable showed an agreement better than 20% between the two spectrometers. Several problems with the data from the instruments, like saturation effects, detector transients and discontinuities between the sub-spectra from different detectors, affect both spectrometers in a similar way and require special processing steps. We show, for some solar system objects, to which extent the spectra taken with ISO from the mid- to the far-infrared agree with theoretical models. Furthermore, we discuss for the example of Neptune how the combined information from both spectrometers can be used to put new constraints on models of objects that are possible calibration standards for future missions.

  6. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  7. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  8. Sample spinner for nuclear magnetic resonance spectrometer

    SciTech Connect

    Stejskal, E.O.

    1984-05-01

    A sample spinner for a nuclear magnetic resonance spectrometer having improved operating characteristics is described comprising a rotor supported at both ends by support gas bearings and positioned by a thrust gas bearing. Improved support gas bearings are also described which result in a spinner exhibiting long-term stable operation characteristics.

  9. Handheld miniature ion trap mass spectrometers.

    PubMed

    Ouyang, Zheng; Noll, Robert J; Cooks, R Graham

    2009-04-01

    For field applications, "miniature" and "rapid" have become almost synonymous, yet these small mass spectrometers are not useful if performance is too severely compromised. (To listen to a podcast about this feature, please go to the Analytical Chemistry website at pubs.acs.org/journal/ancham .).

  10. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  11. Lens system for a photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  12. Advanced Laboratory NMR Spectrometer with Applications.

    ERIC Educational Resources Information Center

    Biscegli, Clovis; And Others

    1982-01-01

    A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

  13. Evaluation of Small Mass Spectrometer Systems

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    Various mass analyzer systems were evaluated. Several systems show promise, including the Stanford Research Systems RGA-100, Inficon XPR-2, the University of Florida's Ion Trap, and the Compact Double Focus Mass Spectrometer. Areas that need improvement are the response time, recovery time, system volume, and system weight. Future work will investigate techniques to improve systems and will evaluate engineering challenges.

  14. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  15. The MVACS tunable diode laser spectrometers

    NASA Astrophysics Data System (ADS)

    May, Randy D.; Forouhar, Siamak; Crisp, David; Woodward, W. Stephen; Paige, David A.; Pathare, Asmin; Boynton, William V.

    2001-08-01

    Two independent tunable diode laser spectrometers are resident aboard the Mars Polar Lander as part of the Mars Volatiles and Climate Surveyor payload. One spectrometer is located on the meteorological mast for measurements of H2O and CO2 in the free atmosphere, and the other serves as the H2O and CO2 analyzer for the Thermal and Evolved Gas Analyzer. Water vapor is measured using a tunable diode laser operating at 1.37 μm, while CO2 is measured using a second laser operating near 2.05 μm. The 2.05 μm laser also has isotopic analysis capability. In addition to the major CO2 isotopomer (12C16O16O), analyses of 13C16O16O and 12C18O16O in the atmosphere and in the Thermal and Evolved Gas Analyzer are possible under certain conditions. The spectrometers were designed and built at the Jet Propulsion Laboratory and have their heritage in a series of tunable diode laser spectrometers developed for Earth atmospheric studies using high-altitude aircraft and balloon platforms. The 1.37 μm diode laser on the meteorological mast will provide the first in situ measurements of water vapor in the Martian boundary layer, with a detection sensitivity an order of magnitude greater than the water vapor abundances inferred from the remote-sensing observations by the Viking Orbiters.

  16. Reflecting Schmidt/Littrow Prism Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R.

    1985-01-01

    High resolution achieved with wide field of view. Imaging Spectrometer features off-axis reflecting optics, including reflecting "slit" that also serves as field flattener. Only refracting element is prism. By scanning slit across object or scene and timing out signal, both spectral and spatial information in scene are obtained.

  17. Broadband Infrared Heterodyne Spectrometer: Final Report

    SciTech Connect

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  18. Acquisition of HPLC-Mass Spectrometer

    DTIC Science & Technology

    2015-08-18

    This instrument has been an asset in organic synthesis and natural product isolation and teaching in organic, biochemistry , and instrumental analysis...isolation and teaching in organic, biochemistry , and instrumental analysis classes. Over the last year thie mass spectrometer has directly influenced the

  19. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  20. Recent advances in miniaturization of infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Daly, James T.; Johnson, Edward A.; Bodkin, W. Andrew; Stevenson, William A.; White, David A.

    2000-03-01

    In the past ten years, a number of miniature spectrometers covering the visible and near infrared wavelengths out to 2.5 microns wavelength have been developed and are now commercially available. These small but high performance instruments have taken advantage of continuing advances in high sensitivity detectors--both CCD's and diode arrays, improvements in holographic gratings, and the availability of low-loss optical materials both in bulk and fiber form that transmit at these wavelengths and that can readily be formed into monolithic shapes for complex optical structures. More recently, a number of researchers have addressed the more intractable problems of extending these miniaturization innovations to spectrometers capable of operation in the mid-infrared wavelengths from 3 microns to 12 microns and beyond. Key enabling technologies for this effort include the recent development of high D*, uncooled thermopile and micro-bolometer detector arrays, new low- mass, high-efficiency pulsed infrared sources, and the design and fabrication of novel monolithic optical structures and waveguides using high index infrared optical materials. This paper reviews the development of these innovative infrared spectrometers and, in particular, the development of the `wedge' spectrometer by Foster-Miller, Inc. and the MicroSpecTM, a MEMS-based solid state spectrograph, by Ion Optics, Inc.

  1. Reflecting Schmidt/Littrow Prism Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Shack, R. V.; Shannon, R. R.

    1985-01-01

    High resolution achieved with wide field of view. Imaging Spectrometer features off-axis reflecting optics, including reflecting "slit" that also serves as field flattener. Only refracting element is prism. By scanning slit across object or scene and timing out signal, both spectral and spatial information in scene are obtained.

  2. Digital Signal Processing in the GRETINA Spectrometer

    NASA Astrophysics Data System (ADS)

    Cromaz, Mario

    2015-10-01

    Developments in the segmentation of large-volume HPGe crystals has enabled the development of high-efficiency gamma-ray spectrometers which have the ability to track the path of gamma-rays scattering through the detector volume. This technology has been successfully implemented in the GRETINA spectrometer whose high efficiency and ability to perform precise event-by-event Doppler correction has made it an important tool in nuclear spectroscopy. Tracking has required the spectrometer to employ a fully digital signal processing chain. Each of the systems 1120 channels are digitized by 100 Mhz, 14-bit flash ADCs. Filters that provide timing and high-resolution energies are implemented on local FPGAs acting on the ADC data streams while interaction point locations and tracks, derived from the trace on each detector segment, are calculated in real time on a computing cluster. In this presentation we will give a description of GRETINA's digital signal processing system, the impact of design decisions on system performance, and a discussion of possible future directions as we look towards soon developing larger spectrometers such as GRETA with full 4 π solid angle coverage. This work was supported by the Office of Science in the Department of Energy under grant DE-AC02-05CH11231.

  3. Imaging mass spectrometer with mass tags

    DOEpatents

    Felton, James S.; Wu, Kuang Jen J.; Knize, Mark G.; Kulp, Kristen S.; Gray, Joe W.

    2013-01-29

    A method of analyzing biological material by exposing the biological material to a recognition element, that is coupled to a mass tag element, directing an ion beam of a mass spectrometer to the biological material, interrogating at least one region of interest area from the biological material and producing data, and distributing the data in plots.

  4. Two-wavelength anastigmatic Dyson imaging spectrometers.

    PubMed

    Montero-Orille, Carlos; Prieto-Blanco, Xesús; González-Núñez, Héctor; de la Fuente, Raúl

    2010-07-15

    High-quality Dyson imaging spectrometers are designed by applying a telecentric condition for off-axis image points. By imposing this condition for two different wavelengths, designs presenting low aberrations for the whole spectral range of the system are obtained. A UV-TO-NIR fast design (f/1.5) exhibiting excellent optical performance is presented.

  5. HyTES: Thermal Imaging Spectrometer Development

    NASA Technical Reports Server (NTRS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

    2011-01-01

    The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

  6. Pump Effects in Planetary Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Harpold, Dan

    1999-01-01

    Mass spectrometers provide a useful tool in solar system exploration since fundamental questions of Solar System formation and evolution may be constrained by models based on the chemical and isotopic data provided by these instruments. For example, comparison of such data between the atmospheres of the terrestrial planets enables an understanding of mechanisms of atmospheric loss to space and production sources such as from planetary outgassing and from infall from objects such as comets. Over the past 25 years, mass spectrometers have been sent to Mars, Venus, Comet Halley, and Jupiter and are presently in transit to the Saturnian system to sample the atmosphere of Saturn's moon Titan. The quality of data derived from a very small, lightweight, and rugged instrument is constrained not only by the mass analyzer itself, but also by the performance of its gas sampling and pumping systems. A comparison of several planetary mass spectrometer experiments is provided with a focus on the demands placed on the gas processing and pumping systems. For example, the figure below is a mass spectrum from deep in the atmosphere of Jupiter obtained from a quadrupole mass spectrometer developed in the early 1980's for the Galileo Probe (Niemann et al., Space Sci. Rev., 60, 111-142 (1992)). Measurements of Jovian noble gases and other species with this system is described.

  7. A miniature mass spectrometer for hydrazine detection

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Sinha, M. P.

    2003-01-01

    A Miniature Mass Spectrometer (MMS) with a focal plane (Mattauch-Herzog) geometry has been developed at the Jet Propulsion Laboratory. The MMS has the potential to meet the NASA requirements of 10 parts per billion sensitivity for Hydrazine detection, as well as the requirements for instant response, portability, and low maintenance.

  8. α decay of 97249Bk and levels in 95245Am

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Greene, J. P.; Kondev, F. G.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Boll, R. A.; Ezold, J. G.; Van Cleve, S. M.; Browne, E.

    2013-05-01

    α decay of 249Bk has been investigated by measuring its α and γ-ray spectra, both in singles and in coincidence modes. The α spectrum of a freshly purified 249Bk sample was measured with a high-resolution, double-focusing magnetic spectrometer. γ singles, γ-γ coincidence, and γ-α coincidence spectra were also recorded. The absolute intensity of the 327.45-keV γ ray has been determined to be (1.44±0.08)×10-5% per 249Bk decay. Assignments of previously known single-particle states were confirmed. A new rotational band was identified in the α singles spectrum and Am K x rays have been observed in its decay. This single-particle state, with an energy of 154 keV, has been assigned to the 3/2-[521] Nilsson state. This is the lowest excitation energy for this orbital in any Am nucleus. More precise energies and intensities of the 249Bk α groups and γ-ray transitions are provided.

  9. Binary reaction decays from Mg24+C12

    NASA Astrophysics Data System (ADS)

    Beck, C.; Papka, P.; Zafra, A. Sànchez I.; Thummerer, S.; Azaiez, F.; Bednarczyk, P.; Courtin, S.; Curien, D.; Dorvaux, O.; Lebhertz, D.; Nourreddine, A.; Rousseau, M.; Von Oertzen, W.; Gebauer, B.; Wheldon, C.; Kokalova, Tz.; De Angelis, G.; Gadea, A.; Lenzi, S.; Szilner, S.; Napoli, D. R.; Catford, W. N.; Jenkins, D. G.; Royer, G.

    2009-09-01

    Charged-particle and γ decays in Mg24* are investigated for excitation energies where quasimolecular resonances appear in C12+C12 collisions. Various theoretical predictions for the occurrence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are discussed within the measured Mg24* excitation energy region. The inverse kinematics reaction Mg24+C12 is studied at Elab(Mg24)=130 MeV, an energy that enables the population of Mg24 states decaying into C12+C12 resonant breakup states. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with Euroball IV installed at the Vivitron tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions, and their associated γ decays studied. Coincident events associated with inelastic and α-transfer channels have been selected by choosing the excitation energy or the entry point via the two-body Q values. The analysis of the binary reaction channels is presented with a particular emphasis on Mg24-γ, Ne20-γ, and O16-γ coincidences. New information (spin and branching ratios) is deduced on high-energy states in Mg24 and O16, respectively.

  10. Beta Decay Study of Neutron-rich Magnesium

    NASA Astrophysics Data System (ADS)

    Ash, John; Rajabali, Mustafa; Griffin Collaboration

    2015-10-01

    Within the ``island of inversion'' around the N = 20 shell gap, isotopes of magnesium, and aluminum deviate from the expected closed-shell structure. Particles promoted across the N = 20 shell gap result in a lower energy deformed ground state configuration rather than the expected spherical configuration. An experiment was conducted at TRIUMF laboratory in the summer of 2015 to study the decay of ``island of inversion'' isotopes 33 , 34 , 35Mg and the structure of the respective daughter nuclei. The isotopes of interest were produced by a proton beam from TRIUMF's 500 MeV cyclotron impacting on a UCx target. The magnesium decays populated states along the decay chain in Al, Si, P, and S isotopes. The new GRIFFIN spectrometer in the ISAC-I facility was used to detect the gamma rays. Two sets of scintillators, one for detecting the beta particles (SCEPTAR) and the other for detecting beta-delayed neutrons (DESCANT), were also used in conjunction with GRIFFIN. The GRIFFIN data were energy calibrated and partially analyzed for this project. New algorithms were developed for the analysis. Preliminary results for new transitions detected in 34Mg as well as the half lives obtained will be presented in their current form. This research was supported by the Tennessee Tech research office.

  11. RARE DECAYS INCLUDING PENGUINS

    SciTech Connect

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  12. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  13. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  14. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  15. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  16. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  17. Decoherence delays false vacuum decay

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2013-05-01

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling \\Gamma \\sim \\Gamma _{CDL}^{2}, where ΓCDL is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence in de Sitter space.

  18. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  19. CP violation in sbottom decays

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Kittel, Olaf

    2010-06-01

    We study CP asymmetries in two-body decays of bottom squarks into charginos and top quarks. These asymmetries probe the SUSY CP phases of the sbottom and the chargino sector in the Minimal Supersymmetric Standard Model (MSSM). We identify the MSSM parameter space where the CP asymmetries are sizeable. As a result, potentially detectable CP asymmetries in sbottom decays are found, which motivates further detailed experimental studies for probing the SUSY CP phases at the LHC.

  20. A proposal to construct SELEX - segmented large-x baryon spectrometer

    SciTech Connect

    Russ, J.,; Edelstein, R.; Gibaut, D.; Lipton, R.; Potter, D.; Lach, J.; Stutte, L.; Li, Yun-Shan; Tang, Fu-Kun; Lang, Feng-Fei; Li, Cheng-Ze; Denisov, A.S.; Golovtsov, V.; Grachev, V.; Krivshich, A.; Kuropatkin, N.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; Vorobyov, A.; /St. Petersburg, INP /Iowa U. /Sao Paulo U. /Yale U.

    1987-11-01

    Heavy flavor experiments currently in progress at e{sup +}e{sup -} colliders or in the fixed target programs at CERN and Fermilab are aimed at collecting large samples (> 10,000 reconstructed events) of charmed events. These experiments will provide a great deal of information about charmed meson systems, but the expected yield of charmed baryons is not large--10% or less of the sample size. The most detailed study of the charm strange baryon {Xi}{sub c}{sup +} comes not from a large-statistics central production experiment at high energy but rather from a 20-day run at modest beam flux in the CERN hyperon beam. This proposal exploits the advantages in triggering and particle identification of large-x production to make a systematic study of charm baryon production and decay systematics. For the dominant ({approx} 10% branching ratio) modes of these baryons, they expect to collect 10{sup 6} triggered events in each mode per running period. This will give adequate statistics to study even highly suppressed modes. The study of meson systematics by the Mark III spectrometer at SPEAR led to a revolution in the understanding of charmed meson decay mechanisms. No present experiment will supply a similar data set for the charmed baryons. A fixed target experiment cannot supply the absolute branching ratios that e{sup +}e{sup -} annihilation on the {Upsilon}(3770) resonance provides for the Mark III data. They can supply relative branching ratios for the non-leptonic and semileptonic decay modes of charmed baryons and establish the importance of two-body resonance modes in the decay mechanism. This information, along with lifetime measurements for {Lambda}{sub c}{sup +}, {Sigma}{sub c}{sup ++}, {Sigma}{sub c}{sup +}, {Sigma}{sub c}{sup 0}, {Xi}{sub c}{sup +} and {Omega}{sub c}{sup 0} baryons, will permit evaluation in the baryon sector of the role of color suppression, Pauli suppression, sextet enhancement and other varied mechanisms which influence decay rates of charmed

  1. Inverse kinematics (p, n) reactions studies using the WINDS slow neutron detector and the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Yasuda, J.; Sasano, M.; Zegers, R. G. T.; Baba, H.; Chao, W.; Dozono, M.; Fukuda, N.; Inabe, N.; Isobe, T.; Jhang, G.; Kameda, D.; Kubo, T.; Kurata-Nishimura, M.; Milman, E.; Motobayashi, T.; Otsu, H.; Panin, V.; Powell, W.; Sakai, H.; Sako, M.; Sato, H.; Shimizu, Y.; Stuhl, L.; Suzuki, H.; Tangwancharoen, S.; Takeda, H.; Uesaka, T.; Yoneda, K.; Zenihiro, J.; Kobayashi, T.; Sumikama, T.; Tako, T.; Nakamura, T.; Kondo, Y.; Togano, Y.; Shikata, M.; Tsubota, J.; Yako, K.; Shimoura, S.; Ota, S.; Kawase, S.; Kubota, Y.; Takaki, M.; Michimasa, S.; Kisamori, K.; Lee, C. S.; Tokieda, H.; Kobayashi, M.; Koyama, S.; Kobayashi, N.; Wakasa, T.; Sakaguchi, S.; Krasznahorkay, A.; Murakami, T.; Nakatsuka, N.; Kaneko, M.; Matsuda, Y.; Mucher, D.; Reichert, S.; Bazin, D.; Lee, J. W.

    2016-06-01

    We have combined the low-energy neutron detector WINDS (Wide-angle Inverse-kinematics Neutron Detectors for SHARAQ) and the SAMURAI spectrometer at RIKEN Nishina Center RI Beam Factory (RIBF) in order to perform (p, n) reactions in inverse kinematics for unstable nuclei in the mass region around A ∼ 100 . In this setup, WINDS is used for detecting recoil neutrons and the SAMURAI spectrometer is used for tagging decay channel of heavy residue. The first experiment by using the setup was performed to study Gamow-Teller transitions from 132Sn in April 2014. The atomic number Z and mass-to-charge ratio A / Q of the beam residues were determined from the measurements of time of flight, magnetic rigidity and energy loss. The obtained A / Q and Z resolutions were σA/Q = 0.14 % and σZ = 0.22 , respectively. Furthermore, owing to the large momentum acceptance (50 %) of SAMURAI, the beam residues associated with the γ , 1n and 2n decay channel were measured in the same magnetic field setting. The kinematic loci of the measured recoil neutron energy and laboratory angle are clearly seen. It shows that the excitation energy up to about 20 MeV can be reconstructed.

  2. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  3. Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries

    SciTech Connect

    Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

    2013-02-01

    Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

  4. IR spectrometers for Venus and Mars measurements

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Neefs, Eddy; Vandaele, Ann C.

    2012-07-01

    The SOIR spectrometer [1] is an infra-red spectrometer that has performed over 500 solar occultation measurements of the Venus atmosphere, profiling major and minor constituents and studying aerosol absorption, temperature and pressure effects. NOMAD is a 3-channel spectrometer for Mars occultation, limb and nadir measurements. 2 channels are infra-red, the other UV-visible. We will present the technology that enables SOIR and NOMAD to get to parts per billion mixing ratio sensitivities for trace atmospheric components and highlight the improvements made to the SOIR design to enable nadir viewing with NOMAD. Key components include the Acousto-Optical Tunable Filter with radio frequency driver that allows these spectrometers to select the wavelength domain under observation with no need for mechanical moving parts. It also allows background measurements because it is opaque when no RF is applied. The grating with 4 grooves/mm is a very hard to manufacture optical component, and suppliers were very difficult to find. The detector-cooler combination (working at 90K) is from Sofradir/Ricor and the model on board Venus Express is still working after 6 years in space (more on/off cycles that ON hour lifetime problem). The detector MCT mix is slightly altered for nadir observation, in order to reduce thermal background noise and the nadir channel spectrometer is cooled down to 173K by a large V-groove radiator. All the optical components have been enlarged to maximise signal throughput and the slit (that determines spatial and spectral resolution) has also been increased. The spacecraft attitude control system switches from yaw steering for nadir to inertial pointing for solar occultations. 1. Nevejans, D., E. Neefs, E. Van Ransbeeck, S. Berkenbosch, R. Clairquin, L. De Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.P. Dubois, and E. Villard, Compact high-resolution space-borne echelle grating spectrometer with AOTF based on

  5. α-decay under pressure

    NASA Astrophysics Data System (ADS)

    Nissim, N.

    2016-12-01

    The physical phenomenon of α-decay is a key feature in several geophysical models describing the structure and formation of Earth and our galaxy. Two of the most prominent characteristics of Earth determined from the α-decay phenomenon are 1) the Earth's age, determined by the relative abundance of α-decaying elements such as Th and U in meteorites and on Earth, and 2) the Earth's source of heat, with roughly 70% of the radioactive heat production attributed to α-decay of U and Th. Textbooks on nuclear phenomenon proclaim that the α-decay lifetime of elements is a constant of nature; however, if it is affected by environmental conditions, the models mentioned above must be refined. In this work [1] we suggest that a change in the lifetime of the α-decay process in 241Am may be detected at high pressures achievable in the laboratory [2], essentially, due to the extraordinary high compression of Am at megabar pressures. The Thomas-Fermi model [3] was used to calculate the effect of pressure on the atomic electron density, and the corresponding change in the atomic potential of 241Am. It was found that at pressures of about 0.5 Mbar the relative change in the lifetime of 241Am is about -2 × 10-4. Detailed experimental procedures to measure this effect by compressing the 241Am metal in a diamond-anvil cell are presented, with diagnostics based on counting the 60-keV γ rays accompanying α decay and/or mass spectrometry on the 237Np/241Am isotope ratio of samples recovered after compression for an extended period of time. [1] N. Nissim, F. Belloni, S. Eliezer, D. Delle Side, J. M. Martinez Val, "Toward a measurement of α-decay lifetime change at high pressure: The case of 241Am", Phys. Rev. C., 94, 014601 (2016).[2] S. Eliezer, J.M. Martinez Val, M. Piera, "Alpha decay perturbations by atomic effects at extreme conditions", Phys. Lett. B, 672, 372(2009).[3] F. Belloni," Alpha decay in electron environments of increasing density: From the bare nucleus to

  6. Diagnostics of a Supersonic Beam Using a Microwave Cavity Fourier Transform Spectrometer.

    NASA Astrophysics Data System (ADS)

    Walters, Adam David

    Available from UMI in association with The British Library. Requires signed TDF. The use of a pulsed Fourier transform microwave cavity spectrometer combined with a synchronous pulsed supersonic nozzle beam is described for spectroscopy and beam diagnostics. The use of an appropriate cylindrical cavity mode was shown to give signals without the Doppler splitting characteristics of similar spectrometers employing Fabry-perot cavities. The high sensitivity of the spectrometer and measured linewidths as low as 20 KHz make it ideally suited to the observation of hyperfine components in multi-quadrupole molecules. The tri-quadrupolar structure of the 3 --> 2 transition of PCl_3 was investigated and a measured Cl-P-Cl bond angle of 104.5(4)^circ, differing significantly from 100.27(9)^circ from electron diffraction measurements led to the conclusion of either some form of axial asymmetry in the bond or "bent bonds". Experiments to determine the vibrational and rotational temperature of spectrally active molecules in the beam are described. The rotational beam temperature for the 3_{03} --> 2_{12} OA transition of ethanal was found to reach less than 2 K for dilute mixes in helium. In marked contrast the vibrational temperature of the CS stretching mode of OCS was found to exceed 230 K, showing a small collision cross section for transfer of vibrational energy to the atoms of the carrier gas. The properties of the beam in the centre and at the leading and trailing edges were investigated and found to differ, with the trailing edge showing collisional decay with the buildup of static gas and a decay time of around 80 mus. The use of cavity modes showing a Doppler splitting produced an additional centre peak not theoretically predicted and showing evidence of fringing fields.

  7. Few body hypernuclear systems: Weak decays

    SciTech Connect

    Dover, C.B.

    1987-01-01

    The experimental and theoretical situation regarding mesonic and non-mesonic decays of light hypernuclei is reviewed. Although some models give reasonable results for pionic decays as well as the total weak decay rate, no existing approach explains, even qualitatively, the observed spin-isospin dependence of ..lambda..N ..-->.. NN non-mesonic weak decays. 31 refs., 2 figs.

  8. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    NASA Astrophysics Data System (ADS)

    Yoneda, K.

    2012-11-01

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  9. Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF

    SciTech Connect

    Yoneda, K.

    2012-11-12

    SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

  10. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  11. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    DOEpatents

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  12. Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Montaner-Pizá, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.; Suhonen, J.; Civitarese, O.; ńystö, J.; Briz, J. A.; Cucoanes, A.; Eronen, T.; Estienne, M.; Fallot, M.; Fraile, L. M.; Ganioǧlu, E.; Gelletly, W.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Lebois, M.; Martinez, T.; Monserrate, M.; Moore, I.; Nácher, E.; Penttilä, H.; Pohjalainen, I.; Porta, A.; Reinikainen, J.; Reponen, M.; Rinta-Antila, S.; Rytkönen, K.; Shiba, T.; Sonnenschein, V.; Sonzogni, A. A.; Vedia, V.; Voss, A.; Wilson, J. N.; Zakari-Issoufou, A.-A.

    2017-07-01

    The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also reported. Comparison of these calculations with our measurement serves as a benchmark for calculations of the double β decay of 100Mo.

  13. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE PAGES

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  14. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.

  15. Charged-particle Decay of the Isoscalar giant dipole resonance in ^58Ni

    NASA Astrophysics Data System (ADS)

    Li, Tao; Hunyadi, Matyas; Garg, Umesh; Hoffman, Joe; Nayak, B. K.; Fujiwara, M.; Hara, K.; Hashimoto, H.; Itoh, M.; Murakami, T.; Nakanishi, K.; Kishi, S.; Sakaguchi, H.; Terashima, S.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Akimune, H.; Harakeh, M. N.

    2004-10-01

    The isoscalar giant dipole resonance(ISGDR) has been measured by single experiments with the use of inelastic α-scattering in many nuclei[1]. However, information on its decay properties is scarce. The decay properties, especially the relative population and total strength of hole states in the (A-1) nucleus resulting from particle decay of giant resonance in nuclei can provide crucial tests for the microscopic model calculations. Caculations based on continuum-RPA approach have recently become abailable and provide results on partial branching ratios for direct neutron and proton decay of ISGDR [2]. We report on a coincidence experiment searching for these direct particle decay branches from the ISGDR in the nucleus ^58Ni. The experiment was performed at the RCNP, Osaka University, using inelastic α-scattering at a beam energy of 400 MeV. The inelastically scattered α particles were detected by the magnetic spectrometer ``Grand Raiden'' at 2.5^rc, with the decay protons detected by a set of sixteen Si(Li) detectors with a thickness of 5.0 mm and an effective area of 400 mm^2 each placed at backward angles. The result for the observed final states in ^57Co will be presented and compared with the theoretical calculations. References: [1] M.Uchida et al., Phys.Rev. C 69, 051301 (2004), [2] M.L. Gorelik et al., Phys. Rev. C 69, 054322 (2004)

  16. Kaons in flavour tagged B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Cronström, H. I.; Jönsson, L.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Snizhko, A.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.

    1994-09-01

    Using the ARGUS detector at the e + e - storage ring DORIS II, flavour-dependent kaon production in B meson decays has been studied. Using the leptons as flavour tags, it has been possible to separately measure the multiplicities of K +, K - and K {/s 0} in inclusive B decays and in semileptonic B decays. The kaon production in semileptonic B decays was further used to estimate the ratio of charmed decays over all decays, and thus also the fraction of charmless B decays.

  17. Compact chopper spectrometers for pulsed sources

    NASA Astrophysics Data System (ADS)

    Voigt, J.; Violini, N.; Schweika, W.

    2016-09-01

    We report on the opportunities for direct geometry chopper spectrometers (DGCS) by polychromatic illumination of the sample. At pulsed sources the use of multiple initial neutron energies appears naturally, if the repetition rate of chopper in front of the sample is larger than the repetition rate of the source. As a consequence, a large part of the spectrum is measured redundantly with variable energy and momentum transfer resolution. This can be used to optimize a chopper instrument for deep inelastic scattering, relaxing the requirements on the pulse length, by which the sample is illuminated, and on the secondary flight path, while the width of the spectral distribution must be narrowed down. This can open the path to new types of compact direct geometry chopper spectrometers, which need comparably small areas of detector coverage and allow very high repetition rates to provide a high intensity even if sample size and divergence distributions are limited.

  18. Quench anaylsis of MICE spectrometer superconducting solenoid

    SciTech Connect

    Kashikhin, Vladimir; Bross, Alan; Prestemon, Soren; / /LBL, Berkeley

    2011-09-01

    MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

  19. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  20. Portable gas chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.