Science.gov

Sample records for decelerator systems technology

  1. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  2. Technology Development for Deployable Aerodynamic Decelerators at Mars

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.

    2002-01-01

    Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa.

  3. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  4. 5.0 Aerodynamic and Propulsive Decelerator Systems

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl

    2005-01-01

    Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.

  5. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  6. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  7. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil

    2012-01-01

    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  8. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  9. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  10. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences

  11. Development flight tests of the Viking decelerator system.

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.; Eckstrom, C. V.; Henke, D. W.

    1973-01-01

    Significant aspects of a low altitude flight test phase of the overall Viking decelerator system development are given. This test series included nine aircraft drop tests that were conducted at the Joint Parachute Test Facility, El Centro, California, between September 1971 and May 1972. The test technique and analytical planning method utilized to best simulate loading conditions in a low density environment are presented and some test results are shown to assess their adequacy. Performance effects relating to suspension line lengths of 1.7 D sub o with different canopy loadings are noted. System hardware developments are described, in particular the utilization of a fabric deployment mortar cover which remained attached to the parachute canopy. Finally, the contribution of this test series to the overall program is assessed.

  12. Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Kelly, Jenny R.; Cruz, Juan R.

    2009-01-01

    Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.

  13. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  14. Stabilization of an axially moving accelerated/decelerated system via an adaptive boundary control.

    PubMed

    Liu, Yu; Zhao, Zhijia; He, Wei

    2016-09-01

    In this study, an adaptive boundary control is developed for vibration suppression of an axially moving accelerated/decelerated belt system. The dynamic model of the belt system is represented by partial-ordinary differential equations with consideration of the high acceleration/deceleration and unknown distributed disturbance. By utilizing adaptive technique and Lyapunov-based back stepping method, an adaptive boundary control is proposed for vibration suppression of the belt system, a disturbance observer is introduced to attenuate the effects of unknown boundary disturbance, the adaptive law is developed to handle parametric uncertainties and the S-curve acceleration/deceleration method is adopted to plan the belt׳s speed. With the proposed control scheme, the well-posedness and stability of the closed-loop system are mathematically demonstrated. Simulations are displayed to illustrate the effectiveness of the proposed control. PMID:27269191

  15. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters. [Instrument Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.; Bull, J. S.; Peach, L. L.; Demko, P. S.

    1984-01-01

    The present investigation is concerned with a sensitivity analysis of the Decelerated Steep Approach and Landing (DSAL) maneuver to on-board and ground-based navigation system parameters. The Instrument Meteorological Conditions (IMC) DSAL maneuver involves decelerating to zero range rate while tracking the localizer and glideslope. The considered study investigated the performance of the navigation systems using Constant Deceleration Profile (CDP) guidance and a six degrees glideslope trajectory. A closed-loop computer simulation of the UH1H helicopter DSAL system was developed for the sensitivity analysis. Conclusions on system performance parameter sensitivity are discussed.

  16. Reefing of Quarter Spherical Ribbon Parachutes Used in the Ares I First Stage Deceleration System

    NASA Technical Reports Server (NTRS)

    Schmidt, Jason R.; McFadden, Peter G.

    2009-01-01

    This paper introduces the parachutes that have been drop tested in support of the Ares I first stage deceleration system development. The results of the tests show that the reefing ratios for these quarter spherical ribbon parachutes provide the same reefed drag area as historical conical ribbon parachutes. Two sources are investigated for properly normalizing the parachutes relative to their suspension line length, and one is found to be superior.

  17. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  18. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    NASA Astrophysics Data System (ADS)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness

  19. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    NASA Technical Reports Server (NTRS)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  20. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  1. Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2015-01-01

    NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article

  2. Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Cruz, Juna R.; Lingard, J. Stephen

    2006-01-01

    In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.

  3. HIAD-2 (Hypersonic Inflatable Aerodynamic Decelerator)

    NASA Video Gallery

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project is a disruptive technology that will accommodate the atmospheric entry of heavy payloads to planetary bodies such as Mars. HIAD over...

  4. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  5. Applications of decelerated ions

    SciTech Connect

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  6. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit

  7. Combining Magnetic and Electric Sails for Interstellar Deceleration

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Hein, Andreas M.

    2016-07-01

    The main benefit of an interstellar mission is to carry out in-situ measurements within a target star system. To allow for extended in-situ measurements, the spacecraft needs to be decelerated. One of the currently most promising technologies for deceleration is the magnetic sail which uses the deflection of interstellar matter via a magnetic field to decelerate the spacecraft. However, while the magnetic sail is very efficient at high velocities, its performance decreases with lower speeds. This leads to deceleration durations of several decades depending on the spacecraft mass. Within the context of Project Dragonfly, initiated by the Initiative of Interstellar Studies (i4is), this paper proposes a novel concept for decelerating a spacecraft on an interstellar mission by combining a magnetic sail with an electric sail. Combining the sails compensates for each technologys shortcomings: A magnetic sail is more effective at higher velocities than the electric sail and vice versa. It is demonstrated that using both sails sequentially outperforms using only the magnetic or electric sail for various mission scenarios and velocity ranges, at a constant total spacecraft mass. For example, for decelerating from 5% c, to interplanetary velocities, a spacecraft with both sails needs about 29 years, whereas the electric sail alone would take 35 years and the magnetic sail about 40 years with a total spacecraft mass of 8250 kg. Furthermore, it is assessed how the combined deceleration system affects the optimal overall mission architecture for different spacecraft masses and cruising speeds. Future work would investigate how operating both systems in parallel instead of sequentially would affect its performance. Moreover, uncertainties in the density of interstellar matter and sail properties need to be explored.

  8. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  9. Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes

    NASA Astrophysics Data System (ADS)

    Pilyugin, N. N.; Khlebnikov, V. S.

    2010-09-01

    Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).

  10. Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.

    2010-01-01

    NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.

  11. Multistage Zeeman deceleration

    NASA Astrophysics Data System (ADS)

    Wiederkehr, A. W.; Hogan, S. D.; Andrist, M.; Schmutz, H.; Lambilotte, B.; Merkt, F.

    2009-05-01

    In recent years multistage Zeeman deceleration of open shell atoms and molecules has been developed as a possible method to produce cold (< 1 K) samples for applications in precision spectroscopy and studies of cold reactive collisions [1-7]. This contribution will present the strategy followed at ETH Zurich which relies on (i) the generation of strong magnetic field pulses (> 2 T) with rise and fall times of only a few microseconds, (ii) the deceleration and loading of samples into quadrupole magnetic traps, (iii) 3D particle trajectory simulations of the complete deceleration and trapping processes, and (iv) comparison of the simulations with measurements of the velocity and spatial distributions of the decelerated and trapped samples. The four generations of Zeeman deceleration and trapping devices developed in our group will be presented and compared using results obtained with different samples. [0pt] [1] N. Vanhaecke et al., Phys. Rev. A 75, 031402(R)(2007).[0pt] [2] S. D. Hogan et al., Phys. Rev. A 76, 023412 (2007).[0pt] [3] E. Narevicius et al., New. J. Phys. 9, 358 (2007).[0pt] [4] E. Narevicius et al., Phys. Rev. Lett. 100, 093003 (2008).[0pt] [5] E. Narevicius et al., Phys. Rev. A 77, 051401(R) (2008).[0pt] [6] S. D. Hogan et al., J. Phys. B 41, 081005 (2008).[0pt] [7] S. D. Hogan et al., Phys. Rev. Lett. 101, 143001 (2008).

  12. Development and Testing of a New Family of Supersonic Decelerators

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.

    2013-01-01

    The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.

  13. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-01-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  14. Electric propulsion system technology

    NASA Astrophysics Data System (ADS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.

    1992-11-01

    The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of

  15. Stereoscopic camera and viewing systems with undistorted depth presentation and reduced or eliminated erroneous acceleration and deceleration perceptions, or with perceptions produced or enhanced for special effects

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B. (Inventor)

    1991-01-01

    Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.

  16. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  17. Parameterizing the Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pavón, D.; Duran, I.; Del Campo, S.; Herrera, R.

    2015-01-01

    We propose and constrain with the latest observational data three parameterizations of the deceleration parameter, valid from the matter era to the far future. They are well behaved and do not diverge at any redshift. On the other hand, they are model independent in the sense that in constructing them the only assumption made was that the Universe is homogeneous and isotropic at large scales.

  18. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  19. Zeeman-Sisyphus Deceleration of Molecular Beams

    NASA Astrophysics Data System (ADS)

    Fitch, Noah; Tarbutt, Mike

    2016-05-01

    Ultracold molecules are useful for testing fundamental physics and studying strongly-interacting quantum systems. One production method is via direct laser cooling in a magneto-optical trap (MOT). In this endeavor, one major challenge is to produce molecules below the MOT capture velocity. Established molecular beam deceleration techniques are poorly suited because they decelerate only a small fraction of a typical molecular pulse. Direct laser cooling is a natural choice, but is also problematic due to transverse heating and the associated molecule loss. I will present a new technique that we are developing, which we call Zeeman-Sisyphus deceleration and which shows great promise for preparing molecular beams for MOT loading. This technique decelerates molecules using a linear array of permanent magnets, along with lasers that periodically optically pump molecules between weak and strong-field seeking quantum states. Being time-independent, this method is well-suited for temporally extended molecular beams. Simultaneous deceleration and transverse guiding makes this approach attractive as an alternative to direct laser cooling. I will present our development of the Zeeman-Sisyphus decelerator and its application to a molecular MOT of CaF and an ultracold fountain of YbF.

  20. The challenges of integrating instrumentation with inflatable aerodynamic decelerators

    NASA Astrophysics Data System (ADS)

    Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.

    New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.

  1. Accelerators/decelerators of achieving universal access to sexual and reproductive health services: a case study of Iranian health system

    PubMed Central

    2013-01-01

    Background At the 1994 International Conference on Population and Development (ICPD), held in Cairo, the global community agreed to the goal of achieving universal access to sexual and reproductive health (SRH) and rights by 2015. This research explores the accelerators and decelerators of achieving universal access to the sexual and reproductive health targets and accordingly makes some suggestions. Method We have critically reviewed the latest national reports and extracted the background data on each SRH indicator. The key stakeholders, both national and international, were visited and interviewed at two sites. A total of 55 in-depth interviews were conducted with religious leaders, policy-makers, senior managers, senior academics, and health care managers. Six focus-group discussions were also held among health care providers. The study was qualitative in nature. Results Obstacles on the road to achieving universal access to SRH can be viewed from two perspectives. One gap exists between current achievements and the targets. The other gap arises due to age, marital status, and residency status. The most recently observed trends in the indicators of the universal access to SRH shows that the achievements in the “unmet need for family planning” have been poor. Unmet need for family planning could directly be translated to unwanted pregnancies and unwanted childbirths; the former calls for sexual education to underserved people, including adolescents; and the latter calls for access to safe abortion. Local religious leaders have not actively attended international goal-setting programs. Therefore, they usually do not presume a positive attitude towards these goals. Such negative attitudes seem to be the most important factors hindering the progress towards universal access to SRH. Lack of international donors to fund for SRH programs is also another barrier. In national levels both state and the society are interactively playing their roles. We have used a

  2. Balloon launched decelerator test program: Post-flight test report, BLDT vehicle AV-3, Viking 1975 project

    NASA Technical Reports Server (NTRS)

    Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.

    1973-01-01

    The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.

  3. Photorefractive deceleration of light pulses

    NASA Astrophysics Data System (ADS)

    Sturman, B.; Podivilov, E.; Gorkunov, M.

    2008-04-01

    We theoretically study the effect of light deceleration in photorefractive nonlinear media. This includes consideration of different types of the photorefractive nonlinear response, different wave interaction schemes, and an analysis of the influence of the input parameters, such as the input temporal pulse width and the coupling strength, on the output pulse characteristics: the time delay, the propagation velocity, the amplification factor, and the output width. We show that photorefractive light deceleration has numerous advantages over other known techniques. It works already at low intensities, at room temperature, and within wide spectral ranges and offers a vast variety of handles for manipulating light pulses. An analogy with the light deceleration method based on the quantum effect of electromagnetically induced transparency in ultracold resonant gases is also considered.

  4. High Altitude Supersonic Decelerator Test Vehicle

    NASA Technical Reports Server (NTRS)

    Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark

    2013-01-01

    The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.

  5. Technology reviews: Glazing systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  6. Technology reviews: Shading systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  7. Arkansas Technology Information System.

    ERIC Educational Resources Information Center

    VanBiervliet, Alan; Parette, Howard P., Jr.

    The Arkansas Technology Information System (ARTIS) was developed to fill a significant void in existing systems of technical support to Arkansans with disabilities by creating and maintaining a consumer-responsive statewide system of data storage and retrieval regarding assistive technology and services. ARTIS goals also include establishment of a…

  8. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    NASA Technical Reports Server (NTRS)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  9. Technology Overview and Assessment for Small-Scale EDL Systems

    NASA Technical Reports Server (NTRS)

    Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.

    2016-01-01

    Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.

  10. Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Smith, B.; Venkatapathy, E.; Wercinski, P.; Yount, B.; Prabhu, D.; Gage, P.; Glaze, L.; Baker, C.

    The Venus In Situ Explorer (VISE) Mission addresses the highest priority science questions within the Venus community outlined in the National Research Council's Decadal Survey. The heritage Venus atmospheric entry system architecture, a 45° sphere-cone rigid aeroshell with a carbon phenolic thermal protection system, may no longer be the preferred entry system architecture compared to other viable alternatives being explored at NASA. A mechanically-deployed aerodynamic decelerator, known as the Adaptive Deployable Entry and Placement Technology (ADEPT), is an entry system alternative that can provide key operational benefits and risk reduction compared to a rigid aeroshell. This paper describes a mission feasibility study performed with the objectives of identifying potential adverse interactions with other mission elements and establishing requirements on decelerator performance. Feasibility is assessed through a launch-to-landing mission design study where the Venus Intrepid Tessera Lander (VITaL), a VISE science payload designed to inform the Decadal Survey results, is repackaged from a rigid aeroshell into the ADEPT decelerator. It is shown that ADEPT reduces the deceleration load on VITaL by an order of magnitude relative to a rigid aeroshell. The more benign entry environment opens up the VISE mission design environment for increased science return, reduced risk, and reduced cost. The ADEPT-VITAL mission concept of operations is presented and details of the entry vehicle structures and mechanisms are given. Finally, entry aerothermal analysis is presented that defines the operational requirements for a revolutionary structural-TPS material employed by ADEPT: three-dimensionally woven carbon cloth. Ongoing work to mitigate key risks identified in this feasibility study is presented.

  11. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    EPA Science Inventory

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  12. Transverse stability in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y. T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2006-02-15

    The concept of phase stability in a Stark decelerator ensures that polar molecules can be accelerated, guided, or decelerated without loss; molecules within a certain position and velocity interval are kept together throughout the deceleration process. In this paper the influence of the transverse motion on phase stability in a Stark decelerator is investigated. For typical deceleration experiments--i.e., for high values of the phase angle {phi}{sub 0}--the transverse motion considerably enhances the region in phase space for which phase stable deceleration occurs. For low values of {phi}{sub 0}, however, the transverse motion reduces the acceptance of a Stark decelerator and unstable regions in phase space appear. These effects are quantitatively explained in terms of a coupling between the longitudinal and transverse motion. The predicted longitudinal acceptance of a Stark decelerator is verified by measurements on a beam of OH (X {sup 2}{pi}{sub 3/2},J=3/2) radicals passing through a Stark decelerator.

  13. Phase stability in a multistage Zeeman decelerator

    SciTech Connect

    Wiederkehr, A. W.; Hogan, S. D.; Merkt, F.

    2010-10-15

    The phase stability of a multistage Zeeman decelerator is analyzed by numerical particle-trajectory simulations and experimental measurements. A one-dimensional model of the phase stability in multistage Stark deceleration [Bethlem et al., Phys. Rev. Lett. 84, 5744 (2000)] has been adapted to multistage Zeeman deceleration and compared with one- and three-dimensional particle-trajectory simulations, including the analysis of the effect of finite switch-on and -off times of the deceleration pulses. The comparison reveals that transverse effects in the decelerator lead to a considerable reduction of the phase-space acceptance at low values of the phase angle and an enhancement at high values. The optimal combinations of phase angles and currents with which a preset amount of kinetic energy can be removed from atoms and molecules in a pulsed supersonic beam using a multistage decelerator are determined by simulation. Quantitative analysis of the phase-space acceptance within a given volume reveals that for our decelerator (8 {mu}s switch-off time) optimal conditions are achieved for values of the phase angle between 45 deg. and 55 deg. This conclusion is examined and confirmed by experimental measurements using deuterium atoms. Alternative approaches to generate optimal deceleration pulse sequences, such as the implementation of evolutionary algorithms or the use of higher-order modes of the decelerator, are discussed.

  14. Free electron laser using Rf coupled accelerating and decelerating structures

    DOEpatents

    Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  15. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  16. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  17. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    NASA Technical Reports Server (NTRS)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  18. Tidal deceleration of the moon's mean motion

    NASA Technical Reports Server (NTRS)

    Cheng, M. K.; Eanes, R. J.; Tapley, B. D.

    1992-01-01

    The secular change in the mean motion of the moon, n, caused by the tidal dissipation in the ocean and solid earth is due primarily to the effect of the diurnal and semidiurnal tides. The long-period ocean tides produce an increase in n, but the effects are only 1 percent of the diurnal and semidiurnal ocean tides. In this investigation, expressions for these effects are obtained by developing the tidal potential in the ecliptic reference system. The computation of the amplitude of equilibrium tide and the phase corrections is also discussed. The averaged tidal deceleration of the moon's mean motion, n, from the most recent satellite ocean tide solutions is -25.25 +/- 0.4 arcseconds/sq century. The value for n inferred from the satellite-determined ocean-tide solution is in good agreement with the value obtained from the analysis of 20 years of lunar laser-ranging observations.

  19. Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research

    SciTech Connect

    Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.

    2005-02-06

    Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. H-bar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. H-bar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.

  20. Accelerating, hyperaccelerating, and decelerating networks

    NASA Astrophysics Data System (ADS)

    Gagen, M. J.; Mattick, J. S.

    2005-07-01

    Many growing networks possess accelerating statistics where the number of links added with each new node is an increasing function of network size so the total number of links increases faster than linearly with network size. In particular, biological networks can display a quadratic growth in regulator number with genome size even while remaining sparsely connected. These features are mutually incompatible in standard treatments of network theory which typically require that every new network node possesses at least one connection. To model sparsely connected networks, we generalize existing approaches and add each new node with a probabilistic number of links to generate either accelerating, hyperaccelerating, or even decelerating network statistics in different regimes. Under preferential attachment for example, slowly accelerating networks display stationary scale-free statistics relatively independent of network size while more rapidly accelerating networks display a transition from scale-free to exponential statistics with network growth. Such transitions explain, for instance, the evolutionary record of single-celled organisms which display strict size and complexity limits.

  1. State-of-the-Art Study for High-speed Deceleration and Stabilization Devices

    NASA Technical Reports Server (NTRS)

    Alexander, W. C.; Lau, R. A.

    1966-01-01

    Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.

  2. Microwave Stark decelerator for polar molecules

    SciTech Connect

    Enomoto, Katsunari; Momose, Takamasa

    2005-12-15

    We propose a method to decelerate polar molecules from a beam using a microwave field. A moving standing wave of a microwave electric field causes an ac Stark shift to polar molecules and decelerates them. The method is applicable to polar molecules in rotational ground states and can be used to directly load a microwave trap. Numerical simulations are presented indicating large phase-space acceptance volume.

  3. Expert system technology

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1987-01-01

    The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends.

  4. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  5. A Method of Simulating Fluid Structure Interactions for Deformable Decelerators

    NASA Astrophysics Data System (ADS)

    Gidzak, Vladimyr Mykhalo

    A method is developed for performing simulations that contain fluid-structure interactions between deployable decelerators and a high speed compressible flow. The problem of coupling together multiple physical systems is examined with discussion of the strength of coupling for various methods. A non-monolithic strongly coupled option is presented for fluid-structure systems based on grid deformation. A class of algebraic grid deformation methods is then presented with examples of increasing complexity. The strength of the fluid-structure coupling is validated against two analytic problems, chosen to test the time dependent behavior of structure on fluid interactions, and of fluid on structure interruptions. A one-dimentional material heating model is also validated against experimental data. Results are provided for simulations of a wind tunnel scale disk-gap-band parachute with comparison to experimental data. Finally, a simulation is performed on a flight scale tension cone decelerator, with examination of time-dependent material stress, and heating.

  6. Effects of deceleration on the humoral antibody response in rats

    NASA Technical Reports Server (NTRS)

    Barone, R. P.; Caren, L. D.; Oyama, J.

    1985-01-01

    Effects of hypergravity, simulated by chronic centrifugation, followed by a return to normal G (deceleration) on the immune system of rats were investigated. Two groups of male rats (28 days at 2.1 G, and 3.1 G) were compared to the control group (1.0 G). The animals were immunized by i.p. injections of sheep red blood cells on days 29, 42, and 57, and bled on days 36, 47, and 62. While the centrifuged rats ate and gainedsignificantly less than the control rats, the antibody titers and the organ/body mass ratios for the adrenal glands, kidneys, lungs, heart, and thymus were unaffected by gravity exposures, as were the values of the hematocrit and the white blood cell counts. It is concluded that deceleration does not adversely affect these particular aspects of the immune system.

  7. Decelerating Mature Adipocyte Dedifferentiation by Media Composition.

    PubMed

    Huber, Birgit; Kluger, Petra J

    2015-12-01

    The establishment of adipose tissue test systems is still a major challenge in the investigation of cellular and molecular interactions responsible for the pathogenesis of inflammatory diseases involving adipose tissue. Mature adipocytes are mainly involved in these pathologies, but rarely used in vitro, due to the lack of an appropriate culture medium which inhibits dedifferentiation and maintains adipocyte functionality. In our study, we showed that Dulbecco's Modified Eagle's Medium/Ham's F-12 with 10% fetal calf serum (FCS) reported for the culture of mature adipocytes favors dedifferentiation, which was accompanied by a high glycerol release, a decreasing release of leptin, and a low expression of the adipocyte marker perilipin A, but high expression of CD73 after 21 days. Optimized media containing FCS, biotin, pantothenate, insulin, and dexamethasone decelerated the dedifferentiation process. These cells showed a lower lipolysis rate, a high level of leptin release, as well as a high expression of perilipin A. CD73-positive dedifferentiated fat cells were only found in low quantity. In this work, we showed that mature adipocytes when cultured under optimized conditions could be highly valuable for adipose tissue engineering in vitro. PMID:26228997

  8. Deceleration of neutral molecules in macroscopic traveling traps

    SciTech Connect

    Osterwalder, Andreas; Meek, Samuel A.; Hammer, Georg; Haak, Henrik; Meijer, Gerard

    2010-05-15

    A decelerator is presented where polar neutral molecules are guided and decelerated using the principle of traveling electric potential wells, such that molecules are confined in stable three-dimensional traps throughout. We compare this decelerator with that of Scharfenberg et al. [Phys. Rev. A 79, 023410 (2009)] and we show that the current decelerator provides a substantially larger phase-space acceptance, even at higher acceleration. The mode of operation is described and experimentally demonstrated by guiding and decelerating CO molecules.

  9. Advanced Operating System Technologies

    NASA Astrophysics Data System (ADS)

    Cittolin, Sergio; Riccardi, Fabio; Vascotto, Sandro

    . Our work started in the second half of 1994, with a research agreement between CERN and Chorus Systemes (France), world leader in the micro-kernel OS technology. The Chorus OS is targeted to distributed real-time applications, and it can very efficiently support different "OS personalities" in the same environment, like Posix, UNIX, and a CORBA compliant distributed object architecture. Projects are being set-up to verify the suitability of our work for LHC applications, we are building a scaled-down prototype of the DAQ system foreseen for the CMS experiment at LHC, where we will directly test our protocols and where we will be able to make measurements and benchmarks, guiding our development and allowing us to build an analytical model of the system, suitable for simulation and large scale verification.

  10. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    SciTech Connect

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-25

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced 'modified' Sensitivity (SE deg.) and 'modified' Positive Predictive Value (PPV deg.) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  11. Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots

    NASA Astrophysics Data System (ADS)

    Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.

    2010-10-01

    Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced `modified' Sensitivity (SE°) and `modified' Positive Predictive Value (PPV°) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.

  12. Aeronautics systems technology studies

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.

    1983-01-01

    Data collection and analysis in the areas of air transportation, aircraft manufacturing and sales, airline operations, market projections, internal trade, and energy consumption; legislation and regulations, technology needs; surveys; decision-making; cost analyses; and technology transfer are discussed.

  13. Electric propulsion system technology

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.

    1991-01-01

    The work performed on the Ion Propulsion System Technology Task in FY90 is described. The objectives of this work fall under two broad categories. The first of these deals with issues associated with the application of xenon ion thrusters for primary propulsion of planetary spacecraft, and the second with the investigation of technologies which will facilitate the development of larger, higher power ion thrusters to support more advanced mission applications. Most of the effort was devoted to investigation of the critical issues associated with the use of ion thrusters for planetary spacecraft. These issues may be succinctly referred to as life time, system integration, and throttling. Chief among these is the engine life time. If the engines do not have sufficient life to perform the missions of interest, then the other issues become unimportant. Ion engine life time was investigated through two experimental programs: an investigation into the reduction of ion engine internal sputter erosion through the addition of small quantities of nitrogen, and a long duration cathode life test. In addition, a literature review and analysis of accelerator grid erosion were performed. The nitrogen addition tests indicated that the addition of between 0.5 and 1.0 percent of nitrogen by mass to the xenon propellant results in a reduction in the sputter erosion of discharge chamber components by a factor of between 20 and 50, with negligible reduction in thruster performance. The long duration test of a 6.35-mm dia. xenon hollow cathode is still in progress, and has accumulated more than 4,000 hours of operation at an emission current of 25 A at the time of this writing. One of the major system integration issues concerns possible interactions of the ion thruster produced charge exchange plasma with the spacecraft. A computer model originally developed to describe the behavior of mercury ion thruster charge exchange plasmas was resurrected and modified for xenon propellant. This

  14. Technology reviews: Daylighting optical systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends.Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  15. Safer Roadside Crash Walls Would Limit Deceleration

    NASA Technical Reports Server (NTRS)

    Schneider, William C.; Locke, James P.

    2003-01-01

    The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.

  16. Analytic wave model of Stark deceleration dynamics

    SciTech Connect

    Gubbels, Koos; Meijer, Gerard; Friedrich, Bretislav

    2006-06-15

    Stark deceleration relies on time-dependent inhomogeneous electric fields which repetitively exert a decelerating force on polar molecules. Fourier analysis reveals that such fields, generated by an array of field stages, consist of a superposition of partial waves with well-defined phase velocities. Molecules whose velocities come close to the phase velocity of a given wave get a ride from that wave. For a square-wave temporal dependence of the Stark field, the phase velocities of the waves are found to be odd-fraction multiples of a fundamental phase velocity {lambda}/{tau}, with {lambda} and {tau} the spatial and temporal periods of the field. Here we study explicitly the dynamics due to any of the waves as well as due to their mutual perturbations. We first solve the equations of motion for the case of single-wave interactions and exploit their isomorphism with those for the biased pendulum. Next we analyze the perturbations of the single-wave dynamics by other waves and find that these have no net effect on the phase stability of the acceleration or deceleration process. Finally, we find that a packet of molecules can also ride a wave which results from an interference of adjacent waves. In this case, small phase stability areas form around phase velocities that are even-fraction multiples of the fundamental velocity. A detailed comparison with classical trajectory simulations and with experiment demonstrates that the analytic 'wave model' encompasses all the longitudinal physics encountered in a Stark decelerator.

  17. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  18. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  19. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  20. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  1. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  2. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  3. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  4. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  5. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  6. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  7. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum acceleration and deceleration. 57.19062... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  8. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating acceleration and deceleration shall not exceed 6 feet per second per second. During emergency braking,...

  9. Technology and Value Systems

    ERIC Educational Resources Information Center

    DeCarlo, C. R.

    2010-01-01

    Everyone is living in a time in which science and technology have become pervasive and have caused the world of "nature" to be removed from one's direct senses. The rhythms of the world are beat to the cycle of machines rather than the circling of the sun. One feels the distance between old rituals grounded in myth and nature and the new and…

  10. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  11. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  12. Space power systems technology

    NASA Technical Reports Server (NTRS)

    Coulman, George A.

    1994-01-01

    Reported here is a series of studies which examine several potential catalysts and electrodes for some fuel cell systems, some materials for space applications, and mathematical modeling and performance predictions for some solid oxide fuel cells and electrolyzers. The fuel cell systems have a potential for terrestrial applications in addition to solar energy conversion in space applications. Catalysts and electrodes for phosphoric acid fuel cell systems and for polymer electrolyte membrane (PEM) fuel cell and electrolyzer systems were examined.

  13. Overview of the Mars Science Laboratory Parachute Decelerator Subsystem

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan

    2007-01-01

    In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.

  14. Bantam System Technology Project

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1998-01-01

    This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.

  15. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  16. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  17. Comparison of Analysis with Test for Static Loading of Two Hypersonic Inflatable Aerodynamic Decelerator Concepts

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2015-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.

  18. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  19. Stopping power: Effect of the projectile deceleration

    SciTech Connect

    Kompaneets, Roman Ivlev, Alexei V.; Morfill, Gregor E.

    2014-11-15

    The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force is due to the protons.

  20. Decelerating cosmologies are de-scramblers

    NASA Astrophysics Data System (ADS)

    Carney, Daniel; Fischler, Willy

    2015-08-01

    Stationary observers in static spacetimes see falling objects spread exponen-tially fast, or fast-scramble, near event horizons. We generalize this picture to arbitrary cosmological horizons. We give examples of exponential fast-scrambling and power-law scrambling and "de-scrambling" as charges propagate freely near a horizon. In particular we show that when the universe is decelerating, information hidden behind the apparent horizon is de-scrambled as it re-enters the view of the observer. In contrast to the de Sitter case, the power-law scaling suggests that the microscopic dynamics of the horizon are local.

  1. The water entry of decelerating spheres

    NASA Astrophysics Data System (ADS)

    Aristoff, Jeffrey M.; Truscott, Tadd T.; Techet, Alexandra H.; Bush, John W. M.

    2010-03-01

    We present the results of a combined experimental and theoretical investigation of the vertical impact of low-density spheres on a water surface. Particular attention is given to characterizing the sphere dynamics and the influence of its deceleration on the shape of the resulting air cavity. A theoretical model is developed which yields simple expressions for the pinch-off time and depth, as well as the volume of air entrained by the sphere. Theoretical predictions compare favorably with our experimental observations, and allow us to rationalize the form of water-entry cavities resulting from the impact of buoyant and nearly buoyant spheres.

  2. The water entry of decelerating spheres

    NASA Astrophysics Data System (ADS)

    Aristoff, Jeffrey; Truscott, Tadd; Techet, Alexandra; Bush, John

    2009-11-01

    We present the results of a combined experimental and theoretical investigation of the vertical impact of low-density spheres on a water surface. Particular attention is given to characterizing the sphere dynamics and the influence of its deceleration on the shape of the resulting air cavity. A theoretical model is developed that yields simple expressions for the pinch-off time and depth. Theoretical predictions compare favorably with our experimental observations, and allow us to rationalize the form of water-entry cavities resulting from the impact of buoyant and nearly buoyant spheres.

  3. The 1980 Large space systems technology. Volume 2: Base technology

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.

  4. Formation and nonlinear dynamics of the squeezed state of a helical electron beam with additional deceleration

    SciTech Connect

    Egorov, E. N. Koronovskii, A. A.; Kurkin, S. A.; Hramov, A. E.

    2013-11-15

    Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.

  5. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  6. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  7. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  8. Deceleration efficiencies of shrub windbreaks in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoxu; Zou, Xueyong; Zhou, Na; Zhang, Chunlai; Shi, Sha

    2015-03-01

    Artemisia and Salix are dominant shrub species for windbreaks in arid areas of China, and they show similar features to shrubs in other arid areas of the world. We compared the mean velocity fields and shelter effects of two shrub windbreaks with different layouts. For a single plant of Artemisia, the higher the free airflow velocity is, the more the wind velocity around two sides of the plant increases. The velocity gradient around a single plant of Salix is smaller than that around an Artemisia plant due to the difference in the plant shapes. Seven new velocity zones in the horizontal direction appear when airflow passes through an Artemisia windbreak, including four deceleration zones and three acceleration zones. The mean velocity field that is affected by a Salix windbreak can be divided into a deceleration zone in the front, an acceleration zone above, a vortex zone behind and a restoration zone downwind of the vortex zone. Shelter effects of the shrub windbreaks vary with the wind velocity and are influenced by the construct of the windbreaks. Shrub windbreaks that have a complex construction have better shelter effects than simple ones. The shelter effects of plant windbreaks are also influenced by the growth features of the plants. Considering the plant characteristics and the shelter effects of Salix and Artemisia windbreaks, it is optimal to plant these two windbreaks together in a sand-control system. This research is intended to be useful for sand movement control in arid areas.

  9. Ecological causes of decelerating diversification in carnivoran mammals.

    PubMed

    Machac, Antonin; Storch, David; Wiens, John J

    2013-08-01

    Clade diversification is a central topic in macroevolutionary studies. Recently, it has been shown that diversification rates appear to decelerate over time in many clades. What causes this deceleration remains unclear, but it has been proposed that competition for limited resources between sympatric, ecologically similar species slows diversification. Employing carnivoran mammals as a model system, we test this hypothesis using a comprehensive time-calibrated phylogeny. We also explore several conceptually related explanations including limited geographic area and limited rates of niche evolution. We find that diversification slowdowns are strong in carnivorans. Surprisingly, these slowdowns are independent of geographic range overlap between related species and are also decoupled from rates of niche evolution, suggesting that slowdowns are unrelated to competition and niche filling. When controlling for the effects of clade diversity, diversification slowdowns appear independent of geographic area. There is a significant effect of clade diversity on diversification slowdowns, but simulations show that this relationship may arise as a statistical artifact (i.e., greater clade diversity increases the ability of the gamma statistic to refute constant diversification). Overall, our results emphasize the need to test hypotheses about the causes of diversification slowdowns with ecological data, rather than assuming ecological processes from phylogenies alone.

  10. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    SciTech Connect

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  11. Ecological causes of decelerating diversification in carnivoran mammals.

    PubMed

    Machac, Antonin; Storch, David; Wiens, John J

    2013-08-01

    Clade diversification is a central topic in macroevolutionary studies. Recently, it has been shown that diversification rates appear to decelerate over time in many clades. What causes this deceleration remains unclear, but it has been proposed that competition for limited resources between sympatric, ecologically similar species slows diversification. Employing carnivoran mammals as a model system, we test this hypothesis using a comprehensive time-calibrated phylogeny. We also explore several conceptually related explanations including limited geographic area and limited rates of niche evolution. We find that diversification slowdowns are strong in carnivorans. Surprisingly, these slowdowns are independent of geographic range overlap between related species and are also decoupled from rates of niche evolution, suggesting that slowdowns are unrelated to competition and niche filling. When controlling for the effects of clade diversity, diversification slowdowns appear independent of geographic area. There is a significant effect of clade diversity on diversification slowdowns, but simulations show that this relationship may arise as a statistical artifact (i.e., greater clade diversity increases the ability of the gamma statistic to refute constant diversification). Overall, our results emphasize the need to test hypotheses about the causes of diversification slowdowns with ecological data, rather than assuming ecological processes from phylogenies alone. PMID:23888862

  12. The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin

    2003-01-01

    The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.

  13. Getting a grip on the transverse motion in a Zeeman decelerator

    SciTech Connect

    Dulitz, Katrin; Softley, Timothy P.; Motsch, Michael; Vanhaecke, Nicolas

    2014-03-14

    Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This is achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.

  14. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1991-01-01

    A system infrastructure must be properly designed and integrated from the conceptual development phase to accommodate evolutionary intelligent technologies. Several technology development activities were identified that may have application to rendezvous and capture systems. Optical correlators in conjunction with fuzzy logic control might be used for the identification, tracking, and capture of either cooperative or non-cooperative targets without the intensive computational requirements associated with vision processing. A hybrid digital/analog system was developed and tested with a robotic arm. An aircraft refueling application demonstration is planned within two years. Initially this demonstration will be ground based with a follow-on air based demonstration. System dependability measurement and modeling techniques are being developed for fault management applications. This involves usage of incremental solution/evaluation techniques and modularized systems to facilitate reuse and to take advantage of natural partitions in system models. Though not yet commercially available and currently subject to accuracy limitations, technology is being developed to perform optical matrix operations to enhance computational speed. Optical terrain recognition using camera image sequencing processed with optical correlators is being developed to determine position and velocity in support of lander guidance. The system is planned for testing in conjunction with Dryden Flight Research Facility. Advanced architecture technology is defining open architecture design constraints, test bed concepts (processors, multiple hardware/software and multi-dimensional user support, knowledge/tool sharing infrastructure), and software engineering interface issues.

  15. Supersonic Decelerator on 'Right Track' for Future Mars Missions

    NASA Video Gallery

    Project Manager, Mark Adler, and Principal Investigator, Ian Clark describe the innovative testing being conducted by the Low Density Supersonic Decelerator (LDSD) project. Combining very large sup...

  16. Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    Kelley, J. H.

    1975-01-01

    The paper discusses the objectives of a hydrogen energy systems technology study directed toward determining future demand for hydrogen based on current trends and anticipated new uses and identifying the critical research and technology advancements required to meet this need with allowance for raw material limitations, economics, and environmental effects. Attention is focused on historic production and use of hydrogen, scenarios used as a basis for projections, projections of energy sources and uses, supply options, and technology requirements and needs. The study found more than a billion dollar annual usage of hydrogen, dominated by chemical-industry needs, supplied mostly from natural gas and petroleum feedstocks. Evaluation of the progress in developing nuclear fusion and solar energy sources relative to hydrogen production will be necessary to direct the pace and character of research and technology work in the advanced water-splitting areas.

  17. Entry, Descent, and Landing With Propulsive Deceleration

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.

  18. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  19. Holocene deceleration of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    MacGregor, Joseph A.; Colgan, William T.; Fahnestock, Mark A.; Morlighem, Mathieu; Catania, Ginny A.; Paden, John D.; Gogineni, S. Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet’s radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet’s dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry.

  20. Collective Deceleration: Toward a Compact Beam Dump

    SciTech Connect

    Wu, H.-C.; Tajima, T.; Habs, D.; Chao, A.W.; Meyer-ter-Vehn, J.; /Munich, Max Planck Inst. Quantenopt.

    2011-11-28

    With the increasing development of laser accelerators, the electron energy is already beyond GeV and even higher in near future. Conventional beam dump based on ionization or radiation loss mechanism is cumbersome and costly, also has radiological hazards. We revisit the stopping power of high-energy charged particles in matter and discuss the associated problem of beam dump from the point of view of collective deceleration. The collective stopping length in an ionized gas can be several orders of magnitude shorter than the Bethe-Bloch and multiple electromagnetic cascades stopping length in solid. At the mean time, the tenuous density of the gas makes the radioactivation negligible. Such a compact and non-radioactivating beam dump works well for short and dense bunches, which is typically generated from laser wakefield accelerator.

  1. Holocene deceleration of the Greenland Ice Sheet.

    PubMed

    MacGregor, Joseph A; Colgan, William T; Fahnestock, Mark A; Morlighem, Mathieu; Catania, Ginny A; Paden, John D; Gogineni, S Prasad

    2016-02-01

    Recent peripheral thinning of the Greenland Ice Sheet is partly offset by interior thickening and is overprinted on its poorly constrained Holocene evolution. On the basis of the ice sheet's radiostratigraphy, ice flow in its interior is slower now than the average speed over the past nine millennia. Generally higher Holocene accumulation rates relative to modern estimates can only partially explain this millennial-scale deceleration. The ice sheet's dynamic response to the decreasing proportion of softer ice from the last glacial period and the deglacial collapse of the ice bridge across Nares Strait also contributed to this pattern. Thus, recent interior thickening of the Greenland Ice Sheet is partly an ongoing dynamic response to the last deglaciation that is large enough to affect interpretation of its mass balance from altimetry. PMID:26912699

  2. Instructional Systems Study, Electronics Technology.

    ERIC Educational Resources Information Center

    Waukesha County Technical Inst., Waukesha, WI.

    Because of shortcomings in the traditional approach to instruction and learning at Waukesha County Technical Institute in Wisconsin, this research was conducted to determine the effectiveness of an alternate approach to instruction in electronics technology. The "Closed Loop Systems Approach to Instruction" developed for this study was derived…

  3. DECELERATING RELATIVISTIC TWO-COMPONENT JETS

    SciTech Connect

    Meliani, Z.; Keppens, R. E-mail: Rony.Keppens@wis.kuleuven.b

    2009-11-10

    Transverse stratification is a common intrinsic feature of astrophysical jets. There is growing evidence that jets in radio galaxies consist of a fast low-density outflow at the jet axis, surrounded by a slower, denser, extended jet. The inner and outer jet components then have a different origin and launching mechanism, making their effective inertia, magnetization, associated energy flux, and angular momentum content different as well. Their interface will develop differential rotation, where disruptions may occur. Here we investigate the stability of rotating, two-component relativistic outflows typical for jets in radio galaxies. For this purpose, we parametrically explore the long-term evolution of a transverse cross section of radially stratified jets numerically, extending our previous study where a single, purely hydrodynamic evolution was considered. We include cases with poloidally magnetized jet components, covering hydro and magnetohydrodynamic (MHD) models. With grid-adaptive relativistic MHD simulations, augmented with approximate linear stability analysis, we revisit the interaction between the two jet components. We study the influence of dynamically important poloidal magnetic fields, with varying contributions of the inner component jet to the total kinetic energy flux of the jet, on their non-linear azimuthal stability. We demonstrate that two-component jets with high kinetic energy flux and inner jet effective inertia which is higher than the outer jet effective inertia are subject to the development of a relativistically enhanced, rotation-induced Rayleigh-Taylor-type instability. This instability plays a major role in decelerating the inner jet and the overall jet decollimation. This novel deceleration scenario can partly explain the radio source dichotomy, relating it directly to the efficiency of the central engine in launching the inner jet component. The FRII/FRI transition could then occur when the relative kinetic energy flux of the

  4. Large Space Antenna Systems Technology, part 1

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1983-01-01

    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.

  5. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  6. Evaluating geographic information systems technology

    USGS Publications Warehouse

    Guptill, Stephen C.

    1989-01-01

    Computerized geographic information systems (GISs) are emerging as the spatial data handling tools of choice for solving complex geographical problems. However, few guidelines exist for assisting potential users in identifying suitable hardware and software. A process to be followed in evaluating the merits of GIS technology is presented. Related standards and guidelines, software functions, hardware components, and benchmarking are discussed. By making users aware of all aspects of adopting GIS technology, they can decide if GIS is an appropriate tool for their application and, if so, which GIS should be used.

  7. Patterns of Rapid Deceleration Observed at Two Tidewater Outlet Glaciers in West Greenland

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Catania, G. A.; Bartholomaus, T.; Sutherland, D.; Nash, J. D.; Shroyer, E.; Byers, L. C.; Rosenau, R.; Fried, M.; Felikson, D.; Walker, R. T.; Carroll, D.

    2015-12-01

    Flow speeds of Greenland outlet glaciers play an important role in modulating ice sheet mass balance. Flow variability is dictated by how outlet glaciers respond to unknown or poorly constrained perturbations in their boundary conditions; identifying the physical processes controlling outlet glacier flow variability is key to improving models of ice sheet evolution. In this study, we use satellite remote sensing data, in situ observations, and numerical models to explore the boundary conditions that control the unique flow behavior of two West Greenland outlet glaciers. Kangerdlugssup Sermerssua (KS) and Kangilerngata Sermia (KGS), exhibit seasonal flow variability that is anti-correlated with surrounding glaciers. Both glaciers decelerate in the spring when meltwater becomes available. The seasonal deceleration is usually on the order of 10% the annual average speed, and lasts ~2 months. During high melt years, the deceleration is highly exaggerated (~80% of the annual average), causing a near shutdown of glacier flow along the lower 20 km of the trunk. For example, in 2010 KS decelerated from its average speed of ~2000 m/yr to 250 m/yr; the deceleration and the acceleration back to its average speed took roughly 2 months. Force balance analyses show that both glaciers have anomalously low driving stress and basal drag values. We hypothesize that glaciers with low basal drag are particularly sensitive to variations in subglacial water. The discrete decelerations and reactivation of these two unique glacier systems allow us to analyze the complicated evolution of subglacial hydrologic systems and their interaction with ice velocity and force components.

  8. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  9. Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators

    NASA Technical Reports Server (NTRS)

    Matthews, F. R., Jr.; White, E. C. (Inventor)

    1973-01-01

    A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.

  10. 40 CFR 1066.265 - Acceleration and deceleration verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Acceleration and deceleration...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Dynamometer Specifications § 1066.265 Acceleration... ability to achieve targeted acceleration and deceleration rates. Paragraph (c) of this section...

  11. Kinetics of the decelerated fluorescence of organic molecules in n-paraffins at 77 K and its mathematical model

    NASA Astrophysics Data System (ADS)

    Kulikova, O. I.; Zheludkova, T. V.; Solodunov, V. V.

    2007-12-01

    Results of investigations into the kinetics of decelerated fluorescence decay for 1,2-benzpyrene in dodecane and coronene in n-octane at 77 K are presented in the paper. It is demonstrated that the reason for the nonexponential kinetics is a statistical spread of the triplet-triplet annihilation rate constant. A mathematical model is suggested which describes well the decelerated fluorescence decay in these systems.

  12. Higher-order resonances in a Stark decelerator

    SciTech Connect

    Meerakker, Sebastiaan Y.T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard

    2005-05-15

    The motion of polar molecules can be controlled by time-varying inhomogeneous electric fields. In a Stark decelerator, this is exploited to select a fraction of a molecular beam that is accelerated, transported, or decelerated. Phase stability ensures that the selected bunch of molecules is kept together throughout the deceleration process. In this paper an extended description of phase stability in a Stark decelerator is given, including higher-order effects. This analysis predicts a wide variety of resonances that originate from the spatial and temporal periodicity of the electric fields. These resonances are experimentally observed using a beam of OH ({sup 2}{pi}{sub 3/2},v=0,J=3/2) radicals passing through a Stark decelerator.

  13. Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.

    1999-01-01

    Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.

  14. Threat expert system technology advisor

    NASA Technical Reports Server (NTRS)

    Kurrasch, E. R.; Tripp, L. R.

    1987-01-01

    A prototype expert system was developed to determine the feasibility of using expert system technology to enhance the performance and survivability of helicopter pilots in a combat threat environment while flying NOE (Nap of the Earth) missions. The basis for the concept is the potential of using an Expert System Advisor to reduce the extreme overloading of the pilot who flies NOE mission below treetop level at approximately 40 knots while performing several other functions. The ultimate goal is to develop a Threat Expert System Advisor which provides threat information and advice that are better than even a highly experienced copilot. The results clearly show that the NOE pilot needs all the help in decision aiding and threat situation awareness that he can get. It clearly shows that heuristics are important and that an expert system for combat NOE helicopter missions can be of great help to the pilot in complex threat situations and in making decisions.

  15. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  16. The Stability of Decelerating Shocks Revisited

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Waxman, Eli; Shvarts, Dov

    2005-11-01

    We present a new method for analyzing the global stability of the Sedov-von Neumann-Taylor self-similar solutions, describing the asymptotic behavior of spherical decelerating shock waves expanding into ideal gas with density ~r-ω. Our method allows one to overcome the difficulties associated with the nonphysical divergences of the solutions at the origin. We show that while the growth rates of global modes derived by previous analyses are accurate in the large-wavenumber (small-wavelength) limit, they do not correctly describe the small-wavenumber behavior for small values of the adiabatic index γ. Our method furthermore allows one to analyze the stability properties of the flow at early times, when the flow deviates significantly from the asymptotic self-similar behavior. We find that at this stage the perturbation growth rates are larger than those obtained for unstable asymptotic solutions at similar γ, ω. Our results reduce the discrepancy that exists between theoretical predictions and experimental results.

  17. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  18. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  19. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  20. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  1. NASA Technology Area 1: Launch Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.

    2011-01-01

    This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.

  2. The blast wave mitigation effects of a magnetogasdynamic decelerator

    SciTech Connect

    Baty, Roy S; Lundgren, Ronald G; Tucker, Don H

    2009-01-01

    This work computes shock wave jump functions for viscous blast waves propagating in a magnetogasdynamic decelerator. The decelerator is assumed to be a one-dimensional channel with sides that are perfect conductors. An electric field applied on the walls of the channel produces a magnetogasdynamic pump, which decelerates the flow field induced by a blast wave. The blast wave jump functions computed here are compared to magnetogasdynamic results for steady supersonic channel flow to quantify potential blast mitigation effects. Theoretical shock wave jump functions are also presented for inviscid blast waves propagating in a one-dimensional channel with an electromagnetic field.

  3. Physics at CERN’s Antiproton Decelerator

    NASA Astrophysics Data System (ADS)

    Hori, M.; Walz, J.

    2013-09-01

    The Antiproton Decelerator (AD) facility of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen (Hbar ) and antiprotonic helium (pbar He) atoms. The first 12 years of AD operation saw cold Hbar synthesized by overlapping clouds of positrons (e+) and antiprotons (pbar ) confined in magnetic Penning traps. Cold Hbar was also produced in collisions between Rydberg positronium (Ps) atoms and pbar . Ground-state Hbar was later trapped for up to ˜1000 s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the pbar He atom, deep ultraviolet transitions were measured to a fractional precision of (2.3-5)×10-9 by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as M/me=1836.1526736(23), which agrees with the p value known to a similar precision. Microwave spectroscopy of pbar He yielded a measurement of the pbar magnetic moment with a precision of 0.3%. More recently, the magnetic moment of a single pbar confined in a Penning trap was measured with a higher precision, as μ=-2.792845(12)μ in nuclear magnetons. Other results reviewed here include the first measurements of the energy loss (-dE/dx) of 1-100 keV pbar traversing conductor and insulator targets; the cross sections of low-energy (<10 keV) pbar ionizing atomic and molecular gas targets; and the cross sections of 5 MeV pbar annihilating on various target foils via nuclear collisions. The biological effectiveness of pbar beams destroying cancer cells was measured as a possible method for radiological therapy. New experiments under preparation attempt to measure the gravitational acceleration of Hbar or synthesize H. Several other future experiments will also be briefly described.

  4. Design, manufacture, and testing of the Armstrong Hall drop tower decelerator

    NASA Astrophysics Data System (ADS)

    Ocampo, Jaime Andres

    A decelerator was needed for the Armstrong Hall Microgravity tower. Three designs were considered as concepts and the one chosen was an airbag. The airbag is 5 feet tall and 4.5 feet in diameter due to floor constraints. The deceleration was controlled by designing the vent system to provide the needed vent area as a function of time. This dynamics vent area controls the rate at which volume is expelled from the airbag. The volume expelled depends on the pressure inside the airbag, thus, a direct relation between the vent area and the deceleration profile was determined. The airbag and associated infrastructure was designed, manufactured, and tested. This system includes an airbag with a cushion on top to prevent wear, cart and rails, a drop package, and a latch and release system. More than forty tests were done with different drop height and drop weight combinations culminating in three drops of 200 lbs from the third floor. The drop weight was varied by adjusting the water level in a plastic barrel in the drop package. Pressure measurements inside the bag and vent were taken using two pressure transducers. The pressure transducers sampled the pressure at one of the exit vents and at the center of the bottom of the airbag. The signals were low-pass filtered for noise and scaled for pressure. The pressure traces were processed to find the mean deceleration. The deceleration was found to be independent of drop weight, only depending on drop height. The traces were also integrated to find a momentum per unit area. This value was then compared to the momentum of the drop package. From these two results an effective impact area can be found. It was found that the cushion not only reduced wear but also increased the effective impact area substantially. This increase in area reduced the value of the mean deceleration by reducing the pressure inside the airbag. The airbag proved to work well for the drops, decelerating the package and preventing a direct hit with the

  5. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  6. Dynamic response of a poroelastic half-space to accelerating or decelerating trains

    NASA Astrophysics Data System (ADS)

    Cao, Zhigang; Boström, Anders

    2013-05-01

    The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.

  7. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases

    PubMed Central

    Sholapurkar, Shashikant L.

    2015-01-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered “center-stage” in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as “variable”. This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by “cord-compression” hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called “early” rather than “variable”. Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on

  8. Categorization of Fetal Heart Rate Decelerations in American and European Practice: Importance and Imperative of Avoiding Framing and Confirmation Biases.

    PubMed

    Sholapurkar, Shashikant L

    2015-09-01

    Interpretation of electronic fetal monitoring (EFM) remains controversial and unsatisfactory. Fetal heart rate (FHR) decelerations are the commonest aberrant feature on cardiotocographs and considered "center-stage" in the interpretation of EFM. A recent American study suggested that the lack of correlation of American three-tier system to neonatal acidemia may be due to the current peculiar nomenclature of FHR decelerations leading to loss of meaning. The pioneers like Hon and Caldeyro-Barcia classified decelerations based primarily on time relationship to contractions and not on etiology per se. This critical analysis debates pros and cons of significant anchoring/framing and confirmation biases in defining different types of decelerations based primarily on the shape (slope) or time of descent. It would be important to identify benign early decelerations correctly to avoid unnecessary intervention as well as to improve the positive predictive value of the other types of decelerations. Currently the vast majority of decelerations are classed as "variable". This review shows that the most common rapid decelerations during contractions with trough corresponding to peak of contraction cannot be explained by "cord-compression" hypothesis but by direct/pure (defined here as not mediated through baro-/chemoreceptors) or non-hypoxic vagal reflex. These decelerations are benign, most likely and mainly a result of head-compression and hence should be called "early" rather than "variable". Standardization is important but should be appropriate and withstand scientific scrutiny. Significant framing and confirmation biases are necessarily unscientific and the succeeding three-tier interpretation systems and structures embodying these biases would be dysfunctional and clinically unhelpful. Clinical/pathophysiological analysis and avoidance of flaws/biases suggest that a more physiological and scientific categorization of decelerations should be based on time relationship to

  9. Systems factorial technology with R.

    PubMed

    Houpt, Joseph W; Blaha, Leslie M; McIntire, John P; Havig, Paul R; Townsend, James T

    2014-06-01

    Systems factorial technology (SFT) comprises a set of powerful nonparametric models and measures, together with a theory-driven experiment methodology termed the double factorial paradigm (DFP), for assessing the cognitive information-processing mechanisms supporting the processing of multiple sources of information in a given task (Townsend and Nozawa, Journal of Mathematical Psychology 39:321-360, 1995). We provide an overview of the model-based measures of SFT, together with a tutorial on designing a DFP experiment to take advantage of all SFT measures in a single experiment. Illustrative examples are given to highlight the breadth of applicability of these techniques across psychology. We further introduce and demonstrate a new package for performing SFT analyses using R for statistical computing.

  10. Older Drivers and Rapid Deceleration Events: Salisbury Eye Evaluation Driving Study

    PubMed Central

    Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K

    2012-01-01

    Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers ages 67 to 87 were recruited from the Maryland Motor Vehicle Administration’s rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created Driving Monitor System (DMS) was used to capture rapid deceleration events (RDE), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving <59 miles during the 5-day period of monitoring. However, older drivers with RDE’s were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more “fit”, with better measures of vision and cognition compared to those who do not have events of rapid deceleration. PMID:22742775

  11. An Assessment of Integrated Flywheel System Technology

    NASA Technical Reports Server (NTRS)

    Keckler, C. R. (Editor); Bechtel, R. T. (Editor); Groom, N. J. (Editor)

    1984-01-01

    The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented.

  12. NASA's Launch Propulsion Systems Technology Roadmap

    NASA Technical Reports Server (NTRS)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  13. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  14. Micromachining technology for advanced weapon systems

    SciTech Connect

    Sniegowski, J.J.

    1996-12-31

    An overview of planned uses for polysilicon surface-micromachining technology in advanced weapon systems is presented. Specifically, this technology may allow consideration of fundamentally new architectures for realization of surety component functions.

  15. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  16. Technology reviews: Dynamic curtain wall systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize die state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  17. A systems engineering approach to technology assessment.

    PubMed

    Crepea, A T

    1995-01-01

    This paper presents a technology assessment process based on systems engineering methodologies used in the aerospace and defense industries. Systems engineering, defined in the U.S. military manual for engineering management, is a logical sequence of activities and decisions transforming an operational need into a description of system performance parameters and a preferred system configuration. Like systems engineering, technology assessment is driven by a single, clear need. The objective of systems engineering is to design a new system configuration; technology assessment assesses existing technologies to address this need. A six-step technology assessment model based on systems engineering principles is presented, including: (1) needs assessment; (2) clinical feasibility analysis; (3) systems assessment; (4) approval; (5) implementation; and (6) follow-up/CQI. PMID:10144457

  18. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2013-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.

  19. Entry, Descent, and Landing With Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2012-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.

  20. Entry, Descent, and Landing with Propulsive Deceleration: Supersonic Retropropulsion Wind Tunnel Testing and Shock Phenomena

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  2. Information technology security system engineering methodology

    NASA Technical Reports Server (NTRS)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  3. Acceleration and Deceleration of Coronal Mass Ejection (CME) Propagation

    NASA Astrophysics Data System (ADS)

    Shen, F.; Wu, S.; Feng, X. S.; Wu, C.

    2011-12-01

    A major challenge to the space weather forecasting community is accurate prediction of coronal mass ejections (CME) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, it is necessary to understand the physical processes of the acceleration and deceleration of the CME propagation in the heliosphere. We present a three-dimensional (3D) magnetohydrodynamic (MHD) simulation of the evolution of two interacting CMEs in a realistic ambient solar wind for the March 28-31, 2001 event. The forces which caused the acceleration and deceleration are analyzed in detail. The force which caused the acceleration are Lorenz force and pressure gradient and the forces which caused the deceleration are aerodynamic drag and the Sun's gravity. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event (March 28-31, 2001), we also investigate the interactions of two CMEs causing the acceleration and deceleration of the CMEs.

  4. Extremely Energetic Outflow and Decelerated Expansion in W49N

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Kim, Kee-Tae; Wu, Yuefang; Li, Di; Lee, Chang-Won; De Pree, Christopher G.; Qin, Sheng-Li; Wang, Ke; Tatematsu, Ken'ichi; Zhang, Qizhou; Mardones, Diego; Liu, Sheng-Yuan; Cho, Se-Hyung

    2015-09-01

    W49N is a mini-starburst in the Milky Way and is thus an ideal laboratory for high-mass star formation studies. Due to its large distance ({11.1}-0.7+0.9 kpc), the kinematics inside and between the dense molecular clumps in W49N are far from well-understood. The Submillimeter Array observations resolved the continuum emission into two clumps. The molecular line observation of SO2 ({28}{4,24}-{28}{3,25}) suggests that the two clumps have a velocity difference of ˜7 km s-1. The eastern clump is very close to two radio sources “G1” and “G2,” and the western clump coincides with a radio source “B.” The HCN (3-2) line reveals an extremely energetic outflow, which is among the most energetic molecular outflows in the Milky Way. This is the first report of high-velocity molecular outflow detection in W49N. The outflow jet might be in precession, which could account for the distribution, velocity, and rotation of water maser spots. Three absorption systems are identified in {{HCO}}+ (3-2) spectra. The absorption features are blueshifted with respect to the emission of SO2 ({28}{4,24}-{28}{3,25}) lines, indicating that a cold layer is expanding in front of the warm gas. Further analysis indicates that the expansion is decelerated from the geometric expansion centers.

  5. Passenger comfort technology for system decision making

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Decisions requiring passenger comfort technology were shown to depend on: the relationship between comfort and other factors (e.g., cost, urgency, alternate modes) in traveler acceptance of the systems, serving a selected market require technology to quantify effects of comfort versus offsetting factors in system acceptance. Public predict the maximum percentage of travelers who willingly accept the overall comfort of any trip ride. One or the other of these technology requirements apply to decisions on system design, operation and maintenance.

  6. Reentry systems: Material technology needs

    NASA Technical Reports Server (NTRS)

    Ehret, Richard Michael

    1993-01-01

    The material technology needs are: (1) lightweight and durable rigid insulating and higher temperature flexible materials; and (2) inspection, repair, producibility, and maintainability of refractory composites. The direction of efforts are: (1) funding base is relatively small for future years; (2) to minimize returns, collaborative programs appear to be practical; and (3) SSD's approach is to implement NASA developed technology.

  7. ODIN system technology module library, 1972 - 1973

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Watson, D. A.; Glatt, C. R.; Jones, R. T.; Galipeau, J.; Phoa, Y. T.; White, R. J.

    1978-01-01

    ODIN/RLV is a digital computing system for the synthesis and optimization of reusable launch vehicle preliminary designs. The system consists of a library of technology modules in the form of independent computer programs and an executive program, ODINEX, which operates on the technology modules. The technology module library contains programs for estimating all major military flight vehicle system characteristics, for example, geometry, aerodynamics, economics, propulsion, inertia and volumetric properties, trajectories and missions, steady state aeroelasticity and flutter, and stability and control. A general system optimization module, a computer graphics module, and a program precompiler are available as user aids in the ODIN/RLV program technology module library.

  8. Advanced technologies for turbomachinery systems: An overview

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1982-01-01

    Turbomachinery system components and associated technologies are discussed. Specific technologies reviewed include the compressor, turbine, internal flow analysis methods, combustion, fuels, materials, structures, bearings, seals, and lubrication, dynamics and controls, and instrumentation. Analytical procedures as a path to improved performance are discussed. The strong interaction between the various technologies if turbomachinery performance gains are to be realized is reflected.

  9. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    NASA Technical Reports Server (NTRS)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  10. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  11. Biases in the perception of self-motion during whole-body acceleration and deceleration

    PubMed Central

    Tremblay, Luc; Kennedy, Andrew; Paleressompoulle, Dany; Borel, Liliane; Mouchnino, Laurence; Blouin, Jean

    2013-01-01

    Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e., after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e., during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc) and deceleration (Dec) lasted either 1.5 s (peak of 60°/s2, referred to as being “High”) or 3 s (peak of 33°/s2, referred to as being “Low”). The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh). The participants’ perception of body rotation was assessed by computing the gain, i.e., ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle) and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: (i) the gain was much greater during body acceleration than during body deceleration, (ii) the gain was greater during High compared to Low accelerations and (iii) the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High). These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive

  12. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  13. An investigation of accelerating mode and decelerating mode constant-momentum mass spectrometry and their application to a residual gas analyzer

    NASA Technical Reports Server (NTRS)

    Ng, Y. S.

    1977-01-01

    A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.

  14. Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.

    2016-10-01

    In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.

  15. Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.

    2016-06-01

    In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.

  16. Drag Characteristics of Several Towed Decelerator Models at Mach 3

    NASA Technical Reports Server (NTRS)

    Miserentino, Robert; Bohon, Herman L.

    1970-01-01

    An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.

  17. Technology profile: Residential greywater heat recovery systems

    SciTech Connect

    Proskiw, G.

    1998-12-31

    This report profiles residential greywater heat recovery (GWHR) systems, beginning with a background review of residential hot water consumption patterns, usage characteristics, and the technology currently used for residential water heating systems. This is followed by a generic description of the various types of residential GWHR systems and the benefits they produce, a summary of the technical obstacles which GWHR technology faces and the barriers to widespread GWHR commercialization, and a description of commercially available GWHR systems. The types of applications for which the technology is best suited are discussed, and the potential markets for GWHR systems are assessed. An action plan concludes the report, suggesting how those markets might be successfully developed.

  18. NASA helicopter transmission system technology program

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1983-01-01

    The purpose of the NASA Helicopter Transmission System Technology Program is to improve specific mechanical components and the technology for combining these into advanced drive systems to make helicopters more viable and cost competitive for commerical applications. The history, goals, and elements of the program are discussed.

  19. Teaching Embedded System Concepts for Technological Literacy

    ERIC Educational Resources Information Center

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  20. Acceleration and deceleration of neutrons: From the phase modulation of a neutron wave to a neutron turbine with refracting prisms

    SciTech Connect

    Frank, A. I.

    2013-05-15

    The possibility of the acceleration and deceleration of neutrons undergoing diffraction at a moving grating is discussed. It is shown that, in contrast to phase {pi} gratings used at the present time, which form a discrete spectrum featuring a large number of lines, a grating that has a special profile may shift, under certain conditions, the entire spectrum of diffracted neutrons. A blazing grating of this type may be used in efficiently accelerating and decelerating neutrons. As the scale of the structure becomes larger, a description based on the idea of neutron-wave refraction at its elements becomes valid, a system of moving prims forming a 'neutron turbine,' which is also able to accelerate or decelerate neutrons, being a classical limit of this enlargement.

  1. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed oil the subsystems and components comprising the system of interest. Technological "returns" and "variation" parameters, are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  2. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  3. Towards G2G: Systems of Technology Database Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Bell, David

    2005-01-01

    We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.

  4. System Study: Technology Assessment and Prioritizing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The objective of this NASA funded project is to assess and prioritize advanced technologies required to achieve the goals for an "Intelligent Propulsion System" through collaboration among GEAE, NASA, and Georgia Tech. Key GEAE deliverables are parametric response surface equations (RSE's) relating technology features to system benefits (sfc, weight, fuel burn, design range, acoustics, emission, etc...) and listings of Technology Impact Matrix (TIM) with benefits, debits, and approximate readiness status. TIM has been completed for GEAE and NASA proposed technologies. The combined GEAE and NASA TIM input requirement is shown in Table.1. In the course of building the RSE's and TIM, significant parametric technology modeling and RSE accuracy improvements were accomplished. GEAE has also done preliminary ranking of the technologies using Georgia Tech/GEAE USA developed technology evaluation tools. System level impact was performed by combining beneficial technologies with minimum conflict among various system figures of merits to assess their overall benefits to the system. The shortfalls and issues with modeling the proposed technologies are identified, and recommendations for future work are also proposed.

  5. Wireless Technologies Implications for Power Systems

    SciTech Connect

    Fuhr, Peter L; Manges, Wayne W; Schweitzer, Patrick; Kagan, Hesh

    2010-01-01

    Wireless technologies have advanced well beyond simple SCADA radio systems and point-to-point links. The current applications supported by industrial-grade wireless sensors and systems range from field measurements (classic I/O) to voice, video, asset tracking, mobile operators, etc. Which such a wide array of supported applications, the belief that wireless technology will only impact power systems in terms of wireless sensors is shortsighted. This paper, coauthored by a group of individuals intimately involved in the general realm of industrial wireless , presents a simple snapshot of current radio technologies that are used (or seriously contemplated for use) in power systems.

  6. Rydberg Spectroscopy of Zeeman-Decelerated Beams of Metastable Helium Molecules

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Motsch, Michael; Sprecher, Daniel; Merkt, Frederic

    2014-06-01

    Having three and four electrons, respectively, He_2^+ and He_2 represent systems for which highly accurate ab-initio calculations might become feasible in the near future. With the goal of performing accurate measurements of the rovibrational energy-level structure of He_2^+ by Rydberg spectroscopy of He_2 and multichannel quantum-defect theory extrapolation techniques, we have produced samples of helium molecules in the a ^3Σu^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The molecules are formed at an initial velocity of 500 m/s by striking a discharge in the pulsed expansion of helium gas from a reservoir kept at a cryogenic temperature of 10 K. Using rotationally-resolved PFI-ZEKE (pulsed-field-ionization zero-kinetic-energy) photoelectron spectroscopy, we have probed the rotational-state distribution of the molecules produced in the discharge and found vibrational levels up to ν" = 2 and rotational levels up to N"=21 to be populated. The molecular beam is coupled to a multistage Zeeman decelerator that employs pulsed inhomogeneous magnetic fields to further reduce the beam velocity. By measuring the quantum-state distribution of the decelerated sample using photoelectron and photoionization spectroscopy we observed no rotational or vibrational state-selectivity of the deceleration process, but found that one of the three spin-rotation components of the He_2 a ^3Σu^+ rotational levels is eliminated. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, arXiv:1401.7774. N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, Phys. Rev. A 75, 031402(R) (2007).

  7. Enhancing trappable antiproton populations through deceleration and frictional cooling

    SciTech Connect

    Zolotorev, Max; Sessler, Andrew; Penn, Gregory; Wurtele, Jonathan S.; Charman, Andrew E.

    2012-03-20

    CERN currently delivers antiprotons for trapping experiments with the Antiproton Decelerator (AD), which slows the antiprotons down to about 5 MeV.This energy is currently too high for direct trapping, and thick foils are used to slow down the beam to energies which can be trapped.To allow further deceleration to $\\sim 100 \\;\\mbox{keV}$, CERN is initiating the construction of ELENA,consisting of a ring which will combine RF deceleration and electron cooling capabilities. We describe a simple frictionalcooling scheme that can serve to provide significantly improved trapping efficiency, either directly from the AD or first usinga standard deceleration mechanism (induction linac or RFQ). This scheme could be implemented in a short time.The device itself is short in length, uses accessible voltages, and at reasonable cost could serve in the interim beforeELENA becomes operational, or possibly in lieu of ELENA for some experiments. Simple theory and simulations provide a preliminary assessment of theconcept and its strengths and limitations, and highlight important areas for experimental studies, in particular to pin down the level of multiplescattering for low-energy antiprotons. We show that the frictional cooling scheme can provide a similar energy spectrum to that of ELENA,but with higher transverse emittances.

  8. Rocket Sled Propelled Testing of a Supersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Meacham, Michael B.; Kennett, Andrew; Townsend, Derik J.; Marti, Benjamin

    2013-01-01

    Decelerators (IADs) have traditionally been tested in wind tunnels. As the limitations of these test facilities are reached, other avenues must be pursued. The IAD being tested is a Supersonic IAD (SIAD), which attaches just aft of the heatshield around the perimeter of an entry body. This 'attached torus' SIAD is meant to improve the accuracy of landing for robotic class missions to Mars and allow for potentially increased payloads. The SIAD Design Verification (SDV) test aims to qualify the SIAD by applying a targeted aerodynamic load to the vehicle. While many test architectures were researched, a rocket sled track was ultimately chosen to be the most cost effective way to achieve the desired dynamic pressures. The Supersonic Naval Ordnance Research Track (SNORT) at the Naval Air Warfare Center Weapons Division (NAWCWD) China Lake is a four mile test track, traditionally used for warhead and ejection seat testing. Prior to SDV, inflatable drag bodies have been tested on this particular track. Teams at Jet Propulsion Laboratory (JPL) and NAWCWD collaborate together to design and fabricate one of the largest sleds ever built. The SDV sled is comprised of three individual sleds: a Pusher Sled which holds the solid booster rockets, an Item Sled which supports the test vehicle, and a Camera Sled that is pushed in front for in-situ footage and measurements. The JPL-designed Test Vehicle has a full-scale heatshield shape and contains all instrumentation and inflation systems necessary to inflate and test a SIAD. The first campaign that is run at SNORT tested all hardware and instrumentation before the SIAD was ready to be tested. For each of the three tests in this campaign, the number of rockets and top speed was increased and the data analyzed to ensure the hardware is safe at the necessary accelerations and aerodynamic loads.

  9. Enhanced technologies for unattended ground sensor systems

    NASA Astrophysics Data System (ADS)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  10. Injection of new technology into space systems

    NASA Astrophysics Data System (ADS)

    Curto, Paul A.; Hornstein, Rhoda Shaller

    2005-07-01

    Small satellite systems appear to be antithetical to human spaceflight systems and flagship robotic satellite systems: Small satellite missions have more focused scientific objectives, lower cost, far less complexity, and shorter development and deployment schedules. The shorter schedules offer an opportunity for injecting new technology into their design as a means for keeping costs and schedule under control, for enabling cost-effective operations, and for taking advantage of innovative ideas. It is often the case that small satellite missions benefit from technologies specifically targeted for their application, but benefits may also be realized by adopting or injecting technologies originally developed for human spaceflight systems, especially if these technologies were conceived using multi-use and multi-disciplinary development principles. In this paper, the authors discuss the precedent of injecting new technology developed for human spaceflight systems into small satellite missions. More importantly, the authors will present five new technologies recently proposed for making the NASA Space Shuttle safer to fly, all of which are directly applicable to small satellite mission design and operations. The technologies, when matured, will provide a means to create new generations of ultra-reliable flight hardware and software. The technologies are all currently at the developmental phase and require modest investment to achieve operational status.

  11. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    NASA Technical Reports Server (NTRS)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  12. Network operating system focus technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An activity structured to provide specific design requirements and specifications for the Space Station Data Management System (DMS) Network Operating System (NOS) is outlined. Examples are given of the types of supporting studies and implementation tasks presently underway to realize a DMS test bed capability to develop hands-on understanding of NOS requirements as driven by actual subsystem test beds participating in the overall Johnson Space Center test bed program. Classical operating system elements and principal NOS functions are listed.

  13. Space station propulsion system technology

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.

    1987-01-01

    Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.

  14. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  15. Mechanical Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in mechanical devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  16. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  17. Electronic Devices and Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Technical Education Research Centre-Southwest, Waco, TX.

    This course in electronic devices and systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  18. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  19. Governance Challenges of Technological Systems Convergence

    ERIC Educational Resources Information Center

    Whitman, Jim

    2006-01-01

    The convergence of several technological systems (especially nanotechnology, biotechnology, information technology, and robotics) has now been adopted as a strategic goal by several countries, most notably the United States and those of the European Union. The anticipated benefits and related fears of competitive disadvantage have brought together…

  20. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; Meseroll, Robert; Quiter, John; Shannon, Russell; Easton, John W.; Madaras, Eric I.; BrownTaminger, Karen M.; Tabera, John T.; Tellado, Joseph; Williams, Marth K.; Zeitlin, Nancy P.

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  1. Applying Sustainable Systems Development Approach to Educational Technology Systems

    ERIC Educational Resources Information Center

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  2. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  3. Systems engineering technology for networks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The report summarizes research pursued within the Systems Engineering Design Laboratory at Virginia Polytechnic Institute and State University between May 16, 1993 and January 31, 1994. The project was proposed in cooperation with the Computational Science and Engineering Research Center at Howard University. Its purpose was to investigate emerging systems engineering tools and their applicability in analyzing the NASA Network Control Center (NCC) on the basis of metrics and measures.

  4. Game Changing Technology: Woven Thermal Protection Systems

    NASA Video Gallery

    New woven composite materials are an advanced space technology that mark a major milestone toward development of the space systems that will enable extending human and robotic presence throughout t...

  5. Control technology for future aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Zeller, J. R.; Szuch, J. R.; Merrill, W. C.; Lehtinen, B.; Soeder, J. F.

    1984-01-01

    The need for a more sophisticated engine control system is discussed. The improvements in better thrust-to-weight ratios demand the manipulation of more control inputs. New technological solutions to the engine control problem are practiced. The digital electronic engine control (DEEC) system is a step in the evolution to digital electronic engine control. Technology issues are addressed to ensure a growth in confidence in sophisticated electronic controls for aircraft turbine engines. The need of a control system architecture which permits propulsion controls to be functionally integrated with other aircraft systems is established. Areas of technology studied include: (1) control design methodology; (2) improved modeling and simulation methods; and (3) implementation technologies. Objectives, results and future thrusts are summarized.

  6. Future Orbital Power Systems Technology Requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA is actively involved in program planning for missions requiring several orders of magnitude, more energy than in the past. Therefore, a two-day symposium was held to review the technology requirements for future orbital power systems. The purpose of the meeting was to give leaders from government and industry a broad view of current government supported technology efforts and future program plans in space power. It provided a forum for discussion, through workshops, to comment on current and planned programs and to identify opportunities for technology investment. Several papers are presented to review the technology status and the planned programs.

  7. Advanced technology for satellite data collection systems

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Painter, J. E.

    1981-01-01

    Technological developments in satellite data collection are aimed at relieving constraints of existing systems to permit expanded capability at lower costs in future operations. Constraints imposed by the limited electromagnetic spectrum available in the UHF band and the cost of user equipment are principal targets for improvement through technology. This paper describes ongoing developmental activities in system and component areas which will become available for the next generation of operations.

  8. NEMO 2: New energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    The Advanced Energy Systems and Technologies Research Program (NEMO 2) is one of the main energy research programs of the Ministry of Trade and Industry of Finland for the period of 1993-1998. The main emphasis in NEMO 2 is on solar energy and wind power. These are followed by other small power production, energy storage, and hydrogen technologies. The total budget is about 120 million FIM. The main objective in Nemo 2 is to increase the use of solar and wind energy in Finland and to promote industrial export in this field. Technology research and development is strongly supported and an international leadership role is envisioned for some niche areas. New energy technology is developed as a whole in close cooperation with industry and universities. To enhance the commercialization of these technologies, a small demonstration program is suggested to be realized in connection with the research program. Furthermore, international cooperation is considered important in reaching the program goals. As to wind energy research, basic research on wind meteorology and arctic wind technology will be continued. A series of pilot plants to demonstrate the achievements from wind technology developments is promoted. In solar energy, the NEMO 2 program looks for more efficient and cheaper photovoltaic systems and applications. Manufacturing of new photovoltaic cells is under consideration. Solar heating technologies are also supported with emphasis on improved system demonstrations. Energy storage questions are also dealt with indirectly in connection with solar research and development.

  9. System-of-Systems Technology-Portfolio-Analysis Tool

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne

    2012-01-01

    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.

  10. Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    SciTech Connect

    Gilijamse, Joop J.; Kuepper, Jochen; Hoekstra, Steven; Vanhaecke, Nicolas; Meerakker, Sebastiaan Y. T. van de; Meijer, Gerard

    2006-06-15

    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline, pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40% of the number of trapped OH radicals.

  11. The Hidden Technology: Dictation Systems.

    ERIC Educational Resources Information Center

    Barton, Kathy; And Others

    This booklet provides business and office teachers with background information, supporting materials, recruiting techniques, and a suggested unit plan that integrates the concepts related to dictation systems into information processing curricula. An "Introduction" (Donna Everett) discusses the need for dictation skills. "Need for Dictation…

  12. Enabling kinetic micro-penetrator technology for Solar System research

    NASA Astrophysics Data System (ADS)

    Gowen, R. A.

    2008-09-01

    Whilst the concept of high speed impacting penetrator probes is not new, recent highly successful ground test results have considerably improved the perception that these can be a viable and useful addition to the current toolbox of planetary probes. Previous developments only led to a single deployment (Deep Space-2 to Mars on the ill fated NASA Mars Polar Lander mission in 1999) where neither the soft lander nor penetrator was ever heard from, which is not a logical basis for dismissing penetrator technology. Other space penetrator programmes have included the Russian Mars'96 ~80m/s penetrators for which the whole mission was lost before the spacecraft left Earth orbit, and the Japanese Lunar-A program which was cancelled after a lengthy development program which however saw multiple successful ground trials. The Japanese penetrators were designed for ~300m/s impact. The current UK penetrator developments are actively working towards full space qualification for a Lunar penetrators (MoonLITE mission), which would also provide a significant technical demonstration towards the development of smaller, shorter lived penetrators for exploring other solar system objects. We are advocating delivered micro-penetrators in the mass range ~4-10Kg, (preceded by ~13Kg Lunar penetrator MoonLITE development program), impacting at around 100-500m/s and carrying a scientific payload of around 2Kg. Additional mass is required to deliver the probes from `orbit' to surface which is dependent upon the particular planetary body in question. The mass per descent module therefore involves and additional element which, for a descent through an atmosphere could be quite modest, while for a flyby deployment, can be substantial. For Europa we estimate a descent module mass of ~13 Kg, while for Enceladus the value is ~40Kg for Enceladus since a deceleration of ~3.8 kms-1 is needed from a Titan orbit. The delivery system could consist of a rocket deceleration motor and attitude control system

  13. Systems Engineering and Integration for Technology Programs

    NASA Technical Reports Server (NTRS)

    Kennedy, Kruss J.

    2006-01-01

    The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.

  14. Controllably accelerating and decelerating Airy–Bessel–Gaussian wave packets

    NASA Astrophysics Data System (ADS)

    Deng, Fu; Yu, Weihao; Deng, Dongmei

    2016-11-01

    By solving the (3  +  1)D free-space Schrödinger equation in polar coordinates analytically, we have investigated the propagation of 3D controllably accelerating and decelerating Airy–Bessel–Gaussian (CAiBG) wave packets, even CAiBG wave packets, odd CAiBG wave packets and the superposition of several CAiBG wave packets in free space. The CAiBG wave packets are constructed with the Airy pulses with initial velocity in temporal domain and the Bessel–Gaussian beams in space domain. Due to the initial velocity on Airy pulses, we can obtain decelerating and accelerating Airy–Bessel–Gaussian wave packets by selecting different initial velocities. Moreover, by superposing several CAiBG wave packets, we can obtain the rotating wave packets.

  15. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  16. Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    SciTech Connect

    Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Kirby, N.; Siemann, R. H.; Walz, D. R.; Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.; Katsouleas, T.; Muggli, P.; Oz, E.

    2009-01-22

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were varied systematically at constant charge. The effort to extract a measurement of the decelerating wake from the maximum energy loss of the electron beam is discussed.

  17. Space shuttle program solid rocket booster decelerator subsystem

    NASA Technical Reports Server (NTRS)

    Barnard, J. W.

    1985-01-01

    The recovery of the Solid Rocket Boosters presented a major challenge. The SRB represents the largest payload ever recovered and presents the added complication that it is continually emitting hot gases and burning particles of insulation and other debris. Some items, such as portions of the nozzle, are large enough to burn through the nylon parachute material. The SRB Decelerator Subsystem program was highly successful in that no SRB has been lost as a result of inadequate performance of the DSS.

  18. Physiological constraints on deceleration during the aerocapture of manned vehicles

    NASA Technical Reports Server (NTRS)

    Lyne, J. E.

    1992-01-01

    The peak deceleration load allowed for aerobraking of manned vehicles is a critical parameter in planning future excursions to Mars. However, considerable variation exists in the limits used by various investigators. The goal of this study was to determine the most appropriate level for this limit. Methods: Since previous U.S. space flights have been limited to 84 days duration, Soviet flight results were examined. Published details of Soviet entry trajectories were not available. However, personal communication with Soviet cosmonauts suggested that peak entry loads of 5-6 G had been encountered upon return from 8 months in orbit. Soyuz entry capsule's characteristics were established and the capsule's entry trajectory was numerically calculated. The results confirm a peak load of 5 to 6 G. Results: Although the Soviet flights were of shorter duration than expected Mars missions, evidence exists that the deceleration experience is applicable. G tolerance has been shown to stabilize after 1 to 3 months in space if adequate countermeasures are used. The calculated Soyuz deceleration histories are graphically compared with those expected for Mars aerobraking. Conclusions: Previous spaceflight experience supports the use of a 5 G limit for the aerocapture of a manned vehicle at Mars.

  19. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  20. Compact thermoelectric converter systems technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.

  1. System Study: Technology Assessment and Prioritizing Update

    NASA Technical Reports Server (NTRS)

    2008-01-01

    For the Intelligent Engine System (Propulsion 21) study, each technology was evaluated to determine the impact to fuel burn, acoustics, and NOx emissions. The optimum combination of technologies and their overall benefits to the system were also evaluated, resulting in noise improvement potential of 1.89 EPNdB cumulative margin,-1.34 percent fuel burn, and 50 percent NOx reduction from the 2015 UEET-QAT baseline. All the technology evaluations, except T18-20D, were based on newengines, where the engine was resized to obtain the maximum system benefit while maintaining the same cycle parameters as the 2015 UEET-QAT baseline. The impact of turbine clearance control on deteriorated engines, T18-20D, was also evaluated. Recommendations for future system study work include, but were not limited to, validation of a university-developed engine deterioration model and customer value analysis as figures of merit beside fuel burn, emissions, and acoustics.

  2. Generation of THz-radiation in the Cherenkov decelerating structure with planar geometry at frequency ∼ 0.675 THz

    NASA Astrophysics Data System (ADS)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    One of the ways to generate THz-radiation is by the relativistic electron bunches travelling through Cherenkov decelerating dielectric filled capillary channel. Sapphire or other dielectric materials can be used for the internal surface coating of the capillary. Relativistic electron bunches of ∼100 µm in diameter and pulse durations of 1 ps or shorter are capable to produce substantial power of THz-radiation. The aperture of Cherenkov decelerating structure should be comparable with the sub-mm wavelength (0.05-3 mm). Such type of decelerating system allows providing of the wide range of operating parameters at the various geometrical sizes. But it is necessary to consider that such capillaries are difficult in production as there is a requirement to drill a small aperture in a long crystal of high hardness but brittle. In this regard it would be desirable to offer transition option from the axial to the planar geometry. Furthermore the ribbon beam has some advantages as focusing at low energies and possessing smaller expansion in the drift space. The authors present design and results of electrodynamics study of the decelerating planar dielectric filling Cherenkov channel at frequency 0.675 THz in this article. It is also delivered characteristic comparison with axial geometry channel. A horn antenna attached to such channel at 0.675 THz resonant frequency is considered.

  3. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  4. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Lund, P.

    In this report, the contents and major results of the national research program on advanced energy system and technologies (NEMO) are presented. The NEMO-program was one of the energy research programs of the Ministry of Trade and Industry during 1988-1992. Helsinki University of Technology had the responsibility of the overall coordination of the program. NEMO has been the largest resource allocation into advanced energy systems in Finland so far. The total budget was 70 million FIM. The focus of the program has been in solar energy, wind power, and energy storage. Hydrogen and fuel cells have been included in smaller amount. On all major fields of the NEMO-program, useful and high quality results have been obtained. Results of international significance include among others arctic wind energy, new approaches for the energy storage problem in solar energy applications, and the development of a completely new storage battery. International collaboration has been given high priority. The NEMO-program has also been active in informing the industries of the various business and utilization possibilities that advanced energy technologies offer. For example, major demonstration plants of each technology group have been realized. It is recommended that the further R and D should be still more focused on commercial applications. Through research efforts at universities, a good technology base should be maintained, whereas the industries should take a stronger position in commercializing new technology. Parallel to technology R and D, more public resources should be allocated for market introduction.

  5. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  6. Methods to Determine the Deformation of the IRVE Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Young, William R.

    2011-01-01

    Small resonant targets used in conjunction with a microwave reflectometer to determine the deformation of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) during reentry are investigated. The reflectometer measures the distance to the targets and from this the HIAD deformation is determined. The HIAD is used by the Inflatable Reentry Vehicle Experiment (IRVE) which investigates the use of inflatable heat shields for atmospheric reentry. After several different microwave reflectometer systems were analyzed and compared it was determined that the most desirable for this application is the Frequency Doubling Target method.

  7. Developmental systems biology flourishing on new technologies.

    PubMed

    Han, Jing-Dong J; Liu, Yi; Xue, Huiling; Xia, Kai; Yu, Hong; Zhu, Shanshan; Chen, Zhang; Zhang, Wei; Huang, Zheng; Jin, Chunyu; Xian, Bo; Li, Jing; Hou, Lei; Han, Yixing; Niu, Chaoqun; Alcon, Timothy C

    2008-10-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches. PMID:18937914

  8. Advanced technologies for future environmental satellite systems

    NASA Astrophysics Data System (ADS)

    Dittberner, Gerald J.; Crison, Michael J.; Bajpai, Shyam; Diedrich, Benjamin L.

    2004-09-01

    Environmental satellites today are designed to meet the most requirements possible within the constraints of budget, reliability, availability, robustness, manufacturability, and the state of the art in affordable technology. As we learn more and more about observing and forecasting, requirements continue to be developed and validated for measurements that can benefit from for advances in technology. The goal is to incorporate new technologies into operational systems as quickly as possible. Technologies that exist or are being developed in response to growing requirements can be categorized as "requirements pull" whereas technologies rooted in basic research and engineering exploration fall in to a "technology push" category. NOAA has begun exploration into technologies for future NOAA satellite systems. Unmet requirements exist that drive the need to locate, explore, exploit, assess, and encourage development in several technologies. Areas needing advanced technologies include: atmospheric aerosols; cloud parameters; precipitation; profiles of temperature, moisture, pressure, and wind; atmospheric radiation; trace gas abundance and distribution; land surface; ocean surface; and space weather components such as neutral density and electron density. One of the more interesting ideas in the technology push category is a constellation of satellites at Medium Earth Orbit (MEO) altitudes, here described as circular orbits near 11,000 km altitude. Consider the vision of being able to observe the environment anywhere on the Earth, at anytime, with any repeat look frequency, and being able to communicate these measurements to anyone, anywhere, anytime, in real time. Studies suggest that a constellation of MEO satellites occupying equatorial and polar orbits (inclination = 90 degrees) could, in principle, accomplish this task. Also new on the horizon is solar sail technology. NOAA has been looking at solar sails as providing a propulsive system that could be used to

  9. Review of Current Nuclear Vacuum System Technologies

    SciTech Connect

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  10. Satellite communications systems and technology. Executive Summary

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I.; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert; Mahle, Christoph E.

    1993-01-01

    NASA and the National Science Foundation (NSF) commissioned a panel of US experts to study the international status of satellite communications systems and technology. The study covers emerging systems concepts, applications, services, and the attendant technologies. The panel members travelled to Europe, Japan, and Russia to gather information first-hand. They visited 17 sites in Europe, 20 sites in Japan, and four in Russia. These included major manufacturers, government organizations, service providers, and associated R&D facilities. The panel's report was reviewed by the sites visited, by the panel, and by representatives of US industry. The report details the information collected and compares it to US activities.

  11. TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM

    SciTech Connect

    H. KIM; H. CHA; ET AL

    2001-02-01

    A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

  12. Microelectromechanical systems technology to deliver insulin.

    PubMed

    Liepmann, D; Pisano, A P; Sage, B

    1999-01-01

    A new microfabrication technology, microelectromechanical systems (MEMS), is envisioned for improved insulin delivery in the context of a device currently being developed for the Defense Advanced Research Projects Agency (DARPA). The drug delivery system utilizes MEMS technology to move and control fluids at the microscale, making possible the reconstitution and delivery of extremely small amounts of drug with extreme precision. In this article, the required microscale components that are currently being developed for the system are described. MEMS are made using fabrication methods similar to that utilized in microelectronics. Consequently, MEMS technology can be used to fabricate devices that are extremely small. The fundamental difference is that MEMS devices can either move themselves or control the movement of other materials, such as fluids. Furthermore, this manufacturing method is intrinsically low-cost and therefore is ideal for drug delivery systems. The current development of a new drug delivery system for controlled drug reconstitution and delivery system for DARPA is described as are the MEMS-based components for the required fluidic control. The adaptation of the system for insulin delivery is addressed and is envisioned to be a fully self-contained parenteral drug delivery system about the size of a 4-mm thick credit card.

  13. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  14. Technology Maturation of Integrated System Health Management

    NASA Astrophysics Data System (ADS)

    Feather, Martin S.; Uckun, Serdar; Hicks, Kenneth A.

    2008-01-01

    Despite two decades of significant investments in R&D of Integrated System Health Management (ISHM), mission-critical applications of it in aerospace are few and far between. ISHM is subject to the general difficulty of transitioning technologies out of R&D labs and into practical applications. New and unproven methods such as ISHM introduce multiple mission risks (technology, schedule, cost), and may require a transition to unconventional and as-yet-unproven operations concepts in order to be effective. Laboratory and flight demonstrations are necessary but insufficient to adequately reduce those risks. What is needed is a solid business case before a new technology can be considered for fleetwide deployment. To address these problems, we recently applied a technology maturation assessment process developed at NASA's Jet Propulsion Laboratory to study the challenges of ISHM technology maturation. This application resulted in identification of the technologies (and technology maturation activities) that would result in the greatest risk reduction per investment dollar. Our approach and its results are described herein.

  15. The Space Technology 5 Power System Design

    NASA Technical Reports Server (NTRS)

    Stewart, Karen D.; Hernandez-Pellerano, Amri I.

    2005-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program (NMP) project that was developed to validate new technologies for future missions and to demonstrate the feasibility of building and launching multiple, miniature spacecraft that can operate as science probes, collecting research quality measurements. The three satellites in the ST5 constellation will be launched into a sun synchronous LEO (Low Earth Orbit) in early 2006. ST5 fits in the 25 kilogram and 24 Watt class of miniature but fully capable spacecraft. The power system design features the use of new technology components and a low voltage power bus. In order to hold the mass and volume low and to qualify new technologies for future use in space, high efficiency triple junction solar cells and a lithium ion battery were baselined into the design. The Power System Electronics (PSE) was designed for a high radiation environment and uses hybrid microcircuits for power switching and over current protection. The ST5 power system architecture and technologies will be presented.

  16. The Technology of Measurement Feedback Systems.

    PubMed

    Bickman, Leonard; Kelley, Susan Douglas; Athay, Michele

    2012-12-01

    Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems(tm) (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

  17. The internet based on presence system technology*

    NASA Astrophysics Data System (ADS)

    Styugin, M.; Kaygorodov, A.

    2016-04-01

    In our study we analyze how to create the systems based on “communication-resource-presence”- technology. We formulate functional and architectural requirements. It is shown some new features in this systems that pertain to communication and information search on the Internet. The Internet passed three infrastructure stages from the communication between two hosts to the resource intermediation and communication in real presence systems. The systems based on the presence technologies have just started to develop. Our study shows what criteria’s they must meet. One of this criteria is the division of site resources into the "rooms" logically separated from each other. The users can see and connect to each other. The contextual data of user presence in a particular "room" can be used when searching for them in the context of professional competence.

  18. A micrometeoroid deceleration and capture experiment: Conceptual experiment design description

    NASA Technical Reports Server (NTRS)

    Wolfe, J. H.; Ballard, R. W.; Carle, G. C.; Bunch, T. E.

    1986-01-01

    The preliminary conceptual design for a cosmic dust collector is described. For the case of low Earth orbit (LEO), dust particles enter the collector through the collimator at a few volts negative potential due to charging in the ionosphere, at a velocity of 1 to 50 km/sec. The particles then pass through an electron stream and are charged to about 1 KV negative (regardless of incoming polarity). The 1 KV negatively charged particle then passes through three sensing grids coupled to charge sensitive preamps (CSP). The comparison of the two pulses provided by S(1) and S(2) are utilized by the microprocessor to determine the charge, q, on the particle (pulse amplitude) and its velocity, v (by time of flight). The third sensing grid, S(3), is kept at about 20 KV negative so that the dust particle will now be decelerated in passing from S(2) (zero potential) to S(3). S(3) is capacitively coupled to its CSP and the pulse from S(3) is utilized by the microprocessor to determine the particle's energy, E, and therefore its mass, m (again by time of flight) by comparison with the pulses from S(1) and S(2). The microprocessor can now precisely program the high-voltage switching network for the proper timing in the grounding of the successive deceleration grids. As determined by the microprocessor, each successive deceleration grid is grounded just after the dust particle passes, thus reducing the particle's energy by the amount q*100 KV at each stage. The microprocessor also determines at which stage the particle will fall below a certain critical energy where all remaining grids remain unswitched so that the particle will drift to the collector. The collector is kept at about 100V positive and is covered with gold foil to eliminate contamination and is removable for subsequent return to earth for detailed analysis.

  19. Electrical System Technology Working Group (WG) Report

    NASA Technical Reports Server (NTRS)

    Silverman, S.; Ford, F. E.

    1984-01-01

    The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.

  20. Trends in Terahertz Device and System Technologies

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tadao

    Terahertz (THz) electromagnetic waves, which cover an unexplored portion of spectrum between infrared and microwaves at frequencies from 100 GHz to 10 THz, have been expected to offer innovations in sensing, imaging, spectroscopy, and communications. This paper reviews recent advances in the terahertz technology, focusing on recent system applications and key devices to enable practical use.

  1. SITE TECHNOLOGY CAPSULE: SONOTECH PULSE COMBUSTION SYSTEM

    EPA Science Inventory

    Sonotech has targeted waste incineration as a potential application for this technology. Based on bench-scale rotary-kiln simulator tests, Sonotech proposed a demonstration under the SITE program to evaluate the Sonotech pulse combustion system on a larger scale at EPA's IRF in J...

  2. A Systems Approach for Developing Technological Literacy

    ERIC Educational Resources Information Center

    Frank, Moti

    2005-01-01

    In order to examine the implications of applying a teaching strategy that integrates a systems approach and project-based learning (PBL), it was implemented in two courses. The objective of the first course was to train preservice teachers to teach the subject of "Science and Technology to All" (mandatory subject in all of Israel's…

  3. Survey of semiconductor data management systems technology

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth W., Jr.; Karnowski, Thomas P.; Lakhani, Fred

    2000-06-01

    As integrated circuit fabrication processes continue to increase in complexity, it has been observed that data collection, retention, and retrieval rates are continuing to increase at an alarming rate. At future technology nodes, the time required to source manufacturing problems must at least remain constant to maintain anticipated productivity. Current commercial and manufacturer in-house data management systems (DMS) have limited functionality in their ability to access, analyze, and intelligently extract information from the large variety of manufacturing data sources available within the semiconductor manufacturing site. It is critical that the semiconductor industry agree on a strategic R&D plan to develop a family of DMS technologies to simultaneously access multiple data sources and derive useful defect and yield information from that data via analysis algorithms. The Oak Ridge National Laboratory (ORNL) and SEMATECH performed an industry-wide survey of semiconductor device manufacturers and the suppliers of data management tools and systems in the Spring of 1999. The purpose of the survey was to determine: (1) the state-of-the-art in DMS technologies and systems; (2) limitations of the systems in use today; (3) technology gaps impacting future DMS development, and; (4) input for future strategic R&D activities. This paper describes the results of this survey and presents a prioritized R&D roadmap.

  4. Television broadcast from space systems: Technology, costs

    NASA Technical Reports Server (NTRS)

    Cuccia, C. L.

    1981-01-01

    Broadcast satellite systems are described. The technologies which are unique to both high power broadcast satellites and small TV receive-only earth terminals are also described. A cost assessment of both space and earth segments is included and appendices present both a computer model for satellite cost and the pertinent reported experience with the Japanese BSE.

  5. A Systemic Plan of Technology Integration

    ERIC Educational Resources Information Center

    Hsu, Pi-Sui; Sharma, Priya

    2006-01-01

    The purpose of this article is to suggest a research-based systemic plan for educational researchers, practitioners, and policymakers involved in the change process to implement successful technology integration in the context of teacher education. This article provides a background about reform efforts in science education in the United States in…

  6. Acceleration and deceleration model of indirect drive ICF capsules

    NASA Astrophysics Data System (ADS)

    Saillard, Yves

    2006-12-01

    A general zero-dimensional modelling of implosion without thermonuclear reactions is presented, for standard indirectly driven capsules. It is not substantially a new theory, but new demonstrations and improvements of existing models. The model is derived directly from the gas dynamics conservation equations written in integral form for fluid domains with variable mass, in effect the whole non-ablated capsule, the hot spot and the dense shell. The necessary approximations which involve global or mean quantities are justifed theoretically and checked by comparisons with numerical simulations. Two different sets of approximations are developed, one for each of the acceleration and the deceleration phases of the implosion. An improved—in the sense that the time variation of the hohlraum temperature is fully taken into account as it is required for high gain capsules—rocket model is proposed for the acceleration phase. With further approximations, it gives the maximum implosion velocity and the initial capsule mass corresponding to a given final capsule mass, in terms of the initial outer deuterium-tritium radius and the maximum hohlraum temperature. For the deceleration phase, the present model gives an analytical solution for the time decrease in the implosion velocity up to stagnation. Assuming the invariance of PVγ for the different media considered—a property only approximately verified—this model defines the state of these mediums in deceleration and at stagnation, in terms of the mean entropy parameters, the capsule mass, the mean implosion velocity at the end of acceleration and the initial gas mass filling the shell. A simple ODE, which can be easily integrated numerically, is derived for the hot spot mass which depends on the heat conduction wave ablating the fuel from the inside. All the numerical coefficients presently involved in the model can be calculated from the EOS, opacities and heat conduction parameters, except for the value of the

  7. Stability of a Shock-Decelerated Ablation Front

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-08-21

    Experimental study of a shock-decelerated ablation front is reported. A planar solid plastic target is accelerated by a laser across a vacuum gap and collides with a lower-density plastic foam layer. While the target is accelerated, a fast Rayleigh-Taylor (RT) growth of the seeded single-mode perturbation at the ablation front is observed. After the collision, the velocity of the ablation front is seen to remain constant. The reshock quenches the RT growth but does not trigger any Richtmyer-Meshkov growth at the ablation front, which is shown to be consistent with both theory and simulations.

  8. A Probabilistic System Analysis of Intelligent Propulsion System Technologies

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.

    2007-01-01

    NASA s Intelligent Propulsion System Technology (Propulsion 21) project focuses on developing adaptive technologies that will enable commercial gas turbine engines to produce fewer emissions and less noise while increasing reliability. It features adaptive technologies that have included active tip-clearance control for turbine and compressor, active combustion control, turbine aero-thermal and flow control, and enabling technologies such as sensors which are reliable at high operating temperatures and are minimally intrusive. A probabilistic system analysis is performed to evaluate the impact of these technologies on aircraft CO2 (directly proportional to fuel burn) and LTO (landing and takeoff) NO(x) reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that NASA s Intelligent Propulsion System technologies have the potential to significantly reduce the CO2 and NO(x) emissions. The results are used to support informed decisionmaking on the development of the intelligent propulsion system technology portfolio for CO2 and NO(x) reductions.

  9. System driven technology selection for future European launch systems

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  10. Legacy system integration using web technology

    NASA Astrophysics Data System (ADS)

    Kennedy, Richard L.; Seibert, James A.; Hughes, Chris J.

    2000-05-01

    As healthcare moves towards a completely digital, multimedia environment there is an opportunity to provide for cost- effective, highly distributed physician access to clinical information including radiology-based imaging. In order to address this opportunity a Universal Clinical Desktop (UCD) system was developed. A UCD provides a single point of entry into an integrated view of all types of clinical data available within a network of disparate healthcare information systems. In order to explore the application of a UCD in a hospital environment, a pilot study was established with the University of California Davis Medical Center using technology from Trilix Information Systems. Within this pilot environment the information systems integrated under the UCD include a radiology information system (RIS), a picture archive and communication system (PACS) and a laboratory information system (LIS).

  11. Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Park, C.; Bowen, S. W.

    1981-01-01

    The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.

  12. Utilizing Internet Technologies in Observatory Control Systems

    NASA Astrophysics Data System (ADS)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  13. Leg joint function during walking acceleration and deceleration.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2016-01-01

    Although constant-average-velocity walking has been extensively studied, less is known about walking maneuvers that change speed. We investigated the function of individual leg joints when humans walked at a constant speed, accelerated or decelerated. We hypothesized that leg joints make different functional contributions to maneuvers. Specifically, we hypothesized that the hip generates positive mechanical work (acting like a "motor"), the knee generates little mechanical work (acting like a "strut"), and the ankle absorbs energy during the first half of stance and generates energy during the second half (consistent with "spring"-like function). We recorded full body kinematics and kinetics, used inverse dynamics to estimate net joint moments, and decomposed joint function into strut-, motor-, damper-, and spring-like components using indices based on net joint work. Although overall leg mechanics were primarily strut-like, individual joints did not act as struts during stance. The hip functioned as a power generating "motor," and ankle function was consistent with spring-like behavior. Even though net knee work was small, the knee did not behave solely as a strut but also showed motor-, and damper-like function. Acceleration involved increased motor-like function of the hip and ankle. Deceleration involved decreased hip motor-like function and ankle spring-like function and increased damping at the knee and ankle. Changes to joint mechanical work were primarily due to changes in joint angular displacements and not net moments. Overall, joints maintain different functional roles during unsteady locomotion.

  14. Aviation system capacity improvements through technology

    NASA Technical Reports Server (NTRS)

    Harvey, W. Don

    1995-01-01

    A study was conducted with the primary objective of determining the impact of technology on capacity improvements in the U.S. air transportation system and, consequently, to assess the areas where NASA's expertise and technical contributions would be the most beneficial. The outlook of the study is considered both near- and long-term (5 to 25 years). The approach was that of actively working with the Massachusetts Institute of Technology (MIT) Flight Transportation Laboratory and included interactions with 'users' outside of both agencies as well as with organizations within. This report includes an overall survey of what are believed to be the causes of the capacity problems, ongoing work with the Federal Aviation Administration (FAA) to alleviate the problems, and identifies improvements in technology that would increase capacity and reduce delays.

  15. Photonic crystal technology for terahertz system integration

    NASA Astrophysics Data System (ADS)

    Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-01

    Developing terahertz integration technology is essential for practical use of terahertz electromagnetic waves (0.1-10 THz) in various applications including broadband wireless communication, spectroscopic sensing, and nondestructive imaging. In this paper, we present our recent challenges towards terahertz system integration based on photonic crystal technology such as the development of terahertz transceivers. We use photonic-crystal slabs consisting of a twodimensional lattice of air holes formed in a silicon slab to develop low loss compact terahertz components in planar structures. The demonstration of ultralow loss (< 0.1 dB/cm) waveguides and integrated transceiver devices in the 0.3 THz band shows the potential for the application of photonic crystals to terahertz integration technology. Improving the coupling efficiency between the photonic crystal waveguide and resonant tunneling diode is important to take full advantage of the ultralow loss photonic crystal waveguides.

  16. The Dairy Technology System in Venezuela. Summary of Research 79.

    ERIC Educational Resources Information Center

    Nieto, Ruben D.; Henderson, Janet L.

    A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…

  17. Particulate control system for biomass firing technologies

    SciTech Connect

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.

    1996-12-31

    The new particulate control equipment, the so-called Core Separator, overcomes most of the limitations inherent in conventional particulate control systems and can be effectively adapted for biomass applications. The Core Separator is a mechanical collector; however, this technology overcomes the performance limitation inherent in cyclones by performing the tasks of separation and collection in two separate components. The separation process is less affected by secondary flows and is much more efficient than the collection process. Also, the components of the system are arranged in such a way that the separation process determines the system efficiency. As a result, particulate emission rates downstream of this system are one fourth of those from the most efficient cyclones. This technology has been demonstrated through commercial unit installations in the U.S. and abroad. It has been used for industrial separations including coal fly ash, minerals, and chemical recovery applications. It is considered a lower-cost alternative to fabric filters and electrostatic precipitators, albeit one that can meet or exceed regulations for particulate emissions. Development of this technology has been funded by the U.S. Department of Energy, Environmental Protection Agency, and Electric Power Research Institute.

  18. Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer.

    PubMed

    Dalen, Terje; Ingebrigtsen, Jørgen; Ettema, Gertjan; Hjelde, Geir Havard; Wisløff, Ulrik

    2016-02-01

    The use of time-motion analysis has advanced our understanding of position-specific work rate profiles and the physical requirements of soccer players. Still, many of the typical soccer activities can be neglected, as these systems only examine activities measured by distance and speed variables. This study used triaxial accelerometer and time-motion analysis to obtain new knowledge about elite soccer players' match load. Furthermore, we determined acceleration/deceleration profiles of elite soccer players and their contribution to the players' match load. The data set includes every domestic home game (n = 45) covering 3 full seasons (2009, 2010, and 2011) for the participating team (Rosenborg FC), and includes 8 central defenders (n = 68), 9 fullbacks (n = 83), 9 central midfielders (n = 70), 7 wide midfielders (n = 39), and 5 attackers (A, n = 50). A novel finding was that accelerations contributed to 7-10% of the total player load for all player positions, whereas decelerations contributed to 5-7%. Furthermore, the results indicate that other activities besides the high-intensity movements contribute significantly to the players' total match workload. Therefore, motion analysis alone may underestimate player load because many high-intensity actions are without a change in location at the pitch or they are classified as low-speed activity according to current standards. This new knowledge may help coaches to better understand the different ways players achieve match load and could be used in developing individualized programs that better meet the "positional physical demands" in elite soccer.

  19. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion.

    PubMed

    Varley, Matthew C; Fairweather, Ian H; Aughey, Robert J

    2012-01-01

    In this study, we assessed the validity and reliability of 5 and 10 Hz global positioning systems (GPS) for measuring instantaneous velocity during acceleration, deceleration, and constant velocity while straight-line running. Three participants performed 80 running trials while wearing two GPS units each (5 Hz, V2.0 and 10 Hz, V4.0; MinimaxX, Catapult Innovations, Scoresby, VIC, Australia). The criterion measure used to assess GPS validity was instantaneous velocity recorded using a tripod-mounted laser. Validity was established using the standard error of the estimate (± 90% confidence limits). Reliability was determined using typical error (± 90% confidence limits, expressed as coefficient of variation) and Pearson's correlation. The 10 Hz GPS devices were two to three times more accurate than the 5 Hz devices when compared with a criterion value for instantaneous velocity during tasks completed at a range of velocities (coefficient of variation 3.1-11.3%). Similarly, the 10 Hz GPS units were up to six-fold more reliable for measuring instantaneous velocity than the 5 Hz units (coefficient of variation 1.9-6.0%). Newer GPS may provide an acceptable tool for the measurement of constant velocity, acceleration, and deceleration during straight-line running and have sufficient sensitivity for detecting changes in performance in team sport. However, researchers must account for the inherent match-to-match variation reported when using these devices.

  20. The Space Technology 5 Avionics System

    NASA Technical Reports Server (NTRS)

    Speer, Dave; Jackson, George; Stewart, Karen; Hernandez-Pellerano, Amri

    2004-01-01

    The Space Technology 5 (ST5) mission is a NASA New Millennium Program project that will validate new technologies for future space science missions and demonstrate the feasibility of building launching and operating multiple, miniature spacecraft that can collect research-quality in-situ science measurements. The three satellites in the ST5 constellation will be launched into a sun-synchronous Earth orbit in early 2006. ST5 fits into the 25-kilogram and 24-watt class of very small but fully capable spacecraft. The new technologies and design concepts for a compact power and command and data handling (C&DH) avionics system are presented. The 2-card ST5 avionics design incorporates new technology components while being tightly constrained in mass, power and volume. In order to hold down the mass and volume, and quali& new technologies for fUture use in space, high efficiency triple-junction solar cells and a lithium-ion battery were baselined into the power system design. The flight computer is co-located with the power system electronics in an integral spacecraft structural enclosure called the card cage assembly. The flight computer has a full set of uplink, downlink and solid-state recording capabilities, and it implements a new CMOS Ultra-Low Power Radiation Tolerant logic technology. There were a number of challenges imposed by the ST5 mission. Specifically, designing a micro-sat class spacecraft demanded that minimizing mass, volume and power dissipation would drive the overall design. The result is a very streamlined approach, while striving to maintain a high level of capability, The mission's radiation requirements, along with the low voltage DC power distribution, limited the selection of analog parts that can operate within these constraints. The challenge of qualifying new technology components for the space environment within a short development schedule was another hurdle. The mission requirements also demanded magnetic cleanliness in order to reduce

  1. Flood resilience technology, systems and toolls

    NASA Astrophysics Data System (ADS)

    Garvin, S.; Kelly, D.

    2012-04-01

    In recent years there has been a general acceptance that the risk from flooding is increasing, primarily due to increased urbanization and the impact of climate change (Zevenbergen et al, 2010). Flood resilience technology (FRe T) is a term used to describe a collection of technologies, materials and products that are used to protect and allow recovery of buildings, communities and infrastructure from flooding. River or coastal flooding is the focus of the legislation, regulation and guidance that is intended to control development and ensure the risk to new properties is low. However, the cost of building and maintaining primary flood defense systems for rivers and coasts is becoming prohibitive and as such future flood management needs to consider a range of measures to manage risk, in particular improving the resilience of buildings, infrastructure and communities. Surface water flooding is now known to cause as much damage as coastal and riverine flooding combined and is as likely to be experienced by both existing and new developments. Therefore FRe T solutions need to be adaptable and flexible. Previous research has shown that barriers exist to the acceptance and use of FRe T by a range of stakeholders. This includes the need to deploy household level items in time, the uncertainty over the performance of FRe T in actual flood situations or reluctance to adopt new or unknown solutions. Investment by public authorities in FRe Technology in recent years has typically increased in countries such as the UK. However, there has been to date little consideration of the system within which the technology has been employed and there is a lack of tools to assist decision makers. The SMARTeST project (an EU FP7 research project) is addressing the issues involved in FRe technology implementation. The findings of the research will be presented, including case studies where the integrated approaches of technology, systems and tools have been considered. SMARTeST seeks to

  2. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  3. Technology assessment of wind energy conversion systems

    SciTech Connect

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  4. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  5. Small Aircraft Transportation System Concept and Technologies

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.

    2005-01-01

    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.

  6. Deep Space Systems Technology Program Future Deliveries

    NASA Technical Reports Server (NTRS)

    Salvo, Christopher G.; Keuneke, Matthew S.

    2000-01-01

    NASA is in a period of frequent launches of low cost deep space missions with challenging performance needs. The modest budgets of these missions make it impossible for each to develop its own technology, therefore, efficient and effective development and insertion of technology for these missions must be approached at a higher level than has been done in the past. The Deep Space Systems Technology Program (DSST), often referred to as X2000, has been formed to address this need. The program is divided into a series of "Deliveries" that develop and demonstrate a set of spacecraft system capabilities with broad applicability for use by multiple missions. The First Delivery Project, to be completed in 2001, will provide a one MRAD-tolerant flight computer, power switching electronics, efficient radioisotope power source, and a transponder with services at 8.4 GHz and 32 GHz bands. Plans call for a Second Delivery in late 2003 to enable complete deep space systems in the 10 to 50 kg class, and a Third Delivery built around Systems on a Chip (extreme levels of electronic and microsystems integration) around 2006. Formulation of Future Deliveries (past the First Delivery) is ongoing and includes plans for such developments as highly miniaturized digital/analog/power electronics, optical communications, multifunctional structures, miniature lightweight propulsion, advanced thermal control techniques, highly efficient radioisotope power sources, and a unified flight ground software architecture to support the needs of future highly intelligent space systems. All developments are targeted at broad applicability and reuse, and will be commercialized within the US.

  7. Key technology issues for space robotic systems

    NASA Technical Reports Server (NTRS)

    Schappell, Roger T.

    1987-01-01

    Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.

  8. The drag characteristics of several airships determined by deceleration tests

    NASA Technical Reports Server (NTRS)

    Thompson, F L; Kirschbaum, H W

    1932-01-01

    This report presents the results of deceleration tests conducted for the purpose of determining the drag characteristics of six airships. The tests were made with airships of various shapes and sizes belonging to the Army, the Navy, and the Goodyear-Zeppelin Corporation. Drag coefficients for the following airships are shown: Army TC-6, TC-10, and TE-2; Navy Los Angeles and ZMC-2; Goodyear Puritan. The coefficients vary from about 0.045 for the small blunt airships to 0.023 for the relatively large slender Los Angeles. This variation may be due to a combination of effects, but the most important of these is probably the effect of length-diameter ratio.

  9. Innovative technology summary report: Transportable vitrification system

    SciTech Connect

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  10. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  11. Low-temperature M =3 flow deceleration by Lorentz force

    NASA Astrophysics Data System (ADS)

    Nishihara, Munetake; Rich, J. William; Lempert, Walter R.; Adamovich, Igor V.; Gogineni, Sivaram

    2006-08-01

    This paper presents results of cold magnetohydrodynamic (MHD) flow deceleration experiments using repetitively pulsed, short pulse duration, high voltage discharge to produce ionization in M =3 nitrogen and air flows in the presence of transverse direct current electric field and transverse magnetic field. MHD effect on the flow is detected from the flow static pressure measurements. Retarding Lorentz force applied to the flow produces a static pressure increase of up to 17%-20%, while accelerating force of the same magnitude results in static pressure increase of up to 5%-7%. The measured static pressure changes are compared with modeling calculations using quasi-one-dimensional MHD flow equations. Comparison of the experimental results with the modeling calculations shows that the retarding Lorentz force increases the static pressure rise produced by Joule heating of the flow, while the accelerating Lorentz force reduces the pressure rise. The effect is produced for two possible combinations of the magnetic field and transverse current directions producing the same Lorentz force direction (both for accelerating and retarding force). This demonstrates that the observed static pressure change is indeed due to the MHD interaction, and not due to Joule heating of the flow in the crossed discharge. No discharge polarity effect on the static pressure was detected in the absence of the magnetic field. The fraction of the discharge input power going into Joule heat in nitrogen and dry air, inferred from the present experiments, is low, α =0.1, primarily because energy remains frozen in the vibrational energy mode of nitrogen. This result provides first direct evidence of cold supersonic flow deceleration by Lorentz force.

  12. Low-temperature M=3 flow deceleration by Lorentz force

    SciTech Connect

    Nishihara, Munetake; Rich, J. William; Lempert, Walter R.; Adamovich, Igor V.; Gogineni, Sivaram

    2006-08-15

    This paper presents results of cold magnetohydrodynamic (MHD) flow deceleration experiments using repetitively pulsed, short pulse duration, high voltage discharge to produce ionization in M=3 nitrogen and air flows in the presence of transverse direct current electric field and transverse magnetic field. MHD effect on the flow is detected from the flow static pressure measurements. Retarding Lorentz force applied to the flow produces a static pressure increase of up to 17%-20%, while accelerating force of the same magnitude results in static pressure increase of up to 5%-7%. The measured static pressure changes are compared with modeling calculations using quasi-one-dimensional MHD flow equations. Comparison of the experimental results with the modeling calculations shows that the retarding Lorentz force increases the static pressure rise produced by Joule heating of the flow, while the accelerating Lorentz force reduces the pressure rise. The effect is produced for two possible combinations of the magnetic field and transverse current directions producing the same Lorentz force direction (both for accelerating and retarding force). This demonstrates that the observed static pressure change is indeed due to the MHD interaction, and not due to Joule heating of the flow in the crossed discharge. No discharge polarity effect on the static pressure was detected in the absence of the magnetic field. The fraction of the discharge input power going into Joule heat in nitrogen and dry air, inferred from the present experiments, is low, {alpha}=0.1, primarily because energy remains frozen in the vibrational energy mode of nitrogen. This result provides first direct evidence of cold supersonic flow deceleration by Lorentz force.

  13. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  14. Ubiquitous Robotic Technology for Smart Manufacturing System.

    PubMed

    Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  15. Ubiquitous Robotic Technology for Smart Manufacturing System

    PubMed Central

    Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin

    2016-01-01

    As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206

  16. Advanced Technology System Scheduling Governance Model

    SciTech Connect

    Ang, Jim; Carnes, Brian; Hoang, Thuc; Vigil, Manuel

    2015-06-11

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. The process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).

  17. System Composer: Technology for rapid system integration and remote collaboration

    SciTech Connect

    Davies, B.R.; Palmquist, R.D.

    1996-03-01

    Sandia National Laboratories has developed an approach to the design, evaluation, deployment and operation of intelligent systems which is called System Composer. This toolkit provides an infrastructure and architecture for robot and automation system users to readily integrate system components and share mechatronic, sensor, and information resources over networks. The technology described in this paper provides a framework for real-time collaboration between researchers, manufacturing entities, design entities, and others without regard to relative location. An overview of the toolkit including its elements and architecture is provided along with examples of its use.

  18. Wearable smart systems: from technologies to integrated systems.

    PubMed

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  19. Space Launch System Upper Stage Technology Assessment

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Hampton, Bryan; Monk, Timothy

    2014-01-01

    The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and

  20. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  1. Project plan hydrogen energy systems technology. Phase 1: Hydrogen energy systems technology study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An overview of the potential need for hydrogen as a source of energy in the future was presented in order to identify and define the technology requirements for the most promising approaches to meet that need. The following study objectives were discussed: (1) determination of the future demand for hydrogen, based on current trends and anticipated new uses, (2) identification of the critical research and technology advances required to meet this need considering, to the extent possible, raw material limitations, economics, and environmental effects, and (3) definition and recommendation of the scope and space of a National Hydrogen Energy Systems Technology Program and outline of a Program Development Plan.

  2. NCDC mass storage systems and technologies

    NASA Technical Reports Server (NTRS)

    Davis, Dick

    1993-01-01

    National Climatic Data Center (NCDC) data management issues are discussed, such as nature of holdings, history of the site, popularity of data sets, media/technology used for storage, volume distributed per month, mode of distribution, most frequently encountered problems, type of media requested/used, and evolution of media. Current holdings at NCDC are 107.8 terabytes of digital data and about 0.3 terabytes of manuscript data. The nexrad radar system is expected to generate approximately 88 terabytes per year by 1996.

  3. The CANDU Reactor System: An Appropriate Technology.

    PubMed

    Robertson, J A

    1978-02-10

    CANDU power reactors are characterized by the combination of heavy water as moderator and pressure tubes to contain the fuel and coolant. Their excellent neutron economy provides the simplicity and low costs of once-through natural-uranium fueling. Future benefits include the prospect of a near-breeder thorium fuel cycle to provide security of fuel supply without the need to develop a new reactor such as the fast breeder. These and other features make the CANDU system an appropriate technology for countries, like Canada, of intermediate economic and industrial capacity. PMID:17788102

  4. Maintaining urban gas systems demands special technologies

    SciTech Connect

    Anglero, T.F. )

    1994-04-01

    Brooklyn Union Gas Co. has been providing gas to 50% of the population of New York City for the last 100 years. The company has constructed an elaborate gas distribution network that includes a gas main under nearly every city street in a service territory that includes Brooklyn, Staten Island and parts of Queens. Conventional ways of pipeline construction and maintenance are inadequate in today's environment of heightened competition, increased regulations and, most importantly, demanding customer expectations of quality service. As a result, Brooklyn Union Gas must use special construction and maintenance methods in its operations, and in particular trenchless technologies. Over the past 10 years the company has paid close attention to developing a variety of trenchless techniques. Like many gas distribution companies providing service in densely populated urban areas, Brooklyn Union must operate and maintain its gas distribution network in a challenging environment of increasing governmental regulation and escalating field construction costs. Technological innovation is not a luxury, but instead a necessity to achieve corporate growth, regulatory compliance and greater customer satisfaction. Trenchless technologies offset rising pipe installation costs and provide benefits both to the customer and the company. Of special value to Brooklyn Union is the development of systems that renovate old metal pipes by lining. Such techniques are described.

  5. Advanced supersonic technology propulsion system study

    NASA Technical Reports Server (NTRS)

    Szeliga, R.; Allan, R. D.

    1974-01-01

    This study had the objectives of determining the most promising conventional and variable cycle engine types; the effect of design cruise Mach number (2.2, 2.7 and 3.2) on a commercial supersonic transport; effect of advanced engine technology on the choice of engine cycle; and effect of utilizing hydrogen as the engine fuel. The technology required for the engines was defined, and the levels of development to ensure availability of this technology in advanced aircraft propulsion systems were assessed. No clearcut best conventional or variable cycle engine was identified. The dry bypass turbojet and the duct burning turbofans were initially selected as the best conventional engines, but later results, utilizing augmentation at takeoff, added the mixed-flow augmented turbofan as a promising contender. The modulating air flow, three-rotor variable cycle engine identified the performance features desired from VCE concepts (elimination of inlet drag and reduction in afterbody drag), but was a very heavy and complex engine.

  6. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is

  7. A large-acceptance beam-deceleration module for retrofitting into ion-source beam lines

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Meyer, F. W.

    2013-03-01

    We describe a large-acceptance deceleration module capable of decelerating large-emittance full-intensity ion beams typical of ECR ion sources to very low energies with high efficiency. The deceleration module is designed to permit convenient retrofitting into an existing beam line to replace, e.g., the first Faraday cup after magnetic analysis of the beam extracted from the ion source. For starting energies of 10 keV, and incident ion currents as large as 300 μA, deceleration efficiencies have been measured to be greater than 80% for final energies as low as 70 eV. The decelerated beam intensity can be monitored either by insertion of a beam catcher floating at the final deceleration voltage or from the current to the exit grid itself, with suitable correction applied for the grid transparency factor. The behavior of the deceleration optics was modeled using SIMION, incorporating the effects of intra-beam space charge repulsion. We describe a recent application of this deceleration module to study near-surface He bubble and blister formation of a W target heated to 1250 K and irradiated with a 98 eV He ion beam with a flux of ˜1016 cm-2 s-1.

  8. Process for Selecting System Level Assessments for Human System Technologies

    NASA Technical Reports Server (NTRS)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  9. On-line Systems: History, Technology, and Economics.

    ERIC Educational Resources Information Center

    Bourne, Charles P.

    1980-01-01

    Reviews the development of online systems in science and technology from batch searching through the advent of multinational online services, describes the key technological components, and discusses the economics of online systems. (Author/FM)

  10. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  11. Micro-system inertial sensing technology overview.

    SciTech Connect

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  12. Semantic technologies in a decision support system

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  13. Advances in uncooled technology at BAE SYSTEMS

    NASA Astrophysics Data System (ADS)

    Backer, Brian S.; Kohin, Margaret; Leary, Arthur R.; Blackwell, Richard J.; Rumbaugh, Roy N.

    2003-09-01

    BAE SYSTEMS has made tremendous progress in uncooled technology and systems in the last year. In this paper we present performance results and imagery from our latest 640x480 and 320x240 small pixel focal plane arrays. Both were produced using submicron lithography and have achieved our lowest NETDs to date. Testing of the 320x240 devices has shown TNETDs of 30mK at F/1. Video imagery from our 640 x 480 uncooled camera installed in a POINTER Unattended Aerial Vehicle is also shown. In addition, we introduce our newest commercial imaging camera core, the SCC500 and show its vastly improved characteristics. Lastly, plans for future advancements are outlined.

  14. The PCAST Energy Technology Innovation System Study

    NASA Astrophysics Data System (ADS)

    Savitz, M.; Fri, R.

    2010-12-01

    The President's Council of Advisors on Science and Technology (PCAST) recently made recommendations for strengthening the nation's energy innovation system. The PCAST report builds in part on earlier work at the National Research Council (NRC) and elsewhere. For example, PCAST largely adopted the description of the energy innovation system that appeared in the NRC report on 'Limiting the Magnitude of Future Climate Change'. Similarly, the 'Limiting' report provided examples of the importance of social science research in crafting energy policy, a recommendation of the PCAST report. And both the 'Limiting' report and an earlier report on 'America's Energy Future' recommended an aggressive commercial demonstration program for carbon capture and storage and new nuclear power plants. The PCAST report discusses the need for new approaches for federal demonstration projects. This session traces these relationships and suggests how similar synergies might be encouraged in the future.

  15. A Systems Model for Power Technology Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2002-01-01

    A computer model is under continuing development at NASA Glenn Research Center that enables first-order assessments of space power technology. The model, an evolution of NASA Glenn's Array Design Assessment Model (ADAM), is an Excel workbook that consists of numerous spreadsheets containing power technology performance data and sizing algorithms. Underlying the model is a number of databases that contain default values for various power generation, energy storage and power management and distribution component parameters. These databases are actively maintained by a team of systems analysts so that they contain state-of-art data as well as the most recent technology performance projections. Sizing of the power subsystems can be accomplished either by using an assumed mass specific power (W/kg) or energy (Wh/kg) or by a bottoms-up calculation that accounts for individual component performance and masses. The power generation, energy storage and power management and distribution subsystems are sized for given mission requirements for a baseline case and up to three alternatives. This allows four different power systems to be sized and compared using consistent assumptions and sizing algorithms. The component sizing models contained in the workbook are modular so that they can be easily maintained and updated. All significant input values have default values loaded from the databases that can be over-written by the user. The default data and sizing algorithms for each of the power subsystems are described in some detail. The user interface and workbook navigational features are also discussed. Finally, an example study case that illustrates the model's capability is presented.

  16. Airborne system for testing multispectral reconnaissance technologies

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger; Doergeloh, Heinrich; Keil, Heiko; Wetjen, Wilfried

    1999-07-01

    There is an increasing demand for future airborne reconnaissance systems to obtain aerial images for tactical or peacekeeping operations. Especially Unmanned Aerial Vehicles (UAVs) equipped with multispectral sensor system and with real time jam resistant data transmission capabilities are of high interest. An airborne experimental platform has been developed as testbed to investigate different concepts of reconnaissance systems before their application in UAVs. It is based on a Dornier DO 228 aircraft, which is used as flying platform. Great care has been taken to achieve the possibility to test different kinds of multispectral sensors. Hence basically it is capable to be equipped with an IR sensor head, high resolution aerial cameras of the whole optical spectrum and radar systems. The onboard equipment further includes system for digital image processing, compression, coding, and storage. The data are RF transmitted to the ground station using technologies with high jam resistance. The images, after merging with enhanced vision components, are delivered to the observer who has an uplink data channel available to control flight and imaging parameters.

  17. Automation technology using Geographic Information System (GIS)

    NASA Technical Reports Server (NTRS)

    Brooks, Cynthia L.

    1994-01-01

    Airport Surface Movement Area is but one of the actions taken to increase the capacity and safety of existing airport facilities. The System Integration Branch (SIB) has designed an integrated system consisting of an electronic moving display in the cockpit, and includes display of taxi routes which will warn controllers and pilots of the position of other traffic and warning information automatically. Although, this system has in test simulation proven to be accurate and helpful; the initial process of obtaining an airport layout of the taxi-routes and designing each of them is a very tedious and time-consuming process. Other methods of preparing the display maps are being researched. One such method is the use of the Geographical Information System (GIS). GIS is an integrated system of computer hardware and software linking topographical, demographic and other resource data that is being referenced. The software can support many areas of work with virtually unlimited information compatibility due to the system's open architecture. GIS will allow us to work faster with increased efficiency and accuracy while providing decision making capabilities. GIS is currently being used at the Langley Research Center with other applications and has been validated as an accurate system for that task. GIS usage for our task will involve digitizing aerial photographs of the topology for each taxi-runway and identifying each position according to its specific spatial coordinates. The information currently being used can be integrated with the GIS system, due to its ability to provide a wide variety of user interfaces. Much more research and data analysis will be needed before this technique will be used, however we are hopeful this will lead to better usage of man-power and technological capabilities for the future.

  18. Aerocapture Technologies

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2006-01-01

    Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and

  19. Femtosecond laser detection of Stark-decelerated and trapped methylfluoride molecules

    NASA Astrophysics Data System (ADS)

    Meng, Congsen; van der Poel, Aernout P. P.; Cheng, Cunfeng; Bethlem, Hendrick L.

    2015-08-01

    We demonstrate deceleration and trapping of methylfluoride (CH3F ) molecules in the low-field-seeking component of the J =1 ,K =1 state using a combination of a conventional Stark decelerator and a traveling wave decelerator. The methylfluoride molecules are detected by nonresonant multiphoton ionization using a femtosecond laser. Subsequent mass and velocity selection of the produced ions enables us to eliminate most background signal resulting from thermal gas in our vacuum chamber. This detection method can be applied to virtually any molecule, thereby enhancing the scope of molecules that can be Stark decelerated. Methylfluoride is so far the heaviest and most complex molecule that has been decelerated to rest. Typically we trap 2 ×104 CH3F molecules at a peak density of 4.5 ×107 cm-3 and a temperature of 40 mK.

  20. Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.

    2013-01-01

    The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.

  1. The development of a ram air decelerator for the recovery of artillery shells

    NASA Astrophysics Data System (ADS)

    Behr, Vance L.; Cole, J. Kenneth; Croll, Robert H.

    A ram air decelerator (RAD) was investigated as a possible replacement for the present parachute recovery system for atomic artillery shells that are periodically tested by artillery firings. Tests included spin tests in a high altitude chamber, proof-of-concept tests on a truck towing rig, nonspinning airdrop tests and artillery fired projectile tests. A RAD is typically constructed of a top fabric panel and a bottom fabric panel that are fastened together along their outer edges to form a closed container. To improve the filament loading efficiency of the RAD design, a modification to a four-lobe design was made that offered a larger projected area of inflated fabric to the flow than did the original three-lobe design, thus giving the four-lobe design more drag for the same tip radius than the three-lobe design.

  2. Deimination of the myelin basic protein decelerates its proteasome-mediated metabolism.

    PubMed

    Kuzina, E S; Kudriaeva, A A; Glagoleva, I S; Knorre, V D; Gabibov, A G; Belogurov, A A

    2016-07-01

    Deimination of myelin basic protein (MBP) by peptidylarginine deiminase (PAD) prevents its binding to the proteasome and decelerates its degradation by the proteasome in mammalian cells. Potential anticancer drug tetrazole analogue of chloramidine 2, at concentrations greater than 1 µM inhibits the enzymatic activity of PAD in vitro. The observed acceleration of proteasome hydrolysis of MBP to antigenic peptides in the presence of PAD inhibitor may increase the efficiency of lesion of the central nervous system by cytotoxic lymphocytes in multiple sclerosis. We therefore suggest that clinical trials and the introduction of PAD inhibitors in clinical practice for the treatment of malignant neoplasms should be performed only after a careful analysis of their potential effect on the induction of autoimmune neurodegeneration processes. PMID:27599511

  3. 2 CFR 200.58 - Information technology systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Information technology systems. 200.58 Section 200.58 Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements... technology systems. Information technology systems means computing devices, ancillary equipment,...

  4. 75 FR 1446 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA... independent advice and recommendations on the future of systems technology and electronic services at the... what future systems technologies may be developed to assist in carrying out its statutory...

  5. 75 FR 67804 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA... Security independent advice and recommendations on the future of systems technology and electronic services... determining what future systems technologies may be developed to assist in carrying out its statutory...

  6. New technology for food systems and security.

    PubMed

    Yau, N J Newton

    2009-01-01

    In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.

  7. Flight-Path Characteristics for Decelerating From Supercircular Speed

    NASA Technical Reports Server (NTRS)

    Luidens, Roger W.

    1961-01-01

    Characteristics of the following six flight paths for decelerating from a supercircular speed are developed in closed form: constant angle of attack, constant net acceleration, constant altitude" constant free-stream Reynolds number, and "modulated roll." The vehicles were required to remain in or near the atmosphere, and to stay within the aerodynamic capabilities of a vehicle with a maximum lift-drag ratio of 1.0 and within a maximum net acceleration G of 10 g's. The local Reynolds number for all the flight paths for a vehicle with a gross weight of 10,000 pounds and a 600 swept wing was found to be about 0.7 x 10(exp 6). With the assumption of a laminar boundary layer, the heating of the vehicle is studied as a function of type of flight path, initial G load, and initial velocity. The following heating parameters were considered: the distribution of the heating rate over the vehicle, the distribution of the heat per square foot over the vehicle, and the total heat input to the vehicle. The constant G load path at limiting G was found to give the lowest total heat input for a given initial velocity. For a vehicle with a maximum lift-drag ratio of 1.0 and a flight path with a maximum G of 10 g's, entry velocities of twice circular appear thermo- dynamically feasible, and entries at velocities of 2.8 times circular are aerodynamically possible. The predominant heating (about 85 percent) occurs at the leading edge of the vehicle. The total ablated weight for a 10,000-pound-gross-weight vehicle decelerating from an initial velocity of twice circular velocity is estimated to be 5 percent of gross weight. Modifying the constant G load flight path by a constant-angle-of-attack segment through a flight- to circular-velocity ratio of 1.0 gives essentially a "point landing" capability but also results in an increased total heat input to the vehicle.

  8. ISP Aerocapture Technology

    NASA Astrophysics Data System (ADS)

    James, B.

    2004-11-01

    Aerocapture technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by NASA Headquarters and implemented at the NASA Marshall Space Flight Center in Huntsville, Alabama. Aerocapture is a flight maneuver designed to aerodynamically decelerate a spacecraft from hyperbolic approach to a captured orbit during one pass through the atmosphere. Small amounts of propulsive fuel are used for attitude control and periapsis raise only. This technique is very attractive since it permits spacecraft to be launched from Earth at higher verlocities, reducing trip times. The aerocapture technique also significantly reduces the overall mass of the propulsion systems. This allows for more science payload to be added to the mission. Alternatively, a smaller launch vehicle could be used, reducing overall mission cost. Aerocapture can be realized in various ways. It can be accomplished using rigid aeroshells, such as those used in previous mission efforts (like Apollo, the planned Aeroassist Flight Experiment and the Mars Exploration Rovers). Aerocapture can also be achieved with inflatable deceleration systems. This family includes the use of a potentially lighter, inflatable aeroshell or a large, trailing ballute - a combination parachute and balloon made of durable, thin material and stowed behind the vehicle for deployment. Aerocapture utilizing inflatable decelerators is also derived from previous efforts, but will necessitate further research to reach the technology readiness level (TRL) that the rigid aeroshell has achieved. Results of recent Aerocapture Systems analysis studies for small bodies and giant planets show that aerocapture can be enhancing for most missions and absolutely enabling for some mission scenarios. In this way, Aerocapture could open up exciting, new science mission opportunities.

  9. THE DECELERATION OF NEBULAR SHELLS IN EVOLVED PLANETARY NEBULAE

    SciTech Connect

    Pereyra, Margarita; Richer, Michael G.; Lopez, Jose Alberto E-mail: richer@astrosen.unam.mx

    2013-07-10

    We have selected a group of 100 evolved planetary nebulae (PNe) and study their kinematics based upon spatially-resolved, long-slit, echelle spectroscopy. The data have been drawn from the San Pedro Martir Kinematic Catalogue of PNe. The aim is to characterize in detail the global kinematics of PNe at advanced stages of evolution with the largest sample of homogenous data used to date for this purpose. The results reveal two groups that share kinematics, morphology, and photo-ionization characteristics of the nebular shell and central star luminosities at the different late stages under study. The typical flow velocities we measure are usually larger than seen in earlier evolutionary stages, with the largest velocities occurring in objects with very weak or absent [N II] {lambda}6584 line emission, by all indications the least evolved objects in our sample. The most evolved objects expand more slowly. This apparent deceleration during the final stage of PNe evolution is predicted by hydrodynamical models, but other explanations are also possible. These results provide a template for comparison with the predictions of theoretical models.

  10. High-Speed Schlieren Movies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1960-01-01

    High-Speed Schlieren Movies of Decelerators at Supersonic Speeds. Tests were conducted on several types of porous parachutes, a paraglider, and a simulated retrorocket. Mach numbers ranged from 1.8-3.0, porosity from 20-80 percent, and camera speeds from 1680-3000 feet per second (fps) in trials with porous parachutes. Trials of reefed parachutes were conducted at Mach number 2.0 and reefing of 12-33 percent at camera speeds of 600 fps. A flexible parachute with an inflatable ring in the periphery of the canopy was tested at Reynolds number 750,000 per foot, Mach number 2.85, porosity of 28 percent, and camera speed of 36oo fps. A vortex-ring parachute was tested at Mach number 2.2 and camera speed of 3000 fps. The paraglider, with a sweepback of 45 degrees at an angle of attack of 45 degrees was tested at Mach number 2.65, drag coefficient of 0.200, and lift coefficient of 0.278 at a camera speed of 600 fps. A cold air jet exhausting upstream from the center of a bluff body was used to simulate a retrorocket. The free-stream Mach number was 2.0, free-stream dynamic pressure was 620 lb/sq ft, jet-exit static pressure ratio was 10.9, and camera speed was 600 fps. [Entire movie available on DVD from CASI as Doc ID 20070030973. Contact help@sti.nasa.gov

  11. Estimating the Collapse Pressure of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Baginski, Frank E.; Brakke, Kenneth A.; Cruz, Juan R.

    2013-01-01

    The collapse pressure of an inflatable membrane is the minimum differential pressure which will sustain a specific desired shape under an applied load. In this paper, we present a method for estimating the collapse pressure of a tension-cone inflatable aerodynamic decelerator (IAD) that is subject to a static aerodynamic load. The IAD surface is modeled as an elastic membrane. For a given aerodynamic load and sufficiently high torus differential pressure, the IAD assumes a stable axisymmetric equilibrium shape. When the torus pressure is reduced sufficiently, the symmetric equilibrium state becomes unstable and we define this instance to be the critical pressure Pcr. In this paper, we will compare our predicted critical torus pressure with the corresponding observed torus collapse pressure (OTCP) for fifteen tests that were conducted by the third author and his collaborators at the NASA Glenn Research Center 10x10 Supersonic Wind Tunnel in April 2008. One of the difficulties with these types of comparisons is establishing the instance of torus collapse and determining the OTCP from quantities measured during the experiment. In many cases, torus collapse is gradual and the OTCP is not well-defined. However, in eight of the fifteen wind tunnel tests where the OTCP is well-defined, we find that the average of the relative differences (Pcr - OTCP/Pcr) was 8.9%. For completeness, we will also discuss the seven tests where the observed torus collapse pressure is not well-defined.

  12. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  13. Fuel Cavity Asymmetry at the Onset of Deceleration in ICF

    NASA Astrophysics Data System (ADS)

    Shah, Rahul C.; Wysocki, F. J.; Glebov, V.; Hakel, P.; Joshi, T.; Kagan, G.; Mancini, R. C.; Murphy, T. J.; Stoeckl, C.; Yaakobi, B.; Benage, J. F.

    2014-10-01

    In ICF, the impact on symmetry of low mode drive non-uniformity is amplified by high convergence. Measurements have shown low mode areal density variation, however, direct impact of low modes on fuel volume has remained undemonstrated. We suggest our images provide first evidence of symmetry loss at the fuel-shell interface. The experiments use direct-drive spherical implosions (Omega). The inner 100 nm layer of the plastic shell is doped with diagnostic Ti to obtain information about interface position, temperature and density. Measurement is made at onset of deceleration at which time nuclear yield rate (NTD) and time resolved (SSCA) spectrum both are in agreement with 1-D prediction. Spectrally resolved images are obtained using the Multiple Monochromatic Imager, which combines a pinhole array with x-ray dispersive mirror and gated detector. Angle averaging of the limb-brightened image data also shows agreement with the 1D calculation. However, the 2D image shows ~20% brightness variations over modes 2-10. These modulations are discussed in context of predicted variations of interface position.

  14. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  15. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R.

    1982-01-01

    The Lewis/OAST program for the development of Component Technology for Space Power Systems is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and thermal control devices. Examples of progress in each of the five areas is discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 mu sec rise and fall time are presented. A new class of semiconductor devices with a possibility of switching 1000 000 V is described. Several 100 kW rotary power transformer designs and a 25 kW, 20 kHz transformer weighting 3.2 kg have been developed. Progress on the creation of diamond-like films for thermal devices and intercalated carbon fibers with the strength of steel and the conductivity of copper at one third the mass of copper is presented.

  16. Technological Support for Logistics Transportation Systems

    NASA Astrophysics Data System (ADS)

    Bujak, Andrzej; Śliwa, Zdzisław; Gębczyńska, Alicja

    The modern world is changing introducing robots, remotely controlled vehicles and other crewless means of transportation to reduce people's mistakes, as the main cause of incidents and crashes during traffic. New technologies are supporting operators and drivers, and according to some studies they can even replace them. Such programs as: AHS, UAH, IVBSS or MTVR are under development to improve traffic flow and its safety, to reduce traffic hazards and crashes. It is necessary to analyze such concepts and implement them boldly, including Polish logistics' companies, new programs, highways' system etc., as they will be applied in the future, so it is necessary to prepare logistics infrastructure ahead of time in order to capitalize on these improvements. The problem is quite urgent as transportation in the country must not be outdated to meet clients' expectations and to keep pace with competing foreign companies.

  17. NEMO: Advanced energy systems and technologies

    NASA Astrophysics Data System (ADS)

    Beckman, W. A.; Petersen, E. L.; Sellberg, B.

    The NEMO program, one of ten Finnish energy research programs, has supported research and development in wind energy storage and solar energy systems since 1988. The focus is on problems of particular interest to Finland with emphasis on technologies that may be important within the next 10 years. The projects covered the range from product development in close collaboration with industrial partners to basic research. The committee was generally impressed with the level of competence of the research teams. It is clear that in some areas the Finnish research is on a par with the best in the world. In some areas the research may be described as being in a necessary 'catch-up' phase. Although the program is less than three years old, the results to date are encouraging and the committee recommends continuing NEMO or a similar program beyond 1992. Specific observations are included in the final section of this report.

  18. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  19. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  20. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  1. Development of a new large balloon launch technique for the low density supersonic decelerator project

    NASA Astrophysics Data System (ADS)

    Ball, Danny

    D. Ball1 and 2 E. Klein 1,2 Columbia Scientific Balloon Facility Danny.Ball@csbf.nasa.gov/Fax 903-723-8068 Erich.Klein@csbf.nasa.gov/Fax 903-723-8068 Scientific balloon flights have served for decades as a unique and cost effective platform for conducting world class space science and for developing and testing new technologies for exploration. These technologies have ranged from detector development to in situ testing of unique cutting edge space systems. The Earth’s stratosphere is an analog to Mars’s atmosphere and provides as close to an in situ environment to test a reentry system. Previous in situ tests for a Mars reentry system were a series of drop tests that were conducted from stratospheric balloon flights in 2004 to test a NASA Mars subsonic parachute entry design. In 2014 and 2015 a series of balloon flights to test a Mars prototype reentry system are planned. The JPL Mars Science Laboratory’s Low Density Supersonic Decelerator (LDSD) effort is intended to test the system by flying different new drag devices on three tests, at full scale and at supersonic speeds, high in Earth’s stratosphere, simulating entry into the atmosphere of Mars. To start the tests, the system must be first lofted to the stratosphere via a large high altitude balloon. NASA has been launching high altitude balloons to support science for many years, but with LDSD there are unique challenges with performing the test and lofting the test system to the stratosphere. The test involves launching a Star 48 Motor on a balloon to a set float altitude, orienting the payload, and then releasing the system from the balloon to start the test where the rocket motor is ignited to accelerate the test system to supersonic speeds. Safety is a significant driver in the development process for all phases of any balloon launch operation. Because a rocket motor is part of the payload to be launched, the balloon launching operations for the LDSD project have required a completely fresh look to

  2. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex.

    PubMed

    Lear, Christopher A; Galinsky, Robert; Wassink, Guido; Yamaguchi, Kyohei; Davidson, Joanne O; Westgate, Jenny A; Bennet, Laura; Gunn, Alistair J

    2016-09-01

    A distinctive pattern of recurrent rapid falls in fetal heart rate, called decelerations, are commonly associated with uterine contractions during labour. These brief decelerations are mediated by vagal activation. The reflex triggering this vagal response has been variably attributed to a mechanoreceptor response to fetal head compression, to baroreflex activation following increased blood pressure during umbilical cord compression, and/or a Bezold-Jarisch reflex response to reduced venous return from the placenta. Although these complex explanations are still widespread today, there is no consistent evidence that they are common during labour. Instead, the only mechanism that has been systematically investigated, proven to be reliably active during labour and, crucially, capable of producing rapid decelerations is the peripheral chemoreflex. The peripheral chemoreflex is triggered by transient periods of asphyxia that are a normal phenomenon associated with all uterine contractions. This should not cause concern as the healthy fetus has a remarkable ability to adapt to these repeated but short periods of asphyxia. This means that the healthy fetus is typically not at risk of hypotension and injury during uncomplicated labour even during repeated brief decelerations. The physiologically incorrect theories surrounding decelerations that ignore the natural occurrence of repeated asphyxia probably gained widespread support to help explain why many babies are born healthy despite repeated decelerations during labour. We propose that a unified and physiological understanding of intrapartum decelerations that accepts the true nature of labour is critical to improve interpretation of intrapartum fetal heart rate patterns. PMID:27328617

  3. Acceleration and deceleration of coronal mass ejections during propagation and interaction

    NASA Astrophysics Data System (ADS)

    Shen, Fang; Wu, S. T.; Feng, Xueshang; Wu, Chin-Chun

    2012-11-01

    A major challenge to the space weather forecasting community is accurate prediction of Coronal Mass Ejections (CMEs) induced Shock Arrival Time (SAT) at Earth's environment. In order to improve the current accuracy, one of the steps is to understand the physical processes of the acceleration and deceleration of a CME's propagation in the heliosphere. We employ our previous study of a three-dimensional (3D) magnetohydrodynamic (MHD) simulation for the evolution of two interacting CMEs in a realistic ambient solar wind during the period 28-31 March 2001 event to illustrate these acceleration and deceleration processes. The forces which caused the acceleration and deceleration are analyzed in detail. The forces which caused the acceleration are the magnetic pressure term of Lorentz force and pressure gradient. On the other hand, the forces which caused the deceleration are aerodynamic drag, the Sun's gravity and the tension of magnetic field. In addition the momentum exchange between the solar wind and the moving CMEs can cause acceleration and deceleration of the CME which are now analyzed. In this specific CME event 28-31 March 2001 we have analyzed those forces which cause acceleration and deceleration of CME with and without interaction with another CME. It shows that there are significant momentum changes between these two interacting CMEs to cause the acceleration and deceleration.

  4. A Unified Information System for Appropriate Technology.

    ERIC Educational Resources Information Center

    Unamboowe, Ira

    1980-01-01

    Considers problems and solutions for transfer of technological information for developing nations. Imbalances created by industrial growth have brought the concept of choice of technologies to the forefront of national objectives. (RAA)

  5. Large Space Systems Technology, 1979. [antenna and space platform systems conference

    NASA Technical Reports Server (NTRS)

    Ward, J. C., Jr. (Compiler)

    1980-01-01

    Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.

  6. North Carolina Community College System Information Resources and Technology Plan.

    ERIC Educational Resources Information Center

    North Carolina Community Coll. System, Raleigh.

    The North Carolina Community College System engaged in a strategic planning process in 1998 that was the basis for the information resources and technology plans for the entire System. A focus of the planning was technology, and a technology environmental scanning team developed a set of planning assumptions, which led to the creation of 15 goals…

  7. A Systems Definition of Educational Technology in Society

    ERIC Educational Resources Information Center

    Luppicini, Rocci

    2005-01-01

    Conceptual development in the field of Educational Technology provides crucial theoretical grounding for ongoing research and practice. This essay draws from theoretical developments both within and external to the field of Educational Technology to articulate a systems definition of Educational Technology in Society. A systems definition of…

  8. Results from Symposium on Future Orbital power systems technology requirements

    NASA Technical Reports Server (NTRS)

    Gorland, S.

    1979-01-01

    The technology requirements for future orbital power systems were reviewed. Workshops were held in 10 technology disciplines to discuss technology deficiencies, adequacy of current programs to resolve those deficiencies and recommendations for tasks that might reduce the testing and risks involved in future orbital energy systems. Those recommendations are summarized.

  9. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  10. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    EPA Science Inventory

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  11. Exploration technology surface systems: Surface Habitats And Construction (SHAC)

    NASA Technical Reports Server (NTRS)

    Hirschbein, Murray

    1991-01-01

    The objectives of exploration technology program - surface systems are: (1) to develop technology emplace and to build an outpost on the moon and Mars; and (2) to develop concepts for permanent habitats and enclosures on the Moon and Mars.

  12. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  13. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  14. Deceleration and electrostatic trapping of hydrogen Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Hogan, Stephen

    2009-05-01

    Recent progress in the development of methods by which to decelerate and manipulate the translational motion of Rydberg atoms in the gas phase using static and time-varying inhomogeneous electric fields [1] has led to the experimental realization of Rydberg atom optics elements including a lens [2], a mirror [3] and two- and three-dimensional traps [4,5]. These experiments exploit the very large electric dipole moments associated with Rydberg Stark states, and have demonstrated the possibility to stop a seeded, pulsed, supersonic beam of atomic hydrogen traveling with an initial velocity of 700 ms-1 within 2 mm and only ˜5 μs using electric fields of a few kVcm-1. We have now extended these techniques to manipulate the translational motion of molecular hydrogen, for applications in precision spectroscopy and in studies of molecular collisions at low temperature or with a high degree of control over collision energies. The results of recent experiments in which we have been able to load hydrogen Rydberg molecules into a three-dimensional electrostatic traps will be summarized. These experiments have relied upon the preparation of nonpenetrating (l>=3) Rydberg-Stark states, with principal quantum number in the range n=20-30, using circularly polarized laser radiation. The rate of decay of these states in the trap has been determined providing, for the first time, experimental information on the predissociation of nonpenetrating molecular Rydberg states.[4pt] [1] S. R. Procter et al., Chem. Phys. Lett., 374, 667 (2003).[0pt] [2] E. Vliegen et al., Eur. Phys. J. D, 40, 73 (2006).[0pt] [3] E. Vliegen and F. Merkt, Phys. Rev. Lett., 97, 033002 (2006).[0pt] [4] E. Vliegen et al., Phys. Rev. A, 76, 023405 (2007).[0pt] [5] S. D. Hogan and F. Merkt, Phys. Rev. Lett., 100, 043001 (2008).

  15. Use of Ubiquitous Technologies in Military Logistic System in Iran

    NASA Astrophysics Data System (ADS)

    Jafari, P.; Sadeghi-Niaraki, A.

    2013-09-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  16. Space station systems technology study (add-on task). Volume 2: Trade study and technology selection

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The current Space Station Systems Technology Study add on task was an outgrowth of the Advanced Platform Systems Technology Study (APSTS) that was completed in April 1983 and the subsequent Space Station System Technology Study completed in April 1984. The first APSTS proceeded from the identification of 106 technology topics to the selection of five for detailed trade studies. During the advanced platform study, the technical issues and options were evaluated through detailed trade processes, individual consideration was given to costs and benefits for the technologies identified for advancement, and advancement plans were developed. An approach similar to that was used in the subsequent study, with emphasis on system definition in four specific technology areas to facilitate a more in depth analysis of technology issues.

  17. Component technology for space power systems

    NASA Technical Reports Server (NTRS)

    Finke, R. C.

    1982-01-01

    Progress made by NASA toward implementation of equipment for the conversion, management, and distribution of voltage power in space applications are reviewed. Work has been carried forward on components such as bipolar transistors, deep impurity semiconductors, conductors, dielectrics, magnetic devices, and rotary power transfer. Specific programs for the high voltage systems have included research on lightweight, low-cost conductors featuring graphite fibers containing electron donor materials for wires and cables with reduced mass and the conductivity of copper. Attention has also been given p-n junction technology for high-speed, high-current, high-voltage materials and diamond-like dielectric films which are hard, have high dielectric strength, and can operate up to 300 C. A transistor has been fabricated with a voltage of 1200 V at 100 A, with a gain of 10 and a 0.5 microsec rise/fall time. A 25 kW transformer has also been built which performs at 20 kHz with an efficiency of 99.2%.

  18. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  19. Comparison of hamstring-to-quadriceps ratio between accelerating and decelerating sections during squat exercise

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] The aim of this study was to compare hamstring-to-quadriceps ratio between the accelerating and decelerating sections for anterior cruciate ligament protection during squat exercise. [Subjects and Methods] Nine asymptomatic males were enrolled in this study. The hamstring (medial part) and quadriceps (rectus femoris) muscle activities during squat exercise were measured, and the squat exercises were classified into two sections (accelerating and decelerating) by using an accelerometer. [Results] The hamstring-to-quadriceps ratio was significantly higher in the decelerating section than in the accelerating section during the squat exercise. [Conclusion] Application of an increasing decelerating section strategy during the squat exercise can prevent damage in patients with a weakened anterior cruciate ligament due to sports activities. PMID:27799671

  20. Technology forecast and applications for autonomous, intelligent systems

    NASA Astrophysics Data System (ADS)

    Lum, Henry; Heer, Ewald

    Since 1984, the National Aeronautics and Space Administration's (NASA) Office of Aeronautics and Space Technology (OAST) has aggressively supported a research and development program for the development and demonstration of autonomous system technologies for aerospace applications. Significant research products are emerging from this program and have been evaluated in various space science and aerospace mission environments. Systems technology demonstrations such as the Space Station Thermal Control System, the Space Shuttle Integrated Communications Officer Station for ground mission operations, and the Space Shuttle Launch Processing Facility are being conducted in mission operations environments this year and have already provided additional focus and research directions to the OAST Systems Autonomy Technology Program. The preliminary software for the system technology demonstrations has been integrated into the respective operational environments for the demonstrations scheduled for late 1988. The results obtained to date have changed the original direction and focus of the Systems Autonomy Technology Program.

  1. Bantam System Technology Project Ground System Requirements Document

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1997-01-01

    The Low Cost Booster Project (LCBP), also known as Bantam, is an element of the Advanced Space Transportation Program focused on Low Cost Booster Technologies. During FY 99 flight demonstrations are planned to demonstrate the feasibility of producing a booster capable of inserting a 150 kg payload into low earth orbit. The ground support system is an element of the full launch system. The ground support system provides for integration of the payload with the launch vehicle, preparation of the vehicle for launch (including maintenance, integration and test of the vehicle flight software), monitor and control of the launch sequence, range safety during launch, and collection of telemetry during the flight up to payload release. The ground support system is intended to make the maximum possible use of Government Off-the-Shelf (GOTS) or Commercial Off-the-Shelf (COTS) hardware and software to obtain the best value in terms of development operations support and ultimate life cycle cost for the launch system.

  2. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  3. Face Recognition System with Holographic Memory and Stereovision Technology

    NASA Astrophysics Data System (ADS)

    Honma, Satoshi; Yagisawa, Yasuaki; Momose, Hidetomo; Sekiguchi, Toru

    2011-09-01

    We have proposed a face recognition system with holographic memory and stereovision technology (FARSHAS). In this system, facial three-dimensional data is captured by stereovision technology and then the facial images at a position in front of the virtual camera is reconstructed automatically. Using the corrected facial images, we estimated theoretically the error rate of the facial recognition system.

  4. Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales

    NASA Astrophysics Data System (ADS)

    Deines, Steven D.; Williams, Carol A.

    2016-04-01

    This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.

  5. Deceleration in advance in the Nagel-Schreckenberg traffic flow model

    NASA Astrophysics Data System (ADS)

    Li, Xin-Gang; Gao, Zi-You; Jia, Bin; Jiang, Rui

    2009-05-01

    Based on the Nagel-Schreckenberg model, we study the impact of deceleration in advance on the dynamics of traffic flow. In the process of deceleration in advance, the effect of reaction delay and the effect of expectation are considered respectively. The traffic flow properties are studied by analyzing the fundamental diagram, spatio-temporal patterns, distance headway distribution and car accidents. The simulation results show that reaction delay brings complex traffic flow patterns and expectation makes the serious car accidents rarely happen.

  6. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    EPA Science Inventory

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  7. The Model Industrial Technology Systems Project.

    ERIC Educational Resources Information Center

    Bowling Green State Univ., OH.

    This document contains materials used in a model industrial technology program that introduced technology into the curricula of elementary, middle, and high schools in three sites in Ohio: the Central site (coordinated through Ohio State University); the Northeast site (coordinated through Kent State University); and the Northwest site…

  8. Crystal gazing v. computer system technology projections.

    NASA Astrophysics Data System (ADS)

    Wells, Donald C.

    The following sections are included: * INTRODUCTION * PREDICTIONS FOR THE EARLY NINETIES * EVOLUTION OF COMPUTER CAPACITIES * UNIX IS COMING! * GRAPHICS TECHNOLOGY * MASSIVE ARCHIVAL STORAGE * ADA AND PROJECT MANAGEMENT * ARTIFICIAL INTELLIGENCE TECHNOLOGY * FILLING IN THE DETAILS * UNIX DESIDERATA * ICON-DRIVEN COMMAND LANGUAGES? * AI AGAIN * DISCUSSION * REFERENCES * BIBLIOGRAPHY—FOR FURTHER READING

  9. Influence of Power System Technology on Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    1995-01-01

    Electric propulsion (EP) thruster technology, with efficient lightweight power systems can provide substantial reductions in propulsion system wet mass due to the high specific impulse (Isp) of the thrusters. Historically, the space power systems are too massive for many potential orbital missions. The objective of this paper is to show the impact of current power system technology on EP mission performance and determine what technology advancements are needed to make EP beneficial for earth orbital applications. The approach of the paper is to model the electric propulsion system and orbital mission using a partial parametric method. Various missions are analyzed from orbit maintenance to orbit transfer. Results portray the relationship between mission performance and power technology level. Conclusions show which mission applications currently have acceptable power technology, and which mission applications require power technology improvements.

  10. [Toward a national system on science and technology].

    PubMed

    Cilento-Sarli, A

    1994-01-01

    This essay discuss the integration of a National System on Science and Technology (SINACYT), supported with resources arising from a National Found for Science and Technology (FONACYT), and whose leader entity should be the Institute of the National Found for Science and Technology (INFONACYT) to substitute CONICIT.

  11. The NASA technology push towards future space mission systems

    NASA Astrophysics Data System (ADS)

    Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert

    As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far- term strategic steps. It addresses the alternative "push-pull" approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.

  12. Airframe Systems: Research and Technology Base Program

    NASA Technical Reports Server (NTRS)

    Whitlow, Woodrow, Jr.

    1997-01-01

    The author argues that the aeronautics research and technology base has shifted from a discipline focus to a program focus. The program planning is progressing as Level I is complete and Level II plans are under development, while there is significant inter-center planning and coordination taking place. These programs are addressing problems that are important to the nation namely, "the three pillars to success" which are; access to space, global civil aviation and revolutionary technology leaps.

  13. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  14. Research and Development for Technology Evolution Potential Forecasting System

    NASA Astrophysics Data System (ADS)

    Gao, Changqing; Cao, Shukun; Wang, Yuzeng; Ai, Changsheng; Ze, Xiangbo

    Technology forecasting is a powerful weapon for many enterprises to gain an animate future. Evolutionary potential radar plot is a necessary step of some valuable methods to help the technology managers with right technical strategy. A software system for Technology Evolution Potential Forecasting (TEPF) with automatic radar plot drawing is introduced in this paper. The framework of the system and the date structure describing the concrete evolution pattern are illustrated in details. And the algorithm for radar plot drawing is researched. It is proved that the TEPF system is an effective tool during the technology strategy analyzing process with a referenced case study.

  15. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  16. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    NASA Technical Reports Server (NTRS)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  17. Systems Engineering: When Knowledge and Technology are the Product

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2008-01-01

    The interdependence of technology development, conceptual design, and system analysis is examined in the context of an overall systems engineering set of processes. In particular, the role of technology portfolio management - from initial investment decision-making all the way through technology maturation and transfer to industry - is emphasized. Additionally, the role of state of the art assessments is considered in terms of planning and tracking progress towards the development of enhanced predictive capabilities.

  18. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect

    Bruce Hallbert

    2012-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  19. Fission Technology for Exploring and Utilizing the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,

  20. Decision Technology Systems: A Vehicle to Consolidate Decision Making Support.

    ERIC Educational Resources Information Center

    Forgionne, Guisseppi A.

    1991-01-01

    Discussion of management decision making and the support needed to manage successfully highlights a Decision Technology System (DTS) that integrates other information systems. Topics discussed include computer information systems (CISs); knowledge gateways; the decision-making process; decision support systems (DSS); expert systems; and facility…

  1. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  2. Timing of Technology Upgrades: A Case of Enterprise Systems

    ERIC Educational Resources Information Center

    Claybaugh, Craig C.

    2010-01-01

    Technology upgrades are an inevitable part of dealing with any man-made invention utilized for productive gain. One key technology used for productive gain within a firm is enterprise software, specifically a firm's Enterprise Resource Planning (ERP) system. After the adoption of an ERP system, an organization is perpetually faced with the…

  3. On Young People's Experience of Systems in Technology

    ERIC Educational Resources Information Center

    Svensson, Maria; Zetterqvist, Ann; Ingerman, Ake

    2012-01-01

    Immersed in a technologically complex world, young people make sense of a multi-faceted set of events in everyday life. This article investigates the variation in how Swedish young people experience technological systems and is based on interviews focusing three systems concerning transport, energy and communication--contextualised in relation to…

  4. Technology for large space systems: A special bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists 460 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1968 and December 31, 1978. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, and flight experiments.

  5. Large space systems technology, 1981. [conferences

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.

  6. Fast, transient cardiac accelerations and decelerations during fear conditioning in rats.

    PubMed

    Knippenberg, J M J; Barry, R J; Kuniecki, M J; van Luijtelaar, G

    2012-02-01

    The current study reports on a number of heart rate responses observed in rats subjected to a discriminatory Pavlovian fear conditioning procedure. Rats learned that a series of six auditory pips was followed by a footshock when presented alone, but not when the pip series was preceded by a visual safety signal. Each auditory pip in the series evoked a fast transient (<1s) cardiac deceleration. This was the case on both trials followed by shock and on trials not followed by shock. The onset of the safety light evoked a similar fast deceleration. We propose that these transient decelerations are similar to the human Evoked Cardiac Response 1 (ECR1), a brief modest deceleration evoked by simple sensory stimuli that is thought to reflect an early process of stimulus registration. Immediately following these pip-evoked decelerations, modest fast accelerations were observed. These accelerations were larger when the pip series was followed by shock than when it was not followed by shock. We propose a potential linkage between these accelerations and the human acceleratory ECR2 component, which is associated with more elaborate processing following stimulus registration; something likely to take place when the pip series predicts an aversive event. Both the ECR1- and ECR2-like responses were embedded within a slow, gradual heart rate increase across the entire pip series. This tonic increase was significantly larger on trials with footshock and is therefore probably associated with anticipatory fear of the upcoming shock. An additional special type of cardiac response was found to the first pip in the series not preceded by the safety signal; here, a much larger and more sustained deceleration was apparent. This response appears relatable to the prolonged deceleration reported in humans in response to aversive picture content. We discuss the cardiac responses found in rats in the current study in the context of heart rate responses known in the human literature.

  7. Is the brain's inertia for motor movements different for acceleration and deceleration?

    PubMed

    Adhikari, Bhim M; Quinn, Kristen M; Dhamala, Mukesh

    2013-01-01

    The brain's ability to synchronize movements with external cues is used daily, yet neuroscience is far from a full understanding of the brain mechanisms that facilitate and set behavioral limits on these sequential performances. This functional magnetic resonance imaging (fMRI) study was designed to help understand the neural basis of behavioral performance differences on a synchronizing movement task during increasing (acceleration) and decreasing (deceleration) metronome rates. In the MRI scanner, subjects were instructed to tap their right index finger on a response box in synchrony to visual cues presented on a display screen. The tapping rate varied either continuously or in discrete steps ranging from 0.5 Hz to 3 Hz. Subjects were able to synchronize better during continuously accelerating rhythms than in continuously or discretely decelerating rhythms. The fMRI data revealed that the precuneus was activated more during continuous deceleration than during acceleration with the hysteresis effect significant at rhythm rates above 1 Hz. From the behavioral data, two performance measures, tapping rate and synchrony index, were derived to further analyze the relative brain activity during acceleration and deceleration of rhythms. Tapping rate was associated with a greater brain activity during deceleration in the cerebellum, superior temporal gyrus and parahippocampal gyrus. Synchrony index was associated with a greater activity during the continuous acceleration phase than during the continuous deceleration or discrete acceleration phases in a distributed network of regions including the prefrontal cortex and precuneus. These results indicate that the brain's inertia for movement is different for acceleration and deceleration, which may have implications in understanding the origin of our perceptual and behavioral limits.

  8. Recent advances in antitank missile systems and technologies

    NASA Astrophysics Data System (ADS)

    Iyer, Narayana R.

    1999-11-01

    This paper focuses on the recent advances in tactical Anti- tank (ATGM) systems and related technologies. The growth profile of ATGM systems and related technologies has been discussed with special emphasis on technologies pertaining to guidance systems. 'Fire and forget' and 'Top attach' capabilities are the most important operational requirements of the third generation ATGM systems. Realization of 'Fire and forget' capability for tactical ATGMs calls for use of a passive or active homing system. The need for such a system has been the main driving factor for mobilizing the advanced technologies relating to IR and Millimetric Wave seeker based guidance systems. Generic design considerations and system constraints as well as technological aspects of these two types of guidance systems are covered. The 'Top attack' requirement calls for optimization of suitable trajectory schemes and it also impose design constants, mainly on the homing seeker. Use of tandem shaped charge warhead is essential to defeat modern tanks equipped with Explosive Reactive Armor. The implications of using the tandem shaped charge warhead on the design of the seeker as well as at system level design are briefly analyzed. In the concluding part, the emerging technological trends relating to ATGM systems with focus on guidance systems are presented.

  9. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  10. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  11. A Technological Teaching Tool: Interactive Video Systems.

    ERIC Educational Resources Information Center

    Rittenhouse, Robert K.; And Others

    1993-01-01

    This discussion of interactive videodisc systems for students who are deaf or hard of hearing considers the advantages and disadvantages of such systems, system use, videodisc capabilities, interactive alternatives, and selecting a system for a school. A list of equipment manufacturers, laser disc producers, and specialty sources is provided. (DB)

  12. System Architecture Modeling for Technology Portfolio Management using ATLAS

    NASA Technical Reports Server (NTRS)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  13. Transportation Systems. TE8126. Technology Education.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational and Technical Education Services.

    This curriculum guide has been developed as a resource for teachers (especially in North Carolina) to use in planning and implementing a competency-based instructional management technology program in their schools. The guide contains three main section. The first section contains introductory materials and a course blueprint that lists the…

  14. Tools and technologies for expert systems: A human factors perspective

    NASA Technical Reports Server (NTRS)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  15. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    SciTech Connect

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  16. Using IoT Device Technology in Spacecraft Checkout Systems

    NASA Astrophysics Data System (ADS)

    Plummer, Chris

    2015-09-01

    The Internet of Things (IoT) has become a common theme in both the technical and popular press in recent years because many of the enabling technologies that are required to make IoT a reality have now matured. Those technologies are revolutionising the way industrial systems and products are developed because they offer significant advantages over older technologies. This paper looks at how IoT device technology can be used in spacecraft checkout systems to achieve smaller, more capable, and more scalable solutions than are currently available. It covers the use of IoT device technology for classical spacecraft test systems as well as for hardware-in-the-loop simulation systems used to support spacecraft checkout.

  17. Power system technologies for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Bents, Dave; Patterson, Michael J.; Berkopec, F.; Myers, Ira; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems.

  18. A network identity authentication system based on Fingerprint identification technology

    NASA Astrophysics Data System (ADS)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.

  19. Heterodyne systems and technology, part 1. [conferences

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.

  20. TURBULENT HEATING OF THE DISTANT SOLAR WIND BY INTERSTELLAR PICKUP PROTONS IN A DECELERATING FLOW

    SciTech Connect

    Isenberg, Philip A.; Smith, Charles W.; Matthaeus, William H.; Richardson, John D.

    2010-08-10

    Previous models of solar wind heating by interstellar pickup proton-driven turbulence have assumed that the wind speed is a constant in heliocentric radial position. However, the same pickup process, which is taken to provide the turbulent energy, must also decelerate the wind. In this paper, we extend our phenomenological turbulence model to include variable wind speed, and then incorporate the deceleration due to interstellar pickup protons into the model. We compare the model results with plasma and field data from Voyager 2, taking this opportunity to present an extended and improved data set of proton core temperature, magnetic field fluctuation intensity, and correlation length along the Voyager trajectory. A particular motivation for including the solar wind deceleration in this model is the expectation that a slower wind would reduce the resulting proton core temperature in the region beyond {approx}60 AU, where the previous model predictions were higher than the observed values. However, we find instead that the deceleration of the steady-state wind increases the energy input to the turbulence, causing even higher temperatures in that region. The increased heating is shown to result from the larger values of the ratio of Alfven speed to solar wind speed that develop in the decelerating wind.

  1. Laser-assisted Stark deceleration of polar diatomic molecules in the Χ1Σ state

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Xu, Shuwu; Yang, Xiaohua

    2016-07-01

    The traditional Stark deceleration method is difficult to apply in chemically stable polar diatomic molecules in their ground (Χ1Σ) state because the Χ1Σ state normally experiences little Stark shift and the rovibronic ground level is mostly high-field-seeking. To solve this problem, we propose a laser-assisted Stark deceleration scheme to decelerate such molecules in the present paper. Our results show that, owing to the transverse bunching effect of the applied red-detuning laser beam, the molecules of the high-field-seeking level |J = 0, M = 0> in the Χ1Σ state can be effectively decelerated. Furthermore, the present scheme is more effective because the interaction between the molecules and the combined fields can produce the pseudo-first-order Stark effect, and thus increase the depth of the effective potential. Compared to those molecules in the low-field-seeking state |J = 1, MΩ = ‑1> in the usual electrostatic Stark deceleration, a higher molecular density and lower velocity can be achieved under an equivalent initial phase angle.

  2. Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability for Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K.; Nora, R.

    2014-10-01

    Hydrodynamic equivalence and ignition theory allow for the extrapolation of OMEGA experiments to ignition-scale implosions. The yield-over-clean (YOC = measured yield/1-D yield) depicts the effect of hydro-instabilities on inertial confinement fusion implosions. A 2-D study of the deceleration-phase Rayleigh-Taylor instability (RTI) is carried out to assess the YOC scaling with target size at varying nonuniformity levels. The deceleration-phase ablative RTI is mitigated by the hot-spot thermal and radiation transport, which do not scale hydro-equivalently. Scaling of the thermal conduction shows that hot-spot ablation velocity is higher on OMEGA than on the National Ignition Facility (NIF), resulting in higher RTI growth factors on the NIF. Radiation emitted in the hot-spot makes the implosion nearly hydro-equivalent by increasing the density gradient scale length on the NIF. Thermal conduction and radiation both are nonscalable physics in the deceleration phase, with complementary impacts the scaling of deceleration-phase RTI. Analytic and numerical study of the deceleration-phase RTI on OMEGA and NIF-scale targets show that YOCNIF ~ YOCΩ considering identical laser imprinting and normalized ice roughness levels. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  3. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure

    PubMed Central

    Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  4. Subclinical decelerations during developing hypotension in preterm fetal sheep after acute on chronic lipopolysaccharide exposure.

    PubMed

    Lear, Christopher A; Davidson, Joanne O; Galinsky, Robert; Yuill, Caroline A; Wassink, Guido; Booth, Lindsea C; Drury, Paul P; Bennet, Laura; Gunn, Alistair J

    2015-01-01

    Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688

  5. Laser-assisted Stark deceleration of polar diatomic molecules in the Χ1Σ state

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Xu, Shuwu; Yang, Xiaohua

    2016-07-01

    The traditional Stark deceleration method is difficult to apply in chemically stable polar diatomic molecules in their ground (Χ1Σ) state because the Χ1Σ state normally experiences little Stark shift and the rovibronic ground level is mostly high-field-seeking. To solve this problem, we propose a laser-assisted Stark deceleration scheme to decelerate such molecules in the present paper. Our results show that, owing to the transverse bunching effect of the applied red-detuning laser beam, the molecules of the high-field-seeking level |J = 0, M = 0> in the Χ1Σ state can be effectively decelerated. Furthermore, the present scheme is more effective because the interaction between the molecules and the combined fields can produce the pseudo-first-order Stark effect, and thus increase the depth of the effective potential. Compared to those molecules in the low-field-seeking state |J = 1, MΩ = -1> in the usual electrostatic Stark deceleration, a higher molecular density and lower velocity can be achieved under an equivalent initial phase angle.

  6. Decelerated and linear eaters: effect of eating rate on food intake and satiety.

    PubMed

    Zandian, Modjtaba; Ioakimidis, Ioannis; Bergh, Cecilia; Brodin, Ulf; Södersten, Per

    2009-02-16

    Women were divided into those eating at a decelerated or linear rate. Eating rate was then experimentally increased or decreased by asking the women to adapt their rate of eating to curves presented on a computer screen and the effect on food intake and satiety was studied. Decelerated eaters were unable to eat at an increased rate, but ate the same amount of food when eating at a decreased rate as during the control condition. Linear eaters ate more food when eating at an increased rate, but less food when eating at a decreased rate. Decelerated eaters estimated their level of satiety lower when eating at an increased rate but similar to the control condition when eating at a decreased rate. Linear eaters estimated their level of satiety similar to the control level despite eating more food at an increased rate and higher despite eating less food at a decreased rate. The cumulative satiety curve was fitted to a sigmoid curve both in decelerated and linear eater under all conditions. Linear eaters rated their desire to eat and estimated their prospective intake lower than decelerated eaters and scored higher on a scale for restrained eating. It is suggested that linear eaters have difficulty maintaining their intake when eating rate is dissociated from its baseline level and that this puts them at risk of developing disordered eating. It is also suggested that feedback on eating rate can be used as an intervention to treat eating disorders.

  7. Scalable Systems Software Enabling Technology Center

    SciTech Connect

    Michael T. Showerman

    2009-04-06

    NCSA’s role in the SCIDAC Scalable Systems Software (SSS) project was to develop interfaces and communication mechanisms for systems monitoring, and to implement a prototype demonstrating those standards. The Scalable Systems Monitoring component of the SSS suite was designed to provide a large volume of both static and dynamic systems data to the components within the SSS infrastructure as well as external data consumers.

  8. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms.

    PubMed

    Scharfenberg, Ludwig; Kłos, Jacek; Dagdigian, Paul J; Alexander, Millard H; Meijer, Gerard; van de Meerakker, Sebastiaan Y T

    2010-09-28

    The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce molecular beams with a tunable velocity. These tamed molecular beams offer interesting perspectives for precise crossed beam scattering studies as a function of the collision energy. The method has advanced sufficiently to compete with state-of-the-art beam methods that are used for scattering studies throughout. This is demonstrated here for the scattering of OH radicals (X(2)Pi(3/2), J = 3/2, f) with Ar atoms, a benchmark system for the scattering of open-shell molecules with atoms. Parity-resolved integral state-to-state inelastic scattering cross sections are measured at collision energies between 80 and 800 cm(-1). The threshold behavior and collision energy dependence of 13 inelastic scattering channels is accurately determined. Excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on the most accurate ab initio OH + Ar potential energy surfaces to date. PMID:20657906

  9. A CCD Camera with Electron Decelerator for Intermediate Voltage Electron Microscopy

    SciTech Connect

    Downing, Kenneth H; Downing, Kenneth H.; Mooney, Paul E.

    2008-03-17

    Electron microscopists are increasingly turning to Intermediate Voltage Electron Microscopes (IVEMs) operating at 300 - 400 kV for a wide range of studies. They are also increasingly taking advantage of slow-scan charge coupled device (CCD) cameras, which have become widely used on electron microscopes. Under some conditions CCDs provide an improvement in data quality over photographic film, as well as the many advantages of direct digital readout. However, CCD performance is seriously degraded on IVEMs compared to the more conventional 100 kV microscopes. In order to increase the efficiency and quality of data recording on IVEMs, we have developed a CCD camera system in which the electrons are decelerated to below 100 kV before impacting the camera, resulting in greatly improved performance in both signal quality and resolution compared to other CCDs used in electron microscopy. These improvements will allow high-quality image and diffraction data to be collected directly with the CCD, enabling improvements in data collection for applications including high-resolution electron crystallography, single-particle reconstruction of protein structures, tomographic studies of cell ultrastructure and remote microscope operation. This approach will enable us to use even larger format CCD chips that are being developed with smaller pixels.

  10. Direct spectroscopic observation of ion deceleration accompanying laser plasma-wall interaction

    NASA Astrophysics Data System (ADS)

    Renner, O.; Krouský, E.; Liska, R.; Šmíd, M.; Larroche, O.; Dalimier, E.; Rosmej, F. B.

    2010-08-01

    Interactions of plasma jets with solid surfaces are extensively studied in context with development of future fusion devices. In experiments carried out on the iodine laser system PALS, the energetic ions were produced at double-foil Al/Mg targets irradiated by one or two counter-propagating laser beams. The plasma jets from the rear surface of the laser-exploded Al foil streamed towards the Mg target representing the wall preheated by the action of the high-energy photons, particle and/or laser beams. Instead of being trapped by the cold secondary-target material, the forward-accelerated Al ions collided with the counter-propagating matter ejected from the wall. The environmental conditions in near-wall plasmas were analyzed with the high-resolution x-ray spectroscopy and temporally-resolved x-ray imaging. The deceleration of the incident Al ions in the near-wall region was directly observed and quantitatively characterized via Doppler shifts of the J-satellite from the Al Lya spectral group. The interaction scenario was modelled using the 2D arbitrary Lagrangian Eulerian hydrocode PALE and the multifluid code MULTIF.

  11. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  12. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  13. Large Deployable Reflector Science and Technology Workshop. Volume 3: Systems and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Leidich, C. A. (Editor); Pittman, R. B. (Editor)

    1984-01-01

    The results of five technology panels which convened to discuss the Large Deployable Reflector (LDR) are presented. The proposed LDR is a large, ambient-temperature, far infrared/submillimeter telescope designed for space. Panel topics included optics, materials and structures, sensing and control, science instruments, and systems and missions. The telescope requirements, the estimated technology levels, and the areas in which the generic technology work has to be augmented are enumerated.

  14. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  15. Expert system technology for nondestructive waste assay

    SciTech Connect

    Becker, G.K.; Determan, J.C.

    1998-07-01

    Nondestructive assay waste characterization data generated for use in the National TRU Program must be of known and demonstrable quality. Each measurement is required to receive an independent technical review by a qualified expert. An expert system prototype has been developed to automate waste NDA data review of a passive/active neutron drum counter system. The expert system is designed to yield a confidence rating regarding measurement validity. Expert system rules are derived from data in a process involving data clustering, fuzzy logic, and genetic algorithms. Expert system performance is assessed against confidence assignments elicited from waste NDA domain experts. Performance levels varied for the active, passive shielded, and passive system assay modes of the drum counter system, ranging from 78% to 94% correct classifications.

  16. Space station onboard propulsion system: Technology study

    NASA Technical Reports Server (NTRS)

    Mcallister, J. G.; Rudland, R. S.; Redd, L. R.; Beekman, D. H.; Cuffin, S. M.; Beer, C. M.; Mccarthy, K. K.

    1987-01-01

    The objective was to prepare for the design of the space station propulsion system. Propulsion system concepts were defined and schematics were developed for the most viable concepts. A dual model bipropellant system was found to deliver the largest amount of payload. However, when resupply is considered, an electrolysis system with 10 percent accumulators requires less resupply propellant, though it is penalized by the amount of time required to fill the accumulators and the power requirements for the electrolyzer. A computer simulation was prepared, which was originally intended to simulate the water electrolysis propulsion system but which was expanded to model other types of systems such as cold gas, monopropellant and bipropellant storable systems.

  17. DOE technology information management system database study report

    SciTech Connect

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L.

    1994-11-01

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  18. Technology architecture guidelines for a health care system.

    PubMed

    Jones, D T; Duncan, R; Langberg, M L; Shabot, M M

    2000-01-01

    Although the demand for use of information technology within the healthcare industry is intensifying, relatively little has been written about guidelines to optimize IT investments. A technology architecture is a set of guidelines for technology integration within an enterprise. The architecture is a critical tool in the effort to control information technology (IT) operating costs by constraining the number of technologies supported. A well-designed architecture is also an important aid to integrating disparate applications, data stores and networks. The authors led the development of a thorough, carefully designed technology architecture for a large and rapidly growing health care system. The purpose and design criteria are described, as well as the process for gaining consensus and disseminating the architecture. In addition, the processes for using, maintaining, and handling exceptions are described. The technology architecture is extremely valuable to health care organizations both in controlling costs and promoting integration.

  19. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study

    NASA Technical Reports Server (NTRS)

    Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.

    2013-01-01

    The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.

  20. Applying Trusted Network Technology To Process Control Systems

    NASA Astrophysics Data System (ADS)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  1. Current Technology for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Compiler)

    1992-01-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems.

  2. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  3. Advanced energy systems and technologies research programme

    NASA Astrophysics Data System (ADS)

    Lund, P.; Tuominen, E.

    NEMO 2 is a national energy research program for the evaluation, development and promotion of new and renewable forms of energy. NEMO 2 is one of the energy research programs of the Finnish Ministry of Trade and Industry for the years 1993-1998. In NEMO 2 -program, new energy technology is developed as a whole in close collaboration between industry, universities and research institutes, as well as with customers and consumers. The overall budget of NEMO 2 is close to 125 MFIM (1 dollar = 5.7 FIM, Nov. 1993). The main emphasis of the program is on wind and solar energy.

  4. Micropower radar systems for law enforcement technology

    SciTech Connect

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  5. Progress in Technology Validation of the Next Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2007-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development.

  6. An assessment of the contamination acquired by IDPs during atmospheric deceleration

    NASA Technical Reports Server (NTRS)

    Flynn, George J.

    1994-01-01

    The E-layer of the terrestrial mesosphere, between 80 and 110 km altitude, is derived from meteoric ablation. Concentrations of Na and Fe, contributed by meteoric vapor, have been monitored in the mesosphere, and both individual meteors and average concentration profiles have been measured. Individual interplanetary dust particles (IDP's) entering the earth's atmosphere must pass through the mesospheric layers rich in meteoric volatile elements. Limits on the extent to which individual IDP's can be contaminated by meteoric volatile elements during deceleration in the upper atmosphere can be established by considering the extreme cases: the direct passage of an IDP through a meteoric vapor trail or the passage of an IDP through the mesospheric layer rich in meteoric volatiles. It appears the interaction of IDP's with meteoric vapor during deceleration in the upper atmosphere does not produce significant contamination of IDP's as they decelerate in the upper atmosphere.

  7. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  8. A switched ring Stark decelerator for both light and heavy polar molecules

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wang, Qin; Deng, Lianzhong; Yin, Jianping

    2016-03-01

    There is increasing interest in cold heavy polar molecular species for their applications in fundamental physics, such as the tests of the electron’s electric dipole moment. Here we propose a switched ring Stark decelerator suitable for slowing both light and heavy polar molecules. Two typical polar molecular species, ND3 and 205TlF, are employed to test the feasibility of our scheme with the help of trajectory calculation. Our proposed scheme is found to share many advantages with the state-of-the-art traveling wave decelerator, yet with relatively simple electronics and flexible operation modes. Sub-millikelvin molecular samples can be conveniently obtained in our decelerator using a combined operation mode. These monochromatic beams are ideal starting points for precise studies of molecular collision, cold chemistry and high-resolution spectroscopy.

  9. Deceleration of the solar wind in the Earth foreshock region: ISEE 2 and IMP 8 observations

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.

    1980-01-01

    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the Earth bow shock was studied using a two spacecraft technique. This deceleration, which is correlated with the "diffuse" but not with the "reflected" ion population, depends on the solar wind bulk velocity: at low velocities (below 300 km/sec) the velocity decrease is about 5 km/sec, while at higher velocities (above 400 km/sec) the decrease may be as large as 30 km/sec. Along with this deceleration, the solar wind undergoes a deflection of about 1 deg away from the direction of the Earth bow shock. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind, therefore, at least part of this energy must go into waves and/or into the backstreaming ions.

  10. Virtualization Technologies in Information Systems Education

    ERIC Educational Resources Information Center

    Lunsford, Dale L.

    2009-01-01

    Information systems educators must balance the need to protect the stability, availability, and security of computer laboratories with the learning objectives of various courses. In advanced courses where students need to install, configure, and otherwise manipulate application and operating system settings, this is especially problematic as these…

  11. Advanced technology wind shear prediction system evaluation

    NASA Technical Reports Server (NTRS)

    Gering, Greg

    1992-01-01

    The program overviews: (1) American Airline (AA)/Turbulence Prediction Systems (TPS), which have installed forward looking infrared predictive windshear system on 3 MD-80 aircraft; (2) AA/TPS AWAS III evaluation, which is a joint effort and is installed in the noise landing gear (NLG) area and a data recorder installed in the E/E compartment.

  12. Expert Systems Technology for Training Applications.

    ERIC Educational Resources Information Center

    Liebowitz, Jay

    1989-01-01

    Description of the use of expert systems for training applications presents three case studies of expert systems that are currently in use: (1) CESA, used for government contracting; (2) TOPSCO, for training in telecommunications; and (3) EVIDENT, for law students learning admissibility of evidence. (13 references) (LRW)

  13. Technology development of UAV recovery system based on laser detection

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-wei; Lv, Hua

    2011-06-01

    The recovery technology of unmanned aerial vehicle (UAV) is one of the difficulties of UAV development. This paper presents an automatic UAV recovery guide system, which is based on laser detection technology. The guide system overcomes the problem that the small-sized UAV is not suitable for accurate-point recovery. Comparing to traditional recovery system, this system has some advantage, such as high precision, round-the-clock, flexible and easy testing. Especially, it improved the application level of UAV recovery system with corresponding orientation guide model and accurate orientation tracking technology. High requirements are needed for UAV near field distance measurement with this method. This paper provides a method for UAV close quarters navigation based on laser detection technology. It is a new application for computer vision and photoelectric technology, with fast safe secret and nil interference. UAV recovery system can lead the UAV to tackle net safely. According to current UAV technology development, using laser tracking as terminal guide sensor measure equipment is feasible. The distribution of UAV collision network callback system put the laser recovery guide system behind the tackle net. When the UAV enter the callback phase, laser call back system made the UAV slide down follow the direct orbit by way of searching tracking and orientation. The UAV recovery system setups biaxial automatic turntable, measure the horizontal angle and pitch angle change, provide the deviation of current flight path and destine flight path, also provides the distance information between UAV recovery system by the way of laser measurement. This thesis analyzes the feasibility of this technology, provides the workflow of the UAV when entering the call back process. This paper also presents the correction method of laser error. The simulation result shows this distance measure system can lead the UAV call back safely.

  14. EG G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  15. Electrical Power and Illumination Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in electrical power and illumination systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  16. Mechanical Systems Technology Branch research summary, 1985 - 1992

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L. (Editor)

    1993-01-01

    A collection of significant accomplishments from the research of the Mechanical Systems Technology Branch at the NASA Lewis Research Center completed during the years 1985-1992 is included. The publication highlights and accomplishments made in bearing and gearing technology through in-house research, university grants, and industry contracted projects. The publication also includes a complete listing of branch publications for these years.

  17. Electronic Record Systems and Individual Privacy. Federal Government Information Technology.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    This report considers the privacy issues raised by the growth of the new technology being applied to the personal information collected, maintained, and disseminated by the Federal Government. Four major areas are addressed: (1) technological developments relevant to government record systems; (2) current and prospective Federal agency use of…

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - GROUNDWATER SAMPLING TECHNOLOGIES - QED ENVIRONMENTAL SYSTEMS INC. WELL WIZARD DEDICATED SAMPLING SYSTEM

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has created the Environmental Technology Verification Program (ETV) to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ...

  19. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    NASA Technical Reports Server (NTRS)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  20. A pilot in the loop analysis of helicopter acceleration/deceleration maneuvers

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.

    1982-01-01

    Helicopter flight acceleration/deceleration maneuvers are quantified and put to use in the fields of handling qualities, flight training and evaluation of simulator fidelity. The three specific cases include the normal speed change maneuver, the nap-of-the-Earth dash/quickstop, and the decelerating approach to hover. All of these maneuvers share common generic features in terms of pilot adaptation and mathematical description; yet each differs in terms of the essential feedback loop structure, implications for handling qualities requirements, and simulator fidelity criteria.

  1. Autophase gyroresonance decelerator of electron beams (a gyrodecelerator) - Relativistic nonlinear theory

    NASA Astrophysics Data System (ADS)

    Zhurakhovskii, V. A.

    1987-04-01

    The feasibility of using an autophasing principle for the deceleration of electron beams and the amplification of electromagnetic waves in the gyroresonance mode is considered with reference to the design of TWTs and free-electron lasers. Profiling of the magnetostatic field induction provides for the phase constancy of the resonant force of a synchronous electron which is decelerated for a long time by an undecelerated wave together with a cloud of charged particles that pulsates around this electron. A computer analysis showed an average efficiency of 85 percent for a relativistic autophase gyrodecelerator-amplifier with an initially monovelocity electron beam.

  2. Scientific method, adversarial system, and technology assessment

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    A basic framework is provided for the consideration of the purposes and techniques of scientific method and adversarial systems. Similarities and differences in these two techniques of inquiry are considered with reference to their relevance in the performance of assessments.

  3. Sensor technology for future atmospheric observation systems

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Keafer, L. S., Jr.

    1982-01-01

    The remote sensing instruments that will be needed for research in atmospheric environmental quality in the future are considered. The needs are determined on the basis of a model that incorporates scientific knowledge objectives, measurement needs, and potential space missions, spacecraft and instruments in order to discern the technology requirements. While emphasis is placed on global surveys that make full use of the synoptic observation capabilities of spaceborne sensors, the importance of airborne and ground-based sensors in this research is also recognized. Several of the instruments that are identified to fulfill the knowledge objectives are spectrometers and radiometers using such passive measurement techniques as interferometer correlation absorption radiometry, and heterodyne spectrometry. Lidar instruments are also seen as important future developments.

  4. Technology documentation for selected radwaste incineration systems

    SciTech Connect

    Ziegler, D.L.

    1982-12-01

    Several incineration systems have been developed and demonstrated on a production scale for combustion of radioactive waste from contractor operated Department of Energy (DOE) facilities. Demonstrated operating information and engineered design information is documented in this report on four of these systems; the Cyclone Incinerator (CI), Fluidized Bed Incinerator (FBI), Controlled-Air Incinerator (CAI) and Electric Controlled Air Incinerator (ECAI). The CI, FBI and CAI have been demonstrated with actual contaminated plant waste and the ECAI has been demonstrated with simulated waste using dysprosium oxide as a stand-in for plutonium oxide. The weight and volume reduction that can be obtained by each system processing typical solid plant transuranic (TRU) waste has been presented. Where a given system has been tested for other applications, such as combustion of resins, TBP-solvent mixtures, organic liquids, polychlorinated biphenyl (PCB), resuts of these experiments have been included. This document is a compilation of reports prepared by the operating contractor personnel responsible for development of each of the systems. In addition, as a part of the program management responsibility, the Transuranic Waste System Office (TWSO) has provided an overview of the contractor supplied information.

  5. 76 FR 4146 - Future Systems Technology Advisory Panel Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... From the Federal Register Online via the Government Publishing Office SOCIAL SECURITY ADMINISTRATION Future Systems Technology Advisory Panel Meeting AGENCY: Social Security Administration (SSA... provide the Commissioner of Social Security independent advice and recommendations on the future...

  6. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  7. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  8. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  9. Technology options for an enhanced air cargo system

    NASA Technical Reports Server (NTRS)

    Winston, M. M.

    1979-01-01

    A view of potential enhancements to the air cargo system through technology application is provided. NASA's role in addressing deficiencies of the current civil and military air cargo systems is outlined. The evolution of conventional airfreighter design is traced and projected through the 1990's. Also, several advanced airfreighter concepts incorporating unconventional design features are described to show their potentials benefits. A number of ongoing NASA technology programs are discussed to indicate the wide range of advanced technologies offering potential benefits to the air cargo system. The promise of advanced airfreighters is then viewed in light of the future air cargo infrastructure predicted by extensive systems studies. The derived outlook concludes that the aircraft technology benefits may be offset somewhat by adverse economic, environmental, and institutional constraints.

  10. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  11. Food Systems: Modern Technology, Transnationalization, Regional and National Situations.

    ERIC Educational Resources Information Center

    International Social Science Journal, 1985

    1985-01-01

    Topics discussed include: the emergence of biotechnology; modern food technology; strategies of transnational food companies; transnational agribusiness firms and Mexican agriculture; food production in Western Europe; the agro-industrial system of the USSR; food systems in India; food production systems of the Senegal River; and production modes…

  12. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  13. Large Space Systems/Low-Thrust Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potentially critical interactions that occur between propulsion, structures and materials, and controls for large spacecraft are considered, the technology impacts within these fields are defined and the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization.

  14. Technology assessment of aquaculture systems for municipal waste water treatment

    SciTech Connect

    Hyde, H.C.; Ross, R.S.; Sturmer, L.

    1984-08-01

    The innovative and alternative technology provisions of the Clean Water Act of 1977 (PL 95-217) provide financial incentives to communities that use wastewater treatment alternatives to reduce costs or energy consumption over conventional systems. Some of these technologies have been only recently developed and are not in widespread use in the United States. This document discusses the applicability and technical and economic feasibility of using aquaculture systems for municipal wastewater treatment facilities.

  15. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  16. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  17. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  18. Reactor technology assessment and selection utilizing systems engineering approach

    SciTech Connect

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-12

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  19. Reactor technology assessment and selection utilizing systems engineering approach

    NASA Astrophysics Data System (ADS)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  20. LNG fire and vapor control system technologies

    SciTech Connect

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  1. Urban Flood Warning Systems using Radar Technologies

    NASA Astrophysics Data System (ADS)

    Fang, N.; Bedient, P. B.

    2013-12-01

    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.

  2. Outdoor airflow into HVAC systems: An evaluation of measurement technologies

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.; Delp, Woody

    2003-09-01

    During the last few years, new technologies have been introduced for measuring the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurement technologies has not previously been published. This document describes a test system and protocols developed for controlled evaluation of these measurement technologies. The results of tests of three measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The test results indicate that one measurement technology can measure OA flow rates with errors of 20% or less without a field-based calibration, as long as the OA velocities are sufficient to provide an accurately measurable pressure signal. The test results for a second measurement technology are similar; however, a difficult field-based calibration relating the OA flow rate with the pressure signal would be required to reduce errors below approximately 30%. The errors in OA flow rates measured with the third measurement technology, that uses six electronic airspeed sensors downstream of the OA inlet louver, exceeded 100%; however, these errors could be substantially reduced through a difficult field based calibration. The effects of wind on the accuracy of these measurement technologies still needs to be evaluated.

  3. NASA's new technology reporting system: A review and future prospects

    NASA Technical Reports Server (NTRS)

    Chapman, Richard L.

    1985-01-01

    A systematic effort is made to describe how NASA's new technology reporting system operates today, and how that system might be enhanced. The system is documented in terms of organization, operational practices, and other program benefits. Identified and assessed are incentives or disincentives to reporting, program management, program follow through, and the feasibility of various means for improving the general process. NASA has the only system in the Federal Government for capturing and disseminating new technology developed under its sponsorship of research and development. This system can be improved in many ways, some of which require additional resources and/or more senior management attention, but many of which can be instituted within the authority of the leadership of the Technology Utilization program. The suggested options and actions presented are mutually compatible. Any single action will contribute to improving the process. However, the first and most important step is undoubtedly to gain senior management's attention to the central role played by a vigorous new technology reporting system in the success and value of NASA's broader technology utilization and technology transfer activities.

  4. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    NASA Technical Reports Server (NTRS)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and

  5. Assessment of a satellite power system and six alternative technologies

    NASA Technical Reports Server (NTRS)

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.

    1981-01-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.

  6. Eight-cm mercury ion thruster system technology

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The technology status of 8 cm diameter electron bombardment ion thrusters is presented. Much of the technology resulting from the 5 cm diameter thruster has been adapted and improved upon to increase the reliability, durability, and efficiency of the 8 cm thruster. Technology discussed includes: dependence of neutralizer tip erosion upon neutralizer flow rate; impregnated and rolled-foil insert cathode performance and life testing; neutralizer position studies; thruster ion beam profile measurements; high voltage pulse ignition; high utilization ion machined accelerator grids; deposition internal and external to the thruster; thruster vectoring systems; thruster cycling life testing and thruster system weights for typical mission applications.

  7. Mobile technology in health information systems - a review.

    PubMed

    Zhang, X-Y; Zhang, P-Y

    2016-05-01

    Mobile technology is getting involved in every sphere of life including medical health care. There has been an immense upsurge in mobile phone-based health innovations these days. The expansion of mobile phone networks and the proliferation of inexpensive mobile handsets have made the digital information and communication technology capabilities very handy for the people to exploit if for any utility including health care. The mobile phone based innovations are able to transform weak and under performing health information system into more modern and efficient information system. The present review article will enlighten all these aspects of mobile technology in health care.

  8. Assessment of a satellite power system and six alternative technologies

    SciTech Connect

    Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L.S.; Levine, E.; Tanzman, E.

    1981-04-01

    The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and insitutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included. (LEW)

  9. Flight experience with advanced controls and displays during piloted curved decelerating approaches in a powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.

    1978-01-01

    The control, display, and procedural features are described for a flight experiment conducted to assess the feasibility of piloted STOL approaches along predefined, steep, curved, and decelerating approach profiles. It was found to be particularly important to assist the pilot through use of the flight director computing capability with the lower frequency control-related tasks, such as those associated with monitoring and adjusting configuration trim as influenced by atmospheric effects, and preventing the system from exceeding powerplant and SAS authority limitations. Many of the technical and pilot related issues identified in the course of this flight investigation are representative of similarly demanding operational tasks that are thought to be possible only through the use of sophisticated control and display systems.

  10. Reliability achievement in high technology space systems

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. L.

    1981-01-01

    The production of failure-free hardware is discussed. The elements required to achieve such hardware are: technical expertise to design, analyze, and fully understand the design; use of high reliability parts and materials control in the manufacturing process; and testing to understand the system and weed out defects. The durability of the Hughes family of satellites is highlighted.

  11. Transportation Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Chastain, Gary K.

    This curriculum guide for a 1-semester or 1-year course in transportation provides activities that show and explain many of the occupations, devices, and systems that are related to transportation on land, water, air, and space. The guide contains competencies (task lists), student competency records, and management sheets. Management sheets,…

  12. Microsensor Technologies for Plant Growth System Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  13. MOLECULAR BONDING SYSTEM - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  14. Sensor technology for internal inspection systems

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce K.; Stafford, Jeffrey E.

    1992-07-01

    The Institute of Gas Technology (IGT) designed, fabricated, and tested a breadboard acoustic receiver module as one car of several on the Gas Research Institute (GRI) MOUSE. The acoustic receiver will be used to pinpoint gas leaks from within the pipe by detecting the leak sound and analyzing it as a function of MOUSE location in the pipe. Because gas leaks create sound that gets louder as the receiver approaches the leak, the MOUSE may accurately locate leaks rapidly and inexpensively. The first-year effort demonstrated laboratory feasibility to locate simulated leaks of about 60 SCF/h. Both condenser microphones and piezoelectric film were mounted inside a MOUSE car and its ability to detect leaks was tested. Phase 1 successfully demonstrated that the breadboard acoustic sensor locates leaks in no line flow conditions by recording sound amplitude changes in specific frequency ranges, while operating in conjunction with the GRI MOUSE. Some flow tests indicated that flow noise was substantial and may hamper leak pinpointing in high line flow situations. IGT recommends more critical examination of flow noise and leak sensitivity issues for acoustic sensors.

  15. Specifications for automation of technological systems and equipment at washeries

    SciTech Connect

    Ul'shin, V.A.; Kipa, V.K.; Kopanitsa, D.N.; Serdyuk, N.S.; Burlakov, Yu.A.

    1984-01-01

    In recent years advances have been made in the field of automation of technological processes at coal washing facilities. The type AZB device for automatic charging of hoppers, the RUTA for jigging, the SARF-3 for processes of flotation and filtration, and the AVS-1 for processes and equipment of the water-slurry system are described. Successful tests were conducted on an experimental model of the AP-4V charging system control device. Progress has been made in increasing the level of control of other systems at washing facilities using new technological advances in system solutions.

  16. Advanced photovoltaic power system technology for lunar base applications

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Flood, Dennis J.

    1988-01-01

    Advanced photovoltaic/electrochemical (batteries or regenerative fuel cells for storage) power system options for a lunar base are discussed and compared. Estimated system masses are compared with those projected for the SP-100 nuclear system. The results of the comparison are quantified in terms of the mass saved in a scenario which assembles the initial base elements in Low Earth Orbit (LEO) and launches from there to the lunar surface. A brief summary is given of advances in photovoltaic/electrochemical power system technologies currently under development in the NASA/OAST program. A description of the planned focussed technology program for surface power in the new Pathfinder initiative is also provided.

  17. Technology Demonstration Summary: CF Systems Organics Extraction System, New Bedford Harbor, Massachusetts

    EPA Science Inventory

    The Site Program demonstration of CF Systems' organics extraction technology was conducted to obtain specific operating and cost information that could be used in evaluating the potential applicability of the technology to Superfund sites. The demonstration was conducted concurr...

  18. The vacuum system for technological unit development and design

    NASA Astrophysics Data System (ADS)

    Zhukeshov, A. M.; Gabdullina, A. T.; Amrenova, A. U.; Giniyatova, Sh G.; Kaibar, A.; Sundetov, A.; Fermakhan, K.

    2015-11-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process.

  19. Scenery Storage Technology Application in Power Station System

    NASA Astrophysics Data System (ADS)

    Shi, Hong; Geng, Hao; Feng, Lei; Xu, Xing

    Scenery storage technology can effectively utilize wind power and photovoltaic power generation in the natural complementary of energy and time, improve the reliability of power supply, has attracted more and more attention. At present, the scenery storage research in the field application of the technology is relatively small, based on the actual substation as the research object, put forward the scenery storage technology as substation load power supply three applications of lighting power, standby power station and DC system, and through the detailed implementation of the program design, investment analysis, research the scenery with the feasibility of electrical energy storage technology system application in station. To solve the weak power grid, substation remote and backward areas should not be from the outside to obtain reliable power supply problems, the station area electric system design provides a new way of thinking, which has important practical engineering value.

  20. Future nano- and micro-systems using nanobonding technologies

    SciTech Connect

    Howlader, Matiar M. R. E-mail: jamal@mcmaster.ca; Deen, M. Jamal E-mail: jamal@mcmaster.ca

    2014-03-31

    In this paper, some of the recent achievements in surface-activation-based nanobonding technology are described. This bonding technology allows for the combination of electronic, photonic, fluidic and mechanical functionalities into small form-factor systems for emerging applications in health diagnostics and screening, for example. These nanobonding technologies provide void-free, strong, and nanoscale bonding at room temperature or at low temperatures (<200 °C), and they do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to the covalent bonds, and hydrogen and hydroxyl bonds, respectively, which gives rise to excellent bonding properties. Further, these nanobonding technologies are well-suited for the development of low-cost, high-performance miniaturized systems such as biophotonic imaging systems.

  1. Future nano- and micro-systems using nanobonding technologies

    NASA Astrophysics Data System (ADS)

    Howlader, Matiar M. R.; Deen, M. Jamal

    2014-03-01

    In this paper, some of the recent achievements in surface-activation-based nanobonding technology are described. This bonding technology allows for the combination of electronic, photonic, fluidic and mechanical functionalities into small form-factor systems for emerging applications in health diagnostics and screening, for example. These nanobonding technologies provide void-free, strong, and nanoscale bonding at room temperature or at low temperatures (<200 °C), and they do not require chemicals, adhesives, or high external pressure. The interfaces of the nanobonded materials in ultra-high vacuum and in air correspond to the covalent bonds, and hydrogen and hydroxyl bonds, respectively, which gives rise to excellent bonding properties. Further, these nanobonding technologies are well-suited for the development of low-cost, high-performance miniaturized systems such as biophotonic imaging systems.

  2. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  3. A Lunar Surface System Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.

    2009-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of

  4. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1983-01-01

    The first phase of a planned multiphase program to develop a Phosphoric is addressed. This report describes the efforts performed that culminated in the: (1) Establishment of the preliminary design requirements and system conceptual design for the nominally rated 375 kW PAFC module and is interfacing power plant systems; (2) Establishment of PAFC component and stack performance, endurance, and design parameter data needed for design verification for power plant application; (3) Improvement of the existing PAFC materials data base and establishment of materials specifications and process procedes for the cell components; and (4) Testing of 122 subscale cell atmospheric test for 110,000 cumulative test hours, 12 subscale cell pressurized tests for 15,000 cumulative test hours, and 12 pressurized stack test for 10,000 cumulative test hours.

  5. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  6. Parachute systems technology: Fundamentals, concepts, and applications

    SciTech Connect

    Johnson, D.W.

    1987-01-01

    In this paper, many different types of tests, vehicles, and data acquisition systems will be discussed. The types of tests used by parachute designers are only limited by the designers' imaginations. Since the paper is of finite length, some designers' favorite methods of accomplishing a certain objective will not be discussed. Any omissions are unintentional and are left to future discussions either formally or informally.

  7. Aren't technological choices central to designing health systems?

    PubMed

    Priya, Ritu

    2013-01-01

    This paper argues that delivery of technology-based preventive, promotive and curative care is one of the central tasks of any health-care system and therefore it forms one of the central pivots for rational structuring/re-structuring of a health-care system. The development of our public health system has, historically, adopted health technologies (HT) uncritically and thereby not explicitly developed institutional mechanisms to assess them for rational choice. Determinants of HT policy choices and structuring of a service delivery system based on that are discussed with examples of modern low cost HT, technologies of codified health knowledge systems other than the modern and local health traditions. Various forms of institutional structures for HT assessment and R and D using a comprehensive primary health-care approach are suggested. PMID:24351381

  8. Aren't technological choices central to designing health systems?

    PubMed

    Priya, Ritu

    2013-01-01

    This paper argues that delivery of technology-based preventive, promotive and curative care is one of the central tasks of any health-care system and therefore it forms one of the central pivots for rational structuring/re-structuring of a health-care system. The development of our public health system has, historically, adopted health technologies (HT) uncritically and thereby not explicitly developed institutional mechanisms to assess them for rational choice. Determinants of HT policy choices and structuring of a service delivery system based on that are discussed with examples of modern low cost HT, technologies of codified health knowledge systems other than the modern and local health traditions. Various forms of institutional structures for HT assessment and R and D using a comprehensive primary health-care approach are suggested.

  9. Automation and robotics technology for intelligent mining systems

    NASA Technical Reports Server (NTRS)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  10. Safety System Design for Technology Education. A Safety Guide for Technology Education Courses K-12.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.

    This manual is designed to involve both teachers and students in planning and controlling a safety system for technology education classrooms. The safety program involves students in the design and maintenance of the system by including them in the analysis of the classroom environment, job safety analysis, safety inspection, and machine safety…

  11. System Study for Axial Vane Engine Technology

    NASA Technical Reports Server (NTRS)

    Badley, Patrick R.; Smith, Michael R.; Gould, Cedric O.

    2008-01-01

    The purpose of this engine feasibility study was to determine the benefits that can be achieved by incorporating positive displacement axial vane compression and expansion stages into high bypass turbofan engines. These positive-displacement stages would replace some or all of the conventional compressor and turbine stages in the turbine engine, but not the fan. The study considered combustion occurring internal to an axial vane component (i.e., Diesel engine replacing the standard turbine engine combustor, burner, and turbine); and external continuous flow combustion with an axial vane compressor and an axial vane turbine replacing conventional compressor and turbine systems.

  12. Responses to Deceleration during Car Following: Roles of Optic Flow, Warnings, Expectations, and Interruptions

    ERIC Educational Resources Information Center

    DeLucia, Patricia R.; Tharanathan, Anand

    2009-01-01

    More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on…

  13. Does Missing Classes Decelerate Student Exam Performance Progress? Empirical Evidence and Policy Implications

    ERIC Educational Resources Information Center

    Lin, Tin-Chun

    2014-01-01

    A total of 389 business students in undergraduate introductory microeconomics classes in spring 2007, 2009, and 2011, and fall 2012 participated in an exam performance progress study. Empirical evidence suggested that missing classes decelerates and hampers high-performing students' exam performance progress. Nevertheless, the evidence does…

  14. Rotary-Wing Decelerators for Probe Descent Through the Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Briggs, Geoffrey; Aiken, Edwin; Pisanich, Greg

    2005-01-01

    An innovative concept is proposed for atmospheric entry probe deceleration, wherein one or more deployed rotors (in autorotation or wind-turbine flow states) on the aft end of the probe effect controlled descent. This concept is particularly oriented toward probes intended to land safely on the surface of Venus. Initial work on design trade studies is discussed.

  15. Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.; Beaird, H. G.; Weissinger, W. D.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.

  16. Satellite communications systems and technology. Volume 1: Analytical chapters

    NASA Technical Reports Server (NTRS)

    Edelson, Burton I. (Editor); Pelton, Joseph N. (Editor); Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Helm, Neil R.; Jennings, Raymond D.; Kwan, Robert K.; Mahle, Christoph E.

    1993-01-01

    This is Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. Focus was on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960's and 1970's. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  17. Satellite communications systems and technology. Volume 1; Analytic Chapters

    NASA Technical Reports Server (NTRS)

    Jennings, Raymond D.; Mahle, Christoph E.; Miller, Edward F.; Riley, Lance; Pelton, Joseph N.; Bostian, Charles W.; Brandon, William T.; Chan, Vincent W. S.; Hager, E. Paul; Edelson, Burton I.; Kwan, Robert K.; Helm, Neil R.

    1993-01-01

    Volume 1 (Analytical Chapters) of the final report of the NASA/NSF Panel Satellite Communications Systems and Technology is presented. The panel surveyed advanced technology being developed for commercial use in the satellite communications field in Europe, Japan, and Russia. All aspects of satellite communications were considered, including fixed, broadcast, mobile, personal communications, navigation, low earth orbit, and small satellites. The focus of the study was on experimental and advanced technology being developed in R&D and demonstration programs rather than on today's production capabilities. The report focuses on commercial satellite technology, and does not review defense-related or other confidential satellite communications capabilities. The NASA/NSF panel concluded that the United States has lost its leading position in many critical satellite communications technologies. Although U.S. industry retains a leading position in today's marketplace for satellite communications systems and services, this position is largely founded on technologies and capabilities developed in the 1960s and 1970s. Because the United States is losing ground with respect to a wide range of technologies and systems that will be key to future communications markets, the market share of the U.S. satellite communications industry is at risk.

  18. Technology review of flight crucial flight control systems (application of optical technology)

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.

  19. Trend of Autonomous Decentralized System Technologies and Their Application in IC Card Ticket System

    NASA Astrophysics Data System (ADS)

    Mori, Kinji; Shiibashi, Akio

    The advancement of technology is ensured by step-by-step innovation and its implementation into society. Autonomous Decentralized Systems (ADSs) have been growing since first proposed in 1977. Since then, the ADS technologies and their implementations have interacted with the evolving markets, sciences, and technologies. The ADS concept is proposed on biological analogy, and its technologies have been advanced according to changing and expanding requirements. These technologies are now categorized into six generations on the basis of requirements and system structures, but the ADS concept and its system architecture have not changed. The requirements for the system can be divided in operation-oriented, mass service-oriented, and personal service-oriented categories. Moreover, these technologies have been realized in homogeneous system structure and, as the next step, in heterogeneous system structure. These technologies have been widely applied in manufacturing, telecommunications, information provision/utilization, data centers, transportation, and so on. They have been operating successfully throughout the world. In particular, ADS technologies have been applied in Suica, the IC card ticket system (ICCTS) for fare collection and e-commerce. This system is not only expanding in size and functionality but also its components are being modified almost every day without stopping its operation. This system and its technologies are shown here. Finally, the future direction of ADS is discussed, and one of its technologies is presented.

  20. National Space Transportation System (NSTS) technology needs

    NASA Technical Reports Server (NTRS)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  1. Aircraft System Analysis of Technology Benefits to Civil Transport Rotorcraft

    NASA Technical Reports Server (NTRS)

    Wilkerson, Joseph B.; Smith, Roger L.

    2008-01-01

    An aircraft systems analysis was conducted to evaluate the net benefits of advanced technologies on two conceptual civil transport rotorcraft, to quantify the potential of future civil rotorcraft to become operationally viable and economically competitive, with the ultimate goal of alleviating congestion in our airways, runways and terminals. These questions are three of many that must be resolved for the successful introduction of civil transport rotorcraft: 1) Can civil transport rotorcraft actually relieve current airport congestion and improve overall air traffic and passenger throughput at busy hub airports? What is that operational scenario? 2) Can advanced technology make future civil rotorcraft economically competitive in scheduled passenger transport? What are those enabling technologies? 3) What level of investment is necessary to mature the key enabling technologies? This study addresses the first two questions, and several others, by applying a systems analysis approach to a broad spectrum of potential advanced technologies at a conceptual level of design. The method was to identify those advanced technologies that showed the most promise and to quantify their benefits to the design, development, production, and operation of future civil rotorcraft. Adjustments are made to sizing data by subject matter experts to reflect the introduction of new technologies that offer improved performance, reduced weight, reduced maintenance, or reduced cost. This study used projected benefits from new, advanced technologies, generally based on research results, analysis, or small-scale test data. The technologies are identified, categorized and quantified in the report. The net benefit of selected advanced technologies is quantified for two civil transport rotorcraft concepts, a Single Main Rotor Compound (SMRC) helicopter designed for 250 ktas cruise airspeed and a Civil Tilt Rotor (CTR) designed for 350 ktas cruise airspeed. A baseline design of each concept was

  2. The influence of large-scale structures on entrainment in a decelerating transient turbulent jet revealed by large eddy simulation

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Musculus, Mark P. B.; Oefelein, Joseph C.

    2012-04-01

    To provide a better understanding of the fluid mechanical mechanisms governing entrainment in decelerating jets, we performed a large eddy simulation (LES) of a transient air jet. The ensemble-averaged LES calculations agree well with the available measurements of centerline velocity, and they reveal a region of increased entrainment that grows as it propagates downstream during deceleration. Within the temporal and spatial domains of the simulation, entrainment during deceleration temporarily increases by roughly a factor of two over that of the quasi-steady jet, and thereafter decays to a level lower than the quasi-steady jet. The LES results also provide large-structure flow details that lend insight into the effects of deceleration on entrainment. The simulations show greater growth and separation of large vortical structures during deceleration. Ambient fluid is engulfed into the gaps between the large-scale structures, causing large-scale indentations in the scalar jet boundary. The changes in the growth and separation of large structures during deceleration are attributed to changes in the production and convection of vorticity. Both the absolute and normalized scalar dissipation rates decrease during deceleration, implying that changes in small-scale mixing during deceleration do not play an important role in the increased entrainment. Hence, the simulations predict that entrainment in combustion devices may be controlled by manipulating the fuel-jet boundary conditions, which affect structures at large scales much more than at small scales.

  3. Development of Life Support System Technologies for Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  4. Technology Readiness of the NEXT Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Patterson, Michael J.

    2008-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system has been in advanced technology development under the NASA In-Space Propulsion Technology project. The highest fidelity hardware planned has now been completed by the government/industry team, including: a flight prototype model (PM) thruster, an engineering model (EM) power processing unit, EM propellant management assemblies, a breadboard gimbal, and control unit simulators. Subsystem and system level technology validation testing is in progress. To achieve the objective Technology Readiness Level 6, environmental testing is being conducted to qualification levels in ground facilities simulating the space environment. Additional tests have been conducted to characterize the performance range and life capability of the NEXT thruster. This paper presents the status and results of technology validation testing accomplished to date, the validated subsystem and system capabilities, and the plans for completion of this phase of NEXT development. The next round of competed planetary science mission announcements of opportunity, and directed mission decisions, are anticipated to occur in 2008 and 2009. Progress to date, and the success of on-going technology validation, indicate that the NEXT ion propulsion system will be a primary candidate for mission consideration in these upcoming opportunities.

  5. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  6. Technology Assessment Tool - An Application of Systems Engineering to USDOE Technology Proposals

    SciTech Connect

    M. A. Rynearson

    1999-06-01

    This paper discusses the system design of a Technology Assessment (TA) tool that can be used to quantitatively evaluate new and advanced technologies, products, or processes. Key features of the tool include organization of information in an indentured hierarchy; questions and categories derived from the decomposition of technology performance; segregation of life-cycle issues into six assessment categories; and scoring, relative impact, and sensitivity analysis capability. An advantage of the tool's use is its ability to provide decision analysis data, based on incomplete or complete data.

  7. Technology Assessment Tool - An Application of Systems Engineering to USDOE Technology Proposals

    SciTech Connect

    Rynearson, Michael Ardel

    1999-06-01

    This paper discusses the system design for a Technology Assessment (TA) tool that can be used to quantitatively evaluate new and advanced technologies, products, or processes. Key features of the tool include organization of information in an indentured hierarchy; questions and categories derived from the decomposition of technology performance; segregation of life-cycle issues into six assessment categories; and scoring, relative impact, and sensitivity analysis capability. An advantage of the tool's use is its ability to provide decision analysis data, based on incomplete or complete data.

  8. Applying New Network Security Technologies to SCADA Systems.

    SciTech Connect

    Hurd, Steven A; Stamp, Jason Edwin; Duggan, David P; Chavez, Adrian R.

    2006-11-01

    Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure "traditional" IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators. 4This page intentionally left blank.

  9. A Guide Management System Based on RFID and Bluetooth Technology

    NASA Astrophysics Data System (ADS)

    Li, Han-Sheng; Wang, Jun-Jun

    The most fundamental and important requirement of the tour guide in the tour process is to ensure the safety of tourists. In this paper, a portable guide management system is designed based on RFID technology, the Android software and blue-tooth communication technology. Through this system, the guide can get real-time information if some tourists are l behind, and send text message or dial to those tourists who are l behind immediately. The system reduces the roll-calling time on the tourists, improves the tour guide work efficiency and service quality.

  10. Reliability modelling system for analysis of advanced battery technologies

    NASA Astrophysics Data System (ADS)

    Imhoff, C. H.; Hostick, C. J.; Nakaoka, R. K.

    1985-05-01

    Key considerations in evaluating the reliability of advanced battery technologies include the impact of cell failures on battery performance and cost. Pacific Northwest Laboratory developed interactive microcomputer based simulation models to help battery developers use cell reliability data to calculate the expected performance of new battery technologies. Key benefits of this model include its capability to estimate the effect of cell failures upon: (1) battery system discharge performance, (2) system cycle life, and (3) system economic performance (tradeoffs between capital investment and lifetime operating costs).

  11. Goddard Conference on Mass Storage Systems and Technologies, volume 2

    NASA Technical Reports Server (NTRS)

    Kobler, Ben (Editor); Hariharan, P. C. (Editor)

    1993-01-01

    Papers and viewgraphs from the conference are presented. Discussion topics include the IEEE Mass Storage System Reference Model, data archiving standards, high-performance storage devices, magnetic and magneto-optic storage systems, magnetic and optical recording technologies, high-performance helical scan recording systems, and low end helical scan tape drives. Additional discussion topics addressed the evolution of the identifiable unit for processing (file, granule, data set, or some similar object) as data ingestion rates increase dramatically, and the present state of the art in mass storage technology.

  12. Automotive Technology Evolved by Electrical and Electronic Systems

    NASA Astrophysics Data System (ADS)

    Teratani, Tatsuo; Okuma, Shigeru

    Automotive electrical and electronic systems, e.g. EHV, FCV, future X-By-Wire, have recently been introduced or planned in place of mechanical systems. Drivers are demanding environmental performance (fuel consumption and weight reduction), safety and comfort. For general use of the new technologies, evolution of the automotive technology is required, including energy conversion efficiency improvement, size and weight reduction of components, cost reduction and high reliability. This paper discusses and summarizes the next generation power systems, the future vehicle image, power source combinations, and problems to be solved for development of automotive electronics.

  13. Transformational System Concepts and Technologies for Future Space Applications

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Howell, Joe T.

    2004-01-01

    The President's VIsion for Space Exploration offers opportunities to seek new paradigms and develop transformational space infrastructures. First steps are being taken to develop transformational system concepts such as modular reconfigurable systems, cryogenic propellant depots to preposition propellants, etc., and to develop other critical technologies.

  14. Solids management in a channel catfish biofloc technology production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofloc technology (BFT) production systems are being used more commonly to produce high yields of fish or shrimp because very high feed rates are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particulate organic matter and is maintained in s...

  15. Adaptive Hypermedia Educational System Based on XML Technologies.

    ERIC Educational Resources Information Center

    Baek, Yeongtae; Wang, Changjong; Lee, Sehoon

    This paper proposes an adaptive hypermedia educational system using XML technologies, such as XML, XSL, XSLT, and XLink. Adaptive systems are capable of altering the presentation of the content of the hypermedia on the basis of a dynamic understanding of the individual user. The user profile can be collected in a user model, while the knowledge…

  16. Scientific and Technological Information Systems in the Soviet Union

    ERIC Educational Resources Information Center

    Kirson, Benjamin L.

    1973-01-01

    Not much is known at present about the organization and structure of the Soviet Union's information systems. It is the purpose of the communication to objectively review and summarize the present state-of-the-art of scientific and technological information systems within the Soviet Union. (9 references) (Author)

  17. [A wireless mobile monitoring system based on bluetooth technology].

    PubMed

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  18. Growing stocker channel catfish in a biofloc technology production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofloc technology (BFT), or mixed suspended-growth, production systems are being used more frequently worldwide for culturing various aquatic animals because of the high yields that are possible. In an outdoor BFT production system, a complex of living organisms is closely associated with particula...

  19. Recent advances in PV systems technology development in Europe

    SciTech Connect

    Imamura, M.; Grottke, M.; Weiss, I.

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  20. An Instructional Systems Technology Model for Institutional Change.

    ERIC Educational Resources Information Center

    Dudgeon, Paul J.

    A program based on instructional systems technology was developed at Canadore College as a means of devising the optimal learning experience for each individual student. The systems approach is used to solve educational problems through a process of analysis, synthesis, modeling, and simulation, based on the LOGOS (Language for Optimizing…