5.0 Aerodynamic and Propulsive Decelerator Systems
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl
2005-01-01
Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.
The challenges of integrating instrumentation with inflatable aerodynamic decelerators
NASA Astrophysics Data System (ADS)
Swanson, Gregory T.; Cassell, Alan M.; Hughes, Stephen J.; Johnson, R. Keith; Calomino, Anthony M.
New Entry, Decent, and Landing (EDL) technologies are being explored to facilitate the landing of high mass vehicles. Current EDL technologies are limited due to mass and volume constraints dictated by launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs). To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing of the flexible materials and structures used in their design. From this survey many sensing technologies and systems were explored specific to the stacked torus IAD, resulting in a down-selection to the most viable prospects. The majority of these systems, including wireless data acquisition, were then rapid prototyped and evaluated during component level testing to determine the best integration techniques specific to a 3m and 6m diameter stacked toroid IAD. Each sensing system was then integrated in support of the Hypersonic Inflatable Aerodynamic Decelerator ground test campaign. In this paper these IAD instrumentation systems are described along with their challenges in comparison to traditional rigid aeroshell systems. Requirements resulting from the survey are listed and instrumentation integration techniques and data acquisition are discussed.
Development and Testing of a New Family of Supersonic Decelerators
NASA Technical Reports Server (NTRS)
Clark, Ian G.; Adler, Mark; Rivellini, Tommaso P.
2013-01-01
The state of the art in Entry, Descent, and Landing systems for Mars applications is largely based on technologies developed in the late 1960's and early 1970's for the Viking Lander program. Although the 2011 Mars Science Laboratory has made advances in EDL technology, these are predominantly in the areas of entry (new thermal protection systems and guided hypersonic flight) and landing (the sky crane architecture). Increases in entry mass, landed mass, and landed altitude beyond MSL capabilities will require advances predominantly in the field of supersonic decelerators. With this in mind, a multi-year program has been initiated to advance three new types of supersonic decelerators that would enable future large-robotic and human-precursor class missions to Mars.
Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments
NASA Technical Reports Server (NTRS)
Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.
2005-01-01
The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid- structure interaction, aeroheating, and structural adhesives to be of highest technical concern.
Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments
NASA Technical Reports Server (NTRS)
Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.
2005-01-01
The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An independent panel with expertise in advanced thin film materials, aerothermodynamics, trajectory design, and inflatable structures was convened to assess the ISPT investments. The panel considered all major technical subsystems including materials, aerothermodynamics, structural dynamics, packaging, and inflation systems. The panel assessed the overall technology readiness of inflatable decelerators to be a 3 and identified fluid-structure interaction, aeroheating, and structural adhesives to be of highest technical concern.
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria
2013-01-01
The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.
Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.
2010-01-01
NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.
Deceleration of Antiprotons in Support of Antiproton Storage/Utilization Research
NASA Astrophysics Data System (ADS)
Howe, Steven D.; Jackson, Gerald P.; Pearson, J. Boise; Lewis, Raymond A.
2005-02-01
Antimatter has the highest energy density known to mankind. Many concepts have been studied that use antimatter for propulsion. All of these concepts require the development of high density storage. Hbar Technologies, under contract with the NASA Marshall Space Flight Center, has undertaken the first step toward development of high density storage. Demonstration of the ability to store antiprotons in a Penning Trap provides the technology to pursue research in alternative storage methods that may lead to eventually to high density concepts. Hbar Technologies has undertaken research activity on the detailed design and operations required to decelerate and redirect the Fermi National Accelerator Laboratory (FNAL) antiproton beam to lay the groundwork for a source of low energy antiprotons. We have performed a detailed assessment of an antiproton deceleration scheme using the FNAL Main Injector, outlining the requirements to significantly and efficiently lower the energy of antiprotons. This task shall require a combination of: theoretical/computation simulations, development of specialized accelerator controls programming, modification of specific Main Injector hardware, and experimental testing of the modified system. Testing shall be performed to characterize the system with a goal of reducing the beam momentum from 8.9 GeV/c to a level of 1 GeV/c or less. We have designed an antiproton degrader system that will integrate with the FNAL decelerated/transferred beam. The degrader shall be designed to maximize the number of low energy antiprotons with a beam spot sized for acceptance by the Mark I test hardware.
Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.
2016-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
Galvanometer scanning technology for laser additive manufacturing
NASA Astrophysics Data System (ADS)
Luo, Xi; Li, Jin; Lucas, Mark
2017-02-01
A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.
2014-06-17
NASA is investing in a number of technologies to extend Entry, Descent and Landing (EDL) capabilities to enable Human Missions to Mars. These technologies will also enable robotic Science missions. Human missions will require landing payloads of 10?s of metric tons, not possible with today's technology. Decelerating from entry speeds around 15,000 miles per hour to landing in a matter of minutes will require very large drag or deceleration. The one way to achieve required deceleration is to deploy a large surface that can be stowed during launch and deployed prior to entry. This talk will highlight a simple concept similar to an umbrella. Though the concept is simple, the size required for human Mars missions and the heating encountered during entry are significant challenges. The mechanically deployable system can also enable robotic science missions to Venus and is also equally applicable for bringing back cube-satellites and other small payloads. The scalable concept called Adaptive Deployable Entry and Placement Technology (ADEPT) is under development and is the focus of this talk.
Aerodynamic Decelerators for Planetary Exploration: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Cruz, Juna R.; Lingard, J. Stephen
2006-01-01
In this paper, aerodynamic decelerators are defined as textile devices intended to be deployed at Mach numbers below five. Such aerodynamic decelerators include parachutes and inflatable aerodynamic decelerators (often known as ballutes). Aerodynamic decelerators play a key role in the Entry, Descent, and Landing (EDL) of planetary exploration vehicles. Among the functions performed by aerodynamic decelerators for such vehicles are deceleration (often from supersonic to subsonic speeds), minimization of descent rate, providing specific descent rates (so that scientific measurements can be obtained), providing stability (drogue function - either to prevent aeroshell tumbling or to meet instrumentation requirements), effecting further aerodynamic decelerator system deployment (pilot function), providing differences in ballistic coefficients of components to enable separation events, and providing height and timeline to allow for completion of the EDL sequence. Challenging aspects in the development of aerodynamic decelerators for planetary exploration missions include: deployment in the unusual combination of high Mach numbers and low dynamic pressures, deployment in the wake behind a blunt-body entry vehicle, stringent mass and volume constraints, and the requirement for high drag and stability. Furthermore, these aerodynamic decelerators must be qualified for flight without access to the exotic operating environment where they are expected to operate. This paper is an introduction to the development and application of aerodynamic decelerators for robotic planetary exploration missions (including Earth sample return missions) from the earliest work in the 1960s to new ideas and technologies with possible application to future missions. An extensive list of references is provided for additional study.
Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting
NASA Technical Reports Server (NTRS)
Ivanov, Mark
2015-01-01
NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed as well as an overview of the on-board flight software used to trigger and sequence the main flight events necessary to deploy the deceleration technologies. Finally, as-flown performance of the SFDT-1 system will be discussed.
Demonstration of Land and Hold Short Technology at the Dallas-Fort Worth International Airport
NASA Technical Reports Server (NTRS)
Hyer, Paul V.; Jones, Denise R. (Technical Monitor)
2002-01-01
A guidance system for assisting in Land and Hold Short operations was developed and then tested at the Dallas-Fort Worth International Airport. This system displays deceleration advisory information on a head-up display (HUD) in front of the airline pilot during landing. The display includes runway edges, a trend vector, deceleration advisory, locations of the hold line and of the selected exit, and alphanumeric information about the progress of the aircraft. Deceleration guidance is provided to the hold short line or to a pilot selected exit prior to this line. Logic is provided to switch the display automatically to the next available exit. The report includes descriptions of the algorithms utilized in the displays, and a report on the techniques of HUD alignment, and results.
Technology development for deployable aerodynamic decelerators at Mars
NASA Astrophysics Data System (ADS)
Masciarelli, James P.
2002-01-01
Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa. .
Technology Development for Deployable Aerodynamic Decelerators at Mars
NASA Technical Reports Server (NTRS)
Masciarelli, James P.
2002-01-01
Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa.
Entry, Descent, and Landing for Human Mars Missions
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj
2012-01-01
System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.
NASA Technical Reports Server (NTRS)
Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon
2014-01-01
Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.
NASA Technical Reports Server (NTRS)
Vongierke, H. E.; Brinkley, J. W.
1975-01-01
The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.
2013-01-01
The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.
Roll-Out and Turn-Off Display Software for Integrated Display System
NASA Technical Reports Server (NTRS)
Johnson, Edward J., Jr.; Hyer, Paul V.
1999-01-01
This report describes the software products, system architectures and operational procedures developed by Lockheed-Martin in support of the Roll-Out and Turn-Off (ROTO) sub-element of the Low Visibility Landing and Surface Operations (LVLASO) program at the NASA Langley Research Center. The ROTO portion of this program focuses on developing technologies that aid pilots in the task of managing the deceleration of an aircraft to a pre-selected exit taxiway. This report focuses on software that produces a system of redundant deceleration cues for a pilot during the landing roll-out, and presents these cues on a head up display (HUD). The software also produces symbology for aircraft operational phases involving cruise flight, approach, takeoff, and go-around. The algorithms and data sources used to compute the deceleration guidance and generate the displays are discussed. Examples of the display formats and symbology options are presented. Logic diagrams describing the design of the ROTO software module are also given.
Venus In Situ Explorer Mission design using a mechanically deployed aerodynamic decelerator
NASA Astrophysics Data System (ADS)
Smith, B.; Venkatapathy, E.; Wercinski, P.; Yount, B.; Prabhu, D.; Gage, P.; Glaze, L.; Baker, C.
The Venus In Situ Explorer (VISE) Mission addresses the highest priority science questions within the Venus community outlined in the National Research Council's Decadal Survey. The heritage Venus atmospheric entry system architecture, a 45° sphere-cone rigid aeroshell with a carbon phenolic thermal protection system, may no longer be the preferred entry system architecture compared to other viable alternatives being explored at NASA. A mechanically-deployed aerodynamic decelerator, known as the Adaptive Deployable Entry and Placement Technology (ADEPT), is an entry system alternative that can provide key operational benefits and risk reduction compared to a rigid aeroshell. This paper describes a mission feasibility study performed with the objectives of identifying potential adverse interactions with other mission elements and establishing requirements on decelerator performance. Feasibility is assessed through a launch-to-landing mission design study where the Venus Intrepid Tessera Lander (VITaL), a VISE science payload designed to inform the Decadal Survey results, is repackaged from a rigid aeroshell into the ADEPT decelerator. It is shown that ADEPT reduces the deceleration load on VITaL by an order of magnitude relative to a rigid aeroshell. The more benign entry environment opens up the VISE mission design environment for increased science return, reduced risk, and reduced cost. The ADEPT-VITAL mission concept of operations is presented and details of the entry vehicle structures and mechanisms are given. Finally, entry aerothermal analysis is presented that defines the operational requirements for a revolutionary structural-TPS material employed by ADEPT: three-dimensionally woven carbon cloth. Ongoing work to mitigate key risks identified in this feasibility study is presented.
NASA Astrophysics Data System (ADS)
James, B.
2004-11-01
Aerocapture technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by NASA Headquarters and implemented at the NASA Marshall Space Flight Center in Huntsville, Alabama. Aerocapture is a flight maneuver designed to aerodynamically decelerate a spacecraft from hyperbolic approach to a captured orbit during one pass through the atmosphere. Small amounts of propulsive fuel are used for attitude control and periapsis raise only. This technique is very attractive since it permits spacecraft to be launched from Earth at higher verlocities, reducing trip times. The aerocapture technique also significantly reduces the overall mass of the propulsion systems. This allows for more science payload to be added to the mission. Alternatively, a smaller launch vehicle could be used, reducing overall mission cost. Aerocapture can be realized in various ways. It can be accomplished using rigid aeroshells, such as those used in previous mission efforts (like Apollo, the planned Aeroassist Flight Experiment and the Mars Exploration Rovers). Aerocapture can also be achieved with inflatable deceleration systems. This family includes the use of a potentially lighter, inflatable aeroshell or a large, trailing ballute - a combination parachute and balloon made of durable, thin material and stowed behind the vehicle for deployment. Aerocapture utilizing inflatable decelerators is also derived from previous efforts, but will necessitate further research to reach the technology readiness level (TRL) that the rigid aeroshell has achieved. Results of recent Aerocapture Systems analysis studies for small bodies and giant planets show that aerocapture can be enhancing for most missions and absolutely enabling for some mission scenarios. In this way, Aerocapture could open up exciting, new science mission opportunities.
Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo
2015-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.
NASA Technical Reports Server (NTRS)
Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian
2015-01-01
NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.
Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2016-01-01
An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
Technology Demonstration Missions
NASA Technical Reports Server (NTRS)
McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen
2015-01-01
Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion (SEP): 50-kW class spacecraft that uses flexible blanket solar arrays for power generation and an electric propulsion system that delivers payload from low-Earth orbit to higher orbits. (10) Solar Sail Demonstration (SSD): Demo to validate sail deployment techniques for solar sails that are propelled by the pressure of sunlight. (11) Terrestrial HIAD Orbit Reentry (THOR): Demo of a 3.7-m Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry vehicle to test second generation aerothermal performance and modeling.
Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil
2012-01-01
The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.
Pollution reduction technology program small jet aircraft engines, phase 3
NASA Technical Reports Server (NTRS)
Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.
1981-01-01
A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.
Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development
NASA Technical Reports Server (NTRS)
Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony
2015-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.
Aerocapture Inflatable Decelerator for Planetary Entry
NASA Technical Reports Server (NTRS)
Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.
Aerocapture Inflatable Decelerator (AID)
NASA Technical Reports Server (NTRS)
Reza, Sajjad
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.
2010-06-01
DEMONSTRATING REGENERATIVE BRAKING OF A SQUIRREL CAGE INDUCTION MOTOR WITH VARIOUS DECELERATION RATES USING V BY F CONTROL by Billy J. Nytko...Regenerative Braking of a Squirrel Cage Induction Motor with Various Deceleration Rates Using V by F Control 6. AUTHOR(S) Billy J. Nytko 5. FUNDING...Naval Postgraduate School (NPS) to model regenerative braking to support energy conservation technologies and to improve the efficiencies within the
Deceleration system for kinematic linkages of positioning
NASA Astrophysics Data System (ADS)
Stan, G.
2017-08-01
Flexible automation is used more and more in various production processes, so that both machining itself on CNC machine tools and workpiece handling means are performed through programming the needed working cycle. In order to obtain a successful precise positioning, each motion degree needs a certain deceleration before stopping at a programmed point. The increase of motion speed of moving elements within the manipulators structure depends directly on deceleration duty quality before the programmed stop. Proportional valves as well as servo-valves that can perform hydraulic decelerations are well known, but they feature several disadvantages, such as: high price, severe conditions for oil filtering and low reliability under industrial conditions. This work presents a new deceleration system that allows adjustment of deceleration slope according to actual conditions: inertial mass, speed etc. The new solution of hydraulic decelerator allows its integration to a position loop or its usage in case of positioning large elements that only perform fixed cycles. The results being obtained on the positioning accuracy of a linear axis using the new solution of the hydraulic decelerator are presented, too. The price of the new deceleration system is much lower compared to the price of proportional valves or servo-valves.
Modified hydraulic braking system limits angular deceleration to safe values
NASA Technical Reports Server (NTRS)
Briggs, R. S.; Council, M.; Green, P. M.
1966-01-01
Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.
Qualification flight tests of the Viking decelerator system.
NASA Technical Reports Server (NTRS)
Moog, R. D.; Bendura, R. J.; Timmons, J. D.; Lau, R. A.
1973-01-01
The Balloon Launched Decelerator Test (BLDT) series conducted at White Sands Missile Range (WSMR) during July and August of 1972 flight qualified the NASA Viking '75 decelerator system at conditions bracketing those expected for Mars. This paper discusses the decelerator system design requiremnts, compares the test results with prior work, and discusses significant considerations leading to successful qualification in earth's atmosphere. The Viking decelerator system consists of a single-stage mortar-deployed 53-foot nominal diameter disk-gap-band parachute. Full-scale parachutes were deployed behind a full-scale simulated Viking vehicle at Mach numbers from 0.47 to 2.18 and dynamic pressures from 6.9 to 14.6 psf. Analyses show that the system is qualified with sufficient margin to perform successfully for the Viking mission.
Biodegradable Sonobuoy Decelerators
2015-06-01
material. Two materials studied were polyvinyl alcohol (PVOH) and polyhydroxyalkanoate (PHA). Single and multilayered PVOH films were evaluated as well...readiness point for technology transition. 15. SUBJECT TERMS biodegrade, decelerator, sonobuoy, polyvinyl alcohol, polyhydroxyalkanoate , marine...Center NGO non-governmental organizations NOAA National Oceanic and Atmospheric Administration PHA polyhydroxyalkanoate PIA Parachute Industry
State-of-the-Art Study for High-speed Deceleration and Stabilization Devices
NASA Technical Reports Server (NTRS)
Alexander, W. C.; Lau, R. A.
1966-01-01
Documented aerodynamic deployable decelerator performance data above Mach 1. 0 is presented. The state of the art of drag and stability characteristics for reentry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology. The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.
NASA Technical Reports Server (NTRS)
Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I
2016-01-01
Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)
Critical soft landing technology issues for future US space missions
NASA Technical Reports Server (NTRS)
Macha, J. M.; Johnson, D. W.; Mcbride, D. D.
1992-01-01
A programmatic need for research and development to support parachute-based landing systems has not existed since the end of the Apollo missions in the mid-1970s. Now, a number of planned space programs require advanced landing capabilities for which the experience and technology base does not currently exist. New requirements for landing on land with controllable, gliding decelerators and for more effective impact attenuation devices justify a renewal of the landing technology development effort that existed during the Mercury, Gemini, and Apollo programs. A study was performed to evaluate the current and projected national capability in landing systems and to identify critical deficiencies in the technology base required to support the Assured Crew Return Vehicle and the Two-Way Manned Transportation System. A technology development program covering eight landing system performance issues is recommended.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.
2011-01-01
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology is currently being considered for multiple atmospheric entry applications as the limitations of traditional entry vehicles have been reached. The Inflatable Re-entry Vehicle Experiment (IRVE) has successfully demonstrated this technology as a viable candidate with a 3.0 m diameter vehicle sub-orbital flight. To further this technology, large scale HIADs (6.0 8.5 m) must be developed and tested. To characterize the performance of large scale HIAD technology new instrumentation concepts must be developed to accommodate the flexible nature inflatable aeroshell. Many of the concepts that are under consideration for the HIAD FY12 subsonic wind tunnel test series are discussed below.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1972-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-2 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anomalies encounters during the mission is included.
NASA Technical Reports Server (NTRS)
Dickinson, D.; Hicks, F.; Schlemmer, J.; Michel, F.; Moog, R. D.
1973-01-01
The pertinent events concerned with the launch, float, and flight of balloon launched decelerator test vehicle AV-3 are discussed. The performance of the decelerator system is analyzed. Data on the flight trajectory and decelerator test points at the time of decelerator deployment are provided. A description of the time history of vehicle events and anaomalies encounters during the mission is included.
Soft-Ground Aircraft Arresting Systems.
1987-08-01
19 Rut Depth in Foam Arrestor Bed for Aircraft A. .. .... 30 20 Aircraft B Deceleration in Gravel Arrestor. ... .... 32 21Arrf u ephPoiei rvl retr...Bed Arrestment ....... ... ... ... ... .... 43 30 Aircraft D Deceleration in Gravel Bed .... ......... 44 31 Aircraft D Rut Depth Obtained in Gravel...The deceleration of Aircraft D is shown in Figure 30 . The peak deceleration was about 0.43 g’s. The initial part of the deceleration curve shows a
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2015-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology demonstration via flight-testing. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. This publication summarizes results comparing analytical results with test data for two concepts subjected to representative entry, static loading. The level of agreement and ability to predict the load distribution is considered sufficient to enable analytical predictions to be used in the design process.
High Altitude Supersonic Decelerator Test Vehicle
NASA Technical Reports Server (NTRS)
Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark
2013-01-01
The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.
Enveloping Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)
2018-01-01
An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.
Technology Overview and Assessment for Small-Scale EDL Systems
NASA Technical Reports Server (NTRS)
Heidrich, Casey R.; Smith, Brandon P.; Braun, Robert D.
2016-01-01
Motivated by missions to land large rovers and humans at Mars and other bodies, high-mass EDL technologies are a prevalent trend in the research community. In contrast, EDL systems for low-mass payloads have attracted less attention. Significant potential in science and discovery exists in small-scale EDL systems. Payloads acting secondary to a flagship mission are a currently under-utilzed resource. Before taking advantage of these opportunities, further developed of scaled EDL technologies is required. The key limitations identified in this study are compact decelerators and deformable impact systems. Current technologies may enable rough landing of small payloads, with moderate restrictions in packaging volume. Utilization of passive descent and landing stages will greatly increase the applicability of small systems, allowing for vehicles robust to entry environment uncertainties. These architectures will provide an efficient means of achieving science and support objectives while reducing cost and risk margins of a parent mission.
Progress in Payload Separation Risk Mitigation for a Deployable Venus Heat Shield
NASA Technical Reports Server (NTRS)
Smith, Brandon P.; Yount, Bryan C.; Venkatapathy, Ethiraj; Stern, Eric C.; Prabhu, Dinesh K.; Litton, Daniel K.
2013-01-01
A deployable decelerator known as the Adaptive Deployable Entry and Placement Technology (ADEPT) offers substantial science and mass savings for the Venus In Situ Explorer (VISE) mission. The lander and science payload must be separated from ADEPT during atmospheric entry. This paper presents a trade study of the separation system concept of operations and provides a conceptual design of the baseline: aft-separation with a subsonic parachute. Viability of the separation system depends on the vehicle's dynamic stability characteristics during deceleration from supersonic to subsonic speeds. A trajectory sensitivity study presented shows that pitch damping and Venusian winds drive stability prior to parachute deployment, while entry spin rate is not a driver of stability below Mach 5. Additionally, progress in free-flight CFD techniques capable of computing aerodynamic damping parameters is presented. Exploratory simulations of ADEPT at a constant speed of Mach number of 0.8 suggest the vehicle may have an oscillation limit cycle near 5 angle-of-attack. The proposed separation system conceptual design is thought to be viable.
NASA Technical Reports Server (NTRS)
Clark, Ian G.; Adler, Mark; Manning, Rob
2015-01-01
NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.
NASA Technical Reports Server (NTRS)
Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.;
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.
2012-01-01
NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.
Deceleration-Limiting Roadway Barrier
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); Locke, P. James (Inventor)
2006-01-01
Roadway barrier system and method are disclosed for decelerating a moving vehicle in a controlled manner and for retaining the decelerated vehicle. A net or mesh of the roadway barrier system receives and captures the moving vehicle. The net or mesh is secured to anchors by energy absorbing straps. The energy absorbing straps deploy under a tensional load to decelerate the moving vehicle, the straps providing a controlled resistance to the tensional load over a predefined displacement or stroke to bring the moving vehicle to rest. Additional features include a sacrificial panel or sheet in front of the net that holds up the net or mesh while deflecting vehicles that collide only tangentially with the roadway barrier system.
NASA Technical Reports Server (NTRS)
Swanson, Greg; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Gilles, Brian; Anderson, Paul; Bond, Bruce
2016-01-01
Over a decade of work has been conducted in the development of NASAs Hypersonic Inflatable Aerodynamic Decelerator (HIAD) deployable aeroshell technology. This effort has included multiple ground test campaigns and flight tests culminating in the HIAD projects second generation (Gen-2) aeroshell system. The HIAD project team has developed, fabricated, and tested stacked-torus inflatable structures (IS) with flexible thermal protection systems (F-TPS) ranging in diameters from 3-6m, with cone angles of 60 and 70 deg. To meet NASA and commercial near term objectives, the HIAD team must scale the current technology up to 12-15m in diameter. The HIAD projects experience in scaling the technology has reached a critical juncture in development. Growing from a 6m to a 15m class system will introduce many...
Rotary Wing Deceleration Use on Titan
NASA Technical Reports Server (NTRS)
Young, Larry A.; Steiner, Ted J.
2011-01-01
Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Wercinski, P.; Prabhu, D.
2012-01-01
The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (approximately 40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low-mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term and (3) Heavy mass and human missions to Mars in the long term.
NASA Technical Reports Server (NTRS)
Dwyer Cianciolo, Alicia M. (Editor)
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2014-01-01
Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
Experimental investigation of an accelerometer controlled automatic braking system
NASA Technical Reports Server (NTRS)
Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.
1972-01-01
An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
Entry, Descent, and Landing With Propulsive Deceleration
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.
Integrated Thermal Protection Systems and Heat Resistant Structures
NASA Technical Reports Server (NTRS)
Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.
2006-01-01
In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.
NASA Technical Reports Server (NTRS)
Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid
2017-01-01
Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.
Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Komar, D. R.
2011-01-01
This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.
Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field
NASA Astrophysics Data System (ADS)
Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.
2015-12-01
In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.
Study of advanced atmospheric entry systems for Mars
NASA Technical Reports Server (NTRS)
1978-01-01
Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.
New student-designed research and demonstration drop tower
NASA Astrophysics Data System (ADS)
Bell, Donald; Weislogel, Mark
A new drop tower has been designed and constructed at Portland State University. The ap-proach incorporates innovative features to increase throughput and microgravity quality in a highly public facility. Push button operation with full wireless CCTV coverage and passive magnetic deceleration provides quiet, safe operation from a single control station with low re-cycle time. A two-stage coaxial release mechanism decouples the payload from the drag shield to minimize disturbances to the experiment during release. This is especially important for fluids experiments that are highly sensitive to initial conditions. Performance of the new tower is presented including release, free fall, and deceleration accelerometer data. The two second tower is used for research and educational outreach. The research efforts focus on capillary flows and phenomena relevant to spacecraft fluid systems. The outreach efforts utilize partnerships with local primary, secondary and post-secondary institutions to promote the fields of science, technology, engineering and mathematics.
NASA Technical Reports Server (NTRS)
Arnaout, Georges M.; Bowling, Shannon R.
2011-01-01
Traffic congestion is an ongoing problem of great interest to researchers from different areas in academia. With the emerging technology for inter-vehicle communication, vehicles have the ability to exchange information with predecessors by wireless communication. In this paper, we present an agent-based model of traffic congestion and examine the impact of having CACC (Cooperative Adaptive Cruise Control) embedded vehicle(s) on a highway system consisting of 4 traffic lanes without overtaking. In our model, CACC vehicles adapt their acceleration/deceleration according to vehicle-to-vehicle inter-communication. We analyze the average speed of the cars, the shockwaves, and the evolution of traffic congestion throughout the lifecycle of the model. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce the oscillatory behavior (stop and go) resulting from the acceleration/deceleration of the vehicles.
NASA Astrophysics Data System (ADS)
Korzun, Ashley M.
The entry, descent, and landing (EDL) systems for the United States' six successful landings on Mars and the 2011 Mars Science Laboratory (MSL) have all relied heavily on extensions of technology developed for the Viking missions of the mid 1970s. Incremental improvements to these technologies, namely rigid 70-deg sphere-cone aeroshells, supersonic disk-gap-band parachutes, and subsonic propulsive terminal descent, have increased payload mass capability to 950 kg (MSL). However, MSL is believed to be near the upper limit for landed mass using a Viking-derived EDL system. To achieve NASA's long-term exploration goals at Mars, technologies are needed that enable more than an order of magnitude increase in landed mass (10s of metric tons), several orders of magnitude increase in landing accuracy (10s or 100s of meters), and landings at higher surface elevations (0+ km). Supersonic deceleration has been identified as a critical deficiency in extending Viking-heritage technologies to high-mass, high-ballistic coefficient systems. As the development and qualification of significantly larger supersonic parachutes is not a viable path forward to increase landed mass capability to 10+ metric tons, alternative approaches must be developed. Supersonic retropropulsion (SRP), or the use of retropropulsive thrust while an entry vehicle is traveling at supersonic conditions, is one such alternative approach. The concept originated in the 1960s, though only recently has interest in SRP resurfaced. While its presence in the historical literature lends some degree of credibility to the concept of using retropropulsion at supersonic conditions, the overall immaturity of supersonic retropropulsion requires additional evaluation of its potential as a decelerator technology for high-mass Mars entry systems, as well as its comparison with alternative decelerators. The supersonic retropropulsion flowfield is typically a complex interaction between highly under-expanded jet flow and the shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.
Simulation evaluation of a speed-guidance law for Harrier approach transitions
NASA Technical Reports Server (NTRS)
Merrick, Vernon K.; Moralez, Ernesto; Stortz, Michael W.; Hardy, Gordon H.; Gerdes, Ronald M.
1991-01-01
An exponential-deceleration speed guidance law is formulated which mimics the technique currently used by Harrier pilots to perform decelerating approaches to a hover. This guidance law was tested along with an existing two-step constant deceleration speed guidance law, using a fixed-base piloted simulator programmed to represent a YAV-8B Harrier. Decelerating approaches to a hover at a predetermined station-keeping point were performed along a straight (-3 deg glideslope) path in headwinds up to 40 knots and turbulence up to 6 ft./sec. Visibility was fixed at one-quarter nautical mile and 100 ft. cloud ceiling. Three Harrier pilots participated in the experiment. Handling qualities with the aircraft equipped with the standard YAV-8B rate damped attitude stability augmentation system were adequate (level 2) using either speed guidance law. However, the exponential deceleration speed guidance law was rated superior to the constant-deceleration speed guidance law by a Cooper-Harper handling qualities rating of about one unit independent of the level of wind and turbulence. Replacing the attitude control system of the YAV-8B with a high fidelity model following attitude flight controller increased the approach accuracy and reduced the pilot workload. With one minor exception, the handling qualities for the approach were rated satisfactory (level 1). It is concluded that the exponential deceleration speed guidance law is the most cost effective.
DeLucia, Patricia R; Tharanathan, Anand
2009-12-01
More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on responses to deceleration during car following. With computer simulations of car-following scenes, university students pressed a button when the lead car decelerated. Both classes of information affected responses. Observers relied on discrete warnings when optic flow information was relatively less effective as determined by the lead car's headway and deceleration rate. This is consistent with DeLucia's (2008) conceptual framework of space perception that emphasized the importance of viewing distance and motion (and task). In Experiment 2, we measured responses to deceleration after a visual interruption. Scenes were designed to tease apart the role of expectations and optic flow. Responses mostly were consistent with optic flow information presented after the interruption rather than with putative mental expectations that were set up by the lead car's motion prior to the interruption. The theoretical implication of the present results is that responses to deceleration are based on multiple sources of information, including optical size, optical expansion rate and tau, and discrete warnings that are independent of optic flow. The practical implication is that in-vehicle collision-avoidance warning systems may be more useful when optic flow is less effective (e.g., slow deceleration rates), implicating a role for adaptive collision-warning systems. Copyright 2009 APA
Instrumentation for the Characterization of Inflatable Structures
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith
2012-01-01
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.
Effects of 1980 technology on weight of a recovery system for a one million pound booster
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1975-01-01
The effects were evaluated of 1980 technology on the weight of recovery systems capable of decelerating a one-million-pound booster to vertical velocities of 60 or 30 ft/sec at sea level impact. A nominal set of booster staging conditions were assumed and there were no constraints on parachute size, number or type. The effects of new materials that would be available by 1980, the effects of booster attitude during entry, various parachute staging methods, parachute reefing schemes, parachute-retro rocket hybrid systems, and the effects of dividing the booster into separate pieces for recovery were evaluated. It was determined that for the systems considered, a hybrid parachute-retro-rocket recovery system would have the minimum weight. New materials now becoming available for parachute fabrication should result in a 37-percent reduction in hybrid recovery system weight for an impact velocity of 30 fps.
Test Plan for the Technology Maturation of Supersonic Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
Kelly, Jenny R.; Cruz, Juan R.
2009-01-01
Supersonic inflatable aerodynamic decelerators (IADs) are drag devices intended to be deployed at high Mach numbers. In the application considered here they assist in the descent and landing of spacecraft on Mars. Although promising, present IAD technology is not yet sufficiently mature for use in the near future. This paper describes a technology maturation plan for tension cone IADs using subscale test articles to reduce development costs. As envisioned, the proposed test plan includes three phases: wind tunnel tests (subsonic), unpowered high-altitude flight tests (transonic), and powered high-altitude tests (supersonic). This test plan is based on a building block approach in which successful completion of each phase adds to the understanding of the behavior of IADs and reduces the risk of the subsequent, more expensive phases. By properly scaling the IADs, test articles of the same size and nearly the same construction can be used for all three phases. The final phase is a dynamically scaled flight test with IAD deployment at the same Mach number as the full-scale vehicle on Mars. Two full-scale example cases are presented: one for a single-stage system (15 m dia. IAD to subsonic retropropulsion), and another for a two-stage system (10.5 m dia. IAD to subsonic parachute). Using scale factors of 0.333 and 0.476 yield subscale test IADs of 5 m dia. The dynamically scaled powered flight test starts at Mach 4 and an altitude of 33.5 km. Existing balloons and rocket motors are shown to be adequate to meet the required test conditions.
Dickey, Richard P; Pridjian, Gabriella; Xiong, Xu; Klempel, Monica C
2017-01-01
Objective The objective of this study was to establish twin-specific birth weight percentiles by gestational age using U.S. twin births resulting from in vitro fertilization (IVF). Study Design A retrospective analysis of birth weight by completed weeks of gestation for 76,710 twin IVF births reported to the Society for Assisted Reproductive Technologies from 2006 to 2010. Mean and median birth weights and 3rd, 5th, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated by completed week of gestation and infant sex. Results IVF twin birth weight accelerates until term and then declines. The deceleration in twin birth weight occurs at 39 completed weeks of gestation for larger twins, those at or above the 50th percentile in weight. For smaller twins, the growth deceleration occurs earlier, at 38 weeks of gestation. IVF female and male twin birth weights for gestational age were similar to all IVF twins, showing similar decelerations near term. Conclusion Using U.S. IVF twin-specific growth charts, with known date of conception, twins demonstrate a deceleration in birth weight near term. Larger twins demonstrate a deceleration in birth weight by 39 completed weeks of gestation; smaller twins show a deceleration at 38 weeks. These data may assist in the clinical management of twins near term. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Adaptable, Deployable Entry and Placement Technology (ADEPT) for Future Mars Missions
NASA Technical Reports Server (NTRS)
Wercinski, P.; Venkatapathy, E.; Gage, P.; Prabhu, D.; Smith, B.; Cassell, A.; Yount, B.; Allen, G.
2013-01-01
The concept of a mechanically deploy- able hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets.
Arcjet Testing of Woven Carbon Cloth for Use on Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Arnold, James O.; laub, Bernard; Chen, Yih-Kang; Prabhu, Dinesh K.; Bittner, M. E.; Venkatapathy, Ethiraj
2013-01-01
This paper describes arcjet testing and analysis that has successfully demonstrated the viability of three dimensional woven carbon cloth for dual use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle s shroud and deployed in space prior to reaching the atmospheric interface. A key feature of the ADEPT concept is its lower ballistic coefficient for delivery of a given payload than those for conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient include factor of ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth now base lined for ADEPT has a dual use in that it serves as ADEPT s thermal protection system and as the "skin" that transfers aerodynamic deceleration loads to its umbrella-like substructure. The arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. The ADEPT project considered the carbon cloth to be mission enabling and was carrying it as a major risk during Fiscal Year 2012. The testing and analysis reported here played a major role in retiring that risk and is highly significant to the success and possible adoption of ADEPT for future NASA missions. Finally, this paper also describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future missions using ADEPT and to predict carbon cloth performance in future arcjet tests.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Arnold, James O.; Peterson, K. H.; Blosser, M. L.
2013-01-01
This paper describes aerothermodynamic and thermal structural testing that demonstrate the viability of three dimensional woven carbon cloth and advanced carbon-carbon (ACC) ribs for use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle's shroud and deployed prior to reaching the atmeopheric interface. A key feature of the ADEPT concept is a lower ballistic coefficient for delivery of a given payload than seen with conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient incllude factor-of-ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth base lined for ADEPT has a dual use in that it serves as the thermal protection system and as the "skin" that transfers aerdynamic deceleration loads to its umbrella-like substructure. Arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. Recently completed the thermal structural testing of the cloth attached to a representative ACC rib design is also described. Finally, this paper describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future ADEPT missions and to predict carbon cloth performance in future arcjet tests.
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
Investigation of Drag Coefficient for Rigid Ballute-like Shapes
NASA Astrophysics Data System (ADS)
Carnasciali, Maria-Isabel; Mastromarino, Anthony
2014-11-01
One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.
NASA Technical Reports Server (NTRS)
Shields, W. E.
1973-01-01
Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.
The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
Swanson, Gregory T.; Cassell, Alan M.
2013-01-01
To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD sensing technologies. Traditionally all space based sensing systems transmit their data through a wired interface. This limits the amount of sensors able to be integrated within the IAD due to volume and routing restrictions of the supporting signal and excitation wires. To alleviate this situation, multiple wireless data acquisition technologies have been researched and developed through rapid prototyping efforts. The final custom multi-nodal wireless system utilized during the summer 2012 IAD test series consisted of four remote nodes and one receiving base station. The system reliably conditioned and acquired 20+ sensors over the course of the wind tunnel test series. These developments in wireless data acquisition techniques can eliminate the need for structural feedthroughs and reduce system mass associated with wiring and wire harnesses. This makes the utilization of flight instrumentation more attractive to future missions, which would result in further improved characterization of IAD technology, and overall, increased scientific knowledge regarding the response of inflatable structures to extreme entry environments. [
Katsuragi, Shinji; Parer, Julian T; Noda, Shunichi; Onishi, Junji; Kikuchi, Hitomi; Ikeda, Tomoaki
2015-09-01
Abstracts Objective: We have reported a 7-fold reduction in newborn umbilical arterial (UA) metabolic acidemia after adoption of a rule-based 5-category color-coded fetal heart rate (FHR) management framework. We sought evidence for the relationship being causal by detailed analysis of FHR characteristics and acid-base status before and after training. Rates of UA pH and base excess (BE) were determined over a 5-year period in a single Japanese hospital, serving mainly low-risk patients, with 3907 deliveries. We compared results in the 2 years before and after a 6-month training period in the FHR management system. We used a previously published classification schema, which was linked to management guidelines. After the training period, there was an increase in the percentage of normal patterns (23%), and a decrease in variable decelerations (14%), late decelerations (8%) and prolonged decelerations (12%) in the last 60 min of labor compared to the pre-training period. There was also a significant reduction in mean UA pH and BE in the groups with decelerations after introduction of the FHR management framework. The adoption of this FHR management system was associated with a reduction of decelerations and metabolic acidemia, without a change in cesarean or vacuum delivery rates. These results suggest that the obstetrical providers were able to better select for intervention those patients destined to develop more severe acidemia, demonstrating a possible causal relationship between the management system and reduced decelerations and metabolic acidemia.
The Mars Exploration Rovers Entry Descent and Landing and the Use of Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
Steltzner, Adam; Desai, Prasun; Lee, Wayne; Bruno, Robin
2003-01-01
The Mars Exploration Rovers (MER) project, the next United States mission to the surface of Mars, uses aerodynamic decelerators in during its entry, descent and landing (EDL) phase. These two identical missions (MER-A and MER-B), which deliver NASA s largest mobile science suite to date to the surface of Mars, employ hypersonic entry with an ablative energy dissipating aeroshell, a supersonic/subsonic disk-gap-band parachute and an airbag landing system within EDL. This paper gives an overview of the MER EDL system and speaks to some of the challenges faced by the various aerodynamic decelerators.
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2015-01-01
An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.
A Survey of Supersonic Retropropulsion Technology for Mars Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.; Cruz, Juan R.; Braun, Robert D.
2007-01-01
This paper presents a literature survey on supersonic retropropulsion technology as it applies to Mars entry, descent, and landing (EDL). The relevance of this technology to the feasibility of Mars EDL is shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. The use of retropropulsion to decelerate an entry vehicle from hypersonic or supersonic conditions to a subsonic velocity is the primary focus of this review. Discussed are systems-level studies, general flowfield characteristics, static aerodynamics, vehicle and flowfield stability considerations, and aerothermodynamics. The experimental and computational approaches used to develop retropropulsion technology are also reviewed. Finally, the applicability and limitations of the existing literature and current state-of-the-art computational tools to future missions are discussed in the context of human and robotic Mars exploration.
NASA Technical Reports Server (NTRS)
Ng, Y. S.
1977-01-01
A theoretical analysis of constant momentum mass spectrometry was made. A maximum resolving power for the decelerating mode constant momentum mass spectrometer was shown theoretically to exist for a beam of ions of known energy. A vacuum system and an electron beam ionization source was constructed. Supporting electronics for a residual gas analyzer were built. Experimental investigations of various types of accelerating and decelerating impulsive modes of a constant momentum mass spectrometer as applied to a residual gas analyzer were made. The data indicate that the resolving power for the decelerating mode is comparable to that of the accelerating mode.
NASA Technical Reports Server (NTRS)
Giulianetti, Demo J.
2001-01-01
Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.
Getting a grip on the transverse motion in a Zeeman decelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulitz, Katrin; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk; Motsch, Michael
2014-03-14
Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This ismore » achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.« less
NASA Astrophysics Data System (ADS)
Gajek, Andrzej
2016-09-01
The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Witkowski, Allen
2015-01-01
The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.
NASA Technical Reports Server (NTRS)
Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid
2017-01-01
Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.
1997-04-01
technology matures. Mid-course phase Warhead & Booster ■’-=>- penaid deployment burnout v y...phase Warhead & Booster _^, penaid deployment burnout v y^ complete...and penaids fit so equippec I) are deployed immediately following boost phase burnout . • Large deceleration occurs from atmospheric drag upon re
NASA Exploration Forum: Human Path to Mars
2014-04-29
Randy Lillard, Program Executive for Technology Demonstration Missions of NASA's Space Technology Mission DIrectorate, speaks about the upcoming Low-Density Supersonic Decelerator demonstration during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)
A bridge between unified cosmic history by f( R)-gravity and BIonic system
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Capozziello, Salvatore; Setare, Mohammad Reza
2016-04-01
Recently, the cosmological deceleration-acceleration transition redshift in f( R) gravity has been considered in order to address consistently the problem of cosmic evolution. It is possible to show that the deceleration parameter changes sign at a given redshift according to observational data. Furthermore, a f( R) gravity cosmological model can be constructed in brane-antibrane system starting from the very early universe and accounting for the cosmological redshift at all phases of cosmic history, from inflation to late time acceleration. Here we propose a f( R) model where transition redshifts correspond to inflation-deceleration and deceleration-late time acceleration transitions starting froma BIon system. At the point where the universe was born, due to the transition of k black fundamental strings to the BIon configuration, the redshift is approximately infinity and decreases with reducing temperature (z˜ T2). The BIon is a configuration in flat space of a universe-brane and a parallel anti-universe-brane connected by a wormhole. This wormhole is a channel for flowing energy from extra dimensions into our universe, occurring at inflation and decreasing with redshift as z˜ T^{4+1/7}. Dynamics consists with the fact that the wormhole misses its energy and vanishes as soon as inflation ends and deceleration begins. Approaching two universe branes together, a tachyon is originated, it grows up and causes the formation of a wormhole. We show that, in the framework of f( R) gravity, the cosmological redshift depends on the tachyonic potential and has a significant decrease at deceleration-late time acceleration transition point (z˜ T^{2/3}). As soon as today acceleration approaches, the redshift tends to zero and the cosmological model reduces to the standard Λ CDM cosmology.
LDSD Chute Beneath the Surface
2014-08-08
NASA Supersonic Disk Sail Parachute, one of the new technologies being developed as part of NASA Low-Density Supersonic Decelerator LDSD project, floats just below the surface of the Pacific Ocean on June 28, 2014.
Drop Tower Facility at Queensland University of Technology
NASA Astrophysics Data System (ADS)
Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong
The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.
Free electron laser using Rf coupled accelerating and decelerating structures
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1984-01-01
A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.
NASA Astrophysics Data System (ADS)
Pan, Supriya; Chakraborty, Subenoy
2013-09-01
In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.
Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy
2011-01-01
Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.
2017-01-01
The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.
Development of methodology for component testing under impact loading for space applications
NASA Astrophysics Data System (ADS)
Church, Phillip; Taylor, Nicholas; Perkinson, Marie-Claire; Wishart, Alex; Vijendran, Sanjay; Braithwaite, Chris
2017-06-01
A number of recent studies have highlighted the scientific benefits of penetrator technology in conducting exploration on other planetary bodies and moons within the solar system. Such a ``hard landing'' approach is cheaper and easier than the traditional ``soft landing'' method. However it is necessary for the science package of such a mission to withstand the rapid decelerations that will occur upon impact. This paper outlines an approach that has been developed to simulate the loading appropriate to Europa and also to monitor component performance before, during and after the impact.
Timeline of Events for Planetary Landing Test
2014-06-06
The saucer-shaped test vehicle for NASA Low-Density Supersonic Decelerator LDSD will undergo a series of events in the skies above Hawaii, with the ultimate goal of testing future landing technologies for Mars missions.
Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)
2014-01-01
A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.
Study of Car Acceleration and Deceleration Characteristics at Dangerous Route FT050
NASA Astrophysics Data System (ADS)
Omar, N.; Prasetijo, J.; Daniel, B. D.; Abdullah, M. A. E.; Ismail, I.
2018-04-01
Individual vehicle acceleration and deceleration are important to generate vehicles speed profile. This study covered acceleration and deceleration characteristics of passenger car in Federal Route FT050 Jalan Batu Pahat-Ayer Hitam that was the top ranking dangerous road. Global Positioning System was used to record 10 cars speed to develop speed profile with clustering zone. At the acceleration manoeuver, the acceleration rate becomes lower as the drivers get near to desired speed. While, at deceleration manoeuver, vehicles with high speed needs more time to stop compare to low speed vehicle. This is because, the drivers need to accelerate more from zero speed to achieve desired speed and drivers need more distance and time to stop their vehicles. However, it was found out that 30% to 50% are driving in dangerous condition that was proven in clustering acceleration and deceleration speed profile. As conclusion, this excessive drivers are the factor that creating high risk in rear-end collision that inline FT050 as dangerous road in Malaysia
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Position-Specific Acceleration and Deceleration Profiles in Elite Youth and Senior Soccer Players.
Vigh-Larsen, Jeppe F; Dalgas, Ulrik; Andersen, Thomas B
2018-04-01
Vigh-Larsen, JF, Dalgas, U, and Andersen, TB. Position-specific acceleration and deceleration profiles in elite youth and senior soccer players. J Strength Cond Res 32(4): 1114-1122, 2018-The purpose of the study was to characterize and compare the position-specific activity profiles of young and senior elite soccer players with special emphasis put on accelerations and decelerations. Eight professional senior matches were tracked using the ZXY tracking system and analyzed for the number of accelerations and decelerations and running distances within different speed zones. Likewise, 4 U19 and 5 U17 matches were analyzed for comparison between youth and senior players. In senior players, the total distance (TD) was 10,776 ± 107 m with 668 ± 28 and 143 ± 10 m being high-intensity running (HIR) and sprinting, respectively. Number of accelerations and decelerations were 81 ± 2 and 84 ± 3, respectively, with central defenders performing the lowest and wide players the highest number. Declines were found between first and second halves for accelerations and decelerations (11 ± 3%), HIR (6 ± 4%), and TD (5 ± 1%), whereas sprinting distance did not differ. U19 players performed a higher number of accelerations, decelerations, and TD compared with senior players. In conclusion, differences in the number and distribution of accelerations and decelerations appeared between player positions, which is of importance when monitoring training and match loads and when prescribing specific training exercises. Furthermore, youth players performed as much high-intensity activities as senior players, indicating that this is not a discriminating physiological parameter between these players.
NASA Technical Reports Server (NTRS)
Arnold, James O.; Peterson, Keith H.; Yount, Bryan C.; Schneider, Nigel; Chavez-Garcia, Jose
2013-01-01
Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.
Human Mars Entry, Descent and Landing Architectures Study Overview
NASA Technical Reports Server (NTRS)
Polsgrove, Tara T.; Dwyer Cianciolo, Alicia
2016-01-01
Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
Guidance and Control Algorithms for the Mars Entry, Descent and Landing Systems Analysis
NASA Technical Reports Server (NTRS)
Davis, Jody L.; CwyerCianciolo, Alicia M.; Powell, Richard W.; Shidner, Jeremy D.; Garcia-Llama, Eduardo
2010-01-01
The purpose of the Mars Entry, Descent and Landing Systems Analysis (EDL-SA) study was to identify feasible technologies that will enable human exploration of Mars, specifically to deliver large payloads to the Martian surface. This paper focuses on the methods used to guide and control two of the contending technologies, a mid- lift-to-drag (L/D) rigid aeroshell and a hypersonic inflatable aerodynamic decelerator (HIAD), through the entry portion of the trajectory. The Program to Optimize Simulated Trajectories II (POST2) is used to simulate and analyze the trajectories of the contending technologies and guidance and control algorithms. Three guidance algorithms are discussed in this paper: EDL theoretical guidance, Numerical Predictor-Corrector (NPC) guidance and Analytical Predictor-Corrector (APC) guidance. EDL-SA also considered two forms of control: bank angle control, similar to that used by Apollo and the Space Shuttle, and a center-of-gravity (CG) offset control. This paper presents the performance comparison of these guidance algorithms and summarizes the results as they impact the technology recommendations for future study.
Inflatable Aerocapture Decelerators for Mars Orbiters
NASA Technical Reports Server (NTRS)
Brown, Glen J.; Lingard, J. Stephen; Darley, Matthew G.; Underwood, John C.
2007-01-01
A multi-disciplinary research program was recently completed, sponsored by NASA Marshall Space Flight Center, on the subject of aerocapture of spacecraft weighing up to 5 metric tons at Mars. Heavier spacecraft will require deployable drag area beyond the dimensional limits of current and planned launch fairings. This research focuses on the approach of lightweight inflatable decelerators constructed with thin films, using fiber reinforcement and having a temperature limitation of 500 C. Trajectory analysis defines trajectories for a range of low ballistic coefficients for which convective heat flux is compatible with the material set. Fluid-Structure Interaction (FSI) tools are expanded to include the rarified flow regime. Several non-symmetrical configurations are evaluated for their capability to develop lift as part of the necessary trajectory control strategy. Manufacturing technology is developed for 3-D stretch forming of polyimide films and for tailored fiber reinforcement of thin films. Finally, the mass of the decelerator is estimated and compared to the mass of a traditional rigid aeroshell.
29 CFR 1915.151 - Scope, application and definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...
29 CFR 1915.151 - Scope, application and definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...
29 CFR 1915.151 - Scope, application and definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... deceleration devices. Body belt means a strap with means for both securing it about the waist and attaching it to a lanyard, lifeline, or deceleration device. Body harness means straps which may be secured about.... Connector means a device which is used to couple (connect) parts of a personal fall arrest system or parts...
The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato
2013-05-31
The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.
The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato
2013-04-25
The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.
Adaptable Deployable Entry & Placement Technology (ADEPT) for Cubesat Delivery to Mars Surface
NASA Technical Reports Server (NTRS)
Wercinski, Paul
2014-01-01
The Adaptable, Deployable Entry and Placement Technology (ADEPT), uses a mechanical skeleton to deploy a revolutionary carbon fabric system that serves as both heat shield and primary structure during atmospheric entry. The NASA ADEPT project, currently funded by the Game Changing Development Program in STMD is currently focused on 1m class hypersonic decelerators for the delivery of very small payloads ( 5 kg) to locations of interest in an effort to leverage low-cost platforms to rapidly mature the technology while simultaneously delivering high-value science. Preliminary mission design and aerothermal performance testing in arcjets have shown the ADEPT system is quite capable of safe delivery of cubesats to Mars surface. The ability of the ADEPT to transit to Mars in a stowed configuration (similar to an umbrella) provides options for integration with the Mars 2020 cruise stage, even to consider multiple ADEPTs. System-level test campaigns are underway for FY15 execution or planning for FY16. These include deployment testing, wind tunnel testing, system-level arc jet testing, and a sounding rocket flight test. The goal is system level maturation (TRL 6) at a 1m class Mars design reference mission configuration.
Wake measurements in a strong adverse pressure gradient
NASA Technical Reports Server (NTRS)
Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.
1994-01-01
The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.
Lane change warning threshold based on driver perception characteristics.
Wang, Chang; Sun, Qinyu; Fu, Rui; Li, Zhen; Zhang, Qiong
2018-08-01
Lane Change Warning system (LCW) is exploited to alleviate driver workload and improve the safety performance of lane changes. Depending on the secure threshold, the lane change warning system could transmit caution to drivers. Although the system possesses substantial benefits, it may perturb the conventional operating of the driver and affect driver judgment if the warning threshold does not conform to the driver perception of safety. Therefore, it is essential to establish an appropriate warning threshold to enhance the accuracy rate and acceptability of the lane change warning system. This research aims to identify the threshold that conforms to the driver perception of the ability to safely change lanes with a rear vehicle fast approaching. We propose a theoretical warning model of lane change based on a safe minimum distance and deceleration of the rear vehicle. For the purpose of acquiring the different safety levels of lane changes, 30 licensed drivers are recruited and we obtain the extreme moments represented by driver perception characteristics from a Front Extremity Test and a Rear Extremity Test implemented on the freeway. The required deceleration of the rear vehicle corresponding to the extreme time is calculated according to the proposed model. In light of discrepancies in the deceleration in these extremity experiments, we determine two levels of a hierarchical warning system. The purpose of the primary warning is to remind drivers of the existence of potentially dangerous vehicles and the second warning is used to warn the driver to stop changing lanes immediately. We use the signal detection theory to analyze the data. Ultimately, we confirm that the first deceleration threshold is 1.5 m/s 2 and the second deceleration threshold is 2.7 m/s 2 . The findings provide the basis for the algorithm design of LCW and enhance the acceptability of the intelligent system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic response of a poroelastic half-space to accelerating or decelerating trains
NASA Astrophysics Data System (ADS)
Cao, Zhigang; Boström, Anders
2013-05-01
The dynamic response of a fully saturated poroelastic half-space due to accelerating or decelerating trains is investigated by a semi-analytical method. The ground is modeled as a saturated poroelastic half-space and Biot's theory is applied to characterize the soil medium, taking the coupling effects between the soil skeleton and the pore fluid into account. A detailed track system is considered incorporating rails, sleepers and embankment, which are modeled as Euler-Bernoulli beams, an anisotropic Kirchhoff plate, and an elastic layer, respectively. The acceleration or deceleration of the train is simulated by properly choosing the time history of the train speed using Fourier transforms combined with Fresnel integrals in the transformed domain. The time domain results are obtained by the fast Fourier transform (FFT). It is found that the deceleration of moving trains can cause a significant increase to the ground vibrations as well as the excess pore water pressure responses at the train speed 200 km/h. Furthermore, the single-phase elastic soil model would underestimate the vertical displacement responses caused by both the accelerating and decelerating trains at the speed 200 km/h.
NASA Technical Reports Server (NTRS)
Keys, Andrew S.
2006-01-01
Aeroassist technology development is a vital part of the NASA In-Space Propulsion Technology (ISPT) Program. One of the main focus areas of ISPT is aeroassist technologies through the Aerocapture Technology (AT) Activity. Within the ISPT, the current aeroassist technology development focus is aerocapture. Aerocapture relies on the exchange of momentum with an atmosphere to achieve thrust, in this case a decelerating thrust leading to orbit capture. Without aerocapture, a substantial propulsion system would be needed on the spacecraft to perform the same reduction of velocity. This could cause reductions in the science payload delivered to the destination, increases in the size of the launch vehicle (to carry the additional fuel required for planetary capture) or could simply make the mission impossible due to additional propulsion requirements. The AT is advancing each technology needed for the successful implementation of aerocapture in future missions. The technology development focuses on both rigid aeroshell systems as well as the development of inflatable aerocapture systems, advanced aeroshell performance sensors, lightweight structure and higher temperature adhesives. Inflatable systems such as tethered trailing ballutes ('balloon parachutes'), clamped ballutes, and inflatable aeroshells are also under development. Aerocapture-specific computational tools required to support future aerocapture missions are also an integral part of the ATP. Tools include: engineering reference atmosphere models, guidance and navigation, aerothermodynamic modeling, radiation modeling and flight simulation. Systems analysis plays a key role in the AT development process. The NASA in-house aerocapture systems analysis team has been taken with multiple systems definition and concept studies to complement the technology development tasks. The team derives science requirements, develops guidance and navigation algorithms, as well as engineering reference atmosphere models and aeroheating specifications. The study team also creates designs for the overall mission spacecraft. Presentation slides are provided to further describe the aerocapture project.
Ultralightweight Ballute Technology Advances
NASA Technical Reports Server (NTRS)
Masciarelli, Jim; Miller, Kevin
2005-01-01
Ultralightweight ballutes offer the potential to provide the deceleration for entry and aerocapture missions at a fraction of the mass of traditional methods. A team consisting of Ball Aerospace, ILC Dover, NASA Langley, NASA Johnson, and the Jet Propulsion Laboratory has been addressing the technical issues associated with ultralightweight ballutes for aerocapture at Titan. Significant progress has been made in the areas of ballute materials, aerothermal analysis, trajectory control, and aeroelastic modeling. The status and results of efforts in these areas are presented. The results indicate that an ultralightweight ballute system mass of 8 to 10 percent of the total entry mass is possible.
Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions
NASA Technical Reports Server (NTRS)
Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.
2013-01-01
The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.
Integrated Thermal Protection Systems and Heat Resistant Structures
NASA Technical Reports Server (NTRS)
Pichon, Thierry; Lacoste, Marc; Glass, David E.
2006-01-01
In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.
2017-03-01
experimental effort involving a series of +z-axis impact tests was conducted on the 711th Human Performance Wing’s Vertical Deceleration Tower (VDT...parameters) and a JSF-styled ejection seat configuration (combined non -baseline test parameters) produced similar biodynamic response parameters for the LOIS...Photography .............................................................................. 12 6.0 EXPERIMENTAL DESIGN
Gaudino, Paolo; Alberti, Giampietro; Iaia, F Marcello
2014-08-01
The present study examined the extent to which game format (possession play, SSG-P and game with regular goals and goalkeepers, SSG-G) and the number of players (5, 7 and 10 a-side) influence the physical demands of small-sided soccer games (SSGs) in elite soccer players. Training data were collected during the in-season period from 26 English Premier League outfield players using global positioning system technology. Total distance covered, distance at different speed categories and maximal speed were calculated. In addition, we focused on changes in velocity by reporting the number of accelerations and decelerations carried out during the SSGs (divided in two categories: moderate and high) and the absolute maximal values of acceleration and deceleration achieved. By taking into account these parameters besides speed and distance values, estimated energy expenditure and average metabolic power and distance covered at different metabolic power categories were calculated. All variables were normalized by time (i.e., 4min). The main findings were that the total distance, distances run at high speed (>14.4kmh(-1)) as well as absolute maximum velocity, maximum acceleration and maximum deceleration increased with pitch size (10v10>7v7>5v5; p<.05). Furthermore, total distance, very high (19.8-25.2kmh(-1)) and maximal (>25.2kmh(-1)) speed distances, absolute maximal velocity and maximum acceleration and deceleration were higher in SSG-G than in SSG-P (p<.001). On the other hand, the number of moderate (2-3ms(-2)) accelerations and decelerations as well as the total number of changes in velocity were greater as the pitch dimensions decreased (i.e., 5v5>7v7>10v10; p<.001) in both SSG-G and SSG-P. In addition, predicted energy cost, average metabolic power and distance covered at every metabolic power categories were higher in SSG-P compared to SSG-G and in big than in small pitch areas (p<.05). A detailed analysis of these drills is pivotal in contemporary football as it enables an in depth understanding of the workload imposed on each player which consequently has practical implications for the prescription of the adequate type and amount of stimulus during exercise training. Copyright © 2014 Elsevier B.V. All rights reserved.
Aerocapture Guidance and Performance at Mars for High-Mass Systems
NASA Technical Reports Server (NTRS)
Zumwalt, Carlie H.; Sostaric, Ronald r.; Westhelle, Carlos H.; Cianciolo, Alicia Dwyer
2010-01-01
The objective of this study is to understand the performance associated with using the aerocapture maneuver to slow high-mass systems from an Earth-approach trajectory into orbit around Mars. This work is done in conjunction with the Mars Entry Descent and Landing Systems Analysis (EDL-SA) task to explore candidate technologies necessary for development in order to land large-scale payloads on the surface of Mars. Among the technologies considered include hypersonic inflatable aerodynamic decelerators (HIADs) and rigid mid-lift to drag (L/D) aeroshells. Nominal aerocapture trajectories were developed for the mid-L/D aeroshell and two sizes of HIADs, and Monte Carlo analysis was completed to understand sensitivities to dispersions. Additionally, a study was completed in order to determine the size of the larger of the two HIADs which would maintain design constraints on peak heat rate and diameter. Results show that each of the three aeroshell designs studied is a viable option for landing high-mass payloads as none of the three exceed performance requirements.
Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor
NASA Astrophysics Data System (ADS)
Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.
2017-10-01
The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.
Effects of deceleration on the humoral antibody response in rats
NASA Technical Reports Server (NTRS)
Barone, R. P.; Caren, L. D.; Oyama, J.
1985-01-01
Effects of hypergravity, simulated by chronic centrifugation, followed by a return to normal G (deceleration) on the immune system of rats were investigated. Two groups of male rats (28 days at 2.1 G, and 3.1 G) were compared to the control group (1.0 G). The animals were immunized by i.p. injections of sheep red blood cells on days 29, 42, and 57, and bled on days 36, 47, and 62. While the centrifuged rats ate and gainedsignificantly less than the control rats, the antibody titers and the organ/body mass ratios for the adrenal glands, kidneys, lungs, heart, and thymus were unaffected by gravity exposures, as were the values of the hematocrit and the white blood cell counts. It is concluded that deceleration does not adversely affect these particular aspects of the immune system.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retropropulsion (SRP) rocket system for the final soft landing. A three engine retropropulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn Research Center's 1- by 1-ft (1×1) Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70deg Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a SRP system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retropropulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retropropulsion induced shock waves and retropropulsion for Earth launched booster recovery are also addressed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2013-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet's moon atmospheres for entry, and descent can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. A three engine retro-propulsion configuration with a 2.5 inch diameter sphere-cone aeroshell model was tested in the NASA Glenn 1x1 Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 degree Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. In addition, special topics of electromagnetic interference with retro-propulsion induced shock waves and retro-propulsion for Earth launched booster recovery are also addressed.
Cocron, Peter; Bühler, Franziska; Franke, Thomas; Neumann, Isabel; Dielmann, Benno; Krems, Josef F
2013-01-01
We report results from a 1-year field study (N = 80) on user interactions with regenerative braking in electric vehicles. Designed to recapture energy in vehicles with electric powertrains, regenerative braking has an important influence on both the task of driving and energy consumption. Results from user assessments and data from onboard data loggers indicate that most drivers quickly learned to interact with the system, which was triggered via accelerator. Further, conventional braking manoeuvres decreased significantly as the majority of deceleration episodes could only be executed through regenerative braking. Still, some drivers reported difficulties when adapting to the system. These difficulties could be addressed by offering different levels of regeneration so that the intensity of the deceleration could be individually modified. In general, the system is trusted and regarded as a valuable tool for prolonging range. Regenerative braking in electric vehicles has direct implications for the driving task. We found that drivers quickly learn to use and accept a system, which is triggered via accelerator. For those reporting difficulties in the interaction, it appears reasonable to integrate options to customise or switch off the system.
Overview of the Mars Science Laboratory Parachute Decelerator Subsystem
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Al; Rowan, Jerry; Cruz, Juan
2007-01-01
In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.
NASA Astrophysics Data System (ADS)
Ryazantsev, V.; Mezentsev, N.; Zakharov, A.
2018-02-01
This paper is dedicated to a solution of the issue of synthesis of the vehicle longitudinal dynamics control functions (acceleration and deceleration control) based on the element base of the vehicle active safety system (ESP) - driverless vehicle development tool. This strategy helps to reduce time and complexity of integration of autonomous motion control systems (AMCS) into the vehicle architecture and allows direct control of actuators ensuring the longitudinal dynamics control, as well as reduction of time for calibration works. The “vehicle+wheel+road” longitudinal dynamics control is complicated due to the absence of the required prior information about the control object. Therefore, the control loop becomes an adaptive system, i.e. a self-adjusting monitoring system. Another difficulty is the driver’s perception of the longitudinal dynamics control process in terms of comfort. Traditionally, one doesn’t pay a lot of attention to this issue within active safety systems, and retention of vehicle steerability, controllability and stability in emergency situations are considered to be the quality criteria. This is mainly connected to its operational limits, since it is activated only in critical situations. However, implementation of the longitudinal dynamics control in the AMCS poses another challenge for the developers - providing the driver with comfortable vehicle movement during acceleration and deceleration - while the possible highest safety level in terms of the road grip is provided by the active safety system (ESP). The results of this research are: universal active safety system - AMCS interaction interface; block diagram for the vehicle longitudinal acceleration and deceleration control as one of the active safety system’s integrated functions; ideology of adaptive longitudinal dynamics control, which enables to realize the deceleration and acceleration requested by the AMCS; algorithms synthesised; analytical experiments proving the efficiency and practicability of the chosen concept.
Tragedy and delight: the ethics of decelerated ageing
Gems, David
2011-01-01
Biogerontology is sometimes viewed as similar to other forms of biomedical research in that it seeks to understand and treat a pathological process. Yet the prospect of treating ageing is extraordinary in terms of the profound changes to the human condition that would result. Recent advances in biogerontology allow a clearer view of the ethical issues and dilemmas that confront humanity with respect to treating ageing. For example, they imply that organismal senescence is a disease process with a broad spectrum of pathological consequences in late life (causing or exascerbating cardiovascular disease, cancer, neurodegenerative disease and many others). Moreover, in laboratory animals, it is possible to decelerate ageing, extend healthy adulthood and reduce the age-incidence of a broad spectrum of ageing-related diseases. This is accompanied by an overall extension of lifespan, sometimes of a large magnitude. Discussions of the ethics of treating ageing sometimes involve hand-wringing about detrimental consequences (e.g. to society) of marked life extension which, arguably, would be a form of enhancement technology. Yet given the great improvements in health that decelerated ageing could provide, it would seem that the only possible ethical course is to pursue it energetically. Thus, decelerated ageing has an element of tragic inevitability: its benefits to health compel us to pursue it, despite the transformation of human society, and even human nature, that this could entail. PMID:21115537
Decelerated medical education.
McGrath, Brian; McQuail, Diane
2004-09-01
The aim of the study was to obtain information regarding the prevalence, structure, student characteristics and outcomes of formal decelerated medical education programs. A 13-item survey was mailed to all US medical schools examining characteristics of decelerated curricular programs. Responses were received from 77 schools (62% response). Some 24 (31%) indicated a formal decelerated option; 13 (57%) decelerate the first year while four (17%) decelerate year 1 or year 2. Participants may be selected before matriculation or after difficulty in 14 (61%) programs while four (17%) select only after encountering difficulty. Students may unilaterally choose deceleration in 10 (43%); 4.3% (0.1-12) of total matriculants were decelerated. The proportion of decelerated students identified as underrepresented minority (URM) was 37% (0-100), representing 10.5% (0-43) of total URM enrollment. Twelve (52%) programs do not provide unique support beyond deceleration. Standards for advancement are identical for decelerated and regular students in 17 schools (81%). In total, 10% (0-100) of decelerated students were dismissed within the last five years, representing 24% (0-90) of all dismissals. Few schools provided grade point average (GPA) or Medical College Admissions Test (MCAT) data but the limited responses indicate that many decelerated students are at risk for academic difficulty. It is concluded that decelerated curricular options are available at a significant number of US medical schools. Decelerated students comprise a small proportion of total enrollment but URM matriculants represent a disproportionate share of participants. Decelerated programs appear to be successful as measured by dismissal rates if one accepts attrition which exceeds that for regular MD students. Variation in dismissal rates is difficult to interpret given the lack of GPA and MCAT data. One half of all programs offer no additional support activities beyond deceleration. More data are needed to determine the relative contribution of deceleration vs. other support measures to the advancement of students at academic risk.
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.
An electron cyclotron resonance ion source based low energy ion beam platform.
Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z
2008-02-01
To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed.
Ares I First Stage Booster Deceleration System: An Overview
NASA Technical Reports Server (NTRS)
King, Ron; Hengel, John E.; Wolf, Dean
2009-01-01
In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences, including how and why it is being developed, the requirements it must meet, and the testing involved in its implementation.
Micromechanical Characterization and Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Pham, John T.; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials can be simultaneously used for thermal protection and as structural load bearing members during the entry, descent and landing operations. In order to ensure successful thermal and structural performance during the atmospheric entry, it is important to characterize the properties of these materials, once they have been subjected to entry like conditions. The present paper focuses on mechanical characteristics of pre-and post arc-jet tested woven TPS samples at different scales. It also presents the observations from scanning electron microscope and computed tomography images, and explains the changes in microstructure after being subjected to combined thermal-mechanical loading environments.
Changes in Acceleration and Deceleration Capacity Throughout Professional Soccer Match-Play.
Russell, Mark; Sparkes, William; Northeast, Jonny; Cook, Christian J; Love, Tom D; Bracken, Richard M; Kilduff, Liam P
2016-10-01
Russell, M, Sparkes, W, Northeast, J, Cook, CJ, Love, TD, Bracken, RM, and Kilduff, LP. Changes in acceleration and deceleration capacity throughout professional soccer match-play. J Strength Cond Res 30(10): 2839-2844, 2016-As the acceleration and deceleration demands of soccer are currently not well understood, this study aimed to profile markers of acceleration and deceleration capacity during professional soccer match-play. This within-player observational study required reserve team players from a Premier League club to wear 10-Hz Global Positioning System units throughout competitive matches played in the 2013-14 competitive season. Data are presented for players who completed 4 or more games during the season (n = 11), and variables are presented according to six 15-minute intervals (I1-6: 00:00-14:59 minutes, 15:00-29:59 minutes, 30:00-44:59 minutes, 45:00-59:59 minutes, 60:00-74:59 minutes, and 75:00-89:59 minutes, respectively). During I6, the distance covered (total, per minute, and at high intensity), number of sprints, accelerations (total and high intensity), decelerations (total and high intensity), and impacts were reduced compared with I1 (all p ≤ 0.05). The number of high-intensity impacts remained unchanged throughout match-play (p > 0.05). These findings indicate that high-intensity actions and markers of acceleration and deceleration capacity are reduced in the last 15 minutes of the normal duration of match-play. Such information can be used to increase the specificity of training programs designed for soccer players while also giving further insight in to the effects of 90 minutes of soccer-specific exercise. Interventions that seek to maintain the acceleration and deceleration capacity of players throughout the full duration of a soccer match warrant investigation.
Flight investigation of a vertical-velocity command system for VTOL aircraft
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.
1977-01-01
A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.
Application of inflatable aeroshell structures for Entry Descent and Landing
NASA Astrophysics Data System (ADS)
Jurewicz, David; Lichodziejewski, Leo; Tutt, Ben; Gilles, Brian; Brown, Glen
Future space missions will require improvements in the Entry, Descent, and Landing (EDL) phases of the mission architecture. The focus of this paper is to discuss recent advances in analysis, fabrication techniques, ground testing, and flight testing of a stacked torus Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and its application to the future of EDL. The primary structure of a stacked torus HIAD consists of nested inflatable tori of increasing major diameter bonded and strapped to form a rigid structure after inflation. The underlying structure of the decelerator is covered with a flexible Thermal Protection System (TPS) capable of high heat flux. The inflatable aeroshell and TPS are packed around a centerbody within the launch fairing and deployed prior to atmospheric reentry. Recent fabrication of multiple HIADs between 3 and 6 meters has led to significant advances in process control and validation of the scalability of the technology. Progress has been made in generating and validating LS-DYNA FEA models to replicate flight loading in addition to analytical models of substructures. Coupon and component testing has improved the validation of modeling techniques and assumptions at the subsystem level. A ground testing campaign at the National Full-Scale Aerodynamics Center (NFAC) wind tunnel at NASA Ames Research center generated substantial aerodynamic and loading data to validate full system modeling with comparable dynamic pressures to a hypersonic reentry. The Inflatable Reentry Vehicle - 3 (IRVE-3) sounding rocket flight test was conducted with NASA Langley Research Center in July 2012. The IRVE-3 mission verified the structural and thermal performance of the stacked torus configuration. Further development of the stacked torus configuration is currently being conducted to increase the thermal capability, deceleration loads, and understanding of the interactions and effects of constituent components. The results of this research have expanded the- feasible flight envelope of stacked torus HIAD designs over a range of sizes, loading conditions, and heating.
NASA Astrophysics Data System (ADS)
Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.
2015-12-01
The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G. H.; Innis, R. C.
1981-01-01
Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.
Tunable inertia of chiral magnetic domain walls
Torrejon, Jacob; Martinez, Eduardo; Hayashi, Masamitsu
2016-01-01
The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall is a topological object that has been observed to follow this behaviour. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii–Moriya exchange constant. The time needed to accelerate a domain wall with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the Dzyaloshinskii–Moriya exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral domain walls. Such unique feature of chiral domain walls can be utilized to move and position domain walls with lower current, key to the development of storage class memory devices. PMID:27882932
Eick, Christian; Rizas, Konstantinos D; Meyer-Zürn, Christine S; Groga-Bada, Patrick; Hamm, Wolfgang; Kreth, Florian; Overkamp, Dietrich; Weyrich, Peter; Gawaz, Meinrad; Bauer, Axel
2015-05-01
To evaluate heart rate deceleration capacity, an electrocardiogram-based marker of autonomic nervous system activity, as risk predictor in a medical emergency department and to test its incremental predictive value to the modified early warning score. Prospective cohort study. Medical emergency department of a large university hospital. Five thousand seven hundred thirty consecutive patients of either sex in sinus rhythm, who were admitted to the medical emergency department of the University of Tübingen, Germany, between November 2010 and March 2012. None. Deceleration capacity of heart rate was calculated within the first minutes after emergency department admission. The modified early warning score was assessed from respiratory rate, heart rate, systolic blood pressure, body temperature, and level of consciousness as previously described. Primary endpoint was intrahospital mortality; secondary endpoints included transfer to the ICU as well as 30-day and 180-day mortality. One hundred forty-two patients (2.5%) reached the primary endpoint. Deceleration capacity was highly significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; p < 0.001) and yielded an area under the receiver-operator characteristic curve of 0.780 (95% CI, 0.745-0.813). The modified early warning score model yielded an area under the receiver-operator characteristic curve of 0.706 (0.667-0.750). Implementing deceleration capacity into the modified early warning score model led to a highly significant increase of the area under the receiver-operator characteristic curve to 0.804 (0.770-0.835; p < 0.001 for difference). Deceleration capacity was also a highly significant predictor of 30-day and 180-day mortality as well as transfer to the ICU. Deceleration capacity is a strong and independent predictor of short-term mortality among patients admitted to a medical emergency department.
NASA Technical Reports Server (NTRS)
Bodkin, Richard J.; Cheatwood, F. M.; Dillman, Robert A; Dinonno, John M.; Hughes, Stephen J.; Lucy, Melvin H.
2016-01-01
As HIAD technology progresses from 3-m diameter experimental scale to as large as 20-m diameter for human Mars entry, the mass penalties of carrying compressed gas has led the HIAD team to research current state-of-the-art gas generator approaches. Summarized below are several technologies identified in this survey, along with some of the pros and cons with respect to supporting large-scale HIAD applications.
An advanced technique for the prediction of decelerator system dynamics.
NASA Technical Reports Server (NTRS)
Talay, T. A.; Morris, W. D.; Whitlock, C. H.
1973-01-01
An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2012-01-01
The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
Crash pulse optimization for occupant protection at various impact velocities.
Ito, Daisuke; Yokoi, Yusuke; Mizuno, Koji
2015-01-01
Vehicle deceleration has a large influence on occupant kinematic behavior and injury risks in crashes, and the optimization of the vehicle crash pulse that mitigates occupant loadings has been the subject of substantial research. These optimization research efforts focused on only high-velocity impact in regulatory or new car assessment programs though vehicle collisions occur over a wide range of velocities. In this study, the vehicle crash pulse was optimized for various velocities with a genetic algorithm. Vehicle deceleration was optimized in a full-frontal rigid barrier crash with a simple spring-mass model that represents the vehicle-occupant interaction and a Hybrid III 50th percentile male multibody model. To examine whether the vehicle crash pulse optimized at the high impact velocity is useful for reducing occupant loading at all impact velocities less than the optimized velocity, the occupant deceleration was calculated at various velocities for the optimized crash pulse determined at a high speed. The optimized vehicle deceleration-deformation characteristics that are effective for various velocities were investigated with 2 approaches. The optimized vehicle crash pulse at a single impact velocity consists of a high initial impulse followed by zero deceleration and then constant deceleration in the final stage. The vehicle deceleration optimized with the Hybrid III model was comparable to that determined from the spring-mass model. The optimized vehicle deceleration-deformation characteristics determined at a high speed did not necessarily lead to an occupant deceleration reduction at a lower velocity. The maximum occupant deceleration at each velocity was normalized by the maximum deceleration determined in the single impact velocity optimization. The resulting vehicle deceleration-deformation characteristic was a square crash pulse. The objective function was defined as the number of injuries, which was the product of the number of collisions at the velocity and the probability of occupant injury. The optimized vehicle deceleration consisted of a high deceleration in the initial phase, a small deceleration in the middle phase, and then a high deceleration in the final phase. The optimized vehicle crash pulse at a single impact velocity is effective for reducing occupant deceleration in a crash at the specific impact velocity. However, the crash pulse does not necessarily lead to occupant deceleration reduction at a lower velocity. The optimized vehicle deceleration-deformation characteristics, which are effective for all impact velocities, depend on the weighting of the occupant injury measures at each impact velocity.
Multistage Zeeman decelerator for molecular-scattering studies
NASA Astrophysics Data System (ADS)
Cremers, Theo; Chefdeville, Simon; Janssen, Niek; Sweers, Edwin; Koot, Sven; Claus, Peter; van de Meerakker, Sebastiaan Y. T.
2017-04-01
We present a concept for a multistage Zeeman decelerator that is optimized particularly for applications in molecular beam scattering experiments. The decelerator consists of a series of alternating hexapoles and solenoids, that effectively decouple the transverse focusing and longitudinal deceleration properties of the decelerator. It can be operated in a deceleration and acceleration mode, as well as in a hybrid mode that makes it possible to guide a particle beam through the decelerator at constant speed. The deceleration features phase stability, with a relatively large six-dimensional phase-space acceptance. The separated focusing and deceleration elements result in an unequal partitioning of this acceptance between the longitudinal and transverse directions. This is ideal in scattering experiments, which typically benefit from a large longitudinal acceptance combined with narrow transverse distributions. We demonstrate the successful experimental implementation of this concept using a Zeeman decelerator consisting of an array of 25 hexapoles and 24 solenoids. The performance of the decelerator in acceleration, deceleration, and guiding modes is characterized using beams of metastable helium (3S ) atoms. Up to 60% of the kinetic energy was removed for He atoms that have an initial velocity of 520 m/s. The hexapoles consist of permanent magnets, whereas the solenoids are produced from a single hollow copper capillary through which cooling liquid is passed. The solenoid design allows for excellent thermal properties and enables the use of readily available and cheap electronics components to pulse high currents through the solenoids. The Zeeman decelerator demonstrated here is mechanically easy to build, can be operated with cost-effective electronics, and can run at repetition rates up to 10 Hz.
Nagasaka, Kei; Mizuno, Koji; Ito, Daisuke; Saida, Naoya
2017-05-29
In car crashes, the passenger compartment deceleration significantly influences the occupant loading. Hence, it is important to consider how each structural component deforms in order to control the passenger compartment deceleration. In frontal impact tests, the passenger compartment deceleration depends on the energy absorption property of the front structures. However, at this point in time there are few papers describing the components' quantitative contributions on the passenger compartment deceleration. Generally, the cross-sectional force is used to examine each component's contribution to passenger compartment deceleration. However, it is difficult to determine each component's contribution based on the cross-sectional forces, especially within segments of the individual members itself such as the front rails, because the force is transmitted continuously and the cross-sectional forces remain the same through the component. The deceleration of a particle can be determined from the derivative of the kinetic energy. Using this energy-derivative method, the contribution of each component on the passenger compartment deceleration can be determined. Using finite element (FE) car models, this method was applied for full-width and offset impact tests. This method was also applied to evaluate the deceleration of the powertrain. The finite impulse response (FIR) coefficient of the vehicle deceleration (input) and the driver chest deceleration (output) was calculated from Japan New Car Assessment Program (JNCAP) tests. These were applied to the component's contribution on the vehicle deceleration in FE analysis, and the component's contribution to the deceleration of the driver's chest was determined. The sum of the contribution of each component coincides with the passenger compartment deceleration in all types of impacts; therefore, the validity of this method was confirmed. In the full-width impact, the contribution of the crush box was large in the initial phases, and the contribution of the passenger compartment was large in the final phases. For the powertrain deceleration, the crush box had a positive contribution and the passenger compartment had a negative contribution. In the offset test, the contribution of the honeycomb and the passenger compartment deformation to the passenger compartment deceleration was large. Based on the FIR analysis, the passenger compartment deformation contributed the most to the chest deceleration of the driver dummy in the full-width impact. Based on the energy-derivative method, the contribution of the components' deformation to deceleration of the passenger compartment can be calculated for various types of crash configurations more easily, directly, and quantitatively than by using conventional methods. In addition, by combining the energy-derivative method and FIR, each structure's contribution to the occupant deceleration can be obtained. The energy-derivative method is useful in investigating how the deceleration develops from component deformations and also in designing deceleration curves for various impact configurations.
Amaya, Kevin E; Matushewski, Brad; Durosier, L Daniel; Frasch, Martin G; Richardson, Bryan S; Ross, Michael G
2016-02-01
Due to limitations of technology, clinicians are typically unable to determine if human fetuses are normoxic or moderately, chronically hypoxic. Risk factors for chronic hypoxia include fetal growth restriction, which is associated with an increased incidence of oligohydramnios and thus a risk for umbilical cord occlusion (UCO) and variable fetal heart rate (FHR) decelerations. At delivery, fetal growth restriction infants (<3rd percentile) have nearly twice the incidence of low Apgar scores and umbilical pH <7.0. Despite the risks of oligohydramnios and intermittent UCO, there is little understanding of the acid/base responses rates of chronically hypoxic fetuses to variable FHR decelerations as might occur during human labor. We sought to compare the increase in base deficit (BD) among chronically hypoxic as compared to normoxic ovine fetuses in response to simulated mild, moderate, and severe variable FHR decelerations. Near-term ovine fetuses were chronically prepared with brachial artery catheters and an inflatable umbilical cuff occluder. Following a recovery period, normoxic (n = 9) and spontaneously hypoxic (n = 5) fetuses were identified (arterial O2 saturation ≤55%). Both animal groups underwent graded, 1-minute occlusions every 2.5 minutes with 1 hour of mild (∼30 beats/min [bpm] decrease from baseline), 1 hour of moderate (∼60 bpm decrease from baseline), and up to 2 hours of severe (∼90 bpm decrease from baseline) variable FHR decelerations until fetal arterial pH reached 7.00, when occlusions were stopped. Repetitive UCO resulted in development of acidosis (pH <7.0) in both groups. Hypoxic and normoxic fetuses demonstrated similar BD increases in response to both mild (0.39, interquartile range [IQR] 0.28-0.45 vs 0.26, IQR 0.01-0.30 mEq/L/10 min, P = .25) and severe (1.97, IQR 1.50-2.43 vs 1.51, IQR 0.97-2.45 mEq/L/10 min, P = .63) variable decelerations. However, moderate variable decelerations increased BD in hypoxic fetuses at 2.5 times the rate of normoxic fetuses (0.97, IQR 0.52-1.72 vs 0.39, IQR 0.23-0.47 mEq/L/10 min, P = .03). During the recovery period, hypoxic fetuses cleared BD slower than normoxic fetuses (0.08 ± 0.02 vs 0.12 ± 0.03 mEq/L/min, P = .02). In comparison to normoxic fetuses, hypoxic fetuses can more rapidly progress to significant metabolic acidosis in response to moderate FHR variable decelerations, and more slowly recover with in utero resuscitation, likely a consequence of impaired placental function and fetal physiologic responses. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2016-12-01
Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.
Solar thermal power & gas turbine hybrid design with molten salt storage tank
NASA Astrophysics Data System (ADS)
Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo
2017-06-01
Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.
High-Speed Photography with Computer Control.
ERIC Educational Resources Information Center
Winters, Loren M.
1991-01-01
Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)
Values Education and Physical Education in Turkey
ERIC Educational Resources Information Center
Görgüt, Ilyas
2018-01-01
In the 21st century, science and technology have led to so many negative situations as well as positive developments for humanity. These negativities also affect human beings in a very intense way and in a natural result of this, people affect other's livings negatively. The general belief that the decelerating the events, actions and moral…
DOT National Transportation Integrated Search
1994-01-01
Senate Joint Resolution No. 247, 1993 Session, requested that the Virginia Department of Motor Vehicles, the Center for Innovative Technology, the Motor Carrier Division of the State Corporation Commission, and the Department of State Police conduct ...
A driving simulator study of driver performance on deceleration lanes.
Calvi, A; Benedetto, A; De Blasiis, M R
2012-03-01
Deceleration lanes are important because they help drivers transition from high-speed lanes to low-speed ramps. Although they are designed to allow vehicles to depart the freeway safely and efficiently, many studies report high accident rates on exit ramps with the highest percentage of crashes taking place in deceleration lanes. This paper describes the results of a driving simulator study that focused on driving performance while approaching a divergence area and decelerating during the exiting maneuver. Three different traffic scenarios were simulated to analyze the influence of traffic volume on driving performance. Thirty drivers drove in the simulator in these scenarios while data on their lateral position, speed and deceleration were collected. Our results indicate there are considerable differences between the main assumptions of models generally used to design deceleration lanes and actual driving performance. In particular, diverging drivers begin to decelerate before arriving at the deceleration lane, causing interference with the main flow. Moreover, speeds recorded at the end of the deceleration lane exceed those for which the ramp's curves are designed; this creates risky driving conditions that could explain the high crash rates found in studies of exit ramps. Finally, statistical analyses demonstrate significant influences of traffic volume on some aspects of exiting drivers' performance: lower traffic volume results in elevated exiting speed and deceleration, and diverging drivers begin to decelerate earlier along the main lane when traffic volume is low. However, speeds at the end of the deceleration lane and the site of lane changing are not significantly influenced by traffic volume. Copyright © 2011 Elsevier Ltd. All rights reserved.
Slowing techniques for loading a magneto-optical trap of CaF molecules
NASA Astrophysics Data System (ADS)
Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike
2016-05-01
Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.
Rei, Mariana; Tavares, Sara; Pinto, Pedro; Machado, Ana P; Monteiro, Sofia; Costa, Antónia; Costa-Santos, Cristina; Bernardes, João; Ayres-De-Campos, Diogo
2016-10-01
Visual analysis of cardiotocographic (CTG) tracings has been shown to be prone to poor intra- and interobserver agreement when several interpretation guidelines are used, and this may have an important impact on the technology's performance. The aim of this study was to evaluate agreement in CTG interpretation using the new 2015 FIGO guidelines on intrapartum fetal monitoring. A pre-existing database of intrapartum CTG tracings was used to sequentially select 151 cases acquired with a fetal electrode, with duration exceeding 60minutes, and signal loss less than 15%. These tracings were presented to six clinicians, three with more than 5 years' experience in the labor ward, and three with 5 or less years' experience. Observers were asked to evaluate tracings independently, to assess basic CTG features: baseline, variability, accelerations, decelerations, sinusoidal pattern, tachysystole, and to classify each tracing as normal, suspicious or pathologic, according to the 2015 FIGO guidelines on intrapartum fetal monitoring. Agreement between observers was evaluated using the proportions of agreement (Pa), with 95% confidence intervals (95%CI). A good interobserver agreement was found in the evaluation of most CTG features, but not bradycardia, reduced variability, saltatory pattern, absence of accelerations and absence of decelerations. For baseline classification Pa was 0.85 [0.82-0.90], for variability 0.82 [0.78-0.85], for accelerations 0.72 [0.68-0.75], for tachysystole 0.77 [0.74-0.81], for decelerations 0.92 [0.90-0.95], for variable decelerations 0.62 [0.58-0.65], for late decelerations 0.63 [0.59-0.66], for repetitive decelerations 0.73 [0.69-0.78], and for prolonged decelerations 0.81 [0.77-0.85]. For overall CTG classification, Pa were 0.60 [0.56-0.64], for classification as normal 0.67 [0.61-0.72], for suspicious 0.54 [0.48-0.60] and for pathologic 0.59 [0.51-0.66]. No differences in agreement according to the level of expertise were observed, except in the identification of accelerations, where it was better in the more experienced group. A good interobserver agreement was found in evaluation of most CTG features and in overall tracing classification. Results were better than those reported in previous studies evaluating agreement in overall tracing classification. Observer experience did not appear to play a role in agreement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Design of a Parachute Canopy Instrumentation Platform
NASA Technical Reports Server (NTRS)
Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.
2015-01-01
This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.
Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri
NASA Astrophysics Data System (ADS)
Heller, René; Hippke, Michael
2017-02-01
At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10-4 gram m-2) in orbit around Proxima is about 13,800 km s-1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s-1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.
Effects of deceleration and rate of deceleration on live seated human subjects
DOT National Transportation Integrated Search
1977-10-01
This report describes the testing of live, seated human subjects to determine : the maximum deceleration and associated rate of change of deceleration (jerk) at : which the majority of potential users of automated guideway transportation (ACT) : syst...
NASA Astrophysics Data System (ADS)
Wiederkehr, A. W.; Schmutz, H.; Motsch, M.; Merkt, F.
2012-08-01
Cold samples of oxygen molecules in supersonic beams have been decelerated from initial velocities of 390 and 450 m s-1 to final velocities in the range between 150 and 280 m s-1 using a 90-stage Zeeman decelerator. (2 + 1) resonance-enhanced-multiphoton-ionization (REMPI) spectra of the 3sσ g 3Π g (C) ? two-photon transition of O2 have been recorded to characterize the state selectivity of the deceleration process. The decelerated molecular sample was found to consist exclusively of molecules in the J ‧‧ = 2 spin-rotational component of the X ? ground state of O2. Measurements of the REMPI spectra using linearly polarized laser radiation with polarization vector parallel to the decelerator axis, and thus to the magnetic-field vector of the deceleration solenoids, further showed that only the ? magnetic sublevel of the N‧‧ = 1, J ‧‧ = 2 spin-rotational level is populated in the decelerated sample, which therefore is characterized by a fully oriented total-angular-momentum vector. By maintaining a weak quantization magnetic field beyond the decelerator, the polarization of the sample could be maintained over the 5 cm distance separating the last deceleration solenoid and the detection region.
Adaptable, Deployable Entry and Placement Technology (ADEPT) Overview of FY15 Accomplishments
NASA Technical Reports Server (NTRS)
Wercinski, P.; Brivkalns, C.; Cassell, A.; Chen, Y.-K.; Boghozian, T.; Chinnapongse, R.; Gasch, M.; Kruger, C.; Makino, A.; Milos, F.;
2015-01-01
ADEPT is an atmospheric entry architecture for missions to most planetary bodies with atmospheres: Current Technology development project funded under STMD Game Changing Development Program (FY12 start); stowed inside the launch vehicle shroud and deployed in space prior to entry; low ballistic coefficient (less than 50 kilograms per square meter) provides a benign deceleration and thermal environment to the payload; High-temperature ribs support three dimensional woven carbon fabric to generate drag and withstand high heating.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Witkowski, Allen
2015-01-01
During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.
Sholapurkar, Shashikant L
2018-04-01
The survival of cardiotocography (CTG) as a tool for intrapartum fetal monitoring seems threatened somewhat unjustifiably and unwittingly despite the absence of better alternatives. Fetal heart rate (FHR) decelerations are center-stage (most important) in the interpretation of CTG with maximum impact on three-tier classification. The pattern-discrimination of FHR decelerations is inexorably linked to their nomenclature. Unscientific or flawed nomenclature of decelerations can explain the dysfunctional CTG interpretation leading to errors in detection of acidemic fetuses. There are three contrasting concepts about categorization of FHR decelerations: 1) all rapid decelerations (the vast majority) should be grouped as "variable" because they are predominantly due to cord-compression, 2) all decelerations are due to chemoreflex from fetal hypoxemia hence their timing is not important, and 3) FHR decelerations should be categorized into "early/late/variable" based primarily on their time relationship to contractions. These theoretical concepts are like memes (ideas/beliefs). Lessons from "memetics" are that the most popular, attractive or established beliefs may not necessarily be true, scientific, beneficial or even without harm. Decelerations coincident with contractions with trough corresponding to the peak of contractions cannot be explained by cord-compression or increasing hypoxia (from compromised uteroplacental perfusion, cord-compression or even cerebral hypoperfusion/anoxia purportedly conceivable from head-compression). Decelerations due to hypoxemia would be associated with delayed recovery of decelerations (lag phase). It is a scientific imperative to cast away disproven/falsified theories. Practices based on unscientific theories lead to patient harm. Clinicians should urgently adopt the categorization of FHR decelerations based primarily of the time relationship to contractions as originally proposed by Hon and Caldeyro-Barcia. This analytical review shows it to be underpinned by most robust physiological and scientific hypotheses unlike the other categorizations associated with untruthful hypotheses, irreconcilable fallacies and contradictions. Without truthful framework and meaningful pattern-recognition of FHR decelerations, the CTG will not fulfil its true potential.
Sholapurkar, Shashikant L.
2018-01-01
The survival of cardiotocography (CTG) as a tool for intrapartum fetal monitoring seems threatened somewhat unjustifiably and unwittingly despite the absence of better alternatives. Fetal heart rate (FHR) decelerations are center-stage (most important) in the interpretation of CTG with maximum impact on three-tier classification. The pattern-discrimination of FHR decelerations is inexorably linked to their nomenclature. Unscientific or flawed nomenclature of decelerations can explain the dysfunctional CTG interpretation leading to errors in detection of acidemic fetuses. There are three contrasting concepts about categorization of FHR decelerations: 1) all rapid decelerations (the vast majority) should be grouped as “variable” because they are predominantly due to cord-compression, 2) all decelerations are due to chemoreflex from fetal hypoxemia hence their timing is not important, and 3) FHR decelerations should be categorized into “early/late/variable” based primarily on their time relationship to contractions. These theoretical concepts are like memes (ideas/beliefs). Lessons from “memetics” are that the most popular, attractive or established beliefs may not necessarily be true, scientific, beneficial or even without harm. Decelerations coincident with contractions with trough corresponding to the peak of contractions cannot be explained by cord-compression or increasing hypoxia (from compromised uteroplacental perfusion, cord-compression or even cerebral hypoperfusion/anoxia purportedly conceivable from head-compression). Decelerations due to hypoxemia would be associated with delayed recovery of decelerations (lag phase). It is a scientific imperative to cast away disproven/falsified theories. Practices based on unscientific theories lead to patient harm. Clinicians should urgently adopt the categorization of FHR decelerations based primarily of the time relationship to contractions as originally proposed by Hon and Caldeyro-Barcia. This analytical review shows it to be underpinned by most robust physiological and scientific hypotheses unlike the other categorizations associated with untruthful hypotheses, irreconcilable fallacies and contradictions. Without truthful framework and meaningful pattern-recognition of FHR decelerations, the CTG will not fulfil its true potential. PMID:29511418
Older drivers and rapid deceleration events: Salisbury Eye Evaluation Driving Study.
Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K
2013-09-01
Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers aged 67-87 were recruited from the Maryland Motor Vehicle Administration's rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created driving monitoring system (DMS) was used to capture rapid deceleration events (RDEs), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving<59 miles during the 5-day period of monitoring. However, older drivers with RDE's were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more "fit", with better measures of vision and cognition compared to those who do not have events of rapid deceleration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Older Drivers and Rapid Deceleration Events: Salisbury Eye Evaluation Driving Study
Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K
2012-01-01
Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers ages 67 to 87 were recruited from the Maryland Motor Vehicle Administration’s rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created Driving Monitor System (DMS) was used to capture rapid deceleration events (RDE), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving <59 miles during the 5-day period of monitoring. However, older drivers with RDE’s were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more “fit”, with better measures of vision and cognition compared to those who do not have events of rapid deceleration. PMID:22742775
Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System
NASA Technical Reports Server (NTRS)
Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, B.L.; Hallenbeck, R.A.; Gill, J.M.
This seminar provided an overview on the proliferation of nuclear, chemical and biological weapons as well as missiles and missile technology, and set the stage for subsequent seminar meetings of the 1993 program. A multiplicity of factors -- different nations, regions, and capabilities -- is making dealing with proliferation increasingly complicated. Additionally, recent or upcoming world events introduce further uncertainty into proliferation calculations. These proliferation accelerators and decelerators, will greatly shape and define the overall proliferation picture. These factors combine to raise a whole new series of stability issues which require new analyses and approaches for managing proliferation in themore » post-Cold War era. While technology cannot alone solve the proliferation problem, a particularly promising application is in new information technologies and interactive information management systems. A proliferation information network could be used to fuse large amounts of information and data on exports; license; treaty reporting, notifications, and other obligations; dual use technologies and related scientific advances; and others information of proliferation relevance. This type of network could use readily available technologies, would be simple to use and relatively inexpensive to create and maintain, and could be made available to almost of all of the nations of the world.« less
Evaluation of the usefulness of various simulation technology options for TERPS enhancement
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Sorensen, J. A.
1986-01-01
Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined.
System design of the Pioneer Venus spacecraft. Volume 5: Probe vehicle studies
NASA Technical Reports Server (NTRS)
Nolte, L. J.; Stephenson, D. S.
1973-01-01
A summary of the key issues and studies conducted for the Pioneer Venus spacecraft and the resulting probe designs are presented. The key deceleration module issues are aerodynamic configuration and heat shield material selection. The design and development of the pressure vessel module are explained. Thermal control and science integration of the pressure vessel module are explained. The deceleration module heat shield, parachute and separation/despin are reported. The Thor/Delta and Atlas/Centaur baseline descriptions are provided.
Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.
Principles and Design of a Zeeman–Sisyphus Decelerator for Molecular Beams
Tarbutt, M. R.
2016-01-01
Abstract We explore a technique for decelerating molecules using a static magnetic field and optical pumping. Molecules travel through a spatially varying magnetic field and are repeatedly pumped into a weak‐field seeking state as they move towards each strong field region, and into a strong‐field seeking state as they move towards weak field. The method is time‐independent and so is suitable for decelerating both pulsed and continuous molecular beams. By using guiding magnets at each weak field region, the beam can be simultaneously guided and decelerated. By tapering the magnetic field strength in the strong field regions, and exploiting the Doppler shift, the velocity distribution can be compressed during deceleration. We develop the principles of this deceleration technique, provide a realistic design, use numerical simulations to evaluate its performance for a beam of CaF, and compare this performance to other deceleration methods. PMID:27629547
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
Regenerative braking failures in battery electric vehicles and their impact on the driver.
Cocron, Peter; Neumann, Isabel; Kreußlein, Maria; Wanner, Daniel; Bierbach, Maxim; Krems, Josef F
2018-09-01
A unique feature of battery electric vehicles (BEV) is their regenerative braking system (RBS) to recapture kinetic energy in deceleration maneuvers. If such a system is triggered via gas pedal, most deceleration maneuvers can be executed by just using this pedal. This impacts the driving task as different deceleration strategies can be applied. Previous research has indicated that a RBS failure leading to a sudden reduced deceleration represents an adverse event for BEV drivers. In the present study, we investigated such a failure's impact on the driver's evaluation and behavior. We conducted an experiment on a closed-off test track using a modified BEV that could temporarily switch off the RBS. One half of the 44 participants in the study received information about an upcoming RBS failure whereas the other half did not. While 91% of the drivers receiving prior information noticed the RBS failure, only 48% recognized it in the "uniformed" group. In general, the failure and the perception of its occurrence influenced the driver's evaluation and behavior more than receiving prior information. Nevertheless, under the tested conditions, drivers kept control and were able to compensate for the RBS failure. As the participants drove quite simple maneuvers in our experiment, further studies are needed to validate our findings using more complex driving settings. Given that RBS failures could have severe consequences, appropriate information and warning strategies for drivers are necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aerocapture Benefits to Future Science Missions
NASA Technical Reports Server (NTRS)
Artis, Gwen; James, Bonnie
2006-01-01
NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.
NASA Technical Reports Server (NTRS)
Barret, Chris
1998-01-01
NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.
Baseline Testing of The EV Global E-Bike
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce Operating costs for transportation systems. The work was done Linder the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electric bicycle. Unique features of the vehicle's power system include the use of an efficient, 400 W. electric hub motor and a 7-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the E-bike, the results of performance testing, and future vehicle development plans is the subject of this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
International Meeting on Simulation in Healthcare
2010-02-01
wounds, burns, and injury . Participants will create reusable moulage items using realistic gel effects materials—designed to work seamlessly with...simulations of injuries and clinical encounters. Such technology provides extremely high levels of perceived realism and encourages suspension of disbelief...trace. The model gives an estimate of the cerebral flow reduction that occurs during early decelerations, including an estimate for vessel diameter
Automated Fetal Heart Rate Analysis in Labor: Decelerations and Overshoots
NASA Astrophysics Data System (ADS)
Georgieva, A. E.; Payne, S. J.; Moulden, M.; Redman, C. W. G.
2010-10-01
Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced `modified' Sensitivity (SE°) and `modified' Positive Predictive Value (PPV°) as appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.
Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2011-01-01
This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.
Leung, Brian; Chau, Tom
2014-03-08
The combination of single-switch access technology and scanning is the most promising means of augmentative and alternative communication for many children with severe physical disabilities. However, the physical impairment of the child and the technology's limited ability to interpret the child's intentions often lead to false positives and negatives (corresponding to accidental and missed selections, respectively) occurring at rates that frustrate the user and preclude functional communication. Multiple psychophysiological studies have associated cardiac deceleration and increased phasic electrodermal activity with self-realization of errors among able-bodied individuals. Thus, physiological measurements have potential utility at enhancing single-switch access, provided that such prototypical autonomic responses exist in persons with profound disabilities. The present case series investigated the autonomic responses of three pediatric single-switch users with severe spastic quadriplegic cerebral palsy, in the context of a single-switch letter matching activity. Each participant exhibited distinct autonomic responses to activity engagement. Our analysis confirmed the presence of the autonomic response pattern of cardiac deceleration and increased phasic electrodermal activity following true positives, false positives and false negatives errors, but not subsequent to true negative outcomes. These findings suggest that there may be merit in complementing single-switch input with autonomic measurements to improve augmentative and alternative communications for pediatric access technology users.
Ross, Michael G; Jessie, Marquis; Amaya, Kevin; Matushewski, Brad; Durosier, L Daniel; Frasch, Martin G; Richardson, Bryan S
2013-04-01
Recent guidelines classify variable decelerations without detail as to degree of depth. We hypothesized that variable deceleration severity is highly correlated with fetal base deficit accumulation. Seven near-term fetal sheep underwent a series of graded umbilical cord occlusions resulting in mild (30 bpm decrease), moderate (60 bpm decrease), or severe (decrease of 90 bpm to baseline <70 bpm) variable decelerations at 2.5 minute intervals. Mild, moderate, and severe variable decelerations increased fetal base deficit (0.21 ± 0.03, 0.27 ± 0.03, and 0.54 ± 0.09 mEq/L per minute) in direct proportion to severity. During recovery, fetal base deficit cleared at 0.12 mEq/L per minute. In this model, ovine fetuses can tolerate repetitive mild and moderate variable decelerations with minimal change in base deficit and lactate. In contrast, repetitive severe variable decelerations may result in significant base deficit increases, dependent on frequency. Modified guideline differentiation of mild/moderate vs severe variable decelerations may aid in the interpretation of fetal heart rate tracings and optimization of clinical management paradigms. Copyright © 2013 Mosby, Inc. All rights reserved.
High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation
NASA Technical Reports Server (NTRS)
Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.
2015-01-01
A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.
Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, René; Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu
At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light ( c ) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B,more » and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio ( σ ) similar to graphene (7.6 × 10{sup −4} gram m{sup −2}) in orbit around Proxima is about 13,800 km s{sup −1} (4.6% c ), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s{sup −1}) to Proxima. The size of such a low- σ sail required to carry a payload of 10 grams is about 10{sup 5} m{sup 2} = (316 m){sup 2}. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.« less
Very Small Interstellar Spacecraft
NASA Astrophysics Data System (ADS)
Peck, Mason A.
2007-02-01
This paper considers lower limits of length scale in spacecraft: interstellar vehicles consisting of little more material than found in a typical integrated-circuit chip. Some fundamental scaling principles are introduced to show how the dynamics of the very small can be used to realize interstellar travel with minimal advancements in technology. Our recent study for the NASA Institute for Advanced Concepts provides an example: the use of the Lorentz force that acts on electrically charged spacecraft traveling through planetary and stellar magnetospheres. Schaffer and Burns, among others, have used Cassini and Voyager imagery to show that this interaction is responsible for some of the resonances in the orbital dynamics of dust in Jupiter's and Saturn's rings. The Lorentz force turns out to vary in inverse proportion to the square of this characteristic length scale, making it a more effective means of propelling tiny spacecraft than solar sailing. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. Performance estimates, some insight into plasma interactions, and some hardware concepts are offered. The mission architectures considered here involve the use of these propellantless propulsion techniques for acceleration within our solar system and deceleration near the destination. We might envision a large number of such satellites with intermittent, bursty communications set up as a one-dimensional network to relay signals across great distances using only the power likely from such small spacecraft. Conveying imagery in this fashion may require a long time because of limited power, but the prospect of imaging another star system close-up ought to be worth the wait.
Methods to Determine the Deformation of the IRVE Hypersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Young, William R.
2011-01-01
Small resonant targets used in conjunction with a microwave reflectometer to determine the deformation of the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) during reentry are investigated. The reflectometer measures the distance to the targets and from this the HIAD deformation is determined. The HIAD is used by the Inflatable Reentry Vehicle Experiment (IRVE) which investigates the use of inflatable heat shields for atmospheric reentry. After several different microwave reflectometer systems were analyzed and compared it was determined that the most desirable for this application is the Frequency Doubling Target method.
Development flight tests of the Viking decelerator system.
NASA Technical Reports Server (NTRS)
Murrow, H. N.; Eckstrom, C. V.; Henke, D. W.
1973-01-01
Significant aspects of a low altitude flight test phase of the overall Viking decelerator system development are given. This test series included nine aircraft drop tests that were conducted at the Joint Parachute Test Facility, El Centro, California, between September 1971 and May 1972. The test technique and analytical planning method utilized to best simulate loading conditions in a low density environment are presented and some test results are shown to assess their adequacy. Performance effects relating to suspension line lengths of 1.7 D sub o with different canopy loadings are noted. System hardware developments are described, in particular the utilization of a fabric deployment mortar cover which remained attached to the parachute canopy. Finally, the contribution of this test series to the overall program is assessed.
A study of the solar wind deceleration in the Earth's foreshock region
NASA Technical Reports Server (NTRS)
Zhang, T.-L.; Schwingenschuh, K.; Russell, C. T.
1995-01-01
Previous observations have shown that the solar wind is decelerated and deflected in the earth's upstream region populated by long-period waves. This deceleration is corelated with the 'diffuse' but not with the 'reflected' ion population. The speed of the solar wind may decrease tens of km/s in the foreshock region. The solar wind dynamic pressure exerted on the magnetopause may vary due to the fluctuation of the solar wind speed and density in the foreshock region. In this study, we examine this solar wind deceleration and determine how the solar wind deceleration varies in the foreshock region.
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Aerocapture Technology to Reduce Trip Time and Cost of Planetary Missions
NASA Astrophysics Data System (ADS)
Artis, Gwen R.; James, B.
2006-12-01
NASA’s In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the “aeroassist” techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each sub-system technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped “ballutes” and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.
Wellman, Aaron D; Coad, Sam C; Goulet, Grant C; McLellan, Christopher P
2016-01-01
The aim of the present study was to examine the competitive physiological movement demands of National Collegiate Athletic Association (NCAA) Division I college football players using portable global positioning system (GPS) technology during games and to examine positional groups within offensive and defensive teams, to determine if a player's physiological requirements during games are influenced by playing position. Thirty-three NCAA Division I Football Bowl Subdivision football players were monitored using GPS receivers with integrated accelerometers (GPSports) during 12 regular season games throughout the 2014 season. Individual data sets (n = 295) from players were divided into offensive and defensive teams and subsequent position groups. Movement profile characteristics, including total, low-intensity, moderate-intensity, high-intensity, and sprint running distances (m), sprint counts, and acceleration and deceleration efforts, were assessed during games. A one-way ANOVA and post-hoc Bonferroni statistical analysis were used to determine differences in movement profiles between each position group within offensive and defensive teams. For both offensive and defensive teams, significant (p ≤ 0.05) differences exist between positional groups for game physical performance requirements. The results of the present study identified that wide receivers and defensive backs completed significantly (p ≤ 0.05) greater total distance, high-intensity running, sprint distance, and high-intensity acceleration and deceleration efforts than their respective offensive and defensive positional groups. Data from the present study provide novel quantification of position-specific physical demands of college football games and support the use of position-specific training in the preparation of NCAA Division I college football players for competition.
Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars
NASA Astrophysics Data System (ADS)
Fagin, Maxwell H.
Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.
Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)
NASA Technical Reports Server (NTRS)
Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.
1999-01-01
Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.
An experimental cadaveric study for a better understanding of blunt traumatic aortic rupture.
Baqué, Patrick; Serre, Thierry; Cheynel, Nicolas; Arnoux, Pierre-Jean; Thollon, Lionel; Behr, Michel; Masson, Catherine; Delotte, Jérôme; Berdah, Stéphane-Victor; Brunet, Christian
2006-09-01
Blunt traumatic aortic rupture (BTAR) is a common catastrophic injury leading to death. Considerable uncertainty remains regarding the pathogenic cause. This study examines the comportment of the heart and the aorta during a frontal deceleration. Accelerometers were placed in the right ventricle of the heart, the aorta, the sternum, and the spine of six trunks removed from human cadavers. Different vertical decelerations were applied to cadavers and the relative motion of these organs was studied (19 tests). The deceleration recorded in the isthmus of the aorta was always higher that the one recorded in the heart (p < 0.05). The difference of deceleration was 17% and increased with the speed's fall (extremes 5-25%). There was no significant difference of deceleration between the bony structures of the thorax. These results experimentally demonstrate for the first time that the fundamental mechanism of BTAR is sudden stretching of the isthmus of the aorta. Four mechanisms are suspected to explain the location of the rupture: two hemodynamic mechanism (sudden increase of intravascular pressure and the water-hammer effect), and two physical mechanisms (sudden stretching of the isthmus and the osseous pinch). A greater understanding of the mechanism of this injury could improve vehicle safety leading to a reduction in its incidence and severity. Future work in this area should include the creation of an inclusive, dynamic model of computer-based modeling systems. This study provides for the first time physical demonstration and quantification of the stretching of the isthmus, leading to a computerized model of BTAR.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1991-01-01
Methods for providing stereoscopic image presentation and stereoscopic configurations using stereoscopic viewing systems having converged or parallel cameras may be set up to reduce or eliminate erroneously perceived accelerations and decelerations by proper selection of parameters, such as an image magnification factor, q, and intercamera distance, 2w. For converged cameras, q is selected to be equal to Ve - qwl = 0, where V is the camera distance, e is half the interocular distance of an observer, w is half the intercamera distance, and l is the actual distance from the first nodal point of each camera to the convergence point, and for parallel cameras, q is selected to be equal to e/w. While converged cameras cannot be set up to provide fully undistorted three-dimensional views, they can be set up to provide a linear relationship between real and apparent depth and thus minimize erroneously perceived accelerations and decelerations for three sagittal planes, x = -w, x = 0, and x = +w which are indicated to the observer. Parallel cameras can be set up to provide fully undistorted three-dimensional views by controlling the location of the observer and by magnification and shifting of left and right images. In addition, the teachings of this disclosure can be used to provide methods of stereoscopic image presentation and stereoscopic camera configurations to produce a nonlinear relation between perceived and real depth, and erroneously produce or enhance perceived accelerations and decelerations in order to provide special effects for entertainment, training, or educational purposes.
Nagasaka, Kei; Mizuno, Koji; Thomson, Robert
2018-03-26
For occupant protection, it is important to understand how a car's deceleration time history in crashes can be designed using efficient of energy absorption by a car body's structure. In a previous paper, the authors proposed an energy derivative method to determine each structural component's contribution to the longitudinal deceleration of a car passenger compartment in crashes. In this study, this method was extended to 2 dimensions in order to analyze various crash test conditions. The contribution of each structure estimated from the energy derivative method was compared to that from a conventional finite element (FE) analysis method using cross-sectional forces. A 2-dimensional energy derivative method was established. A simple FE model with a structural column connected to a rigid body was used to confirm the validity of this method and to compare with the result of cross-sectional forces determined using conventional analysis. Applying this method to a full-width frontal impact simulation of a car FE model, the contribution and the cross-sectional forces of the front rails were compared. In addition, this method was applied to a pedestrian headform FE simulation in order to determine the influence of the structural and inertia forces of the hood structures on the deceleration of the headform undergoing planar motion. In an oblique impact of the simple column and rigid body model, the sum of the contributions of each part agrees with the rigid body deceleration, which indicates the validity of the 2-dimensional energy derivative method. Using the energy derivative method, it was observed that each part of the column contributes to the deceleration of the rigid body by collapsing in the sequence from front to rear, whereas the cross-sectional force at the rear of the column cannot detect the continuous collapse. In the full-width impact of a car, the contributions of the front rails estimated in the energy derivative method was smaller than that using the cross-sectional forces at the rear end of the front rails due to the deformation of the passenger compartment. For a pedestrian headform impact, the inertial and structural forces of the hood contributed to peaks of the headform deceleration in the initial and latter phases, respectively. Using the 2-dimensional energy derivative method, it is possible to analyze an oblique impact or a pedestrian headform impact with large rotations. This method has advantages compared to the conventional approach using cross-sectional forces because the contribution of each component to system deceleration can be determined.
Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes
NASA Astrophysics Data System (ADS)
Park, C.; Bowen, S. W.
1981-01-01
The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.
Embryo Space Colonisation to Overcome the Interstellar Time Distance Bottleneck
NASA Astrophysics Data System (ADS)
Crowl, A.; Hunt, J.; Hein, A. M.
The immense distances to neighbouring star systems pose the single greatest challenge to a true interstellar mission. The challenge is made even greater if the purpose of the mission is scientific in which it is commonly stated that the mission should last no longer than the career of a participating scientist. This imposes speed requirements with a host of well-known problems of propulsion, immense vehicle mass, need for in-space infrastructure, impact hazards, proton flux, and deceleration. If instead the purpose of the interstellar mission is to ensure the survival of humanity by establishing a viable colony using frozen embryos, these many problems are potentially mitigated due to the fact that the speeds can be much slower. Sleeper ships are a suggested low speed alternative, but cosmic ray damage to suspended/frozen humans could place a limit on the acceptable duration of the mission thereby necessitating greater speed with the aforementioned challenges. Near-term solar-sail technology could be sufficient to launch an ESC mission once human ectogenetic technology has matured.
Centrifugal reciprocating compressor
NASA Technical Reports Server (NTRS)
High, W. H.
1980-01-01
Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.
Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator
NASA Technical Reports Server (NTRS)
Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.
2013-01-01
In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.
Experimental Modeling of a Formula Student Carbon Composite Nose Cone
Fellows, Neil A.
2017-01-01
A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982
Earth’s Rotational Deceleration: Determination of Tidal Friction Independent of Timescales
NASA Astrophysics Data System (ADS)
Deines, Steven D.; Williams, Carol A.
2016-04-01
This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, ice age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10-7 rad yr-2. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.
Tournaire, M; Sturbois, G; Ripoche, A; Le Houezec, R; Breart, G; Chavinie, J; Sureau, C
1976-01-01
Fetal heart rate (FHR) deceleration areas were studied to obtain by objective measurement of the FHR, their prognostic value of the new-born state. 1. There is a reasonably good correlation between FHR deceleration areas and UApH (Tab. II). Such a correlation was found by SHELLEY and TIPTON [6] for the whole deceleration area, and by TOURNAIRE et al. [10] for areas divided in a slightly different way. The correlation coefficients between FHR deceleration areas and Apgar score at 1 minute are within a close range of those of the FHR deceleration area and UApH (Tab. I and II). 2. According to the time relationship between deceleration areas and uterine contractions the best correlation coefficient was obtained surprisingly for total, followed by residual and then simultaneous areas. These results agree with those of SHELLEY and TIPTON [6] suggesting that in practice a simple measurement of the whole deceleration area, regardless of the uterine contractions is a sufficient method in evaluating FHR patterns. 3. The special purpose computer built by the BAUDELOCQUE research group can be used on-line, thus in clinical practice. It was not the case for the manual method [4] or the method using a large programmed computer [10]. 4 The evaluation of deceleration areas appears to have several advantages: 1. It provides objective measurements. 2. The unit used is independant of factors such as display speed or scale of the strip-chart. 3. The data is reduced: A few numbers replace the long descriptions of the usual clinical classifications.
Effectiveness of restraint equipment in enclosed areas.
DOT National Transportation Integrated Search
1972-02-01
A series of 20-g decelerations of a crash sled was conducted to determine the magnitude of head impact decelerations while wearing various types of restraint equipment in small confined areas. Restraint webbing loads and head impact decelerations are...
Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4
NASA Technical Reports Server (NTRS)
Talay, T. A.
1974-01-01
A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.
NASA Astrophysics Data System (ADS)
Suzuki, Toru; Fujimoto, Hiroshi
In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sairam, T., E-mail: sairamtvv@gmail.com; Bhatt, Pragya; Safvan, C. P.
A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.
Osumi, Takahiro; Ohira, Hideki
2016-11-01
Previous studies have investigated which biological markers predict the decision to reject unfair monetary offers, termed costly punishment, in the ultimatum game (UG). One study showed that a phasic deceleratory response in heart rate (HR) is evoked in the responder more readily by offers that will be rejected than by offers that will be accepted. However, owing to the paucity of supporting evidence, it remains unclear whether and why HR deceleration can predict the decisions of UG responders. In this paper, we report two separate studies (Study 1 and Study 2) using modified versions of the UG to explore factors modulating HR deceleration. In Study 1, as well as unfair offers, fair offers induced greater HR deceleration when responders were forced to reject offers compared to when they were forced to accept offers. In Study 2, a high rejection rate for very unfair offers was sustained, regardless of the size of the offers, but HR deceleration was increased for unfair but large offers, relative to unfair, small offers. Moreover, HR deceleration was associated with the rejection of large offers. However, across the two studies, HR deceleration did not simply vary depending on unfairness. These findings support the possibility that HR decelerates as a function of cognitive load in determining costly punishment. Copyright © 2016 Elsevier B.V. All rights reserved.
Randomized trial of intermittent or continuous amnioinfusion for variable decelerations.
Rinehart, B K; Terrone, D A; Barrow, J H; Isler, C M; Barrilleaux, P S; Roberts, W E
2000-10-01
To determine whether continuous or intermittent bolus amnioinfusion is more effective in relieving variable decelerations. Patients with repetitive variable decelerations were randomized to an intermittent bolus or continuous amnioinfusion. The intermittent bolus infusion group received boluses of 500 mL of normal saline, each over 30 minutes, with boluses repeated if variable decelerations recurred. The continuous infusion group received a bolus infusion of 500 mL of normal saline over 30 minutes and then 3 mL per minute until delivery occurred. The ability of the amnioinfusion to abolish variable decelerations was analyzed, as were maternal demographic and pregnancy outcome variables. Power analysis indicated that 64 patients would be required. Thirty-five patients were randomized to intermittent infusion and 30 to continuous infusion. There were no differences between groups in terms of maternal demographics, gestational age, delivery mode, neonatal outcome, median time to resolution of variable decelerations, or the number of times variable decelerations recurred. The median volume infused in the intermittent infusion group (500 mL) was significantly less than that in the continuous infusion group (905 mL, P =.003). Intermittent bolus amnioinfusion is as effective as continuous infusion in relieving variable decelerations in labor. Further investigation is necessary to determine whether either of these techniques is associated with increased occurrence of rare complications such as cord prolapse or uterine rupture.
Trajectory Control for Vehicles Entering the Earth's Atmosphere at Small Flight Path Angles
NASA Technical Reports Server (NTRS)
Eggleston, John M.
1959-01-01
Methods of controlling the trajectories of high-drag-low-lift vehicles entering the earth's atmosphere at angles of attack near 90 deg and at initial entry angles up to 3 deg are studied. The trajectories are calculated for vehicles whose angle of attack can be held constant at some specified value or can be perfectly controlled as a function of some measured quantity along the trajectory. The results might be applied in the design of automatic control systems or in the design of instruments which will give the human pilot sufficient information to control his trajectory properly during an atmospheric entry. Trajectory data are compared on the basis of the deceleration, range, angle of attack, and, in some cases, the rate of descent. The aerodynamic heat-transfer rate and skin temperature of a vehicle with a simple heat-sink type of structure are calculated for trajectories made with several types of control functions. For the range of entry angles considered, it is found that the angle of attack can be controlled to restrict the deceleration down to an arbitrarily chosen level of 3g. All the control functions tried are successful in reducing the maximum deceleration to the desired level. However, in order to avoid a tendency for the deceleration to reach an initial peak decrease, and then reach a second peak, some anticipation is required in the control function so that the change in angle of attack will lead the change in deceleration. When the angle of attack is controlled in the aforementioned manner, the maximum rate of aerodynamic heat transfer to the skin is reduced, the maximum skin temperature of the vehicle is virtually unaffected, and the total heat absorbed is slightly increased. The increase in total heat can be minimized, however, by maintaining the maximum desired deceleration for as much of the trajectory as possible. From an initial angle of attack of 90 deg, the angle-of-attack requirements necessary to maintain constant values of deceleration (1g to 4g) and constant values of rate of descent (450 to 1,130 ft/sec) as long as it is aerodynamically practical are calculated and are found to be moderate in both magnitude and rate. Entry trajectories made with these types of control are presented and discussed.
Homogenization of Vehicle Fleet Frontal Crash Pulses from 2000–2010
Locey, Caitlin M.; Garcia-Espana, J. Felipe; Toh, Akira; Belwadi, Aditya; Arbogast, Kristy B.; Maltese, Matthew R.
2012-01-01
Full-scale vehicle crash tests are performed globally to assess vehicle structure and restraint system performance. The crash pulse, captured by accelerometers mounted within the occupant compartment, measures the motion of the vehicle during the impact event. From an occupant’s perspective, the crash pulse is the inertial event to which the vehicle’s restraint systems must respond in order to mitigate the forces and accelerations that act on a passenger, and thus reduce injury risk. The objective of this study was to quantify the characteristics of crash pulses for different vehicle types in the contemporary North American fleet, and delineate current trends in crash pulse evolution. NHTSA and Transport Canada crash test databases were queried for full-frontal rigid barrier crash tests of passenger vehicles model year 2000–2010 with impact angle equaling zero degrees. Acceleration-time histories were analyzed for all accelerometers attached to the vehicle structure within the occupant compartment. Custom software calculated the following crash pulse characteristics (CPCs): peak deceleration, time of peak deceleration, onset rate, pulse duration, and change in velocity. Vehicle body types were classified by adapting the Highway Loss Data Institute (HLDI) methodology, and vehicles were assigned a generation start year in place of model year in order to more accurately represent structural change over time. 1094 vehicle crash tests with 2795 individual occupant compartment-mounted accelerometers were analyzed. We found greater peak decelerations and and shorter pulse durations across multiple vehicle types in newer model years as compared to older. For midsize passenger cars, large passenger cars, and large SUVs in 56 km/h rigid barrier tests, maximum deceleration increased by 0.40, 0.96, and 1.57 g/year respectively, and pulse duration decreased by 0.74, 1.87, and 2.51 ms/year. We also found that the crash pulse characteristics are becoming more homogeneous in the modern vehicle fleet; the range of peak deceleration values for all vehicle classes decreased from 17.1 g in 1997–1999 generation start years to 10.7 g in 2009–2010 generation years, and the pulse duration range decreased from 39.5 ms to 13.4 ms for the same generation year groupings. This latter finding suggests that the designs of restraint systems may become more universally applicable across vehicle body types, since the occupant compartment accelerations are not as divergent for newer vehicles. PMID:23169139
Passive detection of vehicle loading
NASA Astrophysics Data System (ADS)
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Salvaggio, Philip S.; McKeown, Donald M.; Garrett, Alfred J.; Coleman, David H.; Koffman, Larry D.
2012-01-01
The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.
SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance
NASA Technical Reports Server (NTRS)
White, Joseph; Dutta, Soumyo; Striepe, Scott
2015-01-01
The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.
The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Mission Applications Study
NASA Technical Reports Server (NTRS)
Bose, David M.; Winski, Richard; Shidner, Jeremy; Zumwalt, Carlie; Johnston, Christopher O.; Komar, D. R.; Cheatwood, F. M.; Hughes, Stephen J.
2013-01-01
The objective of the HIAD Mission Applications Study is to quantify the benefits of HIAD infusion to the concept of operations of high priority exploration missions. Results of the study will identify the range of mission concepts ideally suited to HIADs and provide mission-pull to associated technology development programs while further advancing operational concepts associated with HIAD technology. A summary of Year 1 modeling and analysis results is presented covering missions focusing on Earth and Mars-based applications. Recommended HIAD scales are presented for near term and future mission opportunities and the associated environments (heating and structural loads) are described.
Periodic components of hand acceleration/deceleration impulses during telemanipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Handel, S.
1994-01-01
Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25more » Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.« less
EARTH’S ROTATIONAL DECELERATION: DETERMINATION OF TIDAL FRICTION INDEPENDENT OF TIMESCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deines, Steven D.; Williams, Carol A., E-mail: steven.deines@gmail.com, E-mail: cw@math.usf.edu
This paper determines Earth's rotational deceleration without relying on atomic or ephemeris timescales. Earth's rotation defines the civil time standard called Universal Time (UT). Our previous paper did not examine tidal friction in depth when analyzing the timescale divergence between UT and International Atomic Time (TAI). We examine all available paleontological fossils and deposits for the direct measurements of Earth's past rotation rates, because that record includes all contributing effects. We examine paleontological reports that date Earth's rotation rate using corals, bivalves, brachiopods, rhythmites, and stromatolites. Contributions that vary Earth's moment of inertia, such as continental plate drifts, coastline changes, icemore » age formations, and viscous glacial rebounds, are superimposed with the secular deceleration. The average deceleration of Earth's rotation rate from all available fossil data is found to be (5.969 ± 1.762) × 10{sup −7} rad yr{sup −2}. Our value is 99.8% of the total rotational deceleration determined by Christodoulidis et al., who used artificial satellite data, and our value is 96.6% of the expected tidal friction value obtained by Stephenson and Morrison. Taking the derivative of conserved angular momentum, the predicted lunar orbital deceleration caused by the average rotational deceleration corresponds closely to lunar models. When evaluating the significant time gaps between UT and TAI, Earth's rotational deceleration is a minor contributing factor. Also, the secular deceleration rate is necessary to correctly date ancient astronomical events. We strongly encourage that more ocean paleontological evidence be found to supplement the record to separate the many periodic variations embedded in these data.« less
Lightweight, variable solidity knitted parachute fabric. [for aerodynamic decelerators
NASA Technical Reports Server (NTRS)
Matthews, F. R., Jr.; White, E. C. (Inventor)
1973-01-01
A parachute fabric for aerodynamic decelerator applications is described. The fabric will permit deployment of the decelerator at high altitudes and low density conditions. The fabric consists of lightweight, highly open, circular knitted parachute fabric with ribbon-like yarns to assist in air deflection.
30 CFR 56.19062 - Maximum acceleration and deceleration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062 Section 56.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating...
30 CFR 57.19062 - Maximum acceleration and deceleration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062 Section 57.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating...
Baseline Testing of the EV Global E-Bike with Ultracapacitors
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike SX with ultracapacitors as a way to reduce pollution in urban areas, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The E-Bike provides an inexpensive approach to advance the state of art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electrical bicycle. Unique features of the vehicle's power system include the use of an efficient, 400 W electric hub motor, and a seven-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. A description of the E-bike, the results of performance testing, and future vehicle development plans are given in this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
NASA Technical Reports Server (NTRS)
West, J. Curtis; Chamberlain, Sally A.; Stevens, Robert; Pagan, Neftali
1989-01-01
Project Longshot is an unmanned probe to our nearest star system, Alpha Centauri, 4.3 light years away. The Centauri system is a trinary system consisting of two central stars (A and B) orbiting a barycenter, and a third (Proxima Centauri) orbiting the two. The system is a declination of -67 degrees. The goal is to reach the Centauri system in 50 years. This time space was chosen because any shorter time would be impossible of the relativistic velocities involved, and any greater time would be impossible because of the difficulty of creating a spacecraft with such a long lifetime. Therefore, the following mission profile is proposed: (1) spacecraft is assembled in Earth orbit; (2) spacecraft escapes Earth and Sun in the ecliptic with a single impulse maneuver; (3) spacecraft changed declination to point toward Centauri system; (4) spacecraft accelerates to 0.1c; (5) spacecraft coasts at 0.1c for 41 years; (6) spacecraft decelerates upon reaching Centauri system; and (7) spacecraft orbits Centauri system, conducts investigations, and relays data to Earth. The total time to reach the Centauri system, taking into consideration acceleration and deceleration, will be approximately 50 years.
Lear, Christopher A.; Galinsky, Robert; Wassink, Guido; Yamaguchi, Kyohei; Davidson, Joanne O.; Westgate, Jenny A.; Bennet, Laura
2016-01-01
Abstract A distinctive pattern of recurrent rapid falls in fetal heart rate, called decelerations, are commonly associated with uterine contractions during labour. These brief decelerations are mediated by vagal activation. The reflex triggering this vagal response has been variably attributed to a mechanoreceptor response to fetal head compression, to baroreflex activation following increased blood pressure during umbilical cord compression, and/or a Bezold–Jarisch reflex response to reduced venous return from the placenta. Although these complex explanations are still widespread today, there is no consistent evidence that they are common during labour. Instead, the only mechanism that has been systematically investigated, proven to be reliably active during labour and, crucially, capable of producing rapid decelerations is the peripheral chemoreflex. The peripheral chemoreflex is triggered by transient periods of asphyxia that are a normal phenomenon associated with all uterine contractions. This should not cause concern as the healthy fetus has a remarkable ability to adapt to these repeated but short periods of asphyxia. This means that the healthy fetus is typically not at risk of hypotension and injury during uncomplicated labour even during repeated brief decelerations. The physiologically incorrect theories surrounding decelerations that ignore the natural occurrence of repeated asphyxia probably gained widespread support to help explain why many babies are born healthy despite repeated decelerations during labour. We propose that a unified and physiological understanding of intrapartum decelerations that accepts the true nature of labour is critical to improve interpretation of intrapartum fetal heart rate patterns. PMID:27328617
Lin, Jui-Te; Huang, Morris; Sprigle, Stephen
2015-01-01
The purpose of this study was to develop a simple approach to evaluate resistive frictional forces acting on manual wheelchairs (MWCs) during straight and turning maneuvers. Using a dummy-occupied MWC, decelerations were measured via axle-mounted encoders during a coast-down protocol that included straight trajectories and fixed-wheel turns. Eight coast-down trials were conducted to test repeatability and repeated on separate days to evaluate reliability. Without changing the inertia of the MWC system, three tire inflations were chosen to evaluate the sensitivity in discerning deceleration differences using effect sizes. The technique was also deployed to investigate the effect of different MWC masses and weight distributions on resistive forces. Results showed that the proposed coast-down technique had good repeatability and reliability in measuring decelerations and had good sensitivity in discerning differences in tire inflation, especially during turning. The results also indicated that increased loading on drive wheels reduced resistive losses in straight trajectories while increasing resistive losses during turning. During turning trajectories, the presence of tire scrub contributes significantly to the amount of resistive force. Overall, this new coast-down technique demonstrates satisfactory repeatability and sensitivity for detecting deceleration changes during straight and turning trajectories, indicating that it can be used to evaluate resistive loss of different MWC configurations and maneuvers.
Extreme Environment Technologies for Space and Terrestrial Applications
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Cutts, James A.; Kolawa, Elizabeth A.; Peterson, Craig E.
2008-01-01
Over the next decades, NASA's planned solar system exploration missions are targeting planets, moons and small bodies, where spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. For instance, near the surface of Venus and in the deep atmospheres of giant planets, probes would experience high temperatures and pressures. In the Jovian system low temperatures are coupled with high radiation. Other environments include thermal cycling, and corrosion. Mission operations could also introduce extreme conditions, due to atmospheric entry heat flux and deceleration. Some of these EE conditions are not unique to space missions; they can be encountered by terrestrial assets from the fields of defense,oil and gas, aerospace, and automotive industries. In this paper we outline the findings of NASA's Extreme Environments Study Team, including discussions on state of the art and emerging capabilities related to environmental protection, tolerance and operations in EEs. We will also highlight cross cutting EE mitigation technologies, for example, between high g-load tolerant impactors for Europa and instrumented projectiles on Earth; high temperature electronics sensors on Jupiter deep probes and sensors inside jet engines; and pressure vessel technologies for Venus probes and sea bottom monitors. We will argue that synergistic development programs between these fields could be highly beneficial and cost effective for the various agencies and industries. Some of these environments, however, are specific to space and thus the related technology developments should be spear headed by NASA with collaboration from industry and academia.
Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinsik; Jang, Gilsoo; Muljadi, Eduard
For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases duringmore » inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control.« less
Accretion onto neutron stars with the presence of a double layer
NASA Technical Reports Server (NTRS)
Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.
1986-01-01
It is known from laboratory experiments that double layers can form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.
Accretion onto neutron stars with the presence of a double layer
NASA Technical Reports Server (NTRS)
Williams, A. C.; Weisskopf, M. C.; Elsner, R. F.; Darbro, W.; Sutherland, P. G.
1987-01-01
It is known, from laboratory experiments, that double layers will form in plasmas, usually in the presence of an electric current. It is argued that a double layer may be present in the accretion column of a neutron star in a binary system. It is suggested that the double layer may be the predominant deceleration mechanism for the accreting ions, especially for sources with X-ray luminosities of less than about 10 to the 37th erg/s. Previous models have involved either a collisionless shock or an assumed gradual deceleration of the accreting ions to thermalize the energy of the infalling matter.
Bio-kinetic energy harvesting using electroactive polymers
NASA Astrophysics Data System (ADS)
Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy
2012-06-01
In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.
Human Mars Lander Design for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Chapman, Jack; Sutherlin, Steve; Taylor, Brian; Fabisinski, Leo; Collins, Tim; Cianciolo Dwyer, Alicia; Samareh, Jamshid; Robertson, Ed; Studak, Bill;
2016-01-01
Landing humans on Mars will require entry, descent, and landing capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. To better assess entry, descent, and landing technology options and sensitivities to future human mission design variations, a series of design studies on human-class Mars landers has been initiated. This paper describes the results of the first design study in the series of studies to be completed in 2016 and includes configuration, trajectory and subsystem design details for a lander with Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry technology. Future design activities in this series will focus on other entry technology options.
Fetal heart rate patterns at 20 to 24 weeks gestation as recorded by fetal electrocardiography
Hofmeyr, F; Groenewald, CA; Nel, DG; Myers, MM; Fifer, WP; Signore, C; Hankins, GDV; Odendaal, HJ
2014-01-01
Introduction With advancing technology it has become possible to accurately record and assess fetal heart rate (FHR) patterns from gestations as early as 20 weeks. The aim of our study was to describe early patterns of FHR, as recorded by transabdominal fetal electrocardiogram according to the Dawes-Redman criteria. Accordingly, short-term variability, basal heart rate, accelerations and decelerations were quantified at 20-24 weeks gestation among women with uncomplicated pregnancies. Methods This study was conducted in a subset of participants enrolled in a large prospective pregnancy cohort study. Our final data set consisted of 281 recordings of women with good perinatal outcomes that had undergone fetal electrocardiographic assessment as part of the Safe Passage Study. Results The success rate of the recordings was 95.4%. The mean frequency of small and large accelerations was 0.5 and 0.1 per 10 minutes respectively and that of small and large decelerations 0.3 and 0.008 per 10 minutes respectively. The mean and basal heart rates were both equal to 148.0 bpm at a median gestation of 161 days. The mean short term variation was 6.2 (SD 1.4) milliseconds and mean minute range 35.1 (SD 7.1) milliseconds. Conclusion The 20 to 24 week fetus demonstrates FHR patterns with more accelerations and decelerations, as well as higher baseline variability than was anticipated. Information from this study provides an important foundation for further, more detailed, studies of early FHR patterns. PMID:23991757
Correlation Tests of the Ditching Behavior of an Army B-24D Airplane and a 1/16-size Model
NASA Technical Reports Server (NTRS)
Jarvis, George A.; Fisher, Lloyd J.
1946-01-01
Behaviors of both model and full-scale airplanes were ascertained by making visual observations, by recording time histories of decelerations, and by taking motion picture records of ditchings. Results are presented in form of sequence photographs and time-history curves for attitudes, vertical and horizontal displacements, and longitudinal decelerations. Time-history curves for attitudes and horizontal and vertical displacements for model and full-scale tests were in agreement; maximum longitudinal decelerations for both ditchings did not occur at same part of run; full-scale maximum deceleration was 50 percent greater.
Warrick, P A; Precup, D; Hamilton, E F; Kearney, R E
2007-01-01
To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) and apply this in a novel online manner to change-point detection based on SSA. The SSA technique forms models of the underlying signal that can be compared over time; models that are sufficiently different indicate signal change points. To adapt the algorithm to deceleration detection where many successive similar change events can occur, we modify the standard SSA algorithm to hold the reference model constant under such conditions, an approach that we term "base-hold SSA". The algorithm is applied to a database of 15 FHR tracings that have been preprocessed to locate candidate decelerations and is compared to the markings of an expert obstetrician. Of the 528 true and 1285 false decelerations presented to the algorithm, the base-hold approach improved on standard SSA, reducing the number of missed decelerations from 64 to 49 (21.9%) while maintaining the same reduction in false-positives (278). The standard SSA assumption that changes are infrequent does not apply to FHR analysis where decelerations can occur successively and in close proximity; our base-hold SSA modification improves detection of these types of event series.
Design and Test Criteria for Increased Energy-Absorbing Seat Effectiveness
1983-03-01
condition . ........ 35 8 CAMI aled. . . . . . . . . . . 37 9 CAMI wire - bending decelerator mechanism.... 38 10 Typical baseline deceleration pulses for...8217. * A * (b) Sled and wires following test. "Fiigure 9. CAI wire - bending decelerator mechanism. 38 OF --. 9 O 9 ’ W W v v v v W ’W A 50 so- 40- 40
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1979-01-01
A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.
New Concepts and Fermilab Facilities for Antimatter Research
NASA Astrophysics Data System (ADS)
Jackson, Gerald
2008-04-01
There has long been significant interest in continuing antimatter research at the Fermi National Accelerator Laboratory. Beam kinetic energies ranging from 10 GeV all the way down to the eV scale and below are of interest. There are three physics missions currently being developed: the continuation of charmonium physics utilizing an internal target; atomic physics with in-flight generated antihydrogen atoms; and deceleration to thermal energies and paasage of antiprotons through a grating system to determine their gravitation acceleration. Non-physics missions include the study of medical applications, tests of deep-space propulsion concepts, low-risk testing of nuclear fuel elements, and active interrogation for smuggled nuclear materials in support of homeland security. This paper reviews recent beam physics and accelerator technology innovations in the development of methods and new Fermilab facilities for the above missions.
CFD applications in hypersonic flight
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1992-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.
NASA Technical Reports Server (NTRS)
Beck, Robin A.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Fan, Wendy; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj
2012-01-01
The Office of Chief Technologist (OCT), NASA has identified the need for research and technology development in part from NASA's Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASA's exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program (GCDP) is a primary avenue to achieve the Agency's 2011 strategic goal to "Create the innovative new space technologies for our exploration, science, and economic future." In addition, recently released "NASA space Technology Roadmaps and Priorities," by the National Research Council (NRC) of the National Academy of Sciences stresses the need for NASA to invest in the very near term in specific EDL technologies. The report points out the following challenges (Page 2-38 of the pre-publication copy released on February 1, 2012): Mass to Surface: Develop the ability to deliver more payload to the destination. NASA's future missions will require ever-greater mass delivery capability in order to place scientifically significant instrument packages on distant bodies of interest, to facilitate sample returns from bodies of interest, and to enable human exploration of planets such as Mars. As the maximum mass that can be delivered to an entry interface is fixed for a given launch system and trajectory design, the mass delivered to the surface will require reduction in spacecraft structural mass; more efficient, lighter thermal protection systems; more efficient lighter propulsion systems; and lighter, more efficient deceleration systems. Surface Access: Increase the ability to land at a variety of planetary locales and at a variety of times. Access to specific sites can be achieved via landing at a specific location (s) or transit from a single designated landing location, but it is currently infeasible to transit long distances and through extremely rugged terrain, requiring landing close to the site of interest. The entry environment is not always guaranteed with a direct entry, and improving the entry system's robustness to a variety of environmental conditions could aid in reaching more varied landing sites."
Jeppsson, Hanna; Östling, Martin; Lubbe, Nils
2018-02-01
The objective of this study is to predict the real-life benefits, namely the number of injuries avoided rather than the reduction in impact speed, offered by a Vacuum Emergency Brake (VEB) added to a pedestrian automated emergency braking (AEB) system. We achieve this through the virtual simulation of simplified mathematical models of a system which incorporates expected future advances in technology, such as a wide sensor field of view, and reductions in the time needed for detection, classification, and brake pressure build up. The German In-Depth Accident Study database and the related Pre Crash Matrix, both released in the beginning of 2016, were used for this study and resulted in a final sample of 526 collisions between passenger car fronts and pedestrians. Weight factors were calculated for both simulation model and injury risk curves to make the data representative of Germany as a whole. The accident data was used with a hypothetical AEB system in a simulation model, and injury risk was calculated from the new impact speed using injury risk curves to generate new situations using real accidents. Adding a VEB to a car with pedestrian AEB decreased pedestrian casualties by an additional 8-22%, depending on system setting and injury level, over the AEB-only system. The overall decrease in fatalities was 80-87%, an improvement of 8%. Collision avoidance was improved by 14-28%. VEB with a maximum deceleration in the middle of the modelled performance range has an effectiveness similar to that of an "early activation" system, where the AEB is triggered as early as 2 s before collision. VEB may therefore offer a substantial increase in performance without increasing false positive rates, which earlier AEB activation does. Most collisions and injuries can be avoided when AEB is supplemented by the high performance VEB; remaining cases are characterised by high pedestrian walking speed and late visibility due to view obstructions. VEB is effective in all analysed accident scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanisms of force and power production in unsteady ricochetal brachiation.
Usherwood, James R; Larson, Susan G; Bertram, John E A
2003-04-01
Brachiators travel by swinging beneath handholds, and it is not obvious how these animals manage to accelerate and decelerate in a horizontal direction, especially when moving rapidly. Most previous analyses focused on brachiation in highly constrained laboratory conditions that induced steady-state locomotion. Emerging understanding of brachiation suggests that much of gibbon locomotory behavior and morphology must be considered within the context of the complexities of the natural environment: the forest canopy is three-dimensional, with high variation in handhold availability and properties. The goal of this paper is to quantify the active mechanisms by which gibbons can dynamically control their velocity. Force production and kinematics were analyzed from a white-handed gibbon Hylabates lar during ricochetal brachiation. Both the mechanisms of force production and power input may be inferred for accelerating and decelerating brachiation by combining force data with kinematics. Examples of steady-state, accelerating, and decelerating ricochetal brachiation are highlighted. Gibbons are able to produce net horizontal impulses by releasing early (resulting in a loss of potential energy, but an accelerating horizontal impulse) or delaying release (associated with an increase in potential energy, and a decelerating horizontal impulse). Torque about the shoulder, leg-lifting (or dropping), and elbow flexing (or straightening) are discussed as potential mechanisms for controlling energy within the brachiating system. Of these possibilities, leg-lifting and arm-flexing were observed as mechanisms of adding mechanical energy. Net energy loss, and substantial torques about the shoulder, were not observed. Copyright 2003 Wiley-Liss, Inc.
Decelerating and Trapping Large Polar Molecules.
Patterson, David
2016-11-18
Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Alkandry, Hicham
Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness of the RCS.
Close to Kill: Vestigial Technologies and Combat Arms
2012-06-01
greater distances. The mere thought of ramming a several-thousand-ton ship into another vessel, stabbing a blade into the chest of an adversary, or...Not until six months into the war did it contract for a third.41 The shortage in production capacity led to a significant iron deficit by the end...wind and sea, influence of wakes , and rates and acceleration and deceleration of ships of different displacements.” Robison, A History of Naval
2014-01-01
Background The combination of single-switch access technology and scanning is the most promising means of augmentative and alternative communication for many children with severe physical disabilities. However, the physical impairment of the child and the technology’s limited ability to interpret the child’s intentions often lead to false positives and negatives (corresponding to accidental and missed selections, respectively) occurring at rates that frustrate the user and preclude functional communication. Multiple psychophysiological studies have associated cardiac deceleration and increased phasic electrodermal activity with self-realization of errors among able-bodied individuals. Thus, physiological measurements have potential utility at enhancing single-switch access, provided that such prototypical autonomic responses exist in persons with profound disabilities. Methods The present case series investigated the autonomic responses of three pediatric single-switch users with severe spastic quadriplegic cerebral palsy, in the context of a single-switch letter matching activity. Each participant exhibited distinct autonomic responses to activity engagement. Results Our analysis confirmed the presence of the autonomic response pattern of cardiac deceleration and increased phasic electrodermal activity following true positives, false positives and false negatives errors, but not subsequent to true negative outcomes. Conclusions These findings suggest that there may be merit in complementing single-switch input with autonomic measurements to improve augmentative and alternative communications for pediatric access technology users. PMID:24607065
Construction of the Helsinki University of Technology (HUT) pulsed positron beam
NASA Astrophysics Data System (ADS)
Fallström, K.; Laine, T.
1999-08-01
We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.
NASA Astrophysics Data System (ADS)
Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.
2016-05-01
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh–Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.
2013-01-01
The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the Aerocover configuration. Both the Aerocovers and the TPS were populated with high contrast targets so that photogrammetric solutions of the loaded surface could be created. These solutions both refined the aerodynamic shape for CFD modeling and provided a deformed shape to validate structural Finite Element Analysis (FEA) models. Extensive aerothermal testing has been performed on the TPS candidates. This testing has been conducted in several facilities across the country. The majority of the testing has been conducted in the Boeing Large Core Arc Tunnel (LCAT). HIAD is continuing to mature testing methodology in this facility and is developing new test sample fixtures and control methodologies to improve understanding and quality of the environments to which the samples are subjected. Additional testing has been and continues to be performed in the NASA LaRC 8ft High Temperature Tunnel, where samples up to 2ft by 2ft are being tested over representative underlying structures incorporating construction features such as sewn seams and through-thickness quilting. With the successful completion to the IRVE-3 flight demonstration, mission planning efforts are ramping up on the development of the HIAD Earth Atmospheric Reenty Test (HEART) which will demonstrate a relevant scale vehicle in relevant environments via a large-scale aeroshell (approximately 8.5m) entering at orbital velocity (approximately 7km/sec) with an entry mass on the order of 4MT. Also, the Build to Print (BTP) hardware built as a risk mitigation for the IRVE-3 project to have a "spare" ready to go in the event of a launch vehicle delivery failure is now available for an additional sub-orbital flight experiment. Mission planning is underway to define a mission that can utilize this existing hardware and help the HIAD project further mature this technology.
Speed And Power Control Of An Engine By Modulation Of The Load Torque
Ziph, Benjamin; Strodtman, Scott; Rose, Thomas K
1999-01-26
A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.
NASA Technical Reports Server (NTRS)
Cassell, Alan M.
2013-01-01
The testing of 3- and 6-meter diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test articles was completed in the National Full-Scale Aerodynamics Complex 40 ft x 80 ft Wind Tunnel test section. Both models were stacked tori, constructed as 60 degree half-angle sphere cones. The 3-meter HIAD was tested in two configurations. The first 3-meter configuration utilized an instrumented flexible aerodynamic skin covering the inflatable aeroshell surface, while the second configuration employed a flight-like flexible thermal protection system. The 6-meter HIAD was tested in two structural configurations (with and without an aft-mounted stiffening torus near the shoulder), both utilizing an instrumented aerodynamic skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru
2016-09-15
It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.
IRVE-3 Post-Flight Reconstruction
NASA Technical Reports Server (NTRS)
Olds, Aaron D.; Beck, Roger; Bose, David; White, Joseph; Edquist, Karl; Hollis, Brian; Lindell, Michael; Cheatwood, F. N.; Gsell, Valerie; Bowden, Ernest
2013-01-01
The Inflatable Re-entry Vehicle Experiment 3 (IRVE-3) was conducted from the NASA Wallops Flight Facility on July 23, 2012. Launched on a Black Brant XI sounding rocket, the IRVE-3 research vehicle achieved an apogee of 469 km, deployed and inflated a Hypersonic Inflatable Aerodynamic Decelerator (HIAD), re-entered the Earth's atmosphere at Mach 10 and achieved a peak deceleration of 20 g's before descending to splashdown roughly 20 minutes after launch. This paper presents the filtering methodology and results associated with the development of the Best Estimated Trajectory of the IRVE-3 flight test. The reconstructed trajectory is compared against project requirements and pre-flight predictions of entry state, aerodynamics, HIAD flexibility, and attitude control system performance.
NASA Astrophysics Data System (ADS)
Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin
2016-06-01
Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.
Rydberg Spectroscopy of Zeeman-Decelerated Beams of Metastable Helium Molecules
NASA Astrophysics Data System (ADS)
Jansen, Paul; Motsch, Michael; Sprecher, Daniel; Merkt, Frederic
2014-06-01
Having three and four electrons, respectively, He_2^+ and He_2 represent systems for which highly accurate ab-initio calculations might become feasible in the near future. With the goal of performing accurate measurements of the rovibrational energy-level structure of He_2^+ by Rydberg spectroscopy of He_2 and multichannel quantum-defect theory extrapolation techniques, we have produced samples of helium molecules in the a ^3Σu^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The molecules are formed at an initial velocity of 500 m/s by striking a discharge in the pulsed expansion of helium gas from a reservoir kept at a cryogenic temperature of 10 K. Using rotationally-resolved PFI-ZEKE (pulsed-field-ionization zero-kinetic-energy) photoelectron spectroscopy, we have probed the rotational-state distribution of the molecules produced in the discharge and found vibrational levels up to ν" = 2 and rotational levels up to N"=21 to be populated. The molecular beam is coupled to a multistage Zeeman decelerator that employs pulsed inhomogeneous magnetic fields to further reduce the beam velocity. By measuring the quantum-state distribution of the decelerated sample using photoelectron and photoionization spectroscopy we observed no rotational or vibrational state-selectivity of the deceleration process, but found that one of the three spin-rotation components of the He_2 a ^3Σu^+ rotational levels is eliminated. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, arXiv:1401.7774. N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, and F. Merkt, Phys. Rev. A 75, 031402(R) (2007).
Combined Structural and Trajectory Control of Variable-Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Pellegrino, Sergio; Kwok, Kawai
2011-01-01
Some of the key challenges of planetary entry are to dissipate the large kinetic energy of the entry vehicle and to land with precision. Past missions to Mars were based on unguided entry, where entry vehicles carried payloads of less than 0.6 T and landed within 100 km of the designated target. The Mars Science Laboratory (MSL) is expected to carry a mass of almost 1 T to within 20 km of the target site. Guided lifting entry is needed to meet these higher deceleration and targeting demands. If the aerodynamic characteristics of the decelerator are variable during flight, more trajectory options are possible, and can be tailored to specific mission requirements. In addition to the entry trajectory modulation, having variable aerodynamic properties will also favor maneuvering of the vehicle prior to descent. For proper supersonic parachute deployment, the vehicle needs to turn to a lower angle of attack. One approach to entry trajectory improvement and angle of attack control is to embed a variable geometry decelerator in the design of the vehicle. Variation in geometry enables the vehicle to adjust its aerodynamic performance continuously without additional fuel cost because only electric power is needed for actuating the mechanisms that control the shape change. Novel structural and control concepts have been developed that enable the decelerator to undergo variation in geometry. Changing the aerodynamic characteristics of a flight vehicle by active means can potentially provide a mechanically simple, affordable, and enabling solution for entry, descent, and landing across a wide range of mission types, sample capture and return, and reentry to Earth, Titan, Venus, or Mars. Unguided ballistic entry is not sufficient to meet this more stringent deceleration, heating, and targeting demands. Two structural concepts for implementing the cone angle variation, a segmented shell, and a corrugated shell, have been presented.
Baseline Testing of the EV Global E-Bike SX
NASA Technical Reports Server (NTRS)
Eichenherg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike SX as an update of the state of the art in hybrid electric bicycles. The E-bike is seen as a way to reduce pollution in urban areas, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The SX is a high performance, state of the art, ground up, hybrid electric bicycle. Unique features of the SX's 36 V power system include the use of an efficient, 400 W, electric hub motor, and a seven-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the SX, the results of performance testing, and future vehicle development plans are given in this report. The report concludes that the SX provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
NASA Astrophysics Data System (ADS)
Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.
2017-02-01
The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.
Applied Aeroscience and CFD Branch Overview
NASA Technical Reports Server (NTRS)
LeBeau, Gerald J.; Kirk, Benjamin S.
2014-01-01
The principal mission of NASA Johnson Space Center is Human Spaceflight. In support of the mission the Applied Aeroscience and CFD Branch has several technical competencies that include aerodynamic characterization, aerothermodynamic heating, rarefied gas dynamics, and decelerator (parachute) systems.
Balloon launched decelerator test program: Post-test test report
NASA Technical Reports Server (NTRS)
Dickinson, D.; Schlemmer, J.; Hicks, F.; Michel, F.; Moog, R. D.
1972-01-01
Balloon Launched Decelerator Test (BLDT) flights were conducted during the summer of 1972 over the White Sands Missile Range. The purpose of these tests was to qualify the Viking disk-gap band parachute system behind a full-scale simulator of the Viking Entry Vehicle over the maximum range of entry conditions anticipated in the Viking '75 soft landing on Mars. Test concerns centered on the ability of a minimum weight parachute system to operate without structural damage in the turbulent wake of the blunt-body entry vehicle (140 deg, 11.5 diameter cone). This is the first known instance of parachute operation at supersonic speeds in the wake of such a large blunt body. The flight tests utilized the largest successful balloon-payload weight combination known to get to high altitude (120kft) where rocket engines were employed to boost the test vehicle to supersonic speeds and dynamic pressures simulating the range of conditions on Mars.
Longitudinal train dynamics model for a rail transit simulation system
Wang, Jinghui; Rakha, Hesham A.
2018-01-01
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Longitudinal train dynamics model for a rail transit simulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jinghui; Rakha, Hesham A.
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
Continuous centrifuge decelerator for polar molecules.
Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G
2014-01-10
Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200 m s(-1) to obtain beams with velocities below 15 m s(-1) and intensities of several 10(9) mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.
Optima MDxt: A high throughput 335 keV mid-dose implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisner, Edward; David, Jonathan; Justesen, Perry
2012-11-06
The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allowsmore » high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.« less
Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.
Lubbe, Nils
2017-06-01
Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System
NASA Technical Reports Server (NTRS)
Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.
2015-01-01
NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article was subjected to loads of up to 50,000lbs. During the test series an extensive amount of instrumentation was used to provide a rich data set, including deflected shape, structural strap loads, torus cord loads, inflation pressures, and applied static load. In this paper the 2014 6m HIAD static load test series will be discussed in detail, including the design of the 6m HIAD test article, the test setup, and test execution. Analysis results will be described supporting the conclusions that were drawn from the test series..
Heart rate deceleration runs for postinfarction risk prediction.
Guzik, Przemyslaw; Piskorski, Jaroslaw; Barthel, Petra; Bauer, Axel; Müller, Alexander; Junk, Nadine; Ulm, Kurt; Malik, Marek; Schmidt, Georg
2012-01-01
A method for counting episodes of uninterrupted beat-to-beat heart rate decelerations was developed. The method was set up and evaluated using 24-hour electrocardiogram Holter recordings of 1455 (training sample) and 946 (validation sample) postinfarction patients. During a median follow-up of 24 months, 70, 46, and 19 patients of the training sample suffered from total, cardiac, and sudden cardiac mortality, respectively. In the validation sample, these numbers were 39, 25, and 15. Episodes of consecutive beat-to-beat heart rate decelerations (deceleration runs [DRs]) were characterized by their length. Deceleration runs of 2 to 10 cycles were significantly less frequent in nonsurvivors. Multivariate model of DRs of 2, 4, and 8 cycles identified low-, intermediate-, and high-risk groups. In these groups of the training sample, the total mortalities were 1.8%, 6.1%, and 24%, respectively. In the validation sample, these numbers were 1.8%, 4.1%, and 21.9%. Infrequent DRs during 24-hour Holter indicate high risk of postinfarction mortality. Copyright © 2012 Elsevier Inc. All rights reserved.
Rapid deceleration mode evaluation
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Nobbs, Steven G.; Orme, John S.
1995-01-01
Aircraft with flight capability above 1.4 normally have an RPM lockup or similar feature to prevent inlet buzz that would occur at low engine airflows. This RPM lockup has the effect of holding the engine thrust level at the intermediate power (maximum non-afterburning). For aircraft such as military fighters or supersonic transports, the need exists to be able to rapidly slow from supersonic to subsonic speeds. For example, a supersonic transport that experiences a cabin decompression needs to be able to slow/descend rapidly, and this requirement may size the cabin environmental control system. For a fighter, there may be a desire to slow/descend rapidly, and while doing so to minimize fuel usage and engine exhaust temperature. Both of these needs can be aided by achieving the minimum possible overall net propulsive force. As the intermediate power thrust levels of engines increase, it becomes even more difficult to slow rapidly from supersonic speeds. Therefore, a mode of the performance seeking control (PSC) system to minimize overall propulsion system thrust has been developed and tested. The rapid deceleration mode reduces the engine airflow consistent with avoiding inlet buzz. The engine controls are trimmed to minimize the thrust produced by this reduced airflow, and moves the inlet geometry to degrade the inlet performance. As in the case of the other PSC modes, the best overall performance (in this case the least net propulsive force) requires an integrated optimization of inlet, engine, and nozzle variables. This paper presents the predicted and measured results for the supersonic minimum thrust mode, including the overall effects on aircraft deceleration.
Abercrombie, Heather C; Chambers, Andrea S; Greischar, Lawrence; Monticelli, Roxanne M
2008-11-01
Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects "orienting" and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli.
Abercrombie, Heather C.; Chambers, Andrea S.; Greischar, Lawrence; Monticelli, Roxanne M.
2008-01-01
Arousal-related processes associated with heightened heart rate (HR) predict memory enhancement, especially for emotionally arousing stimuli. In addition, phasic HR deceleration reflects “orienting” and sensory receptivity during perception of stimuli. We hypothesized that both tonic elevations in HR as well as phasic HR deceleration during viewing of pictures would be associated with deeper encoding and better subsequent memory for stimuli. Emotional pictures are more memorable and cause greater HR deceleration than neutral pictures. Thus, we predicted that the relations between cardiac activity and memory enhancement would be most pronounced for emotionally-laden compared to neutral pictures. We measured HR in 53 males during viewing of unpleasant, neutral, and pleasant pictures, and tested memory for the pictures two days later. Phasic HR deceleration during viewing of individual pictures was greater for subsequently remembered than forgotten pictures across all three emotion categories. Elevated mean HR across the entire encoding epoch also predicted better memory performance, but only for emotionally arousing pictures. Elevated mean HR and phasic HR deceleration were associated, such that individuals with greater tonic HR also showed greater HR decelerations during picture viewing, but only for emotionally arousing pictures. Results suggest that tonic elevations in HR are associated both with greater orienting and heightened memory for emotionally arousing stimuli. PMID:18755284
Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.
Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian
2016-02-06
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.
The long-range shelling of Paris and physical chemistry problems of extremely long-range firing
NASA Astrophysics Data System (ADS)
Stettbacher, A.
1986-04-01
The 128-km long-range artillery shelling of Paris is discussed considering its physical and chemical make-up from the vantage point of the technology in 1919. It compares this shelling with a hypothetical 240-km shelling and concludes that the most important influence on shelling range distance to be air resistance. The amount of air resistance and the resulting velocity deceleration depend on the air's density and the shell's velocity and configuration.
Modern Advances in Ablative TPS
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2013-01-01
Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... truck tractors and large buses are designed to reduce untripped rollovers and mitigate severe understeer... vehicles. A roll stability control (RSC) system is designed to prevent rollover by decelerating the vehicle... vehicle operation, as well as factors related to roadway design and road surface properties, can cause...
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2014 CFR
2014-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2013 CFR
2013-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
29 CFR Appendix C to Subpart M of... - Personal Fall Arrest Systems
Code of Federal Regulations, 2012 CFR
2012-07-01
... appendix D of this subpart, the test methods listed here in appendix C can also be used to assist employers... about the system based on its performance during testing so that the employer can know if the system... deceleration device of the self-retracting type since this can result in additional free fall for which the...
CFD analysis of hypersonic, chemically reacting flow fields
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1993-01-01
Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.
Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H
NASA Technical Reports Server (NTRS)
1972-01-01
Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.
Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules
2017-02-07
AFRL-AFOSR-VA-TR-2017-0035 Mode-Locked Deceleration of Molecular Beams: Physics with Ultracold Molecules Wesley Campbell UNIVERSITY OF CALIFORNIA...REPORT TYPE Final 3. DATES COVERED (From - To) April 2013 - June 2016 4. TITLE AND SUBTITLE Mode-Locked Deceleration of Molecular Beams: Physics with...of Molecular Beams: Physics with Ultracold Molecules" P.I. Wesley C. Campbell Report Period: April 1, 2013- March 30, 2016 As a direct result of
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory
2010-01-01
This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.
The contribution of stereo vision to the control of braking.
Tijtgat, Pieter; Mazyn, Liesbeth; De Laey, Christophe; Lenoir, Matthieu
2008-03-01
In this study the contribution of stereo vision to the control of braking in front of a stationary target vehicle was investigated. Participants with normal (StereoN) and weak (StereoW) stereo vision drove a go-cart along a linear track towards a stationary vehicle. They could start braking from a distance of 4, 7, or 10m from the vehicle. Deceleration patterns were measured by means of a laser. A lack of stereo vision was associated with an earlier onset of braking, but the duration of the braking manoeuvre was similar. During the deceleration, the time of peak deceleration occurred earlier in drivers with weak stereo vision. Stopping distance was greater in those lacking in stereo vision. A lack of stereo vision was associated with a more prudent brake behaviour, in which the driver took into account a larger safety margin. This compensation might be caused either by an unconscious adaptation of the human perceptuo-motor system, or by a systematic underestimation of distance remaining due to the lack of stereo vision. In general, a lack of stereo vision did not seem to increase the risk of rear-end collisions.
Asymmetric acceleration/deceleration dynamics in heart rate variability
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Echeverria, J. C.; Meraz, M.; Rodriguez, E.
2017-08-01
The heart rate variability (HRV) is an important physiological signal used either to assess the risk of cardiac death or to model the cardiovascular regulatory dynamics. Asymmetries in HRV data have been observed using 2D Poincare plots, which have been linked to a non-equilibrium operation of the cardiac autonomic system. This work further explores the presence of asymmetries but in the serial correlations of the dynamics of HRV data. To this end, detrended fluctuation analysis (DFA) was used to estimate the Hurst exponent both when the heart rate is accelerating and when it is decelerating. The analysis is conducted using data collected from subjects under normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation (AF) . For the NSR cases, it was found that correlations are stronger (p < 0 . 05) when the heart rate is accelerating than when it is decelerating over different scales in the range 20-40 beats. In contrast, the opposite behavior was detected for the CHF and AF patients. Possible links between asymmetric correlations in the dynamics and the mechanisms controlling the operation of the heart rate are discussed, as well as their implications for modeling the cardiovascular regulatory dynamics.
Shaw, Greg
2008-01-01
Securing wheelchairs and restraining wheelchair riders on buses is difficult for many wheelchair riders and transit providers. This study examined injury-producing events aboard large transit buses in general in an attempt to better understand the potential risks and required protection for wheelchair users. The study found that few injuries and fatalities occur on large transit buses. Examination of the relatively few injury-producing events advanced the understanding of these events in terms of acceleration/deceleration magnitude and direction. Low acceleration/deceleration, or low-g, events such as those involving abrupt braking or turning occur frequently and are associated with approximately half of onboard passenger injuries. Unfortunately, the actual frequency of high-g events was not determined. Most of the injurious events involved the bus rapidly decelerating because of frontal impacts with another vehicle or roadside object. Further study is needed to determine the magnitude and frequency of high-g events. This information is necessary to determine the level of protection commensurate with real-world risk necessary for wheelchair riders in the transit bus environment and may ultimately facilitate the development of easier-to-use safety systems that secure and restrain wheelchairs and their riders.
Aerodynamic Coefficients from Aeroballistic Range Testing of Deployed- and Stowed-SIAD SFDT Models
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Brown, Jeffrey D.; Bogdanoff, David W.; Yates, Leslie A.; Dyakonov, Artem A.; Clark, Ian G.; Grinstead, Jay H.
2017-01-01
This report documents a ballistic-range test campaign conducted in 2012 in order to estimate the aerodynamic stability characteristics of two configurations of the Supersonic Flight Dynamics Test (SFDT) vehicle prior to its initial flight in 2014. The SFDT vehicle was a test bed for demonstrating several new aerodynamic decelerator technologies then being developed under the Low-Density Supersonic Decelerator (LDSD) Project. Of particular interest here is the Supersonic Inflatable Aerodynamic Decelerator (SIAD), an inflatable attached torus used to increase the drag surface area of an entry vehicle during the supersonic portion of the entry trajectory. Two model configurations were tested in the ballistic range: one representing the SFDT vehicle prior to deployment of the SIAD, and the other representing the nominal shape with the SIAD inflated. Both models were fabricated from solid metal, and therefore, the effects of the flexibility of the inflatable decelerator were not considered. The test conditions were chosen to match, as close as possible, the Mach number, Reynolds number, and motion dynamics expected for the SFDT vehicle in flight, both with the SIAD stowed and deployed. For SFDT models with the SIAD stowed, 12 shots were performed covering a Mach number range of 3.2 to 3.7. For models representing the deployed SIAD, 37 shots were performed over a Mach number range of 2.0 to 3.8. Pitch oscillation amplitudes covered a range from 0.7 to 20.6 degrees RMS. Portions of this report (data analysis approach, aerodynamic modeling, and resulting aerodynamic coefficients) were originally published as an internal LDSD Project report [1] in 2012. In addition, this report provides a description of the test design approach, the test facility, and experimental procedures. Estimated non-linear aerodynamic coefficients, including pitch damping, for both model configurations are reported, and the shot-by-shot trajectory measurements, plotted in comparison with calculated trajectories based on the derived non-linear aerodynamic coefficients, are provided as appendices. Since the completion of these tests, two full-scale SFDT flights have been successfully conducted: one in June 2014 [2, 3], and one in June 2015 [3].
NASA Astrophysics Data System (ADS)
Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.
2016-12-01
Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.
Factors contributing to the retention of seated passengers during emergency stops
DOT National Transportation Integrated Search
1980-03-01
A series of seven experiments was conducted to examine the variables that : could contribute to a safe emergency stop on an automated guideway transit system. : Sixty subjects, conforming to a desired range, experienced emergency decelerations : in a...
Sholapurkar, Shashikant L
2017-04-01
Cardiotocography (CTG) has disappointingly failed to show good predictability for fetal acidemia or neonatal outcomes in several large studies. A complete rethink of CTG interpretation will not be out of place. Fetal heart rate (FHR) decelerations are the most common deviations, benign as well as manifestation of impending fetal hypoxemia/acidemia, much more commonly than FHR baseline or variability. Their specific nomenclature is important (center-stage) because it provides the basic concepts and framework on which the complex "pattern recognition" of CTG interpretation by clinicians depends. Unfortunately, the discrimination of FHR decelerations seems to be muddled since the British obstetrics adopted the concept of vast majority of FHR decelerations being "variable" (cord-compression). With proliferation of confusing waveform criteria, "atypical variables" became the commonest cause of suspicious/pathological CTG. However, National Institute for Health and Care Excellence (NICE) (2014) had to disband the "typical" and "atypical" terminology because of flawed classifying criteria. This analytical review makes a strong case that there are major and fundamental framing and confirmation fallacies (not just biases) in interpretation of FHR decelerations by NICE (2014) and International Federation of Gynecology and Obstetrics (FIGO) (2015), probably the biggest in modern medicine. This "post-truth" approach is incompatible with scientific practice. Moreover, it amounts to setting oneself for failure. The inertia to change could be best described as "backfire effect". There is abundant evidence that head-compression (and other non-hypoxic mediators) causes rapid rather than shallow/gradual decelerations. Currently, the vast majority of decelerations are attributed to unproven cord compression underpinned by flawed disproven pathophysiological hypotheses. Their further discrimination based on abstract, random, trial and error criteria remains unresolved suggesting a false premise to begin with. This is not surprising considering that the commonest pathophysiology of intrapartum hypoxemia is contraction-induced reduction in uteroplacental perfusion (sometimes already compromised) and not cord compression at all. This distorted categorization causes confusion, false-alarm fatigue and difficulty in focusing on real pathological decelerations making CTG interpretation dysfunctional ultimately compromising patient safety. Obstetricians/midwives should demand reverting to the previous more scientific British categorization of decelerations based solely on time relationship to contractions as advocated by the pioneers like Hon and Caldeyro-Barcia, rather than accepting the current "post-truth" scenario.
Savino, Giovanni; Pierini, Marco; Thompson, Jason; Fitzharris, Michael; Lenné, Michael G
2016-11-16
Autonomous emergency braking (AEB) acts to slow down a vehicle when an unavoidable impending collision is detected. In addition to documented benefits when applied to passenger cars, AEB has also shown potential when applied to motorcycles (MAEB). However, the feasibility of MAEB as practically applied to motorcycles in the real world is not well understood. In this study we performed a field trial involving 16 riders on a test motorcycle subjected to automatic decelerations, thus simulating MAEB activation. The tests were conducted along a rectilinear path at nominal speed of 40 km/h and with mean deceleration of 0.15 g (15% of full braking) deployed at random times. Riders were also exposed to one final undeclared brake activation with the aim of providing genuinely unexpected automatic braking events. Participants were consistently able to manage automatic decelerations of the vehicle with minor to moderate effort. Results of undeclared activations were consistent with those of standard runs. This study demonstrated the feasibility of a moderate automatic deceleration in a scenario of motorcycle travelling in a straight path, supporting the notion that the application of AEB on motorcycles is practicable. Furthermore, the proposed field trial can be used as a reference for future regulation or consumer tests in order to address safety and acceptability of unexpected automatic decelerations on a motorcycle.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-05-04
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.
Jackson, Benjamin M; Polglaze, Ted; Dawson, Brian; King, Trish; Peeling, Peter
2018-02-21
To compare data from conventional GPS and new GNSS-enabled tracking devices, and to examine the inter-unit reliability of GNSS devices. Inter-device differences between 10 Hz GPS and GNSS devices were examined during laps (n=40) of a simulated game circuit (SGC) and during elite hockey matches (n=21); GNSS inter-unit reliability was also examined during the SGC laps. Differences in distance values and measures in three velocity categories (low <3 m.s -1 ; moderate 3-5 m.s -1 ; high >5 m.s -1 ) and acceleration/deceleration counts (>1.46 m.s -2 and < -1.46 m.s -2 ) were examined using one-way ANOVA. Inter-unit GNSS reliability was examined using the coefficient of variation (CV) and intra-class correlation coefficient (ICC). Inter-device differences (P <0.05) were found for measures of peak deceleration, low-speed distance, % total distance at low speed, and deceleration count during the SGC, and for all measures except total distance and low-speed distance during hockey matches. Inter-unit (GNSS) differences (P <0.05) were not found. The CV was below 5% for total distance, average and peak speeds and distance and % total distance of low-speed running. The GNSS devices had a lower HDoP score than GPS devices in all conditions. These findings suggest that GNSS devices may be more sensitive than GPS in quantifying the physical demands of team sport movements, but further study into the accuracy of GNSS devices is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, Cong Tuan; Ryu, Chang-Mo, E-mail: ryu201@postech.ac.kr
A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e{sup +}/e{sup −} beam injection is presented. When the e{sup +}/e{sup −} beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e{sup +} beam particles are preferentially accelerated, while the e{sup −} beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e{sup +}/e{sup −} plasma.more » We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e{sup +}/e{sup −} beam injection.« less
Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin; Kumar, Suresh; Xu, Lixin
2014-02-01
The parametrizations q = q 0+ q 1 z and q = q 0+ q 1(1 - a/ a 0) (Chevallier-Polarski-Linder parametrization) of the deceleration parameter, which are linear in cosmic redshift z and scale factor a , have been frequently utilized in the literature to study the kinematics of the Universe. In this paper, we follow a strategy that leads to these two well-known parametrizations of the deceleration parameter as well as an additional new parametrization, q = q 0+ q 1(1 - t/ t 0), which is linear in cosmic time t. We study the features of this linearly time-varying deceleration parameter in contrast with the other two linear parametrizations. We investigate in detail the kinematics of the Universe by confronting the three models with the latest observational data. We further study the dynamics of the Universe by considering the linearly time-varying deceleration parameter model in comparison with the standard ΛCDM model. We also discuss the future of the Universe in the context of the models under consideration.
Rf Feedback free electron laser
Brau, Charles A.; Swenson, Donald A.; Boyd, Jr., Thomas J.
1981-01-01
A free electron laser system and electron beam system for a free electron laser which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Thomas, Herbert D.; Dwyer Cianciolo, Alicia; Collins, Tim; Samareh, Jamshid
2017-01-01
This paper explores the impact of human Mars mission architecture decisions on the design and performance of a lander using the HIAD entry system: (a) Earth departure options, (b) Mars arrival options, (c) Entry Descent and Landing options.
Labeled line drawing of Galileo spacecraft's atmospheric probe
NASA Technical Reports Server (NTRS)
1989-01-01
Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.
Labeled line drawing of Galileo spacecraft's atmospheric probe
1989-09-11
Labeled line drawing entitled GALILEO PROBE identifies the deceleration module aft cover, descent module, and deceleration module aeroshell configurations and dimensions prior to and during entry into Jupiter's atmosphere.
1977-02-01
SUPERSONIC -X TYPE DECELERATORS AT MACH NUMBER 8 t’z.r I # I JJ’, o,. VON KARMAN GAS DYNAMICS FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...AERODYNAMIC AND THERMAL PERFORMANCE CHARACTERISTICS OF SUPERSONIC - X TYPE DECELERATORS AT MACH NUMBER 8 ’ 7 AU THORCs,: p ; J . D. Corce , ARO, Inc...pe r fo rmance cha rac t e r i s t i c s of model nylon, Kevlar 29, and Bisbenzimidazobenzophenanthroline Supersonic -X type parachutes behind a
NASA Technical Reports Server (NTRS)
Mansfield, D. L.
1973-01-01
The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.
NASA Astrophysics Data System (ADS)
Rivlin, L. A.
2008-01-01
A scenario of the experiment on the observation of the isothermal Bose condensation of cooled gas with increasing the concentration of atoms caused by the deceleration of a vertical atomic beam in the gravitational field resulting in a decrease in the phase transition critical temperature below the gas temperature is considered. Coherent phenomena accompanying the evolution of the Bose condensate during further beam deceleration are pointed out.
Flatness-based model inverse for feed-forward braking control
NASA Astrophysics Data System (ADS)
de Vries, Edwin; Fehn, Achim; Rixen, Daniel
2010-12-01
For modern cars an increasing number of driver assistance systems have been developed. Some of these systems interfere/assist with the braking of a car. Here, a brake actuation algorithm for each individual wheel that can respond to both driver inputs and artificial vehicle deceleration set points is developed. The algorithm consists of a feed-forward control that ensures, within the modelled system plant, the optimal behaviour of the vehicle. For the quarter-car model with LuGre-tyre behavioural model, an inverse model can be derived using v x as the 'flat output', that is, the input for the inverse model. A number of time derivatives of the flat output are required to calculate the model input, brake torque. Polynomial trajectory planning provides the needed time derivatives of the deceleration request. The transition time of the planning can be adjusted to meet actuator constraints. It is shown that the output of the trajectory planning would ripple and introduce a time delay when a gradual continuous increase of deceleration is requested by the driver. Derivative filters are then considered: the Bessel filter provides the best symmetry in its step response. A filter of same order and with negative real-poles is also used, exhibiting no overshoot nor ringing. For these reasons, the 'real-poles' filter would be preferred over the Bessel filter. The half-car model can be used to predict the change in normal load on the front and rear axle due to the pitching of the vehicle. The anticipated dynamic variation of the wheel load can be included in the inverse model, even though it is based on a quarter-car. Brake force distribution proportional to normal load is established. It provides more natural and simpler equations than a fixed force ratio strategy.
Electric propulsion system technology
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Goodfellow, Keith D.; Pivirotto, Thomas J.; Polk, James E.
1992-01-01
The work performed in fiscal year (FY) 1991 under the Propulsion Technology Program RTOP (Research and Technology Objectives and Plans) No. (55) 506-42-31 for Low-Thrust Primary and Auxiliary Propulsion technology development is described. The objectives of this work fall under two broad categories. The first of these deals with the development of ion engines for primary propulsion in support of solar system exploration. The second with the advancement of steady-state magnetoplasmadynamic (MPD) thruster technology at 100 kW to multimegawatt input power levels. The major technology issues for ion propulsion are demonstration of adequate engine life at the 5 to 10 kW power level and scaling ion engines to power levels of tens to hundreds of kilowatts. Tests of a new technique in which the decelerator grid of a three-grid ion accelerator system is biased negative of neutralizer common potential in order to collect facility induced charge-exchange ions are described. These tests indicate that this SAND (Screen, Accelerator, Negative Decelerator) configuration may enable long duration ion engine endurance tests to be performed at vacuum chamber pressures an order of magnitude higher than previously possible. The corresponding reduction in pumping speed requirements enables endurance tests of 10 kW class ion engines to be performed within the resources of existing technology programs. The results of a successful 5,000-hr endurance of a xenon hollow cathode operating at an emission current of 25 A are described, as well as the initial tests of hollow cathodes operating on a mixture of argon and 3 percent nitrogen. Work performed on the development of carbon/carbon grids, a multi-orifice hollow cathode, and discharge chamber erosion reduction through the addition of nitrogen are also described. Critical applied-field MPD thruster technical issues remain to be resolved, including demonstration of reliable steady-state operation at input powers of hundreds to thousands of kilowatts, achievement of thruster efficiency and specific impulse levels required for missions of interest, and demonstration of adequate engine life at these input power, efficiency, and specific impulse levels. To address these issues we have designed, built, and tested a 100 kW class, radiation-cooled applied-field MPD thruster and a unique dual-beam thrust stand that enables separate measurements of the applied- and self-field thrust components. We have also initiated the development of cathode thermal and plasma sheath models that will eventually be used to guide the experimental program. In conjunction with the cathode modeling, a new cathode test facility is being constructed. This facility will support the study of cathode thermal behavior and erosion mechanisms, the diagnosis of the near-cathode plasma and the development and endurance testing of new, high-current cathode designs. To facilitate understanding of electrode surface phenomenon, we have implemented a telephoto technique to obtain photographs of the electrodes during engine operation. In order to reduce the background vacuum tank pressure during steady-state engine operation in order to obtain high fidelity anode thermal data, we have developed and are evaluating a gas-dynamic diffuser. A review of experience with alkali metal propellants for MPD thrusters led to the conclusion that alkali metals, particularly lithium, offer the potential for significant engine performance and lifetime improvements. These propellants are also condensible at room temperature, substantially reducing test facility pumping requirements. The most significant systems-level issue is the potential for spacecraft contamination. Subsequent experimental and theoretical efforts should be directed toward verifying the performance and lifetime gains and characterizing the thruster flow field to assess its impact on spacecraft surfaces. Consequently, we have begun the design and development of a new facility to study engine operation with alkali metal propellants.
The AD and ELENA orbit, trajectory and intensity measurement systems
NASA Astrophysics Data System (ADS)
Marco-Hernández, R.; Alves, D.; Angoletta, M. E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sánchez-Quesada, J.; SØby, L.
2017-07-01
This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 \\gls{BPM}s equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) firmware shares many common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.
On Electron Hole Evolution in Inhomogeneous Plasmas
NASA Astrophysics Data System (ADS)
Kuzichev, I.; Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.
2017-12-01
Electron holes (EHs) are the stationary localized non-linear structures in phase space existing due to an electron population trapped within EH electrostatic potential. EHs were found to be a common phenomenon in the Earth's magnetosphere. Such structures were observed in reconnecting current sheets, injection fronts in the outer radiation belt, and in many other situations. EHs usually propagate along magnetic field lines with velocities about electron thermal velocity, are localized on the scale of about 4-10 Debye lengths, and have the field amplitude up to hundreds of mV/m. Generation of these structures, evolution, and their role in relaxation of instabilities and energy dissipation, particle energization, supporting large-scale potential drops is under active investigation. In this report, we present the results of 1.5D gyrokinetic Vlasov-Maxwell simulations of the EH evolution in plasmas with inhomogeneous magnetic field and inhomogeneous density. Our calculations show that the inhomogeneity has a critical effect on the EH dynamics. EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. During the deceleration of EH, the potential drop (weak double layer) along EH is generated. Such a potential drop might be experimentally observable even for single EH in the reconnecting current sheets. The same holds for the propagation in the plasma with inhomogeneous density. For some parameters of the system, the deceleration results in the turning of the hole. The interesting feature of this process is that the turning point depends only on the EH parameters, being independent of the average inhomogeneity scale. Our calculations also demonstrate the significant difference between "quasi-particle" concept and real evolution of the hole. Indeed, the EH is accelerated (decelerated) faster than it follows from a quasi-particle energy conservation law. It indicates that the efficient energy exchange between the EH and resonant untrapped electrons takes place. We expect that the revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. I.K. was supported by RFBR 16-32-00721. I.V., O.A., and F. M. by JHU/APL contract 922613 (RBSPEFW).
Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.
2011-01-01
Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.
Braking and cornering studies on an air cushion landing system
NASA Technical Reports Server (NTRS)
Daugherty, R. H.
1983-01-01
An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.
Lear, Christopher A.; Davidson, Joanne O.; Galinsky, Robert; Yuill, Caroline A.; Wassink, Guido; Booth, Lindsea C.; Drury, Paul P.; Bennet, Laura; Gunn, Alistair J.
2015-01-01
Subclinical (shallow) heart rate decelerations occur during neonatal sepsis, but there is limited information on their relationship with hypotension or whether they occur before birth. We examined whether subclinical decelerations, a fall in fetal heart rate (FHR) that remained above 100 bpm, were associated with hypotension in preterm fetal sheep exposed to lipopolysaccharide (LPS). Chronically-instrumented fetal sheep at 0.7 gestation received continuous low-dose LPS infusions (n = 15, 100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h) or saline (n = 8). Boluses of 1 μg LPS or saline were given at 48 and 72 h. FHR variability (FHRV) was calculated, and sample asymmetry was used to assess the severity and frequency of decelerations. Low-dose LPS infusion did not affect FHR. After the first LPS bolus, 7 fetuses remained normotensive, while 8 developed hypotension (a fall in mean arterial blood pressure of ≥5 mmHg). Developing hypotension was associated with subclinical decelerations, with a corresponding increase in sample asymmetry and FHRV (p < 0.05). The second LPS bolus was associated with similar but attenuated changes in FHR and blood pressure (p < 0.05). In conclusion, subclinical decelerations are not consistently seen during prenatal exposure to LPS, but may be a useful marker of developing inflammation-related hypotension before birth. PMID:26537688
Sholapurkar, Shashikant L.
2017-01-01
Cardiotocography (CTG) has disappointingly failed to show good predictability for fetal acidemia or neonatal outcomes in several large studies. A complete rethink of CTG interpretation will not be out of place. Fetal heart rate (FHR) decelerations are the most common deviations, benign as well as manifestation of impending fetal hypoxemia/acidemia, much more commonly than FHR baseline or variability. Their specific nomenclature is important (center-stage) because it provides the basic concepts and framework on which the complex “pattern recognition” of CTG interpretation by clinicians depends. Unfortunately, the discrimination of FHR decelerations seems to be muddled since the British obstetrics adopted the concept of vast majority of FHR decelerations being “variable” (cord-compression). With proliferation of confusing waveform criteria, “atypical variables” became the commonest cause of suspicious/pathological CTG. However, National Institute for Health and Care Excellence (NICE) (2014) had to disband the “typical” and “atypical” terminology because of flawed classifying criteria. This analytical review makes a strong case that there are major and fundamental framing and confirmation fallacies (not just biases) in interpretation of FHR decelerations by NICE (2014) and International Federation of Gynecology and Obstetrics (FIGO) (2015), probably the biggest in modern medicine. This “post-truth” approach is incompatible with scientific practice. Moreover, it amounts to setting oneself for failure. The inertia to change could be best described as “backfire effect”. There is abundant evidence that head-compression (and other non-hypoxic mediators) causes rapid rather than shallow/gradual decelerations. Currently, the vast majority of decelerations are attributed to unproven cord compression underpinned by flawed disproven pathophysiological hypotheses. Their further discrimination based on abstract, random, trial and error criteria remains unresolved suggesting a false premise to begin with. This is not surprising considering that the commonest pathophysiology of intrapartum hypoxemia is contraction-induced reduction in uteroplacental perfusion (sometimes already compromised) and not cord compression at all. This distorted categorization causes confusion, false-alarm fatigue and difficulty in focusing on real pathological decelerations making CTG interpretation dysfunctional ultimately compromising patient safety. Obstetricians/midwives should demand reverting to the previous more scientific British categorization of decelerations based solely on time relationship to contractions as advocated by the pioneers like Hon and Caldeyro-Barcia, rather than accepting the current “post-truth” scenario. PMID:28270884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyewon; Hwang, Min; Muljadi, Eduard
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...
2017-04-18
In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less
NASA Astrophysics Data System (ADS)
Sunday, C.; Murdoch, N.; Cherrier, O.; Morales Serrano, S.; Valeria Nardi, C.; Janin, T.; Avila Martinez, I.; Gourinat, Y.; Mimoun, D.
2016-08-01
This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ˜0.1 to 1.0 m/s2. Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.
Sunday, C; Murdoch, N; Cherrier, O; Morales Serrano, S; Valeria Nardi, C; Janin, T; Avila Martinez, I; Gourinat, Y; Mimoun, D
2016-08-01
This work presents an experimental design for studying low-velocity collisions into granular surfaces in low-gravity. In the experiment apparatus, reduced-gravity is simulated by releasing a free-falling projectile into a surface container with a downward acceleration less than that of Earth's gravity. The acceleration of the surface is controlled through the use of an Atwood machine, or a system of pulleys and counterweights. The starting height of the surface container and the initial separation distance between the projectile and surface are variable and chosen to accommodate collision velocities up to 20 cm/s and effective accelerations of ∼0.1 to 1.0 m/s(2). Accelerometers, placed on the surface container and inside the projectile, provide acceleration data, while high-speed cameras capture the collision and act as secondary data sources. The experiment is built into an existing 5.5 m drop tower frame and requires the custom design of all components, including the projectile, surface sample container, release mechanism, and deceleration system. Data from calibration tests verify the efficiency of the experiment's deceleration system and provide a quantitative understanding of the performance of the Atwood system.
Rf feedback free electron laser
Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.
1979-11-02
A free electron laser system and electron beam system for a free electron laser are provided which use rf feedback to enhance efficiency. Rf energy is extracted from an electron beam by decelerating cavities and returned to accelerating cavities using rf returns such as rf waveguides, rf feedthroughs, etc. This rf energy is added to rf klystron energy to lower the required input energy and thereby enhance energy efficiency of the system.
Safer Roadside Crash Walls Would Limit Deceleration
NASA Technical Reports Server (NTRS)
Schneider, William C.; Locke, James P.
2003-01-01
The figure depicts the aspects of a proposed deceleration-limiting design for crash walls at the sides of racetracks and highways. The proposal is intended to overcome the disadvantages of both rigid barriers and kinetic-energy-absorbing barriers of prior design. Rigid barriers can keep high-speed crashing motor vehicles from leaving roadways and thereby prevent injury to nearby persons and objects, but they can also subject the occupants of the vehicles to deceleration levels high enough to cause injury or death. Kinetic-energy-absorbing barriers of prior design reduce deceleration levels somewhat, but are not designed to soften impacts optimally; moreover, some of them allow debris to bounce back onto roadways or onto roadside areas, and, in cases of glancingly incident vehicles, some of them can trap the vehicles in such a manner as to cause more injury than would occur if the vehicles were allowed to skid along the rigid barriers. The proposed crash walls would (1) allow tangentially impacting vehicles to continue sliding along the racetrack without catching them, (2) catch directly impacting vehicles to prevent them from injuring nearby persons and objects, and (3) absorb kinetic energy in a more nearly optimum way to limit decelerations to levels that human occupants could survive.
Cardiac Deceleration in Newborns: Habituation, Dishabituation, and Offset Responses
ERIC Educational Resources Information Center
Adkinson, Cheryl D.; Berg, W. Keith
1976-01-01
A total of 20 neonates were presented with mild intensity blue or blue-green light during presentation of habituation and dishabituation stimuli. Orienting and defensive responses were measured by monitoring heart rate deceleration. (GO)
Before the Drop: Engineers Ready Supersonic Decelerator
2014-05-21
A saucer-shaped vehicle part of NASA Low-Density Supersonic Decelerator LDSD project designed to test interplanetary landing devices hangs on a tower in preparation for launch at the Pacific Missile Range Facility in Kauai, Hawaii.
The Lifting Body Legacy...X-33
NASA Technical Reports Server (NTRS)
Barret, Chris
1999-01-01
NASA has a technology program in place to enable the development of a next generation Reusable Launch Vehicle that will carry our future payloads into orbit at a much-reduced cost. The VentureStar, Lifting Body (LB) flight vehicle, is one of the potential reusable launch vehicle configurations being studied. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines the flight stability and control aspects of our LB heritage which was utilized in the design of the VentureStar LB and its test version, the X-33. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. In the initial LB Program, eight LB's were built and over 225 LB test flights were conducted through 1975. Three LB series were most significant in the advancement of today's LB technolocy: the M2-F; the HL-10; and the X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the U. S. Air Force. LB vehicles are alive again today with the X- 33, X-38, and VentureStar.
LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T) gravity
NASA Astrophysics Data System (ADS)
Bishi, Binaya K.; Pacif, S. K. J.; Sahoo, P. K.; Singh, G. P.
A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the ΛCDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.
Kwon, Hyuk-Min; Paxson, Adam T; Varanasi, Kripa K; Patankar, Neelesh A
2011-01-21
A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual "collision" where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.
NASA Astrophysics Data System (ADS)
Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.
2011-01-01
A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.
Acceleratory match-play demands of a Super Rugby team over a competitive season.
Owen, Shaun M; Venter, Rachel E; du Toit, Stephan; Kraak, Wilbur J
2015-01-01
The match-play demands of rugby union have increased over time, and these demands should be quantified so as to provide a basis for optimal player loading during training. The primary aim of this article was to quantify accelerations, decelerations, impacts and aggregated body demands during the first half of match-play in a Super Rugby team. The secondary aim was to determine whether these characteristics are position-specific. Thirty-three players were monitored for 14 matches using global positioning system units with inbuilt microtechnology. Players were grouped according to positional roles and data were analysed for those who completed the entire duration of the first half of a given match. Forwards sustained more (d = 0.44) high-intensity impacts and greater (d = 0.26) aggregated body demands, while backs had more moderate (d = 0.55) and heavy accelerations (d = 0.76), and moderate (d = 0.23) and heavy decelerations (d = 0.54). These differences suggest that conditioning and recovery strategies should reflect the physical demands placed on players in different playing positions. Forwards should be conditioned with a focus on impacts and require longer recovery for the same duration of playing time, whereas conditioning for backs should emphasise rapid accelerations and decelerations.
Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review
NASA Technical Reports Server (NTRS)
Manning, Rob; Schmitt, Harrison H.; Graves, Claude
2005-01-01
Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.
Hybrid Vehicle Technologies and their potential for reducing oil use
NASA Astrophysics Data System (ADS)
German, John
2006-04-01
Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.
Influence of angular acceleration-deceleration pulse shapes on regional brain strains.
Yoganandan, Narayan; Li, Jianrong; Zhang, Jiangyue; Pintar, Frank A; Gennarelli, Thomas A
2008-07-19
Recognizing the association of angular loading with brain injuries and inconsistency in previous studies in the application of the biphasic loads to animal, physical, and experimental models, the present study examined the role of the acceleration-deceleration pulse shapes on region-specific strains. An experimentally validated two-dimensional finite element model representing the adult male human head was used. The model simulated the skull and falx as a linear elastic material, cerebrospinal fluid as a hydrodynamic material, and cerebrum as a linear viscoelastic material. The angular loading matrix consisted coronal plane rotation about a center of rotation that was acceleration-only (4.5 ms duration, 7.8 krad/s/s peak), deceleration-only (20 ms, 1.4 krad/s/s peak), acceleration-deceleration, and deceleration-acceleration pulses. Both biphasic pulses had peaks separated by intervals ranging from 0 to 25 ms. Principal strains were determined at the corpus callosum, base of the postcentral sulcus, and cerebral cortex of the parietal lobe. The cerebrum was divided into 17 regions and peak values of average maximum principal strains were determined. In all simulations, the corpus callosum responded with the highest strains. Strains were the least under all simulations in the lower parietal lobes. In all regions peak strains were the same for both monophase pulses suggesting that the angular velocity may be a better metric than peak acceleration or deceleration. In contrast, for the biphasic pulse, peak strains were region- and pulse-shape specific. Peak values were lower in both biphasic pulses when there was no time separation between the pulses than the corresponding monophase pulse. Increasing separation time intervals increased strains, albeit non-uniformly. Acceleration followed by deceleration pulse produced greater strains in all regions than the other form of biphasic pulse. Thus, pulse shape appears to have an effect on regional strains in the brain.
Mechanical Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.
Computational flow predictions for hypersonic drag devices
NASA Technical Reports Server (NTRS)
Tokarcik, Susan; Venkatapathy, Ethiraj; Candler, Graham; Palmer, Grant
1991-01-01
The effectiveness of two types of hypersonic decelerators are computationally examined: mechanically deployable flares and inflatable ballutes. CFD is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The surface pressure coefficients, the drag, and the extent of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5 in order to assure that the SRM will splash down in the Pacific Ocean. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.
Shock sensing dual mode warhead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamblen, M.; Walchak, M.T.; Richmond, L.
1980-12-31
A shock sensing dual mode warhead is provided for use against both soft and hard targets and is capable of sensing which type of target has been struck. The warhead comprises a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze shock sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by dynamic pressure caused high impact deceleration and one initiated by low impact deceleration. Themore » firing train actuated by high impact deceleration senses dynamic pressure transmitted, during deformation of the warhead, through the explosive filler which is employed as a fuzing signature. The firing train actuated by low impact deceleration contains a pyrotechnic delay to allow penetration of soft targets.« less
Decelerations of Parachute Opening Shock in Skydivers.
Gladh, Kristofer; Lo Martire, Riccardo; Äng, Björn O; Lindholm, Peter; Nilsson, Jenny; Westman, Anton
2017-02-01
High prevalence of neck pain among skydivers is related to parachute opening shock (POS) exposure, but few investigations of POS deceleration have been made. Existing data incorporate equipment movements, limiting its representability of skydiver deceleration. This study aims to describe POS decelerations and compare human- with equipment-attached data. Wearing two triaxial accelerometers placed on the skydiver (neck-sensor) and equipment (rig-sensor), 20 participants made 2 skydives each. Due to technical issues, data from 35 skydives made by 19 participants were collected. Missing data were replaced using data substitution techniques. Acceleration axes were defined as posterior to anterior (+ax), lateral right (+ay), and caudal to cranial (+az). Deceleration magnitude [amax (G)] and jerks (G · s-1) during POS were analyzed. Two distinct phases related to skydiver positioning and acceleration direction were observed: 1) the x-phase (characterized by -ax, rotating the skydiver); and 2) the z-phase (characterized by +az, skydiver vertically oriented). Compared to the rig-sensor, the neck-sensor yielded lower amax (3.16 G vs. 6.96 G) and jerk (56.3 G · s-1 vs. 149.0 G · s-1) during the x-phase, and lower jerk (27.7 G · s-1 vs. 54.5 G · s-1) during the z-phase. The identified phases during POS should be considered in future neck pain preventive strategies. Accelerometer data differed, suggesting human-placed accelerometry to be more valid for measuring human acceleration.Gladh K, Lo Martire R, Äng BO, Lindholm P, Nilsson J, Westman A. Decelerations of parachute opening shock in skydivers. Aerosp Med Hum Perform. 2017; 88(2):121-127.
Deployable Aeroshell Flexible Thermal Protection System Testing
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Ware, Joanne S.; DelCorso, Joseph A.; Lugo, Rafael A.
2009-01-01
Deployable aeroshells offer the promise of achieving larger aeroshell surface areas for entry vehicles than otherwise attainable without deployment. With the larger surface area comes the ability to decelerate high-mass entry vehicles at relatively low ballistic coefficients. However, for an aeroshell to perform even at the low ballistic coefficients attainable with deployable aeroshells, a flexible thermal protection system (TPS) is required that is capable of surviving reasonably high heat flux and durable enough to survive the rigors of construction handling, high density packing, deployment, aerodynamic loading and aerothermal heating. The Program for the Advancement of Inflatable Decelerators for Atmospheric Entry (PAIDAE) is tasked with developing the technologies required to increase the technology readiness level (TRL) of inflatable deployable aeroshells, and one of several of the technologies PAIDAE is developing for use on inflatable aeroshells is flexible TPS. Several flexible TPS layups were designed, based on commercially available materials, and tested in NASA Langley Research Center's 8 Foot High Temperature Tunnel (8ft HTT). The TPS layups were designed for, and tested at three different conditions that are representative of conditions seen in entry simulation analyses of inflatable aeroshell concepts. Two conditions were produced in a single run with a sting-mounted dual wedge test fixture. The dual wedge test fixture had one row of sample mounting locations (forward) at about half the running length of the top surface of the wedge. At about two thirds of the running length of the wedge, a second test surface drafted up at five degrees relative to the first test surface established the remaining running length of the wedge test fixture. A second row of sample mounting locations (aft) was positioned in the middle of the running length of the second test surface. Once the desired flow conditions were established in the test section the dual wedge test fixture, oriented at 5 degrees angle of attack down, was injected into the flow. In this configuration the aft sample mounting location was subjected to roughly twice the heat flux and surface pressure of the forward mounting location. The tunnel was run at two different conditions for the test series: 1) 'Low Pressure', and 2) 'High Pressure'. At 'Low Pressure' conditions the TPS layups were tested at 6W/cm2 and 11W/cm2 while at 'High Pressure' conditions the TPS layups were tested at 11W/cm2 and 20W/cm2. This paper details the test configuration of the TPS samples in the 8Ft HTT, the sample holder assembly, TPS sample layup construction, sample instrumentation, results from this testing, as well as lessons learned.
Design of a flight director/configuration management system for piloted STOL approaches
NASA Technical Reports Server (NTRS)
Hoh, R. H.; Klein, R. H.; Johnson, W. A.
1973-01-01
The design and characteristics of a flight director for V/STOL aircraft are discussed. A configuration management system for piloted STOL approaches is described. The individual components of the overall system designed to reduce pilot workload to an acceptable level during curved, decelerating, and descending STOL approaches are defined. The application of the system to augmentor wing aircraft is analyzed. System performance checks and piloted evaluations were conducted on a flight simulator and the results are summarized.
49 CFR 325.39 - Measurement procedure; highway operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be made of the sound level generated by a motor vehicle operating through the measurement area on..., acceleration or deceleration. (b) The sound level generated by the motor vehicle is the highest reading observed on the sound level measurement system as the vehicle passes through the measurement area...
49 CFR 325.39 - Measurement procedure; highway operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... shall be made of the sound level generated by a motor vehicle operating through the measurement area on..., acceleration or deceleration. (b) The sound level generated by the motor vehicle is the highest reading observed on the sound level measurement system as the vehicle passes through the measurement area...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K., E-mail: kkarami@uok.ac.ir
2010-01-01
Author of ref. 1, M.R. Setare (JCAP 01 (2007) 023), by redefining the event horizon measured from the sphere of the horizon as the system's IR cut-off for an interacting holographic dark energy model in a non-flat universe, showed that the generalized second law of thermodynamics is satisfied for the special range of the deceleration parameter. His paper includes an erroneous calculation of the entropy of the cold dark matter. Also there are some missing terms and some misprints in the equations of his paper. Here we present that his conclusion is not true and the generalized second law ismore » violated for the present time independently of the deceleration parameter.« less
Flight Reconstruction of the Mars Pathfinder Disk-Gap-Band Parachute Drag Coefficient
NASA Technical Reports Server (NTRS)
Desai, Prasun; Schofield, John T.; Lisano, Michael E.
2003-01-01
On July 4, 1997, the Mars Pathfinder (MPF) mission successfully landed on Mars. The entry, descent, and landing (EDL) scenario employed the use of a Disk-Gap-Band parachute design to decelerate the Lander. Flight reconstruction of the entry using MPF flight accelerometer data revealed that the MPF parachute decelerated faster than predicted. In the summer of 2003, the Mars Exploration Rover (MER) mission will send two Landers to the surface of Mars arriving in January 2004. The MER mission utilizes a similar EDL scenario and parachute design as that employed by MPF. As a result, characterizing the degree of underperformance of the MPF parachute system is critical for the MER EDL trajectory design. This paper provides an overview of the methodology utilized to estimate the MPF parachute drag coefficient as experienced on Mars.
The vestibular system of the owl
NASA Technical Reports Server (NTRS)
Money, K. E.; Correia, M. J.
1973-01-01
Five owls were given vestibular examinations, and two of them were sacrificed to provide serial histological sections of the temporal bones. The owls exhibited a curious variability in the postrotatory head nystagmus following abrupt deceleration; sometimes a brisk nystagnus with direction opposite to that appropriate to the stimulus would occur promptly after deceleration. It was found also that owls can exhibit a remarkable head stability during angular movement of the body about any axis passing through the skull. The vestibular apparatus in the owl is larger than in man, and a prominent crista neglecta is present. The tectorial membrane, the cupula, and the otolithic membranes of the utricle, saccule, and lagena are all attached to surfaces in addition to the surfaces hearing hair cells. These attachments are very substantial in the utricular otolithic membrane and in the cupula.
NASA Astrophysics Data System (ADS)
Fourrate, K.; Loulidi, M.
2006-01-01
We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.
Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes
NASA Astrophysics Data System (ADS)
Pilyugin, N. N.; Khlebnikov, V. S.
2010-09-01
Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).
Orion Landing and Recovery Systems Development - Government Contributions
NASA Technical Reports Server (NTRS)
Machin, Ricardo A.
2010-01-01
This slide presentation reviews NASA's work in development of landing and recovery systems for the Orion space craft. It includes a review of the available tools and skills that assist in analyzing the aerodynamic decelerators. There is a description of the work that is being done on the Government Furnished Equipment (GFE) parachutes that will be used with the Orion Crew Exploration Vehicle (CEV)
DOT National Transportation Integrated Search
1975-06-01
An attempt is made to define the meaningful frequency content of occupant compartment deceleration data in order to establish effective filtering guidelines which will enhance the important features of the deceleration pulse. Acceleration and displac...
Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem
NASA Technical Reports Server (NTRS)
Compton, J. M.; Beaird, H. G.; Weissinger, W. D.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.
Turbulent pipe flows subjected to temporal decelerations
NASA Astrophysics Data System (ADS)
Jeong, Wongwan; Lee, Jae Hwa
2016-11-01
Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Phasic heart rate responses and cardiac cycle time in auditory choice reaction time.
van der Molen, M W; Somsen, R J; Orlebeke, J F
1983-01-01
This study investigated the cardiovascular-behavioral interaction under short and long stimulus interval conditions. In addition, the cardiovascular-behavioral interaction was studied as affected by cardiac cycle duration. Fourteen subjects performed a choice reaction time (RT) task employing a mixed speed-accuracy tradeoff design in which reactions were paced to coincide with a signal that occurs randomly at either 200 or 500 msec after the reaction stimulus. The preparatory interval between a warning stimulus and a lead-reaction stimulus complex was also varied (2 vs. 4.5 sec). Anticipatory deceleration occurred within the 4.5 sec interval but not in the 2 sec interval. The depth of anticipatory deceleration did not discriminate between fast and slow reactions; but an earlier shift from deceleration to acceleration was associated with fast reactions. The effect of stimulus timing relative to the R-wave of the electrocardiogram was also analysed. Meaningful stimuli tended to produce cardiac slowing as previously described in the literature. Early occurring stimuli prolong the cycle of their occurrence more than late occurring stimuli. The later prolong the subsequent cycle. Cardiac cycle time effects were absent for unattended stimuli. The results of anticipatory deceleration suggested that the depth of deceleration was regulated by time-uncertainty and speed-accuracy criterion.
Li, Xiaomeng; Yan, Xuedong; Wu, Jiawei; Radwan, Essam; Zhang, Yuting
2016-12-01
Driver's collision avoidance performance has a direct link to the collision risk and crash severity. Previous studies demonstrated that the distracted driving, such as using a cell phone while driving, disrupted the driver's performance on road. This study aimed to investigate the manner and extent to which cell phone use and driver's gender affected driving performance and collision risk in a rear-end collision avoidance process. Forty-two licensed drivers completed the driving simulation experiment in three phone use conditions: no phone use, hands-free, and hand-held, in which the drivers drove in a car-following situation with potential rear-end collision risks caused by the leading vehicle's sudden deceleration. Based on the experiment data, a rear-end collision risk assessment model was developed to assess the influence of cell phone use and driver's gender. The cell phone use and driver's gender were found to be significant factors that affected the braking performances in the rear-end collision avoidance process, including the brake reaction time, the deceleration adjusting time and the maximum deceleration rate. The minimum headway distance between the leading vehicle and the simulator during the rear-end collision avoidance process was the final output variable, which could be used to measure the rear-end collision risk and judge whether a collision occurred. The results showed that although cell phone use drivers took some compensatory behaviors in the collision avoidance process to reduce the mental workload, the collision risk in cell phone use conditions was still higher than that without the phone use. More importantly, the results proved that the hands-free condition did not eliminate the safety problem associated with distracted driving because it impaired the driving performance in the same way as much as the use of hand-held phones. In addition, the gender effect indicated that although female drivers had longer reaction time than male drivers in critical situation, they were more quickly in braking with larger maximum deceleration rate, and they tended to keep a larger safety margin with the leading vehicle compared to male drivers. The findings shed some light on the further development of advanced collision avoidance technologies and the targeted intervention strategies about cell phone use while driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-01-01
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707
Design of Mechanically Actuated Aerodynamic Braking System on a Formula Student Race Car
NASA Astrophysics Data System (ADS)
Muralidharan, Vivek; Balakrishnan, Abhijith; Vardhan, Vinit Ketan; Meena, Nikita; Kumar, Y. Suresh
2018-04-01
Every second in a racing competition counts the performance of a team against the other. Many innovative and sophisticated techniques are being employed to overcome loses in time and add to the performance of the vehicle. Especially in a car racing challenge there is more freedom to install these innovative systems to empower the car to maximum efficiency due to availability of more space. At the global spectrum there are few events which encourage such innovations. Formula Student Racing competitions are one of the global events organized by the Society of Automotive Engineers of different countries which gives opportunity to university students to build and race formula style cars. Like any other racing competitions in this high octane event having an inch over their opponents is always an advantage. Not just better acceleration and high velocities but also good deceleration is required to excel in the competition. Aerodynamic braking system is utilizing the aerodynamic drag force to create high deceleration. This mechanism can be installed on any car with spoilers with minimum modification. Being a student event great amount of care needs to be given to the safety concerns of the driver.
Validation of a computerized algorithm to quantify fetal heart rate deceleration area.
Gyllencreutz, Erika; Lu, Ke; Lindecrantz, Kaj; Lindqvist, Pelle G; Nordstrom, Lennart; Holzmann, Malin; Abtahi, Farhad
2018-05-16
Reliability in visual cardiotocography interpretation is unsatisfying, which has led to development of computerized cardiotocography. Computerized analysis is well established for antenatal fetal surveillance, but has yet not performed sufficiently during labor. We aimed to investigate the capacity of a new computerized algorithm compared to visual assessment in identifying intrapartum fetal heart rate baseline and decelerations. Three-hundred-and-twelve intrapartum cardiotocography tracings with variable decelerations were analysed by the computerized algorithm and visually examined by two observers, blinded to each other and the computer analysis. The width, depth and area of each deceleration was measured. Four cases (>100 variable decelerations) were subject to in-depth detailed analysis. The outcome measures were bias in seconds (width), beats per minute (depth), and beats (area) between computer and observers by using Bland-Altman analysis. Interobserver reliability was determined by calculating intraclass correlation and Spearman rank analysis. The analysis (312 cases) showed excellent intraclass correlation (0.89-0.95) and very strong Spearman correlation (0.82-0.91). The detailed analysis of > 100 decelerations in 4 cases revealed low bias between the computer and the two observers; width 1.4 and 1.4 seconds, depth 5.1 and 0.7 beats per minute, and area 0.1 and -1.7 beats. This was comparable to the bias between the two observers; 0.3 seconds (width), 4.4 beats per minute (depth), and 1.7 beats (area). The intraclass correlation was excellent (0.90-0.98). A novel computerized algorithm for intrapartum cardiotocography analysis is as accurate as gold standard visual assessment with high correlation and low bias. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of hybrid electric vehicle powertrain test system based on virtue instrument
NASA Astrophysics Data System (ADS)
Xu, Yanmin; Guo, Konghui; Chen, Liming
2017-05-01
Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.
NASA Technical Reports Server (NTRS)
Hoh, R. H.; Klein, R. H.; Johnson, W. A.
1977-01-01
A system analysis method for the development of an integrated configuration management/flight director system for IFR STOL approaches is presented. Curved descending decelerating approach trajectories are considered. Considerable emphasis is placed on satisfying the pilot centered requirements (acceptable workload) as well as the usual guidance and control requirements (acceptable performance). The Augmentor Wing Jet STOL Research Aircraft was utilized to allow illustration by example, and to validate the analysis procedure via manned simulation.
Single electron beam rf feedback free electron laser
Brau, C.A.; Stein, W.E.; Rockwood, S.D.
1981-02-11
A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.
NOx profile around a signalized intersection of busy roadway
NASA Astrophysics Data System (ADS)
Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam
2014-11-01
The NOx pollution profile around a signalized intersection of a busy roadway was investigated to understand the effect of traffic control on urban air pollution. Traffic flow patterns were classified into three categories of quasi-cruising, a combination of deceleration and acceleration, and a combination of deceleration, idling, and acceleration. The spatial distribution of air pollution levels around an intersection could be represented as a quasi-normal distribution, whose peak height was aggravated by increased emissions due to transient driving patterns. The peak concentration of NOx around the signalized intersection for the deceleration, idling, and acceleration category was five times higher than that for the quasi-cruising category. Severe levels of NOx pollution tailed off approximately 400 m from the center of the intersection. Approximately 200-1000 ppb of additional NOx was observed when traffic was decelerating, idling, and accelerating within the intersection zone, resulting in high exposure levels for pedestrians around the intersection. We propose a fluctuating horizontal distribution of motor vehicle-induced air pollutants as a function of time.
Inhomogeneities in dusty universe — a possible alternative to dark energy?
NASA Astrophysics Data System (ADS)
Chatterjee, S.
2011-03-01
There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al. the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.
Computational flow predictions for hypersonic drag devices
NASA Technical Reports Server (NTRS)
Tokarcik, Susan A.; Venkatapathy, Ethiraj
1993-01-01
The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable flares and inflatable ballutes. Computational fluid dynamics (CFD) is used to predict the flowfield around a solid rocket motor (SRM) with a deployed decelerator. The computations are performed with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas solver are compared to computational results from a thermochemical nonequilibrium solver. The surface pressure coefficient, the drag, and the extend of the compression corner separation zone predicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design studies. The computed solutions are used to determine the size and shape of the decelerator that are required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are predicted to estimate the amount of thermal protection required.
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
Numerical Solutions for a Cylindrical Laser Diffuser Flowfield
1990-06-01
exhaust conditions with minimum losses to optimize performance of the system. Thus, the handling of the system of shock waves to decelerate the flow...requirement for exhaustive experimental work will result in significant savings of both time and resources. As more advanced computers are developed, the...Mach number (ɚ.5) flows. Recent interest in hypersonic engine inlet performance has resulted in an extension of the methodology to high Mach number
Effect of environmental temperature on shock absorption properties of running shoes.
Dib, Mansour Y; Smith, Jay; Bernhardt, Kathie A; Kaufman, Kenton R; Miles, Kevin A
2005-05-01
To determine the effect of temperature changes on the shock attenuation of 4 running shoe shock absorption systems. Prospective. Motion analysis laboratory. The shock attenuation of 4 different running shoes representing common shock absorption systems (Nike Air Triax, Asics Gel Nimbus IV, Adidas a3 cushioning, Adidas Supernova cushion) was measured at ambient temperatures of -20 degrees C, -10 degrees C, 0 degrees C, +10 degrees C, +20 degrees C, +30 degrees C, +40 degrees C, and +50 degrees C. Repeated-measures analysis of variance was used to determine differences between shoes. Shock attenuation as indicated by peak deceleration (g) measured by a mechanical impactor following ASTM Standard F1614-99. Shock attenuation decreased significantly with reduced temperature for each shoe tested. The Adidas a3 shoe exhibited significantly higher peak decelerations (lower shock attenuation) at cold temperatures compared with the other shoes. Cold ambient temperatures significantly reduce the shock attenuation of commonly used running shoes. These findings have important clinical implications for individuals training in extreme weather environments, particularly those with a history of lower limb overuse injuries.
Delivery Ring Lattice Modifications for Transitionless Deceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, J. A.; Syphers, M. J.
2016-10-09
A portion of the remnant Tevatron program infrastruc- ture at Fermilab is being reconfigured to be used for the generation and delivery of proton and muon beams for new high-precision particle physics experiments. With the 8 GeV Booster as its primary source, the Mu2e exper- iment will receive 8.9 GeV/c bunched beam on target, after being stored and slow spilled from the Delivery Ring (DR) -- a refurbished debuncher ring from Tevatron anti- proton production. For the Muon g-2 experiment, the DR will be tuned for 3.1 GeV/c to capture muons off of a target before sending them to thismore » experiment's Storage Ring. The apertures in the beam transport systems are optimized for the large muon beams of this lower-energy experiment. In order to provide further flexibility in the operation of the DR for future possible low-energy, high- intensity particle physics experiments (REDTOP[1], for example) and detector development, investigations are underway into the feasibility of decelerating beams from its maximum kinetic energy of 8 GeV level to lower en- ergies, down to 1-2 GeV. In this paper we look at possi- ble lattice modifications to the DR to avoid a transition crossing during the deceleration process. Hardware re- quirements and other operational implications of this scheme will also be discussed.« less
Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Torus Mechanical Testing
NASA Technical Reports Server (NTRS)
Chen, Tony; Moholt, Matthew R.; Hudson, Larry D.
2017-01-01
The Armstrong Flight Research Center has performed loads testing of a series of developmental atmospheric entry decelerator structural components. Test setup hardware were designed and fabricated. In addition, test plan and checklist were developed for the consistent and efficient execution of the tests. Eight test articles were successfully tested in over one hundred test runs as test objectives were met. Test article buckling shapes and buckling loads were observed. Displacements and strains were also recorded as various load cases were applied. The test data was sent to Langley Research Center to help with the construction of the finite element model of the decelerator assembly.
Drag Characteristics of Several Towed Decelerator Models at Mach 3
NASA Technical Reports Server (NTRS)
Miserentino, Robert; Bohon, Herman L.
1970-01-01
An investigation has been made to determine the possibility of using toroid-membrane and wide-angle conical shapes as towed decelerators. Parameter variations were investigated which might render toroid-membrane models and wide-angle- cone models stable without loss of the high drag coefficients obtainable with sting-mounted models. The parameters varied included location of center of gravity, location of the pivot between the towline and the model, and configuration modifications of the aft end as the addition of a corner radius and the addition of a skirt. The toroid membrane can be made into a stable towed decelerator with a suitable configuration modification of the aft end.
Optimized Trajectories to the Nearest Stars Using Lightweight High-velocity Photon Sails
NASA Astrophysics Data System (ADS)
Heller, René; Hippke, Michael; Kervella, Pierre
2017-09-01
New means of interstellar travel are now being considered by various research teams, assuming lightweight spaceships to be accelerated via either laser or solar radiation to a significant fraction of the speed of light (c). We recently showed that gravitational assists can be combined with the stellar photon pressure to decelerate an incoming lightsail from Earth and fling it around a star or bring it to rest. Here, we demonstrate that photogravitational assists are more effective when the star is used as a bumper (I.e., the sail passes “in front of” the star) rather than as a catapult (I.e., the sail passes “behind” or “around” the star). This increases the maximum deceleration at α Cen A and B and reduces the travel time of a nominal graphene-class sail (mass-to-surface ratio 8.6× {10}-4 {{g}} {{{m}}}-2) from 95 to 75 years. The maximum possible velocity reduction upon arrival depends on the required deflection angle from α Cen A to B and therefore on the binary’s orbital phase. Here, we calculate the variation of the minimum travel times from Earth into a bound orbit around Proxima for the next 300 years and then extend our calculations to roughly 22,000 stars within about 300 lt-yr. Although α Cen is the most nearby star system, we find that Sirius A offers the shortest possible travel times into a bound orbit: 69 years assuming 12.5% c can be obtained at departure from the solar system. Sirius A thus offers the opportunity of flyby exploration plus deceleration into a bound orbit of the companion white dwarf after relatively short times of interstellar travel.
Vestibular-ocular accommodation reflex in man
NASA Technical Reports Server (NTRS)
Clark, B.; Randle, R. J.; Stewart, J. D.
1975-01-01
Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present paper studies a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 sec of rotating. Accommodation was recorded continuously on an infrared optometer for 110 sec under two conditions: while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.
Vestibular-ocular accommodation reflex in man.
Clark, B R; Randle, R J; Stewart, J D
1975-11-01
Stimulation of the vestibular system by angular acceleration produces widespread sensory and motor effects. The present study was designed to study a motor effect which has not been reported in the literature, i.e., the influence of rotary acceleration of the body on ocular accommodation. The accommodation of 10 young men was recorded before and after a high-level deceleration to zero velocity following 30 s of rotation. Accommodation was recorded continuously on an infrared optometer for 110 s under two conditions; while the subjects observed a target set at the far point, and while they viewed the same target through a 0.3-mm pinhole. Stimulation by high-level rotary deceleration produced positive accommodation or a pseudomyopia under both conditions, but the positive accommodation was substantially greater and lasted much longer during fixation through the pinhole. It is hypothesized that this increase in accommodation is a result of a vestibular-ocular accommodation reflex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgieva, A. E.; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building Oxford OX3 7DQ; Payne, S. J.
Electronic fetal heart rate (FHR) recording is a standard way of monitoring fetal health in labor. Decelerations and accelerations usually indicate fetal distress and normality respectively. But one type of acceleration may differ, namely an overshoot that may atypically reflect fetal stress. Here we describe a new method for detecting decelerations, accelerations and overshoots as part of a novel system for computerized FHR analysis (OxSyS). There was poor agreement between clinicians when identifying these FHR features visually, which precluded setting a gold standard of interpretation. We therefore introduced 'modified' Sensitivity (SE deg.) and 'modified' Positive Predictive Value (PPV deg.) asmore » appropriate performance measures with which the algorithm was optimized. The relation between overshoots and fetal compromise in labor was studied in 15 cases and 15 controls. Overshoots showed promise as an indicator of fetal compromise. Unlike ordinary accelerations, overshoots cannot be considered to be reassuring features of fetal health.« less
The Influence of Bearing-Down Technique on the Fetal Heart Rate during the Second Stage of Labor.
NASA Astrophysics Data System (ADS)
Perlis, Deborah Woolley
This experimental study contrasted the effects of sustained bearing-down efforts with short bearing-down efforts during the first twelve contractions of the second stage of labor. A single subject design with intrasubject replication was used to compare the incidence, duration, and amplitude of fetal heart rate decelerations, as well as the beat-to-beat variability of those decelerations. Neonatal outcome was evaluated with umbilical arterial cord blood pH values and the one- and five-minute APGAR scores. Thirty -two nulliparous women alternated the use of vigorous, sustained Valsalva-style bearing-down efforts with shorter efforts called minipushes every three contractions during the second stage of labor. Sixteen women began the second stage using the Valsalva-style bearing-down technique; sixteen began the second stage using the minipush. The fetal heart rate was recorded by an internal fetal scalp electrode. Uterine contractility was measured by an internal uterine pressure catheter. A repeated-measures MANOVA showed a significant interaction between the order of implementation of the bearing-down techniques and the amplitude of the fetal heart rate decelerations. A similar comparison of the duration of the decelerations showed no significant differences between the two bearing-down techniques. Likewise, analysis of the incidence of fetal heart rate decelerations and the magnitude of the beat-to-beat variability revealed no significant differences between the two techniques.
NASA Astrophysics Data System (ADS)
Vliegen, E.; Merkt, F.
2005-06-01
Argon atoms in a pulsed supersonic expansion are prepared in selected Stark components of Rydberg states with effective principal quantum number in the range n* = 15-25. When traversing regions of inhomogeneous electric fields, these atoms get accelerated or decelerated depending on whether the Stark states are low- or high-field seeking states. Using a compact electrode design, which enables the application of highly inhomogeneous and time-dependent electric fields, the Rydberg atoms experience kinetic energy changes of up to 1.2 × 10-21 J (i.e. 60 cm-1 in spectroscopic units) in a single acceleration/deceleration stage of 3 mm length. The resulting differences in the velocities of the low- and high-field seeking states are large enough that the corresponding distributions of times of flight to the Rydberg particle detector are fully separated. As a result, efficient spectral searches of the Rydberg states best suited for acceleration/deceleration experiments are possible. Numerical simulations of the particle trajectories are used to analyse the time-of-flight distributions and to optimize the time dependence of the inhomogeneous electric fields. The decay of the Rydberg states by fluorescence, collisions and transitions induced by black-body radiation takes place on a timescale long enough not to interfere significantly with the deceleration during the first ~5 µs.
NASA Astrophysics Data System (ADS)
He, Wei
2018-03-01
This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.
Time domain characteristics of hoof-ground interaction at the onset of stance phase.
Burn, J F
2006-11-01
Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. The study suggests the presence of stiff, viscoelastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists.
Cho, In-Jeong; Shim, Chi Young; Moon, Sun-Ha; Lee, Hyun-Jin; Hong, Geu-Ru; Chung, Namsik; Ha, Jong-Won
2017-05-01
The shape and duration of left ventricular outflow tract (LVOT) flow has not been applied to assess the central haemodynamics, although LVOT flow is confronted with afterload of arterial system during systole. The aim of this study was to evaluate whether the LVOT flow parameters are related with central systolic blood pressure (BP) and arterial compliance at rest and as well as during exercise. We studied 258 subjects (175 females, age 61 ± 11 years) with normal left ventricular (LV) systolic function who underwent supine bicycle stress echocardiography and arterial tonometry simultaneously at rest and at peak exercise. Deceleration time (DT) of LVOT flow and RR interval were measured and deceleration time corrected for heart rate (DTc) was calculated. Peripheral and central haemodynamic parameters including systolic and diastolic BP, and augmentation index at a heart rate of 75 (AIx@75) were assessed using radial artery tonometry. Carotid femoral pulse wave velocity (PWV) was measured. Deceleration time corrected for heart rate was independently associated with central systolic BP and AIx@75 at rest (P < 0.001 and 0.006). Similarly, it also showed significant independent correlations with central systolic BP and AIx@75 during peak exercise (P = 0.006 and P = 0.021). In addition, DTc which measured both at rest and at peak exercise demonstrated significant positive correlations with PWV, suggesting association of prolonged DTc with arterial stiffening (P = 0.023 and P = 0.005). Prolongation of LVOT flow DTc represents raised central systolic BP and increased arterial stiffness not only at rest but also during exercise. Therefore, central aortic pressures and arterial stiffness influence the DT of LVOT flow at rest as well as during exercise in individuals with normal LV systolic function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
NASA Tech Briefs, December 2003
NASA Technical Reports Server (NTRS)
2003-01-01
Topics covered include: Organic/Inorganic Hybrid Polymer/Clay Nanocomposites; Less-Toxic Coatings for Inhibiting Corrosion of Aluminum; Liquid Coatings for Reducing Corrosion of Steel in Concrete; Processable Polyimides Containing APB and Reactive End Caps; Rod/Coil Block Copolyimides for Ion-Conducting Membranes; Techniques for Characterizing Microwave Printed Antennas; Cylindrical Antenna With Partly Adaptive Phased-Array Feed; Command Interface ASIC - Analog Interface ASIC Chip Set; Predicting Accumulations of Ice on Aerodynamic Surfaces; Analyzing Aeroelasticity in Turbomachines; Software for Allocating Resources in the Deep Space Network; Expert Seeker; High-Speed Recording of Test Data on Hard Disks; Functionally Graded Nanophase Beryllium/Carbon Composites; Thin Thermal-Insulation Blankets for Very High Temperatures; Aerostructures Test Wing; Flight-Test Evaluation of Flutter-Prediction Methods; Piezoelectrically Actuated Microvalve for Liquid Effluents; Larger-Stroke Piezoelectrically Actuated Microvalve; Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost; Safer Roadside Crash Walls Would Limit Deceleration; Improved Interactive Medical-Imaging System; Scanning Microscopes Using X Rays and Microchannels; Slotting Fins of Heat Exchangers to Provide Thermal Breaks; Methane Clathrate Hydrate Prospecting; Automated Monitoring with a BSP Fault-Detection Test; Automated Monitoring with a BCP Fault-Decision Test; Vector-Ordering Filter Procedure for Data Reduction; Remote Sensing and Information Technology for Large Farms; Developments at the Advanced Design Technologies Testbed; Spore-Forming Bacteria that Resist Sterilization; and Acoustical Applications of the HHT Method.
Real-Time Dynamic Brake Assessment Proof of Concept Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lascurain, Mary Beth; Franzese, Oscar; Capps, Gary J
This proof-of-concept research was performed to explore the feasibility of using real-world braking data from commercial motor vehicles to make a diagnosis of brake condition similar to that of the performance-based brake tester (PBBT). This was done by determining the relationship between pressure and brake force (P-BF), compensating for the gross vehicle weight (GVW). The nature of this P-BF relationship (e.g., low braking force for a given brake application pressure) may indicate brake system problems. In order to determine the relationship between brake force and brake application pressure, a few key parameters of duty cycle information were collected. Because brakingmore » events are often brief, spanning only a few seconds, a sample rate of 10 Hz was needed. The algorithm under development required brake application pressure and speed (from which deceleration was calculated). Accurate weight estimation was also needed to properly derive the braking force from the deceleration. In order to ensure that braking force was the predominant factor in deceleration for the segments of data used in analysis, the data was screened for grade as well. Also, the analysis needed to be based on pressures above the crack pressure. The crack pressure is the pressure below which the individual brakes are not applied due the nature of the mechanical system. This value, which may vary somewhat from one wheel end to another, is approximately 10 psi. Therefore, only pressures 15 psi and above were used in the analysis. The Department of Energy s Medium Truck Duty Cycle research has indicated that under the real-world circumstances of the test vehicle brake pressures of up to approximately 30 psi can be expected. Several different types of data were collected during the testing task of this project. Constant-pressure stopping tests were conducted at several combinations of brake application pressure (15, 20, 25, and 30 psi), load conditions (moderately and fully laden), and speeds (20 and 30 mph). Data was collected at 10 Hz. Standard and stepped-pressure performance-based brake tests with brake pressure transducers were performed for each loading condition. The stepped-pressure test included the constant-pressure intervals of brake application at 15, 20, 25, and 30 psi. The PBBT data files included 10 Hz streaming data collected during the testing of each axle. Two weeks of real-world duty cycle (driving and braking) data was also collected at 10 Hz. Initial analysis of the data revealed that the data collected in the field (i.e., day-to-day operations) provided the same information as that obtained from the controlled tests. Analysis of the data collected revealed a strong linear relationship between brake application pressure and deceleration for given GVWs. As anticipated, initial speed was not found to be a significant factor in the deceleration-pressure relationship, unlike GVW. The positive results obtained from this proof of concept test point to the need for further research to expand this concept. A second phase should include testing over a wider range of speeds and include medium brake application pressures in addition to the low pressures tested in this research. Testing on multiple vehicles would also be of value. This future phase should involve testing to determine how degradation of braking performance affects the pressure-deceleration relationship.« less
77 FR 26948 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... sliding member cracks is high compressive stress during braking at higher deceleration levels outside the regular fatigue load spectrum. Starting at deceleration stress levels somewhat below limit load, the high compressive stress locally exceeds the elasticity limit of the material, leaving a residual tensile stress at...
Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports.
Serpiello, F R; Hopkins, W G; Barnes, S; Tavrou, J; Duthie, G M; Aughey, R J; Ball, K
2018-08-01
The validity of an Ultra-wideband (UWB) positioning system was investigated during linear and change-of-direction (COD) running drills. Six recreationally-active men performed ten repetitions of four activities (walking, jogging, maximal acceleration, and 45º COD) on an indoor court. Activities were repeated twice, in the centre of the court and on the side. Participants wore a receiver tag (Clearsky T6, Catapult Sports) and two reflective markers placed on the tag to allow for comparisons with the criterion system (Vicon). Distance, mean and peak velocity, acceleration, and deceleration were assessed. Validity was assessed via percentage least-square means difference (Clearsky-Vicon) with 90% confidence interval and magnitude-based inference; typical error was expressed as within-subject standard deviation. The mean differences for distance, mean/peak speed, and mean/peak accelerations in the linear drills were in the range of 0.2-12%, with typical errors between 1.2 and 9.3%. Mean and peak deceleration had larger differences and errors between systems. In the COD drill, moderate-to-large differences were detected for the activity performed in the centre of the court, increasing to large/very large on the side. When filtered and smoothed following a similar process, the UWB-based positioning system had acceptable validity, compared to Vicon, to assess movements representative of indoor sports.
Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)
NASA Technical Reports Server (NTRS)
Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.
2006-01-01
The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod
Space Shuttle Orbital Drag Parachute Design
NASA Technical Reports Server (NTRS)
Meyerson, Robert E.
2001-01-01
The drag parachute system was added to the Space Shuttle Orbiter's landing deceleration subsystem beginning with flight STS-49 in May 1992. The addition of this subsystem to an existing space vehicle required a detailed set of ground tests and analyses. The aerodynamic design and performance testing of the system consisted of wind tunnel tests, numerical simulations, pilot-in-the-loop simulations, and full-scale testing. This analysis and design resulted in a fully qualified system that is deployed on every flight of the Space Shuttle.
Determination of local values of gas and liquid mass flux in highly loaded two-phase flow
NASA Technical Reports Server (NTRS)
Burick, R. J.; Scheuerman, C. H.; Falk, A. Y.
1974-01-01
A measurement system using a deceleration probe was designed for determining the local values of gas and liquid mass flux in various gas/liquid droplet sprayfields. The system was used to characterize two-phase flowfields generated by gas/liquid rocket-motor injectors. Measurements were made at static pressures up to 500 psia and injected mass flow ratios up to 20. The measurement system can also be used at higher pressures and in gas/solid flowfields.
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Merkt, Frederic
2016-06-01
Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998). P. Jansen, L. Semeria, and F. Merkt, J. Mol. Spectrosc. 322, 9 (2016)
Kick processes in the merger of two colliding black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aranha, R. F.; Soares, I. Damiao; Tonini, E. V.
2010-11-15
We examine numerically the process of momentum extraction by gravitational waves in the merger of two colliding black holes, in the realm of Robinson-Trautman spacetimes. The initial data have already a common horizon so that the evolution covers the post-merger phase up to the final configuration of the remnant black hole. The analysis of the momentum flux carried out by gravitational waves indicates that two distinct regimes are present in the post-merger phase: (i) an initial accelerated regime, followed by (ii) a deceleration regime in which the deceleration increases rapidly towards a maximum and then decreases to zero, when themore » gravitational wave emission ceases. The analysis is based on the Bondi-Sachs conservation law for the total momentum of the system. We obtain the total kick velocity V{sub k} imparted on the merged black hole during the accelerated regime (i) and the total antikick velocity V{sub ak} during the decelerated regime (ii), by evaluating the impulse of the gravitational wave flux during both regimes. The distributions of both V{sub k} and V{sub ak} as a function of the symmetric mass ratio {eta} satisfy a simple {eta}-scaling law motivated by post-Newtonian analytical estimates. In the {eta}-scaling formula the Newtonian factor is dominant in the decelerated regime, that generates V{sub ak}, contrary to the behavior in the initial accelerated regime. For an initial infalling velocity v/c{approx_equal}0.462 of each individual black hole we obtain a maximum kick V{sub k{approx_equal}}6.4 km/s at {eta}{approx_equal}0.209, and a maximum antikick V{sub ak{approx_equal}}109 km/s at {eta}{approx_equal}0.205. The net antikick velocity (V{sub ak}-V{sub k}) also satisfies a similar {eta}-scaling law with a maximum approximately 102 km/s also at {eta}{approx_equal}0.205, qualitatively consistent with results from numerical relativity simulations, and post-Newtonian evaluations of binary black hole inspirals. For larger values of the initial data parameter v/c substantial larger values of the net antikick velocity are obtained. Based on the several velocity variables obtained, we discuss a possible definition of the center-of-mass motion of the merged system.« less
Mission Applications of a HIAD for the Mars Southern Highlands
NASA Technical Reports Server (NTRS)
Winski, Richard; Bose, Dave; Komar, David R.; Samareh, Jamshid
2013-01-01
Recent discoveries of evidence of a flowing liquid in craters throughout the Mars Southern Highlands, like Terra Sirenum, have spurred interest in sending science missions to those locations; however, these locations are at elevations that are much higher (0 to +4 km MOLA) than any previous landing site (-1 to -4 km MOLA). New technologies may be needed to achieve a landing at these sites with significant payload mass to the surface. A promising technology is the hypersonic inflatable aerodynamic decelerator (HIAD); a number of designs have been advanced but the stacked torus has been recently successfully flight tested in the IRVE-2 and IRVE-3 projects through the NASA Langley Research Center. This paper will focus on a variety of mission applications of the stacked torus type attached HIAD to the Mars southern highlands.
Browning, A C
1975-03-01
This is the second part of an article on an unusual form of passenger transport, the moving pavement or pedestrian conveyor running at speeds up to 16 km/h. Part 1, "Ergonomic considerations of acceleration, deceleration and transfer sections," was published in the December, 1974, issue.
ERIC Educational Resources Information Center
Lin, Tin-Chun
2014-01-01
A total of 389 business students in undergraduate introductory microeconomics classes in spring 2007, 2009, and 2011, and fall 2012 participated in an exam performance progress study. Empirical evidence suggested that missing classes decelerates and hampers high-performing students' exam performance progress. Nevertheless, the evidence does…
Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R
2015-01-01
This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.
Statistical analysis of dynamic fibrils observed from NST/BBSO observations
NASA Astrophysics Data System (ADS)
Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi
2018-02-01
We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.
2015-07-15
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A.; Woo, K. M.; Nora, R.
2015-07-02
The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less
The Viking mortar - Design, development, and flight qualification.
NASA Technical Reports Server (NTRS)
Brecht, J. P.; Pleasants, J. E.; Mehring, R. D.
1973-01-01
Approximately 25,400 ft above the local surface of Mars, a radar height sensor fires the Viking mortar, which ejects a 53-ft D sub o disk-gap-band (DGB) parachute. The parachute decelerates and stabilizes the Viking lander sufficiently for the terminal engine system to take over and effect a soft landing. The general design and environmental requirements for the mortar system are presented; various illustrations of the mortar components and how the mortar system functions also are presented. Primary emphasis is placed on manufacturing, developing, and qualification testing of the mortar system.
Predicting injury risk with "New Car Assessment Program" crashworthiness ratings.
Jones, I S; Whitfield, R A
1988-12-01
The relationship between crashworthiness ratings produced by the National Highway Traffic Safety Administration's (NHTSA's) New Car Assessment Program (NCAP) and the risk of incapacitating injury or death for drivers who are involved in single-car, fixed-object, frontal collisions was examined. The results are based on 6,405 such crashes from the Motor Vehicle Traffic Accident file of the Texas Department of Highways and Public Transportation. The risk of injury was modeled using logistic regression taking into account the NCAP test results for each individual model of car and the intervening effects of car mass, age of the driver, restraint use, and crash severity. Three measures of anthropometric dummy response, Head Injury Criterion (HIC), Chest Deceleration (CD), and femur load were used to indicate vehicle crash test performance. The results show that there is a significant relationship between the results of the NCAP tests and the risk of serious injury or death in actual single-car frontal accidents. In terms of overall injury, chest deceleration was a better predictor than the Head Injury Criterion. For restrained drivers, crash severity, driver age, and chest deceleration were significant parameters for predicting risk of serious injury or death; the risk of injury decreased as chest deceleration decreased. The results were similar for unrestrained drivers although vehicle mass and femur load were also significant factors in the model. The risk of overall injury decreased as chest deceleration decreased but appeared to decrease as femur load increased.
Clinical course of untreated tonic-clonic seizures in childhood: prospective, hospital based study.
van Donselaar, C. A.; Brouwer, O. F.; Geerts, A. T.; Arts, W. F.; Stroink, H.; Peters, A. C.
1997-01-01
OBJECTIVE: To assess decleration and acceleration in the disease process in the initial phase of epilepsy in children with new onset tonic-clonic seizures. STUDY DESIGN: Hospital based follow up study. SETTING: Two university hospitals, a general hospital, and a children's hospital in the Netherlands. PATIENTS: 204 children aged 1 month to 16 years with idiopathic or remote symptomatic, newly diagnosed, tonic-clonic seizures, of whom 123 were enrolled at time of their first ever seizure; all children were followed until the start of drug treatment (78 children), the occurrence of the fourth untreated seizure (41 children), or the end of the follow up period of two years (85 untreated children). MAIN OUTCOME MEASURES: Analysis of disease pattern from first ever seizure. The pattern was categorised as decelerating if the child became free of seizures despite treatment being withheld. In cases with four seizures, the pattern was categorised as decelerating if successive intervals increased or as accelerating if intervals decreased. Patterns in the remaining children were classified as uncertain. RESULTS: A decelerating pattern was found in 83 of 85 children who became free of seizures without treatment. Three of the 41 children with four or more untreated seizures showed a decelerating pattern and eight an accelerating pattern. In 110 children the disease process could not be classified, mostly because drug treatment was started after the first, second, or third seizure. The proportion of children with a decelerating pattern (42%, 95% confidence interval 35% to 49%) may be a minimum estimate because of the large number of patients with an uncertain disease pattern. CONCLUSIONS: Though untreated epilepsy is commonly considered to be a progressive disorder with decreasing intervals between seizures, a large proportion of children with newly diagnosed, unprovoked tonic-clonic seizures have a decelerating disease process. The fear that tonic-clonic seizures commonly evolve into a progressive disease should not be used as an argument in favour of early drug treatment in children with epilepsy. PMID:9040384
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-01-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles. Key points The number of decelerations and the total distance can be considered risk factors for injuries in professional basketball players. Unloaded players have greater risk of injury compared to players with higher accumulated external workload. Workload management should be considered a major factor in injury prevention programs. PMID:29769830
Effects of longitudinal speed reduction markings on left-turn direct connectors.
Zhao, Xiaohua; Ding, Han; Lin, Zhanzhou; Ma, Jianming; Rong, Jian
2018-06-01
Longitudinal speed reduction markings (LSRMs) are designed to alert drivers to an upcoming change in roadway geometry (e.g. direct connectors with smaller radii). In Beijing, LSRMs are usually installed on direct connectors of urban expressways. The objective of this paper is to examine the influence of LSRMs on vehicle operation and driver behavior, and evaluate the decelerating effectiveness of LSRMs on direct connectors with different radii. Empirical data were collected in a driving simulator, and indicators representing vehicle operation status and driving behavior were proposed. To examine the influence of LSRMs, an analysis segment was defined, which begins 500 m prior to the entering point of the connector and ends at the exiting point of the connector. Furthermore, the analysis segment was evenly divided into a series of subsections; the length of each subsection is 50 m. This definition is introduced based on the assumption that drivers would decelerate smoothly in advance of the connector. The analysis results show that drivers tend to decelerate earlier when the radii were 200 m or 300 m. When approaching the connector, drivers tend to decelerate at 500 m thru 250 m in advance of the connector with a 200 m radius; deceleration happens at 300 m-0 m in advance of the connector with a 300 m radius. On the connector, drivers controlled the throttle pedal use at 100 thru 300 m after the entering point when the radius was 200 m; deceleration occurred in two regions when the radius was 300 m: 0 m-900 m from the entering point, and the last 1,000 m of the connector. The analytical results further revealed that LSRMs would be effective at reducing speeds when the radius of the direct connector was 300 m. Copyright © 2018. Published by Elsevier Ltd.
Flow stagnation at Enceladus: The effects of neutral gas and charged dust
NASA Astrophysics Data System (ADS)
Omidi, N.; Tokar, R. L.; Averkamp, T.; Gurnett, D. A.; Kurth, W. S.; Wang, Z.
2012-06-01
Enceladus is one of Saturn's most active moons. It ejects neutral gas and dust particles from its southern plumes with velocities of hundreds of meters per second. The interaction between the ejected material and the corotating plasma in Saturn's magnetosphere leads to flow deceleration in ways that remain to be understood. The most effective mechanism for the interaction between the corotating plasma and the neutral gas is charge exchange which replaces the hotter corotating ions with nearly stationary cold ions that are subsequently accelerated by the motional electric field. Dust particles in the plume can become electrically charged through electron absorption and couple to the plasma through the motional electric field. The objective of this study is to determine the level of flow deceleration associated with each of these processes using Cassini RPWS dust impact rates, Cassini Plasma Spectrometer (CAPS) plasma data, and 3-D electromagnetic hybrid (kinetic ions, fluid electrons) simulations. Hybrid simulations show that the degree of flow deceleration by charged dust varies considerably with the spatial distribution of dust particles. Based on the RPWS observations of dust impacts during the E7 Cassini flyby of Enceladus, we have constructed a dust model consisting of multiple plumes. Using this model in the hybrid simulation shows that when the dust density is high enough for complete absorption of electrons at the point of maximum dust density, the corotating flow is decelerated by only a few km/s. This is not sufficient to account for the CAPS observation of flow stagnation in the interaction region. On the other hand, charge exchange with neutral gas plumes similar to the modeled dust plumes but with base (plume opening) densities of ˜109 cm-3 result in flow deceleration similar to that observed by CAPS. The results indicate that charge exchange with neutral gas is the dominant mechanism for flow deceleration at Enceladus.
Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping
2016-02-21
To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide applications in the field of precise measurements and cold molecule physics.
NASA Astrophysics Data System (ADS)
Obousy, R.
While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.
Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging
Meyer-Hermann, Michael; Osiewacz, Heinz D.
2012-01-01
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span. PMID:22761564
Player Load, Acceleration, and Deceleration During Forty-Five Competitive Matches of Elite Soccer.
Dalen, Terje; Ingebrigtsen, Jørgen; Ettema, Gertjan; Hjelde, Geir Havard; Wisløff, Ulrik
2016-02-01
The use of time-motion analysis has advanced our understanding of position-specific work rate profiles and the physical requirements of soccer players. Still, many of the typical soccer activities can be neglected, as these systems only examine activities measured by distance and speed variables. This study used triaxial accelerometer and time-motion analysis to obtain new knowledge about elite soccer players' match load. Furthermore, we determined acceleration/deceleration profiles of elite soccer players and their contribution to the players' match load. The data set includes every domestic home game (n = 45) covering 3 full seasons (2009, 2010, and 2011) for the participating team (Rosenborg FC), and includes 8 central defenders (n = 68), 9 fullbacks (n = 83), 9 central midfielders (n = 70), 7 wide midfielders (n = 39), and 5 attackers (A, n = 50). A novel finding was that accelerations contributed to 7-10% of the total player load for all player positions, whereas decelerations contributed to 5-7%. Furthermore, the results indicate that other activities besides the high-intensity movements contribute significantly to the players' total match workload. Therefore, motion analysis alone may underestimate player load because many high-intensity actions are without a change in location at the pitch or they are classified as low-speed activity according to current standards. This new knowledge may help coaches to better understand the different ways players achieve match load and could be used in developing individualized programs that better meet the "positional physical demands" in elite soccer.
NASA Astrophysics Data System (ADS)
Munari, U.; Banerjee, D. P. K.
2018-03-01
Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.
Deceleration efficiencies of shrub windbreaks in a wind tunnel
NASA Astrophysics Data System (ADS)
Wu, Xiaoxu; Zou, Xueyong; Zhou, Na; Zhang, Chunlai; Shi, Sha
2015-03-01
Artemisia and Salix are dominant shrub species for windbreaks in arid areas of China, and they show similar features to shrubs in other arid areas of the world. We compared the mean velocity fields and shelter effects of two shrub windbreaks with different layouts. For a single plant of Artemisia, the higher the free airflow velocity is, the more the wind velocity around two sides of the plant increases. The velocity gradient around a single plant of Salix is smaller than that around an Artemisia plant due to the difference in the plant shapes. Seven new velocity zones in the horizontal direction appear when airflow passes through an Artemisia windbreak, including four deceleration zones and three acceleration zones. The mean velocity field that is affected by a Salix windbreak can be divided into a deceleration zone in the front, an acceleration zone above, a vortex zone behind and a restoration zone downwind of the vortex zone. Shelter effects of the shrub windbreaks vary with the wind velocity and are influenced by the construct of the windbreaks. Shrub windbreaks that have a complex construction have better shelter effects than simple ones. The shelter effects of plant windbreaks are also influenced by the growth features of the plants. Considering the plant characteristics and the shelter effects of Salix and Artemisia windbreaks, it is optimal to plant these two windbreaks together in a sand-control system. This research is intended to be useful for sand movement control in arid areas.
Materials Needs for Future In-Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Johnson, Les
2006-01-01
NASA's In-Space Propulsion Technology Project is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. Earth-storable bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth- Storable rockets with specific impulses about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 sq m up to 62500 sq m) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/sq cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (-100 C) for up to 10 years and then withstand the high temperatures (500 C) encountered during aerocapture.
The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements
1974-12-01
34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice
40 CFR Appendix I to Subpart B of... - Appendix I to Subpart B of Part 205
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Acceleration Test: Deceleration Test: Acceleration Test Run No. 1 2 3 4 5 dBA Left Right Highest RPM attained in End Zone Calculated Sound Pressure dBA Deceleration Test with Exhaust Brake Applied dBA Left Right Calculated Sound Pressure dBA TEST Personnel: (Name) Recorded By: Date:......... (Signature) Supervisor...
40 CFR Appendix I to Subpart B of... - Appendix I to Subpart B of Part 205
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Acceleration Test: Deceleration Test: Acceleration Test Run No. 1 2 3 4 5 dBA Left Right Highest RPM attained in End Zone Calculated Sound Pressure dBA Deceleration Test with Exhaust Brake Applied dBA Left Right Calculated Sound Pressure dBA TEST Personnel: (Name) Recorded By: Date:......... (Signature) Supervisor...
Reaction time to changes in the tempo of acoustic pulse trains.
NASA Technical Reports Server (NTRS)
Smith, R. P.; Warm, J. S.; Westendorf, D. H.
1973-01-01
Investigation of the ability of human observers to detect accelerations and decelerations in the rate of presentation of pulsed stimuli, i.e., changes in the tempo of acoustic pulse trains. Response times to accelerations in tempo were faster than to decelerations. Overall speed of response was inversely related to the pulse repetition rate.
A unique problem of muscle adaptation from weightlessness: The deceleration deficiency
NASA Technical Reports Server (NTRS)
Stauber, William T.
1989-01-01
Decelerator problems of the knee are emphasized since the lower leg musculature is known to atrophy in response to weightlessness. However, other important decelerator functions are served by the shoulder muscles, in particular the rotator cuff muscles. Problems in these muscles often result in tears and dislocations as seen in baseball pitchers. It is noteworthy that at least one device currently exists that can measure concentric and eccentric muscle loading including a submaximal simulated free weight exercise (i.e., force-controlled) and simultaneously record integrated EMG analysis appropriate for assessment of all muscle functional activities. Studies should be undertaken to provide information as to the performance of maximal and submaximal exercise in space travelers to define potential problems and provide rationale for prevention.
Magnetized strange quark model with Big Rip singularity in f(R, T) gravity
NASA Astrophysics Data System (ADS)
Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, S.
2017-07-01
Locally rotationally symmetric (LRS) Bianchi type-I magnetized strange quark matter (SQM) cosmological model has been studied based on f(R, T) gravity. The exact solutions of the field equations are derived with linearly time varying deceleration parameter, which is consistent with observational data (from SNIa, BAO and CMB) of standard cosmology. It is observed that the model begins with big bang and ends with a Big Rip. The transition of the deceleration parameter from decelerating phase to accelerating phase with respect to redshift obtained in our model fits with the recent observational data obtained by Farook et al. [Astrophys. J. 835, 26 (2017)]. The well-known Hubble parameter H(z) and distance modulus μ(z) are discussed with redshift.
Flight investigation of manual and automatic VTOL decelerating instrument approaches and landings
NASA Technical Reports Server (NTRS)
Kelly, J. R.; Niessen, F. R.; Thibodeaux, J. J.; Yenni, K. R.; Garren, J. F., Jr.
1974-01-01
A flight investigation was undertaken to study the problems associated with manual and automatic control of steep, decelerating instrument approaches and landings under simulated instrument conditions. The study was conducted with a research helicopter equipped with a three-cue flight-director indicator. The scope of the investigation included variations in the flight-director control laws, glide-path angle, deceleration profile, and control response characteristics. Investigation of the automatic-control problem resulted in the first automated approach and landing to a predetermined spot ever accomplished with a helicopter. Although well-controlled approaches and landings could be performed manually with the flight-director concept, pilot comments indicated the need for a better display which would more effectively integrate command and situation information.
Deceleration of the solar wind in the earth's foreshock region - Isee 2 and Imp 8 observations
NASA Technical Reports Server (NTRS)
Bonifazi, C.; Moreno, G.; Lazarus, A. J.; Sullivan, J. D.
1980-01-01
The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the earth's bow shock and associated waves is studied using a two-spacecraft technique. This deceleration depends on the solar wind bulk velocity; at low velocities (below 300 km/s) the velocity decrease is about 5 km/s, while at higher velocities (above 400 km/s) the decrease may be as large as 30 km/s. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind; therefore at least part of this energy must go into waves and/or into the backstreaming ions.
Simulation of decelerating landing approaches on an externally blown flap STOL transport airplane
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Nguyen, L. T.; Deal, P. L.
1974-01-01
A fixed-base simulator program was conducted to define the problems and methods for solution associated with performing decelerating landing approaches on a representative STOL transport having a high wing and equipped with an external-flow jet flap in combination with four high-bypass-ratio fan-jet engines. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom and the aerodynamic inputs were based on measured wind-tunnel data. The pilot's task was to capture the localizer and the glide slope and to maintain them as closely as possible while decelerating from an initial airspeed of 140 knots to a final airspeed of 75 knots, while under IFR conditions.
Visualization of entry flow separation for oscillating flow in tubes
NASA Technical Reports Server (NTRS)
Qiu, Songgang; Simon, Terence W.
1992-01-01
Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanOsdol, John G.
The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustionmore » process and is comprised of N.sub.2 and CO.sub.2.« less
Modular disposable can (MODCAN) crash cushion: A concept investigation
NASA Technical Reports Server (NTRS)
Knoell, A.; Wilson, A.
1976-01-01
A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.
Optimal design for slip deceleration control in anti-lock braking system
NASA Astrophysics Data System (ADS)
Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur
2018-05-01
ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.
Aeroshell Design Techniques for Aerocapture Entry Vehicles
NASA Technical Reports Server (NTRS)
Dyke, R. Eric; Hrinda, Glenn A.
2004-01-01
A major goal of NASA s In-Space Propulsion Program is to shorten trip times for scientific planetary missions. To meet this challenge arrival speeds will increase, requiring significant braking for orbit insertion, and thus increased deceleration propellant mass that may exceed launch lift capabilities. A technology called aerocapture has been developed to expand the mission potential of exploratory probes destined for planets with suitable atmospheres. Aerocapture inserts a probe into planetary orbit via a single pass through the atmosphere using the probe s aeroshell drag to reduce velocity. The benefit of an aerocapture maneuver is a large reduction in propellant mass that may result in smaller, less costly missions and reduced mission cruise times. The methodology used to design rigid aerocapture aeroshells will be presented with an emphasis on a new systems tool under development. Current methods for fast, efficient evaluations of structural systems for exploratory vehicles to planets and moons within our solar system have been under development within NASA having limited success. Many systems tools that have been attempted applied structural mass estimation techniques based on historical data and curve fitting techniques that are difficult and cumbersome to apply to new vehicle concepts and missions. The resulting vehicle aeroshell mass may be incorrectly estimated or have high margins included to account for uncertainty. This new tool will reduce the guesswork previously found in conceptual aeroshell mass estimations.
14 CFR 23.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...
14 CFR 23.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...
14 CFR 23.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... impact. (4) The safety belt must remain on the ATD's pelvis during the impact. (5) The results of the... factor for acrobatic category airplanes need not exceed 5.0g. (2) The seat/restraint system test required... to 61 knots: gp=19.0 (VS0/61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the...
Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging
NASA Technical Reports Server (NTRS)
Polutchko, Robert J.
1973-01-01
This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.
Collaboration and decision making tools for mobile groups
NASA Astrophysics Data System (ADS)
Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander
2017-12-01
Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.
Supersonic Retropropulsion Flight Test Concepts
NASA Technical Reports Server (NTRS)
Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.
2011-01-01
NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.
Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking
Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.
2011-01-01
The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590
Low External Workloads Are Related to Higher Injury Risk in Professional Male Basketball Games.
Caparrós, Toni; Casals, Martí; Solana, Álvaro; Peña, Javier
2018-06-01
The primary purpose of this study was to identify potential risk factors for sports injuries in professional basketball. An observational retrospective cohort study involving a male professional basketball team, using game tracking data was conducted during three consecutive seasons. Thirty-three professional basketball players took part in this study. A total of 29 time-loss injuries were recorded during regular season games, accounting for 244 total missed games with a mean of 16.26 ± 15.21 per player and season. The tracking data included the following variables: minutes played, physiological load, physiological intensity, mechanical load, mechanical intensity, distance covered, walking maximal speed, maximal speed, sprinting maximal speed, maximal speed, average offensive speed, average defensive speed, level one acceleration, level two acceleration, level three acceleration, level four acceleration, level one deceleration, level two deceleration, level three deceleration, level four deceleration, player efficiency rating and usage percentage. The influence of demographic characteristics, tracking data and performance factors on the risk of injury was investigated using multivariate analysis with their incidence rate ratios (IRRs). Athletes with less or equal than 3 decelerations per game (IRR, 4.36; 95% CI, 1.78-10.6) and those running less or equal than 1.3 miles per game (lower workload) (IRR, 6.42 ; 95% CI, 2.52-16.3) had a higher risk of injury during games (p < 0.01 in both cases). Therefore, unloaded players have a higher risk of injury. Adequate management of training loads might be a relevant factor to reduce the likelihood of injury according to individual profiles.
Method for energy recovery of spent ERL beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marhauser, Frank; Hannon, Fay; Rimmer, Robert
A method for recovering energy from spent energy recovered linac (ERL) beams. The method includes adding a plurality of passive decelerating cavities at the beam dump of the ERL, adding one or more coupling waveguides between the passive decelerating cavities, setting an adequate external Q (Qext) to adjust to the beam loading situation, and extracting the RF energy through the coupling waveguides.
ERIC Educational Resources Information Center
DeLucia, Patricia R.; Tharanathan, Anand
2009-01-01
More than 25% of accidents are rear-end collisions. It is essential to identify the factors that contribute to such collisions. One such factor is a driver's ability to respond to the deceleration of the car ahead. In Experiment 1, we measured effects of optic flow information and discrete visual and auditory warnings (brake lights, tones) on…
Rotary-Wing Decelerators for Probe Descent Through the Atmosphere of Venus
NASA Technical Reports Server (NTRS)
Young, Larry A.; Briggs, Geoffrey; Aiken, Edwin; Pisanich, Greg
2005-01-01
An innovative concept is proposed for atmospheric entry probe deceleration, wherein one or more deployed rotors (in autorotation or wind-turbine flow states) on the aft end of the probe effect controlled descent. This concept is particularly oriented toward probes intended to land safely on the surface of Venus. Initial work on design trade studies is discussed.
Damper mechanism for nuclear reactor control elements
Taft, William Elwood
1976-01-01
A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.
Physiological constraints on deceleration during the aerocapture of manned vehicles
NASA Technical Reports Server (NTRS)
Lyne, J. E.
1992-01-01
The peak deceleration load allowed for aerobraking of manned vehicles is a critical parameter in planning future excursions to Mars. However, considerable variation exists in the limits used by various investigators. The goal of this study was to determine the most appropriate level for this limit. Methods: Since previous U.S. space flights have been limited to 84 days duration, Soviet flight results were examined. Published details of Soviet entry trajectories were not available. However, personal communication with Soviet cosmonauts suggested that peak entry loads of 5-6 G had been encountered upon return from 8 months in orbit. Soyuz entry capsule's characteristics were established and the capsule's entry trajectory was numerically calculated. The results confirm a peak load of 5 to 6 G. Results: Although the Soviet flights were of shorter duration than expected Mars missions, evidence exists that the deceleration experience is applicable. G tolerance has been shown to stabilize after 1 to 3 months in space if adequate countermeasures are used. The calculated Soyuz deceleration histories are graphically compared with those expected for Mars aerobraking. Conclusions: Previous spaceflight experience supports the use of a 5 G limit for the aerocapture of a manned vehicle at Mars.
Vervust, Bart; Brecko, Jonathan; Herrel, Anthony
2011-01-01
Studies on the effect of temperature on whole-animal performance traits other than locomotion are rare. Here we investigate the effects of temperature on the performance of the turtle feeding apparatus in a defensive context. We measured bite force and the kinematics of snapping in the Common Snapping Turtle (Chelydra serpentina) over a wide range of body temperatures. Bite force performance was thermally insensitive over the broad range of temperatures typically experienced by these turtles in nature. In contrast, neck extension (velocity, acceleration, and deceleration) and jaw movements (velocity, acceleration, and deceleration) showed clear temperature dependence with peak acceleration and deceleration capacity increasing with increasing temperatures. Our results regarding the temperature dependence of defensive behavior are reflected by the ecology and overall behavior of this species. These data illustrate the necessity for carefully controlling T(b) when carrying out behavioral and functional studies on turtles as temperature affects the velocity, acceleration, and deceleration of jaw and neck extension movements. More generally, these data add to the limited but increasing number of studies showing that temperature may have important effects on feeding and defensive performance in ectotherms. © 2010 Wiley-Liss, Inc.
Prophylactic versus therapeutic amnioinfusion for oligohydramnios in labour.
Novikova, Natalia; Hofmeyr, G Justus; Essilfie-Appiah, George
2012-09-12
Amnioinfusion aims to relieve umbilical cord compression during labour by infusing a liquid into the uterine cavity. The objective of this review was to assess the effects of prophylactic amnioinfusion for women in labour with oligohydramnios, but not fetal heart deceleration, compared with therapeutic amnioinfusion only if fetal heart rate decelerations or thick meconium-staining of the liquor occur. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (28 February 2012). Randomised trials comparing prophylactic amnioinfusion in women in labour with oligohydramnios but not fetal heart rate deceleration in labour with therapeutic amnioinfusion. The authors assessed trial quality and extracted data. One randomized trial of 116 women was included. No differences were found in the rate of caesarean section (risk ratio 1.29, 95% confidence interval 0.60 to 2.74). There were no differences in cord arterial pH, oxytocin augmentation, neonatal pneumonia or postpartum endometritis. Prophylactic amnioinfusion was associated with increased intrapartum fever (risk ratio 3.48, 95% confidence interval 1.21 to 10.05). There appears to be no advantage of prophylactic amnioinfusion over therapeutic amnioinfusion carried out only when fetal heart rate decelerations or thick meconium-staining of the liquor occur.
Deceleration-driven wetting transition of "gently" deposited drops on textured hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Varanasi, Kripa; Kwon, Hyukmin; Paxson, Adam; Patankar, Neelesh
2010-11-01
Many applications of rough superhydrophobic surfaces rely on the presence of droplets in a Cassie state on the substrates. A well established understanding is that if sessile droplets are smaller than a critical size, then the large Laplace pressure induces wetting transition from a Cassie to a Wenzel state, i.e., the liquid impales the roughness grooves. Thus, larger droplets are expected to remain in the Cassie state. In this work we report a surprising wetting transition where even a "gentle" deposition of droplets on rough substrates lead to the transition of larger droplets to the Wenzel state. A hitherto unknown mechanism based on rapid deceleration is identified. It is found that modest amount of energy, during the deposition process, is channeled through rapid deceleration into high water hammer pressure which induces wetting transition. A new "phase" diagram is reported which shows that both large and small droplets can transition to Wenzel states due to the deceleration and Laplace mechanisms, respectively. This novel insight reveals for the first time that the attainment of a Cassie state is more restrictive than previous criteria based on the Laplace pressure transition mechanism.
Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping
NASA Technical Reports Server (NTRS)
Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel
2006-01-01
The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.
Flexible Ablators: Applications and Arcjet Testing
NASA Technical Reports Server (NTRS)
Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey
2011-01-01
Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.
Ugwumadu, A
2014-08-01
Original interpretations of fetal heart rate (FHR) patterns equated FHR decelerations with 'fetal distress', requiring expeditious delivery. This simplistic interpretation is still implied in our clinical guidelines despite 40 years of increasing understanding of the behaviour and regulation of the fetal cardiovascular system during labour. The physiological basis of FHR responses and adaptations to oxygen deprivation is de-emphasised, whilst generations of obstetricians and midwives are trained to focus on, and classify, the morphological appearances of decelerations into descriptive categories, with no attempt to understand how the fetus defends itself and compensates for intrapartum hypoxic ischaemic insults, or the patterns that suggest progressive loss of compensation. Consequently, there is a lack of confidence, marked variation in FHR interpretation, defensive practices, unnecessary operative interventions, and a failure to recognise abnormal FHR patterns, resulting in adverse outcomes and expensive litigation. © 2014 Royal College of Obstetricians and Gynaecologists.
NASA Astrophysics Data System (ADS)
Park, Jun Kwon; Kang, Kwan Hyoung
2012-04-01
Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.
Protection of surface assets on Mars from wind blown jettisoned spacecraft components
NASA Astrophysics Data System (ADS)
Paton, Mark
2017-07-01
Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.
Compliance control for a hydraulic bouncing system.
Chen, Guangrong; Wang, Junzheng; Wang, Shoukun; Zhao, Jiangbo; Shen, Wei
2018-05-17
This paper is to reduce the contact impact, control the leg stiffness and bouncing height. Firstly, the combining position/force active compliance control was involved in the deceleration phase to decrease the impact force and improve the leg compliance capacity. Then a reasonable velocity control of cylinder was addressed to control the bouncing height to the given value in the acceleration phase. Due to the model uncertainties and disturbances in the deceleration and acceleration phase, a near inverse like controller with a proportional and differential control (PD) was added into the velocity control of acceleration phase to compensate the bouncing height control error. Finally, the effectiveness of proposed controller was validated by experiments. Experimental results showed the impact force could be reduced effectively and a significant bouncing height control performance could be achieved. The influences of initial energy, preload of spring and velocity of cylinder on the bouncing height were addressed as well. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Özdemir, Vural; Hekim, Nezih
2018-01-01
Driverless cars with artificial intelligence (AI) and automated supermarkets run by collaborative robots (cobots) working without human supervision have sparked off new debates: what will be the impacts of extreme automation, turbocharged by the Internet of Things (IoT), AI, and the Industry 4.0, on Big Data and omics implementation science? The IoT builds on (1) broadband wireless internet connectivity, (2) miniaturized sensors embedded in animate and inanimate objects ranging from the house cat to the milk carton in your smart fridge, and (3) AI and cobots making sense of Big Data collected by sensors. Industry 4.0 is a high-tech strategy for manufacturing automation that employs the IoT, thus creating the Smart Factory. Extreme automation until "everything is connected to everything else" poses, however, vulnerabilities that have been little considered to date. First, highly integrated systems are vulnerable to systemic risks such as total network collapse in the event of failure of one of its parts, for example, by hacking or Internet viruses that can fully invade integrated systems. Second, extreme connectivity creates new social and political power structures. If left unchecked, they might lead to authoritarian governance by one person in total control of network power, directly or through her/his connected surrogates. We propose Industry 5.0 that can democratize knowledge coproduction from Big Data, building on the new concept of symmetrical innovation. Industry 5.0 utilizes IoT, but differs from predecessor automation systems by having three-dimensional (3D) symmetry in innovation ecosystem design: (1) a built-in safe exit strategy in case of demise of hyperconnected entrenched digital knowledge networks. Importantly, such safe exists are orthogonal-in that they allow "digital detox" by employing pathways unrelated/unaffected by automated networks, for example, electronic patient records versus material/article trails on vital medical information; (2) equal emphasis on both acceleration and deceleration of innovation if diminishing returns become apparent; and (3) next generation social science and humanities (SSH) research for global governance of emerging technologies: "Post-ELSI Technology Evaluation Research" (PETER). Importantly, PETER considers the technology opportunity costs, ethics, ethics-of-ethics, framings (epistemology), independence, and reflexivity of SSH research in technology policymaking. Industry 5.0 is poised to harness extreme automation and Big Data with safety, innovative technology policy, and responsible implementation science, enabled by 3D symmetry in innovation ecosystem design.
An electrostatic deceleration lens for highly charged ions.
Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P
2010-04-01
The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.
Constraints on a generalized deceleration parameter from cosmic chronometers
NASA Astrophysics Data System (ADS)
Mamon, Abdulla Al
2018-04-01
In this paper, we have proposed a generalized parametrization for the deceleration parameter q in order to study the evolutionary history of the universe. We have shown that the proposed model can reproduce three well known q-parametrized models for some specific values of the model parameter α. We have used the latest compilation of the Hubble parameter measurements obtained from the cosmic chronometer (CC) method (in combination with the local value of the Hubble constant H0) and the Type Ia supernova (SNIa) data to place constraints on the parameters of the model for different values of α. We have found that the resulting constraints on the deceleration parameter and the dark energy equation of state support the ΛCDM model within 1σ confidence level at the present epoch.
NASA Astrophysics Data System (ADS)
Fesen, R. A.
2001-12-01
A recent proper motion study of 40 knots in the Cas A supernova remnant indicated a knot convergent date of A.D. 1671.3 +/-0.9 assuming no deceleration (Thorstensen, Fesen, & van den Bergh 2001, AJ, 122, 297). However, because these optical knots are made visible by their shock passage through the local ISM/CSM, some deceleration is expected. A deceleration of just ~ 1.6 km s-1 yr-1 over a 300 yr time span would yield an explosion date around A.D. 1680, consistent with a suspected sighting of the Cas A supernova by J. Flamsteed in August 1680 (Ashworth, 1980, J. Hist. Astron., 11, 1). We discuss Flamsteed's likely observations of SN 1680 in terms of their constrains on the light curve and peak brightness and possible implications regarding the Cas A SN subtype.
Kinetics of the Shanghai Maglev: Kinematical Analysis of a Real "Textbook" Case of Linear Motion
NASA Astrophysics Data System (ADS)
Hsu, Tung
2014-10-01
A vehicle starts from rest at constant acceleration, then cruises at constant speed for a time. Next, it decelerates at a constant rate.… This and similar statements are common in elementary physics courses. Students are asked to graph the motion of the vehicle or find the velocity, acceleration, and distance traveled by the vehicle from a given graph.1 However, a "constant acceleration-constant velocity-constant deceleration" motion, which gives us an ideal trapezoidal shape in the velocity-time graph, is not common in everyday life. Driving a car or riding a bicycle for a short distance can be much more complicated. Therefore, it is interesting to take a look at a real case of "constant acceleration-constant velocity-constant deceleration" motion.
Liquid booster engine reuse - A recovery system
NASA Technical Reports Server (NTRS)
Von Eckroth, Wulf; Rohrkaste, Gary R.; Delurgio, Phillip R.
1991-01-01
The paper presents the design of a recovery system for a suborbital payload of an Atlas E rocket. This program utilizes off-the-shelf and previously qualified avionics, flotation, and decelerator systems. A brief history of liquid-engine recoveries is presented first, then the system design utilizing two self-contained structurally-identical pods diametrically mounted to the thrust section is outlined. A mortar-deployed drogue and the main parachute are described, and experimental procedures are considered. Data obtained from one tricluster drop employing a cylindrical test vehicle and helicopter is analyzed, and a satisfactory load balance between the parachutes is observed.
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets
NASA Technical Reports Server (NTRS)
Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.
2006-01-01
One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
Saucer Shoal: LDSD Recovery off Kauai
2015-06-11
Two members of the U.S. Navy's Mobile Diving Salvage Unit (MDSU) 1 Explosive Ordnance Detachment work on recovering the test vehicle for NASA's Low-Density Supersonic Decelerator (LDSD) project. The saucer-shaped LDSD craft splashed down at 11:49 a.m. HST (2:49 PDT/5:49 p.m. EDT) Monday, June 8, 2015, in the Pacific Ocean off the west coast of the Kauai, Hawaii, after a four-hour experimental flight test that investigated new technologies for landing future robotic and human Mars missions. During the flight test, a Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a supersonic parachute were deployed. The SIAD operated as expected, dramatically slowing the test vehicle's velocity. When the parachute was deployed into the supersonic slipstream, it appeared to blossom to full inflation prior to the emergence of a tear which then propagated and destroyed the parachute's canopy. As a result, the saucer's splashdown in the Pacific Ocean was hard, resulting in fracturing parts of the structure. Memory cards containing comprehensive test data -- including high-speed, high-resolution imagery recorded during the flight -- were successfully recovered. Also recovered were the test vehicle and its components, the supersonic parachute, the ballute used to deploy the parachute, and a large weather balloon that initially carried the saucer to an altitude of 120,000 feet. http://photojournal.jpl.nasa.gov/catalog/PIA19684
NASA Astrophysics Data System (ADS)
van der Meer, Douwe G.; van Hinsbergen, Douwe J. J.; Spakman, Wim
2018-01-01
Across the entire mantle we interpret 94 positive seismic wave-speed anomalies as subducted lithosphere and associate these slabs with their geological record. We document this as the Atlas of the Underworld, also accessible online at www.atlas-of-the-underworld.org, a compilation comprising subduction systems active in the past 300 Myr. Deeper slabs are correlated to older geological records, assuming no relative horizontal motions between adjacent slabs following break-off, using knowledge of global plate circuits, but without assuming a mantle reference frame. The longest actively subducting slabs identified reach the depth of 2500 km and some slabs have impinged on Large Low Shear Velocity Provinces in the deepest mantle. Anomously fast sinking of some slabs occurs in regions affected by long-term plume rising. We conclude that slab remnants eventually sink from the upper mantle to the core-mantle boundary. The range in subduction-age versus - depth in the lower mantle is largely inherited from the upper mantle history of subduction. We find a significant depth variation in average sinking speed of slabs. At the top of the lower mantle average slab sinking speeds are between 10 and 40 mm/yr, followed by a deceleration to 10-15 mm/yr down to depths around 1600-1700 km. In this interval, in situ time-stationary sinking rates suggest deceleration from 20 to 30 mm/yr to 4-8 mm/yr, increasing to 12-15 mm/yr below 2000 km. This corroborates the existence of a slab deceleration zone but we do not observe long-term (> 60 My) slab stagnation, excluding long-term stagnation due to compositional effects. Conversion of slab sinking profiles to viscosity profiles shows the general trend that mantle viscosity increases in the slab deceleration zone below which viscosity slowly decreases in the deep mantle. This is at variance with most published viscosity profiles that are derived from different observations, but agrees qualitatively with recent viscosity profiles suggested from material experiments.
NASA Astrophysics Data System (ADS)
Zubrin, Robert
1994-07-01
This paper examines the possibility of detecting extraterrestrial civilizations by means of searching for the spectral signature of their interstellar transportation systems. The advantage of such an approach is that the characteristic power levels associated with interstellar transportation systems are many orders of magnitude greater than those required for communication, and so the signal strength may be much greater. Furthermore, unlike communication which is governed by a fairly arbitrary selection of technology and mutually agreed upon conventions, interstellar transportation systems are governed much more stringently by the laws of physics. For purposes of the present analysis we consider 4 methods of interstellar propulsion, the principles of which are fairly well understood. These are anti-matter rockets, fusion rockets, fission rockets, all of which can be used to either accelerate or decelerate a spacecraft, and magnetic sails, which can be used to decelerate a spacecraft by creating drag against the interstellar medium. The types of radiation emitted by each of these propulsion systems is described, and the signal strength for starships of a characteristic mass of 1 million tonnes traveling at speeds and acceleration levels characteristic of the various propulsion systems is estimated. It is shown that for the power level of ships considered, the high energy gamma radiation emitted by the anti-matter, fusion and fission propulsion systems would be undetectable at interstellar distances. Better opportunities for detection would be the bremsstrahlung radiation from the plasma confinement systems of fusion devices, which might be detectable at distances of about 1 light year, and visible light emitted from the radiators of anti-matter driven photon rocket, which might be detectable by the Hubble Space Telescope at a distance of several hundred light years provided the rocket nozzle is oriented towards the Earth. The most detectable form of starship radiation, however, was found to be the low frequency radio emissions of cyclotron radiation caused by interaction of the interstellar medium with a magnetic sail. The frequency of such radiation is given approximately by f=120(v/c)kHz, where v is the starship's velocity. Because the frequency of this radiation is lower than the Earth's ionospheric cut-off, an antenna for its reception would have to be space-based. However such a space-based antenna with a 6 km effective diameter could detect the magsail emission of a characteristic starship at distances of up to several thousand light years. Both photon rockets and magnetic sails would emit a signal that could easily be distinguished from natural sources. We conclude that the detection of extraterrestrial civilizations via the spectral signature of their spacecraft is possible in principle and recommend that the approach be studied further.
Amniotic fluid index predicts the relief of variable decelerations after amnioinfusion bolus.
Spong, C Y; McKindsey, F; Ross, M G
1996-10-01
Our purpose was to determine whether intrapartum amniotic fluid index before amnioinfusion can be used to predict response to therapeutic amnioinfusion. Intrapartum patients (n = 85) with repetitive variable decelerations in fetal heart rate that necessitated amnioinfusion (10 ml/min for 60 minutes) underwent determination of amniotic fluid index before and after bolus amnioinfusion. The fetal heart tracing was scored (scorer blinded to amniotic fluid index values) for number and characteristics of variable decelerations before and 1 hour after initiation of amnioinfusion. The amnioinfusion was considered successful if it resulted in a decrease of > or = 50% in total number of variable decelerations or a decrease of > or = 50% in the rate of atypical or severe variable decelerations after administration of the bolus. Spontaneous vaginal births before completion of administration of the bolus (n = 18) were excluded from analysis. The probability of success of amnioinfusion in relation to amniotic fluid index was analyzed with the chi(2) test for progressive sequence. The mean amniotic fluid index before amnioinfusion was 6.2 +/- 3.3 cm. An amniotic fluid index of < or = 5 cm was present in 40% of patients (27/67), and an amniotic fluid index of < or = 8 cm was present in 72% of patients (48/67). The probability of success of amnioinfusion decreased with increasing amniotic fluid index before amnioinfusion (76% [16/21] when initial amniotic fluid index was 0 to 4 cm, 63% [17/27] when initial amniotic fluid index was 4 to 8 cm, 44% [7/16] when initial amniotic fluid index was 8 to 12 cm, and 33% [1/3] when initial amniotic fluid index was > 12 cm, p = 0.03). The incidence of nuchal cords or true umbilical cord knots increased in relation to amniotic fluid index before amnioinfusion. Amniotic fluid index before amnioinfusion can be used to predict the success of amnioinfusion for relief of variable decelerations in fetal heart rate. Failure of amnioinfusion at a high amniotic fluid index before amnioinfusion may be explained by the increased prevalence of nuchal cords or true knots in the umbilical cord.
14 CFR 23.562 - Emergency landing dynamic conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... on the ATD's pelvis during the impact. (5) The results of the dynamic tests must show that the... category airplanes need not exceed 5.0g. (2) The seat/restraint system test required by paragraph (b)(1) of.../61)2 or gp=15.0 (VS0/61)2 (B) The peak deceleration need not exceed the value reached at a VS0 of 79...
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Scheidegger, Simon; Merkt, Frederic
2015-06-01
Having only three electrons, He_2^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculation of rovibrational energies in He_2^+ do not include relativistic or QED corrections but claim an accuracy of about 120 MHz The available experimental data on He_2^+, though accurate to 300 MHz, are not precise enough to rigorously test these calculations or reveal the magnitude of the relativistic and QED corrections. We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He_2^+ ion. To this end we have produced samples of helium molecules in the a ^3σ_u^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser systems is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2^+ with unprecedented accuracy, to determine the size of the relativistic and QED corrections by comparison with the results of Ref.~a and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa~et al. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
Experimental research on pedestrian lower leg impact
NASA Astrophysics Data System (ADS)
Constantin, B. A.; Iozsa, D. M.; Stan, C.
2017-10-01
The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.
From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giostri, R.; Santos, M. Vargas dos; Waga, I.
2012-03-01
We use type Ia supernovae (SN Ia) data in combination with recent baryonic acoustic oscillations (BAO) and cosmic microwave background (CMB) observations to constrain a kink-like parametrization of the deceleration parameter (q). This q-parametrization can be written in terms of the initial (q{sub i}) and present (q{sub 0}) values of the deceleration parameter, the redshift of the cosmic transition from deceleration to acceleration (z{sub t}) and the redshift width of such transition (τ). By assuming a flat space geometry, q{sub i} = 1/2 and adopting a likelihood approach to deal with the SN Ia data we obtain, at the 68%more » confidence level (C.L.), that: z{sub t} = 0.56{sup +0.13}{sub −0.10}, τ = 0.47{sup +0.16}{sub −0.20} and q{sub 0} = −0.31{sup +0.11}{sub −0.11} when we combine BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve fitter. When in this combination we use the SALT2 fitter we get instead, at the same C.L.: z{sub t} = 0.64{sup +0.13}{sub −0.07}, τ = 0.36{sup +0.11}{sub −0.17} and q{sub 0} = −0.53{sup +0.17}{sub −0.13}. Our results indicate, with a quite general and model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like cosmological models, while SALT2 favors ΛCDM-like ones. Progress in determining the transition redshift and/or the present value of the deceleration parameter depends crucially on solving the issue of the difference obtained when using these two light-curve fitters.« less
Deceleration-stats save much time during phototrophic culture optimization.
Hoekema, Sebastiaan; Rinzema, Arjen; Tramper, Johannes; Wijffels, René H; Janssen, Marcel
2014-04-01
In case of phototrophic cultures, photobioreactor costs contribute significantly to the total operating costs. Therefore one of the most important parameters to be determined is the maximum biomass production rate, if biomass or a biomass associated product is the desired product. This is traditionally determined in time consuming series of chemostat cultivations. The goal of this work is to assess the experimental time that can be saved by applying the deceleration stat (D-stat) technique to assess the maximum biomass production rate of a phototrophic cultivation system, instead of a series of chemostat cultures. A mathematical model developed by Geider and co-workers was adapted in order to describe the rate of photosynthesis as a function of the local light intensity. This is essential for the accurate description of biomass productivity in phototrophic cultures. The presented simulations demonstrate that D-stat experiments executed in the absence of pseudo steady-state (i.e., the arbitrary situation that the observed specific growth rate deviates <5% from the dilution rate) can still be used to accurately determine the maximum biomass productivity of the system. Moreover, this approach saves up to 94% of the time required to perform a series of chemostat experiments that has the same accuracy. In case more information on the properties of the system is required, the reduction in experimental time is reduced but still significant. © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Coogan, J. J.
1986-01-01
Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.
Deceleration of free aqueous droplets skirting across the surface of a pool of the same fluid
NASA Astrophysics Data System (ADS)
Hale, Jacob; Akers, Caleb
2014-11-01
The non-coalescence of a free droplet atop a pool of the same fluid can be greatly enhanced when the drop has an initial horizontal velocity relative to the pool surface. The glancing impact and viscous interaction between the droplet and the pool impart a significant rotation to the droplet causing it to roll and thus entraining air between the two fluids. The translational speed of such a droplet is shown to decrease exponentially in time but with a time constant that increases linearly in time. This complex deceleration of the drop is in part due to the drop's rotational deceleration, visualized with suspended, neutrally buoyant microbeads. The observed motion is described in terms of viscous dissipation of the rotating drop and a viscous shear force between the droplet and bath.
Beam dynamic simulation and optimization of the CLIC positron source and the capture linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayar, C., E-mail: cafer.bayar@cern.ch; CERN, Geneva; Doebert, S., E-mail: Steffen.Doebert@cern.ch
2016-03-25
The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first acceleratingmore » structure. It is shown that the decelerating mode gives a higher yield for the e{sup +} beam in the end of the Pre-Injector Linac.« less
Flight Performance of the Inflatable Reentry Vehicle Experiment 3
NASA Technical Reports Server (NTRS)
Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter
2013-01-01
The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.
Evaluation of a sudden brake warning system: effect on the response time of the following driver.
Isler, Robert B; Starkey, Nicola J
2010-07-01
This study used a video-based braking simulation dual task to carry out a preliminary evaluation of the effect of a sudden brake warning system (SBWS) in a leading passenger vehicle on the response time of the following driver. The primary task required the participants (N=25, 16 females, full NZ license holders) to respond to sudden braking manoeuvres of a lead vehicle during day and night driving, wet and dry conditions and in rural and urban traffic, while concurrently performing a secondary tracking task using a computer mouse. The SBWS in the lead vehicle consisted of g-force controlled activation of the rear hazard lights (the rear indicators flashed), in addition to the standard brake lights. Overall, the results revealed that responses to the braking manoeuvres of the leading vehicles when the hazard lights were activated by the warning system were 0.34 s (19%) faster compared to the standard brake lights. The SBWS was particularly effective when the simulated braking scenario of the leading vehicle did not require an immediate and abrupt braking response. Given this, the SBWS may also be beneficial for allowing smoother deceleration, thus reducing fuel consumption. These preliminary findings justify a larger, more ecologically valid laboratory evaluation which may lead to a naturalistic study in order to test this new technology in 'real world' braking situations. Copyright 2009 Elsevier Ltd. All rights reserved.
Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan
2008-10-01
Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.
Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
2007-01-01
Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3- mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.
Infrared countermeasure flare performance measurements using a gas gun
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Lakshmanan; Stringer, Michael; Taylor, Mark R. G.; Kollias, S.
2004-12-01
A unique and cost effective measurement facility called the Reusable Aerodynamic Flare Ejection Capability (RAFEC) has been developed at the Defence Science and Technology Organisation (DSTO), Australia. The RAFEC system involves the use of a reusable, carrier projectile that is launched from a 10 inch, nitrogen driven gas gun. The IRCM flare is loaded in the carrier projectile and the gas gun launches the carrier projectile with a known velocity of between approximately 350 to 650 knots. At a pre-determined time after firing and in the field of view of the measuring instrumentation, the flare is ejected from the carrier projectile for performance measurements to be undertaken. The temporal, spatial and spectral quantities were accomplished with the instruments fielded around the gas gun line of fire and the trajectory is derived from the spatial measurements. The data will be used for hardware in the loop simulations and modelling. Further improvements such as; (1) multiple (maximum of three) flare ejection, (2) 1"x1"x8" format flares made to the carrier projectile, and (3) design and manufacture of the puston, a new item of firing hardware to obtain lower muzzle velocities have enhanced the RAFEC capability. Thus the RAFEC system provides a more realistic IRCM performance measurement capability as it incorporates the deceleration effects experienced by the flare on deployment.
Testing of Flexible Ballutes in Hypersonic Wind Tunnels for Planetary Aerocapture
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
2006-01-01
Studies were conducted for the In-Space Propulsion (ISP) Ultralightweight Ballute Technology Development Program to increase the technical readiness level of inflatable decelerator systems for planetary aerocapture. The present experimental study was conducted to develop the capability for testing lightweight, flexible materials in hypersonic facilities. The primary objectives were to evaluate advanced polymer film materials in a high-temperature, high-speed flow environment and provide experimental data for comparisons with fluid-structure interaction modeling tools. Experimental testing was conducted in the Langley Aerothermodynamics Laboratory 20-Inch Hypersonic CF4 and 31-Inch Mach 10 Air blowdown wind tunnels. Quantitative flexure measurements were made for 60 degree half angle afterbody-attached ballutes, in which polyimide films (1-mil and 3-mil thick) were clamped between a 1/2-inch diameter disk and a base ring (4-inch and 6-inch diameters). Deflection measurements were made using a parallel light silhouette of the film surface through an existing schlieren optical system. The purpose of this paper is to discuss these results as well as free-flying testing techniques being developed for both an afterbody-attached and trailing toroidal ballute configuration to determine dynamic fluid-structural stability. Methods for measuring polymer film temperature were also explored using both temperature sensitive paints (for up to 370 C) and laser-etched thin-film gages.
Observed stratospheric downward reflection, and its relation to upward pulses of wave activity
NASA Astrophysics Data System (ADS)
Harnik, N.
2009-04-01
We examine the differences between observed stratospheric vertical wave reflection and wave absorption events, which differ in that the wave induced deceleration remains confined to upper levels in the former. The two types of events signify two types of stratospheric winter dynamics, associated with different downward coupling to the troposphere (Perlwitz and Harnik, 2004). Using time lag composites, we find that the main factor influencing which event will occur is the duration, in time, of the upward pulse of wave activity entering the stratosphere from the troposphere. Short pulses accelerate the flow at their trailing edge in the lower stratosphere while they decelerate it at upper levels, resulting in a vertical shear reversal, and corresponding downward reflection, while long pulses continue decelerating the vortex at progressively lower levels. The confinement of deceleration to upper levels for short wave forcing pulses is also found in an idealized model of an interaction between a planetary wave and the stratospheric vortex, though some aspects of the wave geometry evolution, and thus vertical reflection, are not captured realistically in the model. The results suggest the stratospheric influence on the type of wave interaction, in reality, is indirect - through a possible effect on the duration of upward wave fluxes through the tropopause.
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton
2017-04-01
Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In particular, our simulations suggest that slow EHs (which generation is usually attributed to the Buneman instability) can arise due to slowing down of fast EH generated by electron-beam instability. The estimate of the potential drop along EHs allow to estimate the parallel potential drop provided by EHs in a particular plasma system. 1. Matsumoto, H., H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Electrotastic Solitary Waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL, Geophys. Res. Lett., 21, 2915-2918, doi:10.1029/94GL01284, 1994. 2. Norgren, C., M. Andŕe, A. Vaivads, and Y. V. Khotyaintsev, Slow electron phase space holes: Magnetotail observations, Geophys. Res. Lett., 42, 1654-1661, doi:10.1002/2015GL063218, 2015. 3. Malaspina, D. M., J. R. Wygant, R. E. Ergun, G. D. Reeves, R. M. Skoug, and B. A. Larsen, Electric field structures and waves at plasma boundaries in the inner magnetosphere, Journal of Geophysical Research (Space Physics), 120, 4246-4263, doi:10.1002/2015JA021137, 2015. 4. Franz, J. R., P. M. Kintner, J. S. Pickett, and L.-J. Chen, Properties of small-amplitude electron phase-space holes observed by Polar, Journal of Geophysical Research (Space Physics), 110, A09212, doi:10.1029/2005JA011095, 2005. 5. Cattell, C., C. Neiman, J. Dombeck, J. Crumley, J. Wygant, C. A. Kletzing, W. K. Peterson, F. S. Mozer, and M. André (2003), Large amplitude solitary waves in and near the Earth's magnetosphere, magnetopause and bow shock: Polar and Cluster observations, Nonlinear Processes Geophys., 10, 13-26. 6. Mandrake, L., P. L. Pritchett, and F. V. Coroniti, Electron beam generated solitary structures in a nonuniform plasma system, Geophys. Res. Lett., 27, 2869-2872, doi:10.1029/2000GL003785, 2000. The work of I.K. was supported by Russian Foundation for Basic Research 16-32-00721 mol_a. The work of I.V., O.A. and F.M. was supported by JHU/APL contract 922613 (RBSPEFW).
Cahill, Alison G; Tuuli, Methodius G; Stout, Molly J; López, Julia D; Macones, George A
2018-05-01
Intrapartum electronic fetal monitoring is the most commonly used tool in obstetrics in the United States; however, which electronic fetal monitoring patterns predict acidemia remains unclear. This study was designed to describe the frequency of patterns seen in labor using modern nomenclature, and to test the hypothesis that visually interpreted patterns are associated with acidemia and morbidities in term infants. We further identified patterns prior to delivery, alone or in combination, predictive of acidemia and neonatal morbidity. This was a prospective cohort study of 8580 women from 2010 through 2015. Patients were all consecutive women laboring at ≥37 weeks' gestation with a singleton cephalic fetus. Electronic fetal monitoring patterns during the 120 minutes prior to delivery were interpreted in 10-minute epochs. Interpretation included the category system and individual electronic fetal monitoring patterns per the Eunice Kennedy Shriver National Institute of Child Health and Human Development criteria as well as novel patterns. The primary outcome was fetal acidemia (umbilical artery pH ≤7.10); neonatal morbidities were also assessed. Final regression models for acidemia adjusted for nulliparity, pregestational diabetes, and advanced maternal age. Area under the receiver operating characteristic curves were used to assess the test characteristics of individual models for acidemia and neonatal morbidity. Of 8580 women, 149 (1.7%) delivered acidemic infants. Composite neonatal morbidity was diagnosed in 757 (8.8%) neonates within the total cohort. Persistent category I, and 10-minute period of category III, were significantly associated with normal pH and acidemia, respectively. Total deceleration area was most discriminative of acidemia (area under the receiver operating characteristic curves, 0.76; 95% confidence interval, 0.72-0.80), and deceleration area with any 10 minutes of tachycardia had the greatest discriminative ability for neonatal morbidity (area under the receiver operating characteristic curves, 0.77; 95% confidence interval, 0.75-0.79). Once the threshold of deceleration area is reached the number of cesareans needed-to-be performed to potentially prevent 1 case of acidemia and morbidity is 5 and 6, respectively. Deceleration area is the most predictive electronic fetal monitoring pattern for acidemia, and combined with tachycardia for significant risk of morbidity, from the electronic fetal monitoring patterns studied. It is important to acknowledge that this study was performed in patients delivering ≥37 weeks, which may limit the generalizability to preterm populations. We also did not use computerized analysis of the electronic fetal monitoring patterns because human visual interpretation was the basis for the Eunice Kennedy Shriver National Institute of Child Health and Human Development categories, and importantly, it is how electronic fetal monitoring is used clinically. Copyright © 2018 Elsevier Inc. All rights reserved.
Motor Control and Regulation for a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Kenny, Barbara; Lyons, Valerie
2003-01-01
This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.
NASA Astrophysics Data System (ADS)
Winglee, R. M.; Robinson, T.; Danner, M.; Koch, J.
2018-03-01
The icy moons of Jupiter and Saturn are important astrobiology targets. Access to the surface of these worlds is made difficult by the high ΔV requirements which is typically in the hypervelocity range. Passive braking systems cannot be used due to the lack of an atmosphere, and active braking by rockets significantly adds to the missions costs. This paper demonstrates that a two-stage landing system can overcome these problems and provide significant improvements in the payload fraction that can be landed The first stage involves a hypervelocity impactor which is designed to penetrate to a depth of a few tens of meters. This interaction is the cryo-breaking component and is examined through laboratory experiments, empirical relations and modeling. The resultant ice-particle cloud creates a transient artificial atmosphere that can be used to enable passive braking of the second stage payload dd, with a substantially higher mass payload fraction than possible with a rocket landing system. It is shown that a hollow cylinder design for the impactor can more efficiently eject the material upwards in a solid cone of ice particles relative to solid impactors such as spheres or spikes. The ejected mass is shown to be of the order of 103 to 104 times the mass of the impactor. The modeling indicates that a 10 kg payload with a braking system of 3 m2 (i.e. an areal density of 0.3 kg/m2) is sufficient to allow the landing of the payload with the deceleration limited to less than 2000 g's. Modern electronics can withstand this deceleration and as such the system provides an important alternative to landing payloads on icy solar system objects.
NASA Technical Reports Server (NTRS)
1973-01-01
The aerodynamic design problems for the Pioneer Venus mission are discussed for a small probe shape that enters the atmosphere, and exhibits good stability for the subsonic portion of the flight. The problems discussed include: heat shield, structures and mechanisms, thermal control, decelerator, probe communication, data handling and command, and electric power.
Quadrennial Review of Military Compensation (5th). Executive Summary.
1984-01-01
COMBINATION Any proposed legislation to modify the current retire- ment system by reducing retired pay must stress the absolute requirement that a form of...Hazardous Duty Incentive Pays: — Parachute Duty — Flight Deck Duty -- Demolition Duty — Toxic Fuels and — Experimental Stress Duty Propellants — Non...3) Experimental Stress Duty Pay - an incentive for performance of hazardous duty while participating in acceleration/ deceleration testing, thermal
Parallel Hybrid Vehicle Optimal Storage System
NASA Technical Reports Server (NTRS)
Bloomfield, Aaron P.
2009-01-01
A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1961-02-01
Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)
Drivers’ Visual Characteristics when Merging onto or Exiting an Urban Expressway
Cheng, Ying; Gao, Li; Zhao, Yanan; Du, Feng
2016-01-01
The aim of this study is to examine drivers’ visual and driving behavior while merging onto or exiting an urban expressway with low and high traffic densities. The analysis was conducted according to three periods (approaching, merging or exiting, and accelerating or decelerating). A total of 10 subjects (8 males and 2 females) with ages ranging from 25 to 52 years old (M = 30.0 years old) participated in the study. The research was conducted in a natural driving situation, and the drivers’ eye movements were monitored and recorded using an eye tracking system. The results show that the influence of traffic density on the glance duration and scan duration is more significant when merging than when exiting. The results also demonstrate that the number of glances and the mean glance duration are mainly related to the driving task (e.g., the merging period). Therefore, drivers’ visual search strategies mainly depend on the current driving task. With regard to driving behavior, the variation tendencies of the duration and the velocity of each period are similar. These results support building an automated driving assistant system that can automatically identify gaps and accelerate or decelerate the car accordingly or provide suggestions to the driver to do so. PMID:27657888
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
NASA Technical Reports Server (NTRS)
Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
Continuous All-Optical Deceleration and Single-Photon Cooling of Molecular Beams
2014-02-21
PHYSICAL REVIEW A 89 , 023425 (2014) Continuous all-optical deceleration and single-photon cooling of molecular beams A. M. Jayich,1 A. C. Vutha,2 M...details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and...molecules that are considered difficult to directly laser cool—a class that includes many 1050-2947/2014/ 89 (2)/023425(8) 023425-1 ©2014 American
Landing Procedure in Model Ditching Tests of Bf 109
NASA Technical Reports Server (NTRS)
Sottorf, W.
1949-01-01
The purpose of the model tests is to clarify the motions in the alighting on water of a land plane. After discussion of the model laws, the test method and test procedure are described. The deceleration-time-diagrams of the landing of a model of the Bf 109 show a high deceleration peek of greater than 20g which can be lowered to 4 to 6g by radiator cowling and brake skid.
Flow Studies of Decelerators at Supersonic Speeds
NASA Technical Reports Server (NTRS)
1959-01-01
Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.
Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms
NASA Astrophysics Data System (ADS)
Long, Xueping; Jayich, Andrew; Campbell, Wesley
2017-04-01
Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2013-09-01
A model that includes the mechanical response of a vehicle to a demanded change in acceleration is analyzed to determine the string stability of a platoon of autonomous vehicles. The response is characterized by a first-order time constant τ and an explicit delay td. The minimum value of the acceleration feedback control gain is found from calculations of the velocity of vehicles following a lead vehicle that decelerates sharply from high speed to low speed. Larger values of ξ (in the stable range) give larger values of deceleration for vehicles in the platoon. Optimal operation is attained close to the minimum value of ξ for stability. Small oscillations are found after the main peak in deceleration for ξ in the stable region but near the transition to instability. A theory for predicting the frequency and amplitude of the oscillations is presented.
M2 ocean tide parameters and the deceleration of the moon's mean longitude from satellite orbit data
NASA Technical Reports Server (NTRS)
Felsentreger, T. L.; Marsh, J. G.; Williamson, R. G.
1979-01-01
An estimation is made of the principal long-period spherical harmonic parameters in the representation of the M2 ocean tide from the orbital histories of the three satellites 1967-92A, Starlette, and GEOS 3. The data used are primarily the evolution of the orbital inclinations of the satellites in conjunction with the longitude of the ascending node from GEOS 3. Analysis procedure and analytic formulation, as well as ocean tidal parameter estimation and deceleration of the lunar mean longitude are outlined. The credibility of the M2 ocean tide solution is further enhanced by the close accord between the computed value for the deceleration of the lunar mean longitude and other recently reported estimates. It is evident from the results presented that studies of close earth satellite orbits are able to provide important information about the tidal forces acting on the earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.
2015-10-15
Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less
Three-grid accelerator system for an ion propulsion engine
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1994-01-01
An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.
A general reconstruction of the recent expansion history of the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitenti, S.D.P.; Penna-Lima, M., E-mail: dias@iap.fr, E-mail: pennal@apc.in2p3.fr
Distance measurements are currently the most powerful tool to study the expansion history of the universe without specifying its matter content nor any theory of gravitation. Assuming only an isotropic, homogeneous and flat universe, in this work we introduce a model-independent method to reconstruct directly the deceleration function via a piecewise function. Including a penalty factor, we are able to vary continuously the complexity of the deceleration function from a linear case to an arbitrary (n+1)-knots spline interpolation. We carry out a Monte Carlo (MC) analysis to determine the best penalty factor, evaluating the bias-variance trade-off, given the uncertainties ofmore » the SDSS-II and SNLS supernova combined sample (JLA), compilations of baryon acoustic oscillation (BAO) and H(z) data. The bias-variance analysis is done for three fiducial models with different features in the deceleration curve. We perform the MC analysis generating mock catalogs and computing their best-fit. For each fiducial model, we test different reconstructions using, in each case, more than 10{sup 4} catalogs in a total of about 5× 10{sup 5}. This investigation proved to be essential in determining the best reconstruction to study these data. We show that, evaluating a single fiducial model, the conclusions about the bias-variance ratio are misleading. We determine the reconstruction method in which the bias represents at most 10% of the total uncertainty. In all statistical analyses, we fit the coefficients of the deceleration function along with four nuisance parameters of the supernova astrophysical model. For the full sample, we also fit H{sub 0} and the sound horizon r{sub s}(z{sub d}) at the drag redshift. The bias-variance trade-off analysis shows that, apart from the deceleration function, all other estimators are unbiased. Finally, we apply the Ensemble Sampler Markov Chain Monte Carlo (ESMCMC) method to explore the posterior of the deceleration function up to redshift 1.3 (using only JLA) and 2.3 (JLA+BAO+H(z)). We obtain that the standard cosmological model agrees within 3σ level with the reconstructed results in the whole studied redshift intervals. Since our method is calibrated to minimize the bias, the error bars of the reconstructed functions are a good approximation for the total uncertainty.« less
Analysis of ALTAIR 1998 Meteor Radar Data
NASA Technical Reports Server (NTRS)
Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.
2011-01-01
We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections II and III. The main point of this paper is to use these deceleration rate data, together with results from a computer model, to determine values of the quantities mPs 2 (the meteor mass times its material density squared); and further, by combining these m s 2 values with meteor mass estimates for the same set of meteors determined separately from measured radar scattering
Velocity Requirements for Abort From the Boost Trajectory of a Manned Lunar Mission
NASA Technical Reports Server (NTRS)
Slye, Robert E.
1961-01-01
An investigation is made of the abort velocity requirements associated with failure of a propulsion system for a manned lunar mission. Two cases are considered: abort at less than satellite speed, which results in maximum decelerations in the following entry, and abort at greater than satellite speed with immediate return to earth. The velocity requirements associated with the latter problem are found to be substantial (several thousand feet per second) and are found to be even more severe if boost trajectories which lead to burnout at high altitudes or large flight-path angles are used. The velocity requirements associated with abort at less than satellite speed are found to be less severe than those for abort at greater than satellite speed except for nonlifting vehicles. It is found that abort rockets sufficient for abort at greater than satellite speed can be used to reduce maximum decelerations in entries following an abort at lower speeds. This reduction is accomplished by use of the abort rockets to decrease entry angle immediately prior to entry into the atmosphere.
Wheel slip control with torque blending using linear and nonlinear model predictive control
NASA Astrophysics Data System (ADS)
Basrah, M. Sofian; Siampis, Efstathios; Velenis, Efstathios; Cao, Dongpu; Longo, Stefano
2017-11-01
Modern hybrid electric vehicles employ electric braking to recuperate energy during deceleration. However, currently anti-lock braking system (ABS) functionality is delivered solely by friction brakes. Hence regenerative braking is typically deactivated at a low deceleration threshold in case high slip develops at the wheels and ABS activation is required. If blending of friction and electric braking can be achieved during ABS events, there would be no need to impose conservative thresholds for deactivation of regenerative braking and the recuperation capacity of the vehicle would increase significantly. In addition, electric actuators are typically significantly faster responding and would deliver better control of wheel slip than friction brakes. In this work we present a control strategy for ABS on a fully electric vehicle with each wheel independently driven by an electric machine and friction brake independently applied at each wheel. In particular we develop linear and nonlinear model predictive control strategies for optimal performance and enforcement of critical control and state constraints. The capability for real-time implementation of these controllers is assessed and their performance is validated in high fidelity simulation.
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
2016-06-01
In this paper we outline the range of probes and scientific instruments that will be required in order for Icarus to fulfill its scientific mission of exploring a nearby star, its attendant planetary system, and the intervening interstellar medium. Based on this preliminary analysis, we estimate that the minimum total Icarus scientific payload mass (i.e. the mass of probes and instruments which must be decelerated to rest in the target system to enable a meaningful programme of scientific investigation) will be in the region of 100 tonnes. Of this, approximately 10 tonnes would be allocated for cruise-phase science instruments, and about 35 tonnes (i.e. the average of estimated lower and upper limits of 28 and 41 tonnes) would be contributed by the intra-system science payload itself (i.e. the dry mass of the stellar and planetary probes and their instruments). The remaining ~55 tonnes is allocated for the sub-probe intra-system propulsion requirements (crudely estimated from current Solar System missions; detailed modelling of sub-probe propulsion systems will be needed to refine this figure). The overall mass contributed by the science payload to the total that must be decelerated from the interstellar cruise velocity will be considerably more than 100 tonnes, however, as allowance must be made for the payload structural and infrastructural elements required to support, deploy, and communicate with the science probes and instruments. Based on the earlier Daedalus study, we estimate another factor of two to allow for these components. Pending the outcome of more detailed studies, it therefore appears that an overall science-related payload mass of ~200 tonnes will be required. This paper is a submission of the Project Icarus Study Group.
Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa
2013-01-01
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.
Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa
2013-01-01
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308
2013-04-08
Details of 1D compression test Material: Florida coastal sand Mean diameter: 0.37(mm) Vessel: Stainless steel Vessel inner diameter 6.0(mm... turned out that the projectile deceleration behavior observed in the experiment is a consequence of the complicated compression behavior of sand...applicability of the proposed EOS into high-speed projectile impact experiment. It turned out that the projectile deceleration behavior observed in the
NASA Astrophysics Data System (ADS)
Niimi, Rei; Kadono, Toshihiko; Arakawa, Masahiko; Yasui, Minami; Dohi, Koji; Nakamura, Akiko M.; Iida, Yosuke; Tsuchiyama, Akira
2011-02-01
A large number of cometary dust particles were captured with low-density silica aerogels by NASA's Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm -3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ˜4 km s -1 and ˜200 m s -1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 ( v: projectile velocity) during the faster penetration process (˜4 km s -1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (˜200 m s -1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).
Optimization of a Hot Structure Aeroshell and Nose Cap for Mars Atmospheric Entry
NASA Technical Reports Server (NTRS)
Langston, Sarah L.; Lang, Christapher G.; Samareh, Jamshid A.; Daryabeigi, Kamran
2016-01-01
The National Aeronautics and Space Administration (NASA) is preparing to send humans beyond Low Earth Orbit and eventually to the surface of Mars. As part of the Evolvable Mars Campaign, different vehicle configurations are being designed and considered for delivering large payloads to the surface of Mars. Weight and packing volume are driving factors in the vehicle design, and the thermal protection system (TPS) for planetary entry is a technology area which can offer potential weight and volume savings. The feasibility and potential benefits of a ceramic matrix composite hot structure concept for different vehicle configurations are explored in this paper, including the nose cap for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and an aeroshell for a mid lift-to-drag (Mid L/D) concept. The TPS of a planetary entry vehicle is a critical component required to survive the severe aerodynamic heating environment during atmospheric en- try. The current state-of-the-art is an ablative material to protect the vehicle from the heat load. The ablator is bonded to an underlying structure, which carries the mechanical loads associated with entry. The alternative hot structure design utilizes an advanced carbon-carbon material system on the outer surface of the vehicle, which is exposed to the severe heating and acts as a load carrying structure. The preliminary design using the hot structure concept and the ablative concept is determined for the spherical nose cap of the HIAD entry vehicle and the aeroshell of the Mid L/D entry vehicle. The results of the study indicate that the use of hot structures for both vehicle concepts leads to a feasible design with potential weight and volume savings benefits over current state-of-the-art TPS technology that could enable future missions.