DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollifield, M.B.; Park, J.K.; Boyle, W.C.
1995-12-31
Polychlorinated biphenyl (PCB) contaminated sediments were collected from the Fox River, Wisconsin, and analyzed for the possible occurrence of reductive dechlorination. Evidence of in-situ dechlorination was observed. However, the extent of this in-situ dechlorination was less than that typically reported in the literature, suggesting that stimulation of further dechlorination was possible. The use of nutrients and surfactants was explored for stimulating additional dechlorination. The nutrient amendment reported here was found to be inhibitory. Surfactants had varying effect, but non significantly improved dechlorination over control treatments. The most significant factors were observed to be the initial extent of dechlorination and PCBmore » concentration. Additional dechlorination was most likely to be observed in sediments with higher PCB concentration and less initial dechlorination. All sediments converged on a common dechlorination level regardless of the initial state of the sediments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.S.; Sokol, R.C.; Liu, X.
Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments weremore » incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.« less
Anaerobic bacteria that dechlorinate perchloroethene.
Fathepure, B Z; Nengu, J P; Boyd, S A
1987-01-01
In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium. PMID:3426224
El-Sayed, Wael S
2016-08-26
Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.
Boyle, Alfred W.; Blake, Cheryl K.; Price, W. Allen; May, Harold D.
1993-01-01
We have employed a method of enrichment that allows us to significantly increase the rate of reductive polychlorinated biphenyl (PCB) dechlorination. This method shortens the time required to investigate the effects that culture conditions have on dechlorination and provides an estimate of the potential activity of the PCB-dechlorinating anaerobes. The periodic supplementation of sterile sediment and PCB produced an enhanced, measurable, and sustained rate of dechlorination. We observed volumetric rates of the dechlorination of 2,3,6-trichlorobiphenyl (2,3,6-CB) to 2,6-dichlorobiphenyl (2,6-CB) of more than 300 μmol liter-1 day-1 when the cultures were supplemented daily. A calculation of this activity that is based on an estimate of the number of dechlorinating anaerobes present indicates that 1.13 pmol of 2,3,6-CB was dechlorinated to 2,6-CB day-1 bacterial cell-1. This rate is similar to that of the reductive dechlorination of 3-chlorobenzoate by Desulfomonile tiedjei. Methanogenesis declined from 585.3 to 125.9 μmol of CH4 liter-1 day-1, while dechlorination increased from 8.2 to 346.0 μmol of 2,3,6-CB dechlorinated to 2,6-CB liter-1 day-1. PMID:16349045
Wu, Qingzhong; Sowers, Kevin R.; May, Harold D.
2000-01-01
Estuarine sediment from Charleston Harbor, South Carolina, was used as inoculum for the development of an anaerobic enrichment culture that specifically dechlorinates doubly flanked chlorines (i.e., chlorines bound to carbon that are flanked on both sides by other chlorine-carbon bonds) of polychlorinated biphenyls (PCBs). Dechlorination was restricted to the para chlorine in cultures enriched with 10 mM fumarate, 50 ppm (173 μM) 2,3,4,5-tetrachlorobiphenyl, and no sediment. Initially the rate of dechlorination decreased upon the removal of sediment from the medium. However, the dechlorinating activity was sustainable, and following sequential transfer in a defined, sediment-free estuarine medium, the activity increased to levels near that observed with sediment. The culture was nonmethanogenic, and molybdate, ampicillin, chloramphenicol, neomycin, and streptomycin inhibited dechlorination activity; bromoethanesulfonate and vancomycin did not. Addition of 17 PCB congeners indicated that the culture specifically removes double flanked chlorines, preferably in the para position, and does not attack ortho chlorines. This is the first microbial consortium shown to para or meta dechlorinate a PCB congener in a defined sediment-free medium. It is the second PCB-dechlorinating enrichment culture to be sustained in the absence of sediment, but its dechlorinating capabilities are entirely different from those of the other sediment-free PCB-dechlorinating culture, an ortho-dechlorinating consortium, and do not match any previously published Aroclor-dechlorinating patterns. PMID:10618202
Pulliam Holoman, Tracey R.; Elberson, Margaret A.; Cutter, Leah A.; May, Harold D.; Sowers, Kevin R.
1998-01-01
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species. PMID:9726883
Effects of biochar on dechlorination of hexachlorobenzene and the bacterial community in paddy soil.
Song, Yang; Bian, Yongrong; Wang, Fang; Herzberger, Anna; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-11-01
Anaerobic reductive dechlorination is an important degradation pathway for chlorinated organic contaminants in paddy soil. This study investigated the effects of amending paddy soil with wheat straw biochar on both the dechlorination of hexachlorobenzene (HCB), a typical highly chlorinated contaminant, and on the structure of soil bacteria communities. Soil amendment of 0.1% biochar did not significantly affect the dechlorination of HCB in the soil. However, biochar amendment at higher application levels (5%) stimulated the dechlorination of HCB in the first month of anaerobic incubation and inhibited the dechlorination of HCB after that period. The stimulation effect may be ascribed to the graphite carbon and carbon-centered persistent radicals, which are redox active, in biochar. The inhibiting effect could be partly ascribed to the reduced bioavailability of HCB in biochar-amended soils. High-throughput sequencing revealed that the amendment of biochar changed the soil bacterial community structure but not the bacterial abundances and diversities. The relative abundance of Dehalococcoidaceae in the tested soils showed a significant relationship with the dechlorination percentages of HCB, indicating that Dehalococcoidaceae may be the main HCB-dechlorinating bacteria in the studied paddy soil. The results indicated that low application levels of biochar did not affect the dechlorination of HCB in the paddy soil, while high application levels of biochar mainly inhibited the dechlorination of HCB due to the reduced bioavailability of HCB and the reduced abundances of certain dechlorinating bacteria in the biochar-amended paddy soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
MODELING THE ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE IN A GRANULAR GRAPHITE-PACKED REACTOR
A comprehensive reactor model was developed for the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite cathode. The reactor model describes the dynamic processes of TCE dechlorination and adsorption, and the formation and dechlorination of all the major...
The reductive dechlorination of chlorophenols (CPs) in sediment slurries (10% solids) adapted to dechlorinate mono- and di-CPs (DCP) was investigated to define the regiospecificity of the dechlorination reaction. nadapted sediment slurries amended with various ortho-substituted C...
Liu, C Y; Jiang, X; Yang, X L; Song, Y
2010-01-15
Reductive dechlorination is a crucial pathway for HCB degradation, the applications of organic materials and nitrogen can alter microbial activity and redox potential of soils, thus probably influence HCB dechlorination. To evaluate hexachlorobenzene (HCB) dechlorination as affected by organic fertilizer (OF) and urea applications in planted paddy soils, a pot experiment was conducted in two types of soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). After 18 weeks of experiment, HCB residues decreased by 28.2-37.5% of the initial amounts in Ac, and 42.1-70.9% in An. The amounts of HCB metabolites showed that dechlorination rates in An were higher than in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. Both in Ac and An, the additions of 1% and 2% OF had negative effect on HCB dechlorination, which was probably because excessive nitrogen in OF decreased degraders' activity and the degradation of organic carbon in OF accepted electrons. The application of 0.03% urea could enhance HCB dechlorination rates slightly, while 0.06% urea accelerated HCB dechlorination significantly both in Ac and An. It could be assumed that urea served as an electron donor and stimulated degraders to dechlorinate HCB. In addition, the methanogenic bacteria were involved in dechlorination process, and reductive dechlorination in planted paddy soil might be impeded for the aerenchyma and O(2) supply into the rhizosphere. Results indicated that soil types, rice root system, methanogenic bacteria, OF and urea applications all had great effects on dechlorination process. Copyright 2009 Elsevier B.V. All rights reserved.
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...
Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, F.O.; Rogers, J.E.
1990-02-01
Pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid were transformed by microbial reductive dechlorination in freshwater, anaerobic sediments from such diverse locations as Georgia, Florida, New York and the Soviet Union. The reductive dechlorination process involves removal of a chlorine and replacement with a hydrogen. Sediments previously adapted to dechlorinate dichlorophenols were found to mediate dechlorination at much faster rates than unadapted sediments. Pentachlorophenol dechlorination in dichlorophenol-adapted sediments generated tetra-, tri-, di-, and monochlorophenol and phenol. Concentrations of pentachlorophenol, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid up to 100 ppm were dechlorinated by adapted sediments. Reductive dechlorination of PCP, 2,4-D, and 2,4,5-T was regionmore » specific for chlorine removal as determined by the dichlorophenol isomer used to adapt the sediment. Sediment adapted to 2,4-dichlorophenol preferentially removed chlorines from the ortho position; whereas sediment adapted to 3,4-dichlorophenol preferentially removed chlorines from the para position.« less
Duan, Tran Hoa; Adrian, Lorenz
2013-07-01
Bacterial cultures were enriched from sediments in Germany and Vietnam reductively dechlorinating hexachlorobenzene and the highly persistent 1,3,5-trichlorobenzene to monochlorobenzene. The main products of the reductive dechlorination of hexachlorobenzene were monochlorobenzene and dichlorobenzenes (1,2-; 1,3- and 1,4-dichlorobenzene) while no trichlorobenzenes accumulated. For the reductive dechlorination of 1,3,5-trichlorobenzene with the mixed culture from Vietnam sediment, 1,3- dichlorobenzene and monochlorobenzene were produced as intermediate and final end-product, respectively. The pattern of dechlorination did not change when the cultures were repeatedly exposed to oxygen over seven transfers demonstrating oxygen tolerance of the dechlorinating bacteria. However, reductive dechlorination of 1,3,5-trichlorobenzene was inhibited by vancomycin at a concentration of 5 mg L(-1). Vancomycin delayed reductive dechlorination of hexachlorobenzene in mixed cultures by about 6 months. When repeatedly applied, vancomycin completely abolished the ability of the mixed culture to transform hexachlorobenzene. Sensitivity to vancomycin and insensitivity to brief exposure of oxygen indicates that the dechlorinating bacteria in the mixed cultures did not belong to the genus Dehalococcoides.
Use of bioaugmentation to stimulate complete reductive dechlorination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkness, M.R.; Bracco, A.A.; Brennan, M.J. Jr.
1999-04-01
Soil columns were constructed in support of the Remediation Technologies Development Forum accelerated biodegradation study at Dover Air Force Base to evaluate the impact of amendments on the anaerobic reductive dechlorination of trichloroethene (TCE) in Dover soil. Dechlorination of TCE to cis-dichloroethene (c-DCE) was observed in the columns using lactate, lactate and methanol, butyrate, glutamate and 1,2-propanediol, or toluene as electron donors, in combination with vitamins and other supplemental nutrients. However, the c-DCE formed was not further dechlorinated using any of these amendments. Subsequent inoculation of two columns with a competent, non-native TCE-dechlorinating culture resulted in the dechlorination of TCEmore » to ethene after 30 days. Once the culture was established, dechlorination of TCE to ethene was complete in the first several centimeters of the columns at TCE influent concentrations of 4 mg/L. The culture was also able to dechlorinate TCE to ethene when TCE influent concentrations were increased to 170 mg/L. These results suggest that a critical bacterial population was missing in these soils and that bioaugmentation is an appropriate remedial strategy under such circumstances.« less
Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa
2016-04-05
The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.
Nature's Helpers: Using Microorganisms to Remove Trichloroethene (TCE) from Groundwater
NASA Astrophysics Data System (ADS)
Delgado, A. G.; Krajmlanik-Brown, R.; Fajardo-Williams, D.; Halloum, I.
2015-12-01
Organic chlorinated solvents, such as perchloroethene (PCE) and trichloroethene (TCE), are toxic pollutants threatening ground water quality worldwide and present at many superfund sites. Bioremediation using microorganisms is a promising, green, efficient, and sustainable approach to remove PCE and TCE contamination from soil and groundwater. Under anaerobic conditions, specialized microorganisms (dechlorinators) can reduce these chlorinated ethenes to ethene, an innocuous product, and gain energy for growth by a process known as reductive dechlorination. Dechlorinators are most often present in the environment and in dechlorinating cultures alongside other microbes such as fermenters, methanogens, and acetogens. Fermenters, methanogens, and acetogens syntrophically provide essential nutrients and growth factors to dechlorinators, most specifically to the only members able to reduce TCE all the way to ethene: Dehalococcoides; unfortunately, they also compete with dechlorinators for electron donors. My laboratory devises reductive chlorination platforms to study competition and syntrophy among Dehalococcoides, and other microbes to optimize remediation reactions and transport in the subsurface. We look at competing processes present as part of the natural soil chemistry and microbiology and address these challenges through a combination of enrichment techniques, molecular microbial ecology (deep sequencing), water chemistry, and electron balances. We have applied knowledge gathered in my laboratory to: 1) enrich microbial dechlorinating cultures capable of some of the fastest rates of TCE to ethene dechlorination ever reported, and 2) successfully design and operate three different continuous dechlorinating reactor types. We attribute our successful reactor operations to our multidisciplinary approach which links microbiology and engineering. Our reactors produce robust dechlorinating cultures used for in-situ bioaugmentation of PCE and TCE at contaminated sites. The results gathered to date provide a fundamental understanding of the role of homoacetogens and methanogens in electron and carbon flow in dechlorinating consortia.
Freitas, Juliana G; Rivett, Michael O; Roche, Rachel S; Durrant Neé Cleverly, Megan; Walker, Caroline; Tellam, John H
2015-02-01
The typically elevated natural attenuation capacity of riverbed-hyporheic zones is expected to decrease chlorinated hydrocarbon (CHC) groundwater plume discharges to river receptors through dechlorination reactions. The aim of this study was to assess physico-chemical processes controlling field-scale variation in riverbed-hyporheic zone dechlorination of a TCE groundwater plume discharge to an urban river reach. The 50-m long pool-riffle-glide reach of the River Tame in Birmingham (UK) studied is a heterogeneous high energy river environment. The shallow riverbed was instrumented with a detailed network of multilevel samplers. Freeze coring revealed a geologically heterogeneous and poorly sorted riverbed. A chlorine number reduction approach provided a quantitative indicator of CHC dechlorination. Three sub-reaches of contrasting behaviour were identified. Greatest dechlorination occurred in the riffle sub-reach that was characterised by hyporheic zone flows, moderate sulphate concentrations and pH, anaerobic conditions, low iron, but elevated manganese concentrations with evidence of sulphate reduction. Transient hyporheic zone flows allowing input to varying riverbed depths of organic matter are anticipated to be a key control. The glide sub-reach displayed negligible dechlorination attributed to the predominant groundwater baseflow discharge condition, absence of hyporheic zone, transition to more oxic conditions and elevated sulphate concentrations expected to locally inhibit dechlorination. The tail-of-pool-riffle sub-reach exhibited patchy dechlorination that was attributed to sub-reach complexities including significant flow bypass of a low permeability, high organic matter, silty unit of high dechlorination potential. A process-based conceptual model of reach-scale dechlorination variability was developed. Key findings of practitioner relevance were: riverbed-hyporheic zone CHC dechlorination may provide only a partial, somewhat patchy barrier to CHC groundwater plume discharges to a surface water receptor; and, monitoring requirements to assess the variability in CHC attenuation within a reach are expected to be onerous. Further research on transient hyporheic zone dechlorination is recommended. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.
Jia, Hanzhong; Wang, Chuanyi
2015-12-30
Smectite clay was employed as templated matrix to prepare subnanoscale Pd(0)/Fe(0) particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd(0)/Fe(0) subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.
Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B
2000-07-01
A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.
Yager, R.M.; Bilotta, S.E.; Mann, C.L.; Madsen, E.L.
1997-01-01
A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.
DECHLORINATION OF TRICHLOROETHYLENE USING ELECTROCHEMICAL METHODS
Electrochemical degradation (ECD) is used to decontaminate organic and inorganic contaminants through oxidative or reductive processes. The ECD of Trichloroethylene (TCE) dechlorinates TCE through electric reduction. TCE dechlorination presented in the literature utilized electro...
Fathepure, B Z; Tiedje, J M; Boyd, S A
1988-01-01
Hexachlorobenzene was dechlorinated to tri- and dichlorobenzenes in anaerobic sewage sludge. The complete biotransformation of 190 microM hexachlorobenzene (approximately 50 ppm) occurred within 3 weeks. The calculated rate of hexachlorobenzene dechlorination was 13.6 mumol liter-1 day-1. Hexachlorobenzene was dechlorinated via two routes, both involving the sequential removal of chlorine from the aromatic ring. The major route was hexachlorobenzene----pentachlorobenzene----1,2,3,5-tetrachlorobenzene--- -1,3,5- trichlorobenzene. Greater than 90% of the added hexachlorobenzene was recovered as 1,3,5-trichlorobenzene, and there was no evidence for further dechlorination of 1,3,5-trichlorobenzene. The minor route was hexachlorobenzene----pentachlorobenzene----1,2,4,5-tetrachlorobenzene--- -1,2,4- trichlorobenzene----dichlorobenzenes. These results extend reductive dechlorination to poorly water soluble aromatic hydrocarbons which could potentially include other important environmental pollutants like polychlorinated biphenyls. PMID:3355129
Bryant, F O; Hale, D D; Rogers, J E
1991-01-01
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry. PMID:1768102
Xu, Fuyuan; Deng, Shubo; Xu, Jie; Zhang, Wang; Wu, Min; Wang, Bin; Huang, Jun; Yu, Gang
2012-04-17
A novel Ni-Fe bimetal with high dechlorination activity for 4-chlorophenol (4-CP) was prepared by ball milling (BM) in this study. Increasing Ni content and milling time greatly enhanced the dechlorination activity, which was mainly attributed to the homogeneous distribution of Ni nanoparticles (50-100 nm) in bulk Fe visualized by scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) with image mapping. In comparison with the Ni-Fe bimetal prepared by a chemical solution deposition (CSD) process, the ball milled Ni-Fe bimetal possessed high dechlorination activity and stability before being used up. Dechlorination kinetics indicated that the dechlorination rates of 4-CP increased with increasing Ni-Fe dose but decreased with increasing solution pH. Solution pH had a significant effect on the dechlorination of 4-CP and the passivation of the Ni-Fe bimetal. The enhanced pH during the dechlorination process significantly accelerated the formation of passivating film on the bimetallic surface. The Ni-Fe bimetal at the dose of 60 g/L was reused 10 times without losing dechlorination activity for 4-CP at initial pH less than 6.0, but the gradual passivation was observed at initial pH above 7.0.
ELECTROCHEMICAL DECHLORINATION OF 2-CHLOROBIPHENYL IN AQUEOUS SOLUTION
This paper presents electrochemical dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous environment using palladium modified granular graphite electrodes. 2-Cl BP, the PCB congener that requires the highest reduction potential, was effectively dechlorinated in electrochemical...
Kuritz, T; Bocanera, L V; Rivera, N S
1997-01-01
Nitrate is essential for lindane dechlorination by the cyanobacteria Anabaena sp. strain PCC7120 and Nostoc ellipsosporum, as it is for dechlorination of other organic compounds by heterotrophic microorganisms. Based on analyses of mutants and effects of environmental factors, we conclude that lindane dechlorination by Anabaena sp. requires a functional nir operon that encodes the enzymes for nitrate utilization. PMID:9150239
NASA Astrophysics Data System (ADS)
Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei
Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.
Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.
Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min
2012-12-01
In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Electrolytic dechlorination using a granular-graphite packed cathode is an alternative method for the remediation of chlorinated organic compounds. Its effectiveness under various conditions needs experimental investigation. Dechlorination of trichloroethylene (TCE) was conducted...
Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix
NASA Astrophysics Data System (ADS)
O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.
2015-12-01
Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will help provide insights into the degradation kinetics that can be expected in the field and help with field scale implementation of nZVI.
Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K
2018-04-20
The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.
Reductive dechlorination of chlorobenzenes in surfactant-amended sediment slurries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoof, P.L.; Jafvert, C.T.
1996-11-01
Microbial anaerobic dechlorination of hexachlorobenzene (HCB) was examined in sediment slurries amended with two classes of nonionic surfactant, polyoxyethylene (POE) sorbitan fatty acid esters (Tweens) and POE alcohols (Brijs). The rationale for surfactant addition was to increase the bioavailability of highly sorbed organic pollutants to degrading microorganisms by enhancing their solubility. The solubility of HCB was initially enhanced via micellar partitioning; however, primary degradation of most surfactants occurred within 10 d. Dechlorination activity was significantly reduced at POE alcohol concentrations above the critical micelle concentration (cmc), with or without the occurrence of surfactant degradation. Tween 80 decreased HCB dechlorination atmore » concentrations significantly above the cmc. At concentrations closer to the cmc, Tween 80 increased dechlorination rate constants four- to fivefold in acclimated slurries. Additions of Tween 80 at or below the cmc stimulated dechlorination activity in unacclimated slurries that exhibited very little activity in unamended controls. An average of 89% of HCB was dechlorinated after 90 d, compared to 20% in unamended sediments. No effect was observed for POE alcohols at these sub-cmc levels. The lack of a stimulated response for the POE alcohols suggests that Tween 80 may not be acting simply as a source of carbon or energy.« less
Palladium-assisted electrocatalytic dechlorination of 2-chlorobiphenyl (2-Cl BP) in aqueous solutions was conducted in a membrane-separated electrochemical reactor with granular-graphite packed electrodes. The dechlorination took place at a granular-graphite cathode while Pd was ...
The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...
The purpose of this research is to investigate the formation of chloromethane during TCE dechlorination in a mixed electrochemical reactor using graphite electrodes. Chloromethane was the major chlorinated organic compound detected in previous dechlorination experiments. In order...
Conflicting accounts occur on the reactivity of substituted chlorines and the ensuing dechlorination pathway of PCBs undergoing catalytic hydrodechlorination (HDCl). In order to understand these relationships, intermediates and dechlorination pathways of carefully selected 17 co...
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1997-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1998-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds.
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1998-06-02
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1997-03-18
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from effluents containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. The present invention also provides kits, devices, and other instruments that use the above-mentioned palladized iron bimetallic system for the dechlorination of chlorinated organic compounds. 10 figs.
Krzmarzick, Mark J.; Miller, Hanna R.; Yan, Tao
2014-01-01
Although the abundance and diversity of natural organochlorines are well established, much is still unknown about the degradation of these compounds. Triplicate microcosms were used to determine whether, and which, bacterial communities could dechlorinate two chlorinated xanthones (2,7-dichloroxanthone and 5,7-dichloro-1,3-dihydroxylxanthone), analogues of a diverse class of natural organochlorines. According to quantitative-PCR (qPCR) results, several known dechlorinating genera were either not present or not enriched during dechlorination of the xanthones. Denaturing gradient gel electrophoresis, however, indicated that several Firmicutes were enriched in the dechlorinating cultures compared to triplicate controls amended with nonchlorinated xanthones. One such group, herein referred to as the Gopher group, was further studied with a novel qPCR method that confirmed enrichment of Gopher group 16S rRNA genes in the dechlorinating cultures. The enrichment of the Gopher group was again tested with two new sets of triplicate microcosms. Enrichment was observed during chlorinated xanthone dechlorination in one set of these triplicate microcosms. In the other set, two microcosms showed clear enrichment while a third did not. The Gopher group is a previously unidentified group of Firmicutes, distinct from but related to the Dehalobacter and Desulfitobacterium genera; this group also contains clones from at least four unique cultures capable of dechlorinating anthropogenic organochlorines that have been previously described in the literature. This study suggests that natural chlorinated xanthones may be effective biostimulants to enhance the remediation of pollutants and highlights the idea that novel genera of dechlorinators likely exist and may be active in bioremediation and the natural cycling of chlorine. PMID:24296507
Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions
Yang, Yi; Cápiro, Natalie L.; Marcet, Tyler F.; ...
2017-06-30
Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulf urospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5more » and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulf urospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCEdechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulf urospirillum multivorans. Lastly, these findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulf urospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.« less
Organohalide Respiration with Chlorinated Ethenes under Low pH Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Cápiro, Natalie L.; Marcet, Tyler F.
Bioremediation at chlorinated solvent sites often leads to groundwater acidification due to electron donor fermentation and enhanced dechlorination activity. The microbial reductive dechlorination process is robust at circumneutral pH, but activity declines at groundwater pH values below 6.0. Consistent with this observation, the activity of tetrachloroethene (PCE) dechlorinating cultures declined at pH 6.0 and was not sustained in pH 5.5 medium, with one notable exception. Sulf urospirillum multivorans dechlorinated PCE to cis-1,2-dichloroethene (cDCE) in pH 5.5 medium and maintained this activity upon repeated transfers. Microcosms established with soil and aquifer materials from five distinct locations dechlorinated PCE-to-ethene at pH 5.5more » and pH 7.2. Dechlorination to ethene was maintained following repeated transfers at pH 7.2, but no ethene was produced at pH 5.5, and only the transfer cultures derived from the Axton Cross Superfund (ACS) microcosms sustained PCE dechlorination to cDCE as a final product. 16S rRNA gene amplicon sequencing of pH 7.2 and pH 5.5 ACS enrichments revealed distinct microbial communities, with the dominant dechlorinator being Dehalococcoides in pH 7.2 and Sulf urospirillum in pH 5.5 cultures. PCE-to-trichloroethene- (TCE-) and PCE-to-cDCEdechlorinating isolates obtained from the ACS pH 5.5 enrichment shared 98.6%, and 98.5% 16S rRNA gene sequence similarities to Sulf urospirillum multivorans. Lastly, these findings imply that sustained Dehalococcoides activity cannot be expected in low pH (i.e., ≤ 5.5) groundwater, and organohalide-respiring Sulf urospirillum spp. are key contributors to in situ PCE reductive dechlorination under low pH conditions.« less
Dam, Hang T; Häggblom, Max M
2017-02-01
Polychlorinated dibenzo-p-dioxins (PCDDs) are among the most persistent organic pollutants. Although the total input of PCDDs into the environment has decreased substantially over the past four decades, their input via non-point sources is still increasing, especially in estuarine metropolitan areas. Here we report on the microbially mediated reductive dechlorination of PCDDs in anaerobic enrichment cultures established from sediments collected from five locations along the Hackensack River, NJ and investigate the impacts of sediment physicochemical characteristics on dechlorination activity. Dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD) and abundance of Dehalococcoides spp. negatively correlated with salinity and sulfate concentration in sediments used to establish the cultures. 1,2,3,4-TeCDD was dechlorinated to a lesser extent in cultures established from sediments from the tidally influenced estuarine mouth of the river. In cultures established from low salinity sediments, 1,2,3,4-TeCDD was reductively dechlorinated with the accumulation of 2-monochlorodibenzo-p-dioxin as the major product. Sulfate concentrations above 2 mM inhibited 1,2,3,4-TecDD dechlorination activity. Consecutive lateral- and peri- dechlorination took place in enrichment cultures with a minimal accumulation of 2,3-dichlorodibenzo-p-dioxin in active cultures. A Dehalococcoides spp. community was enriched and accounted for up to 64% of Chloroflexi detected in these sediment cultures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rodenburg, Lisa A; Krumins, Valdis; Curran, Joanna Crowe
2015-06-16
The Portland Harbor (Oregon, USA) has been declared a "Superfund" site because it is impacted by a variety of contaminants, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs). Using data collected in the remedial investigation, concentrations of PCBs and PCDD/Fs in sediment and water were examined using positive matrix factorization to look for evidence that PCBs and PCDD/Fs are dechlorinated by anaerobic bacteria. This process has long been known to occur in sediments. Recently, it has been recognized that PCB and PCDD/F dechlorination may also occur in other anaerobic environments, such as in landfills, sewers, and groundwater. The results indicate that a factor related to the dechlorination of PCBs and PCDD/Fs was present in the water but not in the sediment. Spatial patterns in dechlorination products suggest that they come primarily from groundwater. Dechlorination products comprise 22% of the PCBs in the water. The Portland Harbor therefore represents the third major US watershed in which PCBs appear to undergo dechlorination in an environment other than sediment, suggesting that the microbial dechlorination of PCBs and PCDD/Fs is more common than previously assumed. In addition, the Portland Harbor is impacted by PCBs generated inadvertently during the production of pigments, such as PCB 11, which alone exceeded the 64 pg/L federal water quality standard for the sum of PCBs in two of 120 whole water samples.
Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity ...
Certain strains of Dehalococcodies bacteria can dechlorinate chlorinated ethylenes to harmless products. This study was conducted to determine if there is a valid association between the amount of DNA of Dehalococcodies sp. in ground water and useful rates of dechlorination in fi...
ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES
Electrochemical dechlorination of TCE ws conducted in a glass column using granular graphite as electrodes. A constant voltage of 15 volt was applied resulting in 60-62 mA of current. Approximately 4-6% of the TCE was dechlorinated. Among the reduced TCE, more than 95% was comple...
ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODES
Electrochemical dechlorination of TCE was conducted in a glass column using granular graphite as electrodes. A constant voltage of 15 volt was applied resulting in 60-62 mA of current. Approximately 4-6% of the TCE was dechlorinated. Among the reduced TCE, more than 95% was compl...
De, Supriyo; Perkins, Michael; Dutta, Sisir K
2006-07-31
Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity.
Protistan Predation Affects Trichloroethene Biodegradation in a Bedrock Aquifer▿
Cunningham, Joseph J.; Kinner, Nancy E.; Lewis, Maureen
2009-01-01
Despite extensive research on the bottom-up force of resource availability (e.g., electron donors and acceptors), slow biodegradation rates and stalling at cis-dichloroethene (cDCE) and vinyl chloride continue to be observed in aquifers contaminated with trichloroethene (TCE). The objective of this research was to gauge the impact of the top-down force of protistan predation on TCE biodegradation in laboratory microcosms. When indigenous bacteria from an electron donor-limited TCE-contaminated bedrock aquifer were present, the indigenous protists inhibited reductive dechlorination altogether. The presence of protists during organic carbon-amended conditions caused the bacteria to elongate (length:width, ≥10:1), but reductive dechlorination was still inhibited. When a commercially available dechlorinating bacterial culture and an organic carbon amendment were added in he presence of protists, the elongated bacteria predominated and reductive dechlorination stalled at cDCE. When protists were removed under organic carbon-amended conditions, reductive dechlorination stalled at cDCE, whereas in the presence organic carbon and bacterial amendments, the total chlorinated ethene concentration decreased, indicating TCE was converted to ethene and/or CO2. The data suggested that indigenous protists grazed dechlorinators to extremely low levels, inhibiting dechlorination altogether. Hence, in situ bioremediation/bioaugmentation may not be successful in mineralizing TCE unless the top-down force of protistan predation is inhibited. PMID:19820148
Phenrat, Tanapon; Schoenfelder, Daniel; Kirschling, Teresa L; Tilton, Robert D; Lowry, Gregory V
2018-03-01
For in situ groundwater remediation, polyelectrolyte-modified nanoscale zerovalent iron particles (NZVIs) have to be delivered into the subsurface, where they degrade pollutants such as trichloroethylene (TCE). The effect of groundwater organic and ionic solutes on TCE dechlorination using polyelectrolyte-modified NZVIs is unexplored, but is required for an effective remediation design. This study evaluates the TCE dechlorination rate and reaction by-products using poly(aspartate) (PAP)-modified and bare NZVIs in groundwater samples from actual TCE-contaminated sites in Florida, South Carolina, and Michigan. The effects of groundwater solutes on short- and intermediate-term dechlorination rates were evaluated. An adsorbed PAP layer on the NZVIs appeared to limit the adverse effect of groundwater solutes on the TCE dechlorination rate in the first TCE dechlorination cycle (short-term effect). Presumably, the pre-adsorption of PAP "trains" and the Donnan potential in the adsorbed PAP layer prevented groundwater solutes from further blocking NZVI reactive sites, which appeared to substantially decrease the TCE dechlorination rate of bare NZVIs. In the second and third TCE dechlorination cycles (intermediate-term effect), TCE dechlorination rates using PAP-modified NZVIs increased substantially (~100 and 200%, respectively, from the rate of the first spike). The desorption of PAP from the surface of NZVIs over time due to salt-induced desorption is hypothesized to restore NZVI reactivity with TCE. This study suggests that NZVI surface modification with small, charged macromolecules, such as PAP, helps to restore NZVI reactivity due to gradual PAP desorption in groundwater.
Complete dechlorination of DDE/DDD using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2007-04-01
Kinetic studies on the dechlorination of 1,1-dichloro-2,2 bis (4,-chlorophenyl) ethane (DDD) and 1,1,dichloro-2,2 bis (4,-chlorophenyl) ethylene (DDE) in 0.05% biosurfactant revealed that the reaction follows second-order kinetics. The rate of reaction was dependent on the presence of acid, initial concentrations of the target compound, and zerovalent magnesium/tetravalent palladium. Gas chromatography-mass spectrometry analyses of DDE dechlorination revealed the formation of a completely dechlorinated hydrocarbon skeleton, with diphenylethane as the end product, thereby implying the removal of all four chlorine atoms of DDE. In the case of DDD, we identified two partially dechlorinated intermediates [namely, 1,1-dichloro-2, 2 bis (phenyl) ethane and 1, chloro-2, 2 bis (phenyl) ethane] and diphenylethane as the end product. On the basis of products formed from DDD dehalogenation, we propose the removal of aryl chlorine atoms as a first step. Our investigation reveals that biosurfactant may be an attractive solubilizing agent for DDT and its residues. The magnesium/palladium system is a promising option because of its high reactivity and ability to achieve complete dechlorination of DDE and DDD.
NASA Astrophysics Data System (ADS)
Schaefer, Charles E.; Ho, Paul; Gurr, Christopher; Berns, Erin; Werth, Charles
2017-11-01
Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55 °C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0 × 10- 5 day- 1 at 20 °C, to 32 × 10- 5 day- 1 at 55 °C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91 kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.
Puigserver, Diana; Herrero, Jofre; Torres, Mònica; Cortés, Amparo; Nijenhuis, Ivonne; Kuntze, Kevin; Parker, Beth L; Carmona, José M
2016-09-01
In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).
Jones, Cynthia G; Silverman, Joseph; Al-Sheikhly, Mohamad; Neta, Pedatsur; Poster, Dianne L
2003-12-15
Used electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.5 mmol L(-1) Cl) is completely dechlorinated by irradiation with 600 kGy after the addition of 10% triethylamine (TEA). Transformer oil containing >800,000 microg g(-1) PCB (17.7 mol L(-1) Cl) requires an additional solvent to prevent solidification. When this oil is diluted with 2-propanol (2-PrOH) and TEA (v/v/v, 1/79/20), complete dechlorination is achieved with a dose of 2500 kGy. Ultraviolet photolysis of the same oil/2-PrOH/TEA solutions led to 90% dechlorination after exposure for 120 h in our experimental setup. Such yields were obtained by radiolysis with a dose of 2000 kGy (300 h in our Gammacell). Replacing TEA with KOH in 2-PrOH solutions greatly increases the yield of dechlorination in both the radiolytic and the photolytic experiments, demonstrating that a chain reaction plays a role in both of these treatment methods and suggesting that both methods deserve further consideration for large-scale application.
Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria
Loffler, F. E.; Champine, J. E.; Ritalahti, K. M.; Sprague, S. J.; Tiedje, J. M.
1997-01-01
The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria. PMID:16535654
Hohnstock-Ashe, A. M.; Plummer, S.M.; Yager, R.M.; Baveye, P.; Madsen, E.L.
2001-01-01
A recent article presented geochemical and microbial evidence establishing metabolic adaptation to and in-situ reductive dechlorination of trichloroethene (TCE) in a fractured dolomite aquifer. This study was designed to further explore site conditions and microbial populations and to explain previously reported enhancement of reductive dechlorination by the addition of pulverized dolomite to laboratory microcosms. A survey of groundwater geochemical parameters (chlorinated ethenes, ethene, H2, CH4, DIC, DOC, and ??13C values for CH4, DIC, and DOC) indicated that in situ reductive dechlorination was ongoing and that an unidentified pool of organic carbon was contributing, likely via microbial respiration, to the large and relatively light onsite DIC pool. Petroleum hydrocarbons associated with the dolomite rock were analyzed by GC/MS and featured a characteristically low ??13C value. Straight chain hydrocarbons were extracted from the dolomite previously found to stimulate reductive dechlorination; these were particularly depleted in hexadecane (HD). Thus, we hypothesized that HD and related hydrocarbons might be anaerobically respired and serve both as the source of onsite DIC and support reductive dechlorination of TCE. Microcosms amended with pulverized dolomite demonstrated reductive dechlorination, whereas a combusted dolomite amendment did not. HD-amended microcosms were also inactive. Therefore, the stimulatory factor in the pulverized dolomite was heat labile, but that component was not HD. Amplified Ribosomal DNA Restriction Analysis (ARDRA) of the microbial populations in well waters indicated that a relatively low diversity, sulfur-transforming community outside the plume was shifted toward a high diversity community including Dehalococcoides ethenogenes-type microorganisms inside the zone of contamination. These observations illustrate biogeochemical intricacies of in situ reductive dechlorination reactions.
Dechlorination of PCBs in the rhizosphere of Switchgrass and Poplar
Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei
2014-01-01
Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. PMID:23603468
Dechlorination of DDT, DDD and DDE in soil (slurry) phase using magnesium/palladium system.
Gautam, Sumit Kumar; Suresh, Sumathi
2006-12-01
Mg0/Pd4+ was able to dechlorinate >99% of extractable DDT (initial concentration of 10 mg DDT kg(-1) of soil) and >90% of extractable DDT (initial concentration of 50 mg DDT kg(-1) of soil) in soil slurry. Mg0/Pd4+ was also found to be effective in dechlorinating of 50 mg kg(-1) DDD and DDE, in soil aged for varying time periods. GC-MS analyses revealed the formation of 1,1-diphenylethane as an end product from DDT, DDE and DDD. To the best of our knowledge this is the first report describing the application Mg0/Pd4+ system for remediation of DDT, DDD and DDE contaminated soil. We conclude that reductive dechlorination reaction catalyzed by Mg0/Pd4+ may be a promising system to remediate soil contaminated with DDT and its dechlorinated products such as DDD and DDE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klasson, K.T.; Barton, J.W.; Evans, B.S.
1996-05-01
In laboratory experiments, unagitated soil slurry bioreactors inoculated with microorganisms extracted from polychlorinated biphenyl-contaminated (PCBs) sediments from the Hudson River were used to anaerobically dechlorinate PCBs. The onset of dechlorination activity was accelerated by the addition of certain organic acids (pyruvate and maleate) and single congeners (2,3,6-trichlorobiphenyl). Dechlorination was observed under several working conditions after 19 weeks of incubation with PCB-contaminated soil and nutrient solution. Best results showed a drop in average chlorine content from 4.3 to 3.6 chlorines per biphenyl due to a loss of m-chlorines. Soil used for these experiments was obtained from a PCB-contaminated (weathered Aroclor 1248)more » site at an electric power substation. Dechlorination was observed with no sediment particles or other matrix being added. 17 refs., 6 figs., 1 tab.« less
Dechlorination of TCE with palladized iron
Fernando, Q.; Muftikian, R.; Korte, N.
1997-04-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products. 10 figs.
Dechlorination of TCE with palladized iron
Fernando, Quintus; Muftikian, Rosy; Korte, Nic
1997-01-01
The present invention relates to various methods, such as an above-ground method and an in-ground method, of using a palladized iron bimetallic system for the dechlorination of chlorinated organic compounds from various effluents or contaminated soil containing the same. The use of palladized iron bimetallic system results in the dechlorination of the chlorinated organic compound into environmentally safe reaction products.
NASA Astrophysics Data System (ADS)
Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, L.
2015-07-01
Radiation induced dechlorination of trichloroethylene (TCE) and tetrachloroethylene (PCE) in aqueous solutions containing the active carbon (AC) or cupric oxide (CuO) as the modifiers was studied. The obtained results were compared to the previously studied dechlorination of polychlorinated biphenyls (PCBs). Both modifiers were found to decrease the efficiency of dechlorination. The AC modifier acts mainly via adsorption of the aliphatic (unlike the aromatic) hydrocarbons and the CuO oxide mainly inhibits the mineralization of the perchloroethylene. The results presented in this paper will be also helpful for the studies of the impact of chlorinated hydrocarbons on the membrane permeability of living cells.
Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan
2018-01-01
Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842
Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun
2017-06-06
Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.
Recycling of PVC Waste via Environmental Friendly Vapor Treatment
NASA Astrophysics Data System (ADS)
Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun
2010-11-01
This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.
Lin, Jiajiang; Meng, Jun; He, Yan; Xu, Jianming; Chen, Zuliang; Brookes, Philip C
2018-02-01
The incorporation of various types of crop straw to agricultural soils has long been practiced to improve soil fertility. However, the effects of crop straw on the fate of organo-chlorine pesticides in flooded paddy soils are not well understood. The dechlorination of pentachlorophenol (PCP) in four vertical profiles (0-10, 10-20, 20-30, 30-50 mm depth) of two flooded paddy soils, a Plinthudult (Soil 1) and a Tropudult (Soil 2) was investigated following the application of four crop straws (rice, wheat, rape and Chinese milk vetch) to them. In all treatments, PCP dechlorination decreased with increasing soil depth. In the crop straw treatments, PCP was almost completely dechlorinated within 60 days, and rapidly transformed to 2,3,4,5-tetrachlorophenol, and further to 3,4,5-trichlorophenol. Further dechlorination of 3,4,5-trichlorophenol also occurred in all treatments except for the rape straw. It is possible that the NH 4 + and NO 3 - derived from the straw are responsible for the inhibition of the 3,4,5-trichlorophenol dechlorination. The reduction of Fe (III) and SO 4 2- increased following application of the crop straws. The RDA analysis indicated that the Fe (III) reducing bacteria might be involved in the ortho-dechlorination, while SO 4 2- reducing bacteria were involved in para- and meta-dechlorination of PCP. The complete detoxification of PCP depended upon both the crop straw type and soil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
1998-01-01
feature two - stage anaerobic reductive dechlorination of highly chlorinated compounds coupled with aerobic (sometimes co- metabolic) treatment of the...activity at some naturally attenuated sites. Fathepure and Vogel [76] used a two - stage anaerobic-aerobic reactor system to treat hexachlorobenzene, PCE...Complete removal of the chloroethenes by the two - stage system was observed using pyruvate, formate, or lactose as electron donor for the dechlorinating
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C. E.; Barry, D. A.; Gerhard, J.
2009-12-01
Enhanced reductive dechlorination is a viable technology for in situ remediation of chlorinated solvent DNAPL source areas. Although in recent years increased understanding of this technology has led to more rapid dechlorination rates, complete dechlorination can be hindered by unfavorable conditions. Hydrochloric acid produced from dechlorination and organic acids generated from electron donor fermentation can lead to significant groundwater acidification. Adverse pH conditions can inhibit the activity of dehalogenating microorganisms and thus slow or stall the remediation process. The extent of acidification likely to occur at a contaminated site depends on a number of factors including (1) the extent of dechlorination, (2) the pH-sensitivity of dechlorinating bacteria, and (3) the geochemical composition of the soil and water, in particular the soil’s natural buffering capacity. The substantial mass of solvents available for dechlorination when treating DNAPL source zones means that these applications are particularly susceptible to acidification. In this study a reactive transport biogeochemical model was developed to investigate the chemical and physical parameters that control the build-up of acidity and subsequent remediation efficiency. The model accounts for the site water chemistry, mineral precipitation and dissolution kinetics, electron donor fermentation, gas phase formation, competing electron-accepting processes (e.g., sulfate and iron reduction) and the sensitivity of microbial processes to pH. Confidence in the model was achieved by simulating a well-documented field study, for which the 2-D field scale model was able to reproduce long-term variations of pH, and the concurrent build up of reaction products. Sensitivity analyses indicated the groundwater flow velocity is able to reduce acidity build-up when the rate of advection is comparable or larger than the rate of dechlorination. The extent of pH change is highly dependent on the presence of calcite in soil, the availability of competing electron acceptors (in particular dissolved sulfates) and the efficiency with which microbes utilize electron donor. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aimed to evaluate and improve enhanced bioremediation of chlorinated solvent source zones.
Liu, Na; Ding, Longzhen; Li, Haijun; Zhang, Pengpeng; Zheng, Jixing; Weng, Chih-Huang
2018-08-01
The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ- carbon ) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ- carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ- carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leitão, Patrícia; Rossetti, Simona; Nouws, Henri P A; Danko, Anthony S; Majone, Mauro; Aulenta, Federico
2015-11-01
The aim of this study was to verify the possibility to use a polarized graphite electrode as an electron donor for the reductive dechlorination of 1,2-dichloroethane, an ubiquitous groundwater contaminant. The rate of 1,2-DCA dechlorination almost linearly increased by decreasing the set cathode potential over a broad range of set cathode potentials (i.e., from -300 mV to -900 mV vs. the standard hydrogen electrode). This process was primarily dependent on electrolytic H2 generation. On the other hand, reductive dechlorination proceeded (although quite slowly) with a very high Coulombic efficiency (near 70%) at a set cathode potential of -300 mV, where no H2 production occurred. Under this condition, reductive dechlorination was likely driven by direct electron uptake from the surface of the polarized electrode. Taken as a whole, this study further extends the range of chlorinated contaminants which can be treated with bioelectrochemical systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manchester, Marie J.; Hug, Laura A.; Zarek, Matt; Zila, Anna
2012-01-01
The WBC-2 consortium is an organohalide-respiring anaerobic microbial enrichment culture capable of dechlorinating 1,1,2,2-tetrachloroethane (TeCA) to ethene. In the WBC-2 culture, TeCA is first transformed to trans-dichloroethene (tDCE) by dichloroelimination; tDCE is subsequently transformed to vinyl chloride (VC) and then to ethene by hydrogenolysis. Analysis of 16S rRNA gene clone libraries from culture DNA revealed sequences from three putative dechlorinating organisms belonging to Dehalococcoides, Dehalobacter, and Dehalogenimonas genera. Quantitative PCR primers were designed for each of these sequences, and their abundance was quantified in enrichment cultures over time. These data revealed that complete dechlorination of TeCA to ethene involves all three organisms. Dehalobacter spp. grew during the dihaloelimination of TeCA to tDCE, while Dehalococcoides and Dehalogenimonas spp. grew during hydrogenolysis of tDCE to ethene. This is the first time a genus other than Dehalococcoides has been implicated in dechlorination of tDCE to VC. PMID:22635995
NASA Astrophysics Data System (ADS)
Robinson, C.; Barry, D. A.
2008-12-01
Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.
Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.
Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M
2015-03-01
This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity.
Yu, Hui; Wan, Hui; Feng, Chunhua; Yi, Xiaoyun; Liu, Xiaoping; Ren, Yuan; Wei, Chaohai
2017-02-15
The necessity for developing an efficient and cost-effective in situ bioremediation technology for sediments contaminated with polychlorinated biphenyls (PCBs) has prompted the application of low-voltage electrical fields to anaerobic digestion systems. Here we show that the use of a sediment-based bio-electrochemical reactor (BER) poised at a potential of -0.50V (vs. a standard calomel electrode, SCE) substantially enhanced the reduction of 2,3,4,5-tetrachlorobiphenyl (PCB 61) when acetate was added as a carbon source. The addition of surfactant Tween 80 to the BER further accelerated the PCB 61 transformation. The comparative study of closed- and open-circuit reactors demonstrated the enrichment conditions affecting the bacterial community structure, the dominant dechlorination metabolisms, and thus the extent, the rate and the products of the reduction of PCBs. The dominant bacterial dechlorinators detected in the BERs in the presence of acetate and Tween 80 are Dehalogenimonas, Dehalobacter, Sulfuricurvum, Dechloromonas and Geobacter, which should be responsible for PCB dechlorination. This study improves understanding of the key factors influencing dechlorination activity in sediment-based BERs polarized at a low potential, as well as the metabolic mechanisms dominating in the PCB dechlorination process. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Q.S.; Barkovskii, A.L.; Adriaens, P.
1999-11-01
The susceptibility of dioxins to dissolved organic carbon (DOC)-mediated dechlorination reactions was investigated using 1,2,3,4,6,7,9-heptachlorodibenzo-p-dioxin (HpCDD), Aldrich humic acid (AHA), and polymaleic acid (PMA) as model compounds. The dechlorination yields were on the order of 4--20% which, when normalized to phenolic acidity, was comparable to yields observed in the presence of the humic constituents catechol and resorcinol. Based on the ratio of dechlorination yields as a function of phenolic acidity and electron transfer capacity, differences in electron transfer efficiency to dioxins are likely combined effects of specific interactions with the functional groups and nonspecific hydrophobic interactions. Hexa- and pentaCDD homologuesmore » were dominant in all incubations, and diCDD constituted the final product of dechlorination. The rates of appearance of lesser chlorinated products were similar to those observed in sediment systems and followed thermodynamic considerations as they decreased with a decrease in level of chlorination. Generally, both absolute and phenolic acidity-normalized rate constants for AHA-mediated reactions were up to 2-fold higher than those effected by PMA. These results indicate that the electron shuttling capacity of sediment DOC may significantly affect the fate of dioxins, in part through dechlorination reactions.« less
Sun, Zhi-Rong; Li, Bao-Hua; Hu, Xiang; Shi, Min; Peng, Yong-Zhen
2008-05-01
The electrochemical deposition behaviors of Pd-Ni bimetal on glassy carbon (GC) electrode were studied by means of cyclic voltammetry (CV) based on orthogonal experiments. CV results reveal that Pd-Ni bimetal shows larger hydrogen adsorption peak than that of single Pd or Ni. The mixture of Ni2+ and Pd2+ can get hydrogen adsorption peak of -24.83 mA at - 500 mV (vs Hg/Hg2SO4). Scanning Electron Microscope (SEM) images reveal that nickel addition changes the distributing configuration of Pd microparticles on GC. And the appearance of Pd-Ni bimetal microparticles is distinctly different from that of single Pd and single Ni microparticles. Diameter of Pd-Ni microparticle is bigger than that of Pd microparticle and smaller than that of Ni microparticle. Effects of dechlorination current and time on removal efficiency of chloroform were also studied. The removal efficiency of chloroform increases at higher dechlorination current and longer dechlorination time. It reaches 42.53% when the dechlorination current and time are 0.5 mA and 180 min respectively on Pd-Ni/GC electrode prepared at optimum conditions. It can be envisioned that the removal efficiency of chloroform would increase further at longer dechlorination time.
Bhatt, Praveena; Kumar, M Suresh; Mudliar, Sandeep; Chakrabarti, Tapan
2008-05-01
Anaerobic dechlorination of technical grade hexachlorocyclohexane (THCH) was studied in a continuous upflow anaerobic sludge blanket (UASB) reactor with methanol as a supplementary substrate and electron donor. A reactor without methanol served as the experimental control. The inlet feed concentration of THCH in both the experimental and the control UASB reactor was 100 mg l(-1). After 60 days of continuous operation, the removal of THCH was >99% in the methanol-supplemented reactor as compared to 20-35% in the control reactor. THCH was completely dechlorinated in the methanol fed reactor at 48 h HRT after 2 months of continuous operation. This period was also accompanied by increase in biomass in the reactor, which was not observed in the experimental control. Batch studies using other supplementary substrates as well as electron donors namely acetate, butyrate, formate and ethanol showed lower % dechlorination (<85%) and dechlorination rates (<3 mg g(-1)d(-1)) as compared to methanol (98%, 5 mg g(-1)d(-1)). The optimum concentration of methanol required, for stable dechlorination of THCH (100 mg l(-1)) in the UASB reactor, was found to be 500 mg l(-1). Results indicate that addition of methanol as electron donor enhances dechlorination of THCH at high inlet concentration, and is also required for stable UASB reactor performance.
Liu, Cuiying; Xu, Xianghua; Fan, Jianling
2015-12-01
The application of electron donor and electron shuttle substances has a vital influence on electron transfer, thus may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in anaerobic reaction systems. To evaluate the roles of citric acid and anthraquinone-2,6-disulfonate (AQDS) in accelerating the reductive dechlorination of DDT in Hydragric Acrisols that contain abundant iron oxide, a batch anaerobic incubation experiment was conducted in a slurry system with four treatments of (1) control, (2) citric acid, (3) AQDS, and (4) citric acid+AQDS. Results showed that DDT residues decreased by 78.93%-92.11% of the initial quantities after 20days of incubation, and 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane (DDD) was the dominant metabolite. The application of citric acid accelerated DDT dechlorination slightly in the first 8days, while the methanogenesis rate increased quickly, and then the acceleration effect improved after the 8th day while the methanogenesis rate decreased. The amendment by AQDS decreased the Eh value of the reaction system and accelerated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus enhancing the reductive dechlorination rate of DDT. The addition of citric acid+AQDS was most efficient in stimulating DDT dechlorination, but no significant interaction between citric acid and AQDS on DDT dechlorination was observed. The results will be of great significance for developing an efficient in situ remediation strategy for DDT-contaminated sites. Copyright © 2015. Published by Elsevier B.V.
Wan, Hui; Yi, Xiaoyun; Liu, Xiaoping; Feng, Chunhua; Dang, Zhi; Wei, Chaohai
2018-05-01
Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (-0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Padilla-Crespo, E.; Loeffler, F. E.
2011-12-01
Reductive dechlorination plays a major role in the transformation and detoxification of chlorinated solvents, including chlorinated ethenes. Molecular biological tools are being applied at contaminated sites in order to assess the process-specific biomarkers that impact site performance, and to monitor the progress of bioremediation approaches. The few current biomarker genes in use provide an incomplete picture of the reductively dechlorinating bacterial community; this is a limitation for implementing enhanced bioremediation and monitored natural attenuation as cleanup strategies at chlorinated solvent contaminated sites. Reductively dehalogenating organisms, particularly Dehalococcoides (Dhc) strains, possess multiple reductive dehalogenase (RDase) genes, which are promising targets to specifically monitor dehalogenation processes of interest. Dehalococcoides populations in two highly enriched cultures (RC and KS) have been implicated in the reductive dechlorination of dechlorination of 1,2-dichloropropane (1,2-D), a widespread halogenated organic pollutant, to the non-toxic propene. Using a combined approach of transcription, expression and molecular analysis a new biomarker linked to 1,2-dichloropropane has been identified in Dhc strains RC and KS providing for the first time, convincing evidence of a specific RDase implicated in 1,2-D dechlorination to propene. Further analyses imply that new biomarker is in a "mobile DNA segment", a genomic island (GI) of horizontal gene transfer origin. A valid quantitative PCR approach was designed to detect and enumerate this gene in cultures and environmental samples; this will be a useful to bioremediation practitioners to more efficiently implement reductive dechlorination as a remediation tool. The new biomarker has been identified in fresh water sediment samples from different geographical locations in Europe, North and South America. Further research aims to shed light on RDase gene dissemination and the adaptation of dehalospiring populations in subsurface environments.
Gunasekara, Amrith S; Tenbrook, Patti L; Palumbo, Amanda J; Johnson, Catherine S; Tjeerdema, Ronald S
2005-12-28
The potential for reductive dechlorination of the herbicide thiobencarb (TB) by microbes and its prevention in saturated anaerobic rice field soils was examined in laboratory microcosms. TB is effective in controlling both annual grasses and broadleaf weeds. In anoxic microcosms, TB was effectively degraded within 30 days to its dechlorinated product, deschlorothiobencarb (DTB), in two Sacramento Valley rice field soils. TB dechlorination, and subsequent degradation, followed pseudo-zero- (lag phase) and first-order (degradation phase) kinetics. Logistic regression analysis (r2 > 0.841) produced a half-life (t(1/2)) in nonsterile soils ranging from 10 to 15 days, which was also observed when microcosms were amended with low concentrations (<3 mg L(-1)) of copper (Cu2+; as the fungicides Cu(OH)2 and CuSO4.5H2O). High Cu2+ concentrations (>40 mg L(-1)) were added to the microcosms to determine if copper toxicity to dechlorinating microbes is concentration dependent within the range used. After 30 days, the low-copper-amended soils closely resembled the nonsterile experiments to which no Cu2+ was added while the high-copper-amended microcosms were similar to the sterile experiment. Microcosms were also separately amended with 5.7 g L(-1) phosphate (PO4(2-); as KH2PO4), a nutrient regularly applied to rice fields. Phosphate-amended experiments also showed TB degradation, but no DTB formation, indicating the phosphate played a role, possibly as a microbial inhibitor or an alternative electron acceptor, in limiting the dechlorination of TB. In summary, TB dechlorination was inhibited at high Cu(OH)2, CuSO4.5H2O, and KH2PO4 concentrations.
Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B
2011-11-01
The development of bioreactive sediment caps, in which microorganisms capable of contaminant transformation are placed within an in situ cap, provides a potential remedial design that can sustainably treat sediment and groundwater contaminants. The goal of this study was to evaluate the ability and limitations of a mixed, anaerobic dechlorinating consortium to treat chlorinated ethenes within a sand-based cap. Results of batch experiments demonstrate that a tetrachloroethene (PCE)-to-ethene mixed consortium was able to completely dechlorinate dissolved-phase PCE to ethene when supplied only with sediment porewater obtained from a sediment column. To simulate a bioreactive cap, laboratory-scale sand columns inoculated with the mixed culture were placed in series with an upflow sediment column and directly supplied sediment effluent and dissolved-phase chlorinated ethenes. The mixed consortium was not able to sustain dechlorination activity at a retention time of 0.5 days without delivery of amendments to the sediment effluent, evidenced by the loss of cis-1,2-dichloroethene (cis-DCE) dechlorination to vinyl chloride. When soluble electron donor was supplied to the sediment effluent, complete dechlorination of cis-DCE to ethene was observed at retention times of 0.5 days, suggesting that sediment effluent lacked sufficient electron donor to maintain active dechlorination within the sediment cap. Introduction of elevated contaminant concentrations also limited biotransformation performance of the dechlorinating consortium within the cap. These findings indicate that in situ bioreactive capping can be a feasible remedial approach, provided that residence times are adequate and that appropriate levels of electron donor and contaminant exist within the cap. Copyright © 2011 Elsevier Ltd. All rights reserved.
Harkness, Mark; Fisher, Angela; Lee, Michael D; Mack, E Erin; Payne, Jo Ann; Dworatzek, Sandra; Roberts, Jeff; Acheson, Carolyn; Herrmann, Ronald; Possolo, Antonio
2012-04-01
A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study was designed as a fractional factorial experiment involving 177 bottles distributed between four industrial laboratories and was used to assess the impact of six electron donors, bioaugmentation, addition of supplemental nutrients, and two TCE levels (0.57 and 1.90 mM or 75 and 250 mg/L in the aqueous phase) on TCE dechlorination. Performance was assessed based on the concentration changes of TCE and reductive dechlorination degradation products. The chemical data was evaluated using analysis of variance (ANOVA) and survival analysis techniques to determine both main effects and important interactions for all the experimental variables during the 203-day study. The statistically based design and analysis provided powerful tools that aided decision-making for field application of this technology. The analysis showed that emulsified vegetable oil (EVO), lactate, and methanol were the most effective electron donors, promoting rapid and complete dechlorination of TCE to ethene. Bioaugmentation and nutrient addition also had a statistically significant positive impact on TCE dechlorination. In addition, the microbial community was measured using phospholipid fatty acid analysis (PLFA) for quantification of total biomass and characterization of the community structure and quantitative polymerase chain reaction (qPCR) for enumeration of Dehalococcoides organisms (Dhc) and the vinyl chloride reductase (vcrA) gene. The highest increase in levels of total biomass and Dhc was observed in the EVO microcosms, which correlated well with the dechlorination results. Copyright © 2012 Elsevier B.V. All rights reserved.
Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
Harkness, Mark; Fisher, Angela
2013-08-01
The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. Copyright © 2013 Elsevier B.V. All rights reserved.
Biological reduction of chlorinated solvents: Batch-scale geochemical modeling
NASA Astrophysics Data System (ADS)
Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.
2010-09-01
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.
Liu, Cui-Ying; Jiang, Xin
2013-04-01
A rice pot experiment was conducted in two soils, Hydragric Acrisols (Ac) and Gleyi-Stagnic Anthrosols (An). Three treatments including control and additions of 1% or 2% composting organic fertilizer were designed for each soil. The objective of this research was to evaluate the reductive dechlorination of hexachlorobenzene (HCB) as affected by organic fertilizer supplies in planted paddy soils, and to analyze the relationship between methane production and HCB dechlorination. The results showed that the HCB residues were decreased by 28.6%-30.1% of the initial amounts in Ac, and 47.3% -61.0% in An after 18 weeks of experiment. The amount of HCB and its metabolite uptake by rice plants was only a few thousandths of the initial HCB amount in soils. The main product of HCB dechlorination was pentachlorobenzene (PeCB). The rates of HCB dechlorination in An were higher than those in Ac, which was mainly attributed to the higher pH and dissolved organic carbon (DOC) content of An. The applications of both 1% and 2% composting organic fertilizer showed significant inhibition on PeCB production after the 6th and 10th week in Ac and An, respectively. In both tested soils, no significant difference of PeCB production rates was observed between the applications of 1% and 2% composting organic fertilizer. The role of methanogenic bacteria in HCB dechlorination was condition-dependent.
NASA Astrophysics Data System (ADS)
Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.; Scheutz, Charlotte; Binning, Philip J.; Broholm, Mette M.
2012-04-01
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.
Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J M Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke
2017-03-01
Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and geochemical and microbial shifts were followed for 265 days. Consistent with anoxic conditions and sulfate reduction after biostimulation, MiSeq 16S rRNA gene sequencing revealed temporarily increased relative abundance of Firmicutes, Bacteriodetes and sulfate reducing Deltaproteobacteria. In line with 13 C cDCE enrichment and increased Dehalococcoides mccartyi (Dcm) numbers, dechlorination was observed toward the end of the field experiment, albeit being incomplete with accumulation of vinyl chloride. This was concurrent with (i) decreased concentrations of dissolved organic carbon (DOC), reduced relative abundances of fermenting and sulfate reducing bacteria that have been suggested to promote Dcm growth by providing electron donor (H 2 ) and essential corrinoid cofactors, (ii) increased sulfate concentration and increased relative abundance of Epsilonproteobacteria and Deferribacteres as putative oxidizers of reduced sulfur compounds. Strong correlations of DOC, relative abundance of fermenters and sulfate reducers, and dechlorination imply the importance of syntrophic interactions to sustain robust dechlorination. Tracking microbial and environmental parameters that promote/preclude enhanced reductive dechlorination should aid development of sustainable bioremediation strategies. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Complete biological reductive transformation of tetrachloroethene to ethane.
de Bruin, W P; Kotterman, M J; Posthumus, M A; Schraa, G; Zehnder, A J
1992-01-01
Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes. PMID:1622277
Reductive dechlorination of trichloroethylene by iron bimetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, R.G.; Dauda, T.; McKenzie, D.E.
1998-07-01
Reductive dechlorination using a zero valence metal such as iron has seen an increase in interest with the extension of iron dechlorination to in-situ treatment of ground water. Studies to increase the rate of dechlorination and the long term stability have lead many to examine the use of bimetallic iron systems. Results are shown for bimetallic iron systems of Cu, Sn, Ni, Ag, Au, and Pd. All of these bimetallic couples form a galvanic couple which increase corrosion rates and the production of hydrogen. Increased rates of reaction normalized to surface area were observed for all the couples. The reactionmore » rates were found to depended on surface area and surface coverage of the iron. The results of studies in deuterium oxide indicate that the pathways changed as the bimetallic is changed and that the pathway in all cases could be a combination of dehydrohalgenation and sequential dechlorination. Degradation of DNAPL TCE by iron was found to be zero order and the type of product observed was different from that observed for TCE dissolved in water.« less
Yoshida, Naoko; Ye, Lizhen; Liu, Fengmao; Li, Zhiling; Katayama, Arata
2013-02-01
Biodegradable plastics (BPs) were evaluated for their applicability as sustainable and solid H(2) donors for microbial reductive dechlorination of 4,5,6,7-tetrachlorophthalide (fthalide). After a screening test of several BPs, the starch-based plastic (SP) that produced the highest levels of H(2) was selected for its use as the sole H(2) donor in this reaction. Fthalide dechlorination was successfully accomplished by combining an H(2)-producing SP culture and a KFL culture containing Dehalobacter species, supplemented with 0.13% and 0.5% SP, respectively. The efficiency of H(2) use in dechlorination was evaluated in a combined culture containing the KFL culture and strain Clostridium sp. Ma13, a new isolate that produces H(2) from SP. Results obtained with this culture indicated increased H(2)-fraction for fthalide dechlorination much more in this culture than in compared with a KFL culture supplemented with 20mM lactate, which are 0.75 H(2)·glucose(-1) and 0.015 H(2)·lactate(-1) in mol ratio, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Linpeng; Yuan, Yong; Tang, Jia; Wang, Yueqiang; Zhou, Shungui
2015-01-01
The reductive dechlorination of pentachlorophenol (PCP) by Geobacter sulfurreducens in the presence of different biochars was investigated to understand how biochars affect the bioreduction of environmental contaminants. The results indicated that biochars significantly accelerate electron transfer from cells to PCP, thus enhancing reductive dechlorination. The promotion effects of biochar (as high as 24-fold) in this process depend on its electron exchange capacity (EEC) and electrical conductivity (EC). A kinetic model revealed that the surface redox-active moieties (RAMs) and EC of biochar (900 °C) contributed to 56% and 41% of the biodegradation rate, respectively. This work demonstrates that biochars are efficient electron mediators for the dechlorination of PCP and that both the EC and RAMs of biochars play important roles in the electron transfer process. PMID:26592958
Dechlorination of Aromatic Xenobiotic Compounds by Anaerobic Microorganisms
1988-07-01
DCB-l likely can also live as a scavenger because it was isolated on rumen fluid and responded with improved growth when rumen fluid or trypticase... rumen fluid markedly enhanced the dechlorinating activity. The activity was increased from ca 13 IM to 75 pM per day and the lag period was reduced from...4 weeks to 3 days in presence of either 0.1 percent yeast extract or 5 percent rumen fluid. The study also suggested that the dechlorinating activity
Wan, Xiao-Fang; Guo, Congbao; Liu, Yu; Chai, Xin-Sheng; Li, Youming; Chen, Guangxue
2018-03-01
In this study, we reported on the nano-scale nickel/iron particles loaded in carboxymethyl/nanofibrillated cellulose (CMC/NFC) hydrogel for the dechlorination of o-dichlorobenzene (DCB) in aqueous solution. The biodegradable hydrogel may provide an ideal supporting material for fastening the bimetallic nano-scale particles, which was examined and characterized by TEM, SEM-EDX, FT-IR and BET. The performance of the selected bimetallic particles was evaluated by conducting the dechlorination of DCB in the solution under different reaction conditions (e.g., pH, dosage of nickel/iron nanoparticles and temperature). The results showed that about 70% of DCB could be dechlorinated at 20 °C in 8 h, which indicated that the immobilized reactive material had a high reduction activity when Ni/Fe loading dosage in the hydrogel (18 wt%) was considered. Moreover, the reduction behavior agreed to the pseudo-first order reaction, in which the dechlorination rate was irrelative to the pH aqueous solution. A kinetic model for predicting the concentration of DCB during the reduction reaction was established based on the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Doğan-Subaşi, Eylem; Bastiaens, Leen; Leys, Natalie; Boon, Nico; Dejonghe, Winnie
2014-07-01
This study aimed at monitoring the dynamics of phylogenetic and catabolic genes of a dechlorinating enrichment culture before, during, and after complete dechlorination of chlorinated compounds. More specifically, the effect of 40 μM trichloroethene (TCE) and 5.6 mM lactate on the gene abundance and activity of an enrichment culture was investigated for 40 days. Although tceA and vcrA gene copy numbers were relatively stable in DNA extracts over time, tceA and vcrA mRNA abundances were upregulated from undetectable levels to 2.96 × and 6.33 × 10⁴ transcripts/mL, respectively, only after exposure to TCE and lactate. While tceA gene transcripts decreased over time with TCE dechlorination, the vcrA gene was expressed steadily even when the concentration of vinyl chloride was at undetectable levels. In addition, ratios between catabolic and phylogenetic genes indicated that tceA and vcrA gene carrying organisms dechlorinated TCE and its produced daughter products, while vcrA gene was mainly responsible for the dechlorination of the lower VC concentrations in a later stage of degradation.
2002-12-01
OF ORGANIC SUBSTRATES USED FOR ANAEROBIC DECHLORINATION Substrate Bulk Price per Pound (dollars) Advantages Disadvantages Sugar ( Corn Syrup ...that have been added to stimulate dechlorination reactions in the subsurface include: lactate, butyrate, acetate, molasses, refined sugars ( fructose ...1 11 3 Butyrate 3 3 1 3 2 3 3 0 Molasses 19 15 7 9 5 0 9 9 Fructose 1 1 0 1 0 0 1 0 Lactose 1 1 1 1 1 0 0 1 Acetate 3 3 1 2 1 0 3 0 Methanol/Acetate
NASA Astrophysics Data System (ADS)
Xie, Tianyan
1994-01-01
Photochemical study of the dechlorination of four model compounds, 4,5-dichloroguaiacol, 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol, and tetrachloroguaiacol in aqueous solutions under UV radiation was conducted using ArF (193 nm) and KrF (248 nm) excimer laser to explore the response of chlorinated phenolics present in the E_1 effluent from conventional chlorine bleaching of softwood kraft pulp towards photo-oxidation processes. Kinetic study show that the overall dechlorination reaction follow the first order rate law. The factors affecting the dechlorination were investigated. The quantum yield of chloride ion formation was found to be dependent on pH of the reaction mixture, and orignal chlorine content of the compounds. The effect of the substituents on the aromatic ring on the reactivity of the compounds was studied. The mechanism for the dechlorination was proposed involving homolytic photo-dissociation, heterolytic cleavage of carbon-chlorine bonds and substitution reactions of hydroxyl radicals. It was found that the dechlorination under formation to chloride is influenced by the amount of organically bound chlorine in the starting material. Dechlorination reaction favors high pH. Guaiacols more easily undergo dechlorination than phenols. Four fractions of high relative molecular-mass chloro-organics or polychlorinated oxylignin (PCOL) were isolated from an E_1 effluent by combination of ultrafiltration, and purified by repeated precipitation. The fractions were analysed by classical functional group analysis and spectrophotometric methods. The analytical data indicated that the major structural differences between PCOL fractions and kraft lignin preparations are with regard to the content of founctional groups such as carboxyl content, methoxyl and hydroxyl contents. In addition, IR, ^1H and ^{13 }C NMR spectral analyses revealed an almost complete absence of absorption attributable to aromatic structures in PCOLs. These results and others led to the conclusion that the PCOL fractions are comprised mainly of non-aromatic lignin oxidation products containing a considerable amount of organically bound chlorine as well as unsaturated aliphatic carbon bonded to either oxygen or chlorine. The PCOL fractions were subjected to 193 nm UV -Excimer laser photolysis in presence and absence of oxygen with and without hydrogen peroxide. Kinetic study showed that they readily undergo dechlorination and decolorization on UV ArF-excimer laser (193 nm) photolysis under both oxygen and nitrogen atmosphere. About 60% dechlorination could be achieved by 3 hours irradiation. However, the relative molecular-mass of the PCOL fractions were not changed during the photolysis. Addition of small amount (2-8% w/w) of hydrogen peroxide lead to a signifiant reduction of color and relative molecular-mass. Thus, hydrogen peroxide play very important role in degradation and decolorization of PCOLs. The possible reaction mechanism for the UV-Excimer laser photolysis of PCOLs are discussed on the basis of the observed results.
Gonsoulin, Mary E; Wilson, Barbara H; Wilson, John T
2004-12-01
The Refuse Hideaway Landfill (23-acre) received municipal, commercial, and industrial waste between 1974 and 1988. It was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural attenuation at the site. We used the concentration of hydrogen to forecast whether reductive dechlorination would continue over time at particular locations in the plume. Based on published literature, reductive dechlorination and natural attenuation of PCE, TCE, and cis-DCE can be expected in the aquifer if the concentration of molecular hydrogen in monitoring wells are adequate (> 1 nanomolar). Reductive dechlorination can be expected to continue as the ground water moves down gradient. Natural attenuation through reductive dechlorination is not expected in flow paths that originate at down gradient monitoring wells with low concentrations of molecular hydrogen (< 1 nanomolar). In three monitoring wells at the margin of the landfill and in five monitoring wells down gradient of the landfill, ground water maintained a molecular hydrogen concentration, ranging from 1.30 to 9.17 nanomolar, that is adequate for reductive dechlorination. In three of the monitoring wells far down gradient of the landfill, the concentration of molecular hydrogen (0.33 to 0.83 nanomolar) was not adequate to support reductive dechlorination. In wells with adequate concentrations of hydrogen, the concentrations of chlorinated volatile organic compounds were attenuated over time, or concentrations of chlorinated volatile organics were below the detection limit. In wells with inadequate concentrations of hydrogen, the concentrations of chlorinated organic compounds attenuated at a slower rate over time. In wells with adequate hydrogen the first order rate of attenuation of PCE, TCE, cis-DCE and total chlorinated volatile organic compounds varies from 0.38 to 0.18 per year. In wells without adequate hydrogen the rate varies from 0.015 to 0.006 per year.
NASA Astrophysics Data System (ADS)
Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.
2006-12-01
SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and is most pronounced in the dechlorination of TCE to DCE.
Contributions of Fe Minerals to Abiotic Dechlorination
Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...
ELECTROCHEMICAL DECHLORINATIONOF 2-CHLOROBIPHENYL IN AQUEOUS SOLUTION
This paper presents electrochemical dechlorination of 2-chlorobiphenyl (2-CI BP) in aqueous environment using palladium modified granular graphite electrodes. 2-CI BP, the PCB congener that requires the highest reduction potential, was effectively dechlorinated in electrochemical...
Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca
2016-09-01
The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyeok Choi; Souhail R. Al-Abed; Shirish Agarwal
2009-06-15
Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity of RAC toward aqueous 2-chlorobiphenyl (2-ClBP), and its aging and longevity under various oxidizing environments. RAC containing 14.4% Fe and 0.68% Pd used in this study could adsorb 122.6 mg 2-ClBP/g RAC, and dechlorinate 56.5 mg 2-ClBP/g RAC which corresponds to 12% (yield) of its estimated dechlorination capacity. Due to Fe0 oxidation to form oxide passivating layers, Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} (oxide-watermore » interface) and FeOOH/FeO (oxide-metal interface), RAC reactivity decreased progressively over aging under N{sub 2} < H{sub 2}O + N{sub 2} < H{sub 2}O + O{sub 2} conditions. Considering nanoscale Fe/Pd corrosion chemistry, the decline was quite slow at only 5.6%, 19.5%, and 32.5% over one year, respectively. Dissolved oxygen played a crucial role in enhancing 2-ClBP adsorption but inhibiting its dechlorination. The reactivity change could be explained with the properties of the aged RAC including surface area, Fe0 content, and Fe species. During the aging and oxidation, the RAC showed limited dissolution of Fe and Pd. Finally, implementation issues regarding application of RAC system to contaminated sites are discussed. 25 refs., 6 figs., 1 tab.« less
PRELIMINARY CHARACTERIZATION OF FOUR 2-CHLOROBENZOATE-DEGRADING ANAEROBIC BACTERIAL CONSORTIA
Dechlorination was the initial step of 2CB biodegradation in four 2-chlorobenzoate-degrading methanogenic consortia. Selected characteristics of orthoreductive dehalogenation were examined in consortia developed from the highest actively dechlorinating dilutions of the original 2...
PILOT SCALE REACTOR FOR ELECTROCHEMICAL DECHLORINATION OF MODEL CHLORINATED CONTAMINANTS
Electrochemical degradation (ECD) is a promising technology for in-situ remediation of diversely contaminated submarine matrices, by the application of low level DC electric fields. This study, prompted by successful bench-scale electrochemical dechlorination of Trichloroe...
RELATIONSHIP BETWEEN DEHALOCOCCOIDES DNA AND DECHLORINATION RATES AT FIELD SITES
Chlorinated ethenes are common contaminants in groundwater. To date, Dehalococcoides species are the only known organisms capable of completely dechlorinating all chlorinated ethenes to non-toxic ethene. Studies in the laboratory have shown a good correlation between Dehalococco...
Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yak, H.K.; Wenclawiak, B.W.; Cheng, I.F.
1999-04-15
A method for remediation of PCB-contaminated soil and sediments is described that uses zerovalent iron as the dechlorination agent and subcritical water extraction (SWE) as the transporting medium. By using 100-mesh iron powder and SWE conditions of 250 C and 10 MPa on Aroclor 1260 for 1--8 h, the higher chlorine-substituted homologues were completely reduced to their lower substituted counterparts. The lower-substituted congeners were subsequently near-completely dechlorinated. The initial findings indicate that this technique may be a viable method for remediation of PCB-contaminated soil and sediments.
The role of microbial reductive dechlorination of TCE at a phytoremediation site
Godsy, E.M.; Warren, E.; Paganelli, V.V.
2003-01-01
In April 1996, a phytoremediation field demonstration site at the Naval Air Station, Fort Worth, Texas, was developed to remediate shallow oxic ground water (< 3.7 m deep) contaminated with chlorinated ethenes. Microbial populations were sampled in February and June 1998. The populations under the newly planted cottonwood trees had not yet matured to an anaerobic community that could dechlorinate trichloroethene (TCE) to cis-1,2-dichloroethene (DCE); however, the microbial population under a mature (???22-year-old) cottonwood tree about 30 m southwest of the plantings had a mature anaerobic population capable of dechlorinating TCE to DCE, and DCE to vinyl chloride (VC). Oxygen-free sediment incubations with contaminated groundwater also demonstrated that resident microorganisms were capable of the dechlorination of TCE to DCE. This suggests that a sufficient amount of organic material is present for microbial dechlorination in aquifer microniches where dissolved O2 concentrations are low. Phenol, benzoic acid, acetic acid, and a cyclic hydrocarbon, compounds consistent with the degradation of root exudates and complex aromatic compounds, were identified by gas chromatography/mass spectrometry (GC/MS) in sediment samples under the mature cottonwood tree. Elsewhere at the site, transpiration and degradation by the cottonwood trees appears to be responsible for loss of chlorinated ethenes.
Mattes, Timothy E; Ewald, Jessica M; Liang, Yi; Martinez, Andres; Awad, Andrew; Richards, Patrick; Hornbuckle, Keri C; Schnoor, Jerald L
2017-08-12
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that are distributed worldwide. Although industrial PCB production has stopped, legacy contamination can be traced to several different commercial mixtures (e.g., Aroclors in the USA). Despite their persistence, PCBs are subject to naturally occurring biodegradation processes, although the microbes and enzymes involved are poorly understood. The biodegradation potential of PCB-contaminated sediments in a wastewater lagoon located in Virginia (USA) was studied. Total PCB concentrations in sediments ranged from 6.34 to 12,700 mg/kg. PCB congener profiles in sediment sample were similar to Aroclor 1248; however, PCB congener profiles at several locations showed evidence of dechlorination. The sediment microbial community structure varied among samples but was dominated by Proteobacteria and Firmicutes. The relative abundance of putative dechlorinating Chloroflexi (including Dehalococcoides sp.) was 0.01-0.19% among the sediment samples, with Dehalococcoides sp. representing 0.6-14.8% of this group. Other possible PCB dechlorinators present included the Clostridia and the Geobacteraceae. A PCR survey for potential PCB reductive dehalogenase genes (RDases) yielded 11 sequences related to RDase genes in PCB-respiring Dehalococcoides mccartyi strain CG5 and PCB-dechlorinating D. mccartyi strain CBDB1. This is the first study to retrieve potential PCB RDase genes from unenriched PCB-contaminated sediments.
Dechlorination of Polychlorinated Biphenyls by Pd/Mg Bimetallic Corrosion Nano-Cells
Polychlorinated biphenyls (PCBs), manufactured until mid-1970's for use as electrical insulators, were banned in 1979 due to their toxicity and persistence in the environment (1). Dechlorination of PCBs using bimetallic systems is a promising technology wherein enhanced corrosio...
VAPOR PHASE TREATMENT OF PCE IN A SOIL COLUMN BY LAB-SCALE ANAEROBIC BIOVENTING
Microbial destruction of highly chlorinated organic compounds must be initiated by anaerobic followed by aerobic dechlorination. In-situ dechlorination of vadose zone soil contaminated with these compounds requires, among other factors, the establishment of highly reductive anaer...
INHIBITION OF REDUCTIVE DECHLORINATION BY SULFATE REDUCTION IN MICROCOSMS (ABSTRACT ONLY)
High sulfate (>1,000 mg/L) concentrations are potentially problematic for field implementation of in situ bioremediation of chlorinated ethenes because its reduction competes for electron donor with reductive dechlorination. As a result of this competition, reductive dechl...
An iron-enhanced dechlorination technology was evaluated, under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program, at a contaminated printed circuit board manufacturing site in New Jersey. This paper describes the feasibility...
Reductive Dechlorination of Carbon Tetrachloride by Soil With Ferrous and Bisulfide
NASA Astrophysics Data System (ADS)
Choi, K.; Lee, W.
2008-12-01
Batch and column experiments were conducted to investigate the effect of concentration of reductants, contact time to activate reductive capacity, and pH on reductive dechlorination by soil with Fe(II) and HS- in this study. Carbon tetrachloride (CT) was used as a representative target organic compound. Sorption kinetic and isotherm tests were performed to investigate the influence of adsorption on the soil surface. Target compound in the soil suspension reached sorption equilibrium in 4 hours and the type of isotherm was well fitted by a linear type isotherm. In batch experiment, kinetic rate constants for the reductive dechlorination of CT increased with increasing the concentration of the reductants (Fe(II) and HS-). However, Fe(II) was a much more effective reductant, producing higher k values than those of HS-. The contact time of one day for the soil with HS- and that of four hours with Fe(II) showed the highest reaction rates. Additionally, the rate constants increased with the increase of pH in soil suspension with Fe(II) (5.2~8) and HS- (8.3~10.3), respectively. In column experiment, the soil column with Fe(II) showed larger bed volumes (13.76) to reach a column breakthrough than that with HS- indicating the treatment of Fe(II) is more effective for the reductive dechlorination of CT. To enhance reductive capacity of soil column under an acidic condition, CaO addition to the column treated with Fe(II) showed better results for the reductive dechlorination of CT than that of HS-. Fe(II) showed better CT dechlorination than HS- in batch and column reactors therefore, it can be used as an effective reducing agent for the treatment of soil contaminated with chlorinated organic compounds.
A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site
NASA Astrophysics Data System (ADS)
Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.
2015-12-01
A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.
NASA Astrophysics Data System (ADS)
Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.
2016-12-01
The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key species in a dechlorinating community.
Jia, Hanzhong; Gu, Cheng; Li, Hui; Fan, Xiaoyun; Li, Shouzhu; Wang, Chuanyi
2012-09-01
Zero-valent iron holds great promise in treating groundwater, and its reactivity and efficacy depend on many surrounding factors. In the present work, the effects of solution chemistry such as pH, humic acid (HA), and inorganic ions on pentachlorophenol (PCP) dechlorination by smectite-templated Pd(0)/Fe(0) were systematically studied. Smectite-templated Pd(0)/Fe(0) was prepared by saturating the negatively charged sites of smectite clay with Fe(III) and a small amount of Pd(II), followed by borohydride reduction to convert Fe(III) and Pd(II) into zero-valent metal clusters. Batch experiments were conducted to investigate the effects of water chemistry on PCP remediation. The PCP dechlorination rate critically depends on the reaction pH over the range 6.0~10.0; the rate constant (k (obs)) increases with decreasing the reaction pH value. Also, the PCP remediation is inhibited by HA, which can be attributed to the electron competition of HA with H(+). In addition, the reduction of PCP can be accelerated by various anions, following the order: Cl(-) > HCO (3) (-) > SO (4) (2-) ~no anion. In the case of cations, Ca(2+) and Mg(2+) (10 mM) decrease the dechlorination rate to 0.7959 and 0.7798 from 1.315 h(-1), respectively. After introducing HA into the reaction systems with cations or/and anions, the dechlorination rates are similar to that containing HA alone. This study reveals that low pH and the presence of some anions such as Cl(-) facilitate the PCP dechlorination and induce the rapid consumption of nanosized zero-valent iron simultaneously. However, the dechlorination rate is no longer correlated to the inhibitory or accelerating effects by cations and anions in the presence of 10 mg/L HA.
Aqueous extracts from a calcareous spodosol were used as the primary substrate to study the reductive dechlorination of tetrachloroethene (PCE). A comparison was made between extracts obtained using pure water and water saturated with trichloroethene (TCE). The latter solutions w...
This "Sediment Issue" summarizes investigations carried out by the National Risk Management Research Laboratory (NRMRL) of U.S. EPA to evaluate the long-term recovery of polychlorinated biphenyl (PCB)-contaminated sediments via reductive dechlorination. The magnitude, extent, an...
Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. ECD of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON
Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...
Biological reductive dechlorination is the primary mechanism for natural attenuation of chlorinated solvents in ground water. The only organisms that are known to completely dechlorinate cis-DCE past vinyl chloride to ethylene or ethane are members of the Dehalococcoides group. ...
Chloroform Hydrodechlorination over Palladium–Gold Catalysts: A First-Principles DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lang; Yao, Xiaoqian; Khan, Ahmad
2016-04-20
Hydrodechlorination is a promising method for treating toxic chlorocarbon compounds. Pd is among the most effective catalysts for chloroform hydrodechlorination, and experiments have shown that the Pd–Au alloy catalyst yields superior catalytic performance over pure Pd. In this paper, we examine the chloroform hydrodechlorination mechanism over Pd(1 1 1) and Pd ML/Au(1 1 1) surfaces using periodic, self-consistent density functional theory calculations (DFT, GGA–PW91) and maximum rate analysis. We suggest that the reaction occurs on both surfaces through complete dechlorination of chloroform followed by hydrogenation of CH* to methane, and that the initial dechlorination step is likely the rate-limiting step.more » Finally, on Pd(1 1 1), the chloroform dechlorination barrier is 0.24 eV higher than the desorption barrier, whereas on Pd ML/Au(1 1 1), the chloroform dechlorination barrier is 0.07 eV lower than the desorption barrier, which can explain the higher hydrodechlorination activity of the Pd–Au alloy catalyst.« less
Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.; Kirshtein, J.D.
2006-01-01
A study was carried out to develop a culture of microorganisms for bioaugmentation treatment of chlorinated-ethane contaminated groundwater at sites where dechlorination is incomplete or rates are too slow for effective remedation. Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The West Branch Consortium (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethylene (TCE), cis and trans 1,2-dichloroethylene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethylene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. Methanogens in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. The WBC-2 consortium provides opportunities for the in situ bioremediation of sites contaminated with mixtures of chlorinated ethylenes and ethanes.
Dehalogenation potential of municipal waste incineration fly ash. I. General principles.
Pekárek, Vladimír; Karban, Jindrich; Fiserová, Eva; Bures, Michal; Pacáková, Vera; Vecerníková, Eva
2003-01-01
It is well known that the fly ash from filters of municipal waste incinerators (MWI-FA) shows dehalogenation properties after heating it to 240-450 degrees C. However, this property is not general, and fly ash samples do not possess dehalogenation ability at all in many cases. Fly ash has a very variable composition, and the state of the fly ash matter therefore plays the decisive role. In the present paper, the function of important components responsible for the dehalogenation activity of MWI-FA is analysed and compared with the model fly ash. With the aim of accounting for the dehalogenation activity of MWI-FA, the following studies of hexachlorobenzene (HCB) dechlorination were performed: The role of copper in dehalogenation experiments was evaluated for five types of metallic copper. The gasification of carbon in MWI-FA was studied in the 250-350 degrees C temperature range. Five different kinds of carbon were used, combined with conventional Cu(o) and activated nanosize copper powder. The dechlorination experiments were also carried out with Cu(II) compounds such as CuO, Cu(OH)2, CuCl2 and CuSO4. The results were discussed from the standpoint of thermodynamics of potential reactions. Based on these results, the model of fly ash was proposed, containing silica gel, metallic copper and carbon. The dechlorination ability of MWI-FA and the model fly ash are compared under oxygen-deficient atmosphere. The results show that, under given experimental conditions, copper acts in the dechlorination as a stoichiometric agent rather than as a catalyst. The increased surface activity of copper enhances its dechlorination activity. It was found further that the presence of copper leads to a decrease in the temperature of carbon gasification. The cyclic valence change from Cu(o) to Cu+ or Cu2+ is a prerequisite for the dehalogenation to take place. Thermodynamic analysis of the dechlorination effect, as well as the comparison of dechlorination pathways on MWI-FA and model fly ash, can provide a deeper understanding of the studied reaction.
This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...
PARTITIONING, DESORPTION, AND DECHLORINATION OF A PCB CONGENER IN SEDIMENT SLURRY SUPERNATANTS
Partitioning and desorption played specific roles in the dechlorination of 2-chlorobiphenyl (2-ClBP) in sediment slurry supernatants, which are suspensions of disssolved organic matter(DOM). In short-term experiments, the partition coefficient (Kp) was related to the a...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Sohn, Seo Yean; Häggblom, Max M
2016-07-01
Organohalogen pollutants are of concern in many river and estuarine environments, such as the New York-New Jersey Harbor estuary and its tributaries. The Hackensack River is contaminated with various metals, hydrocarbons and halogenated organics, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins. In order to examine the potential for microbial reductive dechlorination by indigenous microorganisms, sediment samples were collected from five different estuarine locations along the Hackensack River. Hexachlorobenzene (HCB), hexabromobenzene (HBB), and pentachloroaniline (PCA) were selected as model organohalogen pollutants to assess anaerobic dehalogenating potential. Dechlorinating activity of HCB and PCA was observed in sediment microcosms for all sampling sites. HCB was dechlorinated via pentachlorobenzene (PeCB) and trichlorobenzene (TriCB) to dichlorobenzene (DCB). PCA was dechlorinated via tetrachloroaniline (TeCA), trichloroanilines (TriCA), and dichloroanilines (DCA) to monochloroaniline (MCA). No HBB debromination was observed over 12 months of incubation. However, with HCB as a co-substrate slow HBB debromination was observed with production of tetrabromobenzene (TeBB) and tribromobenzene (TriBB). Chloroflexi specific 16S rRNA gene PCR-DGGE followed by sequence analysis detected Dehalococcoides species in sediments of the freshwater location, but not in the estuarine site. Analysis targeting 12 putative reductive dehalogenase (rdh) genes showed that these were enriched concomitant with HCB or PCA dechlorination in freshwater sediment microcosms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Hyeok
2018-04-05
Previously, the concept of reactive activated carbon (RAC), where the porous structure of activated carbon (AC) is impregnated with palladized zerovalent iron, has been proposed to be effective to adsorb and dechlorinate polychlorinated biphenyls (PCBs). To explain the low dechlorination of PCBs bound to actual aquatic sediments under remediation with RAC, this study investigated the role of various solid organic and inorganic sediment components in adsorbing and desorbing PCBs. Detailed fate and transport mechanism of 2-chlorinated biphenyl (2-ClBP) spiked to sediment components, including kaolin, montmorillonite (MMT), coal, graphite, AC, and their mixture, was revealed. Adsorption and holding capability of sediment components toward 2-ClBP strongly influenced amount of spiked 2-ClBP, amount of desorbed 2-ClBP, overall dechlorination of 2-ClBP to biphenyl (BP), and eventual partitioning of 2-ClBP and BP to water, sediment component, and RAC. Order of the amount of spiked 2-ClBP to sediment components after drying, following AC > mixture > coal > graphite > kaolin > MMT, was in agreements (in opposite direction) with order of the amount of desorbed 2-ClBP and order of overall 2-ClBP dechlorination. Substantial role of organic components in aquatic sediments for holding 2-ClBP and thus preventing it from dechlorination on RAC was proven. Copyright © 2017 Elsevier B.V. All rights reserved.
Carreón-Diazconti, Concepción; Santamaría, Johanna; Berkompas, Justin; Field, James A.; Brusseau, Mark L.
2010-01-01
Isotopic analysis and molecular-based bioassay methods were used in conjunction with geochemical data to assess intrinsic reductive dechlorination processes for a chlorinated-solvent contaminated site in Tucson, Arizona. Groundwater samples were obtained from monitoring wells within a contaminant plume comprising tetrachloroethene and its metabolites trichloroethene, cis-1,2-dichloroethene, vinyl chloride, and ethene, as well as compounds associated with free-phase diesel present at the site. Compound specific isotope (CSI) analysis was performed to characterize biotransformation processes influencing the transport and fate of the chlorinated contaminants. PCR analysis was used to assess the presence of indigenous reductive dechlorinators. The target regions employed were the 16s rRNA gene sequences of Dehalococcoides sp. and Desulfuromonas sp., and DNA sequences of genes pceA, tceA, bvcA, and vcrA, which encode reductive dehalogenases. The results of the analyses indicate that relevant microbial populations are present and that reductive dechlorination is presently occurring at the site. The results further show that potential degrader populations as well as biotransformation activity is non-uniformly distributed within the site. The results of laboratory microcosm studies conducted using groundwater collected from the field site confirmed the reductive dechlorination of tetrachloroethene to dichloroethene. This study illustrates the use of an integrated, multiple-method approach for assessing natural attenuation at a complex chlorinated-solvent contaminated site. PMID:19603638
Cao, Qiongmin; Yuan, Guoan; Yin, Lijie; Chen, Dezhen; He, Pinjing; Wang, Hai
2016-12-01
In this research morphological techniques were used to characterize dechlorination process of PVC when it is in the mixed waste plastics and the two important factors influencing this process, namely, the proportion of PVC in the mixed plastics and heating rate adopted in the pyrolysis process were investigated. During the pyrolysis process for the mixed plastics containing PVC, the morphologic characteristics describing PVC dechlorination behaviors were obtained with help of a high-speed infrared camera and image processing tools. At the same time emission of hydrogen chloride (HCl) was detected to find out the start and termination of HCl release. The PVC contents in the mixed plastics varied from 0% to 12% in mass and the heating rate for PVC was changed from 10 to 60°C/min. The morphologic parameters including "bubble ratio" (BR) and "pixel area" (PA) were found to have obvious features matching with PVC dechlorination process therefore can be used to characterize dechlorination of PVC alone and in the mixed plastics. It has been also found that shape of HCl emission curve is independent of PVC proportions in the mixed plastics, but shifts to right side with elevated heating rate; and all of which can be quantitatively reflected in morphologic parameters vs. temperature curves. Copyright © 2016 Elsevier Ltd. All rights reserved.
Under anaerobic conditions, such as those typically found in buried sediments, the primary metabolic pathway for polychlorinated biphenyls (PCBs) is reductive dechlorination in which chlorine removal and substitution with hydrogen by bacteria result in a reduced organic compound ...
Impact Of Organic Solvents And Common Anions On 2-Chlorobiphenyl Dechlorination Kinetics With Pd/Mg
The current study evaluates Pd/Mg performance for 2-chlorobiphenyl (2-CB) dechlorination in the presence of naturally abundant anions such as sulfate, chloride, nitrate, hydroxide and carbonates and organic solvents that are used for ex-situ PCB extraction or may accompany PCB co...
The extent of reductive dechlorination occurring in contaminated, estuarine sediments was investigated. Contaminant and organic matter bioavailability and their effect on the reductive dechlorination of sediment-bound chlorobenzenes was the main focus of the work presented her...
EnviroMetal Technology's metal-enhanced dechlorination technology employs an electrochemical process that involves oxidation of iron and reductive dehalogenation of halogenated VOCs in aqueous media. The process can be operated as an above ground reactor or can alternatively perf...
Well-known, yet undefined, changes in the conditions and activity of palladized zerovalent iron (Fe/Pd) over an extended period of time hindered a careful study of dechlorination kinetics in long-term experiments. A short-term experimental method was, therefore, developed to stud...
This paper reports on extensive polychlorinated biphenyl (PCB) dechlorination measured in Lake Hartwell (Pickens County, SC) sediments. Vertical sediment cores were collected from 18 locations in Lake Hartwell (Pickens County, SC) and analyzed in 5-cm increments for PCB congeners...
Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalo...
The role served by the presence of methanogenic activity within a tetrachloroethene (PCE)-dechlorinating culture was investigated through a series of supplementation experiments. An acclimated lactate-enrichment culture (LEC 1) capable of rapidly converting PCE to ethene was s...
TCE was successfully dechlorinated in aqueous solution using granular graphite as the cathode in a mixed electrochemical reactor. In experiments with an initial TCE concentration of less than 100 mg/l, TCE was reduced approximately by 75% in the reactor under an applied cell volt...
Reductive dechlorination of DDT to DDD by yeast
Kallman, Burton J.; Andrews, Austin K.
1963-01-01
Labeled DDD [ 1,1-dichlor-o-2,2-bis(p-chlorophenyl)-ethane] was formed from C14-labeled DDT in the presence of yeast. The formation of DDD from DDE [1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene] was not observed, indicating that a reductive dechlorination of DDT occurs.
Sequential reductive dechlorination of hexachloro-1,3-butadiene (HCBD) was achieved by a mixed, methanogenic culture enriched from a contaminated estuarine sediment. Both methanol and lactate served as carbon and electron sources. Methanol was stoichiometrically converted to m...
A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...
Carbon stable isotope trichloroethylene (13C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to ...
Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds
NASA Technical Reports Server (NTRS)
Smith, G. B.
1996-01-01
The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.
Enantioselectivity of microbial reductive dechlorination of chiral PCBs in sediments from Lake Hartwell, SC, was determined by microcosm studies and enantiomer-specific GC analysis. Sediments from two locations in the vicinity of the highest levels of PCB contamination were used...
Our previous study on the electrocatalytic dechlorination of 2-chlorobiphenyl at a Pd-loaded granular graphite-packed electrode demonstrated that the process did not follow the first order kinetics. The rate constant varied with the applied potential at the beginning, but later b...
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.
2015-01-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent and bioaccumulative. In this study we investigated bacterial communities in soil microcosms spiked with PCB 52, 77 and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal and redox cycling (i.e. sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after two weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms, and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests they play a role in PCB dechlorination therein. PMID:25820643
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E
2015-08-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.
2002-01-01
The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182
Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D; Lowry, Gregory V
2017-01-15
The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10 -4 Lhr -1 m -2 ) and hydrogen evolution rate constant (1.4 nanomolLhr -1 m -2 ) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong
2015-06-15
A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia
Mao, Xinwei; Oremland, Ronald S.; Liu, Tong; Landers, Abigail A; Baesman, Shaun; Alvarez-Cohen, Lisa
2017-01-01
Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.
Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin
2015-11-01
The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia.
Mao, Xinwei; Oremland, Ronald S; Liu, Tong; Gushgari, Sara; Landers, Abigail A; Baesman, Shaun M; Alvarez-Cohen, Lisa
2017-02-21
Acetylene (C 2 H 2 ) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C 2 H 2 is known to inhibit bacterial dechlorination. In this study, we show that while high C 2 H 2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C 2 H 2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C 2 H 2 -fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C 2 H 2 -inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C 2 H 2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C 2 H 2 .
Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.
Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa
2005-11-01
Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men, Yujie; Yu, Ke; Bælum, Jacob
ABSTRACT The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin wasmore » not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCEThe key chloroethene-dechlorinating bacteriumDehalococcoides mccartyiis a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions betweenDehalococcoidesand the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles ofVeillonellaceaespecies in the communities compared to other coexisting community members in producing and providing corrinoids forDehalococcoidesspecies under cobalamin-limited conditions.« less
Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G.; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa
2017-01-01
ABSTRACT The aim of this study is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions. IMPORTANCE The key chloroethene-dechlorinating bacterium Dehalococcoides mccartyi is a cobalamin auxotroph, thus acquiring corrinoids from other community members. Therefore, it is important to investigate the microbe-microbe interactions between Dehalococcoides and the corrinoid-providing microorganisms in a community. This study provides systems-level information, i.e., taxonomic and functional compositions and dynamics of the supportive microorganisms in dechlorinating communities under different cobalamin conditions. The findings shed light on the important roles of Veillonellaceae species in the communities compared to other coexisting community members in producing and providing corrinoids for Dehalococcoides species under cobalamin-limited conditions. PMID:28188205
Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V
2007-11-15
Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] < or = 0.46 mM and decreased by less than a factor of 2 for further increases in TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- < SO4(2-) < HCO3- < HPO4(2). This order is consistent with their affinity to form complexes with iron oxide. Nitrate, a NZVI-reducible groundwater solute, present at 0.2 and 1 mN did not affect the rate of TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).
Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.
1999-01-01
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967
Huff, Glenn F.; Braun, Christopher L.; Lee, Roger W.
2000-01-01
Redox conditions in the Numerous Sand Channels Zone beneath a petrochemical reclamation site in Harris County, Texas, range from sulfate reducing to methanogenic as indicated by the presence of methane in ground water and the range of molecular hydrogen concentrations. Assessment of the potential for reductive dechlorination using BIOCHLOR as a screening tool indicated conditions favoring anaerobic degradation of chlorinated organic compounds in the Numerous Sand Channels Zone. Evidence supporting reductive dechlorination includes apparently biogenic cis-1,2-dichloroethene; an increased ratio of 1,2-dichloroethane to 1,1,2-trichloroethane downgradient from the assumed contaminant source area; ethene and methane concentrations greater than background concentrations within the area of the contaminant plume; and a positive correlation of the ratio of ethene to vinyl chloride as a function of methane concentrations. The body of evidence presented in this report argues for hydrogenolysis of trichloroethene to cis-1,2-dichloroethene; of 1,1,2-trichloroethane to 1,2-dichloroethane; and of vinyl chloride to ethene within the Numerous Sand Channels Zone. Simulations using BIOCHLOR yielded apparent first-order decay constants for reductive dechlorination in the sequence Tetrachloroethene --> trichloroethene --> cis-1,2-dichloroethene --> vinyl chloride --> ethene within the range of literature values reported for each compound and apparent first-order decay constants for reductive dechlorination in the sequence 1,1,2-trichloroethane --> 1,2-dichloroethane slightly greater than literature values reported for each compound along the upgradient segment of a simulated ground-water flowpath. Except for vinyl chloride, apparent rates of reductive dechlorination for all simulated species show a marked decrease along the downgradient segment of the simulated ground-water flowpath. Evidence for reductive dechlorination of chlorinated ethenes within the Numerous Sand Channels Zone indicates potential for natural attenuation of chlorinated ethenes. Reductive dechlorination of chlorinated ethanes apparently occurs to a lesser extent, indicating relatively less potential for natural attenuation of chlorinated ethanes. Additional data are needed on the concentrations and distribution of chlorinated ethenes and ethanes in individual fine sand intervals of the Numerous Sand Channels Zone. This information, combined with lower minimum reporting levels for future chloroethane analyses, might enable a more complete and quantitative assessment of the potential for natural attenuation at the site.
Nthumbi, Richard M; Ngila, Jane C
2016-10-01
A novel approach for the electrospinning and functionalization of nanocatalyst-loaded polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) composite grafted with acrylic acid (AA; which form polyacrylic acid (PAA) brush) and decorated with silver (Ag/PAN/PVDF-g-PAA-TiO 2 /Fe-Pd) designed for the dechlorination and photodegradation of pesticides was carried out. PAN was used both as a nitrogen dopant as well as a co-polymer. Smooth nanofibers were obtained by electrospinning a solution of 12:2 wt.% PVDF/PAN blend using dimethylformamide (DMF) as solvent. The nanofibers were grafted with AA by free-radical polymerization using 2,2'azobis(2-methylpropionitrile) (AIBN) as initiator. Both bimetallic iron-palladium (Fe-Pd) and titania (TiO 2 ) nanoparticles (NP) were anchored on the grafted nanofibers via the carboxylate groups by in situ and ex situ synthesis. The Fe-Pd and nitrogen-doped TiO 2 nanoparticles were subsequently used for dechlorination and oxidation of target pollutants (dieldrin, chlorpyrifos, diuron, and fipronil) to benign products. Structural and chemical characterizations of the composites were done using various techniques. These include surface area and porosity analyzer (ASAP) using the technique by Brunner Emmett Teller (BET), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM) analyses were done. After dechlorination, the transformation products (TPs) for dieldrin, chlorpyrifos, diuron, and fipronil were obtained and identified using two-dimensional gas chromatography (time-of-flight) with a mass spectrometer detector (GCxGC-TOFMS). Analysis of total organic carbon (TOC) was carried out and used to extrapolate percentage mineralization. Experimental results showed that dechlorination efficiencies of 96, 93, 96, and 90 % for 1, 2, 2, and 3 h treatment period were respectively achieved for 5 ppm solutions of dieldrin, chlorpyrifos, diuron, and fipronil. The dechlorination of dieldrin, diuron, and fipronil follows first-order kinetics while that of chlorpyrifos followed pseudo-first order. Mineralization performance of 34 to 45 % were recorded when Fe-Pd was used, however upon electrospinning, doping, and grafting (Ag/PAN/PVDF-g-PAA-TiO 2 /Fe-Pd composite); it significantly increased to 99.9999 %. This composite reveals great potential for dechlorination and mineralization of pesticides in contaminated water.
The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) an...
The study aims to compare the detection of 16S rRNA gene of Dehalococcoides species and the microcosm study for biotransformation in predicting reductive dechlorination of chlorinated ethylenes in ground water at hazardous waste sites. A total of 72 ground water samples were coll...
Correlation Of 2-Chlorobiphenyl Dechlorination By Fe/Pd With Iron Corrosion At Different pH
The rate of 2-chlorobiphenyl dechlorination by palladized iron (Fe/Pd) decreased with increasing pH until pH > 12.5. Iron corrosion potential (Ec) and current (jc), obtained from polarization curves of a rotating disk electrode of iron, followed the Tafel e...
Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field application.
Tiehm, Andreas; Schmidt, Kathrin R
2011-06-01
Because of a range of different industrial activities, sites contaminated with chloroethenes are a world-wide problem. Chloroethenes can be biodegraded by reductive dechlorination under anaerobic conditions as well as by oxidation under aerobic conditions. The tendency of chloroethenes to undergo reductive dechlorination decreases with a decreasing number of chlorine substituents, whereas with less chlorine substituents chloroethenes more easily undergo oxidative degradation. There is currently a growing interest in aerobic metabolic degradation of chloroethenes, which demonstrates advantages compared to cometabolic degradation pathways. Sequential anaerobic/aerobic biodegradation can overcome the disadvantages of reductive dechlorination and leads to complete mineralization of the chlorinated pollutants. This approach shows promise for site remediation in natural settings and in engineered systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.
Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang
2015-01-01
Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of TCDD biodegradability under different redox conditions.
Kao, C M; Chen, S C; Liu, J K; Wu, M J
2001-09-01
Polychlorinated dibenzo-p-dioxins have been generated as unwanted by-products in many industrial processes. Although their widespread distribution in different environmental compartments has been recognized, little is known about their fate in the ultimate environment sinks. The highly stable dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been called the most toxic compound known to man. In this laboratory microcosm study, TCDD bioavailability was evaluated under five reduction/oxidation (redox) conditions including aerobic biodegradation, aerobic cometabolism, methanogenesis, iron reduction, and reductive dechlorination. Activated sludge and aquifer sediments from a TCDD and a pentachlorophenol (PCP) contaminated site were used as the inocula. Acetate, sludge cake, and cane molasses were used as the primary substrates (carbon sources) in cometabolism and reductive dechlorination microcosms. After a 90-day incubation period, microcosms constructed under reductive dechlorination conditions were the only treatment showing promising remediation results. The highest TCDD degradation rate [up to 86% of TCDD removal (with an initial concentration of 96 microg/kg of soil)] was observed in the microcosms with anaerobic activated sludge as the microbial inocula and sludge cakes as the primary substrates. Except for reductive dechlorination microcosms, no significant TCDD removal was observed in the microcosms prepared under other conditions. Thus, application of an effective primary substrate to enhance the reductive dechlorination process is a feasible method for TCDD bioremediation. Bioremediation expense can be significantly reduced by the supplement of some less expensive alternative substrates (e.g., sludge cakes, cane molasses). Results would be useful in designing a scale-up in situ or on-site bioremediation system such as bioslurry reactor for field application.
Microbial based chlorinated ethene destruction
Bagwell, Christopher E [Aiken, SC; Freedman, David L [Clemson, SC; Brigmon, Robin L [North Augusta, SC; Bratt, William B [Atlanta, GA; Wood, Elizabeth A [Marietta, GA
2009-11-10
A mixed culture of Dehalococcoides species is provided that has an ability to catalyze the complete dechlorination of polychlorinated ethenes such as PCE, TCE, cDCE, 1,1-DCE and vinyl chloride as well as halogenated ethanes such as 1,2-DCA and EDB. The mixed culture demonstrates the ability to achieve dechlorination even in the presence of high source concentrations of chlorinated ethenes.
Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae
2008-12-30
In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.
Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang
2017-01-01
This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h−1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7–6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42−, HCO3− and NO3− all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater. PMID:28264061
Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang
2017-01-01
This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.
Dechlorination Mechanism of CuCl Residue from Zinc Hydrometallurgy by Microwave Roasting
NASA Astrophysics Data System (ADS)
Lu, Shuaidan; Ju, Shaohua; Peng, Jinhui; Zhu, Xiaoping; Srinivasakannan, C.; Zhang, Libo; Tu, Ganfeng
2015-04-01
Removal of chlorine (Cl) from the CuCl residue in the process of zinc hydrometallurgy is of great importance to improve the process economics. The current processing methods result in generation of large quantities of polluted discharge necessitating waste treatment systems. The present work attempts to de-chlorinate the CuCl residue through thermal treatment with application of microwave, towards which the effect of the major experimental factors such as roasting temperature, heating duration and particle size of samples on the process has been investigated. And the changes of Gibbs free energy (ΔG) of the dechlorination reactions are calculated which show that: 1) CuCl can react with H2O and air to produce CuO and HCl(g); 2) CuCl can be oxidized by air into CuO and Cl2 would be released. The tail gas chromatography, XRD and SEM-EDS analysis results of samples before and after microwave roasting verified the thermodynamics study results. Thus, the process of dechlorination by microwave roasting technology is feasible, and the tail gas can be mainly HCl(g) and air which can be absorbed with water and produce hydrochloride easily.
Accumulation of dechlorination daughter products: A valid metric of chloroethene biodegradation
Bradley, Paul M.; Chapelle, Frank H.
2007-01-01
In situ reductive dechlorination of perchloroethene (PCE) and trichloroethene (TCE) generates characteristic chlorinated (cis-dichloroethene [cis-DCE] and vinyl chloride [VC]) and nonchlorinated (ethene and ethane) products. The accumulation of these daughter products is commonly used as a metric for ongoing biodegradation at field sites. However, this interpretation assumes that reductive dechlorination is the only chloroethene degradation process of any significance in situ and that the characteristic daughter products of chloroethene reductive dechlorination persist in the environment. Laboratory microcosms, prepared with aquifer and surface-water sediments from hydrologically diverse sites throughout the United States and amended with [1,2-14C] TCE, [1,2-14C] DCE, [1,2-14C] DCA, or [1,2-14C] VC, demonstrated widely variable patterns of intermediate and final product accumulation. In predominantly methanogenic sediment treatments, accumulation of 14C-DCE, 14C-VC, 14C-ethene, and 14C-ethane predominated. Treatments characterized by significant Fe(III) and/or Mn(IV) reduction, on the other hand, demonstrated substantial, and in some cases exclusive, accumulation of 14CO2and 14CH4. These results suggest that relying on the accumulation of cis-DCE, VC, ethene, and ethane may substantially underestimate overall chloroethene biodegradation at many sites.
Dechlorination of small quantities of mixed waste from a DOE site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoeffner, S.L.
1994-12-31
Sludge from tank bottoms containing PCB`s, radioactivity and hazardous constituents are present in several tanks at one of the National Laboratories. Disposal of the material can proceed if the material is removed from TSCA regulations by decreasing the concentration of the PCB`s to {le}2 ppm. ON the bench scale, this sludge was treated by the DECHLOR/KGME{sup {trademark}} chemical dechlorination process. The levels of PCB`s were reduced to below 2 ppm, allowing the material to be managed outside the TSCA regulations. RUST believes that this is the first successful chemical dechlorination of a radioactive, RCRA listed, PCB bearing waste. A pilotmore » scale unit is available to provide on-site treatment of the remaining waste. Because of the small amounts of waste, treatment costs are high on a per unit volume. As a result of these high costs and other concerns the client is investigating potential non-treatment options of delisting the waste of obtaining a waiver. In the event that this particular waste cannot be delisted or a waiver is not granted, then dechlorination of the waste to remove it from TSCA regulations remains a viable option to allow the material to be disposed.« less
Kranzioch, Irene; Ganz, Selina; Tiehm, Andreas
2015-02-01
The anaerobic Dehalococcoides spp. is the only microorganism known to completely dechlorinate the hazardous compounds tetrachloroethene (PCE) or trichloroethene (TCE) via dichloroethene (DCE) and vinyl chloride (VC) to the terminal product, ethene. In this study, growth of Dehalococcoides spp. (DHC) and the expression of DHC dehalogenase genes were demonstrated for Yangtze enrichment cultures. Reductive dechlorination of chloroethenes occurred in Yangtze sediment without the addition of any external auxiliary substrates. All Yangtze enrichment cultures completely dechlorinated PCE and cis-DCE to ethene. To investigate expression of the dehalogenase genes pceA, tceA, vcrA, and bvcA, a protocol for messenger RNA (mRNA) extraction followed by reverse transcription and quantitative PCR analysis was established. During dechlorination, an increase in gene copy numbers of pceA, tceA, and vcrA was observed. However, temporary formation of mRNA was only measured in the case of the dehalogenase genes tceA and vcrA. Comparison of DHC dehalogenase patterns indicated that the Yangtze DHC community does not match any of the previously published enrichment cultures that were obtained from contaminated areas in the USA or Europe.
Gao, Weichun; Zhang, Yongxiang; Zhang, Xiaoye; Duan, Zhilong; Wang, Youhao; Qin, Can; Hu, Xiao; Wang, Hao; Chang, Shan
2015-11-01
In this study, coarse sand-supported zero valent iron (ZVI) composite was synthesized by adding sodium alginate to immobilize. Composite was detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). SEM results showed that composite had core-shell structure and a wide porous distribution pattern. The synthesized composite was used for degradation of 2,4-dichlorophenol (2,4-DCP) contamination in groundwater. Experimental results demonstrated that degradation mechanism of 2,4-DCP using coarse sand-supported ZVI included adsorption, desorption, and dechlorination. 2,4-DCP adsorption was described as pseudo-second-order kinetic model. It was concluded that dechlorination was the key reaction pathway, ZVI and hydrogen are prime reductants in dechlorination of 2,4-DCP using ZVI.
NASA Astrophysics Data System (ADS)
Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel
2014-05-01
Chlorinated ethenes (CEs) such as tetrachloroethene (PCE) are common persistent groundwater contaminants. Among clean-up strategies applied to sites affected by such pollution, bioremediation has been considered with a growing interest as it represents a cost-effective, environmental friendly approach. This technique however sometimes leads to an incomplete and slow biodegradation of CEs resulting in an accumulation of toxic metabolites. Understanding the reaction mechanisms underlying anaerobic reductive dechlorination would thus help assessing PCE biodegradation in polluted sites. Stable isotope analysis can provide insight into reaction mechanisms. For chlorinated hydrocarbons, carbon (C) and chlorine (Cl) isotope data (δ13C and δ37Cl) tend to show a linear correlation with a slope (m ≡ ɛC/ɛCl) characteristic of the reaction mechanism [1]. This study hence aims at exploring the potential of a dual C-Cl isotope approach in the determination of the reaction mechanisms involved in PCE reductive dechlorination. C and Cl isotope fractionation were investigated during anaerobic PCE dechlorination by two bacterial consortia containing members of the Sulfurospirillum genus. The specificity in these consortia resides in the fact that they each conduct PCE reductive dechlorination catalysed by one different reductive dehalogenase, i.e. PceADCE which yields trichloroethene (TCE) and cis-dichloroethene (cDCE), and PceATCE which yields TCE only. The bulk C isotope enrichment factors were -3.6±0.3 o for PceATCE and -0.7±0.1o for PceADCE. The bulk Cl isotope enrichment factors were -1.3±0.2 o for PceATCE and -0.9±0.1 o for PceADCE. When applying the dual isotope approach, two m values of 2.7±0.1 and 0.7±0.2 were obtained for the reductive dehalogenases PceATCE and PceADCE, respectively. These results suggest that PCE can be degraded according to two different mechanisms. Furthermore, despite their highly similar protein sequences, each reductive dehalogenase seems to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.
Use of Nucleic Acid-Based Tools for Monitoring Biostimulation and Bioaugmentation
2011-01-01
dechlorination is a promising process for biodegradation of chlorinated solvents. The successful field evaluation and implementation of the reductive...These specialized bacteria use the chlorinated ethenes as electron acceptors and gain energy for growth from the reductive dechlorination reactions...protocol addresses the use of MBTs to quantitatively assess the Dhc population at chlorinated ethene sites and aims at providing guidance to evaluate
Assessing the Feasibility of DNAPL Source Zone Remediation: Review of Case Studies
2004-05-01
such as sugars, alcohols, fatty acids that are fermented to hydrogen and used for reductive dechlorination) are more soluble than the chlorinated...addition because a greater percentage of the hydrogen produced during the fermentation of added electron donors is consumed by dechlorinating...Battelle, 2002; Stegemeier and Vinegar , 2001; Roote, 2003; USEPA, 1999): i) increasing vapor pressure and volatilization rates of low boiling point
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.
2013-08-01
Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time), strongly influenced the extent of reductive dechlorination. When cis-DCE inhibition was neglected, the model over-predicted ethene production ten-fold, while reductions in residence time (i.e., a two-fold decrease in column length or two-fold increase in flow rate) resulted in a more than 70% decline in ethene production. These results suggest that spatial and temporal variations in microbial community composition and activity must be understood to model, predict, and manage bioenhanced NAPL dissolution.
Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo
2018-01-01
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value (R2 = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils. PMID:29702570
Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor
NASA Astrophysics Data System (ADS)
Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.
2010-12-01
A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.
Organohalide respiration and bioremediation: harnessing biogeochemical cycles (Invited)
NASA Astrophysics Data System (ADS)
Edwards, E.; Hug, L.; Perez de Mora, A.
2013-12-01
Groundwater contamination is a serious threat to global health and prosperity. Chlorinated solvents are widely used as industrial degreasers, dry-cleaning agents and precursors in chemical synthesis, and therefore are common groundwater contaminants. Owing to their toxicity, even small spills render groundwater unsuitable for use, and cleanup is typically a costly and long-term undertaking. Dehalococcoides, Dehalobacter, Dehalogenimonas and other unusual microbes have been discovered that can dechlorinate many groundwater contaminants, in particular, the common solvents tetrachloroethene and trichloroethene to the benign product ethene. Remarkably, these organisms obtain energy for growth from dechlorination in a process termed organohalide respiration. The use of biostimulation and bioaugmentation is growing, even at sites with complex hydrogeology and high concentrations of contaminants. Molecular understanding of the unusual metabolism of these organisms is helping to design successful remediation strategies. Four aspects will be emphasized: 1) the nature of the remarkable enzymes that catalyze dechlorination reactions, 2) the role of the non-dechlorinating microbes in providing essential nutrients to dechlorinating organisms, 3) the effects of mixtures of contaminants and 4) the origins of organohalide respiration. Morevoer, the hunt is on to further explore nature's diversity to discover other unusual or novel microbes capable of detoxifying a broader range of contaminants. New molecular biology and genomic tools are helping us understand how these microbes make a living, and how we can take advantage of their abilities to clean up the environment. In this presentation I will review some of the current trends in bioremediation with particular focus on how molecular tools are helping with remediation design, scope and troubleshooting. I will draw from a number of examples from my own laboratory and elsewhere.
Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA*
Pimviriyakul, Panu; Thotsaporn, Kittisak; Sucharitakul, Jeerus; Chaiyen, Pimchai
2017-01-01
The accumulation of chlorophenols (CPs) in the environment, due to their wide use as agrochemicals, has become a serious environmental problem. These organic halides can be degraded by aerobic microorganisms, where the initial steps of various biodegradation pathways include an oxidative dechlorinating process in which chloride is replaced by a hydroxyl substituent. Harnessing these dechlorinating processes could provide an opportunity for environmental remediation, but detailed catalytic mechanisms for these enzymes are not yet known. To close this gap, we now report transient kinetics and product analysis of the dechlorinating flavin-dependent monooxygenase, HadA, from the aerobic organism Ralstonia pickettii DTP0602, identifying several mechanistic properties that differ from other enzymes in the same class. We first overexpressed and purified HadA to homogeneity. Analyses of the products from single and multiple turnover reactions demonstrated that HadA prefers 4-CP and 2-CP over CPs with multiple substituents. Stopped-flow and rapid-quench flow experiments of HadA with 4-CP show the involvement of specific intermediates (C4a-hydroperoxy-FAD and C4a-hydroxy-FAD) in the reaction, define rate constants and the order of substrate binding, and demonstrate that the hydroxylation step occurs prior to chloride elimination. The data also identify the non-productive and productive paths of the HadA reactions and demonstrate that product formation is the rate-limiting step. This is the first elucidation of the kinetic mechanism of a two-component flavin-dependent monooxygenase that can catalyze oxidative dechlorination of various CPs, and as such it will serve as the basis for future investigation of enzyme variants that will be useful for applications in detoxifying chemicals hazardous to human health. PMID:28159841
Jiang, Yuhui; Shang, Yixuan; Yu, Shuyao; Liu, Jianguo
2018-04-27
Hexachlorobenzene (HCB) contamination of soils remains a significant environmental challenge all over the world. Reductive stabilization is a developing technology that can decompose the HCB with a dechlorination process. A nanometallic Al/CaO (n-Al/CaO) dispersion mixture was developed utilizing ball-milling technology in this study. The dechlorination efficiency of HCB in contaminated soils by the n-Al/CaO grinding treatment was evaluated. Response surface methodology (RSM) was employed to investigate the effects of three variables (soil moisture content, n-Al/CaO dosage and grinding time) and the interactions between these variables under the Box-Behnken Design (BBD). A high regression coefficient value ( R ² = 0.9807) and low p value (<0.0001) of the quadratic model indicated that the model was accurate in predicting the experimental results. The optimal soil moisture content, n-Al/CaO dosage, and grinding time were found to be 7% (m/m), 17.7% (m/m), and 24 h, respectively, in the experimental ranges and levels. Under optimal conditions, the dechlorination efficiency was 80%. The intermediate product analysis indicated that dechlorination was the process by stepwise loss of chloride atoms. The main pathway observed within 24 h was HCB → pentachlorobenzene (PeCB) → 1,2,3,4-tetrachlorobenzene (TeCB) and 1,2,4,5-TeCB. The results indicated that the moderate soil moisture content was crucial for the hydrodechlorination of HCB. A probable mechanism was proposed wherein water acted like a hydrogen donor and promoted the hydrodechlorination process. The potential application of n-Al/CaO is an environmentally-friendly and cost-effective option for decontamination of HCB-contaminated soils.
PCE dechlorination by non-Dehalococcoides in a microbial electrochemical system.
Yu, Jaecheul; Park, Younghyun; Nguyen, Van Khanh; Lee, Taeho
2016-08-01
The bioremediation of tetrachloroethene (perchloroethene; PCE) contaminated sites generally requires a supply of some fermentable organic substrates as an electron donor. On the other hand, organic substrates can induce the massive growth of microorganisms around the injection wells, which can foul the contaminated subsurface environment. In this study, PCE dechlorination to ethene was performed in a microbial electrochemical system (MES) using the electrode (a cathode polarized at -500 mV vs. standard hydrogen electrode) as the electron donor. Denaturing gel gradient electrophoresis and pyrosequencing revealed a variety of non-Dehalococcoides bacteria dominant in MES, such as Acinetobacter sp. (25.7 % for AS1 in suspension of M3), Rhodopseudomonas sp. (10.5 % for AE1 and 10.1 % for AE2 in anodic biofilm of M3), Pseudomonas aeruginosa (22.4 % for BS1 in suspension of M4), and Enterobacter sp. (21.7 % for BE1 in anodic biofilm of M4) which are capable of electron transfer, hydrogen production and dechlorination. The Dehalococcoides group, however, was not detected in this system. Therefore, these results suggest that a range of bacterial species outside the Dehalococcoides can play an important role in the microbial electrochemical dechlorination process, which may lead to innovative bioremediation technology.
Němeček, Jan; Dolinová, Iva; Macháčková, Jiřina; Špánek, Roman; Ševců, Alena; Lederer, Tomáš; Černík, Miroslav
2017-10-01
Biomolecular and hydrochemical tools were used to evaluate natural attenuation of chlorinated ethenes in a Quaternary alluvial aquifer located close to a historical source of large-scale tetrachloroethylene (PCE) contamination. Distinct stratification of redox zones was observed, despite the aquifer's small thickness (2.8 m). The uppermost zone of the target aquifer was characterised by oxygen- and nitrate-reducing conditions, with mixed iron- to sulphate-reducing conditions dominant in the lower zone, along with indications of methanogenesis. Natural attenuation of PCE was strongly influenced by redox heterogeneity, while higher levels of PCE degradation coincided with iron- to sulphate reducing conditions. Next generation sequencing of the middle and/or lower zones identified anaerobic bacteria (Firmicutes, Chloroflexi, Actinobacteria and Bacteroidetes) associated with reductive dechlorination. The relative abundance of dechlorinators (Dehalococcoides mccartyi, Dehalobacter sp.) identified by real-time PCR in soil from the lower levels supports the hypothesis that there is a significant potential for reductive dechlorination of PCE. Local conditions were insufficiently reducing for rapid complete dechlorination of PCE to harmless ethene. For reliable assessment of natural attenuation, or when designing monitoring or remedial systems, vertical stratification of key biological and hydrochemical markers should be analysed as standard, even in shallow aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach
NASA Astrophysics Data System (ADS)
Schaefer, Charles E.; Lippincott, David R.; Klammler, Harald; Hatfield, Kirk
2018-02-01
An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4 m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151 days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.
Development and composition of a mixed culture for bioremediation of chlorinated ethenes and ethanes
Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.
2005-01-01
Microbial organisms capable of dechlorinating 1,1,2,2 tetrachloroethane (TeCA) and its chlorinated ethane and ethylene daughter products were enriched in surface sediments collected from the West Branch Canal Creek wetland area, leading to the formation of two mixed cultures using slightly different enrichment methods. Both WBC-1 and WBC-2 were capable of rapid and complete reductive dechlorination of TeCA and its daughter products (1,1,2-trichloroethane, 1,2-dichloroethane, trichloroethylene, 1,2-dichloroethylene, and vinyl chloride) to ethylene, and addition of either culture to wetland sediment and to engineered peat/compost mixtures resulted in significant enhancement of dechlorination. However, the WBC-2 culture supported better sustained activity and was more readily scaled up for application in bioaugmentation treatments, whereas dechlorination activity was gradually lost in WBC-1. The microbial composition of WBC-1 and WBC-2 were determined by cloning and sequencing 500 base pairs of the 16S rDNA gene and the methyl co-reductase. Methanogens identified in the consortia were members of the Order Methanomicrobiales, which includes acetoclastic methanogens. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
NASA Astrophysics Data System (ADS)
Fang, Liping; Xu, Cuihong; Zhang, Wenbin; Huang, Li-Zhi
2018-03-01
The important role of polyvinylpyrrolidone (PVP) and Cu on the reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) by Cu/Fe bimetal nanoparticles has been investigated. The synthesized PVP coated Cu/Fe bimetal nanoparticles with different Cu/Fe ratios were systematically characterized by FTIR, XRD, TEM and magnetic hysteresis loops. The Cu/Fe ratio and the PVP loading were optimized for dechlorination performance, and the optimum ratio of PVP to Cu/Fe was found to be 0.35 and the content of Cu in Cu/Fe nanoparticles was 41%. The presence of PVP as a dispersant/stabilizer results in a highly-dispersed Cu/Fe NPs and increase the reactivity of Cu/Fe NPs for 2,4-DCP removal. The dechlorination rate was enhanced at lower pH and higher temperature conditions. The presence of humic acid, PO43-, NO3-, SO42- leads to a slightly decreased removal efficiency of 2,4-DCP. The magnetic property of PVP-Cu/Fe nanoparticles allows rapid magnetic separation of the catalysts after reaction. A galvanic corrosion model was proposed where iron corrodes and transfers electrons to Cu-rich catalytic regions of the nanoparticles, and finally accelerating the reduction efficiency of 2,4-DCP.
Tang, Min
2018-07-01
The sulfite-mediated photoreduction (SMP) with UV-C light showed promising performances especially for dechlorination of chlorinated organic compounds (e.g., 2, 4, 6-trichlorophenol (TCP)). The investigation of SMP for TCP is commented and proposed in order to clarify the mechanisms involved. Copyright © 2018 Elsevier Ltd. All rights reserved.
Insights into dechlorination of PCE and TCE from carbon isotope fractionation by vitamin B12
NASA Astrophysics Data System (ADS)
Slater, G.; Sherwood Lollar, B.; Lesage, S.; Brown, S.
2003-04-01
Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is both a potential remediation technique and an analogue of the microbial reductive dechlorination reaction. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. 10 mg/L vitamin B12 degraded greater than 90% of an initial concentration of PCE of 20 mg/L. TCE, the primary product of PCE degradation, accounted for between 64 - 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded greater than 90% of an initial concentration of TCE of 20 mg/L. Cis-dichloroethene (cDCE), the primary product of TCE degradation, accounted for between 30 - 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described by a Rayleigh model with enrichment factors between -16.5 ppm and -15.8 ppm for PCE, and -17.2 ppm and -16.6 ppm for TCE. Fractionation was similar in all four experiments, with a mean enrichment factor of -16.5 +/- 0.6 ppm. These large enrichment factors indicate that isotopic analysis can be used to assess the occurrence of dechlorination of PCE and TCE by vitamin B12 in remediation situations. Significantly, the Rayleigh model could be used to predict the isotopic compositions of the major products of the reaction as well as the reactant, notwithstanding the lack of complete mass balance observed between product and reactant. This evidence suggests that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e for this reaction and those observed for microbial biodegradation of the chlorinated ethenes suggest that there may be differences in the rate determining step for these two processes. Determining which steps are rate determining during degradation may allow optimization of contaminant remediation.
Braun, Christopher L.
2004-01-01
The Double Eagle Refining Superfund site and the Fourth Street Abandoned Refinery Superfund site are in northeast Oklahoma City, Oklahoma, adjacent to one another. The Double Eagle facility became a Superfund site on the basis of contamination from lead and volatile organic compounds; the Fourth Street facility on the basis of volatile organic compounds, pesticides, and acid-base neutral compounds. The study documented in this report was done to investigate whether reductive dechlorination of chlorinated ethenes under oxidation-reduction conditions is occurring in two zones of the Garber-Wellington aquifer (shallow zone 30–60 to 75 feet below land surface, deep zone 75 to 160 feet below land surface) at the sites; and to construct potentiometric surfaces of the two water-yielding zones to determine the directions of groundwater flow at the sites. The presence in some wells of intermediate products of reductive dechlorination, dichloroethene and vinyl chloride, is an indication that reductive dechlorination of trichloroethene is occurring. Dissolved oxygen concentrations (less than 0.5 milligram per liter) indicate that consumption of dissolved oxygen likely had occurred in the oxygen-reducing microbial process associated with reductive dechlorination. Concentrations of nitrate and nitrite nitrogen (generally less than 2.0 and 0.06 milligrams per liter, respectively) indicate that nitrate reduction probably is not a key process in either aquifer zone. Concentrations of ferrous iron greater than 1.00 milligram per liter in the majority of wells sampled indicate that iron reduction is probable. Concentrations of sulfide less than 0.05 milligram per liter in all wells indicate that sulfate reduction probably is not a key process in either zone. The presence of methane in ground water is an indication of strongly reducing conditions that facilitate reductive dechlorination. Methane was detected in all but one well. In the shallow zone in the eastern part of the study area, ground water flowing from the northwest and south coalesces in a potentiometric trough, then moves westward and ultimately northwestward. In the western part of the study area, ground water in the shallow zone flows northwest. In the deep zone in the eastern part of the study area, ground water generally flows northwestward; and in the western part of the study area, ground water in the deep zone generally flows northward.
2014-07-01
at an effective concentration at the DNAPL:water interface for the growth of and consumption by dechlorinating biomass . In heterogeneous geological...the promotion of dechlorinating biomass growth close to the DNAPL, which results in sustained enhanced DNAPL dissolution rates. This approach...fine- grained sands with varying amounts of shell fragments, with a hydraulic conductivity of 3 ft/day in the 30 to 45 ft BLS interval; • 45 to 48 ft
Buttet, Géraldine Florence; Murray, Alexandra Marie; Goris, Tobias; Burion, Mélissa; Jin, Biao; Rolle, Massimo; Holliger, Christof; Maillard, Julien
2018-05-01
Two anaerobic bacterial consortia, each harboring a distinct Sulfurospirillum population, were derived from a 10 year old consortium, SL2, previously characterized for the stepwise dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (cis-DCE) via accumulation of trichloroethene (TCE). Population SL2-1 dechlorinated PCE to TCE exclusively, while SL2-2 produced cis-DCE from PCE without substantial TCE accumulation. The reasons explaining the long-term coexistence of the populations were investigated. Genome sequencing revealed a novel Sulfurospirillum species, designated 'Candidatus Sulfurospirillum diekertiae', whose genome differed significantly from other Sulfurospirillum spp. (78%-83% ANI). Genome-wise, SL2-1 and SL2-2 populations are almost identical, but differences in their tetrachloroethene reductive dehalogenase sequences explain the distinct dechlorination patterns. An extended series of batch cultures were performed at PCE concentrations of 2-200 μM. A model was developed to determine their dechlorination kinetic parameters. The affinity constant and maximal growth rate differ between the populations: the affinity is 6- to 8-fold higher and the growth rate 5-fold lower for SL2-1 than SL2-2. Mixed cultivation of the enriched populations at 6 and 30 μM PCE showed that a low PCE concentration could be the driving force for both functional diversity of reductive dehalogenases and niche specialization of organohalide-respiring bacteria with overlapping substrate ranges.
Chapelle, Francis H.; Thomas, Lashun K.; Bradley, Paul M.; Rectanus, Heather V.; Widdowson, Mark A.
2012-01-01
Aquifer sediment and groundwater chemistry data from 15 Department of Defense facilities located throughout the United States were collected and analyzed with the goal of estimating the amount of natural organic carbon needed to initiate reductive dechlorination in groundwater systems. Aquifer sediments were analyzed for hydroxylamine and NaOH-extractable organic carbon, yielding a probable underestimate of potentially bioavailable organic carbon (PBOC). Aquifer sediments were also analyzed for total organic carbon (TOC) using an elemental combustion analyzer, yielding a probable overestimate of bioavailable carbon. Concentrations of PBOC correlated linearly with TOC with a slope near one. However, concentrations of PBOC were consistently five to ten times lower than TOC. When mean concentrations of dissolved oxygen observed at each site were plotted versus PBOC, it showed that anoxic conditions were initiated at approximately 200 mg/kg of PBOC. Similarly, the accumulation of reductive dechlorination daughter products relative to parent compounds increased at a PBOC concentration of approximately 200 mg/kg. Concentrations of total hydrolysable amino acids (THAA) in sediments also increased at approximately 200 mg/kg, and bioassays showed that sediment CO2 production correlated positively with THAA. The results of this study provide an estimate for threshold amounts of bioavailable carbon present in aquifer sediments (approximately 200 mg/kg of PBOC; approximately 1,000 to 2,000 mg/kg of TOC) needed to support reductive dechlorination in groundwater systems.
Flowpath independent monitoring of reductive dechlorination potential in a fractured rock aquifer
Bradley, P.M.; Lacombe, P.J.; Imbrigiotta, T.E.; Chapelle, F.H.; Goode, D.J.
2009-01-01
The flowpath dependent approaches that are typically employed to assess biodegradation of chloroethene contaminants in unconsolidated aquifers are problematic in fractured rock settings, due to difficulties defining discrete groundwater flowpaths in such systems. In this study, the variation in the potential for chloroethene biodegradation with depth was evaluated in a fractured rock aquifer using two flowpath independent lines of field evidence: (1) the presence of the three biochemical prerequisites [electron donor(s), chloroethene electron acceptor(s), and chlororespiring microorganism(s)] for efficient chloroethene chlororespiration and (2) the in situ accumulation of chloroethene reductive dechlorination daughter products. The validity of this approach was assessed by comparing field results with the results of [1, 2- 14C] cis-DCE microcosm experiments. Microcosms were prepared with depth-specific core material, which was crushed and emplaced in discrete packer intervals for 1 year to allow colonization by the indigenous microbial community. Packer intervals characterized by significant electron donor concentrations, elevated numbers of chlororespiring microorganisms, and high reductive dechlorination product to parent contaminant ratios correlated well with the production of 14C-labeled reductive dechlorination products in the microcosm experiments. These results indicate that, in the absence of information on discrete groundwater flowpaths, a modified approach emphasizing flowpath independent lines of evidence can provide insight into the temporal and spatial variability of contaminant biodegradation in fractured rock systems. ?? 2009 National Ground Water Association.
Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
Haest, P J; Springael, D; Smolders, E
2010-01-01
The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.
Sheu, Y T; Chen, S C; Chien, C C; Chen, C C; Kao, C M
2015-03-02
A long-lasting emulsified colloidal substrate (LECS) was developed for continuous carbon and nanoscale zero-valent iron (nZVI) release to remediate trichloroethylene (TCE)-contaminated groundwater under reductive dechlorinating conditions. The developed LECS contained nZVI, vegetable oil, surfactants (Simple Green™ and lecithin), molasses, lactate, and minerals. An emulsification study was performed to evaluate the globule droplet size and stability of LECS. The results show that a stable oil-in-water emulsion with uniformly small droplets (0.7 μm) was produced, which could continuously release the primary substrates. The emulsified solution could serve as the dispensing agent, and nZVI particles (with diameter 100-200 nm) were distributed in the emulsion evenly without aggregation. Microcosm results showed that the LECS caused a rapid increase in the total organic carbon concentration (up to 488 mg/L), and reductive dechlorination of TCE was significantly enhanced. Up to 99% of TCE (with initial concentration of 7.4 mg/L) was removed after 130 days of operation. Acidification was prevented by the production of hydroxide ion by the oxidation of nZVI. The formation of iron sulfide reduced the odor from produced hydrogen sulfide. Microbial analyses reveal that dechlorinating bacteria existed in soils, which might contribute to TCE dechlorination. Copyright © 2014 Elsevier B.V. All rights reserved.
Enhanced reductive dechlorination in columns treated with edible oil emulsion
NASA Astrophysics Data System (ADS)
Long, Cameron M.; Borden, Robert C.
2006-09-01
The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due to biomass and/or gas production can be significant.
Francy, D.S.; Hart, T.L.; Virosteck, C.M.
1996-01-01
Bacterial injury, survival, and regrowth were investigated by use of replicate flow-through incubation chambers placed in the Cuyahoga River or Lake Erie in the greater Cleveland metropolitan area during seven 4-day field studies. The chambers contained wastewater or combined-sewer-overflow (CSO) effluents treated three ways-unchlorinated, chlorinated, and dechlorinated. At timestep intervals, the chamber contents were analyzed for concentrations of injured and healthy fecal coliforms by use of standard selective and enhanced-recovery membrane-filtration methods. Mean percent injuries and survivals were calculated from the fecal-coliform concentration data for each field study. The results of analysis of variance (ANOVA) indicated that treatment affected mean percent injury and survival, whereas site did not. In the warm-weather Lake Erie field study, but not in the warm-weather Cuyahoga River studies, the results of ANOVA indicated that dechlorination enhanced the repair of injuries and regrowth of chlorine-injured fecal coliforms on culture media over chlorination alone. The results of ANOVA on the percent injury from CSO effluent field studies indicated that dechlorination reduced the ability of organisms to recover and regrow on culture media over chlorination alone. However, because of atypical patterns of concentration increases and decreases in some CSO effluent samples, more work needs to be done before the effect of dechlorination and chlorination on reducing fecal-coliform concentrations in CSO effluents can be confirmed. The results of ANOVA on percent survivals found statistically significant differences among the three treatment methods for all but one study. Dechlorination was found to be less effective than chlorination alone in reducing the survival of fecal coliforms in wastewater effluent, but not in CSO effluent. If the concentration of fecal coliforms determined by use of the enhanced-recovery method can be predicted accurately from the concentration found by use of the standard method, then increased monitoring and expense to detect chlorine-injured organisms would be unnecessary. The results of linear regression analysis, however, indicated that the relation between enhanced-recovery and standard-method concentrations was best represented when the data were grouped by treatment. The model generated from linear regression of the unchlorinated data set provided an accurate estimate of enhanced-recovery concentrations from standard-method concentrations, whereas the models generated from the chlorinated and dechlorinated data sets did not. In addition, evaluation of fecal-coliform concentrations found in field studies in terms of Ohio recreational water-quality standards showed that concentrations obtained by standard and enhanced-recovery methods were not comparable. Sample treatment and analysis methods were found to affect the percentage of samples meeting and exceeding Ohio's bathing-water, primary-contact, and secondary-contact standards. Therefore, determining the health risk of swimming in receiving waters was often difficult without information on enhanced-recovery method concentrations and was especially difficult in waters receiving high proportions of chlorinated or dechlorinated effluents.
Microbial degradation of chloroethenes in groundwater systems
Bradley, Paul M.
2000-01-01
The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.
Microbial degradation of chloroethenes in groundwater systems
Bradley, P.M.
2000-01-01
The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.
Reductive dechlorination of trichloroethene mediated by humic-metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.
1999-04-01
Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCEmore » mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.« less
James, Ray
2009-12-01
Chlorine-based products are widely used in the water supply industry, and the potential for adverse effects in the haemodialysis setting is well documented. To date, the most commonly used method of chlorine removal has been granular activated carbon filters. An increasingly popular method of dechlorination is the use of high intensity, broad-spectrum UV systems to reduce both free chlorine and combined chlorine compounds (chloramines) into easily removed by-products. UV radiation has been successfully used in the pharmaceutical and food industries to destroy free chlorine and/or chloramines present in water, and kill all known spoilage microorganisms including bacteria, viruses, yeasts and moulds (and their spores). This nonchemical method can offer significant advantages and benefits compared to conventional dechlorination technologies currently employed in dialysis water systems. Whilst UV treatment at 254 nm wavelength has been routinely used for disinfection purposes in dialysis water systems, this paper considers whether UV radiation can be used as an alternative to more traditional methods of chlorine removal.
Electron donor preference of a reductive dechlorinating consortium
Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.
2005-01-01
A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Lee, R.W.; Jones, S.A.; Kuniansky, E.L.; Harvey, G.; Lollar, B.S.; Slater, G.F.
2000-01-01
Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow groundwater contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short-rotation woody crop, over an approximately 0.2-ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation of organic matter is the primary microbially mediated reaction occurring in the groundwater beneath the planted trees whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dechlorination in groundwater either is not occurring or is not a primary process away from the mature tree. Carbon-13 isotope values for trichloroethene are nearly identical at locations away from the mature tree, further confirming that dechlorination is not occurring at the site.
Men, Yujie; Yu, Ke; Bælum, Jacob; ...
2017-02-10
The aim of this paper is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expressionmore » when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. Finally, this study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Men, Yujie; Yu, Ke; Bælum, Jacob
The aim of this paper is to obtain a systems-level understanding of the interactions between Dehalococcoides and corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in the Veillonellaceae bin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expressionmore » when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoid de novo biosynthesis pathway was also assigned to the Veillonellaceae bin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway of Dehalococcoides was upregulated in response to the cobalamin stress. Finally, this study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.« less
Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y
2014-06-01
In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oremland, R. S.; Mao, X.; Mahandra, C.; Baesman, S. M.; Gushgari, S.; Alvarez-Cohen, L.; Liu, T.
2015-12-01
Groundwater contamination by trichloroethene (TCE) poses a threat to health and leads to the generation of vinyl chloride (VC), a carcinogen. Dehalococcoides mccartyi is the only bacterium that can completely dechlorinate TCE to ethene (C2H4). Acetylene (C2H2) occurs in TCE-contaminated sites as a consequence of chemical degradation of TCE. Yet acetylene inhibits a variety of microbial processes including methanogesis and reductive dechlorination. Pelobacter acetylenicus and related species can metabolize acetylene via acetylene hydratase and acetaldehyde dismutatse thereby generating acetate and H2 as endproducts, which could serve as electron donor and carbon source for growth of D. mccartyi. We found that 1mM acetylene (aqueous) inhibits growth of D. mccartyi strain 195 on 0.3 mM TCE, but that the inhibition was removed after 12 days with the addition of an acetylene-utilizing isolate from San Francisco Bay, Pelobacter strain SFB93. TCE did not inhibit the growth of this Pelobacter at the concentrations tested (0.1-0.5 mM) and TCE was not consumed by strain SFB93. Co-cultures of strain 195 with strain SFB93 at 5% inoculation were established in 120 mL serum bottles containing 40 mL defined medium. TCE was supplied at a liquid concentration of 0.1 mM, with 0.1 mM acetylene and N2/CO2 (90:10 v/v) headspace at 34 °C. Co-cultures were subsequently transferred (5% vol/vol inoculation) to generate subcultures after 20 μmol TCE was reduced to VC and 36 μmol acetylene was depleted. Aqueous H2 ranged from 114 to 217 nM during TCE-dechlorination, and the cell yield of strain 195 was 3.7 ±0.3 × 107 cells μmol-1 Cl- released. In a D. mccartyi-containing enrichment culture (ANAS) under the same conditions as above, it was found that inhibition of dechlorination by acetylene was reversed after 19 days by adding SFB93. Thus we showed that a co-culture of Pelobacter SFB93 and D. mccartyi 195 could be maintained with C2H2 as the electron donor and carbon source while TCE served as the electron acceptor. Inhibition by C2H2 of reductive dechlorination in both the D. mccartyi isolate and the enrichment culture ANAS were observed, but the inhibition was eliminated by adding Pelobacter SFB93 to the cultures. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.
Richardson, Ruth E; Bhupathiraju, Vishvesh K; Song, Donald L; Goulet, Tanuja A; Alvarez-Cohen, Lisa
2002-06-15
An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from Desulfovibrio species to Dehalococcoides species. However, the nucleic acid-based analyses performed here would need to be supplemented with chemical species data in order to test any hypotheses about functional roles of various community members. Additionally, these results suggest that an organism outside the Dehalococcoides genus may be capable of dechlorinating cDCE to vinyl chloride.
Investigation of reductive dechlorination supported by natural organic carbon
Rectanus, H.V.; Widdowson, M.A.; Chapelle, F.H.; Kelly, C.A.; Novak, J.T.
2007-01-01
Because remediation timeframes using monitored natural attenuation may span decades or even centuries at chlorinated solvent sites, new approaches are needed to assess the long-term sustainability of reductive dechlorination in ground water systems. In this study, extraction procedures were used to investigate the mass of indigenous organic carbon in aquifer sediment, and experiments were conducted to determine if the extracted carbon could support reductive dechlorination of chloroethenes. Aquifer sediment cores were collected from a site without an anthropogenic source of organic carbon where organic carbon varied from 0.02% to 0.12%. Single extraction results showed that 1% to 28% of sediment-associated organic carbon and 2% to 36% of the soft carbon were removed depending on nature and concentration of the extracting solution (Nanopure water; 0.1%, 0.5%, and 1.0% sodium pyrophosphate; and 0.5 N sodium hydroxide). Soft carbon is defined as organic carbon oxidized with potassium persulfate and is assumed to serve as a source of biodegradable carbon within the aquifer. Biodegradability studies demonstrated that 20% to 40% of extracted organic carbon was biodegraded aerobically and anaerobically by soil microorganisms in relatively brief tests (45 d). A five-step extraction procedure consisting of 0.1% pyrophosphate and base solutions was investigated to quantify bioavailable organic carbon. Using the extracted carbon as the sole electron donor source, tetrachloroethene was transformed to cis-1,2- dichloroethene and vinyl chloride in anaerobic enrichment culture experiments. Hydrogen gas was produced at levels necessary to sustain reductive dechlorination (>1 nM). ?? 2007 National Ground Water Association.
Mirza, Babur S; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E
2016-03-01
Trichloroethene (TCE) in groundwater is a major health concern and biostimulation/bioaugmentation-based strategies have been evaluated to achieve complete reductive dechlorination with varying success. Different carbon sources were hypothesized to stimulate different extents of TCE reductive dechlorination. Ecological conditions that developed different dechlorination stages were investigated by quantitating Dehalococcoides 16S rRNA (Dhc) and reductive dehalogenase gene abundance, and by describing biogeochemical properties of laboratory columns in response to this biostimulation. Eight large columns (183 cm × 15.2 cm), packed with aquifer material from Hill AFB, Utah, that were continuously fed TCE for 7.5 years. Duplicate columns were biostimulated with whey or one of two different Newman Zone® emulsified oil formulations containing either nonionic surfactant (EOLN) or standard surfactant (EOL). Two columns were non-stimulated controls. Complete (whey amended), partial (EOLN amended), limited (EOL), and non-TCE dehalogenating systems (controls) developed over the course of the study. Bioaugmentation of half of the columns with Bachman Road culture 3 years prior to dismantling did not influence the extent of TCE dehalogenation. Multivariate analysis clustered samples by biostimulation treatments and extent of TCE dehalogenation. Dhc, tceA, and bvcA gene concentrations did not show a consistent relationship with TCE dehalogenation but the vcrA gene was more abundant in completely dehalogenating, whey-treated columns. The whey columns developed strongly reducing conditions producing Fe(II), sulfide, and methane. Biostimulation with different carbon and energy sources can support high concentrations of diverse Dhc, but carbon addition has a major influence on biogeochemical processes effecting the extent of TCE dehalogenation.
Phenrat, Tanapon; Thongboot, Thippawan; Lowry, Gregory V
2016-01-19
This study evaluates the concept of using zerovalent iron (ZVI) powder or nanoscale zerovalent iron (NZVI) particles in combination with a low frequency (150 kHz) AC electromagnetic field (AC EMF) to effectively remove trichloroethylene (TCE) from groundwater and saturated soils. ZVI and NZVI are ferromagnetic, which can induce heat under applied AC EMF. The heat generated by ZVI and NZVI induction can increase the rate of dechlorination, according to Arrhenius' equation, and increase the rate of TCE desorption from TCE-sorbed soil. Both dechlorination and TCE desorption enhance the overall TCE removal rate. We evaluated this novel concept in laboratory batch reactors. We found that both ZVI and NZVI can induce heat under applied AC EMF up to 120 °C in 20 min. Using ZVI and NZVI with AC EMF enhanced dechlorination of dissolved TCE (no soil) up to 4.96-fold. In addition to increasing the temperature by ZVI and NZVI induction heating, AC EMF increased intrinsic ZVI and NZVI reactivity, ostensibly due to accelerated corrosion, as demonstrated by the increased ORP. In a soil-water-TCE system, NZVI together with AC EMF thermally enhanced desorption of TCE from soil and increased the degradation of TCE up to 5.36-fold compared to the absence of AC EMF. For the first time, this study indicates the potential for ZVI and NZVI coupled with AC EMF as a combined remediation technique for increasing the rate and completeness of in situ cleanup of adsorbed phase contaminants.
A data mining approach to predict in situ chlorinated ethene detoxification potential
NASA Astrophysics Data System (ADS)
Lee, J.; Im, J.; Kim, U.; Loeffler, F. E.
2015-12-01
Despite major advances in physicochemical remediation technologies, in situ biostimulation and bioaugmentation treatment aimed at stimulating Dehalococcoides mccartyi (Dhc) reductive dechlorination activity remains a cornerstone approach to remedy sites impacted with chlorinated ethenes. In practice, selecting the best remedial strategy is challenging due to uncertainties associated with the microbiology (e.g., presence and activity of Dhc) and geochemical factors influencing Dhc activity. Extensive groundwater datasets collected over decades of monitoring exist, but have not been systematically analyzed. In the present study, geochemical and microbial data sets collected from 35 wells at 5 contaminated sites were used to develop a predictive empirical model using a machine learning algorithm (i) to rank the relative importance of parameters that affect in situ reductive dechlorination potential, and (ii) to provide recommendations for selecting the optimal remediation strategy at a specific site. Classification and regression tree (CART) analysis was applied, and a representative classification tree model was developed that allowed short-term prediction of dechlorination potential. Indirect indicators for low dissolved oxygen (e.g., low NO3-and NO2-, high Fe2+ and CH4) were the most influential factors for predicting dechlorination potential, followed by total organic carbon content (TOC) and Dhc cell abundance. These findings indicate that machine learning-based data mining techniques applied to groundwater monitoring data can lead to the development of predictive groundwater remediation models. A major need for improving the predictive capabilities of the data mining approach is a curated, up-to-date and comprehensive collection of groundwater monitoring data.
Li, Renchao; Gao, Ying; Jin, Xiaoying; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra
2015-01-15
In this report, various iron-based nanoparticles (nZVI, n-Ni/Fe, n-Pd/Fe) were used for both heterogeneous Fenton oxidation of 2,4-dichlorophenol (2,4-DCP) and reductive dechlorination of 2,4-DCP in order to understand their roles in the Fenton oxidation and the reductive degradation of 2,4-DCP. The dechlorination efficiency of 2,4-DCP using nZVI, n-Ni/Fe, n-Fe/Pd and Fe(2)(+) was 6.48%, 6.80%, 15.95%, 5.02%, while Fenton oxidation efficiency of 2,4-DCP was 57.87%, 34.23%, 27.94%, 19.61% after 180 min, respectively. The new findings included a higher dechlorination using n-Fe/Pd due to Pd effective catalysis and the effective heterogeneous Fenton oxidation using nZVI depending on reductive dechlorination and heterogeneous Fenton oxidation occurs simultaneously. However, nZVI as the potential catalyst for heterogeneous Fenton was observed, and SEM, EDS and XRD demonstrate that change on the nZVI surface occurred due to the Fe(2+) leaching, and Total Organic Carbon (TOC) (30.71%) shows that 2,4-DCP was degraded. Furthermore, the experiment indicates that the pH values and concentration of 2,4-DCP significantly impacted on the heterogeneous Fenton oxidation of 2,4-DCP and the data fits well with the pseudo first-order kinetic model, which was a diffusion-controlled reaction. Finally, a possible mechanism for degradation of 2,4-DCP was proposed. Copyright © 2014 Elsevier Inc. All rights reserved.
Bradley, Paul M.; Singletary , Michael A.; Chapelle, Francis H.
2007-01-01
A sulfuric acid leak in 1988 at a chloroethene-contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long-term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's-based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30-m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides-type bacteria within the sulfuric acid/chloroethene co-contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C-TCE and 14C-VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co-contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's-based source area treatment) do not necessarily preclude efficient chloroethene degradation.
Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay
Mao, Xuhui; Wang, James; Ciblak, Ali; Cox, Evan E.; Riis, Charlotte; Terkelsen, Mads; Gent, David B.; Alshawabkeh, Akram N.
2012-01-01
Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK–enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective forestablis hingmicrobial reductive dechlorination capacity in low-permeability soils. PMID:22365139
Klementova, Sarka; Zlamal, Martin
2013-04-01
Photochemical degradation of atrazine under different conditions was studied and compared, namely degradation via photocatalysis on TiO2, UV C photolysis, and homogeneous photocatalysis in the presence of added ferric ions. The reaction rate constants in heterogeneous photocatalytic reactions on TiO2 and of photolytic degradation by means of UV C light are similar, 0.018 min(-1) and 0.020 min(-1), respectively. The reaction rate constants in homogeneous photocatalytic reactions with Fe(III) added depend strongly on the Fe(III) concentration, 0.0017 min(-1) for 1.6 × 10(-6) mol l(-1) Fe(III) to 0.105 min(-1) for 3.3 × 10(-4) mol l(-1) Fe(III). In all types of reactions, dechlorination was observed; in homogeneous photocatalytic reactions and in UV C (250-300 nm) photolysis, dechlorination proceeds with a 1 : 1 stoichiometry to atrazine degradation, in photocatalytic reactions on TiO2, dechlorination measured as chloride ion release reaches only 1/5 of the substrate degradation. In photocatalytic reactions on TiO2, mineralisation of 40% carbon was observed.
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.
1978-01-01
A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.
Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.
Salam, Jaseetha Abdul; Das, Nilanjana
2015-03-01
The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.
Men, Yujie; Seth, Erica C; Yi, Shan; Allen, Robert H; Taga, Michiko E; Alvarez-Cohen, Lisa
2014-04-01
Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrinoid. To investigate the corrinoid-related interactions among key members of these communities, we constructed consortia by growing D. mccartyi strain 195 (Dhc195) in cobalamin-free, trichloroethene (TCE)- and lactate-amended medium in cocultures with Desulfovibrio vulgaris Hildenborough (DvH) or Pelosinus fermentans R7 (PfR7) and with both in tricultures. Only the triculture exhibited sustainable dechlorination and cell growth when a physiological level of 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, was provided. In the triculture, DvH provided hydrogen while PfR7 provided corrinoids to Dhc195, and the initiation of dechlorination and Dhc195 cell growth was highly dependent on the growth of PfR7. Corrinoid analysis indicated that Dhc195 imported and remodeled the phenolic corrinoids produced by PfR7 into cobalamin in the presence of DMB. Transcriptomic analyses of Dhc195 showed the induction of the CbiZ-dependent corrinoid-remodeling pathway and BtuFCD corrinoid ABC transporter genes during corrinoid salvaging and remodeling. In contrast, another operon annotated to encode a putative iron/cobalamin ABC transporter (DET1174-DET1176) was induced when cobalamin was exogenously provided. Interestingly, a global upregulation of phage-related genes was observed when PfR7 was present. These findings provide insights into both the gene regulation of corrinoid salvaging and remodeling in Dhc195 when it is grown without exogenous cobalamin and microbe-to-microbe interactions in dechlorinating microbial communities.
Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona
2007-04-01
The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.
Paul, Laiby; Smolders, Erik
2014-09-01
Reductive dechlorination of chlorinated ethenes is inhibited by acidification and by the presence of Fe (III) as a competitive electron acceptor. Synergism between both factors on dechlorination is predicted as reductive dissolution of Fe (III) minerals is facilitated by acidification. This study was set-up to assess this synergism for two common aquifer Fe (III) minerals, goethite and ferrihydrite. Anaerobic microbial dechlorination of trichloroethylene (TCE) by KB-1 culture and formate as electron donor was investigated in anaerobic batch containers at different solution pH values (6.2-7.2) in sand coated with these Fe minerals and a sand only as control. In the absence of Fe, lowering substrate pH from 7.2 to 6.2 increased the time for 90% TCE degradation from 14±1d to 42±4d. At pH 7.2, goethite did not affect TCE degradation time while ferrihydrite increased the degradation time to 19±1d compared to the no Fe control. At pH 6.2, 90% degradation was at 78±1 (ferrihydrite) or 131±1d (goethite). Ferrous iron production in ferrihydrite treatment increased between pH 7.2 and 6.5 but decreased by further lowering pH to 6.2, likely due to reduced microbial activity. This study confirms that TCE is increasingly inhibited by the combined effect of acidification and bioavailable Fe (III), however no evidence was found for synergistic inhibition since Fe reduction did not increase as pH decreases. To the best of our knowledge, this is the first study where effect of pH and Fe (III) reduction on TCE was simultaneously tested. Acid Fe-rich aquifers need sufficient buffering and alkalinity to ensure swift degradation of chlorinated ethenes. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.
2008-12-01
A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.
NASA Astrophysics Data System (ADS)
Morrill, P.; Lacrampe-Couloume, G.; Slater, G.; Sleep, B.; Edwards, E.; McMaster, M.; Major, D.; Sherwood Lollar, B.
2002-12-01
Cis-1, 2-dichloroethene (cDCE) was the primary volatile organic compound (VOC) after biostimulation of a perchloroethene (PCE) plume in a pilot test at Kelly Air Force Base (AFB) in San Antonio Texas. A stable natural microbial consortium, KB-1, shown in laboratory experiments to reduce chlorinated ethenes to non-toxic ethene was added in a pilot test area (PTA). After the addition of KB-1 stable carbon isotope values were measured for each chlorinated ethene to verify the occurrence of reductive dechlorination and quantify the extent of cDCE degradation. After bioaugmentation with KB-1, PCE, TCE and cDCE concentrations declined, while VC concentrations increased and subsequently decreased, as ethene became the dominant transformation product measured. Shifts in carbon isotopic values up to 2.7 permil, 6.4 permil, 10.9 permil and 10.6 permil were observed for PCE, TCE, cDCE and VC respectively. These isotopic shifts are consistent with the effects of biodegradation observed during laboratory and field studies. Most notably, isotopic enrichment trends characteristic of reductive dechlorination were detectable in the parent compounds before measurable concentrations of daughter products VC and ethene were produced. These results illustrate the advantage of using the more sensitive compound specific isotope analysis to confirm degradation in addition to the traditional method of monitoring the appearance of degradation products. Fractionation factors obtained from laboratory studies were used in conjunction with isotope data measured in the field to estimate the extent of cDCE degraded. It is estimated that within a 44 day period, 37 to 48 percent of the cDCE was reductively dechlorinated. Independent biodegradation estimates using data from a bromide tracer test, a groundwater flow model, and concentration analyses were all in good agreement with the isotope degradation estimate.
Doğan-Subaşı, Eylem; Elsner, Martin; Qiu, Shiran; Cretnik, Stefan; Atashgahi, Siavash; Shouakar-Stash, Orfan; Boon, Nico; Dejonghe, Winnie; Bastiaens, Leen
2017-10-15
cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors ε C (‰), but starkly contrasting dual element isotope slopes Δδ 13 C/Δδ 37 Cl for permanganate oxidation (ε C =-26‰±6‰, Δδ 13 C/Δδ 37 Cl≈-125±47) compared to reductive dechlorination (ε C =-18‰±4‰, Δδ 13 C/Δδ 37 Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (ε Cl =+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (ε Cl =-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale. Copyright © 2017. Published by Elsevier B.V.
Thermal dechlorination of PCB-209 over Ca species-doped Fe₂O₃.
Su, Guijin; Huang, Linyan; Shi, Ruifang; Liu, Yexuan; Lu, Huijie; Zhao, Yuyang; Yang, Fan; Gao, Lirong; Zheng, Minghui
2016-02-01
Degradation reaction of decachlorobiphenyl (PCB-209) was investigated over the synthesized Ca species-doped Fe2O3 at 300 °C. The 1%Ca-Fe2O3 exhibited the highest activity among the four catalysts prepared with the pseudo-first order reaction at k(obs) = 0.103 min(-1). PCB-207, PCB-197, PCB-176, PCB-184, PCB-150, PCB-136, PCB-148, PCB-104, PCB-96, PCB-54, PCB-19, PCB-4 and PCB-1 were identified as the dominant isomers in their respective nonachlorobiphenyl (NonaCB) to monochlorobiphenyl (MonoCB) homologue groups. Analysis of the hydrodechlorination products indicated that dechlorination was much more favored on meta- and para-than on ortho-positions. The formation of significantly predominant NonaCB and octachlorobiphenyl (OctaCB) isomers was attributed to lower energy principles and to the 90° dihedral angles of two aromatic rings which prevented the hydrodechlorination at ortho-positions. When the number of chlorine atoms is not more than 7, the steric effect supports the formation of predominant PCB isomers having chlorines at four ortho-positions. During the dechlorination of tetrachlorobiphenyl (TetraCB) formed to generate monochlorobiphenyl (MonoCB) isomers, the chlorine atoms fully substituted at the ortho-positions have to be successively removed, with the first two dechlorinations preferentially occurring at the two different benzene rings. This is dissimilar to that of octachloronaphthalene (PCN-75) in which the hydrodechlorination reaction happened preferentially at ortho-position due to the existence of steric effects. The opposite roles of the steric effect in ortho-position between PCB-209 and PCN-75 might be due to the difference of the π-conjugated plane caused by the dihedral angle of 90° and 0° of the two aromatic rings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ding, Jiafeng; Long, Gaoyuan; Luo, Yang; Sun, Runze; Chen, Mengxia; Li, Yajun; Zhou, Yanfang; Xu, Xinhua; Zhao, Weirong
2018-05-09
Polychlorinated dibenzo-p-dioxins (PCDDs), as a group of notorious anthropogenic environmental toxicants, are arguably ubiquitous in nature. In this study, we investigated the photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin (2-CDD) over Pd/g-C 3 N 4 catalysts under UV-vis irradiation. The g-C 3 N 4 and a series of Pd/g-C 3 N 4 catalysts were prepared by thermal polymerization and mechanical mixing-illumination method and characterized by XRD, TEM, BET, SEM and UV-vis DRS analyses. Among all the samples, the Pd/g-C 3 N 4 (5 wt%) yielded the optimal dechlorination activity with a total 2-CDD conversion of 54% within 4 h, and 76% of those converted 2-CDD were evolved to dibenzo-p-dioxin (DD). The kinetics of dechlorination could be described as pseudo-first-order decay model (R 2 > 0.84). Corresponding rate constants (k) increased from 0.052 to 0.17 h -1 with Pd contents up to 5 wt% and decreased to 0.13 h -1 with a 10 wt% of Pd. The enhanced activities originated from the surface plasmonic resonance (SPR) effect of Pd nanoparticles and the formation of Schottky barrier between Pd and g-C 3 N 4 , which extend the spectrum responsive range and suppress the charge recombination of g-C 3 N 4 . This is the first report on the photocatalytic reductive removal of PCDDs and may provide a new approach for PCDDs pollution control. Copyright © 2018 Elsevier B.V. All rights reserved.
Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment
Wong, C.S.; Garrison, A.W.; Foreman, W.T.
2001-01-01
Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.
Mundle, S.O.C.; Johnson, T.; Lacrampe-Couloume, G.; Perez-De-Mora, A.; Duhamel, M.; Edwards, E.A.; McMaster, M.L.; Cox, E.; Revesz, K.; Lollar, B. Sherwood
2012-01-01
Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = −6.7‰ ± 0.4‰, and −4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = −3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ13C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.
Mundle, Scott O C; Johnson, Tiffany; Lacrampe-Couloume, Georges; Pérez-de-Mora, Alfredo; Duhamel, Melanie; Edwards, Elizabeth A; McMaster, Michaye L; Cox, Evan; Révész, Kinga; Sherwood Lollar, Barbara
2012-02-07
Chlorinated ethenes are commonly found in contaminated groundwater. Remediation strategies focus on transformation processes that will ultimately lead to nontoxic products. A major concern with these strategies is the possibility of incomplete dechlorination and accumulation of toxic daughter products (cis-1,2-dichloroethene (cDCE), vinyl chloride (VC)). Ethene mass balance can be used as a direct indicator to assess the effectiveness of dechlorination. However, the microbial processes that affect ethene are not well characterized and poor mass balance may reflect biotransformation of ethene rather than incomplete dechlorination. Microbial degradation of ethene is commonly observed in aerobic systems but fewer cases have been reported in anaerobic systems. Limited information is available on the isotope enrichment factors associated with these processes. Using compound-specific isotope analysis (CSIA) we determined the enrichment factors associated with microbial degradation of ethene in anaerobic microcosms (ε = -6.7‰ ± 0.4‰, and -4.0‰ ± 0.8‰) from cultures collected from the Twin Lakes wetland area at the Savannah River site in Georgia (United States), and in aerobic microcosms (ε = -3.0‰ ± 0.3‰) from Mycobacterium sp. strain JS60. Under anaerobic and aerobic conditions, CSIA can be used to determine whether biotransformation of ethene is occurring in addition to biodegradation of the chlorinated ethenes. Using δ(13)C values determined for ethene and for chlorinated ethenes at a contaminated field site undergoing bioremediation, this study demonstrates how CSIA of ethene can be used to reduce uncertainty and risk at a site by distinguishing between actual mass balance deficits during reductive dechlorination and apparent lack of mass balance that is related to biotransformation of ethene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi
1998-11-01
Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.
Dillehay, Jacob L; Bowman, Kimberly S; Yan, Jun; Rainey, Fred A; Moe, William M
2014-04-01
When chlorinated alkanes are present as soil or groundwater pollutants, they often occur in mixtures. This study evaluated substrate interactions during the anaerobic reductive dehalogenation of chlorinated alkanes by the type strains of two Dehalogenimonas species, D. lykanthroporepellens and D. alkenigignens. Four contaminant mixtures comprised of combinations of the chlorinated solvents 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were assessed for each species. Chlorinated solvent depletion and daughter product formation determined as a function of time following inoculation into anaerobic media revealed preferential dechlorination of 1,1,2-TCA over both 1,2-DCA and 1,2-DCP for both species. 1,2-DCA in particular was not dechlorinated until 1,1,2-TCA reached low concentrations. In contrast, both species concurrently dechlorinated 1,2-DCA and 1,2-DCP over a comparably large concentration range. This is the first report of substrate interactions during chlorinated alkane dehalogenation by pure cultures, and the results provide insights into the chlorinated alkane transformation processes that may be expected for contaminant mixtures in environments where Dehalogenimonas spp. are present.
Kocur, Chris M D; Lomheim, Line; Molenda, Olivia; Weber, Kela P; Austrins, Leanne M; Sleep, Brent E; Boparai, Hardiljeet K; Edwards, Elizabeth A; O'Carroll, Denis M
2016-07-19
Nanoscale zerovalent iron (nZVI) is an emerging technology for the remediation of contaminated sites. However, there are concerns related to the impact of nZVI on in situ microbial communities. In this study, the microbial community composition at a contaminated site was monitored over two years following the injection of nZVI stabilized with carboxymethyl cellulose (nZVI-CMC). Enhanced dechlorination of chlorinated ethenes to nontoxic ethene was observed long after the expected nZVI oxidation. The abundance of Dehalococcoides (Dhc) and vinyl chloride reductase (vcrA) genes, monitored using qPCR, increased by over an order of magnitude in nZVI-CMC-impacted wells. The entire microbial community was tracked using 16S rRNA gene amplicon pyrosequencing. Following nZVI-CMC injection, a clear shift in microbial community was observed, with most notable increases in the dechlorinating genera Dehalococcoides and Dehalogenimonas. This study suggests that coupled abiotic degradation (i.e., from reaction with nZVI) and biotic degradation fueled by CMC led to the long-term degradation of chlorinated ethenes at this field site. Furthermore, nZVI-CMC addition stimulated dehalogenator growth (e.g., Dehalococcoides) and biotic degradation of chlorinated ethenes.
NASA Astrophysics Data System (ADS)
Semprini, Lewis; Kitanidis, Peter K.; Kampbell, Don H.; Wilson, John T.
1995-04-01
We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. Trichloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. The data show significant concentrations of TCE, cis-l,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethene. We attributed DCE, VC, and ethene to the reductive dehalogenation of TCE. The CAH concentrations varied significantly with depth and correlate with sulfate and methane concentrations. Anoxic aquifer conditions exist with methane present at relatively high concentrations at depth. High concentrations of TCE correspond with the absence of methane or low methane concentrations, whereas products of TCE dehalogenation are associated with higher methane concentrations and low sulfate concentrations. Indications are that the dechlorination of TCE and DCE to VC and ethene is associated with sulfate reduction and active methanogenesis. TCE dechlorination to DCE is likely occurring under the less reducing conditions of sulfate reduction, with further reductions to VC and ethene occurring under methanogenic conditions. We estimated that about 20% of TCE has dechlorinated to ethene. The analysis of the data enhanced our knowledge of natural in situ transformation and transport processes of CAHs.
Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata
2015-02-01
A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Jones, Elizabeth J.P.; Voytek, Mary A.; Lorah, Michelle M.; Kirshtein, Julie D.
2006-01-01
Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The “West Branch Consortium” (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethene (TCE), cis and trans 1,2-dichloroethene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. A Clostridium sp. phylogenetically closely related to an uncultured member of a TCE-degrading consortium was numerically dominant in the WBC-2 clone library after 11 months of enrichment in culture. Clostridiales, including Acetobacteria, comprised 65% of the bacterial clones in WBC-2, with Bacteroides (14%), and epsilon Proteobacteria (14%) also numerically important. Methanogens identified in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. Dehalococcoidesdid not become dominant in the culture, although it was present at about 1% in the microbial population. The WBC-2 consortium provides opportunities for the in situbioremediation of sites contaminated with mixtures of chlorinated ethenes and ethanes.
Lorah, Michelle M.; Walker, Charles W.; Baker, Anna C.; Teunis, Jessica A.; Emily Majcher,; Brayton, Michael J.; Raffensperger, Jeff P.; Cozzarelli, Isabelle M.
2015-01-01
Wetlands at the Standard Chlorine of Delaware, Inc. Superfund Site (SCD) in New Castle County, Delaware, are affected by contamination with chlorobenzenes and benzene from past waste storage and disposal, spills, leaks, and contaminated groundwater discharge. In cooperation with the U.S. Environmental Protection Agency, the U.S. Geological Survey began an investigation in June 2009 to characterize the hydrogeology and geochemistry in the wetlands and assess the feasibility of monitored natural attenuation and enhanced bioremediation as remedial strategies. Groundwater flow in the wetland study area is predominantly vertically upward in the wetland sediments and the underlying aquifer, and groundwater discharge accounts for a minimum of 47 percent of the total discharge for the subwatershed of tidal Red Lion Creek. Thus, groundwater transport of contaminants to surface water could be significant. The major contaminants detected in groundwater in the wetland study area included benzene, monochlorobenzene, and tri- and di-chlorobenzenes. Shallow wetland groundwater in the northwest part of the wetland study area was characterized by high concentrations of total chlorinated benzenes and benzene (maximum about 75,000 micrograms per liter [μg/L]), low pH, and high chloride. In the northeast part of the wetland study area, wetland groundwater had low to moderate concentrations of total chlorinated benzenes and benzene (generally not greater than 10,000 μg/L), moderate pH, and high sulfate concentrations. Concentrations in the groundwater in excess of 1 percent of the solubility of the individual chlorinated benzenes indicate that a contaminant source is present in the wetland sediments as dense nonaqueous phase liquids (DNAPLs). Consistently higher contaminant concentrations in the shallow wetland groundwater than deeper in the wetland sediments or the aquifer also indicate a continued source in the wetland sediments, which could include dissolution of DNAPLs and desorption from the sediments.When highly reducing, methanogenic, or sulfate-reducing conditions existed in the wetland groundwater, molar composition of the volatile organic compounds (VOCs) showed that chlorobenzene and benzene were predominant, indicating biodegradation of the chlorinated benzenes through reductive dechlorination pathways. Temporal changes in redox conditions between 2009 and 2011–12 have shifted the locations in the wetland study area where reductive dechlorination is evident. Microbial community analyses of sediment showed relatively high cell numbers and diversity of populations (Dehalococcoides, Dehalobacter, Desulfitobacterium, and Geobacter) that are known to contain species capable of reductive dechlorination, confirming groundwater geochemistry evidence of the occurrence of reductive dechlorination. Natural attenuation was not sufficient, however, to reduce total VOC concentrations along upward groundwater flowpaths in the wetland sediments, most likely due to the additional source of contaminants in the upper sediments. In situ microcosms that were unamended except for the addition of 13C-labeled contaminants in some treatments, confirmed that the native microbial community was able to biodegrade the higher chlorinated benzenes through reductive dechlorination and that 1,2-dichlorobenzene, chlorobenzene, and benzene could be degraded to carbon dioxide through oxidation pathways. Microcosms that were bioaugmented with the anaerobic dechlorinating consortium WBC-2 and deployed in the wetland sediments showed reductive dechlorination of tri-, di-, and monochlorobenzene, and 13C-chlorobenzene treatments showed complete degradation of chlorobenzene to carbon dioxide under anaerobic conditions.Experiments with a continuous flow, fixed-film bioreactor seeded with native microorganisms in groundwater from the wetland area showed both aerobic and anaerobic biodegradation of dichlorobenzenes, monochlorobenzene, and benzene, although monochlorobenzene and benzene degradation rates decreased under anaerobic conditions compared to aerobic conditions. In two bioreactors with established biofilms of WBC-2, percent removals of all chlorinated benzene compounds (medians of 86 to 94 percent) under anaerobic conditions were as high as those observed for the bioreactors seeded only with native microorganisms from the site groundwater, and benzene removal was greater in the WBC-2 bioaugmented bioreactors. The high percent removals in the WBC-2 bioreactors without the need for an acclimation period indicates that the same dechlorinators are involved in the chlorinated benzene degradation as those for the chlorinated ethanes and ethenes that the culture was developed to degrade. The ability of the WBC-2 culture to completely reduce the chlorinated benzenes and benzene, even in the presence of high sulfate and sulfide concentrations, is unique for known dechlorinating cultures. The availability of the established culture WBC-2, as well as the ability of the native wetland microbial community to degrade the site contaminants under anaerobic and aerobic conditions, provides flexibility in considering bioremediation options for the wetland areas at SCD.
Effects of Potassium Permanganate Oxidation on Subsurface Microbial Activity
NASA Technical Reports Server (NTRS)
Rowland, Martin A.; Brubaker, Gaylen R.; Westray, Mark; Morris, Damon; Kohler, Keisha; McCool, Alex (Technical Monitor)
2001-01-01
In situ chemical oxidation has the potential for degrading large quantities of organic contaminants and can be more effective and timely than traditional ex situ treatment methods. However, there is a need to better characterize the potential effects of this treatment on natural processes. This study focuses on potential inhibition to anaerobic dechlorination of trichloroethene (TCE) in soils from a large manufacturing facility as a result of in situ oxidation using potassium permanganate (KMn04)Previous microcosm studies established that natural attenuation occurs on-site and that it is enhanced by the addition of ethanol to the system. A potential remediation scheme for the site involves the use of potassium permanganate to reduce levels of TCE in heavily contaminated areas, then to inject ethanol into the system to "neutralize" excess oxidant and enhance microbial degradation. However, it is currently unknown whether the exposure of indigenous microbial populations to potassium permanganate may adversely affect biological reductive dechlorination by these microorganisms. Consequently, additional microcosm studies were conducted to evaluate this remediation scheme and assess the effect of potassium permanganate addition on biological reductive dechlorination of TCE. Samples of subsurface soil and groundwater were collected from a TCE-impacted area of the site. A portion of the soil was pretreated with nutrients and ethanol to stimulate microbial activity, while the remainder of the soil was left unamended. Soil/groundwater microcosms were prepared in sealed vials using the nutrient-amended and unamended soils, and the effects of potassium permanganate addition were evaluated using two permanganate concentrations (0.8 and 2.4 percent) and two contact times (1 and 3 weeks). TCE was then re-added to each microcosm and TCE and dichloroethene (DCE) concentrations were monitored to determine the degree to which microbial dechlorination occurred following chemical oxidation. Evidence of microbial degradation was generally detected within four weeks after TCE addition. Increases in DCE concentrations were consistent with decreases in TCE. The concentration of TCE in the nutrient-amended samples exposed to 2.4% KMnO4 for one week degraded somewhat more slowly than the samples exposed to the 0.8% KMnO4. The rates of degradation did not correlate with the length of KMn04 exposure for the nutrient-amended microcosms. Microbial degradation of TCE in the unamended microcosms was generally similar to that observed in the nutrient-amended microcosms. One treatment condition (unamended, one week exposure, 2.4% KMnO4) was exposed to elevated levels of ethanol and showed little evidence of degradation. It is suspected that the high levels of ethanol were toxic to the microorganisms. The results of the study indicate that exposure of indigenous soil and groundwater microbial populations to KMnO4 at concentrations of 0.8 to 2.4% do not impair the ability of the microbial populations to dechlorinate TCE. Consequently, the combination of chemical oxidation followed by enhanced biological reductive dechlorination appears to be a viable remedial strategy for highly-impacted subsurface areas of the site.
Optimization of electrochemical dechlorination of trichloroethylene in reducing electrolytes
Mao, Xuhui; Ciblak, Ali; Baek, Kitae; Amiri, Mohammad; Loch-Caruso, Rita; Alshawabkeh, Akram N.
2012-01-01
Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L−1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds. PMID:22264798
Catalytic dechlorination of diclofenac by biogenic palladium in a microbial electrolysis cell
Gusseme, Bart De; Soetaert, Maarten; Hennebel, Tom; Vanhaecke, Lynn; Boon, Nico; Verstraete, Willy
2012-01-01
Summary Diclofenac is one of the most commonly detected pharmaceuticals in wastewater treatment plant (WWTP) effluents and the receiving water bodies. In this study, biogenic Pd nanoparticles (‘bio‐Pd’) were successfully applied in a microbial electrolysis cell (MEC) for the catalytic reduction of diclofenac. Hydrogen gas was produced in the cathodic compartment, and consumed as a hydrogen donor by the bio‐Pd on the graphite electrodes. In this way, complete dechlorination of 1 mg diclofenac l−1 was achieved during batch recirculation experiments, whereas no significant removal was observed in the absence of the biocatalyst. The complete dechlorination of diclofenac was demonstrated by the concomitant production of 2‐anilinophenylacetate (APA). Through the addition of −0.8 V to the circuit, continuous and complete removal of diclofenac was achieved in synthetic medium at a minimal HRT of 2 h. Continuous treatment of hospital WWTP effluent containing 1.28 µg diclofenac l−1 resulted in a lower removal efficiency of 57%, which can probably be attributed to the affinity of other environmental constituents for the bio‐Pd catalyst. Nevertheless, reductive catalysis coupled to sustainable hydrogen production in a MEC offers potential to lower the release of micropollutants from point‐sources such as hospital WWTPs. PMID:22221490
Zhiliang, Chen; Minghui, Tang; Shengyong, Lu; Jiamin, Ding; Qili, Qiu; Yuting, Wang; Jianhua, Yan
2018-05-28
Mechanochemical degradation (MCD) is employed for the dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) and -furans (PCDF) in filter ashes from municipal solid waste incinerators, respectively with the assist of six additive systems. The evolution of PCDD/F-signatures in all eleven samples are systematically monitored and studied at the level of individual congeners, and special attention is paid to CP-route congeners, 2,3,7,8-substitution, 1,9-substitution, and 4,6-PCDF. The PCDD/F-isomers distribution follows an analogous pattern, indicating the similar acting mechanism for all additives: additives transfer electrons to attack the CCl bond and then expulse chlorine. MC dechlorination is not favored for the chlorine on β-position (2,3,7,8-position). The oxygen with stronger electronegativity in PCDD/Fs negatively influences CCl bond to accept donated electrons, hindering the removal of chlorine on 1,9-position for PCDD, and chlroine on 4,6-position for PCDF. Finally, two fair dechlorination pathways for PCDD and PCDF are respectively proposed based on the detailed analysis of CP-route congeners. The evolution of PCDD-signatures is clear, yet obscure for PCDF-signatures, which still requires further investigations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Karakas, Filiz; Imamoglu, Ipek
2017-02-15
This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced reactivity of nanoscale iron particles through a vacuum annealing process
NASA Astrophysics Data System (ADS)
Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.
2011-10-01
A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.
Thermal degradation of hexachlorobenzene in the presence of calcium oxide at 340-400 °C.
Yin, Keqing; Gao, Xingbao; Sun, Yifei; Zheng, Lei; Wang, Wei
2013-11-01
Hexachlorobenzene (HCB) in the milligram range was co-heated with calcium oxide (CaO) powder in sealed glass ampoules at 340-400 °C. The heated samples were characterized and analyzed by Raman spectroscopy, elemental analysis, gas chromatography/mass spectrometry, ion chromatography, and thermal/optical carbon analysis. The degradation products of HCB were studied at different temperatures and heated times. The amorphous carbon was firstly quantitatively evaluated and was thought to be important fate of the C element of HCB. The yield of amorphous carbon in products increased with heating time, for samples treated for 8h at 340, 380 °C and 400 °C, the value were 17.5%, 34.8% and 50.2%, respectively. After identification of the dechlorination products, the HCB degradation on CaO at 340-400 °C was supposed to through dechlorination/polymerization pathway, which is induced by electron transfer, generate chloride ions and form high-molecular weight intermediates with significant levels of both hydrogen and chlorine, and finally form amorphous carbon. Higher temperature was beneficial for the dechlorination/polymerization efficiency. The results are helpful for clarifying the reaction mechanism for thermal degradation of chlorinated aromatics in alkaline matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chloroethene Biodegradation Potential, ADOT/PF Peger Road Maintenance Facility, Fairbanks, Alaska
Bradley, Paul M.; Chapelle, Frances H.
2004-01-01
A series of 14C-radiotracer-based microcosm experiments were conducted to assess: 1) the extent, rate and products of microbial dechlorination of trichloroethene (TCE), cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in sediments at the Peger Road site; 2) the effect of three electron donor amendments (molasses, shrimp and crab chitin, and 'Hydrogen Release Compound' (HRC)) on microbial degradation of TCE in three Peger Road sediments; and 3) the potential significance at the site of chloroethene biodegradation processes other than reductive dechlorination. In these experiments, TCE biodegradation yielded the reduced products, DCE and VC, and the oxidation product CO 2. Biodegradation of DCE and VC involved stoichiometric oxidation to CO 2. Both laboratory microcosm study and field redox assessment results indicated that the predominant terminal electron accepting process in Peger Road plume sediments under anoxic conditions was Mn/Fe-reduction. The rates of chloroethene biodegradation observed in Peger Road sediment microcosms under low temperature conditions (4?C) were within the range of those observed in sediments from temperate (20?C) aquifer systems. This result confirmed that biodegradation can be a significant mechanism for in situ contaminant remediation even in cold temperature aquifers. The fact that CO2 was the sole product of cis-DCE and VC biodegradation detected in Peger Road sediments indicated that a natural attenuation assessment based on reduced daughter product accumulation may significantly underestimate the potential for DCE and VC biodegradation at the Peger Road. Neither HRC nor molasses addition stimulated TCE reductive dechlorination. The fact that molasses and HRC amendment did stimulate Mn/Fe-reduction suggests that addition of these electron donors favored microbial Mn/Fe-reduction to the detriment of microbial TCE dechlorinating activity. In contrast, amendment of sediment microcosms with shrimp and crab chitin resulted in the establishment of mixed Mn/Fe-reducing, SO42--reducing and methanogenic conditions and enhanced TCE biodegradation in two of three Peger Road sediment treatments.
Macbeth, Tamzen W.; Cummings, David E.; Spring, Stefan; Petzke, Lynn M.; Sorenson, Kent S.
2004-01-01
Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is generated primarily via the acetoclastic pathway, using acetate generated by lactate fermentation and acetogenesis in both systems. PMID:15574933
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Gaynor; McKeon, Tom
Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of amore » substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)« less
Model Parameter Variability for Enhanced Anaerobic Bioremediation of DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Mao, X.; Gerhard, J. I.; Barry, D. A.
2005-12-01
The objective of the Source Area Bioremediation (SABRE) project, an international collaboration of twelve companies, two government agencies and three research institutions, is to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated ethene source areas containing dense, non-aqueous phase liquids (DNAPL). This 4-year, 5.7 million dollars research effort focuses on a pilot-scale demonstration of enhanced bioremediation at a trichloroethene (TCE) DNAPL field site in the United Kingdom, and includes a significant program of laboratory and modelling studies. Prior to field implementation, a large-scale, multi-laboratory microcosm study was performed to determine the optimal system properties to support dehalogenation of TCE in site soil and groundwater. This statistically-based suite of experiments measured the influence of key variables (electron donor, nutrient addition, bioaugmentation, TCE concentration and sulphate concentration) in promoting the reductive dechlorination of TCE to ethene. As well, a comprehensive biogeochemical numerical model was developed for simulating the anaerobic dehalogenation of chlorinated ethenes. An appropriate (reduced) version of this model was combined with a parameter estimation method based on fitting of the experimental results. Each of over 150 individual microcosm calibrations involved matching predicted and observed time-varying concentrations of all chlorinated compounds. This study focuses on an analysis of this suite of fitted model parameter values. This includes determining the statistical correlation between parameters typically employed in standard Michaelis-Menten type rate descriptions (e.g., maximum dechlorination rates, half-saturation constants) and the key experimental variables. The analysis provides insight into the degree to which aqueous phase TCE and cis-DCE inhibit dechlorination of less-chlorinated compounds. Overall, this work provides a database of the numerical modelling parameters typically employed for simulating TCE dechlorination relevant for a range of system conditions (e.g, bioaugmented, high TCE concentrations, etc.). The significance of the obtained variability of parameters is illustrated with one-dimensional simulations of enhanced anaerobic bioremediation of residual TCE DNAPL.
Phenrat, Tanapon; Kumloet, Itsaraphong
2016-12-15
In this study, a novel electromagnetically enhanced treatment concept is proposed for in situ remediation of a source zone of chlorinated dense non-aqueous phase liquid (DNAPL) that is slowly dissolved, causing contaminated groundwater for centuries. Here, we used polystyrene sulfonate (PSS)-modified nanoscale zerovalent iron (NZVI) particles (ferromagnetic) in combination with a low frequency (LF) (150 kHz) AC electromagnetic field (EMF) to accelerate the degradation of the DNAPLs via enhanced dissolution and reductive dechlorination. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were used in a bench-scaled evaluation. The PSS-modified NZVI successfully targeted the DNAPL/water interface, as evidenced by the Pickering emulsion formation. Dechlorination of TCE- and PCE-DNAPL was measured by quantifying the by-product formation (acetylene, ethene, and ethane). Without magnetic induction heating (MIH) by LF EMF, PSS-modified NZVI transformed TCE- and PCE-DNAPL to ethene and ethane at the rate constants of 12.19 × 10 -3 and 1.00 × 10 -3 μmol/h/m 2 , respectively, following pseudo zero-order reactions. However, four MIH cycles of PSS-NZVI increased the temperature up to 87 °C and increased the rate constants of TCE-DNAPL and PCE-DNAPL up to 14.58 and 58.01 times, respectively, in comparison to the dechlorination rate without MIH. Theoretical analysis suggested that the MIH of the PSS-modified NZVI enhanced the dechlorination of TCE- and PCE-DNAPL via the combination of the enhanced thermal dissolution of DNAPL, the effect of increasing the temperature on the rate constant (the Arrhenius equation), and the accelerated NZVI corrosion. Nevertheless, the effect of the Arrhenius equation was dominant. For the first time, this proof-of-concept study reveals the potential for using polyelectrolyte-modified NZVI coupled with LF EMF as a combined remediation technique for increasing the rate and completeness of in situ chlorinated DNAPL source remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reductive Dehalogenation of Trichloroacetic Acid by Trichlorobacter thiogenes gen. nov., sp. nov.
De Wever, Helene; Cole, James R.; Fettig, Michael R.; Hogan, Deborah A.; Tiedje, James M.
2000-01-01
A bacterium able to grow via reductive dechlorination of trichloroacetate was isolated from anaerobic soil enrichments. The isolate, designated strain K1, is a member of the δ proteobacteria and is related to other known sulfur and ferric iron reducers. In anaerobic mineral media supplemented with acetate and trichloroacetate, its doubling time was 6 h. Alternative electron donor and acceptors were acetoin and sulfur or fumarate, respectively. Trichloroacetate dehalogenation activity was constitutively present, and the dechlorination product was dichloroacetate and chloride. Trichloroacetate conversion seemed to be coupled to a novel sulfur-sulfide redox cycle, which shuttled electrons from acetate oxidation to trichloroacetate reduction. In view of its unique physiological characteristics, the name Trichlorobacter thiogenes is suggested for strain K1. PMID:10831402
Degradation of 2-chloroallylalcohol by a Pseudomonas sp.
van der Waarde, J J; Kok, R; Janssen, D B
1993-01-01
Three Pseudomonas strains capable of utilizing 2-chloroallylalcohol (2-chloropropenol) as the sole carbon source for growth were isolated from soil. The fastest growth was observed with strain JD2, with a generation time of 3.6 h. Degradation of 2-chloroallylalcohol was accompanied by complete dehalogenation. Chloroallylalcohols that did not support growth were dechlorinated by resting cells; the dechlorination level was highest if an alpha-chlorine substituent was present. Crude extracts of strain JD2 contained inducible alcohol dehydrogenase activity that oxidized mono- and dichloroallylalcohols but not trichloroallylalcohol. The enzyme used phenazine methosulfate as an artificial electron acceptor. Further oxidation yielded 2-chloroacrylic acid. The organism also produced hydrolytic dehalogenases converting 2-chloroacetic acid and 2-chloropropionic acid. PMID:8434917
DFT Studies of SN2 Dechlorination of Polychlorinated Biphenyls.
Krzemińska, Agnieszka; Paneth, Piotr
2016-06-21
Nucleophilic dechlorination of all 209 PCBs congeners by ethylene glycol anion has been studied theoretically at the DFT level. The obtained Gibbs free energies of activation are in the range 7-22 kcal/mol. The reaction Gibbs free energies indicate that all reactions are virtually irreversible. Due to geometric constrains these reactions undergo rather untypical attack with attacking oxygen atom being nearly perpendicular to the attacked C-Cl bond. The most prone to substitution are chlorine atoms that occupy ortho- (2, 2', 6, 6') positions. These results provide extensive information on the PEG/KOH dependent PCBs degradation. They can also be used in further developments of reaction class transition state theory (RC-TST) for description of complex reactive systems encountered for example in combustion processes.
Patil, Sayali S; Adetutu, Eric M; Rochow, Jacqueline; Mitchell, James G; Ball, Andrew S
2014-01-01
Microbial electric systems (MESs) hold significant promise for the sustainable remediation of chlorinated solvents such as tetrachlorethene (perchloroethylene, PCE). Although the bio-electrochemical potential of some specific bacterial species such as Dehalcoccoides and Geobacteraceae have been exploited, this ability in other undefined microorganisms has not been extensively assessed. Hence, the focus of this study was to investigate indigenous and potentially bio-electrochemically active microorganisms in PCE-contaminated groundwater. Lab-scale MESs were fed with acetate and carbon electrode/PCE as electron donors and acceptors, respectively, under biostimulation (BS) and BS-bioaugmentation (BS-BA) regimes. Molecular analysis of the indigenous groundwater community identified mainly Spirochaetes, Firmicutes, Bacteroidetes, and γ and δ-Proteobacteria. Environmental scanning electron photomicrographs of the anode surfaces showed extensive indigenous microbial colonization under both regimes. This colonization and BS resulted in 100% dechlorination in both treatments with complete dechlorination occurring 4 weeks earlier in BS-BA samples and up to 11.5 μA of current being generated. The indigenous non-Dehalococcoides community was found to contribute significantly to electron transfer with ∼61% of the current generated due to their activities. This study therefore shows the potential of the indigenous non-Dehalococcoides bacterial community in bio-electrochemically reducing PCE that could prove to be a cost-effective and sustainable bioremediation practice. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Manna, Rabindra Nath; Dybala-Defratyka, Agnieszka
2014-11-15
LinB, a haloalkane dehalogenase from Sphingomonas paucimobilis UT26, is known to metabolize halohydrocarbons to halide ions and the respective alcohols. Its broad substrate specificity allowed its consideration for bioremediation. Herein, we have shown its catalytic action toward β-hexachlorocyclohexane (β-HCH) - an example of large-size substrates that can be accommodated in its active site. We have analyzed the capability of combined QM/MM schemes to describe in detail the SN2 dechlorination reaction between β-HCH and Asp108 in the active site of LinB. Free energy surfaces have been calculated using one and two dimensional potentials of mean force (PMF) obtained at the PM3/MM (MM=amberff99SB, TIP3P) level of theory. The overestimated energetic barriers by the PM3 Hamiltonian were corrected using a DFT functional (M06-2X). The resulted activation energies (16 and 19 kcal mol(-1) from 1D and 2D-PMF profiles, respectively) for the dechlorination reaction of β-HCH in the active site of LinB enzyme are in qualitative agreement with the experimentally determined value of 17 kcal mol(-1). The binding of β-HCH to the active site of LinB has been compared to the binding of smaller 1-chlorobutane (1-CB) and larger δ-hexabromocyclododecane (δ-HBCD). Copyright © 2014 Elsevier Inc. All rights reserved.
Huffman, Raegan L.
2016-05-18
In 2015, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all less than 1 milligram per liter; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2015, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were equivalent to the concentrations measured in 2014. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2015 continued to be variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in one of the three wells and in piezometers. Beneath the marsh adjacent to the southern plantation, CVOC concentrations measured in 2015 continued to vary spatially and temporally, and were high. The total CVOC concentration, at what have been historically the most contaminated passive-diffusion sampler sites (S-4 T, S-4B T, and S-5 T), continued elevated trends, as did one of the new sampler sites (S-9 T) installed in 2015. For the intermediate aquifer in 2015, concentrations of reductive dechlorination byproducts ethane and ethene and CVOCs were consistent with those measured in previous years.
Yan, J; Rash, B A; Rainey, F A; Moe, W M
2009-04-01
Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.
Eganhouse, R.P.; Pontolillo, J.
2008-01-01
From 1947 to 1971 the world's largest manufacturer of DDT discharged process wastes into the sewers of Los Angeles County. Roughly 870-1450 t of DDT were released to the ocean off Palos Verdes, CA, a portion of which (???100 t) resides in sediments on the continental shelf and slope. The most abundant DDT compound in the sediments, p,p???-DDE, is degrading by reductive dechlorination, butthe rate of transformation and factors controlling it are not well understood. In order to estimate in situ transformation rates and predict the long-term fate of p,p???-DDE, box cores were collected in 1992 and 2003 from a single location on the Palos Verdes Shelf and analyzed for 8 DDT compounds and 84 polychlorinated biphenyl (PCB) congeners. The PCBs show no evidence of dechlorination, and inventories did not change between 1992 and 2003. By contrast, the inventory of p,p???-DDE decreased by 43%, whereas that of p,p???-DDMU, the putative reductive dechlorination product increased by 34%. The first-order transformation rate for p,p???-DDE at the study site is 0.051 ?? 0.006 yr-1. A multistep reaction model suggests that inventories of p,p???-DDE and p,p???-DDMU will continue to decline, whereas that of p,p???-DDNU will reach a maximum around 2014.
Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT.
Kang, Shenghong; Liu, Shengwen; Wang, Huimin; Cai, Weiping
2016-04-15
Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2-5μm in planar size and 35-55nm in thickness, and ∼16m(2)/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Chao; Wang, Xiangyu; Chang, Ying; Liu, Huiling
2008-01-01
Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained alpha-Fe0. Detected Pd to Fe ratio by weight (Pd/Fe ratio) was close to theoretical value. Spherical granules with diameter of 47 +/- 11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. The factors, such as species of reductants, Pd/Fe ratio, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% Pd/Fe > nanoscale Fe > reductive Fe. When the Pd/Fe ratio was lower than 0.083%, increasing Pd/Fe ratio would increase dechlorination efficiency (DE) of MCAA. When the Pd/Fe ratio was higher than 0.083%, increasing Pd/Fe ratio caused a decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin
In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability,more » oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.« less
Şimşir, Burcu; Yan, Jun; Im, Jeongdae; ...
2017-03-22
Contaminant discharge from fractured bedrock formations remains a remediation challenge. Here, we applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C 1-C 3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of knownmore » dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinatedC 1-C 3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 10 5 and 5.4 ± 0.9 × 10 6 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.« less
Removal of 2-ClBP from soil-water system using activated carbon supported nanoscale zerovalent iron.
Zhang, Wei; Yu, Tian; Han, Xiaolin; Ying, Weichi
2016-09-01
We explored the feasibility and removal mechanism of removing 2-chlorobiphenyl (2-ClBP) from soil-water system using granular activated carbon (GAC) impregnated with nanoscale zerovalent iron (reactive activated carbon or RAC). The RAC samples were successfully synthesized by the liquid precipitation method. The mesoporous GAC based RAC with low iron content (1.32%) exhibited higher 2-ClBP removal efficiency (54.6%) in the water phase. The result of Langmuir-Hinshelwood kinetic model implied that the different molecular structures between 2-ClBP and trichloroethylene (TCE) resulted in more difference in dechlorination reaction rates on RAC than adsorption capacities. Compared to removing 2-ClBP in the water phase, RAC removed the 2-ClBP more slowly in the soil phase due to the significant external mass transfer resistance. However, in the soil phase, a better removal capacity of RAC was observed than its base GAC because the chemical dechlorination played a more important role in total removal process for 2-ClBP. This important result verified the effectiveness of RAC for removing 2-ClBP in the soil phase. Although reducing the total RAC removal rate of 2-ClBP, soil organic matter (SOM), especially the soft carbon, also served as an electron transfer medium to promote the dechlorination of 2-ClBP in the long term. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şimşir, Burcu; Yan, Jun; Im, Jeongdae
Contaminant discharge from fractured bedrock formations remains a remediation challenge. Here, we applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C 1-C 3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of knownmore » dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinatedC 1-C 3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 10 5 and 5.4 ± 0.9 × 10 6 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.« less
Peng, Xianzhi; Xiong, Songsong; Ou, Weihui; Wang, Zhifang; Tan, Jianhua; Jin, Jiabin; Tang, Caiming; Liu, Jun; Fan, Yujuan
2017-02-05
A variety of personal care products have been classified as emerging contaminants (ECs). Occurrence, fate, spatial and vertical profiles of 13 ultraviolet absorbents, triclocarban (TCC) and its dechlorinated products, triclosan (TCS), 2-phenylphenol and parabens were investigated in riverine and estuarine sediment of the Pearl River catchment, China. Bisphenol A (BPA), a widely applied plasticizer, was also investigated. The ECs were widely present in the bed sediment. TCC was the most abundant with a maximum concentration of 332ngg -1 dry weight. The other prominent ECs included BPA, TCS, octocrylene, and benzotriazole UV stabilizers UV326 and UV328. Treated wastewater effluent was the major source of the ECs in the riverine sediment. TCC, BPA, TCS, methyparaben, UV531, UV326, and UV328 were also detected throughout the estuarine sediment cores, indicating their persistence in the sediment. Temporal trends of the ECs in the sediment cores reflected a combined effect of industrial development, population growth, human life quality improvement, and waste treatment capacity in the Pearl River Delta over the last decades. TCC dechlorination products were frequently detected in the bed sediment with higher levels near treated effluent outlets but only occasionally observed in the sediment cores, suggesting insignificant in-situ TCC dechlorination in the sediment. Copyright © 2016 Elsevier B.V. All rights reserved.
Air Force Sustainability Update
2009-05-01
systems are “green” Phytoremediation – utilizing tree root structure to remediate Bioaugmentation – groundwater stimulation of dechlorination Wetlands & Biowalls Solar Powered Systems Kevin Section 34
Bioremediation encompasses a collection of technologies which use microbes to degrade or transform contaminants. Three technologies have an established track record of acceptable performance: aerobic bioventing for fuels; enhanced reductive dechlorination for chlorinated solvent...
Removal of Fluorides and Chlorides from Zinc Oxide Fumes by Microwave Sulfating Roasting
NASA Astrophysics Data System (ADS)
Li, Zhiqiang; Zhang, Libo; Chen, Guo; Peng, Jinhui; Zhou, Liexing; Yin, Shaohua; Liu, Chenhui
2015-10-01
Dechlorination and defluorination from zinc oxide dust by microwave sulfating roasting was investigated in this study. According to proposed reactions in the process, detailed experiments were systematically conducted to study the effect of roasting temperature, holding time, air and steam flow rates on the efficiency of the removal of F and Cl. The results show that 92.3% of F and 90.5% of Cl in the fume could be purified when the condition of the roasting temperature of 650 °C, holding time at 60 min, air flow of 300 L/h and steam flow of 8 ml/min was optimized. Our investigation indicates that microwave sulfating roasting could be a promising new way for the dechlorination and defluorination from zinc oxide dust.
Expression of foreign genes in filamentous cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuritz, T.; Wolk, C.P.
1993-06-01
Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganisms, such as cyanobacteria, whose metabolism is dependent on the presence of chloride in the medium. Transcription of fcbAB under the control of a variety of promoters was monitored by placing luxAB (encoding luciferase) downstream from fcbAB, and by measuring light emission from luciferase. They believemore » that the system that they have described has value as a means to screen for factors influencing transcription of foreign genes in cyanobacteria.« less
Dinicola, R.S.; Huffman, R.L.
2007-01-01
Previous investigations have shown that natural attenuation and biodegradation of chlorinated volatile organic compounds (VOCs) are substantial in shallow ground water beneath the 9-acre former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey (USGS) has continued to monitor ground-water geochemistry to assure that conditions remain favorable for contaminant biodegradation. This report presents ground-water geochemical and selected VOC data collected at OU 1 by the USGS during June 12-14, 2006, in support of long-term monitoring for natural attenuation. For June 2006, the strongly reducing conditions (sulfate reduction and methanogenesis) most favorable for reductive dechlorination of VOCs were inferred for 5 of 15 upper-aquifer sites in the northern and southern phytoremediation plantations. Predominant redox conditions in ground water from the intermediate aquifer just downgradient from the landfill remained mildly reducing and somewhat favorable for reductive dechlorination. Since about 2003, measured dissolved hydrogen concentrations in the upper aquifer generally have been lower than those previously measured, although methane and sulfide have continued to be detected throughout the upper aquifer beneath the landfill. Overall, no widespread changes in ground-water redox conditions were measured that should result in either more or less efficient biodegradation of chlorinated VOCs. For the northern plantation in 2006, chlorinated VOC concentrations at piezometers P1-3 and P1-4 were lower than previously measured, and trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), or vinyl chloride (VC) were not detected at piezometers P1-1 and P1-5. The steady decrease in contaminant concentrations and the continued detection of the reductive dechlorination end-products ethene and ethane have been consistent throughout the upper aquifer beneath the northern plantation. For the southern plantation in 2006, changes in chlorinated VOC concentrations at the piezometers were highly variable. At piezometer P1-9, the 2006 total chlorinated VOC concentration as well as the concentrations of cis-DCE and VC were measured at their highest levels to date; contaminant concentrations substantially decreased at piezometer P1-9 between June 2004 and June 2005. The reasons for the 2004-05 decrease in concentrations or the 2005-06 increase in concentrations are unknown. At piezometer P1-10, the consistent temporal trend of decreasing chlorinated VOC concentrations measured since 1999 ended, and the concentration of total chlorinated VOC in 2006 was the highest measured since 1999. The reductive dechlorination end-product ethene was measured at concentrations as high as 1,300 micrograms per liter in the upper aquifer beneath the southern plantation, which is reliable evidence that reductive dechlorination of VOCs is ongoing.
Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...
Annual Reporting of Monitoring at Morrill, Kansas in 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
In September 2005, the CCC/USDA initiated periodic sampling of groundwater, in accord with a program (Argonne 2005b) approved by the KDHE (2005), to monitor carbon tetrachloride concentrations in the groundwater. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was sampled twice yearly for VOCs analyses through 2011. During the initial two years of monitoring, analysis for selected geochemical parameters was also conducted to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. Consistently low levels of dissolved oxygen (DO) and oxidation-reduction potential (ORP) at monitoring well MW1D (in the deepest portion of themore » contaminated aquifer) and the presence of chloroform (the primary degradation product of carbon tetrachloride) suggested that some degree of reductive dechlorination was occurring.« less
Legeay, Samuel; Billat, Pierre-André; Clere, Nicolas; Nesslany, Fabrice; Bristeau, Sébastien; Faure, Sébastien; Mouvet, Christophe
2018-05-01
Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.
NASA Astrophysics Data System (ADS)
Krol, M.; Kokkinaki, A.; Sleep, B.
2014-12-01
The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.
pH Control for Effective Anaerobic Bioremediation of Chlorinated Solvents
NASA Astrophysics Data System (ADS)
Robinson, C.; Barry, D.; Gerhard, J. I.; Kouznetsova, I.
2007-12-01
SABRE (Source Area BioREmediation) is a 4-year collaborative project that aims to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated solvent DNAPL source areas. The project focuses on a pilot scale demonstration at a trichloroethene (TCE) DNAPL field site, and includes complementary laboratory and modelling studies. Organic acids and hydrogen ions (HCl) typically build up in the treatment zone during anaerobic bioremediation. In aquifer systems with relatively low buffering capacity the generation of these products can cause significant groundwater acidification thereby inhibiting dehalogenating activity. Where the soil buffering capacity is exceeded, addition of buffer may be needed for the effective continuation of TCE degradation. As an aid to the design of remediation schemes, a geochemical model was designed to predict the amount of buffer required to maintain the source zone pH at a suitable level for dechlorinating bacteria (i.e. > 6.5). The model accounts for the amount of TCE to be degraded, site water chemistry, type of organic amendment and soil mineralogy. It assumes complete dechlorination of TCE, and further considers mineral dissolution and precipitation kinetics. The model is applicable to a wide range of sites. For illustration we present results pertinent to the SABRE field site. Model results indicate that, for the extensive dechlorination expected in proximity to the SABRE DNAPL source zone, significant buffer addition may be necessary. Additional simulations are performed to identify buffer requirements over a wider range of field conditions.
Puigserver, Diana; Cortés, Amparo; Viladevall, Manuel; Nogueras, Xènia; Parker, Beth L; Carmona, José M
2014-11-01
This work dealt with the physical and biogeochemical processes that favored the natural attenuation of chloroethene plumes of aged sources located close to influent rivers in the presence of co-contaminants, such as nitrate and sulfate. Two working hypotheses were proposed: i) Reductive dechlorination is increased in areas where the river-aquifer relationship results in the groundwater dilution of electron acceptors, the reduction potential of which exceeds that of specific chloroethenes; ii) zones where silts predominate or where textural changes occur are zones in which biodegradation preferentially takes place. A field site on a Quaternary alluvial aquifer at Torelló, Catalonia (Spain) was selected to validate these hypotheses. This aquifer is adjacent to an influent river, and its redox conditions favor reductive dechlorination. The main findings showed that the low concentrations of nitrate and sulfate due to dilution caused by the input of surface water diminish the competition for electrons between microorganisms that reduce co-contaminants and chloroethenes. Under these conditions, the most bioavailable electron acceptors were PCE and metabolites, which meant that their biodegradation was favored. This led to the possibility of devising remediation strategies based on bioenhancing natural attenuation. The artificial recharge with water that is low in nitrates and sulfates may favor dechlorinating microorganisms if the redox conditions in the mixing water are sufficiently maintained as reducing and if there are nutrients, electron donors and carbon sources necessary for these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Costanza, Jed; Pennell, Kurt D
2008-02-01
The rates of hydrolysis reported for tetrachloroethylene (PCE) and trichloroethylene (TCE) at elevated temperatures range over two orders-of-magnitude, where some of the variability may be due to the presence of a gas phase. Recent studies suggest that volatile organic analysis (VOA) vials provide a low-cost and readily available zero headspace system for measuring aqueous-phase hydrolysis rates. This work involved measuring rates of PCE and TCE disappearance and the corresponding appearance of dechlorination products in water-filled VOA vials and flame-sealed ampules incubated at 21 and 55 degrees C for up to 95.5 days. While PCE and TCE concentrations readily decreased in the VOA vials to yield first-order half lives of 11.2 days for PCE and 21.1 days for TCE at 55 degrees C, concentrations of anticipated dechlorination products, including chloride, remained constant or were not detected. The rate of PCE disappearance was 34 times faster in VOA vials at 55 degrees C compared to values obtained with flame-sealed ampules containing PCE-contaminated water. In addition, the concentration of TCE increased slightly in flame-sealed ampules incubated at 55 degrees C, while a decrease in TCE levels was observed in the VOA vials. The observed losses of PCE and TCE in the VOA vials were attributed to diffusion and sorption in the septa, rather than to dechlorination. These findings demonstrate that VOA vials are not suitable for measuring rates of volatile organic compound hydrolysis at elevated temperatures.
Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena
2015-01-01
Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862
Luo, Jing; Farrell, James
2013-01-01
Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... dechlorination as an active treatment process to address groundwater contamination, and selecting monitored... Packaging Inc.; Ethox Chemicals, LLC; Expert Management Inc. on behalf of National Starch and Chemical...
DECHLORINATION OF 2-CHLOROBIPHENYL WITH PD/MG BIMETALLIC PARTICLES
PCBs are notorious for their widespread prevalence in aquatic and sedimentary ecosystems, recalcitrance, and carcinogenicity. Dredging and land-filling are still commonly used for treating PCB contaminated matrices but are often prohibitively expensive. Incinerating PCBs produces...
U. S. EPA’S APPROACH FOR CHLORINATED SOLVENTS
The approach for chlorinated solvents is similar to the approach for petroleum hydrocarbons. However, there are more mechanisms of removal, including reductive dechlorination (biotic or abiotic), dehydrochloroelimination (abiotic), and hydrolysis (biotic or abiotic). As a resul...
TREATING CHLORINATED WASTES WITH THE KPEG PROCESS
The two reports summarized here describe development of the alkali metal (polyethylene gylycolate (APEG) chemical technology to dechlorinate hazardous hydrocarbons in soils and its application at four demonstration sites: field-scale application to contaminated soils on the isla...
Egland, Paul G.; Gibson, Jane; Harwood, Caroline S.
2001-01-01
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl–CoA), (ii) reductively dehalogenating 3-chlorobenzoyl–CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation. PMID:11229940
Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1.
Mohn, W W; Kennedy, K J
1992-01-01
Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth. PMID:1599254
Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes
Wedemeyer, Gary
1967-01-01
Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.
Microbial mineralization of ethene under sulfate-reducing conditions
Bradley, P.M.; Chapelle, F.H.
2002-01-01
A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.
Enhanced CAH dechlorination in a low permeability, variably-saturated medium
Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,
2002-01-01
An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.
Perfluoroalkyl Acids Shift Microbial Community Structure Across Experimental Scales
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Sharp, J.
2016-12-01
Perfluoroalkyl acids (PFAAs) are contaminants of emerging concern that have increasingly been found in groundwater and drinking water systems. Previously, we demonstrated that PFAAs significantly alter the abundance of specific microbial clades in batch reductive dechlorinating systems, resulting in decreased chlorinated solvent attenuation capabilities. To further understand the impacts of PFAA exposure on subsurface microbial processes and PFAA transport, we investigated changes in microbial community structure as a function of PFAA presence in flow-through columns simulating aquifer transport. Phylogenetic analysis using high throughput, next generation sequencing performed after exposure to 250 pore volumes of source zone concentrations of PFAAs (10 mg/L each of 11 analytes including PFOS and PFOA) resulted in patterns that mirrored those observed in batch systems, demonstrating a conservation of community dynamics across experimental scales. Of the nine clades observed in both batch and flow-through systems, six were similarly impacted as a function of PFAA exposure, regardless of the experimental differences in transport and redox state. Specifically, the presence of PFAAs enhanced the relative abundance of Archaea, Bacteroidetes (phylum), and the family Veillonellaceae in both systems. Repressed clades include the genus Sedimentibacter, Ruminococcaceae (family), and the Anaerolineales, which contains Dehalococcoides, a genus known for its ability to fully dechlorinate TCE. As PFAAs are often co-located with TCE and BTEX, changes in microbial community structure can result in hindered bioremediation of these co-contaminants. Consideration of community shifts and corresponding changes in behavior, such as repressed reductive dechlorination or increased biofilm formation, will aid in the development of conceptual site models that account for co-contaminant bioremediation potential and PFAA transport.
Li, Xiang; Zhou, Minghua; Pan, Yuwei
2018-07-05
2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world, its residue in aquatic environment threatens the human health and ecosystems. In this study, for the first time, inexpensive Fe-C after pre-magnetization (Pre-Fe-C) was used as the heterogeneous catalyst to activate persulfate (PS) for 2,4-D degradation, proving that Pre-Fe-C could significantly improve the degradation and dechlorination. The results indicated the stability and reusability of Pre-Fe-C were much better than pre-magnetization Fe 0 (Pre-Fe 0 ), while the leaching iron ion was lower, indicating that using Pre-Fe-C not only reduced the post-treatment cost, but also enhanced the removal and dechlorination efficiency of 2,4-D. Several important parameters including initial pH, Fe-C dosage, PS concentration affecting 2,4-D degradation and dechlorination by Pre-Fe-C/PS were investigated and compared with that of Fe-C/PS, observing a 1.2-2.7 fold enhancement in the degradation rate of 2,4-D. The Fe-C and Pre-Fe-C were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and SEM-EDX-mapping, suggesting that the content of Fe and O changed more obviously after magnetization. The degradation intermediates, such as chloroquinol, 2-chlorophenol, were identified by a gas chromatography mass spectrometry (GC/MS) and an ion chromatography (IC), and a possible degradation pathway was proposed. Copyright © 2018 Elsevier B.V. All rights reserved.
DECHLORINATION-CONTROLLED POLYCHLORINATED DIBENZOFURAN FROM MUNICIPAL WASTE INCINERATORS
The ability to predict polychlorinated dibenzofuran (PCDF) isomer patterns from municipal waste incinerators (MWIs) enables an understanding of PCDF formation that may provide preventive measures. This work develops a model for the pattern prediction, assuming that the peak rati...
HORIZONTAL LASAGNA TO BIOREMEDIATE TCE
Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNATM technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE. Electroosmosis was c...
PALLADIUM/MAGNESIUM CORROSION NANO-CELLS FOR PCB DECHLORINATION
Polychlorinated biphenyls (PCBs) are toxic and recalcitrant environment pollutants that are prevalent in nation's submarine sediments. PCBs bioaccumulate and progressively move up the food chain to reach humans posing serious health hazards. Today, fish consumption is a major rou...
HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...
MASS BALANCE ANALYSIS FOR MICROBIAL DECHLORINATION OF TETRACHLOROETHENE
Contamination of subsurface environments by chlorinated aliphatic solvents and petroleum hydrocarbons is a significant public health concern because groundwater is one of the major drinking water resources in the United States. Biotic and abiotic techniques have been widely exam...
Dinicola, R.S.; Huffman, R.L.
2009-01-01
Previous investigations indicate that natural attenuation and biodegradation of chlorinated volatile organic compounds (VOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with on-going natural attenuation processes was the preferred remedy selected by the Navy, as specified in the Record of Decision for the site. The Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated VOCs in shallow groundwater. The U.S. Geological Survey (USGS) has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. In this report are groundwater geochemical and selected VOC data collected at OU 1 by the USGS during June 18-21, 2007, and June 16-18, 2008, in support of long-term monitoring for natural attenuation. For 2007 and 2008, strongly reducing conditions (sulfate reduction and methanogenesis) most favorable for reductive dechlorination of VOCs were inferred for 9 of 16 upper-aquifer wells and piezometers in the northern and southern phytoremediation plantations. Predominant redox conditions in groundwater from the intermediate aquifer just downgradient from the landfill remained mildly reducing and somewhat favorable for reductive dechlorination of VOCs. Dissolved hydrogen (H2) concentrations measured in the upper aquifer during 2007 and 2008 generally have been lower than H2 concentrations measured before 2002. However, widespread and relatively high methane and sulfide concentrations indicate that the lower H2 concentrations measured do not support a trend from strongly to mildly reducing redox conditions because no widespread changes in groundwater redox conditions were identified that should result in less favorable conditions for the reductive dechlorination of the chlorinated VOCs. For the upper aquifer beneath the northern phytoremediation plantation, chlorinated VOC concentrations in 2007 and 2008 at most piezometers were similar to or slightly less than chlorinated VOC concentrations measured in previous years. The only chlorinated VOC positively detected at piezometers P1-1 and P1-5 was cis-1,2-dichloroethene (cis-DCE); most chlorinated VOC concentrations at piezometer P1-3 were at the lowest levels since monitoring began in 1999. Most VOC concentrations at piezometer P1-4 were similar to VOC concentrations measured in previous years except that vinyl chloride (VC) concentrations inexplicably increased from 280 micrograms per liter (ug/L) in June 2007 to 750 ug/L in June 2008. In 2008, measurement of the sum of concentrations of ethane and ethene, reductive dechlorination byproducts, was at the highest level at most northern plantation wells and piezometers, which is evidence of reductive dechlorination of chlorinated VOCs. For the upper aquifer beneath the southern phytoremediation plantation, chlorinated VOC concentrations in 2007 and 2008 at the piezometers were most often extremely high and they continued to vary considerable over space and between years. At piezometer P1-6, the total chlorinated VOC concentration increased from 380 ug/L in 2007 to more than 20,000 ug/L in 2008. At piezometer P1-7 in 2008, the concentrations of trichloroethene, cis-DCE, and VC were the highest to date, but total chlorinated VOC concentrations at piezometers P1-8, P1-9, and P1-10 in 2008 were relatively low compared to historical levels. The magnitude and persistence of chlorinated VOC concentrations indicate that non-aqueous phase liquid chloroethenes likely are beneath the southern plantation, and the temporal variability in concentrations likely is a result of variations in precipitation and groundwater levels interacting with the non-aqueous phase liquid. The reductive dechlorination byproducts ethane and ethene were detected at
AN ISOMER PREDICTION MODEL FOR PCNS, PCDD/FS, AND PCBS FROM MUNICIPAL WASTE INCINERATORS
Isomer patterns of polychlorinated naphthalenes (PCNs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated biphenyls (PCBs) from municipal waste incinerators (MWIs) were predicted by a model based on dechlorination kinetics from the most-chlorinated species. Successfu...
PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS
Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...
Dehalococcoides organisms are very attractive for application in natural or engineered bioremediation of chloroethylene-contaminated sites because they are the only organisms known to date that can completely dechlorinate chloroethylenes to harmless ethylene. The use of genetic a...
The transformation rates of hexachloroethane (HCA) and carbon tetrachloride (CTET) have been measured in model systems representing the ground water environment and in slurries of fractionated Borden aquifer material. his report summarizes research conducted to identify the envir...
Dehalococcoides organisms are very attractive for application in natural or engineered bioremediation of chloroethylene-contaminated sites because they are the only organisms known to date that can completely dechlorinate chloroethylenes to harmless ethylene. The use of genetic ...
HORIZONTAL LASAGNA^TM TO BIOREMEDIATE TCE
Removal of TCE from these tight clay soils has been technically difficult and expensive. However, the LASAGNA technique allows movement of the TCE into treatment zones for biodegradation or dechlorination in place, lessening the costs and exposure to TCE.
Electroosmosis wa...
Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Casey, Clifton C.
2010-01-01
The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated the hydrology and groundwater chemistry in the vicinity of an emulsified vegetable-oil injection zone at Solid Waste Management Unit (SWMU) 17, Naval Weapons Station Charleston, North Charleston, South Carolina. In May 2004, Solutions-IES initiated a Phase-I pilot-scale treatability study at SWMU17 involving the injection of an edible oil emulsion into the aquifer near wells 17PS-01, 17PS-02, and 17PS-03 to treat chlorinated solvents. The Phase-I injection of emulsified vegetable oil resulted in dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE), but the dechlorination activity appeared to stall at cDCE, with little further dechlorination of cDCE to vinyl chloride (VC) or to ethene. The purpose of the present investigation was to examine the groundwater hydrology and chemistry in and near the injection zone to gain a better understanding of the apparent remediation stall. It is unlikely that the remediation stall was due to the lack of an appropriate microbial community because groundwater samples showed the presence of Dehalococcoides species (sp.) and suitable enyzmes. The probable causes of the stall were heterogeneous distribution of the injectate and development of low-pH conditions in the injection area. Because groundwater pH values in the injection area were below the range considered optimum for dechlorination activity, a series of tests was done to examine the effect on dechlorination of increasing the pH within well 17PS-02. During and following the in-well pH-adjustment tests, VC concentrations gradually increased in some wells in the injection zone that were not part of the in-well pH-adjustment tests. These data possibly reflect a gradual microbial acclimation to the low-pH conditions produced by the injection. In contrast, a distinct increase in VC concentration was observed in well 17PS-02 following the in-well pH increase. Adjustment of the pH to near-neutral values in well 17PS-02 may have made that well relatively favorable to VC production compared with much of the rest of the injection zone, possibly accounting for acceleration of VC production at that well. Following a Phase-II injection in which Solutions-IES, Inc., injected pH-buffered emulsified vegetable oil with an improved efficiency injection approach, 1,1-dichloroethene, TCE, and cDCE rapidly decreased in concentration and are now (2009) undetectable in the injection zone, with the exception of a low concentration (43 micrograms per liter, August 2009) of cDCE in well 17PS-01. In August 2009, VC was still present in groundwater at the test wells in concentrations ranging from 150 to 640 micrograms per liter. The Phase-II injection, however, appears to have locally decreased aquifer permeability, possibly resulting in movement of contamination around, rather than through, the treatment area.
Dinicola, Richard S.; Huffman, R.L.
2006-01-01
Previous investigations have shown that natural attenuation and biodegradation of chlorinated volatile organic compounds (VOCs) are substantial in shallow ground water beneath the 9-acre former landfill at Operable Unit 1 (OU-1), Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey (USGS) has continued to monitor ground-water geochemistry to assure that conditions remain favorable for contaminant biodegradation. This report presents the ground-water geochemical and selected VOC data collected at OU-1 by the USGS during June 21-24, 2005, in support of long-term monitoring for natural attenuation. For June 2005, the strongly reducing conditions (sulfate reduction and methanogenesis) most favorable for reductive dechlorination of chlorinated VOCs were detected in fewer upper-aquifer wells than were detected during 2004. Redox conditions in ground water from the intermediate aquifer just downgradient of the landfill remained somewhat favorable for reductive dechlorination. Overall, the changes in redox conditions observed at individual wells have not been consistent or substantial throughout either the upper or the intermediate aquifers. In apparent contrast to changes in redox conditions, the chlorinated VOC concentrations were lower than previously measured in many of the piezometers in the northern phytoremediation plantation. The decrease in contaminant concentrations beneath the northern plantation and the end-product (ethane and ethene) evidence for reductive dechlorination are consistent with 2000-04 results. In the southern phytoremediation plantation, changes in chlorinated VOC concentrations were variable. Most notable was a substantial decrease in the sum of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride concentrations at piezometer P1-9 from 75,000 to 1,000 micrograms per liter between 2004 and 2005. The high concentrations of the reductive dechlorination end-products ethane and ethene measured at the most contaminated sites (P1-6 and P1-7), as well as measurable concentrations at sites P1-9 and P1-10, are reliable evidence that reductive dechlorination of chlorinated VOCs is ongoing in the southern plantation. In the 10 passive-diffusion samplers deployed beneath the marsh stream, the highest chlorinated VOC concentrations measured were at a site (S-4) about midway along the sampled stream reach. In 2005, the sum of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride concentrations increased nearly twofold in comparison to 2004. It is not certain that the apparent increase in concentrations is representative of site conditions. However, the chlorinated VOC concentrations have increased each time at the two most contaminated passive-diffusion sampler sites that have been sampled for multiple years. In the marsh stream, chlorinated VOC concentrations in surface water were low at the site (SW-S6) near the upgradient margin of the former landfill. Concentrations in the stream increased substantially after flowing past the southern phytoremediation plantation to the downstream site (MA-12). Overall, the 2005 data were consistent with previous findings of continued biodegradation of chlorinated VOCs in ground water, along with continued discharge of some chlorinated VOCs to surface water in the marsh stream.
High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)
This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...
ABIOTIC REACTIONS MAY BE THE MOST IMPORTANT MECHANISM IN NATURAL ATTENUATION OF CHLORINATED SOLVENTS
The EPA Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water was developed with the assumption that natural biological reductive dechlorination was the only important mechanism for destruction of chlorinated solvents and their reduction ...
ENHANCED CORRISION-BASED PD/MG BIMETALLIC SYSTEMS FOR DECHLORINATION OF PCBS
Polychlorinated biphenyls (PCBs) are toxic pollutants notorious for their aquatic and sedimentary prevalence and recalcitrant nature. Bimetallic systems like Pd/Fe have been widely studied for degrading them. Mg, with oxidation potential higher than Fe, has been reported to dechl...
PCB DECHLORINATION BY PD/MG BIMETALLIC CORROSION NANO-CELLS
Polychlorinated biphenyls (PCBs), manufacture-1970's for use as electrical insulators, were banned in 1979 due to their toxicity and persistence in the environment. They are recalcitrant environmental pollutants, found in numerous rivers, coastal waters and in 500 of the nation's...
USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE
Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...
Polychlorinated biphenyls (PCBs) are one group of persistent organic pollutants (POPs) of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment presents a very tough challenge because they are highly hydro...
ACETYLENE INHIBITION OF TRICHLOROETHENE AND VINYL CHLORIDE REDUCTIVE DECHLORINATION. (R828772)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents
While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...
Reductive biotransformation of tetrachloroethene (PCE) to ethene occurred during anaerobic degradation of toluene in an enrichment culture. Ethene was detected as a dominant daughter product of PCE dechlorination with negligible accumulation of other partially chlorinated ethenes...
Resilience and recovery of Dehalococcoides mccartyi following low pH exposure.
Yang, Yi; Cápiro, Natalie L; Yan, Jun; Marcet, Tyler F; Pennell, Kurt D; Löffler, Frank E
2017-12-01
Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc-containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8- and 16-day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene-producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8-, a 16- and a 40-day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain-specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5-6 groundwater were significantly lower (P-value < 0.05) than in pH 6-8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Aulenta, Federico; Potalivo, Monica; Majone, Mauro; Papini, Marco Petrangeli; Tandoi, Valter
2006-06-01
This study investigated the biotransformation pathways of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) in the presence of chloroethenes (i.e. tetrachloroethene, PCE; trichloroethene, TCE) in anaerobic microcosms constructed with subsurface soil and groundwater from a contaminated site. When amended with yeast extract, lactate, butyrate, or H2 and acetate, 1,1,2,2-TeCA was initially dechlorinated via both hydrogenolysis to 1,1,2-trichloroethane (1,1,2-TCA) (major pathway) and dichloroelimination to dichloroethenes (DCEs) (minor pathway), with both reactions occurring under sulfidogenic conditions. In the presence of only H2, the hydrogenolysis of 1,1,2,2-TeCA to 1,1,2-TCA apparently required the presence of acetate to occur. Once formed, 1,1,2-TCA was degraded predominantly via dichloroelimination to vinyl chloride (VC). Ultimately, chloroethanes were converted to chloroethenes (mainly VC and DCEs) which persisted in the microcosms for very long periods along with PCE and TCE originally present in the groundwater. Hydrogenolysis of chloroethenes occurred only after highly reducing methanogenic conditions were established. However, substantial conversion to ethene (ETH) was observed only in microcosms amended with yeast extract (200 mg/l), suggesting that groundwater lacked some nutritional factors which were likely provided to dechlorinating microorganisms by this complex organic substrate. Bioaugmentation with an H2-utilizing PCE-dechlorinating Dehalococcoides spp. -containing culture resulted in the conversion of 1,1,2,2-TeCA, PCE and TCE to ETH and VC. No chloroethanes accumulated during degradation suggesting that 1,1,2,2-TeCA was degraded through initial dichloroelimination into DCEs and then typical hydrogenolysis into ETH and VC.
Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.
2014-01-01
Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.
Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms
Praveckova, Martina; Brennerova, Maria V.; Holliger, Christof; De Alencastro, Felippe; Rossi, Pierre
2016-01-01
Although polychlorinated biphenyls (PCBs) production was brought to a halt 30 years ago, recalcitrance to degradation makes them a major environmental pollutant at a global scale. Previous studies confirmed that organohalide-respiring bacteria (OHRB) were capable of utilizing chlorinated congeners as electron acceptor. OHRB belonging to the Phyla Chloroflexi and Firmicutes are nowadays considered as the main PCB-dechlorinating organisms. In this study, we aimed at exploring the involvement of other taxa in PCB dechlorination using sediment-free microcosms (SFMs) and the Delor PCB mixture. High rates of congener dehalogenation (up to 96%) were attained in long-term incubations of up to 692 days. Bacterial communities were dominated by Chloroflexi, Proteobacteria, and Firmicutes, among strictly simplified community structures composed of 12 major phyla only. In a first batch of SFMs, Dehalococcoides mccartyi closely affiliated with strains CG4 and CBDB1 was considered as the main actor associated with congener dehalogenation. Addition of 2-bromoethanesulfonate (BES), a known inhibitor of methanogenic activity in a second batch of SFMs had an adverse effect on the abundance of Dehalococcoides sp. Only two sequences affiliated to this Genus could be detected in two (out of six) BES-treated SFMs, contributing to a mere 0.04% of the communities. BES-treated SFMs showed very different community structures, especially in the contributions of organisms involved in fermentation and syntrophic activities. Indirect evidence provided by both statistical and phylogenetic analysis validated the implication of a new cluster of actors, distantly affiliated with the Family Geobacteraceae (Phylum δ-Proteobacteria), in the dehalogenation of low chlorinated PCB congeners. Members of this Family are known already for their dehalogenation capacity of chlorinated solvents. As a result, the present study widens the knowledge for the phylogenetic reservoir of indigenous PCB dechlorinating taxa. PMID:27379063
Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms.
Praveckova, Martina; Brennerova, Maria V; Holliger, Christof; De Alencastro, Felippe; Rossi, Pierre
2016-01-01
Although polychlorinated biphenyls (PCBs) production was brought to a halt 30 years ago, recalcitrance to degradation makes them a major environmental pollutant at a global scale. Previous studies confirmed that organohalide-respiring bacteria (OHRB) were capable of utilizing chlorinated congeners as electron acceptor. OHRB belonging to the Phyla Chloroflexi and Firmicutes are nowadays considered as the main PCB-dechlorinating organisms. In this study, we aimed at exploring the involvement of other taxa in PCB dechlorination using sediment-free microcosms (SFMs) and the Delor PCB mixture. High rates of congener dehalogenation (up to 96%) were attained in long-term incubations of up to 692 days. Bacterial communities were dominated by Chloroflexi, Proteobacteria, and Firmicutes, among strictly simplified community structures composed of 12 major phyla only. In a first batch of SFMs, Dehalococcoides mccartyi closely affiliated with strains CG4 and CBDB1 was considered as the main actor associated with congener dehalogenation. Addition of 2-bromoethanesulfonate (BES), a known inhibitor of methanogenic activity in a second batch of SFMs had an adverse effect on the abundance of Dehalococcoides sp. Only two sequences affiliated to this Genus could be detected in two (out of six) BES-treated SFMs, contributing to a mere 0.04% of the communities. BES-treated SFMs showed very different community structures, especially in the contributions of organisms involved in fermentation and syntrophic activities. Indirect evidence provided by both statistical and phylogenetic analysis validated the implication of a new cluster of actors, distantly affiliated with the Family Geobacteraceae (Phylum δ-Proteobacteria), in the dehalogenation of low chlorinated PCB congeners. Members of this Family are known already for their dehalogenation capacity of chlorinated solvents. As a result, the present study widens the knowledge for the phylogenetic reservoir of indigenous PCB dechlorinating taxa.
Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U
2014-07-15
Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.
2015-01-01
Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693
Gu, Yawei; Wang, Binbin; He, Feng; Bradley, Miranda J; Tratnyek, Paul G
2017-11-07
In water treatment processes that involve contaminant reduction by zerovalent iron (ZVI), reduction of water to dihydrogen is a competing reaction that must be minimized to maximize the efficiency of electron utilization from the ZVI. Sulfidation has recently been shown to decrease H 2 formation significantly, such that the overall electron efficiency of (or selectivity for) contaminant reduction can be greatly increased. To date, this work has focused on nanoscale ZVI (nZVI) and solution-phase sulfidation agents (e.g., bisulfide, dithionite or thiosulfate), both of which pose challenges for up-scaling the production of sulfidated ZVI for field applications. To overcome these challenges, we developed a process for sulfidation of microscale ZVI by ball milling ZVI with elemental sulfur. The resulting material (S-mZVI bm ) exhibits reduced aggregation, relatively homogeneous distribution of Fe and S throughout the particle (not core-shell structure), enhanced reactivity with trichloroethylene (TCE), less H 2 formation, and therefore greatly improved electron efficiency of TCE dechlorination (ε e ). Under ZVI-limited conditions (initial Fe 0 /TCE = 1.6 mol/mol), S-mZVI bm gave surface-area normalized reduction rate constants (k' SA ) and ε e that were ∼2- and 10-fold greater than the unsulfidated ball-milled control (mZVI bm ). Under TCE-limited conditions (initial Fe 0 /TCE = 2000 mol/mol), sulfidation increased k SA and ε e ≈ 5- and 50-fold, respectively. The major products from TCE degradation by S-mZVI bm were acetylene, ethene, and ethane, which is consistent with dechlorination by β-elimination, as is typical of ZVI, iron oxides, and/or sulfides. However, electrochemical characterization shows that the sulfidated material has redox properties intermediate between ZVI and Fe 3 O 4 , mostly likely significant coverage of the surface with FeS.
The Ability of AMSTAR Dechlorination Solution to Remove and Degrade PCBs from Contaminated Surfaces
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline E.
2006-01-01
Polychlorinated biphenyls (PCBs) are a group of synthetic aromatic compounds with the general formula C12H(10-x)Cl(-x) that were historically used in industrial paints, caulking material and adhesives, as their properties enhanced structural integrity, reduced flammability and boosted antifungal properties. Although the United States Environmental Protection Agency (USEPA) has banned the manufacture of PCBs since 1979, they have been found in at least 500 of the 1,598 National Priorities List (Superfund) sites identified by the USEPA. Prior to the US EPA's ban on PCB production, PCBs were commonly used as additives in paints and asphalt-based adhesives that were subsequently applied to a variety of structures. Government facilities constructed as early as 1930 utilized PCB-containing binders or PCB-containing paints, which are now leaching into the environment and posing ecological and worker health concerns. In 2006, a commercially available product known as AMSTAR Dechlorination Solution was tested at NASA's Kennedy Space Center for its ability to remove and degrade PCBs from structural materials. This evaluation was requested by the Environmental Security Technology Certification Program (ESTCP) evaluating the ability of NASA's Bimetallic Treatment System (BTS) to remove and degrade PCBs from structural materials. The results of the laboratory testing are to be used to determine if a side-by-side field-scale test comparing BTS to AMSTAR was warranted. A recommended sampling and analysis testing program was submitted to ESTCP that included triplicate screening of AMSTAR's PCB dechlorination capabilities on a variety of surfaces including glass, bare metal, and painted metal coupons. The test procedures, analytical techniques and results obtained are presented in this interim report to ESTCP.
Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.
Haest, P J; Springael, D; Seuntjens, P; Smolders, E
2012-11-01
Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramsburg, C. A.; Abriola, L. M.; Pennell, K. D.; Löffler, F. E.; Gamache, M.; Petrovskis, E. A.
2003-04-01
A pilot-scale surfactant-enhanced aquifer remediation (SEAR) demonstration was completed during the summer of 2000 at the Bachman Road site (Oscoda, MI USA). For this test, an aqueous solution of 60 g/L Tween 80 (polyoxyethylene (20) sorbitan monooleate) was used to recover tetrachloroethene (PCE) from a suspected source zone, located underneath a former dry-cleaning facility. Tween 80 was selected for use based upon its demonstrated capacity to solubilize PCE, “food-grade” status, and biodegradative potential. Hydraulic control was maintained throughout the test, with 95% of the injected surfactant mass recovered by a single extraction well. Source-zone monitoring conducted 15 months after SEAR treatment revealed the presence of previously undetected volatile fatty acids (acetate and formate) and PCE degradation products (trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichlorethene, and vinyl chloride), in conjunction with PCE concentration reductions of approximately two orders-of-magnitude. The detection of volatile fatty acids is relevant, as they are likely fermentation products of residual Tween 80. Microbial reductive dechlorination is limited by available electron donors, and microcosm studies demonstrated that both acetate and formate support reductively dechlorinating populations present at the oligotrophic Bachman Road site aquifer. Surfactant transport simulations, using a regional flow model developed for the site, were employed to determine appropriate down-gradient monitoring locations. Drive point samples taken 15 months post-treatment in the vicinity of the simulated residual surfactant plume, contained elevated concentrations of acetate and PCE daughter products. Ongoing efforts include continued site-monitoring, and microcosm studies to corroborate a causal relationship between Tween 80 fermentation and PCE dechlorination.
Eganhouse, Robert P.; Pontolillo, James
2008-01-01
In 1953, the world's largest producer of DDT, Montrose Chemical Corporation, began to discharge process wastes into sewers of the Los Angeles County Sanitation Districts (LACSD), California. By 1971, when the sewer connection was terminated, approximately 1,500-2,000 metric tons of DDT had been introduced to the LACSD treatment plant in Carson, CA. After treatment, effluent from this plant was released to the ocean through a submarine outfall system on the Palos Verdes Shelf (PVS) near Los Angeles, resulting in the accumulation of highly contaminated marine sediments. Numerous investigations of the PVS have been undertaken since the late 1960s, but few have focused on the biogeochemical fate of DDT and its transformation products. In the early 1990s, it was shown that DDE, the major DDT compound in the sediments, was being reductively dechlorinated by microorganisms resident in sediments on the PVS. The U.S. Geological Survey undertook a study in cooperation with the U.S. Environmental Protection Agency to provide a better understanding of the range of reductive dechlorination rates on the PVS and the environmental factors that control them. Existing data show that rates of reductive dechlorination are variable spatially. A comparison of data from two cores collected approximately 7 kilometers downcurrent from the outfall systems in 1992 and 2003 yielded an average first-order transformation rate of approximately 0.05 yr-1. A multistep reaction model suggests that inventories of DDE in PVS sediments at the study site will continue to decline, whereas the inventory of the metabolite DDNU will reach a maximum around 2014.
Sakai, Nobumitsu; Dayana, Emmy; Abu Bakar, Azizi; Yoneda, Minoru; Nik Sulaiman, Nik Meriam; Ali Mohd, Mustafa
2016-10-01
Polychlorinated biphenyls (PCBs) were monitored in surface water collected in the Selangor River basin, Malaysia, to identify the occurrence, distribution, and dechlorination process as well as to assess the potential adverse effects to the Malaysian population. Ten PCB homologs (i.e., mono-CBs to deca-CBs) were quantitated by using gas chromatography-mass spectrometry (GC/MS). The total concentration of PCBs in the 10 sampling sites ranged from limit of detection to 7.67 ng L -1 . The higher chlorinated biphenyls (tetra-CBs to deca-CBs) were almost not detected in most of the sampling sites, whereas lower chlorinated biphenyls (mono-CBs, di-CBs, and tri-CBs) dominated more than 90 % of the 10 homologs in all the sampling sites. Therefore, the PCB load was estimated to be negligible during the sampling period because PCBs have an extremely long half-life. The PCBs, particularly higher chlorinated biphenyls, could be thoroughly dechlorinated to mono-CBs to tri-CBs by microbial decomposition in sediment or could still be accumulated in the sediment. The lower chlorinated biphenyls, however, could be resuspended or desorbed from the sediment because they have faster desorption rates and higher solubility, compared to the higher chlorinated biphenyls. The health risk for the Malaysia population by PCB intake that was estimated from the local fish consumption (7.2 ng kg -1 bw day -1 ) and tap water consumption (1.5 × 10 -3 -3.1 × 10 -3 ng kg -1 bw day -1 ) based on the detected PCB levels in the surface water was considered to be minimal. The hazard quotient based on the tolerable daily intake (20 ng kg -1 bw day -1 ) was estimated at 0.36.
Isosaari, Pirjo; Laine, Olli; Tuhkanen, Tuula; Vartiainen, Terttu
2005-03-20
Sunlight or ultraviolet light irradiation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the presence of vegetable oil offers a potential method for the cleanup of contaminated soil. In this study, the effects of different types of vegetable oils on the photochemical degradation of 1,2,3,4,6,7,8-heptachlorodibenzofuran and heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDF/HpCDD) were investigated in the laboratory. Using a blacklight lamp as a source of ultraviolet light, 93-100% of 1,2,3,4,6,7,8-HpCDF degraded in 60 min in rapeseed oil, extra virgin olive oil and olive oil. Less degradation occurred in palm oil (59%), toluene (39%) and hexane (20%). The better degradation in vegetable oils in comparison with organic solvents was attributed to the photooxidation of lipids producing hydrogen for PCDD/F dechlorination. In addition to the hydrogen donor capacity, permeability of ultraviolet light was involved in the differences between vegetable oils. alpha-Tocopherol and chlorophyll did not influence the performance of oil at concentrations normally present in vegetable oils, whereas beta-carotene had an inhibitory effect on the degradation of 1,2,3,4,6,7,8-HpCDF. Up to 28% of the degradation products of 1,2,3,4,6,7,8-HpCDF were formed via the dechlorination pathway. Products included both toxic (2,3,7,8-chlorinated) and non-toxic PCDD/Fs, the toxic PCDD/Fs being more stable. Irradiation of 1,2,3,4,6,7,8-HpCDD yielded only non-toxic dechlorination products. Polychlorinated hydroxybiphenyls (OH-PCBs), polychlorinated dihydroxybiphenyls (DOH-PCBs) and polychlorinated hydroxydiphenylethers (OH-PCDEs) containing one to seven chlorine atoms were not detected in irradiated HpCDF/HpCDD samples.
Skubal, K.L.; Haack, S.K.; Forney, L.J.; Adriaens, P.
1999-01-01
Hydrogeochemical and microbiological methods were used to characterize temporal changes along a transect of an aquifer contaminated by mixed hydrocarbon and solvent wastes from fire training activities at Wurtsmith Air Force Base (Oscoda, MI). Predominant terminal electron accepting processes (TEAPs) as measured by dissolved hydrogen indicated reoxygenation along the transect between October 1995 and October 1996, possibly because of recharge, fluctuations in water table elevation, or microbial activity. Microbiological analyses using universal and archaeal probes revealed a relationship between groundwater hydrogen concentration, TEAP, and predominant bacterial phylogeny. Specifically, a raised water table level and evidence of methanogenesis corresponded to an order of magnitude increase in archaeal 16S rRNA relative to when this zone was unsaturated. Spatial microbial and geochemical dynamics did not result in measurable differences in trichloroethylene (TCE) mineralization potential in vadose, capillary fringe, and saturated zone soils during a 500-day microcosm experiment using unprocessed contaminated soil and groundwater. Aerobic systems indicated that methane, but not toluene, may serve as cosubstrate for TCE cometabolism. Anaerobic microcosms demonstrated evidence for methanogenesis, CO2 production and hydrogen consumption, yet dechlorination activity was only observed in a microcosm with sulfate-reduction as the dominant TEAP. Mass balance calculations indicated less than 5% mineralization, regardless of redox zone or degree of saturation, at maximum rates of 0.01-0.03 ??mol/g soil??d. The general lack of dechlorination activity under laboratory conditions corroborates the limited evidence for natural dechlorination at this site, despite abundant electron donor material and accumulated organic acids from microbial degradation of alkylbenzenes. Thus, the short-term temporal dynamics in redox conditions is unlikely to have measurable effects on the long-term natural remediation potential of the aquifer.
Pierro, Lucia; Matturro, Bruna; Rossetti, Simona; Sagliaschi, Marco; Sucato, Salvatore; Alesi, Eduard; Bartsch, Ernst; Arjmand, Firoozeh; Papini, Marco Petrangeli
2017-07-25
A pilot-scale study aiming to evaluate the potential use of poly-3-hydroxy-butyrate (PHB) as an electron donor source for in situ bioremediation of chlorinated hydrocarbons in groundwater was conducted. Compared with commercially available electron donors, PHB offers a restricted fermentation pathway (i.e., through acetic acid and molecular hydrogen) by avoiding the formation of any residual carbon that could potentially spoil groundwater quality. The pilot study was carried out at an industrial site in Italy, heavily contaminated by different chlorinated aliphatic hydrocarbons (CAHs). Prior to field testing, PHB was experimentally verified as a suitable electron donor for biological reductive dechlorination processes at the investigated site by microcosm studies carried out on site aquifer material and measuring the quantitative transformation of detected CAHs to ethene. Owing to the complex geological characteristics of the aquifer, the use of a groundwater circulation well (GCW) was identified as a potential strategy to enable effective delivery and distribution of electron donors in less permeable layers and to mobilise contaminants. A 3-screened, 30-m-deep GCW coupled with an external treatment unit was installed at the site. The effect of PHB fermentation products on the in situ reductive dechlorination processes were evaluated by quantitative real-time polymerase chain reaction (qPCR). The results from the first 4 months of operation clearly demonstrated that the PHB fermentation products were effectively delivered to the aquifer and positively influenced the biological dechlorination activity. Indeed, an increased abundance of Dehalococcoides mccartyi (up to 6.6 fold) and reduced CAH concentrations at the installed monitoring wells were observed. Copyright © 2016 Elsevier B.V. All rights reserved.
NANO-SCALE PALLADIUM DOPED MAGNESIUM BIMETALLICS FOR DECHLORINATING PCBS
Polychlorinated biphenyls (PCBs) are toxic and recalcitrant pollutants found in rivers; coastal waters and in 500 of the nation's 1598 Superfund waste sites. According to an EPA estimate, the existing 525 million tons of PCB wastes will cost $394 billion to be incinerated, curren...
Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.
Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...
KINETICS OF PCB DECHLORINATION BY HUDSON RIVER, NEW YORK, USA, SEDIMENT MICROORGANISMS. (R825449)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ABB Environmental Services, Inc.'s (ABB-ES), research has demonstrated that sequential anaerobic/aerobic biodegradation of tetrachloroethylene (PCE) is feasible if the proper conditions can be established. The anaerobic process can potentially completely dechlorinate PCE. Howeve...
PD/MG BIMETALLIC CORROSION SYSTEMS FOR DECHLORINATION OF PCB CONTAMINATED MATRICES
Polychlorinated biphenyls (PCBs), a family of 209 compounds manufactured till mid70's, are toxic pollutants that persist in the environment. Enhanced corrosion of an active metal combined with catalytic hydrogenation properties of Pd in bimetallic cells can effectively reduce PCB...
SONOCHEMICAL DECHLORINATION OF HAZARDOUS WASTES IN AQUEOUS SYSTEMS. (R825513C004)
Physical processes resulting from ultrasonication of aqueous solutions and suspensions produce extreme conditions that can affect the chemistry of dissolved and suspended chemicals. The purpose of this work was to explore the use of sonochemistry in treating chlorinated chemic...
MECHANISTIC STUDIES ON THE VITAMIN B12-CATALYZED DECHLORINATION OF CHLORINATED ALKENES. (U915562)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Schenzle, Andreas; Lenke, Hiltrud; Spain, Jim C.; Knackmuss, Hans-Joachim
1999-01-01
Ralstonia eutropha JMP134 utilizes 2-chloro-5-nitrophenol as a sole source of nitrogen, carbon, and energy. The initial steps for degradation of 2-chloro-5-nitrophenol are analogous to those of 3-nitrophenol degradation in R. eutropha JMP134. 2-Chloro-5-nitrophenol is initially reduced to 2-chloro-5-hydroxylaminophenol, which is subject to an enzymatic Bamberger rearrangement yielding 2-amino-5-chlorohydroquinone. The chlorine of 2-amino-5-chlorohydroquinone is removed by a reductive mechanism, and aminohydroquinone is formed. 2-Chloro-5-nitrophenol and 3-nitrophenol induce the expression of 3-nitrophenol nitroreductase, of 3-hydroxylaminophenol mutase, and of the dechlorinating activity. 3-Nitrophenol nitroreductase catalyzes chemoselective reduction of aromatic nitro groups to hydroxylamino groups in the presence of NADPH. 3-Nitrophenol nitroreductase is active with a variety of mono-, di-, and trinitroaromatic compounds, demonstrating a relaxed substrate specificity of the enzyme. Nitrosobenzene serves as a substrate for the enzyme and is converted faster than nitrobenzene. PMID:10347008
Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo
2008-08-15
A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.
Merlino, Giuseppe; Marzorati, Massimo; Rizzi, Aurora; Lavazza, Davide; de Ferra, Francesca; Carpani, Giovanna
2015-01-01
The achievement of successful biostimulation of active microbiomes for the cleanup of a polluted site is strictly dependent on the knowledge of the key microorganisms equipped with the relevant catabolic genes responsible for the degradation process. In this work, we present the characterization of the bacterial community developed in anaerobic microcosms after biostimulation with the electron donor lactate of groundwater polluted with 1,2-dichloroethane (1,2-DCA). Through a multilevel analysis, we have assessed (i) the structural analysis of the bacterial community; (ii) the identification of putative dehalorespiring bacteria; (iii) the characterization of functional genes encoding for putative 1,2-DCA reductive dehalogenases (RDs). Following the biostimulation treatment, the structure of the bacterial community underwent a notable change of the main phylotypes, with the enrichment of representatives of the order Clostridiales. Through PCR targeting conserved regions within known RD genes, four novel variants of RDs previously associated with the reductive dechlorination of 1,2-DCA were identified in the metagenome of the Clostridiales-dominated bacterial community. PMID:26273600
NASA Astrophysics Data System (ADS)
Kennedy, Lonnie G.; Everett, Jess W.; Becvar, Erica; DeFeo, Donald
2006-11-01
Biogeochemical reductive dechlorination (BiRD) is a new remediation approach for chlorinated aliphatic hydrocarbons (CAHs). The approach stimulates common sulfate-reducing soil bacteria, facilitating the geochemical conversion of native iron minerals into iron sulfides. Iron sulfides have the ability to chemically reduce many common CAH compounds including PCE, TCE, DCE, similar to zero valent iron (Fe 0). Results of a field test at Dover Air Force Base, Dover, Delaware, are given in this paper. BiRD was stimulated by direct injection of Epson salt (MgSO 4·7H 2O) and sodium (L) lactate (NaC 3H 5O 3) in five injection wells. Sediment was sampled before and 8 months after injection. Significant iron sulfide minerals developed in the sandy aquifer matrix. From ground water analyses, treatment began a few weeks after injection with up to 95% reduction in PCE, TCE, and cDCE in less than 1 year. More complete CAH treatment is likely at a larger scale than this demonstration.
Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali
2012-10-01
Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.
Buttet, Géraldine F.; Holliger, Christof
2013-01-01
Reductive dehalogenases are the key enzymes involved in the anaerobic respiration of organohalides such as the widespread groundwater pollutant tetrachloroethene. The increasing number of available bacterial genomes and metagenomes gives access to hundreds of new putative reductive dehalogenase genes that display a high level of sequence diversity and for which substrate prediction remains very challenging. In this study, we present the development of a functional genotyping method targeting the diverse reductive dehalogenases present in Sulfurospirillum spp., which allowed us to unambiguously identify a new reductive dehalogenase from our tetrachloroethene-dechlorinating SL2 bacterial consortia. The new enzyme, named PceATCE, shows 92% sequence identity with the well-characterized PceA enzyme of Sulfurospirillum multivorans, but in contrast to the latter, it is restricted to tetrachloroethene as a substrate. Its apparent higher dechlorinating activity with tetrachloroethene likely allowed its selection and maintenance in the bacterial consortia among other enzymes showing broader substrate ranges. The sequence-substrate relationships within tetrachloroethene reductive dehalogenases are also discussed. PMID:23995945
BIOTRANSFORMATION OF MONOAROMATIC AND CHLORINATED HYDROCARBONS AT AN AVIATION GASOLINE SPILL SITE
A shallow water table aquifer under the U.S. Coast Guard Air Station at Traverse City, MI, has acclimated to the aerobic and anaerobic transformation of monoaromatic hydrocarbons (BTX) released from an aviation gasoline spill. The aquifer also exhibits reductive dechlorination of...
Cyanuric acid (CA) and chloroisocyanurates are commonly used as standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. They are very well known for preventing the photolytic decomposi...
There are many concerns and challenges in current remediation strategies for sediments contaminated with polychlorinated biphenyls (PCBs). Our efforts have been geared toward the development of granular activated carbon (GAC) impregnated with reactive iron/palladium (Fe/Pd) bime...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
2009-01-15
Measurement of Henry’s Law Constant for methyl tert-butyl ether Using Solid-phase Microextraction. Environmental Toxicology and Chemistry 2001, 20, 1625...and Environmental Microbiology 2005, 71, 3413-3419. Nirmalakhandan, N. N., R. E. Speece. QSAR Model for Predicting Henry’s Constant. Environmental
Biological Degradation of Tetrachloroethylene in Methanogenic Conditions
1994-06-01
stock of neat PCE was not purged with N2-C0 2. Alcohol oxidase (from Pichia pasrori, phosphate-buffered 60 percent sucrose solution), peroxidase (Type...dechlorination of tetrachlorocthene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols ," Appl. Environ. Microbiol. (58
Stains of Dehalococcoides are the only microbes known that can completely dechlorinate PCE, TCE, cis-DCE and vinyl chloride to ethylene. Either naturally-occurring strains or bioaugmentation cultures of Dehalococcoides are widely used for in situ bioremediation ...
CATALYTIC DECHLORINATION OF 2-CL BP IN SEDIMENTS AND WATER-SOLVENT SYSTEMS BY FE/PD BIMETAL
Polychlorinated biphenyls (PCBs) are one group of persistent organic pollutants (POPs) of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment presents a very tough challenge because they are highly hydro...
The objective of this study was to screen and select biologically-compatible surfactants for subsequent use in enhancing the bioavailability and reductive dechlorination of sorbed-phase chlorinated organic contaminants. Sixteen surfactants commonly used in sur...
Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-...
A vast majority of literature on bimetals deals with aqueous contaminants, very little being on organics strongly adsorbed on sediments and hence very challenging to remediate. Having previously reported materials, mechanistic and parametric aspects of PCB dechlorination with Pd...
Biochars made from agro-industrial by-products remove chlorine from water and wastewater
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2017-04-01
Chlorination is the most common disinfection process for water and wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination kinetics of the different raw and biochar materials as well as those of commercial activated carbons. The removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The first-order constant k1 ranged between 0.001 and 0.014 (min-1) for the biosorbents and the biochars and it was equal to 0.017 (min-1) for the commercial activated carbons. Consequently, the half-life time ranged between 50 and 700 (min) for the biosorbents and the biochars and it was equal to 41 (min) for the commercial activated carbons. The column experiment also showed positive results; A breakthrough for concentrations higher than 10(AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition, American Water Works Association Fourth edition.
Yang, Jie; Meng, Liang; Guo, Lin
2018-02-01
Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC ® , Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe 2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA and 1,1-DCA in the contaminate plume fell below the relevant Dutch Intervention Values at 180 days post-injection. Moreover, the dynamics of the target pollutant concentrations mirrored those of the pilot test. Thus, we have demonstrated that the direct-push injection of EHC successfully leads to the remediation of chlorinated solvent-contaminated groundwater in a real-world scenario. The parameters determined by this study (e.g., effectiveness, injection amount, injection depth, injection pressures, and radius of influence) are applicable to other low-permeability contaminated sites where in situ remediation by enhanced reductive dechlorination is required.
Preliminary results from scales formed 38 weeks following the LSL replacement simulations revealed differences in scale formations amongst varying water qualities and pipe sequence. Rigs fed with dechlorinated tap water show distinct pH gradients between the galvanic and the back...
Remediation of soils and sediments contaminated by polychlorinated biphenyls (PCBs) usually involves use of organic solvents because PCBs have very limited solubility in water. The resulting liquids require further treatment to degrade these toxic contaminants. Catalytic and elec...
Remediation of contaminated sites with hydrophobic organic compounds such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. The high stability, low aqueous solubility, and high organic affinity of PCBs make them difficult to treat. Many physical,...
BIODEGRADATION OF METHYL TERT-BUTYL ETHER USING AN INNOVATIVE BIOMASS CONCENTRATOR REACTOR
The aerobic biodegradation of methyl tert-butyl ether (MTBE) was investigated using a pilot-scale Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d of Cincinnati dechlorinated tap water and an influent MTBE concentration o...
An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...
Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...
The Refuse Hideaway Landfill (23-acre) was designed as a "natural attenuation" landfill and no provision was made to collect and treat contaminated water. Natural biological degradation through sequential reductive dechlorination had been an important mechanism for natural atten...
SITE BULLETIN, ATTENUATED ANAEROBIC DECHLORINATION OF GROUNDWATER USING HRC MACTEC - HARDING ESE
A SITE demonstration of the Harding ESE permeable reactive barrier wall (PRBW) was conducted on the contaminated groundwater from the Fisherville Mill site in Grafton, MA beginning June 2000 to July 2003. Installation of the PRBW was accomplished by injecting HRC into a series of...
Synthesis and use of reactive metal particles have shown significant environmental implications for the remediation of groundwater and sediment contaminated with chlorinated compounds. Herein, we have developed an effective strategy, employing a series of innovative granular act...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...
A palladium-on-zeolite catalyst has been optimized for treating groundwater contaminated with halogenated hydrocarbon compounds (HHCs) by hydrodechlorination with dissolved hydrogen. Aqueous sulfite was used as the model poison and the dechlorination of 1,2-di...
EFFECT OF THE DECHLORINATING AGENT, ASCORBIC ACID, ON THE MUTAGENICITY OF CHLORINATED WATER SAMPLES
XAD resin adsorption has been widely used to concentrate the organic compounds present in chlorinated drinking waters prior to mutagenicity testing. Previous work has shown that mutagenic artifcats can arise due to the reaction of residual chlorine with the resins. Althrough the ...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
2004-05-01
Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Synthesis and hypocholesterolemic activity of some N-diphenylmethylpiperazine derivatives.
Alivert, A; Canals, F; Bonet, J J; Gómez-Parra, V; Sánchez-Alonso, F
1991-09-01
The synthesis and preliminary assays as hypocholesterolemic agents of five N-diphenylmethylpiperazines are described. The evaluations were carried out in hypercholesterolemic mice and two of these compounds were more effective than bezafibrate in the test employed. The di-p-chlorosubstituted compounds showed higher activity than their corresponding dechlorinated analogs.
In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...
Intrinsic bioremediation of chlorinated ethenes in anaerobic aquifers previously has not been considered feasible, due, in large part, to 1) the production of vinyl chloride during microbial reductive dechlorination of higher chlorinated contaminants and 2) the apparent poor biod...
A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...
Polychlorinated biphenyls (PCBs) and other chlorinated aromatic compounds are distributed in soils and sediments at over 400 sites in the USA. A national need exists for both in situ and ex situ methods to destroy these persistent organic pollutants in soils and sediments at ambi...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The effect of the addition of common fermentation products on the dehalogenation of tetrachloroethene was studied in methanogenic slurries made with aquifer solids. Lactate, propionate, crotonate, butyrate, and ethanol stimulated dehalogenation activity, while acetate, methanol, ...
A Numerical Investigation of Metabolic Reductive Dechlorination in DNAPL Source Zones
2005-01-01
APPENDICES ..................................................................................... 249 APPENDIX A UTCHEM VALIDATION...using UTCHEM ............................................................... 82 Table IV.2: Statistics for saturation distribution metrics in 2-D and...Saturation profiles simulated in (a) 2D using UTCHEM and (b) in the same 2D slice extracted from a 3D UTCHEM simulation
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.
Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn>10-20%) and pools (Sn>20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. Copyright © 2014. Published by Elsevier B.V.
Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone
NASA Astrophysics Data System (ADS)
Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.
2014-12-01
A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transect monitoring along/across a controlled streamtube of flow induced by an extraction well positioned at the cell closed end. Integrated analysis of high-resolution DNAPL saturation (Sn) (from cores), dissolved-phase plume concentration (from multilevel samplers), tracer test and permeability datasets was undertaken. DNAPL architecture was determined from soil concentration data using partitioning calculations. DNAPL threshold soil concentrations and low Sn values calculated were sensitive to sorption assumptions. An outcome of this was the uncertainty in demarcation of secondary source zone diffused and sorbed mass that is distinct from trace amounts of low Sn DNAPL mass. The majority of source mass occurred within discrete lenses or pools of DNAPL associated with low permeability geological units. High residual saturation (Sn > 10-20%) and pools (Sn > 20%) together accounted for almost 40% of the DNAPL mass, but only 3% of the sampled source volume. High-saturation DNAPL lenses/pools were supported by lower permeability layers, but with DNAPL still primarily present within slightly more permeable overlying units. These lenses/pools exhibited approximately linearly declining Sn profiles with increasing elevation ascribed to preferential dissolution of the uppermost DNAPL. Bi-component partitioning calculations on soil samples confirmed that the dechlorination product cDCE (cis-dichloroethene) was accumulating in the TCE DNAPL. Estimated cDCE mole fractions in the DNAPL increased towards the DNAPL interface with the uppermost mole fraction of 0.04 comparable to literature laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.
GREEN AND SUSTAINABLE REMEDIATION BEST MANAGEMENT PRACTICES
2016-09-07
adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive dechlorination (ERD), in situ...RPM Remedial Project Manager SCR selective catalytic reduction SEE steam enhanced extraction SVE soil vapor extraction TCE trichloroethene...further promote their adoption. The technologies covered include air sparging, biosparging, soil vapor extraction (SVE), enhanced reductive
U.S. EPA’s Office of Research and Development in Cincinnati, Ohio has been testing and evaluating MTBE removal in dechlorinated tap water using three oxidant combinations: hydrogen peroxide/ozone, ultraviolet irradiation (UV)/ozone, and UV/ozone/hydrogen peroxide. Pilot-scale st...
The adsorption-mediated dechlorination of polychlorinated biphenyls (PCBs) is a unique feature of reactive activated cabon (RAC). Here, we address the RAC system, containing a tunable amount of Fe as a primary electron donor coupled with Pd as an electrochemical catalyst to pote...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DISTRIBUTION OF DEHALOCCOIDES AT DOD CHLORINATED SOLVENT SITES-DO YOU NEED TO BIOAUGMENT?
Dehaloccoides is the only organism that has been shown to completely dechlorinate TCE, cis-DCE, and vinyl chloride to ethene or ethane (Maymo-Gatell et al., 2001; He et al., 2003a; He et al., 2003b). Dehaloccoides is a naturally occurring organism, with a world-wide distribution...
USDA-ARS?s Scientific Manuscript database
Toxic heavy metals and radionuclides pose a growing, global threat to the environment. For an intelligent remediation design, reliable analytical tools for detection of relevant species are needed, such as PCR. However, PCR cannot visualize its targets and thus provide information about the morpholo...
EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON
The reduction rates of trichloroethylene (TCE) using zero-valent iron (ZVI) and the rates of iron hydrolysis were characterized at pH values of 5 to 10. The reduction of TCE by ZVI was carried out in batch reactors filled with pH-buffered (phosphate based) solutions under anaerob...
Management of Contaminants Stored in Low Permeability Zones - A State of the Science Review
2013-10-01
Tank 3: Permanganate ................................................................................................... 193...Treatment options explored include steady water flushing (control), enhance water flushing, flushing permanganate , a dechlorinating culture (KB1...Remediation Tank Experiments (OoM: Order of Magnitude. PV: Pore Volume) 2. Enhanced flushing (79 PVs after loading) 3. Permanganate (45 PVs
Justicia-Leon, Shandra D.; Ritalahti, Kirsti M.; Mack, E. Erin
2012-01-01
Dichloromethane (DCM) as the sole substrate supported growth of a Dehalobacter sp. in an enrichment culture derived from noncontaminated river sediment. DCM was not reductively dechlorinated, and acetate was produced, indicating DCM fermentation and further suggesting Dehalobacter growth is not limited to organohalide respiration. PMID:22179245
Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy
2009-08-01
Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.
Microbial degradation of chloroethenes: a review.
Dolinová, Iva; Štrojsová, Martina; Černík, Miroslav; Němeček, Jan; Macháčková, Jiřina; Ševců, Alena
2017-05-01
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity
Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh; ...
2015-02-03
The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate duringmore » the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 × 10 -5 μg g -1 to 9.5 × 10 -5 μg g -1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.« less
NASA Astrophysics Data System (ADS)
Schaerlaekens, J.; Mallants, D.; Imûnek, J.; van Genuchten, M. Th.; Feyen, J.
1999-12-01
Microbiological degradation of perchloroethylene (PCE) under anaerobic conditions follows a series of chain reactions, in which, sequentially, trichloroethylene (TCE), cis-dichloroethylene (c-DCE), vinylchloride (VC) and ethene are generated. First-order degradation rate constants, partitioning coefficients and mass exchange rates for PCE, TCE, c-DCE and VC were compiled from the literature. The parameters were used in a case study of pump-and-treat remediation of a PCE-contaminated site near Tilburg, The Netherlands. Transport, non-equilibrium sorption and biodegradation chain processes at the site were simulated using the CHAIN_2D code without further calibration. The modelled PCE compared reasonably well with observed PCE concentrations in the pumped water. We also performed a scenario analysis by applying several increased reductive dechlorination rates, reflecting different degradation conditions (e.g. addition of yeast extract and citrate). The scenario analysis predicted considerably higher concentrations of the degradation products as a result of enhanced reductive dechlorination of PCE. The predicted levels of the very toxic compound VC were now an order of magnitude above the maximum permissible concentration levels.
Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Thao Thanh; Francis, Arokiasamy J.; Nguyen, Hoang Khanh
The persistence of polychlorinated biphenyl (PCB) Aroclor 1248 in soils and sediments is a major concern because of its toxicity and presence at high concentrations. In this study, we developed an integrated remediation system for PCBs using chemical catalysis and biodegradation. The dechlorination of Aroclor 1248 was achieved by treatment with bimetallic nanoparticles Pd/nFe under anoxic conditions. Among the 32 PCB congeners of Aroclor 1248 examined, our process dechlorinated 99%, 92%, 84%, and 28% of tri-, tetra-, penta-, and hexachlorinated biphenyls, respectively. The resulting biphenyl was biodegraded rapidly by Burkholderia xenovorans LB400. Benzoic acid was detected as an intermediate duringmore » the biodegradation process. The toxicity of the residual PCBs after nano-bio treatment was evaluated in terms of toxic equivalent values which decreased from 33.8 × 10 -5 μg g -1 to 9.5 × 10 -5 μg g -1. The residual PCBs also had low cytotoxicity toward Escherichia coli as demonstrated by lower reactive oxygen species levels, lower glutathione peroxidase activity, and a reduced number of dead bacteria.« less
Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0.
Cheng, Rong; Wang, Jian-Long; Zhang, Wei-xian
2007-06-01
Chlorophenols, as a kind of important contaminants in groundwater, are toxic and difficult to biodegrade. Laboratory tests were conducted to examine zero-valent iron as an enhancing agent in the dechlorination of chlorinated organic compounds. Nanoscale iron particles were synthesized from common precursors KBH(4) and FeSO(4). Batch experiments were performed to investigate the reduction of p-chlorophenol (4-CP) by both common Fe(0) and nanoscale Fe(0). Comparison of 300 mesh/100 mesh/commercial reductive iron powders showed that size of iron particles played an important role in reduction process. Initial concentration and pretreatment of iron particles also influenced the chlorination rate. Nanoscale Fe(0) offered much more advantages for treatment of 4-CP compared with common iron particles, such as stability and durability. And they can be used to treat contaminants in groundwater over a long time. Among different parts of synthesized nanoscale iron particle solution, the very fine particles were the major agent for treatment of pollutants. As for preservation of nanoscale Fe(0), ethanol was recommended.
Ermacora, Alessia; Hrncirik, Karel
2014-05-01
The establishment of effective strategies for the mitigation of 3-MCPD esters in refined vegetable oils is restricted by limited knowledge of their mechanisms of formation and decomposition. In order to gain better understanding on the thermal stability of these compounds, a model system for mimicking oil refining conditions was developed. Pure 3-MCPD esters (3-MCPD dipalmitate and 3-MCPD dilaurate) were subjected to thermal treatment (180-260°C) and the degradation products where monitored over time (0-24h). After 24h of treatment, both 3-MCPD esters showed a significant degradation (ranging from 30% to 70%), correlating with the temperature applied. The degradation pathway, similar for both compounds, was found to involve isomerisation (very rapid, equilibrium was reached within 2h at 260°C), dechlorination and deacylation reactions. The higher relative abundance of non-chlorinated compounds, namely acylglycerols, in the first stages of the treatment suggested that dechlorination is preferred over deacylation with the conditions applied in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Němeček, Jan; Steinová, Jana; Špánek, Roman; Pluhař, Tomáš; Pokorný, Petr; Najmanová, Petra; Knytl, Vladislav; Černík, Miroslav
2018-05-01
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate. Copyright © 2017. Published by Elsevier B.V.
Jones, S.A.; Braun, Christopher L.; Lee, Roger W.
2003-01-01
Concentrations of trichloroethene in ground water at the Naval Weapons Industrial Reserve Plant in Dallas, Texas, indicate three source areas of chlorinated solvents?building 1, building 6, and an off-site source west of the facility. The presence of daughter products of reductive dechlorination of trichloroethene, which were not used at the facility, south and southwest of the source areas are evidence that reductive dechlorination is occurring. In places south of the source areas, dissolved oxygen concentrations indicated that reduction of oxygen could be the dominant process, particularly south of building 6; but elevated dissolved oxygen concentrations south of building 6 might be caused by a leaking water or sewer pipe. The nitrite data indicate that denitrification is occurring in places; however, dissolved hydrogen concentrations indicate that iron reduction is the dominant process south of building 6. The distributions of ferrous iron indicate that iron reduction is occurring in places south-southwest of buildings 6 and 1; dissolved hydrogen concentrations generally support the interpretation that iron reduction is the dominant process in those places. The generally low concentrations of sulfide indicate that sulfate reduction is not a key process in most sampled areas, an interpretation that is supported by dissolved hydrogen concentrations. Ferrous iron and dissolved hydrogen concentrations indicate that ferric iron reduction is the primary oxidation-reduction process. Application of mean first-order decay rates in iron-reducing conditions for trichloroethene, dichloroethene, and vinyl chloride yielded half-lives for those solvents of 231, 347, and 2.67 days, respectively. Decay rates, and thus half-lives, at the facility are expected to be similar to those computed. A weighted scoring method to indicate sites where reductive dechlorination might be likely to occur indicated strong evidence for anaerobic biodegradation of chlorinated solvents at six sites. In general, scores were highest for samples collected on the northeast side of the facility.
Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones
NASA Astrophysics Data System (ADS)
Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.
2009-12-01
Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.
Pittman, Charles U; He, Jinbao
2002-05-03
Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was added. The rate ratio of dechlorination (aliphatic and aromatic compounds) versus reaction of the solvated electron with water is very large, allowing wet soils or sludges to be remediated without an unreasonable consumption of sodium. Several soils, purposely contaminated with 1,1,1-trichloroethane, 1-chlorooctane and tetrachloroethylene, were remediated by slurring the soils in NH3 followed by addition of sodium. The consumption of sodium per mole of chlorine removed was examined as a function of both the hazardous substrate's concentration in the soil and the amount of water present. The Na consumption per Cl removed increases as the amount of water increases and as the substrate concentration in soil decreases. However, remediation was still readily accomplished from 5000 to 3000ppm to sub ppm levels of RCl in the presence of substantial amounts of water. PCB- and dioxin-contaminated oils were remediated with Na/NH3 as were PCB-contaminated soils and sludges from contaminated sites. Ca/NH3 treatments also successfully remediated PCB-contaminated clay, sandy and organic soils but laboratory studies demonstrated that Ca was less efficient than Na when substantial amounts of water were present. The advantages of solvated electron reductions using Na/NH3 include: (1) very rapid dehalogenation rates at ambient temperature, (2) soils (even clay soils) break down into particles and slurry nicely in NH3, (3) liquid ammonia handling technology is well known and (4) removal from soils, recovery and recycle of ammonia is easy due to its low boiling point. Finally, dechlorination is extremely fast even for the 'corner' chlorines in the substrate Mirex (structure in Eq. (5)).
Sutton, Nora B; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H M
2015-01-01
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.
Sutton, Nora B.; Atashgahi, Siavash; Saccenti, Edoardo; Grotenhuis, Tim; Smidt, Hauke; Rijnaarts, Huub H. M.
2015-01-01
While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 μmol), medium (50 μmol), or high (100 μmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2–4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 μmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation. PMID:26244346
Mardal, Marie; Dalsgaard, Petur Weihe; Qi, Bing; Mollerup, Christian Brinch; Annaert, Pieter; Linnet, Kristian
2018-04-15
The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MS E ). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MS E , followed by UHPLC-IMS-HR-MS E . Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel
2016-09-01
Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.
NASA Astrophysics Data System (ADS)
Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.
2011-12-01
Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The conclusions drawn and insights gained from this modeling study will be useful to design improved in-situ enhanced dehalogenation remediation schemes.
NASA Astrophysics Data System (ADS)
Kittelmann, S.; Friedrich, M. W.
2005-12-01
Tetrachloroethene (perchloroethylene, PCE), a persistent contaminant in aquifers, soils and sediments, can be reductively dechlorinated by anaerobic microorganisms in a process referred to as dehalorespiration. However, the biodiversity of dehalorespiring microorganisms and their distribution especially in pristine environments is largely unexplored. Therefore, the aim of this study was to detect potentially novel PCE-dehalorespiring microorganisms by using stable isotope probing (SIP), a technique that allows to directly identify the function of uncultivated microbial populations. We simulated a PCE contamination by incubating pristine river sediment in the presence of PCE at a steady, low aqueous concentration (20 μM). Dehalogenation activity in microcosms (20 nmol cis-dichloroethene per ml slurry per day formed) was detected already after 4 weeks at 20°C with sediment indigenous electron donors. The microbial community in sediment incubations was probed with 13C-labelled acetate (0.5 mM) as electron donor and carbon source at 15°C for 3 days. After RNA extraction, "heavy" 13C-rRNA and light 12C-rRNA were separated by isopycnic centrifugation, and Bacteria-related populations in gradient fractions were characterised by terminal restriction fragment length polymorphism analysis and cloning. In heavy gradient fractions from the microcosm with PCE, we detected a prominent 506-bp terminal restriction fragment (T-RF) and a few minor T-RFs only. In contrast, in the control without PCE, Bacteria-specific rRNA was restricted to light gradient fractions, and the prominent T-RFs found in the PCE-dechlorinating microcosm were of minor importance. Apparently, 13C-acetate was incorporated into bacterial rRNA more effectively in PCE-respiring microcosms. Thus, rRNA-SIP provides strong evidence for the presence of PCE-dehalorespiring, 13C-acetate-utilising populations in river sediment microcosms. Cloning/sequencing analysis identified the prominent members of the heavy gradient fractions as members of the phylum Chloroflexi only distantly related to cultivated dechlorinating Dehalococcides spp.
NASA Astrophysics Data System (ADS)
Schmidt, K. R.; Kranzioch, I.; Heidinger, M.; Ertl, S.; Tiehm, A.
2012-04-01
A multiple lines of evidence approach to assess the biodegradation potential of contaminated sites includes - site investigation analysing pollutant distribution (compounds, concentrations, isotopic composition) and hydrochemical conditions (redox conditions) - determination of the presence of pollutant degrading bacteria in the field by microbiological (most probable number, MPN) and molecular (polymerase chain reaction, PCR) methods - analysis of degradation processes in the laboratory by microcosms with determination of site specific isotopic enrichment factors enabling the quantification of biodegradation processes in the field. Results will be shown of the application of such a multiple lines of evidence approach at a chloroethene-contaminated site in Frankenthal, Germany. In anaerobic groundwater microcosms, reductive transformation of perchloroethene (PCE) and trichloroethene (TCE) was observed to mainly proceed to cis-1,2-dichloroethene (cDCE). 16S-PCR analysis showed a wide distribution of halorespiring bacteria capable of PCE degradation to cDCE, whereas Dehalococcoides - the only organisms described so far being able of complete reductive dechlorination down to ethene - was only found in one groundwater sample. Aerobic microcosms showed metabolic degradation of the lower chlorinated compounds cDCE and vinyl chloride (VC). Co-metabolic degradation of cDCE with VC as auxiliary substrate occurred, too. Significant stable carbon isotope fractionation was observed during anaerobic degradation of PCE and TCE as well as during aerobic degradation of cDCE and VC. Compiling the results of the different assessment methods, sequential dechlorination - PCE/TCE to cDCE anaerobically and cDCE to CO2 aerobically - was demonstrated to occur at the Frankenthal site. The extent of biodegradation in the field was calculated based on the enrichment factors determined in microcosms and the 13C-isotopic composition of the contaminants on site. The application of molecular methods is continuously increasing. For example, microbiological and molecular tools showed the presence and activity of halorespiring bacteria in sediment samples of the Yangtze river, China. PCR-detection demonstrated the presence of five different halorespiring bacterial groups as well as of four different dechlorinating enzymes of Dehalococcoides. In conclusion, our study demonstrates that (i) multiple lines of evidence approaches result in a profound understanding of the biodegradation processes occurring in the field, (ii) stable isotope fractionation is suitable for assessing and quantifying anaerobic and aerobic chloroethene degradation and (iii) detection and quantification of dechlorinating bacteria and enzymes by PCR methods provide more insight into biodegradation processes. Acknowledgement The authors gratefully acknowledge financial support by the German Ministry of Education and Research (BMBF, grant no 02WN0446, 02WN0447 and 02WT1130), the German Ministry of Economics and Technology (BMWi, grant no KF2265705AK9 and KF2285302AK9) and the federal state of Rhineland-Palatinate. We thank all project partners for fruitful cooperation.
NASA Astrophysics Data System (ADS)
Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain
2011-11-01
This work describes the use of different complementing methods (mass balance, polymerase chain reaction assays and compound-specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent-contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at various times in the past, it is not enough to analyze chlorinated solvent concentrations along a flow path to convincingly demonstrate biodegradation. Moreover, only a few data were initially available to characterize the geochemical conditions at this site, which were apparently complex at the source zone due to (i) the presence of a steady oxygen supply to the groundwater by irrigation canal losses and river infiltration and (ii) an alkaline pH higher than 10 due to former underground lime disposal. A demonstration of the existence of biodegradation processes was however required by the regulatory authority within a timeframe that did not allow a full geochemical characterization of such a complex site. Thus a combination of different fast methods was used to obtain a proof of the biodegradation occurrence. First, a mass balance analysis was performed which revealed the existence of a strong natural attenuation process (biodegradation, volatilization or dilution), despite the huge uncertainty on these calculations. Second, a good agreement was found between carbon isotopic measurements and PCR assays (based on 16S RNA gene sequences and functional genes), which clearly indicated reductive dechlorination of different hydrocarbons (Tetrachloroethene—PCE-, Trichloroethene—TCE-, 1,2- cisDichloroethene— cis-1,2-DCE-, 1,2- transDichloroethene— trans-1,2-DCE-, 1,1-Dichloroethene—1,1-DCE-, and Vinyl Chloride—VC) to ethene. According to these carbon isotope measurements, although TCE biodegradation seems to occur only in the upgradient part of the studied zone, DCE and VC dechlorination (originating from the initial TCE dechlorination) occurs along the entire flowpath. TCE reductase was not detected among the Dehalococcoides bacteria identified by quantitative PCR (qPCR), while DCE and VC reductases were present in the majority of the population. Reverse transcriptase PCR assays (rt-PCR) also indicated that bacteria and their DCE and VC reductases were active. Mass balance calculations showed moreover that 1,1-DCE was the predominant DCE isomer produced by TCE dechlorination in the upgradient part of the site. Consequently, coupling rt-PCR assays with isotope measurements removes the uncertainties inherent in a simple mass balance approach, so that when the three methods are used jointly, they allow the identification and quantification of natural biodegradation, even under apparently complex geochemical and hydraulic conditions.
Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was adde...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
2010-12-01
K. M. Ritalahti, and J. M. Tiedje. 2003. Diversity of Dechlorinating Bacteria, p. 53-87. In M. M. Häggblom and I. D. Bossert (eds.), Dehalogenation ...Anaerobic Microbial Dehalogenation . Annu. Rev. Microbiol. 58:43-73. Smits, T. H.M., C. Devenoges, K. Szynalski, J. Maillard, and C. Holliger. 2004
EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON
The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...
2002-12-19
High -Density Polyethylene HFCS High Fructose Corn Syrup HRC Hydrogen Release Compound HAS Hollow Stem...subsurface injection of a soluble electron donor solution (typically comprised of a carbohydrate such as molasses, whey, high fructose corn syrup (HFCS...whey, high fructose corn syrup (HFCS), glucose, lactate, butyrate, benzoate). Other approaches to enhanced anaerobic bioremediation exist, but
Mortan, Siti Hatijah; Martín-González, Lucía; Vicent, Teresa; Caminal, Gloria; Nijenhuis, Ivonne; Adrian, Lorenz; Marco-Urrea, Ernest
2017-06-05
1,1,2-Trichloroethane (1,1,2-TCA) is a non-flammable organic solvent and common environmental contaminant in groundwater. Organohalide-respiring bacteria are key microorganisms to remediate 1,1,2-TCA because they can gain metabolic energy during its dechlorination under anaerobic conditions. However, all current isolates produce hazardous end products such as vinyl chloride, monochloroethane or 1,2-dichloroethane that accumulate in the medium. Here, we constructed a syntrophic co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains to achieve complete detoxification of 1,1,2-TCA to ethene. In this co-culture, Dehalogenimonas transformed 1,1,2-TCA via dihaloelimination to vinyl chloride, whereas Dehalococcoides reduced vinyl chloride via hydrogenolysis to ethene. Molasses, pyruvate, and lactate supported full dechlorination of 1,1,2-TCA in serum bottle co-cultures. Scale up of the cultivation to a 5-L bioreactor operating for 76d in fed-batch mode was successful with pyruvate as substrate. This synthetic combination of bacteria with known complementary metabolic capabilities demonstrates the potential environmental relevance of microbial cooperation to detoxify 1,1,2-TCA. Copyright © 2017 Elsevier B.V. All rights reserved.
Binh, Nguyen Duy; Imsapsangworn, Chaiyaporn; Kim Oanh, Nguyen Thi; Parkpian, Preeda; Karstensen, Kare; Giao, Pham Huy; DeLaune, Ronald D
2016-01-01
Enriched microorganisms in sediment collected from a dioxin-contaminated site in Vietnam (Bien Hoa airbase) were used for examining the effectiveness in biological treatment of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in soil. Four bio-treatments were investigated using a sequential anaerobic (17 weeks) followed by an aerobic (6 weeks) incubation. The maximum removal efficiency was approximately 60% even at an extremely low pH (approx. 3.6) condition. Surfactant Tween-80 was added to enhance the bioavailability of dioxin in two treatments, but it appeared to biostimulate methanogens rather than dechlorinators. As a result, methane production was the highest while the dioxin removal efficiency was the lowest, as compared with the other bio-treatments. Carboxymethylcellulose (CMC) coated on nanoscale zero valent iron (nZVI) surface used in two treatments could prevent the direct contact between bacterial cell surface and nZVI which prevented cell death and lysis, hence enhancing dioxin removal. The presence of CMC--_nZVI in bio-treatments gradually released H2 required for microbiological processes, but the amount used in the experiments were likely too high to maintain optimum H2 levels for biostimulating dechlorinators rather than methanogens.
Gustavsson, Malin; Karlsson, Susanne; Oberg, Gunilla; Sandén, Per; Svensson, Teresia; Valinia, Salar; Thiry, Yves; Bastviken, David
2012-02-07
Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.
Reductive dechlorination of atrazine catalyzed by metalloporphyrins.
Nelkenbaum, Elza; Dror, Ishai; Berkowitz, Brian
2009-03-01
Atrazine (2-chloro-4-(ethylamine)-6-(isopropylamine)-s-triazine) is a widely used herbicide which is considered a persistent groundwater contaminant. Its selective transformation mediated by cobalt or nickel porphyrins was studied in aqueous solutions at room temperature and ambient pressure. Several metalloporphyrins were examined as catalysts for the reaction and all yielded the same reaction, transforming atrazine solely to the seldomly reported form 2,4-bis(ethylamine)-6-methyl-s-triazine. The reaction involves dechlorination and migration of a methyl group to yield a symmetric product. Nickel 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) was activated by nanosized zero-valent iron (nZVI) while cobalt porphyrins (TMPyP, 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine-(TP(OH)P) and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)tetrakis (benzenesulfonic acid)-(TBSP)) were activated by titanium(III) citrate as the electron donor. The effect of pH on atrazine transformation was demonstrated for the catalytic system of TP(OH)P-Co/Ti(III) citrate. Finally, a comparison of the reactivities of cobalt TMPyP and TP(OH)P was given and the differences discussed.
Birnessite-induced mechanochemical degradation of 2,4-dichlorophenol.
Nasser, A; Mingelgrin, U
2014-07-01
DCP (2,4-dichlorophenol) is the key-intermediate in the synthesis of some widely used pesticides and is an EPA priority pollutant. The mechanochemical breakdown of DCP loaded on birnessite (δ-MnO2), montmorillonite saturated with Na(+) or Cu(2+) and hematite was investigated. Mechanical force was applied by grinding of mixtures of DCP and the minerals, using mortar and pestle. Grinding of DCP for 5 min with the montmorillonites or with hematite resulted in negligible degradation during grinding, while grinding with birnessite induced the immediate degradation of 90% of the loaded DCP. Incubation for 24h after grinding did result in up to 30% degradation of the DCP loaded on the other minerals tested. HPLC and LC-MS analysis revealed that the transformation of DCP yielded oligomerization products as well as partial dechlorination. DCP degradation on birnessite was accompanied with a substantial increase in the extractability of manganese from the mineral into an acidic aqueous solution, indicating that Mn(IV) in the mineral transformed into Mn(II) and that birnessite served as an electron acceptor in the transformation. The oligomerization and partial dechlorination brought about by grinding, suggest a reduction in bioavailability and toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Degradation of trichloroethene with a noval ball milled Fe-C nanocomposite
Gao, Jie; Wang, Wei; Rondinone, Adam Justin; ...
2015-07-18
Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron-carbon (Fe-C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbedmore » >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe-C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C 3-C 6 compounds. When placed in hexane-water mixture, the Fe-C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.« less
Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.
Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong
2018-03-01
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lohner, Svenja T; Becker, Dirk; Mangold, Klaus-Michael; Tiehm, Andreas
2011-08-01
This article for the first time demonstrates successful application of electrochemical processes to stimulate sequential reductive/oxidative microbial degradation of perchloroethene (PCE) in mineral medium and in contaminated groundwater. In a flow-through column system, hydrogen generation at the cathode supported reductive dechlorination of PCE to cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene (ETH). Electrolytically generated oxygen at the anode allowed subsequent oxidative degradation of the lower chlorinated metabolites. Aerobic cometabolic degradation of cDCE proved to be the bottleneck for complete metabolite elimination. Total removal of chloroethenes was demonstrated for a PCE load of approximately 1.5 μmol/d. In mineral medium, long-term operation with stainless steel electrodes was demonstrated for more than 300 days. In contaminated groundwater, corrosion of the stainless steel anode occurred, whereas DSA (dimensionally stable anodes) proved to be stable. Precipitation of calcareous deposits was observed at the cathode, resulting in a higher voltage demand and reduced dechlorination activity. With DSA and groundwater from a contaminated site, complete degradation of chloroethenes in groundwater was obtained for two months thus demonstrating the feasibility of the sequential bioelectro-approach for field application.
Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
Wang, Meng-Meng; Zhang, Cong-Cong; Zhang, Fu-Shen
2017-09-01
In the present study, cathode materials (C/LiCoO 2 ) of spent lithium-ion batteries (LIBs) and waste polyvinyl chloride (PVC) were co-processed via an innovative mechanochemical method, i.e. LiCoO 2 /PVC/Fe was co-grinded followed by water-leaching. This procedure generated recoverable LiCl from Li by the dechlorination of PVC and also generated magnetic CoFe 4 O 6 from Co. The effects of different additives (e.g. alkali metals, non-metal oxides, and zero-valent metals) on (i) the conversion rates of Li and Co and (ii) the dechlorination rate of PVC were investigated, and the reaction mechanisms were explored. It was found that the chlorine atoms in PVC were mechanochemically transformed into chloride ions that bound to the Li in LiCoO 2 to form LiCl. This resulted in reorganization of the Co and Fe crystals to form the magnetic material CoFe 4 O 6 . This study provides a more environmentally-friendly, economical, and straightforward approach for the recycling of spent LIBs and waste PVC compared to traditional processes. Copyright © 2017. Published by Elsevier Ltd.
In situ treatability testing of reductive dechlorination in wetland sediments
Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.
2005-01-01
In situ treatability testing was conducted in the discharge wetlands along West Branch Canal Creek at Aberdeen Proving Ground, MD. The potential for stimulating reductive dechlorination of 1,1,2,2-tetrachloroethane, tetrachloroethylene, trichloroethylene, and carbon tetrachloride in areas of preferential discharge or seeps was evaluated. Geological Survey that degrades chlorinated ethanes and ethylenes was tested using MICRO-Trac??? devices. At seep 3-4W, results of the C and BA MICRO-Trac??? treatments showed essentially no biodegradation of chlorinated solvents occurring under natural and bioaugmented conditions. Results of geochemical samples at this site indicated predominantly iron- and sulfate-reducing conditions consistent with the rapid discharge rates previously measured. The biostimulated treatment showed stimulation of methanogenic conditions and partial degradation of the parent chlorinated VOC to intermediate chlorinated compounds. The bioaugmented and bistimulated treatment showed the highest production of methane, the highest removal of parent compounds and intermediate daughter products, and the highest production of the non-chlorinated end product ethylene. This is an abstract of a paper presented at the proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Bradley, Paul M.; Journey, Celeste A.; Kirshtein, Julie D.; Voytek, Mary A.; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Chapelle, Francis H.; Tiedeman, Claire; Goode, Daniel J.
2012-01-01
Significant microbial reductive dechlorination of [1,2 14C] cis-dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water-only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron-donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron-donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration-based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron-donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix.
Lorah, Michelle M.; Majcher, Emily H.; Jones, Elizabeth J.; Voytek, Mary A.
2008-01-01
Chlorinated solvents, including 1,1,2,2-tetrachloroethane, tetrachloroethene, trichloroethene, carbon tetrachloride, and chloroform, are reaching land surface in localized areas of focused ground-water discharge (seeps) in a wetland and tidal creek in the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland. In cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, the U.S. Geological Survey is developing enhanced bioremediation methods that simulate the natural anaerobic degradation that occurs without intervention in non-seep areas of the wetland. A combination of natural attenuation and enhanced bioremediation could provide a remedy for the discharging ground-water plumes that would minimize disturbance to the sensitive wetland ecosystem. Biostimulation (addition of organic substrate or nutrients) and bioaugmentation (addition of microbial consortium), applied either by direct injection at depth in the wetland sediments or by construction of a permeable reactive mat at the seep surface, were tested as possible methods to enhance anaerobic degradation in the seep areas. For the first phase of developing enhanced bioremediation methods for the contaminant mixtures in the seeps, laboratory studies were conducted to develop a microbial consortium to degrade 1,1,2,2-tetrachloroethane and its chlorinated daughter products under anaerobic conditions, and to test biostimulation and bioaugmentation of wetland sediment and reactive mat matrices in microcosms. The individual components required for the direct injection and reactive mat methods were then combined in column experiments to test them under groundwater- flow rates and contaminant concentrations observed in the field. Results showed that both direct injection and the reactive mat are promising remediation methods, although the success of direct injection likely would depend on adequately distributing and maintaining organic substrate throughout the wetland sediment in the seep area. For bioaugmentation, two mixed anaerobic cultures, named the 'West Branch Consortia' (WBC-1 and WBC-2), were developed by enrichment of wetland sediment collected from two contaminated sites in the study area where rapid and complete reductive dechlorination naturally occurs. WBC are capable of degrading 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2-dichloroethane, tetrachloroethene, trichloroethene, cis- and trans-1,2-dichloroethene, and vinyl chloride to the non-chlorinated end-products ethene and ethane. In addition, the column experiments showed that the consortia could completely degrade carbon tetrachloride and chloroform, although they were not grown on these contaminants. No other cultures are known that can degrade the broad mixture of chlorinated alkanes, alkenes, and methanes as shown for WBC. WBC-2 (suspended in the culture media) is capable of complete dechlorination of 50 micromolar 1,1,2,2-tetrachloroethane to ethene in 1 to 2 days with little transient accumulation of chlorinated daughter products. Only about 5 percent of the clones sequenced from WBC-1 and WBC-2 were related to dechlorinating bacteria that have been studied previously in culture, indicating the presence of unknown dechlorinators. Dehalococcoides spp. comprised about 1 percent of WBC-1 and WBC-2, which is minor compared to the population size of about 30 percent in other dechlorinating consortia for chlorinated alkenes. Although both WBC-1 and WBC-2 showed efficient degradation in laboratory tests in this study, long-term cultivation of WBC-1, which was developed using hydrogen as the organic substrate, was determined to be infeasible. Thus, WBC-2, cultivated with lactate as the organic substrate, would be used in future tests. Nutrient (ammonia and phosphate mixture) addition to anaerobic microcosms constructed with wetland sediment and ground water collected from the study area showed some enhancement in the degradation rate of 1,1,2,2-tetrachloroethane, but degrada
Biochars made from agro-industrial by-products remove chlorine and lower water toxicity
NASA Astrophysics Data System (ADS)
Tzachristas, Andreas; Xirou, Maria; Manariotis, Ioannis D.; Dailianis, Stefanos; Karapanagioti, Hrissi K.
2016-04-01
Chlorination is the most common disinfection process for water and treated wastewater. For the industrial use of water in food production, chlorine can add undesired taste and odor to the final product. For this reason, dechlorination is desired for food industries that use municipal tap water. For treated wastewater discharge or reuse, chlorine can be toxic to the receiving aqueous systems and to the irrigated plants. In both the above cases, dechlorination is also required. Traditionally activated carbon has been used as the ideal material for the removal of chlorine. The main mechanisms that describe the interaction between activated carbon and HOCl or OCl- are described by the following equations (AWWA, 1990): HOCl + C* → C*O + H+ + Cl- (1), OCl- + C* → C*O + Cl- (2) Where C* and C*O represent the activated carbon surface and a surface oxide, respectively. The present study proposes the use of agro-industrial by-products for the production of biochars that will be used for dechlorination of tap-water used for food-industry production. Different raw materials such as malt spent rootlets, coffee residue, olive and grape seeds, etc. are used for the production of biochar. Various temperatures and air-to-solid ratios are tested for optimizing biochar production. Batch tests as well as a column test are employed to study the dechlorination efficiency and kinetics of the different raw and biochar materials as well as those of commercial activated carbons. As chlorine concentration increases the removal also increases linearily. After 1 and 24 hours of contact the chlorine relative removal efficiencies for the biochar made from olive seeds are 50 and 77 ± 4%, respectively. It seems that the removal kinetics are faster during the first hour; then, removal continues but with a slower rate. Most of the biochars tested (with 3 mg of solid in 20 mL of chlorine solution at initial concentration Co=1.5 mg/L) demonstrated removal efficiencies with an average of 9.4 ± 0.5 mg/g. For the two commercial activated carbons, removal efficiencies were 11.4 ± 0.2 mg/g. The column experiment also showed positive results; no breakthrough has been observed after 1L of chlorine solution has passed through a column packed with 4 g of biochar made from the pyrolysis of grape seeds. Toxicity tests were also performed with the chlorine solution before and after passing through this column. The toxicity of the solution decreased after passing through the column packed with biochar suggesting that no toxic compounds are formed during the removal of chlorine by the biochar. The overall idea of this study is the sustainable use of the solid by-products of a food industry or producer to treat water or treated wastewater in order to enhance its quality and lower its toxicity. American Water Works Association (AWWA) 1990 Water quality and treatment, a handbook of community water supplies, Fourth edition.
Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate.
Kohring, G W; Zhang, X M; Wiegel, J
1989-01-01
In the presence of added sulfate, 2,4-dichlorophenol and 4-chlorophenol were transformed stoichiometrically to 4-chlorophenol and phenol, respectively, in anaerobic freshwater lake sediments between 18 and 40 degrees C. The concomitantly occurring sulfate reduction reduced the initial sulfate concentration from 25 mM to about 6 to 8 mM and depressed methane formation. PMID:2604410
Reiss, Rebecca A; Guerra, Peter; Makhnin, Oleg
2016-01-01
Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log 2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf's power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log 2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace " Sideroxydans " and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
NASA Astrophysics Data System (ADS)
Vickstrom, K. E.; Azizian, M.; Semprini, L.
2015-12-01
Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the transformation of CT. The results clearly demonstrate that reductive dechlorination of CT can be promoted by anaerobic cultures not previously acclimated to CT. 1. G. Pon, M. R. Hyman, L. Semprini, Environ. Sci. Technol. 37, 3181-3188 (2003).
Biodegradation of chlorinated ethenes at a karst site in middle Tennessee
Byl, Thomas Duane; Williams, Shannon D.
2000-01-01
This report presents results of field and laboratory investigations examining the biodegradation of chlorinated ethenes in a karst aquifer contaminated with trichloroethylene (TCE). The study site, located in Middle Tennessee, was selected because of the presence of TCE degradation byproducts in the karst aquifer and available site hydrologic and chlorinated-ethene information. Additional chemical, biological, and hydrologic data were gathered to evaluate whether the occurrence of TCE degradation byproducts in the karst aquifer was the result of biodegradation within the aquifer or simply transport into the aquifer. Geochemical analysis established that sulfate-reducing conditions, essential for reductive dechlorination of chlorinated solvents, existed in parts of the contaminated karst aquifer. Other areas of the aquifer fluctuated between anaerobic and aerobic conditions and contained compounds associated with cometabolism, such as ethane, methane, ammonia, and dissolved oxygen. A large, diverse bacteria population inhabits the contaminated aquifer. Bacteria known to biodegrade TCE and other chlorinated solvents, such as sulfate-reducers, methanotrophs, and ammonia-oxidizers, were identified from karst-aquifer water using the RNA-hybridization technique. Results from microcosms using raw karst-aquifer water found that aerobic cometabolism and anaerobic reductive-dechlorination degradation processes were possible when appropriate conditions were established in the microcosms. These chemical and biological results provide circumstantial evidence that several biodegradation processes are active in the aquifer. Additional site hydrologic information was developed to determine if appropriate conditions persist long enough in the karst aquifer for these biodegradation processes to be significant. Continuous monitoring devices placed in four wells during the spring of 1998 indicated that pH, specific conductance, dissolved oxygen, and oxidation-reduction potentials changed very little in areas isolated from active ground-water flow paths. These stable areas in the karst aquifer had geochemical conditions and bacteria conducive to reductive dechlorination of chlorinated ethenes. Other areas of the karst aquifer were associated with active ground-water flow paths and fluctuated between anaerobic and aerobic conditions in response to rain events. Associated with this dynamic environment were bacteria and geochemical conditions conducive to cometabolism. In summary, multiple lines of evidence developed from chemical, biological, and hydrologic data demonstrate that a variety of biodegradation processes are active in this karst aquifer.
NASA Astrophysics Data System (ADS)
Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.
2008-12-01
Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications
Hamonts, Kelly; Kuhn, Thomas; Vos, Johan; Maesen, Miranda; Kalka, Harald; Smidt, Hauke; Springael, Dirk; Meckenstock, Rainer U; Dejonghe, Winnie
2012-04-15
Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. Biotransformation, sorption and dilution of CAHs in the impacted river sediments have been reported to reduce discharge, but the effect of temporal variations in environmental conditions on the occurrence and extent of those processes in river sediments is largely unknown. We monitored the reduction of CAH discharge into the Zenne River during a 21-month period. Despite a relatively stable influx of CAHs from the groundwater, the total reduction in CAH discharge from 120 to 20 cm depth in the river sediments, on average 74 ± 21%, showed moderate to large temporal variations, depending on the riverbed location. High organic carbon and anaerobic conditions in the river sediments allowed microbial reductive dechlorination of both chlorinated ethenes and chlorinated ethanes. δ(13)C values of the CAHs showed that this biotransformation was remarkably stable over time, despite fluctuating pore water temperatures. Daughter products of the CAHs, however, were not detected in stoichiometric amounts and suggested the co-occurrence of a physical process reducing the concentrations of CAHs in the riverbed. This process was the main process causing temporal variations in natural attenuation of the CAHs and was most likely dilution by surface water-mixing. However, higher spatial resolution monitoring of flow transients in the riverbed is required to prove dilution contributions due to dynamic surface water-groundwater flow exchanges. δ(13)C values and a site-specific isotope enrichment factor for reductive dechlorination of the main groundwater pollutant vinyl chloride (VC) allowed assessment of changes over time in the extent of both biotransformation and dilution of VC for different scenarios in which those processes either occurred consecutively or simultaneously between 120 and 20 cm depth in the riverbed. The extent of reductive dechlorination of VC ranged from 27 to 89% and differed spatially but was remarkably stable over time, whereas the extent of VC reduction by dilution ranged from 6 to 94%, showed large temporal variations, and was often the main process contributing to the reduction of VC discharge into the river. Copyright © 2012 Elsevier Ltd. All rights reserved.
STEAM REFORMING OF CHLOROCARBONS: CHLORINATED AROMATICS. (R826694C633)
Effective dechlorination of chloroaromatics, such as C6H5Cl, 1,2-C6H4Cl2, 1,3-C6H4Cl2 and 1,2,4-C6H3Cl3, using catalytic steam reforming has been confirmed ...
The DNAPL Remediation Challenge: Is There a Case for Source Depletion?
2003-12-01
fermentation products acting as electron donors to promote reductive dechlorination of chlorinated solvents (e.g., see discussion on Sages and Bachman...has been primarily used to remove organic contamination in the vadose zone (see e.g., Stegemeier and Vinegar , 2001). Signifi cant removals of...Stegemeier, G.L., and H.J. Vinegar . 2001. Thermal conduction heating for in-situ thermal desorption of soils. In: Hazardous and Radioactive Waste Treatment
Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Corte, S.; Fitts, J.; Hennebel, T.
2011-08-30
Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenacmore » after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.« less
Vroblesky, D.A.; Clinton, B.D.; Vose, J.M.; Casey, C.C.; Harvey, G.J.; Bradley, P.M.
2004-01-01
Trichloroethene (TCE) was detected in cores of trees growing above TCE-contaminated ground at three sites: the Carswell Golf Course in Texas, Air Force Plant PJKS in Colorado, and Naval Weapons Station Charleston in South Carolina. This was true even when the depth to water was 7.9 m or when the contaminated aquifer was confined beneath ???3 m of clay. Additional ground water contaminants detected in the tree cores were cis-1,2-dichloroethene at two sites and tetrachloroethene at one site. Thus, tree coring can be a rapid and effective means of locating shallow subsurface chlorinated ethenes and possibly identifying zones of active TCE dechlorination. Tree cores collected over time were useful in identifying the onset of ground water contamination. Several factors affecting chlorinated ethene concentrations in tree cores were identified in this investigation. The factors include ground water chlorinated ethene concentrations and depth to ground water contamination. In addition, differing TCE concentrations around the trunk of some trees appear to be related to the roots deriving water from differing areas. Opportunistic uptake of infiltrating rainfall can dilute prerain TCE concentrations in the trunk. TCE concentrations in core headspace may differ among some tree species. In some trees, infestation of bacteria in decaying heartwood may provide a TCE dechlorination mechanism within the trunk.
Zhou, Lei; Zhang, Ya; Ying, Rongrong; Wang, Guoqing; Long, Tao; Li, Jianhua; Lin, Yusuo
2017-04-01
The widespread occurrence of organophosphorus pesticides (OPPs) in the environment poses risks to both ecologic system as well as human health. This study investigated the oxidation kinetics of chlorpyrifos (CP), one of the typical OPPs, by thermoactivated persulfate (PS) oxidation process, and evaluated the influence of key kinetic factors, such as PS concentrations, pH, temperature, bicarbonate, and chloride ions. The reaction pathways and mechanisms were also proposed based on products identification by LC-MS techniques. Our results revealed that increasing initial PS concentration and temperature favored the decomposition of CP, whereas the oxidation efficiency was not affected by pH change ranging from 3 to 11. Bicarbonate was found to play a detrimental role on CP removal rates, while chloride showed no effect. The oxidation pathways including initial oxidation of P=S bond to P=O, dechlorination, dealkylation, and the dechlorination-hydroxylation were proposed, and the detailed underlying mechanisms were also discussed. Molecular orbital (MO) calculations indicated that P=S bond was the most favored oxidation site of the molecule. The toxicity of reaction solution was believed to increase due to the formation of products with P=O structures. This work demonstrates that OPPs can readily react with SO 4 ·- and provides important information for further research on the oxidation of these contaminants.
Lorah, Michelle M.; Olsen, Lisa D.
1999-01-01
Field evidence collected along two groundwater flow paths shows that anaerobic biodegradation naturally attenuates a plume of chlorinated volatile organic compounds as it discharges from an aerobic sand aquifer through wetland sediments. A decrease in concentrations of two parent contaminants, trichloroethylene (TCE) and 1,1,2,2‐tetrachloroethane (PCA), and a concomitant increase in concentrations of anaerobic daughter products occurs along upward flow paths through the wetland sediments. The daughter products 1,2‐dichloroethylene, vinyl chloride, 1,1,2‐trichloroethane, and 1,2‐dichloroethane are produced from hydrogenolysis of TCE and from PCA degradation through hydrogenolysis and dichloroelimination (reductive dechlorination) pathways. Total concentrations of TCE, PCA, and their degradation products, however, decrease to below detection levels within 0.15–0.30 m of land surface. The enhanced reductive dechlorination of TCE and PCA in the wetland sediments is associated with the naturally higher concentrations of dissolved organic carbon and the lower redox state of the groundwater compared to the aquifer. This field study indicates that wetlands and similar organic‐rich environments at groundwater/surface‐water interfaces may be important in intercepting groundwater contaminated with chlorinated organics and in naturally reducing concentrations and toxicity before sensitive surface‐water receptors are reached.
Bradley, Paul M.
2011-01-01
Chlororespiration is common in shallow aquifer systems under conditions nominally identified as anoxic. Consequently, chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products is interpreted as evidence that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, nonconservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms and is consistent with contaminant degradation to nondiagnostic mineralization products like CO2. While anoxic mineralization of chloroethene compounds has been proposed previously, recent results suggest that oxygen-based mineralization of chloroethenes also can be significant at dissolved oxygen concentrations below the currently accepted field standard for nominally anoxic conditions. Thus, reassessment of the role and potential importance of low concentrations of oxygen in chloroethene biodegradation are needed, because mischaracterization of operant biodegradation processes can lead to expensive and ineffective remedial actions. A modified interpretive framework is provided for assessing the potential for chloroethene biodegradation under different redox conditions and the probable role of oxygen in chloroethene biodegradation.
2011-02-01
Reductive dechlorination is a promising process for biodegradation of chlorinated solvents. The successful field evaluation and implementation of the...population. These specialized bacteria use the chlorinated ethenes as electron acceptors and gain energy for growth from the reductive...This guidance protocol addresses the use of MBTs to quantitatively assess the Dhc population at chlorinated ethene sites and aims at providing
Degradation of Toxic Chemicals by Zero-Valent Metal Nanoparticles - A Literature Review
2005-11-01
oxidative reactions. Oxidative reactions are of primary interest to us as they have the potential to degrade organophosphorous nerve agents as well...a) mustard and b) nerve agent (general structure). To decontaminate mustard there are two approaches, dechlorination or oxidation of the sulfur, the...later of which is preferable due to the reversibility of the former. To decontaminate the nerve agents oxidation is required to replace X2, X3 and
Bioremediation and phytoremediation: Chlorinated and recalcitrant compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
Bioremediation and phytoremediation have progressed, especially with regard to the treatment of hydrocarbon-contaminated sites. Sites contaminated with chlorinated and recalcitrant compounds have proven more resistant to these approaches, but exciting progress is being made both in the laboratory and in the field. This book brings together the latest breakthrough thinking and results in bioremediation, with chapters on cometabolic processes, aerobic and anaerobic mechanisms, biological reductive dechlorination processes, bioaugmentation, biomonitoring, and phytoremediation of recalcitrant organic compounds.
1993-04-01
were Klebsiella terrigena, Cryptosporidium parvum oocysts, Rhodotorula rubra, and 3.7 pm latex beads. Challenge waters were dechlorinated tap water and...The morphological and size characteristics of Rhodotorula rubra (ATCC 36053) made the yeast suitable as a protozoan cyst simulant. The yeast cells...representative enteric bacterium), Cryptosporidium parvum (an enteric protozoan pathogen) oocysts, Rhodotorula rubra (a yeast, used to test prefilters only
Use of Vegetable Oil in Reductive Dechlorination of Tetrachloroethene
2001-08-01
12.5 g sodium bicarbonate (Fisher Scientific Co.), and 4.412 g of citric acid , trisodium salt dihydrate (99%, Aldrich 62 Chemical Co. Inc.) to 1 L of...relatively quickly, leading to low donor efficiency. Biomass and acetate were the most significant products of vegoil- fed microcosms. Volatile fatty acids ...longer than 2 carbons rarely persisted. Since these acids can act as good secondary donors in the aqueous phase, their absence implies that the
2013-09-01
after anaerobic digestion at thermophilic conditions (60- 70C). Application of biofilm covered activated carbon particles as a microbial inoculum...Sludge Thickener; Sludge = Sludge after anaerobic digestion at thermophilic conditions (60- 70C). C3. Microscopic evaluation of dechlorinating...associated enzymes are capable of opening the biphenyl ring structure and transform the molecule into a linear structure, this changed structure was not
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.
Huffman, Raegan L.
2014-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during July 9–18, 2013, in support of longterm monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2013, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations at all except an upgradient well 0.2 milligrams per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2013, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2012. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2013 continued to be variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in two of the three wells and in all but one piezometer. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2013 continued to vary spatially and temporaly, and also were very high. Total CVOC concentrations, at what have been historically the most contaminated passive-diffusion sampler sites (S-4, S-4B, S-5, and S-5B) remained elevated. For the intermediate aquifer in 2013, concentrations of reductive dechlorination byproducts ethane and ethene and CVOCs were consistent with those measured in previous years.
Huffman, Raegan L.
2015-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation at the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during June 23–25 and September 4, 2014, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2014, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all less than 1 milligram per liter; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2014, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2013. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2014 continued to be variable as in previous years, often high, and reductive dechlorination byproducts were detected in one of the three wells and in all but two piezometers. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2014 continued to vary spatially and temporally, and were high. Trends for total CVOC concentration continued to increase at the historically most contaminated passive‑diffusion sampler sites (S-4, S-4B, and S-5). For the intermediate aquifer in 2014, concentrations of reductive dechlorination byproducts ethane and ethene and CVOCs were consistent with those measured in previous years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.
Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. Ultimately, this analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.« less
NASA Astrophysics Data System (ADS)
Berns, E. C.; Zeng, R.; Singh, H.; Valocchi, A. J.; Sanford, R. A.; Strathmann, T. J.; Schaefer, C. E.; Werth, C. J.
2017-12-01
Low permeability zones (LPZs) comprised of silts and clays, and contaminated with chlorinated ethenes, can act as a long term source of contaminated groundwater by diffusion into adjacent high permeability zones (HPZs). Following initial remediation efforts, chlorinated ethenes that have diffused into LPZs will back diffuse and recontaminate HPZs. Because chlorinated ethenes are known to cause cancer and damage the liver, kidneys, and central nervous system, it is important to understand how they degrade in natural systems and how to model their fate and transport. Previous work has shown that anaerobic hydrogenolysis reactions are facilitated by both dechlorinating microorganisms and reactive minerals. Abiotic dichloro-elimination reactions with reactive minerals can also degrade chlorinated ethenes to acetylene, albeit at slower rates than biotic processes. More recently, studies have explored aerobic abiotic degradation of chlorinated ethenes to formate, glycolate, and carbon dioxide. This study focuses on these biotic and abiotic reactions and their contributions to chlorinated ethene degradation under aerobic and anaerobic conditions at the LPZ/HPZ interface. A two-dimensional flow cell was constructed to model this interface using clay and sand from Pease Air Force Base. The clay was inoculated with a dechlorinating enrichment culture. Tenax adsorbent beads equilibrated with trichloroethylene (TCE) were used as a chlorinated ethene source zone at the base of the clay. TCE and its degradation products diffused from the clay into the sand, where they were removed from the flow cell by groundwater at a rate of 50 mL/day. Volatile compounds were trapped in a sample loop and removed every 48 hours for analysis by GC-FID. Organic and inorganic ions in the effluent were analyzed on the HPLC and IC. The experiment was terminated by freezing the flow cell, and chemical profiles through the flow cell material were created to show the spatial distribution of degradation products. Chemical profiles through the clay were modeled using a 1D diffusion-reaction model, and the contributions of abiotic and biotic processes to TCE degradation were determined. The model and experimental data lend insights into transformation processes that control the fate and transport of chlorinated ethenes at contaminated sites.
Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A.; ...
2016-02-12
Here we report that the genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 andmore » Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. Ultimately, this analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.« less
Pérez-de-Mora, Alfredo; Lacourt, Anna; McMaster, Michaye L.; Liang, Xiaoming; Dworatzek, Sandra M.; Edwards, Elizabeth A.
2018-01-01
Dehalococcoides mccartyi (D. mccartyi) strains differ primarily from one another by the number and identity of the reductive dehalogenase homologous catalytic subunit A (rdhA) genes within their respective genomes. While multiple rdhA genes have been sequenced, the activity of the corresponding proteins has been identified in only a few cases. Examples include the enzymes whose substrates are groundwater contaminants such as trichloroethene (TCE), cis-dichloroethene (cDCE) and vinyl chloride (VC). The associated rdhA genes, namely tceA, bvcA, and vcrA, along with the D. mccartyi 16S rRNA gene are often used as biomarkers of growth in field samples. In this study, we monitored an additional 12 uncharacterized rdhA sequences identified in the metagenome in the mixed D. mccartyi-containing culture KB-1 to monitor population shifts in more detail. Quantitative PCR (qPCR) assays were developed for 15 D. mccartyi rdhA genes and used to measure population diversity in 11 different sub-cultures of KB-1, each enriched on different chlorinated ethenes and ethanes. The proportion of rdhA gene copies relative to D. mccartyi 16S rRNA gene copies revealed the presence of multiple distinct D. mccartyi strains in each culture, many more than the two strains inferred from 16S rRNA analysis. The specific electron acceptor amended to each culture had a major influence on the distribution of D. mccartyi strains and their associated rdhA genes. We also surveyed the abundance of rdhA genes in samples from two bioaugmented field sites (Canada and United Kingdom). Growth of the dominant D. mccartyi strain in KB-1 was detected at the United Kingdom site. At both field sites, the measurement of relative rdhA abundances revealed D. mccartyi population shifts over time as dechlorination progressed from TCE through cDCE to VC and ethene. These shifts indicate a selective pressure of the most abundant chlorinated electron acceptor, as was also observed in lab cultures. These results also suggest that reductive dechlorination at contaminated sites is brought about by multiple strains of D. mccartyi whether or not the site is bioaugmented. Understanding the driving forces behind D. mccartyi population selection and activity is improving predictability of remediation performance at chlorinated solvent contaminated sites.
Coal desulfurization by aqueous chlorination
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)
1982-01-01
A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.
Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase
Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer, Frieder
2001-01-01
We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified. PMID:11526052
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kallvinskas, J. J. (Inventor)
1985-01-01
High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.
2006-12-18
Defense. Reference herein to any specific commercial product, process , or service by trade name, trademark, manufacturer, or otherwise, does not...result of a combination of both respiratory and cometabolic processes . For in situ bioremediation, it would be most desirable to stimulate...conditions we examined. While the process has much potential, a key aspect of the technology – the nature and capability of the intrinsic microbial
In Situ Dechlorination of Solvents in Saturated Soils
1996-05-01
riboflavin 0.025 nicotinic acid 0.025 DL-calcium pantothenate 0.025 vitamin B12 0.025 p-aminobenzoic acid 0.025 lipoic acid 0.025 yeast extract...contaminated core materials collected from the Coast Guard Air Station in Traverse City, MI. Four fatty acids and three alcohols were tested for their...EXTRACT CONCENTRATIONS Vitamin/Yeast Extract Concentration (mg/L) d-biotin 0.01 folic acid 0.01 pyridoxine hydrochloride 0.05 thiamin hydrochloride 0.025
2003-12-01
populations. (ii) Characterization of Dehalococeoides sp . strain FL2. The isolate, designate d Dehalococcoides sp . strain FL2, reductively...Pinellas group of the Dehalococcoides cluster, and demonstrated that strain FL2 shared an identical 165 rRNA gene sequence with Dehalococcoides sp ...strain CBDBI, a chlorobenzene-dechlorinating strain. The 165 rRNA gene sequence of Dehalococcoides sp . strain FL2 was submitted to GenBank (AF357918.2
Ultra violet disinfection: A 3-year history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tubesing, R.R.; Lindeke, D.R.
1998-07-01
The Stillwater Wastewater Treatment Facility is one of nine wastewater treatment facilities operated by the Metropolitan Council Environmental Services in the Minneapolis-St. Paul Metropolitan Area. The facility services the cities of Stillwater, Oak Park Heights, and Bayport. In 1993, an ultra violet disinfection facility began operation to provide the disinfection for the Facility. This presentation discusses the reasons for using ultra violet disinfection in lieu of chlorination/dechlorination facilities, the operating performance, and operating cost factors.
Fate of sulfur(IV) dechlorinating agents in natural waters: effect of suspended sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kijak, P.J.; Helz, G.R.
1988-10-01
To investigate the fate of SO/sub 2/ in dechlorinated waste water effluents, oxidation rates were measured in nonilluminated solutions at near-neutral pH and 25/degrees/C. River water was simulated with 0.01 M NaCl, 0.001 M buffer, and 1 g/L standard sediment MESS-1. Components leached from the sediment catalyzed the oxidation of S(IV) by O/sub 2/, but the particles themselves exerted a slight inhibitory effect. Sulfate was the major reaction product. Some nonoxidative loss of S(IV) to particles was observed at high-sediment concentrations (20 g/L). Sulfur(IV) reductively dissolved 25% of the Cu from the sediment, possibly an environmentally harmful process. Iron andmore » manganese dissolutions were insignificant. The rate of loss of S(IV) from air-saturated solutions covering a 50-fold S(IV) concentration range as well as described by the empirical equation (time in s and concentrations in M) -d(SO/sub 3//sup 2 -/)/dt = (5 /times/ 10/sup -8/)((S(IV))/(1 + (H/sup +/)/K/sub a/))/sup 1/2/ K/sub a/ being the second ionization constant of H/sub 2/SO/sub 3/. The rate of loss of S(IV) was a factor of 2 faster in actual effluent/river water mixtures, likely caused by higher trace metal concentrations in these mixtures.« less
Fuentes, María S; Colin, Verónica L; Amoroso, María J; Benimeli, Claudia S
2016-02-01
Chlordane bioremediation using actinobacteria mixed culture is an attractive clean-up technique. Their ability to produce bioemulsifiers could increase the bioavailability of this pesticide. In order to select a defined actinobacteria mixed culture for chlordane remediation, compatibility assays were performed among six Streptomyces strains. The strains did not show growth inhibition, and they were assayed for chlordane removal, either as pure or as mixed cultures. In pure cultures, all of the strains showed specific dechlorination activity (1.42-24.20 EU mg(-1)) and chlordane removal abilities (91.3-95.5%). The specific dechlorination activity was mainly improved with cultures of three or four microorganisms. The mixed culture consisting of Streptomyces sp. A2-A5-A13 was selected. Their ability to produce bioemulsifiers in the presence of glucose or chlordane was tested, but no significant differences were observed (p > 0.05). However, the stability of the emulsions formed was linked to the carbon source used. Only in chlordane presence the emulsions retained 100% of their initial height. Finally, the selected consortium showed a high degree of sporulation in the pesticide presence. This is the first study on the effects that chlordane exerts on microbe morphology and emulsifier production for a defined mixed culture of Streptomyces with ability to remediate the pesticide. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis
2008-08-01
A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.
Sohn, Seo Yean; Kuntze, Kevin; Nijenhuis, Ivonne; Häggblom, Max M
2018-02-01
Compound specific stable isotope analysis (CSIA) has been established as a useful tool to evaluate in situ biodegradation. Here, CSIA was used to determine microbial dehalogenation of chloro- and bromobenzenes in microcosms derived from Hackensack River sediments. Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) was used to measure carbon isotope fractionation during reductive dehalogenation of hexachlorobenzene (HCB), pentachlorobenzene (PeCB), 1,2,3,5-tetrachlorobenzene (TeCB), 1,2,3,5-tetrabromobenzene (TeBB), and 1,3,5-tribromobenzene (TriBB). Strong evidence of isotope fractionation coupled to dehalogenation was not observed in the substrate, possibly due to the low solubilities of the highly halogenated benzene substrates and a dilution of the isotope signal. Nonetheless, we could measure a depletion of the δ 13 C value in the dichlorobenzene product during dechlorination of HCB, the sequential depletion and enrichment of δ 13 C value for trichlorobenzene in TeCB dechlorinating cultures, and the enrichment of δ 13 C during debromination of TriBB. This indicates that a measurable isotope fractionation occurred during reductive dehalogenation of highly halogenated chloro- and bromobenzenes in aquatic sediments. Thus, although more quantitative measurements will be needed, the data suggests that CSIA may have application for monitoring in situ microbial reductive dehalogenation of highly halogenated benzenes. Copyright © 2017. Published by Elsevier Ltd.
Fortin, Pascal D.; Horsman, Geoff P.; Yang, Hao M.; Eltis, Lindsay D.
2006-01-01
BphK is a glutathione S-transferase of unclear physiological function that occurs in some bacterial biphenyl catabolic (bph) pathways. We demonstrated that BphK of Burkholderia xenovorans strain LB400 catalyzes the dehalogenation of 3-chloro 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), compounds that are produced by the cometabolism of polychlorinated biphenyls (PCBs) by the bph pathway and that inhibit the pathway's hydrolase. A one-column protocol was developed to purify heterologously produced BphK. The purified enzyme had the greatest specificity for 3-Cl HOPDA (kcat/Km, ∼104 M−1 s−1), which it dechlorinated approximately 3 orders of magnitude more efficiently than 4-chlorobenzoate, a previously proposed substrate of BphK. The enzyme also catalyzed the dechlorination of 5-Cl HOPDA and 3,9,11-triCl HOPDA. By contrast, BphK did not detectably transform HOPDA, 4-Cl HOPDA, or chlorinated 2,3-dihydroxybiphenyls. The BphK-catalyzed dehalogenation proceeded via a ternary-complex mechanism and consumed 2 equivalents of glutathione (GSH) (Km for GSH in the presence of 3-Cl HOPDA, ∼0.1 mM). A reaction mechanism consistent with the enzyme's specificity is proposed. The ability of BphK to dehalogenate inhibitory PCB metabolites supports the hypothesis that this enzyme was recruited to facilitate PCB degradation by the bph pathway. PMID:16740949
Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao
2014-05-01
Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Bradley, Paul M.
2012-01-01
Chlororespiration is a key component of remediation at many chloroethene-contaminated sites. In some instances, limited accumulation of reductive dechlorination daughter products may suggest that natural attenuation is not adequate for site remediation. This conclusion is justified when evidence for parent compound (tetrachloroethene, PCE, or trichloroethene, TCE) degradation is lacking. For many chloroethene-contaminated shallow aquifer systems, however, non-conservative losses of the parent compounds are clear but the mass balance between parent compound attenuation and accumulation of reductive dechlorination daughter products is incomplete. Incomplete mass balance indicates a failure to account for important contaminant attenuation mechanisms, and is consistent with contaminant degradation to non-diagnostic mineralization products. An ongoing technical debate over the potential for mineralization of dichloroethene (DCE) and vinyl chloride (VC) to CO2 in the complete absence of diatomic oxygen has largely obscured the importance of microbial DCE/VC mineralization at dissolved oxygen (DO) concentrations below the current field standard (DO < 0.1-0.5 milligrams per liter) for nominally anoxic conditions. This study demonstrates that oxygen-based microbial mineralization of DCE and VC can be substantial under field conditions that are frequently characterized as "anoxic." Because mischaracterization of operant contaminant biodegradation processes can lead to expensive and ineffective remedial actions, a modified framework for assessing the potential importance of oxygen during chloroethene biodegradation was developed.
Selinsky, B S; Perlman, M E; London, R E
1988-05-01
Methoxyflurane (2,2-dichloro-1,1-difluoro-ethyl methyl ether) is believed to be metabolized via two convergent metabolic pathways. The relative flux through these two metabolic pathways has been investigated using a combination of in vivo surface coil NMR techniques and in vitro analyses of urinary metabolites. Analysis of the measured concentrations of inorganic fluoride, oxalate, and methoxydifluoroacetate in the urine of methoxyflurane-treated rats for 4 days after anesthesia indicates that the anesthetic is metabolized primarily via dechlorination to yield methoxydifluoroacetate. The methoxydifluoroacetate is largely excreted without further metabolism, although a small percentage of this metabolite is broken down to yield fluoride and oxalate, as determined by urine analysis of rats dosed with synthetic methoxydifluoroacetate. At early times after methoxyflurane exposure, the relative concentrations of methoxyflurane metabolites indicate that a significant fraction of the metabolic flux occurs via a different pathway, presumably demethylation, to yield dichloroacetate as an intermediate. Direct analysis of dichloroacetate in the urine using water-suppressed proton NMR indicates that the level of this metabolite is below the detection threshold of the method. Measurements made on the urine of rats dosed directly with dichloroacetate indicate that this compound is quickly metabolized, and dichloroacetate levels in urine are again found to be below the detection threshold. These results demonstrate the quantitative importance of the dechlorination pathway in the metabolism of methoxyflurane in rats.
Van Breukelen, Boris M; Thouement, Héloïse A A; Stack, Philip E; Vanderford, Mindy; Philp, Paul; Kuder, Tomasz
2017-09-01
Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ 37 Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ 2 H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang
2018-09-01
To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1 m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.
Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin
2008-12-01
To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.
Damianovic, M H R Z; Moraes, E M; Zaiat, M; Foresti, E
2009-10-01
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 microg PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1)day(-1) for R1, and from 0.06 to 4.15 mg PCP l(-1)day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3)day(-1) at hydraulic retention times (HRT) of 24h for R1 and 18 h for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency.
Reductive dechlorination of the nitrogen heterocyclic herbicide picloram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanand, K.; Nagarajan, A.; Suflita, J.M.
Halogenated heterocyclic chemicals are widely used for manufacture of pesticides, pharmaceuticals, dyes, and explosives. Often they are environmentally mobile and can contaminate ground water reserves. Picloram, a broad spectrum herbicide, has a half life in the soil of as long as 1 year. This paper reports on the reductive dehalogenation of picloram in anoxic freshwater sediments, though not when sulfate or nitrate was available as a terminal electron acceptor, and its subsequent conversion to an unidentified product. 25 refs., 4 figs, 1 tab.
Remediation of DNAPL through Sequential In Situ Chemical Oxidation and Bioaugmentation
2009-04-01
Specific Electrode Field Field-filtered, ICP - PSC 0.05 mg/L 125 mL plastic nitric acid to pHɚ 28 days cool to 4oC Ion Chromatography 25310 C PSC 0.2...oxidized by MnO2 at a significant rate; however, MnO2 reacted rapidly with oxalic acid ; • Complete dechlorination occurred only in microcosms...controller PLFA phospholipid fatty acid ppb parts per billion PTA pilot test area PVC polyvinyl chloride QAPP quality assurance project plan QA
BioReD: Biomarkers and Tools for Reductive Dechlorination Site Assessment, Monitoring and Management
2013-11-01
1,2,3-Trichloropropane 1 -CP 1 - Chloropropane 2-CP 2- Chloropropane 2,2-DCP 2,2-Dichloropropane 2-Br- 1 -CP 1 -Bromo- 1 - chloropropane 6-FAM 6...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 07
Remediation of soil contaminated with dioxins by subcritical water extraction.
Hashimoto, Shunji; Watanabe, Kiyohiko; Nose, Kazutoshi; Morita, Masatoshi
2004-01-01
The effectiveness of subcritical water extraction (SCWE) was examined for removing dioxins from contaminated soil. Most dioxins in the soil sample were reduced at 300 degrees C or more, but decreased dioxin concentrations were also observed at 150 degrees C. After 4 h of extraction, 99.4%, 94.5% and 60% of PCDDs were removed from samples at 350, 300 and 150 degrees C, respectively. It was also determined that degradation of dioxins had occurred, since the sum of dioxins in the soil plus water extracts after the experiments had considerably decreased. This study revealed that pressurizing is not essential for the removal of dioxins. Reduction was complete within 30 min at 350 degrees C; however, it took a much longer time at lower temperatures. The results of addition experiments in which OCDDs were added to different types of soil samples have shown that dechlorination is one of the major reaction pathways. After addition of OCDD to soil samples, experiments were carried out to examine in detail the degradation pathways of PCDDs. The removal rates and congener profiles varied among soil types. Although it was previously assumed that removal rates and congener profiles depended on the chemical components in soil, nonparametric statistical analysis revealed no significant relationship between the rate of reduction and elements present in the soil. It was confirmed from isomer patterns that dechlorination of the 2,3,7,8-positions in PCDDs takes place somewhat faster than for the 1,4,6,9-positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhaxybayeva, Olga; Swithers, Kristen S; Foght, Julia
2012-01-01
Here we describe the genome of Mesotoga prima MesG1.Ag4.2, the first genome of a mesophilic Thermotogales bacterium. Mesotoga prima was isolated from a polychlorinated biphenyl (PCB)-dechlorinating enrichment culture from Baltimore Harbor sediments. Its 2.97 Mb genome is considerably larger than any previously sequenced Thermotogales genomes, which range between 1.86 and 2.30 Mb. This larger size is due to both higher numbers of protein-coding genes and larger intergenic regions. In particular, the M. prima genome contains more genes for proteins involved in regulatory functions, for instance those involved in regulation of transcription. Together with its closest relative, Kosmotoga olearia, it alsomore » encodes different types of proteins involved in environmental and cell-cell interactions as compared with other Thermotogales bacteria. Amino acid composition analysis of M. prima proteins implies that this lineage has inhabited low-temperature environments for a long time. A large fraction of the M. prima genome has been acquired by lateral gene transfer (LGT): a DarkHorse analysis suggests that 766 (32%) of predicted protein-coding genes have been involved in LGT after Mesotoga diverged from the other Thermotogales lineages. A notable example of a lineage-specific LGT event is a reductive dehalogenase gene - a key enzyme in dehalorespiration, indicating M. prima may have a more active role in PCB dechlorination than was previously assumed.« less
Zhou, Shanshan; Fu, Jie; He, Huan; Fu, Jianjie; Tang, Qiaozhi; Dong, Minfeng; Pan, Yongqiang; Li, An; Liu, Weiping; Zhang, Limin
2017-10-01
Concentrations and spatial distribution pattern of organohalogen flame retardants were investigated in the riverine surface sediments from Taizhou, an intensive e-waste recycling region in China. The analytes were syn- and anti- Dechlorane Plus (DP), Dechloranes 602, 603, and 604, a DP monoadduct, two dechlorinated DPs and 8 congeners of polybrominated diphenyl ethers (PBDEs). The concentrations of Σ 8 PBDEs, ΣDP, ΣDec600s, and ΣDP-degradates ranged from <100 to 172,000, 100 to 55,000, not detectable (nd) to 1600, and nd to 2800 pg/g dry weight, respectively. BDE-209 and DP, both have been manufactured in China, had similar spatial distribution patterns in the study area, featured by distinctly recognizable hotspots some of which are in proximity to known e-waste dumping or metal recycling facilities. Such patterns were largely shared by Dec602 and dechlorinated DP, although their concentration levels were much lower. These major flame retardants significantly correlate with each other, and cluster together in the loading plot of principle component analysis. In contrast, most non-deca PBDE congeners do not correlate with DPs. Dec604 stood out having distinctly different spatial distribution pattern, which could be linked to historical use of mirex. Organic matter content of the sediment was not the dominant factor in determining the spatial pattern of pollution by halogenated flame retardants in the rivers of this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.
Zhao, Siyan; Rogers, Matthew J; He, Jianzhong
2017-07-01
Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.
Sticking with the Pointy End? Molecular Configuration of Chloro Boron-Subphthalocyanine on Cu(111)
Ilyas, Nahid; Harivyasi, Shashank S.; Zahl, Percy; ...
2016-03-10
For combined low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) study, we investigate self-assembly of the dipolar nonplanar organic semiconductor chloro boron-subphthalocyanine (ClB-SubPc) on Cu(111). We also observe multiple distinct adsorption configurations and demonstrate that these can only be understood by taking surface-catalyzed dechlorination into account. A detailed investigation of possible adsorption configurations and the comparison of experimental and computational STM images demonstrates that the configurations correspond to “Cl-up” molecules with the B–Cl moiety pointing toward the vacuum side of the interface, and dechlorinated molecules. In contrast to the standard interpretation of adsorption of nonplanar molecules in themore » phthalocyanine family, we find no evidence for “Cl-down” molecules where the B–Cl moiety would be pointing toward the Cu surface. We show computationally that such a configuration is unstable and thus is highly unlikely to occur for ClB-SubPc on Cu(111). Moreover, using these assignments, we discuss the different self-assembly motifs in the submonolayer coverage regime. The combination of DFT and STM is essential to gain a full atomistic understanding of the surface–molecule interactions, and our findings imply that phthalocyanines may undergo surface-catalyzed reactions hitherto not considered. Also, our results indicate that care has to be taken when analyzing possible adsorption configurations of polar members of the phthalocyanine family, especially when they are adsorbed on comparably reactive surfaces like Cu(111).« less
Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill.
Yu, Yunfei; Huang, Jun; Zhang, Wang; Zhang, Kunlun; Deng, Shubo; Yu, Gang
2013-02-01
Mechanochemical destruction (MCD) has been recognized as a promising non-combustion technology for the disposal of obsolete pesticides belonging to the persistent organic pollutants (POPs). Mirex, a termiticide ever used for many years in China, was ball milled in the presence of various reagent(s) in a planetary ball mill at room temperature to investigate the destruction efficiency. The ground samples were characterized and analyzed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, gas chromatography (GC), and ion chromatography (Martins, Bicego et al.). Under the same conditions of mill rotary rate and charge ratio, the mixture of iron powder and quartz sand (Fe/SiO(2)) was found best in promoting the mirex destruction. Mirex was completed destroyed after 2 h grinding at a charge ratio of 36:1 (reagent/mirex, m/m) and a mill rotation speed of 550 rpm. No organic compound was detected by GC/μECD screening. The yield of water-soluble chlorine determined by ion chromatography (Martins, Bicego et al.) in the final residue accounted for 90.7% of chlorine in the original mirex, which indicated a nearly complete dechlorination. Signals of both graphite and amorphous carbon were found in the Raman spectra of the co-ground powder samples. With the main final degradation products of water soluble Cl and carbon, the mechanism of the mechanochemical destruction approach should be dechlorination followed by the carbonization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tribology of carbide derived carbon films synthesized on tungsten carbide
NASA Astrophysics Data System (ADS)
Tlustochowicz, Marcin
Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.
Sarathy, Vaishnavi; Salter, Alexandra J; Nurmi, James T; O'Brien Johnson, Graham; Johnson, Richard L; Tratnyek, Paul G
2010-01-15
1,2,3-Trichloropropane (TCP) is an emerging contaminant because of increased recognition of its occurrence in groundwater, potential carcinogenicity, and resistance to natural attenuation. The physical and chemical properties of TCP make it difficult to remediate, with all conventional options being relatively slow or inefficient. Treatments that result in alkaline conditions (e.g., permeable reactive barriers containing zerovalent iron) favor base-catalyzed hydrolysis of TCP, but high temperature (e.g., conditions of in situ thermal remediation) is necessary for this reaction to be significant. Common reductants (sulfide, ferrous iron adsorbed to iron oxides, and most forms of construction-grade or nano-Fe(0)) produce insignificant rates of reductive dechlorination of TCP. Quantifiable rates of TCP reduction were obtained with several types of activated nano-Fe(0), but the surface area normalized rate contants (k(SA)) for these reactions were lower than is generally considered useful for in situ remediation applications (10(-4) L m(-2) h(-1)). Much faster rates of degradation of TCP were obtained with granular Zn(0), (k(SA) = 10(-3) - 10(-2) L m(-2) h(-1)) and potentially problematic dechlorination intermediates (1,2- or 1,3-dichloropropane, 3-chloro-1-propene) were not detected. The advantages of Zn(0) over Fe(0) are somewhat peculiar to TCP and may suggest a practical application for Zn(0) even though it has not found favor for remediation of contamination with other chlorinated solvents.
Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.
Ding, Kai; Xu, Wenqing
2016-12-06
1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), are often detected in soils and sediments containing high concentrations of black carbon. Sulfide (∼5 mM) from biological sulfate reduction often coexists with black carbon and serves as both a strong reductant and a nucleophile for the abiotic transformation of contaminants. In this study, we found that the abiotic transformation of DDT, DDD, and DDE (collectively referred to as DDX) require both sulfide and black carbon. 89.3 ± 1.8% of DDT, 63.2 ± 1.9% of DDD, and 50.9 ± 1.6% of DDE were degraded by sulfide (5 mM) in the presence of graphite powder (21 g/L) after 28 days at pH 7. Chloride was a product of DDX degradation. To better understand the reaction pathways, electrochemical cells and batch reactor experiments with sulfide-pretreated graphite powder were used to differentiate the involvement of black carbon materials in DDX transformation by sulfide. Our results suggest that DDT and DDD are transformed by surface intermediates formed from the reaction between sulfide and black carbon, while DDE degradation involves reductive dechlorination. This research lays the groundwork for developing an alternative in situ remediation technique for rapidly decontaminating soils and sediments to lower toxic products under environmentally relevant conditions.