Science.gov

Sample records for deciduous hardwood hybrid

  1. Directional scattering properties of a winter deciduous hardwood canopy

    NASA Technical Reports Server (NTRS)

    Kimes, Daniel S.; Newcomb, W. Wayne

    1987-01-01

    The unique directional scattering properties of a deciduous hardwood forest without leaves during the winter period was measured in a visible and near-infrared band. A radiative transfer model was used to explore the scattering properties of such a forest. The reflectance distributions look similar to sparse homogeneous vegetation canopies. The overall reflectance distribution is a combination of the extreme azimuthal scattering behavior of tree limbs and the more typical scattering behavior of understory litter.

  2. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  3. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. PMID:24421179

  4. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.

  5. Differential response by hardwood and deciduous stands in New England forests to climate change and insect-induced mortality

    NASA Astrophysics Data System (ADS)

    Munger, J. William; Wofsy, Steven C.; Orwig, David A.; Williams, Chris

    2016-04-01

    Forests in the northeastern United States include large areas dominated by mosaics of oak/maple and hemlock stands. Often the hardwood dominated stands include a significant cohort of hemlock saplings. However, long-term survival of hemlock in this region is threatened by Hemlock Wooly Adelgid (HWA), an invasive insect that is fatal to eastern hemlock. The northern limit of HWA is affected in part by winter minimum temperature and warmer winters are enabling northward expansion of HWA infestation. At the Harvard Forest in central Massachusetts, two long-term eddy flux towers are measuring carbon exchange in a >100 year old hardwood stand since 1992 (EMS- Ha1) and in a 100-200 year old hemlock stand (Ha2) since 2004. The flux measurements are complemented by vegetation dynamics plots. Carbon exchange at the two sites has distinctly different seasonality. The hardwood site has a shorter carbon uptake period, but higher peak fluxes, while the hemlock stand has a long carbon uptake period extending from spring thaw until early winter freeze. Some contribution from the evergreen hemlock in the understory is evident before canopy greenup at the EMS tower and spring and fall carbon uptake rates have been increasing and contribute in part to a trend towards larger annual carbon uptake at this site. Carbon uptake by hemlock increases with warmer temperatures in the spring and fall transition. Adelgids have reached the hemlock stand near Ha2 and have been widely distributed in the canopy since spring of 2012. The hemlock canopy in that stand is thinning and net carbon uptake and evapotranspiration have been decreasing since 2012. Adelgids have also been observed in scattered stands near the Ha1 tower, but as of 2015 the trees are still healthy. Because hemlocks stands have different seasonality and provide a distinct soil and sub-canopy light environment, their mortality and replacement by hardwood species will have significant impacts on forest dynamics, carbon balance, and

  6. Microbiota of deciduous endodontic infections analyzed by MDA and Checkerboard DNA-DNA hybridization

    PubMed Central

    Tavares, WLF; de Brito, LC Neves; Teles, RP; Massara, MLA; Sobrinho, AP Ribeiro; Haffajee, AD; Socransky, SS; Teles, FR

    2011-01-01

    Aims To evaluate the microbiota of endodontic infections in deciduous teeth by checkerboard DNA-DNA hybridization after uniform amplification of DNA in samples by multiple displacement amplification (MDA). Methodology Forty samples from the root canal system of deciduous teeth exhibiting pulp necrosis with or without radiographically detectable periradicular/interadicular bone resorption were collected and 32 were analyzed, with 3 individuals contributing 2 samples; these were MDA- amplified and analyzed by Checkerboard DNA-DNA hybridization for levels of 83 bacterial taxa. Two outcome measures were used: the percentage of teeth colonized by each species; and the mean proportion of each bacterial taxon present across all samples were computed. Results The mean amount of DNA in the samples prior to amplification was 5.2 (± 4.7) ng and 6.1 (± 2.3) μg after MDA. The mean number of species detected per sample was 19 (± 4) (range: 3–66) to the nearest whole number. The most prevalent taxa were Prevotella intermedia (96.9%), Neisseria mucosa (65.6%), Prevotella nigrescens (56.2%) and Tannerella forsythia (56.2%). Aggregatibacter (Haemophilus) aphrophilus and Helicobacter pylori were not detected. P. intermedia (10%), Prevotella tannerae (7%) and Prevotella nigrescens (4.3%) presented the highest mean proportions of the target species averaged across the positive samples. Conclusion Root canals of infected deciduous teeth had a diverse bacterial population. Prevotella sp were commonly found with P. intermedia, Prevotella tannerae and Prevotella nigrescens among the most prominent species detected. PMID:21083570

  7. 78 FR 68297 - Hardwood Lumber and Hardwood Plywood Promotion, Research and Information Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... deciduous, broad-leafed tree which could include: aspen, birch, cypress, popular, maple, cherry, walnut and... U.S. Timber Production \\3\\ \\3\\ USDA Forest Service, Dr. William Luppold, Princeton, WV. According to the USDA Forest Service the volume of hardwood lumber produced in 2010 was 7,581 MMBF (million...

  8. AmeriFlux US-Wi1 Intermediate hardwood (IHW)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi1 Intermediate hardwood (IHW). Site Description - The Wisconsin Intermediate Hardwoods site is located in the Washburn Ranger District of the Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The intermediate hardwoods site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. In 2001, northern hardwood stands of all ages occupied 45% of the region.

  9. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    EPA Science Inventory

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  10. AmeriFlux US-Wi3 Mature hardwood (MHW)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi3 Mature hardwood (MHW). Site Description - The Wisconsin Mature Hardwood site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. The mature hardwood stand represents a typical naturally regenerated second-growth forest, free of anthropogenic disturbances for at least 70 years.

  11. AmeriFlux US-Wi8 Young hardwood clearcut (YHW)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi8 Young hardwood clearcut (YHW). Site Description - The Wisconsin Clearcut Young Hardwood site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The young hardwood clearcut site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. In 2001, northern hardwood stands of all ages occupied 45% of the region.

  12. Vegetation classification in southern pine mixed hardwood forests using airborne scanning laser point data.

    SciTech Connect

    McGaughey, Robert J.; Reutebuch, Stephen E.

    2012-09-01

    Forests of the southeastern United States are dominated by a relatively small number of conifer species. However, many of these forests also have a hardwood component composed of a wide variety of species that are found in all canopy positions. The presence or absence of hardwood species and their position in the canopy often dictates management activities such as thinning or prescribed burning. In addition, the characteristics of the under- and mid-story layers, often dominated by hardwood species, are key factors when assessing suitable habitat for threatened and endangered species such as the Red Cockaded Woodpecker (Picoides borealis) (RCW), making information describing the hardwood component important to forest managers. General classification of cover types using LIDAR data has been reported (Song et al. 2002, Brennan and Webster 2006) but most efforts focusing on the identification of individual species or species groups rely on some type of imagery to provide more complete spectral information for the study area. Brandtberg (2007) found that use of intensity data significantly improved LIDAR detection and classification of three leaf-off deciduous eastern species: oaks (Quercus spp.), red maple (Acer rubrum L.), and yellow poplar (Liriodendron tulipifera L.). Our primary objective was to determine the proportion of hardwood species present in the canopy using only the LIDAR point data and derived products. However, the presence of several hardwood species that retain their foliage through the winter months complicated our analyses. We present two classification approaches. The first identifies areas containing hardwood and softwood (conifer) species (H/S) and the second identifies vegetation with foliage absent or present (FA/FP) at the time of the LIDAR data acquisition. The classification results were used to develop predictor variables for forest inventory models. The ability to incorporate the proportion of hardwood and softwood was important to the

  13. Cultivation of fast-growing hardwoods

    SciTech Connect

    White, E.H.; Abrahamson, L.P. . Coll. of Environmental Science and Forestry)

    1991-10-01

    The intensive culture of hybrid poplar has received in-depth study as part of the Fast-Growing Hardwood Program. Research has concentrated on short-rotation intensive culture systems. Specific studies and operations included establishing and maintaining a nursery/cutting orchard, installing clone-site trials in central and southern New York State and initiating studies of no-till site preparation, nutrient utilization efficiency, wood quality and soil solution chemistry. The nursery/cutting orchard was used to provide material for various research plantings and as a genotype repository. Clone- site trials results showed that hybrid poplar growth potential was affected by clone type and was related to inherent soil-site conditions. No-till techniques were shown to be successful in establishing hybrid poplar in terms of survival and growth when compared to conventional clean tillage and/or no competition control, and can be considered for use on sites that are particularly prone to erosion. Nutrient use efficiency was significantly affected by clone type, and should be a consideration when selecting clones for operational planting if fertilization is to be effectively and efficiently used. Wood quality differed among clones with site condition and tree age inferred as important factors. Soil solution chemistry was minimally affected by intensive cultural practices with no measured adverse effect on soil water quality. Generally, results of these studies showed that appropriate hybrid poplar clones grown in short-rotation intensively cultured systems can be used successfully in New York State if proper site conditions exist and appropriate establishment and maintenance techniques are used. 37 refs., 4 figs., 22 tabs.

  14. Thermal Insulation from Hardwood Residues

    NASA Astrophysics Data System (ADS)

    Sable, I.; Grinfelds, U.; Vikele, L.; Rozenberga, L.; Zeps, M.; Luguza, S.

    2015-11-01

    Adequate heat is one of the prerequisites for human wellbeing; therefore, building insulation is required in places where the outside temperature is not suitable for living. The climate change, with its rising temperatures and longer dry periods, promotes enlargement of the regions with conditions more convenient for hardwood species than for softwood species. Birch (Betula pendula) is the most common hardwood species in Latvia. The aim of this work was to obtain birch fibres from wood residues of plywood production and to form low-density thermal insulation boards. Board formation and production was done in the presence of water; natural binder, fire retardant and fungicide were added in different concentrations. Board properties such as density, transportability or resistance to particulate loss, thermal conductivity and reaction to fire were investigated. This study included thermal insulation boards with the density of 102-120 kg/m3; a strong correlation between density and the binder amount was found. Transportability also improved with the addition of a binder, and 0.1-0.5% of the binder was the most appropriate amount for this purpose. The measured thermal conductivity was in the range of 0.040-0.043 W/(m·K). Fire resistance increased with adding the fire retardant. We concluded that birch fibres are applicable for thermal insulation board production, and it is possible to diversify board properties, changing the amount of different additives.

  15. Hardwood Lumber Scaling [and] Hardwood Log Scaling and Grading. Slide Scripts.

    ERIC Educational Resources Information Center

    Wooten, D. E.; Touse, Robert D.

    These two slide scripts, part of a series of slide scripts designed for use in vocational agriculture classes, deal with scaling and grading hardwood logs and lumber. The first script includes narrations for use with 39 slides, which explain the techniques of scaling and grading hardwood logs, and the second script contains the narrations to…

  16. A Guide to Bottomland Hardwood Restoration

    USGS Publications Warehouse

    Allen, J.A.; Keeland, B.D.; Stanturf, J.A.; Clewell, A.F.; Kennedy, H.E.

    2001-01-01

    During the last century, a large amount of the original bottomland hardwood forest area in the United States has been lost, with losses greatest in the Lower Mississippi Alluvial Valley and East Texas. With a holistic approach in mind, this manual describes methods to restore bottomland hardwoods in the lower Midwest, including the Lower Mississippi Alluvial Valley and the southeastern United States. Bottomland hardwoods in this guide include not only the hardwood species that predominate in most forested floodplains of the area but also the softwood species such as baldcypress that often co-occur. General restoration planning considerations are discussed as well as more specific elements of bottomland hardwood restoration such as species selection, site preparation, direct seeding, planting of seedlings, and alternative options for revegetation. We recognize that most projects will probably fall more within the realm of reforestation or afforestation rather than a restoration, as some site preparation and the planting of seeds or trees may be the only actions taken. Practical information needed to restore an area is provided in the guide, and it is left up to the restorationist to decide how complete the restoration will be. Postplanting and monitoring considerations are also addressed. Restoration and management of existing forests are included because of the extensive areas of degraded natural forests in need of rehabilitation.

  17. REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH

    EPA Science Inventory

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...

  18. 77 FR 71017 - Hardwood Plywood From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... notice in the Federal Register of October 3, 2012 (77 FR 60460). The conference was held in Washington... COMMISSION Hardwood Plywood From China Determinations On the basis of the record \\1\\ developed in the subject... plywood from China that are allegedly subsidized and sold in the United States at less than fair...

  19. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth rates may be important in evaluating the patterns of biomass allocation in the understory. PMID:21684979

  20. Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer.

    PubMed

    Wullschleger, S D; Hanson, P J; Todd, D E

    1996-10-01

    New technologies in time-domain reflectometry offer a reliable means of measuring soil water content. Whether these same technologies can be used or adapted to estimate the water content of other porous media, such as the woody tissue of forest trees, has not been thoroughly addressed. Therefore, curves relating the apparent dielectric constant (K(a)) to volumetric water content (g cm(-3)) were constructed for large-diameter stems of red maple (Acer rubrum L.), white oak (Quercus alba L.), chestnut oak (Q. prinus L.), and black gum (Nyssa sylvatica Marsh.). This information was combined with previously published data and a proposed "universal" calibration equation for wood was derived. Stainless-steel rods (15-cm wave guides) were inserted into 160 trees (30 to 49 per species) growing in an upland oak-hickory forest and stem water contents estimated monthly during 1994 and 1995 with a time-domain reflectometer (TDR). Volumetric water contents in April ranged from 0.28 g cm(-3) for red maple to 0.43 g cm(-3) for black gum, with no evidence that water content changed as a function of stem diameter. Stem water contents estimated during 1994 (a wet year) increased from May to July, reached a maximum in midsummer (0.41 to 0.50 g cm(-3)), and then decreased in November. During 1995 (a dry year), stem water contents for red maple and black gum (two diffuse-porous species) decreased from May to August, reached a minimum in September (0.29 to 0.37 g cm(-3)), slightly increased in October and November, and then decreased in December. A different trend was observed during 1995 for white oak and chestnut oak (two ring-porous species), with water contents remaining fairly stable from May to August, but decreasing abruptly in September and again in December. Stem water contents estimated with a TDR broadly agreed with gravimetric analyses of excised stem segments and increment cores, although there was evidence that overestimation of water content was possible with TDR as a result of wounding following wave guide installation. Nonetheless our results hold promise for the application of TDR to the study of stem water content and to the study of whole-plant water storage.

  1. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth rates may be important in evaluating the patterns of biomass allocation in the understory.

  2. Properties of recycled polypropylene based composites incorporating treated hardwood sawdust

    NASA Astrophysics Data System (ADS)

    Shulga, Galia; Jaunslavietis, Jevgenijs; Ozolins, Jurijs; Neiberte, Brigita; Verovkins, Anrijs; Vitolina, Sanita; Shakels, Vadims

    2016-05-01

    The effect of different treatment of hardwood sawdust under mild conditions on contact angles, adhesion energy and water sorption was studied. A comparison of these indices for the hardwood treated sawdust and the composites filled with them was performed. The treatment promoted the compatibility between the recycled polypropylene and the hardwood filler. The inclusion of the lignin-based compatibiliser in the composite, containing the ammoxidised wood filler, essentially improved its mechanical properties.

  3. 78 FR 76857 - Hardwood Plywood From China; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... notice in the Federal Register on June 19, 2013 (78 FR 36791). The hearing was held in Washington, DC, on... COMMISSION Hardwood Plywood From China; Determinations On the basis of the record \\1\\ developed in the... of imports of hardwood plywood from China provided for in subheading(s) 4412.10; 4412.31;...

  4. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  5. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  6. Rbbp7 Is Required for Uterine Stromal Decidualization in Mice.

    PubMed

    He, Hui; Kong, Shuangbo; Liu, Fei; Zhang, Shuang; Jiang, Yaling; Liao, Yixin; Jiang, Yufei; Li, Qian; Wang, Bingyan; Zhou, Zuomin; Wang, Haibin; Huo, Ran

    2015-07-01

    Uterine stromal cells undergo extensive proliferation and differentiation during postimplantation development, a process known as decidualization. While a range of signaling molecules have been demonstrated to play essential roles in this event, its potential epigenetic regulatory mechanisms remain largely unknown. Retinoblastoma binding protein 7 (Rbbp7) is a protein reported as a core component of many histone modification and chromatin remodeling complexes. In the present study, our in situ hybridization and immunochemistry analysis first reveals a spatiotemporal expression of Rbbp7 in the uterus during the peri-implantation period. Observations of remarkable induction of Rbbp7 expression in uterine stromal cells in response to progesterone-nuclear receptor PR signaling point to its potential physiological significance during postimplantation uterine development. Employing a stealth RNA knockdown approach, combined with primary murine uterine stromal cell culture and an in vitro-induced decidualization model, we further demonstrate that Rbbp7 silencing compromises stromal cell decidualization via attenuating histone H4 acetylation and cyclin D3 expression. The results collectively suggest that Rbbp7 is a potentially functional player regulating normal histone acetylation modification and cyclin D3 expression in stromal cells during postimplantation decidual development. PMID:26040671

  7. Hardwood tree growth after eight years on brown and gray mine soils in west virginia.

    PubMed

    Wilson-Kokes, L; Emerson, P; Delong, C; Thomas, C; Skousen, J

    2013-09-01

    Surface coal mining in Appalachia disturbs hundreds of hectares of land every year with the removal of valuable and ecologically diverse eastern deciduous forests. After the passage of the Surface Mining Control and Reclamation Act in 1977, coal mine operators began planting a variety of grasses and legumes as a fast and economical way to reestablish a permanent vegetative cover to meet erosion and site stabilization requirements. However, soil compaction and competitive forage species have arrested the recolonization of native hardwood tree species on these reclaimed sites. Three 2.8-ha demonstration plots were established at Catenary Coal's Samples Mine in Kanawha County, West Virginia, of weathered brown sandstone and unweathered gray sandstone. Half of each plot was compacted. Each plot was hydroseeded with a low-competition herbaceous cover and planted with 11 hardwood tree species. After eight growing seasons, average tree volume index was nearly 10 times greater for trees grown in the brown sandstone treatments, 3853 cm, compared with 407 cm in gray sandstone. Trees growing on compacted treatments had a lower mean volume index, 2281 cm, than trees growing on uncompacted treatments, 3899 cm. Average pH of brown sandstone was 5.2 to 5.7, while gray sandstone was 7.9. The gray sandstone had much lower fine soil fraction (<2-mm) content (40%) than brown sandstone (70%), which influenced nutrient- and water-holding capacity. Brown sandstone showed significantly greater tree growth and survival and at this stage is a more suitable topsoil substitute than gray sandstone on this site.

  8. The role of fire during climate change in an eastern deciduous forest at Devil`s Bathtub, New York

    SciTech Connect

    Clark, J.S.; Royall, P.D.; Chumbley, C.

    1996-10-01

    Annual record of charcoal and sedimentation rate were compared with fossil pollen to investigate the role of fire in eastern deciduous forest around Devil`s Bathtub, New York, USA. Changes in peak and background charcoal suggest that changes in fire regime have accompanied the principal vegetation and climatic changes of the last 10 400 yr. A distribution of return times (50-200-yr intervals) similar to parts of modern boreal Canada prevailed when late-Glacial spruce woodland dominated the site. Expansion of Pinus banksiana appears to have altered the fire regime to one of crown fires with high particulate emissions, but return intervals similar to those of the preceding Picea forest. Expansion of Pinus strobus might be linked to change in fire occurrence, but the broad dispersal of Pinus pollen makes interpretation difficult. If Pinus strobus expansion around the site is reflected in its pollen curve, then that expansion coincides with a time of frequent fire. Alternatively, if increasing pollen abundance precedes the local expansion of trees, as has been observed elsewhere, then local expansion might correspond to an abrupt decline in fire frequency and in regional importance of fire. An abrupt decline in background charcoal follows a fire and coincides ({+-} 100 yr) with the expansion of hardwood taxa such as Fagus. The decline in background charcoal occurs over several years, suggesting that it may be linked to effects of hardwood expansion on fuels. Fires do not appear to have occurred during the time of hardwood dominance, suggesting that fire may not be an explanation for maintenance of species diversity in this deciduous forest. However, frequent occurrence of thick varves during the latter half of the Holocene suggests that the frequency of other types of disturbance may have increased. 85 refs., 13 figs., 2 tabs.

  9. Bottomland Hardwood Forests along the Upper Mississippi River

    USGS Publications Warehouse

    Yin, Y.; Nelson, J.C.; Lubinski, S.J.

    1997-01-01

    Bottomland hardwood forests along the United States' Upper Mississippi River have been drastically reduced in acreage and repeatedly logged during the nineteenth and twentieth centuries. Conversion to agricultural land, timber harvesting, and river modifications for flood prevention and for navigation were the primary factors that caused the changes. Navigation structures and flood-prevention levees have altered the fluvial geomorphic dynamics of the river and floodplain system. Restoration and maintenance of the diversity, productivity, and natural regeneration dynamics of the bottomland hardwood forests under the modified river environment represent a major management challenge.

  10. South Fork Telephone Switchboard Building, interior west room showing hardwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, interior west room showing hardwood floor; view south - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  11. Prioritizing bottomland hardwood forest sites for protection and augmentation

    USGS Publications Warehouse

    Carter, J.; Biagas, J.

    2007-01-01

    Bottomland hardwood forest has been greatly diminished by conversion to agriculture. Less than 25% of the pre-Columbian bottomland hardwood forests remain in the southeastern United States. Because of the valuable ecological and hydrological functions performed by these forests, their conservation and restoration has been a high priority. Part of these restoration efforts has focused on developing tools that can be used for both assessments at the landscape level and policy implementation at the local level. The distribution of bottomland hardwood forests in the Cache and White River watersheds in eastern Arkansas were examined using existing GIS databases. Criteria were developed to select areas that should be conserved or augmented for wildlife habitat. Over 67% of the study area was classified as agriculture, with bottomland hardwood forest the next largest habitat class. The thickness of a forest fragment was defined as the radius of the largest circle that can be inscribed in a fragment. Thickness was used in three ways. First, individual forest fragments were identified and selected based on ecological function using criteria we established. Second, individual fragments that were too small to support interior species, but large enough that if moderately augmented they could recover that function, were identified and selected. These augmentable fragments were further prioritized by adjacency to habitat that might be suitable for reforestation, namely agriculture. Third, watersheds were prioritized for conservation and augmentation based on the size and distributions of forest fragment thickness and area within each watershed.

  12. Extrauterine decidual reaction associated with pregnancy.

    PubMed

    Czopek, J; Lazar, A; Demczuk, S; Opławski, M

    2014-12-01

    A case of pregnancy associated extrauterine decidual reaction of great omentum in a 25 year old woman, incidentally discovered during microscopic examination is described with a short review of literature.

  13. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  14. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  15. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  16. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    USGS Publications Warehouse

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  17. System and method for conditioning a hardwood pulp liquid hydrolysate

    SciTech Connect

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  18. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOEpatents

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  19. Early secondary succession in bottomland hardwood forests of southeastern Virginia.

    PubMed

    Spencer, D R; Perry, J E; Silberhorn, G M

    2001-04-01

    Addressing the need for reference sites that permit wetland managers to evaluate the relative success of wetland restoration efforts, this project examines the early successional properties of a chronosequence of 17 forested wetlands that have been clear-cut and allowed to naturally revegetate. Ordinations performed on the data using CANOCO software indicated three general types of communities- one dominated by bald cypress (Taxodium distichum) and water tupelo (Nyssa aquatica), one dominated by black willow (Salix nigra), and one with a species composition similar to that of a mature stand of bottomland hardwoods. These divisions were correlated with the percentage of stems originating as coppice on stumps leftover from the clear-cut. In particular, the bottomland hardwood stands were regenerating predominantly as coppice, while the cypress/tupelo and black willow stands were regenerating primarily as seedlings. As indicated by the earlier development of overstory basal area, coppice sites were also regenerating much faster. The hydrology of a site also exhibited a strong impact on the rate of regeneration, with the semipermanently to permanently flooded portions of sites often exhibiting little or no regeneration. The results indicate that, because of the overwhelming reliance on coppice sprouts as the main source of stems and the concomitant enhanced rates of regeneration, certain vegetative parameters of clear-cut bottomiand hardwood stands would not be effective benchmarks by which to judge the relative success of creation and restoration efforts.

  20. Control of hardwood regeneration in restored carolina bay depression wetlands.

    SciTech Connect

    Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

    2012-06-01

    Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

  1. Deciduous leaf drop reduces insect herbivory.

    PubMed

    Karban, Richard

    2007-08-01

    Deciduous leaf fall is thought to be an adaptation that allows plants living in seasonal environments to reduce water loss and damage during unfavorable periods while increasing photosynthetic rates during favorable periods. Observations of natural variation in leaf shedding suggest that deciduous leaf fall may also allow plants to reduce herbivory. I tested this hypothesis by experimentally manipulating leaf retention for Quercus lobata and observing natural rates of herbivory. Quercus lobata is primarily deciduous although individuals show considerable natural variation in leaf retention. Oak saplings with no leaves through winter experienced reduced attack by cynipid gall makers the following spring. This pattern was consistent with the positive correlation between natural leaf persistence and gall numbers. These cynipids do not overwinter on the leaves that trees retain through winter, although they appear to use persistent leaves as oviposition cues. If these results are general for woody plants in continental temperate habitats, they suggest that an important and unrecognized consequence of deciduous leaf shedding may be a reduction in herbivore damage, and that this effect should be included in models of deciduous and evergreen behavior. PMID:17375327

  2. Relating the temporal change observed by AIRSAR to surface and canopy properties of mixed conifer and hardwood forests of northern Michigan

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry

    1991-01-01

    The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.

  3. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2264 Initial compliance demonstration for a hardwood...

  4. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2264 Initial compliance demonstration for a hardwood...

  5. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products Initial Compliance Requirements § 63.2264 Initial compliance demonstration for a hardwood...

  6. Comparison between soil and biomass carbon in adjacent hardwood and red pine forests

    SciTech Connect

    Perala, D.A.; Rollinger, J.L.; Wilson, D.M.

    1995-06-01

    The distribution of carbon in soil and biomass was studied across Minnesota, Wisconsin, and Michigan, USA, in 40 pole-sized red pine (Pinus resinosa Ait.) plantations paired with adjacent hardwood stands. Pine and hardwood stands shared a common boundary and soil. Hardwood stands were mixed species, naturally regenerated second growth following logging. Carbon in total, standing crop averaged the same in both hardwood and red pine forest types, although the hardwoods averaged 14 years older than red pine. Coarse woody debris, shrubs, and herbs contained little carbon. Only the forest floor carbon pool was significantly different between forest types. Forest floor had a greater mass beneath red pine than hardwoods. There was no difference in total ecosystem carbon between red pine and hardwood stands. Total mineral soil aggregated across the depth profile contained the same total amount of carbon in both pine and hardwood stands; however, the carbon was found in different vertical patterns. Amounts of carbon in the upper levels of soil (0--4 cm) were higher under hardwoods, and amounts were higher under red pine at the 8--16 cm and 16--32 cm soil depths. Where July air temperatures were relatively cool, red pine stored carbon more efficiently both in the forest floor and deep in the soil. Red pine also sequestered more carbon in mineral soil with increasing April--September precipitation.

  7. Polycomb repressive complex 1 controls uterine decidualization

    PubMed Central

    Bian, Fenghua; Gao, Fei; Kartashov, Andrey V.; Jegga, Anil G.; Barski, Artem; Das, Sanjoy K.

    2016-01-01

    Uterine stromal cell decidualization is an essential part of the reproductive process. Decidual tissue development requires a highly regulated control of the extracellular tissue remodeling; however the mechanism of this regulation remains unknown. Through systematic expression studies, we detected that Cbx4/2, Rybp, and Ring1B [components of polycomb repressive complex 1 (PRC1)] are predominantly utilized in antimesometrial decidualization with polyploidy. Immunofluorescence analyses revealed that PRC1 members are co-localized with its functional histone modifier H2AK119ub1 (mono ubiquitination of histone-H2A at lysine-119) in polyploid cell. A potent small-molecule inhibitor of Ring1A/B E3-ubiquitin ligase or siRNA-mediated suppression of Cbx4 caused inhibition of H2AK119ub1, in conjunction with perturbation of decidualization and polyploidy development, suggesting a role for Cbx4/Ring1B-containing PRC1 in these processes. Analyses of genetic signatures by RNA-seq studies showed that the inhibition of PRC1 function affects 238 genes (154 up and 84 down) during decidualization. Functional enrichment analyses identified that about 38% genes primarily involved in extracellular processes are specifically targeted by PRC1. Furthermore, ~15% of upregulated genes exhibited a significant overlap with the upregulated Bmp2 null-induced genes in mice. Overall, Cbx4/Ring1B-containing PRC1 controls decidualization via regulation of extracellular gene remodeling functions and sheds new insights into underlying molecular mechanism(s) through transcriptional repression regulation. PMID:27181215

  8. Evidence for the secretion of decidual luteotropin: a prolactin-like hormone produced by rat decidual cells.

    PubMed

    Herz, Z; Khan, I; Jayatilak, P G; Gibori, G

    1986-06-01

    Rat decidual tissue contains a PRL-like hormone named decidual luteotropin. We have recently revealed some of its physiological and biochemical characteristics. However, because rat decidual tissue contains specific binding sites for PRL, it was important to demonstrate that the hormone found in the tissue is not locally stored and structurally transformed PRL but a hormone actively synthesized by the rat decidual tissue. Decidual explants or decidual cells obtained from day 9 pseudopregnant rats were incubated for different times under either static conditions or continuously perifused with medium at a rate of 1 ml/h. Levels of decidual luteotropin were measured by a specific radioreceptor assay using luteal membranes as source of receptors and [125I]iodo-ovine(o)PRL as a tracer. In the static incubation, no proof of hormone production was obtained; levels of decidual luteotropin in medium and tissue or cells at the end of the incubation were similar to levels found in either cells or tissue before incubation. In sharp contrast, decidual cells perifused with media secreted large amounts of hormone. This may suggest that an inhibitor of decidual luteotropin production was being removed from the culture by the perifusion. For the first 4 h of perifusion, no hormone was produced. However by the fifth hour, cells began to actively release decidual luteotropin. Secretion of the hormone increased with time and reached maximal values between 7-15 h of perifusion. During the 15 h of perifusion, decidual cells released approximately 1000 times more decidual luteotropin than the amount they originally contained. A dose-response increase in hormone secretion was obtained with increased concentrations of decidual cells. The net amount of decidual luteotropin released into the medium over an 18-h period was approximately 6.5 micrograms/30 X 10(6) cells, 3.5 micrograms/10 X 10(6) cells, and 0.5 micrograms/2 X 10(6) cells. A similar profile of decidual luteotropin release was

  9. Insect management in deciduous orchard ecosystems: Habitat manipulation

    NASA Astrophysics Data System (ADS)

    Tedders, W. L.

    1983-01-01

    Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented

  10. The Central Hardwoods Virtual Forest Version 2.0. [CD-ROM].

    ERIC Educational Resources Information Center

    Indiana Univ.-Purdue Univ., Indianapolis.

    This CD-ROM is the second in a series of CDs allowing students to explore the trees and animals of the northern boreal forest. Using QuickTime Virtual Reality (QTVR), the Central Hardwood Virtual Forest is designed so that students are able to see views from inside the central hardwood forest and look up or down or spin around 360 degrees. The…

  11. 75 FR 7044 - T&S Hardwoods, Inc., Sylva, NC; Notice of Negative Determination Regarding Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration T&S Hardwoods, Inc., Sylva, NC; Notice of Negative Determination... facility to a foreign country. T&S Hardwoods, Inc. did not import hardwood lumber and did not...

  12. Avian response to bottomland hardwood reforestation: the first 10 years

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  13. Results of a workshop concerning ecological zonation in bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities concerning the discharge of dredged or fill material into the Nation's waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) Guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key questions, including the following. What are the characteristics of bottomland hardwoods (in terms of hydrology, soils, vegetation, fish, wildlife, agricultural potential, and the like) and how can the functions (e.g., flood storage, water quality maintenance, detrital export) that they perform best be quantified? How do perturbations like landclearing, levee construction, and drainage impact the functions that bottomland hardwoods perform and how can these effects best be quantified? And finally, how significant are the impacts and how is their significance likely to change under various management scenarios? The first workshop in this series was held December 3-7, 1984, in St. Francisville, Louisiana. The workshop was attended by over 40 scientists and regulators (see ACKNOWLEDGMENTS section) and facilitated by the editors of this report under an Interagency Agreement between EPA and the U.S. Fish and Wildlife

  14. Hardwood tree growth on amended mine soils in west virginia.

    PubMed

    Wilson-Kokes, Lindsay; Delong, Curtis; Thomas, Calene; Emerson, Paul; O'Dell, Keith; Skousen, Jeff

    2013-09-01

    Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was

  15. AmeriFlux CA-TPD Ontario - Turkey Point Mature Deciduous

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TPD Ontario - Turkey Point Mature Deciduous. Site Description - The forest is approximately 90 years old. Naturally regenerated on sandy terrain and abandoned agricultural land. Predominantly hardwood species with a few scattered conifers. Site has been managed (thinned) in the past. It has a high biodiversity with 573 tree and plant species, 102 bird species, 23 mamal species and 22 reptile and amphibian species (SWALSREP Report, 1999). The dominant tree species is white oak (Quercus alba), with other scattered broadleaf Carolinian species including sugar and red maple (Acer saccharum, A. rubrum), American beech (Fagus grandifolia), black and red oak (Q. velutina, Q. rubra) and white ash (Fraxinus americana) . There are also scattered conifers, mostly white and red pine (Pinus strobes, P. resinosa), comprising about 5% of the trees. Average tree height is 25.7 m with a stand density of 504 ± 18 trees per hectare. Average tree diameter at breast height is 22.3 cm and basal area is 0.06 m2 or approximately 29 square meters per hectare.

  16. Microwave Moisture Measurement System for Hardwood Lumber Drying

    SciTech Connect

    Moschler, William W; Hanson, Gregory R

    2008-09-01

    The goal of this project was to develop a prototype microwave-based moisture sensor system suitable for the kiln drying of hardwood lumber. The moisture sensors developed are battery powered and are capable of communicating with a host kiln control system via spread spectrum wireless communications. We have developed two designs of the sensors working at 4.5 to 6 GHz with linear response to moisture content (MC) over a range of 6-100%. These sensors allow us to make a swept frequency microwave transmission measurement through a small area of a board. Using the prototype electronics and sensors, we have obtained measurements of MC over the above MC range for red oak and yellow poplar with standard deviations of less than 1.5% MC. We have developed data for board thickness corrections and for temperature corrections for the MC measurement system.

  17. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought.

    PubMed

    Marchin, Renée; Zeng, Hainian; Hoffmann, William

    2010-08-01

    Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.

  18. Differential localization of decidual stathmin during pregnancy in rats.

    PubMed

    Yoshie, M; Tamura, K; Kogo, H

    2004-05-01

    The present study was undertaken to determine the precise localization of stathmin, a protein associated with microtubule dynamics, during decidualization in rat uterus and to compare it with that of cyclin D3. Immunohistochemical analysis revealed that stathmin is exclusively localized in decidual cells, especially in the primary decidual zone surrounding the embryo, on days 7 and 9 of pregnancy. The intensity of staining was much higher on day 9 than day 7. On day 14, when the endometrial stromal cells had completely differentiated into decidual cells, the staining of decidual cells was faint. Cyclin D3 was expressed in decidual cells of the secondary but not the primary decidual zone on days 7 and 9. On day 14, cyclin D3 levels were low in decidua. Proliferating cell nuclear antigen (PCNA) was broadly detected in the uterus on days 7 and 9, and in the placenta and fetus on day 14. In an artificial decidualization model, cyclin D3 expression was stimulated as deciduoma was formed after an artificial stimulus. Stathmin mRNA levels also increased within 24 h and peaked at 48 h. The specific spatio-temporal uterine expression of stathmin and cyclin D3 suggest that they have a specific role in decidualization in rats.

  19. Inter-annual variability in the biosphere-atmosphere exchange of carbon dioxide and water vapor in adjacent pine and hardwood forests: links to drought, disturbance, and seasonality

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Ward, E. J.; Oishi, A. C.; Stoy, P. C.

    2012-12-01

    Understanding the variation in long-term biosphere-atmosphere fluxes of carbon dioxide and water vapor is necessary to characterize the benefits and services of terrestrial ecosystems, including the highly productive forests of the Southeastern United States. This study quantifies flux variability at inter-annual times scales using eight-year eddy covariance records from two co-located ecosystems in the Duke Forest (North Carolina, USA): a hardwood deciduous forest (HW) and a pine plantation (PP), which together represent the dominant forest types in the region. When averaged across the study period, annual net ecosystem exchange of CO2 (NEE) was similar in PP and HW (NEE = -560 and -520 g C m-2 y-1 in PP and HW, respectively). Variation in annual NEE was high in both ecosystems, but higher in the pine site (CV = 0.38) as compared to the hardwood site (CV = 0.23). Gross ecosystem productivity (GEP) and ecosystem respiration (RE), which together represent the primary components of NEE, were not necessarily more variable in the pine site; however, the coupling between annual GEP and RE was weaker in PP as compared to HW, contributing to higher overall variability in PP NEE. Our results identify at least two factors contributing to this decoupling: 1) an ice storm event, which reduced PP GEP while increasing or having no effect on PP RE, and 2) two severe drought events, which cause large reductions in PP GEP but not RE. Additionally, in both ecosystems, variability in GEP and NEE is strongly related to the length of the active season (r2 = 0.60 - 0.93), a variable reflecting the seasonality of carbon assimilation that is largely independent from patterns of leaf area development.

  20. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    SciTech Connect

    Loehle, C.; Iltis, H.

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  1. Survival and growth of hardwoods in brown versus gray sandstone on a surface mine in West Virginia.

    PubMed

    Emerson, P; Skousen, J; Ziemkiewicz, P

    2009-01-01

    Surface mining in West Virginia removes the eastern deciduous forest and reclaiming the mined land to a productive forest must consider soil depth, soil physical and chemical properties, soil compaction, ground cover competition, and tree species selection. Our objective was to evaluate tree survival and growth in weathered brown sandstone and in unweathered gray sandstone. Brown and gray sandstone are often substituted when insufficient native topsoil is available for replacement. Three 2.8-ha plots were constructed with either 1.5 or 1.2 m of brown sandstone, or 1.5 m of gray sandstone at the surface. Half of each plot was compacted with a large dozer. Percent fines (<2 mm) in the upper 20 cm was 61% for brown sandstone and 34% in gray. Brown sandstone's pH was 5.1, while gray sandstone's pH was around 8.0. In March 2005, 2-yr-old seedlings of 11 hardwood species were planted. After 3 yr, tree survival was 86% on 1.5-m gray sandstone, 67% on 1.5-m brown sandstone, and 82% on 1.2-m brown sandstone. Survival was 78% on noncompacted and 79% on compacted areas. Average volume of all trees (height x diameter(2)) was significantly greater on brown sandstone (218 cm(3)) than gray sandstone (45 cm(3)) after 3 yr. Black locust (Robinia pseudoacacia L.) had the highest survival (100%) and significantly greater volume (792 cm(3)) than all other tree species. Survival of the other 10 species varied between 65% for tulip poplar (Liriodendron tulipifera L.) and 92% for redbud (Cercis canadensis L.), and volume varied between 36 cm(3) for white pine (Pinus strobes L.) and 175 cm(3) for tulip poplar. After 3 yr, brown sandstone appears to be a better topsoil material due to the much greater growth of trees, but tree growth over time as these topsoils weather will determine whether these trends continue.

  2. First year survival of barefoot and containerized hardwood tree seedlings planted in northeast Texas lignite minesoils

    SciTech Connect

    Wood, J.; Denman, J.; Waxler, M.; Huber, D.A.

    1997-12-31

    Successful regeneration of hardwood tree seedlings is critical to the reclamation of quality wildlife habitat and commercial forests on lignite mines in northeast Texas. Because bareroot hardwood seedlings survival rates have often been lower than desired, the survival of containerized and bareroot hardwood tree seedlings was compared. Seven hardwood species, including six species of oaks, were planted in lignite minesoils on sites classified as bottomland, slope and upland. Three species were planted per site. Containerized seedlings were planted during the fall and winter, whereas bareroot seedlings were planted in the winter only. Survival was determined at the end of the first growing season. Results across all sites indicate that winter-planted containerized seedlings (74%) or bareroot seedlings (76%). Within the sites, the only significant difference was on upland sites where survival of winter-planted containerized seedlings (60%) was lower than bareroot seedlings (77%). Survival among species was not significantly different. There was no significant survival benefit from using more expensive containerized hardwood seedlings. The results also question the practice of planting containerized hardwood seedlings during the typical winter planting season for optimum survival.

  3. Expression and Function of Kisspeptin during Mouse Decidualization

    PubMed Central

    Lin, Yan; Zong, Teng; Zhong, Chengxue; Zhang, BaoPing; Ren, Min; Kuang, HaiBin

    2014-01-01

    Background Plasma kisspeptin levels dramatically increased during the first trimester of human pregnancy, which is similar to pregnancy specific glycoprotein-human chorionic gonadotropin. However, its particular role in the implantation and decidualization has not been fully unraveled. Here, the study was conducted to investigate the expression and function of kisspeptin in mouse uterus during early pregnancy and decidualization. Methodology/Principal Findings Quantitative PCR results demonstrated that Kiss1 and GPR54 mRNA levels showed dynamic increase in the mouse uterus during early pregnancy and artificially induced decidualization in vivo. KISS-1 and GPR54 proteins were spatiotemporally expressed in decidualizing stromal cells in intact pregnant females, as well as in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Kiss1 mRNA was upregulated after progesterone or/and estradiol treatment. Moreover, in a stromal cell culture model, the expression of Kiss1 and GPR54 mRNA gradually rise with the progression of stromal cell decidualization, whereas the attenuated expression of Kiss1 using small interfering RNA approaches significantly blocked the progression of stromal cell decidualization. Conclusion our results demonstrated that Kiss1/GPR54 system was involved in promoting uterine decidualization during early pregnancy in mice. PMID:24830702

  4. Bioenergy and resilience in the northern hardwood forest (Invited)

    NASA Astrophysics Data System (ADS)

    Groffman, P. M.

    2013-12-01

    Societal concerns about energy costs and security have led to new demands on forests to produce wood for energy. In northern hardwood forest ecosystems, harvesting disturbance sets in motion a series of interconnected ecosystem responses including increased runoff, increased sediment yield, acidification of soils, loss of nitrogen, phosphorus and base cations, and alteration of greenhouse gas and surface energy balances. It requires appreciable time for the ecosystem to recover from this disturbance and there is a critical need to determine if increased intensity of forest harvesting to provide wood energy reduces other ecosystem services provided by these forests. These concerns are especially acute in the northeastern U.S. which has experienced significant increases in temperature, marked increases in precipitation and significant depletion of base cations due to acid rain over the past 50 years. Long-term studies of forest response to harvesting and to calcium additions at the Hubbard Brook Experimental Forest (HBEF), New Hampshire provide a basis for evaluating resilience and recovery mechanisms in the face of increased harvest intensity for bioenergy. Response of soil processes to calcium additions suggest that acidification has reduced biological control of carbon and nitrogen cycling in these forests, increasing their susceptibility to nutrient losses and state change in response to increased harvest intensity.

  5. Denitrification in bottomland hardwood wetland soils of the Cache River

    USGS Publications Warehouse

    DeLaune, R.D.; Boar, R.R.; Lindau, C.W.; Kleiss, B.A.

    1996-01-01

    Denitrification rates were quantified in bottomland hardwood wetland soils of the Cache River. N15 labeled nitrate was added to columns containing wetland soils and river water. Over 40 days, nitrate-N in floodwater (approximately 9 mg N L-1) decreased by between 82% and 59%, which gave estimates of N export from the water column of between 11.5 mg N m-2 day-1 and 7.5 mg N m-2 day-1. These values correlated directly with organic content of surface sediment, which included forest litter. Added glucose doubled rates of nitrate loss in these soils, which indicated that the process was carbon limited. Nitrification occurring simultaneously with denitrification was determined using isotopic dilution techniques. Contributions of nitrate to water from nitrification were estimated at between 5% and 12% of the total nitrate reduced. Rates of nitrogen transformation in these forest soils were likely limited by available soil carbon from tree litter and perhaps canopy leachate, rather than by nitrate concentration in inflowing floodwater.

  6. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.

    PubMed

    Tschaplinski, Timothy J.; Gebre, G. Michael; Shirshac, Terri L.

    1998-05-01

    Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy

  7. Permian polar forests: deciduousness and environmental variation.

    PubMed

    Gulbranson, E L; Isbell, J L; Taylor, E L; Ryberg, P E; Taylor, T N; Flaig, P P

    2012-11-01

    Forests are expected to expand into northern polar latitudes in the next century. However, the impact of forests at high latitudes on climate and terrestrial biogeochemical cycling is poorly understood because such forests cannot be studied in the modern. This study presents forestry and geochemical analyses of three in situ fossil forests from Late Permian strata of Antarctica, which grew at polar latitudes. Stem size measurements and stump spacing measurements indicate significant differences in forest density and canopy structure that are related to the local depositional setting. For forests closest to fluvial systems, tree density appears to decrease as the forests mature, which is the opposite trend of self-thinning observed in modern forests. We speculate that a combination of tree mortality and high disturbance created low-density mature forests without understory vegetation near Late Permian river systems. Stable carbon isotopes measured from permineralized wood in these forests demonstrate two important points: (i) recently developed techniques of high-resolution carbon isotope studies of wood and mummified wood can be applied to permineralized wood, for which much of the original organic matter has been lost and (ii) that the fossil trees maintained a deciduous habit at polar latitudes during the Late Permian. The combination of paleobotanical, sedimentologic, and paleoforestry techniques provides an unrivaled examination of the function of polar forests in deep time; and the carbon isotope geochemistry supplements this work with subannual records of carbon fixation that allows for the quantitative analysis of deciduous versus evergreen habits and environmental parameters, for example, relative humidity.

  8. Decidualization of intranodal endometriosis in a postmenopausal woman.

    PubMed

    Kim, Hyun-Soo; Yoon, Gun; Kim, Byoung-Gie; Song, Sang Yong

    2015-01-01

    Here we describe an unusual case of decidualized endometriosis detected in pelvic lymph nodes. The presence of intranodal ectopic decidua in pregnant women has been described. A few cases of decidualization of endometriotic foci in the pelvic or para-aortic lymph nodes have also been associated with pregnancy. However, decidualized intranodal endometriosis occurring in a postmenopausal woman has not been described. A 52-year-old woman presented with a very large adnexal mass. Menopause occurred at the age of 47, and she had been treated with hormone replacement therapy. She received a total abdominal hysterectomy with bilateral salpingo-oophorectomy and pelvic and para-aortic lymphadenectomy for clear cell carcinoma of the right ovary. Histological examination revealed the presence of ectopic decidua in several pelvic lymph nodes. The deciduas consisted of sheets of loosely cohesive, large, uniform, round cells with abundant eosinophilic cytoplasm. Typical of decidualization of intranodal endometriosis, a few irregularly shaped, inactive endometrial glands lined by single layers of columnar to cuboidal epithelium were present within the decidua. An immunohistochemical study revealed that the decidual cells were positive for CD10, vimentin, estrogen receptor and progesterone receptor, which indicated that progestin-induced decidualization had occurred in the intranodal endometriotic stroma. To the best of our knowledge, this case represents the first report of decidualized intranodal endometriosis occurring in association with hormone replacement therapy in a postmenopausal woman. Misdiagnosis of this condition as a metastatic tumor can be avoided by an awareness of these benign inclusions, supported by immunohistochemical staining results.

  9. Synopsis of wetland functions and values: bottomland hardwoods with special emphasis on eastern Texas and Oklahoma

    USGS Publications Warehouse

    Wilkinson, D.L.; Schneller-McDonald, K.; Olson, R.W.; Auble, G.T.

    1987-01-01

    Bottomland hardwood wetlands are the natural cover type of many floodplain ecosystems in the southeastern United States. They are dynamic, productive systems that depend on intermittent flooding and moving water for maintenance of structure and function. Many of the diverse functions performed by bottomland hardwoods (e.g., flood control, sediment trapping, fish and wildlife habitat) are directly or indirectly valued by humans. Balanced decisions regarding bottomland hardwoods are often hindered by a limited ability to accurately specify the functions being performed by these systems and, furthermore, by an inability to evaluate these functions in economic terms. This report addresses these informational needs. It focuses on the bottomland hardwoods of eastern Texas and Oklahoma, serving as an introduction and entry to the literature. It is not intended to serve as a substitute for reference to the original literature. The first section of the report is a review of the major functions of bottomland hardwoods, grouped under the headings of hydrology, water quality, productivity, detritus, nutrients, and habitat. Although the hydrology of these areas is diverse and complex, especially with respect to groundwater, water storage at high flows can clearly function to attenuate peak flows, with possible reductions in downstream flooding damage. Water moving through a bottomland hardwood system carries with it various organic and inorganic constituents, including sediment, organic matter, nutrients, and pollutants. When waterborne materials are introduced to bottomland hardwoods (from river flooding or upland runoff), they may be retained, transformed, or transported. As a result, water quality may be significantly altered and improved. The fluctuating and flowing water regime of bottomland hardwoods is associated with generally high net primary productivity and rapid fluxes of organic matter and nutrients. These, in turn, support secondary productivity in the bottomland

  10. Hardwoods for Woody Energy Crops in the Southeast United States:Two Centuries of Practitioner Experience

    SciTech Connect

    Kline, Keith L; Coleman, Mark

    2010-01-01

    This paper summarizes opinions from forest industry experts on the potential for hardwood tree species to serve as feedstock for bioenergy in the Southeast United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Experts observe that high productivity rates in southeastern plantations are confined to limited site conditions or require costly inputs. Eastern cottonwood and American sycamore grow quickly on rich bottomlands where they compete with higher-value crops. These species are also prone to pests and disease. Sweetgum is frost hardy, has few pest or disease problems, and grows across a broad range of sites, yet growth rates are relatively low. Eucalypts require few inputs and offer high potential productivity, but are limited by frost to the lower coastal plain and Florida. More time and investment in silviculture, selection, and breeding will be needed to develop hardwoods as competitive biofuel feedstock species. Loblolly pine has robust site requirements, growth rates rivaling hardwoods and lower costs of production. Because of existing stands and know-how, the forestry community considers loblolly pine to be a prime candidate for plantation bioenergy in the Southeast. Further research is required to study naturally regenerated hardwood biomass resources.

  11. Sediment retention in a bottomland hardwood wetland in Eastern Arkansas

    USGS Publications Warehouse

    Kleiss, B.A.

    1996-01-01

    One of the often-stated functions of wetlands is their ability to remove sediments and other particulates from water, thus improving water quality in the adjacent aquatic system. However, actual rates of suspended sediment removal have rarely been measured in freshwater wetland systems. To address this issue, suspended sediment dynamics were measured in a 85-km2 bottomland hardwood (BLH) wetland adjacent to the highly turbid Cache River in eastern Arkansas during the 1988-1990 water years. A suspended sediment mass balance was calculated using depth-integrated, flow-weighted daily measurements at wetland inflow and outflow points. Over the three-year period, suspended sediment load decreased an average of 14% between upstream and downstream sampling points. To test the idea that the suspended sediments were retained by the adjacent wetland and to determine what portion of the BLH forest was most responsible for retaining the suspended sediments, concurrent measurements of sediment accretion were made at 30 sites in the wetland using feldspar clay marker horizons, sedimentation disks, the 137cesium method, and dendrogeomorphic techniques. Sedimentation rates exceeding 1 cm/yr were measured in frequently flooded areas dominated by Nyssa aquatica and Taxodium distichum. Maximum sedimentation rates did not occur on the natural levee, as would be predicted by classical fluvial geomorphology, but in the "first bottom," where retention time of the water reached a maximum. Multiple regression was used to relate sedimentation rates with several physical and biological factors. A combination of distance from the river, flood duration, and tree basal area accounted for nearly 90% of the variation in sedimentation rates.

  12. Prevalence of supernumerary teeth in deciduous and mixed dentition.

    PubMed

    Dash, J K; Sahoo, P K; Das, S; Mohanty, U K

    2003-03-01

    Supernumerary teeth are the extra teeth which may have either erupted or unerupted in addition to normal dentition and are seen both in deciduous as well as permanent dentition. The incidence of supernumerary teeth shows more frequent occurrence in permanent dentition than deciduous dentition, affecting both the sexes. The etiology of supernumerary teeth is still unknown and not well understood, but thought to be the result from disturbance during the initiation and proliferation stages of tooth development. In the present study an attempt has been made to asses, its prevalence in deciduous and mixed dentition phase. PMID:12885009

  13. Effects of temperature and light on photosynthesis of dominant species of a northern hardwood forest. [Populus grandidentata, Quercus rubra, Betula papyrifera

    SciTech Connect

    Jurik, T.W. ); Weber, J.A. ); Gates, D.M. )

    1988-06-01

    The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize. Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.

  14. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest.

    PubMed

    Richardson, Andrew D; Jenkins, Julian P; Braswell, Bobby H; Hollinger, David Y; Ollinger, Scott V; Smith, Marie-Louise

    2007-05-01

    Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO(2) by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood forest. A standard, commercially available webcam was mounted at the top of the eddy covariance tower at the Bartlett AmeriFlux site. Images were collected each day around midday. Red, green, and blue color channel brightness data for a 640 x 100-pixel region-of-interest were extracted from each image. We evaluated the green-up signal extracted from webcam images against changes in the fraction of incident photosynthetically active radiation that is absorbed by the canopy (f (APAR)), a broadband normalized difference vegetation index (NDVI), and the light-saturated rate of canopy photosynthesis (A(max)), inferred from eddy flux measurements. The relative brightness of the green channel (green %) was relatively stable through the winter months. A steady rising trend in green % began around day 120 and continued through day 160, at which point a stable plateau was reached. The relative brightness of the blue channel (blue %) also responded to spring green-up, although there was more day-to-day variation in the signal because blue % was more sensitive to changes in the quality (spectral distribution) of incident radiation. Seasonal changes in blue % were most similar to those in f (APAR) and broadband NDVI, whereas changes in green % proceeded more slowly, and were drawn out over a longer period of time. Changes in A(max) lagged green-up by at least a week. We conclude that webcams offer an inexpensive means by which phenological changes in the canopy state can be quantified. A network of cameras could offer a novel opportunity to implement a regional or national phenology monitoring program.

  15. Interspecific and environmentally induced variation in foliar dark respiration among eighteen southeastern deciduous tree species.

    PubMed

    Mitchell; Bolstad; Vose

    1999-11-01

    We measured variations in leaf dark respiration rate (Rd) and leaf nitrogen (N) across species, canopy light environment, and elevation for 18 co-occurring deciduous hardwood species in the southern Appalachian mountains of western North Carolina. Our overall objective was to estimate leaf respiration rates under typical conditions and to determine how they varied within and among species. Mean dark respiration rate at 20 degrees C (Rd,mass, micromol CO2 per kg leaf dry mass per s) for all 18 species was 7.31 micromol per kg per s. Mean Rd,mass of individual species varied from 5.17 micromol per kg per s for Quercus coccinea Muenchh. to 8.25 micromol per kg per s for Liriodendron tulipifera L. Dark respiration rate varied by leaf canopy position and was higher in leaves collected from high-light environments. When expressed on an area basis, dark respiration rate (Rd,area, micromol CO2 per kg leaf dry area per s) showed a strong linear relationship with the predictor variables leaf nitrogen (Narea, g N per square m leaf area) and leaf structure (LMA, g leaf dry mass per square m leaf area) (r squared = 0.62). This covariance was largely a result of changes in leaf structure with canopy position; smaller thicker leaves occur at upper canopy positions in high-light environments. Mass-based expression of leaf nitrogen and dark respiration rate showed that nitrogen concentration (Nmass, mg N per g leaf dry mass) was only moderately predictive of variation in Rd,mass for all leaves pooled (r squared = 0.11), within species, or among species. We found distinct elevational trends, with both Rd,mass and Nmass higher in trees originating from high-elevation, cooler growth environments. Consideration of interspecies differences, vertical gradients in canopy light environment, and elevation, may improve our ability to scale leaf respiration to the canopy in forest process models.

  16. Uneven-aged management of pine and pine-hardwood mixtures in the Ouachita mountains

    SciTech Connect

    Shelton, M.G.; Baker, J.B.

    1992-01-01

    The Ouachita National Forest and the Southern Forest Experiment Station launched a long-term research project in 1988 to study uneven-aged management of shortleaf pine and pine-hardwood mixtures in the Ouachita Mountains. The successful use of uneven-aged management in the southern pines has to date been limited to pure stands. However, the maintenance of a hardwood component is desirable to enhance biological diversity, wildlife habitat, and aesthetics. The study's goals are: (1) to determine the levels at which pine and hardwoods are biologically compatible in uneven-aged stands, and (2) to evaluate the timber, wildlife, water quality, aesthetics and biodiversity associated with each management alternative so that sound decisions concerning the tradeoffs among these resources can be determined.

  17. Spontaneous decidualization in pseudopregnant rats with vitamin E deficiency.

    PubMed

    Lang, Nan; Wu, Bin; He, Bin; Wang, Lili; Wang, Jiedong

    2016-05-13

    Successful implantation of an embryo requires adequate depth of invasion in the endometrium, which depends upon decidualization. The aim of the present study was to elucidate why humans experience spontaneous decidualization and menstruation while most other mammals do not. We established a spontaneous decidualization model in pseudopregnant rats with vitamin E deficiency (VED) to investigate mechanisms associated with spontaneous decidualization. Vaginal smears were used to monitor bleeding while vitamin E levels were analyzed with a commercial vitamin E assay kit. Trypan blue staining was used to observe the implantation site at 5.5 days post-coitum (dpc). Uterine morphology, estradiol (E2) and progesterone levels, and the anti-oxidation system were evaluated at 5.5, 7.5, and 9.5 dpc. The proportion of rats in the VED group exhibiting endometrial bleeding gradually increased (5.9%, 32.3%, and 50%) over three consecutive cycles of pseudopregnancy. Vitamin E levels in the VED group were markedly lower compared to the control group in both the plasma and uterus, while the level of vitamin E in the liver did not differ between the control and VED groups. Spontaneous decidualization in the VED group was validated by histological examination and immunohistochemistry. At 5.5 dpc, the mean serum E2 level in the VED group was more than twice that of the control group. The mean total anti-oxidizing capability, catalase level, and glutathione peroxidase activity were significantly reduced in the decidualized portion of the VED group compared to controls, while the malondialdehyde level was also significantly higher in the decidualized portion of the VED group. We hypothesize that the E2 surge at 5.5 dpc and increasing levels of reactive oxygen species are responsible for spontaneous decidualization in VED rats.

  18. Spontaneous decidualization in pseudopregnant rats with vitamin E deficiency.

    PubMed

    Lang, Nan; Wu, Bin; He, Bin; Wang, Lili; Wang, Jiedong

    2016-05-13

    Successful implantation of an embryo requires adequate depth of invasion in the endometrium, which depends upon decidualization. The aim of the present study was to elucidate why humans experience spontaneous decidualization and menstruation while most other mammals do not. We established a spontaneous decidualization model in pseudopregnant rats with vitamin E deficiency (VED) to investigate mechanisms associated with spontaneous decidualization. Vaginal smears were used to monitor bleeding while vitamin E levels were analyzed with a commercial vitamin E assay kit. Trypan blue staining was used to observe the implantation site at 5.5 days post-coitum (dpc). Uterine morphology, estradiol (E2) and progesterone levels, and the anti-oxidation system were evaluated at 5.5, 7.5, and 9.5 dpc. The proportion of rats in the VED group exhibiting endometrial bleeding gradually increased (5.9%, 32.3%, and 50%) over three consecutive cycles of pseudopregnancy. Vitamin E levels in the VED group were markedly lower compared to the control group in both the plasma and uterus, while the level of vitamin E in the liver did not differ between the control and VED groups. Spontaneous decidualization in the VED group was validated by histological examination and immunohistochemistry. At 5.5 dpc, the mean serum E2 level in the VED group was more than twice that of the control group. The mean total anti-oxidizing capability, catalase level, and glutathione peroxidase activity were significantly reduced in the decidualized portion of the VED group compared to controls, while the malondialdehyde level was also significantly higher in the decidualized portion of the VED group. We hypothesize that the E2 surge at 5.5 dpc and increasing levels of reactive oxygen species are responsible for spontaneous decidualization in VED rats. PMID:27033606

  19. Turbulent Wind Temperature and Pressure in a Mature Hardwood Canopy.

    NASA Astrophysics Data System (ADS)

    Conklin, Paul Sheldon

    An understanding of the mechanisms controlling turbulent exchange in plant canopies is necessary for a variety of ecological, meteorological and agricultural problems. Previous studies have shown that most of the exchange is caused by intermittent, coherent, turbulence structures. This study describes these structures in a mature hardwood forest, with special attention to the role of static pressure fluctuations within and above the canopy. The study was conducted from an instrument tower in a 31 m tall forest in the piedmont region of North Carolina, USA. Measurements were made at two levels: above the forest at 1.2 times the canopy height (h), and either just below the forest canopy at 0.6 h or in the middle of the lower third of the canopy at 0.7 h. A static pressure probe consisting of two parallel, flat disks was fabricated and tested in a wind tunnel. Each measurement level included the pressure probe (p), a sonic anemometer (u v w) and a fine wire thermocouple (T). A third pressure probe was installed at the surface. Measurements from all instruments were made at five Hz and block averaged to one Hz for analysis. 22 hrs of data were analyzed. Integral time scales were calculated for each of the above variables. The relative duration of coherent signals was p > T = u > w. Lagged correlations between the measurements made above and below the canopy show that the variables were well correlated between the levels, with the order of correlation being p > w > T = u. p and w measurements were synchronous at all measurement heights, while T below the canopy lagged T above, and u showed both lags and leads. The segments of the data showing turbulent structures were ensemble averaged for a variety of atmospheric stability conditions. These averages show that a vertically synchronous pressure pulse accompanies each turbulent structure. Two flow regimes are demonstrated for u, one driven by advected momentum and one driven by pressure gradients. Vertical velocity

  20. Isotopic signals of denitrification in a northern hardwood forested catchment

    NASA Astrophysics Data System (ADS)

    Wexler, Sarah; Goodale, Christine

    2013-04-01

    significance and spatial variability of denitrification in environments with low levels of nitrate, represented by this northern hardwood forested catchment.

  1. Topographic Distribution of Soil Respiration in Northern Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Beall, F. D.; Bourbonniere, R. A.; Creed, I. F.

    2004-05-01

    Soil respiration is an important source of CO2 to the atmosphere and fluxes from complex terrains like those found in northern hardwood forests are not well documented. Our initial hypothesis was that the wetlands (swamps) at the bottom of such catchments would exhibit consistently less CO2 efflux than the upland components. To test this hypothesis we laid out transects along topographic gradients in each of two catchments at the Turkey Lakes Watershed near Sault Ste. Marie Ontario. Soil respiration was determined by the static non-steady state chamber method using an infrared gas analyser in the summer and fall of 2002 and spring to fall of 2003. Measurements of soil temperature, moisture and soil solution DOC concentrations were collected coincidentally with CO2 efflux measurements. Results indicate that a transition zone exists at the lower portions of the slopes in these high relief catchments that is characterized by higher CO2 efflux than the wetland or upland sites along the transects. The differences in CO2 efflux are greatest in mid summer, e.g. August 2003 mean values were 9, 7 and 3 micromoles CO2 m-2 sec-1 for the transition, upland and wetland zones respectively. Several topographic features (depressions, shelves, convergent and divergent foot slopes) populate the transition zone but collar placement did not specifically target them. Therefore statistical analysis was done on the three-position model defining the transition zone as simply the lower portion of the slope. On an annual basis the transition zone showed significantly greater effluxes of CO2 than either of the other two zones (P <0.005). Different topographic positions also exhibited differences in the relationships between CO2 efflux and soil temperature, soil moisture and soil solution DOC concentrations. This study shows that soil respiration can not be generalized without taking topographic position into consideration. Classification of catchments simply into "wetland" and "upland

  2. Bistatic scattering statistics of deciduous trees

    NASA Astrophysics Data System (ADS)

    Rao, K. V. N.; Stevens, W. G.; Mendonca, J.

    1991-09-01

    Theoretical predictions have shown that significant variations in the power scattered by a rough surface exist when the orientation of a linearly polarized bistatic receiver is changed with respect to the transmitter polarization. Experiments conducted at laser frequencies have verified the existence of these polarization variations. This present work was performed to determine if this behavior could be observed at microwave frequencies at a field test site. The experimental results on the polarization dependence of bistatic scattering from deciduous trees are described. The bistatic scattered power from foliage (mixture of Birch, Maple, Ash and grass) at 3.2 GHz was measured as a function of the receiver polarization angle. Here data for one configuration is reported: incidence angle of 80 degrees, elevation scattering angle of 84 degrees, and one azimuthal scattering angle of 105 degrees. The scattering surface size was approximately 4.5 square meters. A wide band (200 MHz) S-band radar system was used to conduct these measurements. Both vertically and horizontally polarized signals were transmitted. A brief discussion on the dependence of the location and depth of polarization nulls on the complex permittivity and roughness characteristics of the scattering surface is also given. Results of experiments show that measured and theoretical null locations are in reasonable agreement. Further measurements at additional azimuthal scattering angles will be made. Future plans include phase and amplitude measurements with a dual orthogonal-polarized receiving antenna to determine the ellipticity of scattered signals.

  3. Turbulent transfer in a deciduous forest.

    PubMed

    Baldocchi, D D

    1989-09-01

    Carbon dioxide, water vapor and other passive scalars are physically transferred between a plant canopy and the atmosphere by turbulence. Intense and intermittent sweep and ejection events transfer most of the mass. Although the capacity for turbulence to transfer material is high, mass transfer is coupled to the diffusive source or sink strength of the foliage and soil and is ultimately limited to a minimum level set by the supply of material, or the demand for it. The diffusive source/sink strength of material leaving or entering leaves and the soil is a function of many physical, biological and chemical attributes and processes. These attributes and processes include the amount and distribution of foliage, the leaf boundary layer and surface resistances, the turbulence and radiative regimes in the canopy, biochemical and photochemical reactions and the scalar concentration field within and above the canopy and inside leaves and the soil. Here we discuss how these factors contribute to turbulent transfer in a deciduous forest.

  4. EVALUATION OF COMPONENTS FOR HARDWOOD SILVOPASTORES FOR COW-CALF OPERATORS IN THE SOUTHEASTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silvopasture systems consisting of bahiagrass (Paspalum notatum) and pines (Pinus spp.) are common in the southeastern United States. However, some producers prefer other forages to bahiagrass and there are increasing opportunities for marketing hardwoods in the region. Warm season forages and hardw...

  5. Hardwood snag fragmentation in a pine-oak forest of southeastern Arkansas

    SciTech Connect

    Cain, M.D.

    1996-12-31

    Because snags are importnat for forest wildlife as breeding, roosting and foraging sites, resource managers who wish to maintain this component in forest stands need to be aware of snag fragmentation rates. Measurements were taken in uneven-aged pine-hardwood standards in southeastern Arkansas to determine fragmentation rates for hardwood snags 2 to 6 yr after stem injection with herbicides. Crown and bole condition of snags were also assessed. Pinus eschinata Mill. and P. taeda L. were the dominant overstory components and were udisturbed. Quercus spp. accounted for 91% of hardwoods greater than 25 cm dbh. Since small diameter snags deteriorated first, snag diameter distributions changed from uneven-sized to even-sized structure as time since mortality increased. Within 3 yr of injection, 57% of snag boles had broken below crown height. Number of wildlife cavities per snag increased with time since mortality. At 6 yr after injection, 44% of residual snags had evidence of wildlife cavities. Less than 50% of hardwoods less then 25 cm dbh were still standing 5 yr after herbicide injection.

  6. Tree-section harvesting of northern hardwood thinnings. Forest Service research paper

    SciTech Connect

    Mattson, J.A.

    1993-01-01

    The report describes the results of a field trial of tree-section harvesting, a shortwood version of whole-tree harvesting, in a northern hardwood thinning. This technique is technically feasible and especially useful where the appearance of the residual stand is a primary concern.

  7. 77 FR 66436 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... From the People's Republic of China: Initiation of Antidumping Duty Investigation, 77 FR 65172 (October.... Appendix I--Scope of the Investigation Hardwood and decorative plywood is a panel composed of an assembly of two or more layers or plies of wood veneer(s) in combination with a core. The several...

  8. Leukocyte driven-decidual angiogenesis in early pregnancy

    PubMed Central

    Lima, Patricia DA; Zhang, Jianhong; Dunk, Caroline; Lye, Stephen J; Anne Croy, B

    2014-01-01

    Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed. PMID:25066422

  9. Leukocyte driven-decidual angiogenesis in early pregnancy.

    PubMed

    Lima, Patricia D A; Zhang, Jianhong; Dunk, Caroline; Lye, Stephen J; Croy, B Anne

    2014-11-01

    Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed. PMID:25066422

  10. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  11. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.

    PubMed

    Holland, V; Koller, S; Brüggemann, W

    2014-07-01

    Climate change is one of the major issues nowadays, and Mediterranean broadleaf species have been suggested to fill possible future gaps created by climate change in Central European forests. To provide a scientific-based foundation for such practical strategies, it is important to obtain a general idea about differences and similarities in the physiology of Central European and Mediterranean species. In the present study, we evaluated the onset of leaf senescence of a broad spectrum of oak species under the Central European climate in a common garden experiment. Degradation of the photosynthetic apparatus of evergreen (Quercus ilex, Q. suber), semi-evergreen (Q.×turneri, Q.×hispanica) and deciduous oaks (Q. robur, Q. cerris, Q. frainetto, Q. pubescens) was monitored as chlorophyll content and analysed chlorophyll fluorescence induction transients. In the deciduous species, a significant decline in chlorophyll content was observed during autumn/winter, with Q. pubescens showing the slowest decline. Analysis of fluorescence induction transients revealed a significant decline in quantum efficiency of the primary photochemistry and reaction centre density and later, a decrease in quantum efficiency of end acceptor reduction. Alterations in fluorescence parameters were compared to the decline in chlorophyll content, which occurred much more slowly than expected from the fluorescence data. The evergreen species showed no decline in chlorophyll content, nor different chlorophyll a fluorescence induction behaviour despite temperature falling below 0 °C. The hybrids showed intermediate behaviour between their parental evergreen and deciduous taxa.

  12. Paracrine Signals from the Mouse Conceptus Are Not Required for the Normal Progression of Decidualization

    PubMed Central

    Herington, Jennifer L.; Underwood, Tawny; McConaha, Melinda; Bany, Brent M.

    2009-01-01

    The purpose of this study was to determine whether the conceptus directs the formation of a tight- and adherens-dependent permeability barrier formed by the primary decidual zone and normal progression of decidual cell differentiation during embryo implantation. Four artificial models of decidualization were used, some apparently more physiological than others. The results show that both the formation of the permeability barrier and decidual cell differentiation of three of the artificial models were quite different from that of pregnant uteri. One artificial model of decidualization, namely pseudopregnant animals receiving concanavalin A-coated Sepharose bead transfers on d 2.5 of pseudopregnancy, better recapitulated the decidual changes that occur in the pregnant uterus undergoing decidualization. This included the formation of a primary decidual zone-like permeability barrier and decidual growth. This model also exhibited similar temporal changes of the expression of genes involved in decidualization that are markers of decidual cell differentiation. Overall, the results of this study indicate that some models of inducing decidualization artificially produce responses that are more similar to those occurring in the pregnant uterus, whereas others are quite different. More importantly, the results suggest that concanavalin A-coated Sepharose beads can provide an equivalent stimulus as the trophectoderm to cause the formation of the primary decidual zone permeability barrier. PMID:19520782

  13. Microscale Pressure Fluctuations Within a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Sigmon, John Thomas

    Attempts to evaluate sources of errors in estimates of fluxes from forested surfaces have been thwarted by the lack of an accurate description of the nature of air flow within forest canopies. An important property of any boundary layer flow is the occurrence of pressure fluctuations at the boundary and within the flow. This study was designed to provide an understanding of the microscale pressure fluctuations within a forest canopy and the relationship between these fluctuations and the air flow within and above the forest canopy. Pressure fluctuations were measured using a method similar to that developed by J. A. Elliott in 1972. Measurements were taken at the ground and above a deciduous forest canopy. Time series, spectra, and cross-correlations were calculated under different canopy conditions, and relationships between surface pressure fluctuations and mean windspeeds were determined. Turbulent pressure fluctuations at the forest floor did not contain the higher frequencies found over smooth terrain and were continuously occurring at frequencies greater than 0.5 Hz. Somewhat higher frequencies and larger amplitudes occurred in the pressure fluctuations above the canopy after leaf emergence than at the surface. Horizontal length scales many times larger than the average spacing of the overstory trees were predominant. While both leaf emergence of flow-through from an adjacent field had an effect on the mean windspeed profiles, only the flow-through conditions had an effect on the relationship of mean windspeed above the canopy to pressure fluctuation variance at the surface. Pressure fluctuations at the surface appeared coupled at all times to those above the canopy and were directly related to windspeed above the canopy. Pressure eddies were advected downwind at speeds approximating the mean windspeed 6-8 meters above the canopy. Shapes of the pressure spectra were affected slightly by changes in windspeed, and comparisons of spectra above and below the

  14. Contrasting ozone sensitivity in related evergreen and deciduous shrubs.

    PubMed

    Calatayud, Vicent; Marco, Francisco; Cerveró, Júlia; Sánchez-Peña, Gerardo; Sanz, María José

    2010-12-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO(2) assimilation and stomatal conductance (g(s)), impaired Rubisco efficiency and regeneration capacity (V(c,max,)J(max)) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed.

  15. Incremental enamel development in modern human deciduous anterior teeth.

    PubMed

    Mahoney, Patrick

    2012-04-01

    This study reconstructs incremental enamel development for a sample of modern human deciduous mandibular (n = 42) and maxillary (n = 42) anterior (incisors and canines) teeth. Results are compared between anterior teeth, and with previous research for deciduous molars (Mahoney: Am J Phys Anthropol 144 (2011) 204-214) to identify developmental differences along the tooth row. Two hypotheses are tested: Retzius line periodicity will remain constant in teeth from the same jaw and range from 6 to 12 days among individuals, as in human permanent teeth; daily enamel secretion rates (DSRs) will not vary between deciduous teeth, as in some human permanent tooth types. A further aim is to search for links between deciduous incremental enamel development and the previously reported eruptionsequence. Retzius line periodicity in anterior teeth ranged between 5 and 6 days, but did not differ between an incisor and molar of one individual. Intradian line periodicity was 12 h. Mean cuspal DSRs varied slightly between equivalent regions along the tooth row. Mandibular incisors initiated enamel formation first, had the fastest mean DSRs, the greatest prenatal formation time, and based upon prior studies are the first deciduous tooth to erupt. Relatively rapid development in mandibular incisors in advance of early eruption may explain some of the variation in DSRs along the tooth row that cannot be explained by birth. Links between DSRs, enamel initiation times, and the deciduous eruption sequence are proposed. Anterior crown formation times presented here can contribute toward human infant age-at-death estimates. Regression equations for reconstructing formation time in worn incisors are given.

  16. Endometrial decidualization: a rare cause of acute appendicitis during pregnancy

    PubMed Central

    Murphy, Skyle J.; Kaur, Anupinder; Wullschleger, Martin E.

    2016-01-01

    Appendicular endometriosis is a rare and poorly understood pathology that affects women in their reproductive years. In the gravid woman, ectopic endometrial tissue undergoes decidualization. This physiological process can result in acute appendicitis in exceptional cases. Here we describe a patient in her second trimester of pregnancy who presented with right iliac fossa pain and clinical, laboratory and imaging findings consistent with acute appendicitis. A laparoscopic appendectomy was performed with intraoperative findings suspicious for malignancy. Histological analysis made the surprising diagnosis of decidualized endometriosis causing luminal constriction resulting in acute appendicitis. We also detail the challenging diagnostic and management issues faced by clinicians in such cases. PMID:27106612

  17. Fate of pulpectomized deciduous teeth: Bilateral odontogenic cyst?

    PubMed Central

    Sandhyarani, B.; Noorani, Hina; Shivaprakash, P. K.; Dayanand, A. Huddar

    2016-01-01

    Pulpectomy is preferably more conservative treatment option than the extraction of deciduous teeth despite few undesirable consequences of obturating materials of which odontogenic cysts are one. This article aims to report a case of an 11-year-old female child having bilateral odontogenic cysts, i.e., radicular and infected dentigerous cyst followed by pulpectomy of deciduous molars using zinc oxide eugenol which was surgically enucleated and followed up to 6 months until satisfactory healing of bone was observed. The article also emphasizes on the importance of regular follow-up of the pulpectomized tooth which can be harmful otherwise. PMID:27307677

  18. Relationship between luteinizing hormone and decidual luteotropin in the maintenance of luteal steroidogenesis.

    PubMed

    Jayatilak, P G; Glaser, L A; Warshaw, M L; Herz, Z; Gruber, J R; Gibori, G

    1984-10-01

    Between Days 6-11 of pregnancy or pseudopregnancy, the decidual tissue of the rat produces a prolactin-like hormone, decidual luteotropin, which can sustain luteal progesterone production when prolactin is suppressed. However, this effect is dependent upon the presence of the pituitary. The present investigation was undertaken to determine whether decidual luteotropin and luteinizing hormone (LH) act together to sustain luteal steroidogenesis and if so, to find out whether the need for LH is due to the inability of the decidual tissue to produce LH-like material and/or whether LH affects decidual luteotropin production. Pseudopregnant rats with or without decidual tissue were hypophysectomized on Day 8 and treated with either 1.5 IU human chorionic gonadotropin (hCG)/day or with vehicle. Within 24 h, serum progesterone dropped in both vehicle-treated groups and decidual luteotropin levels declined by 80% in the decidual tissue. Human CG administration had no effect on progesterone production in the control group. Yet in rats with decidual tissue, hCG stimulated progesterone production for at least 48 h and maintained the decidual tissue content of decidual luteotropin. Progesterone, but not hCG treatment, maintained decidual luteotropin concentrations in ovariectomized rats. To compare the luteotropic activity of the decidual tissue with that of the placenta, pregnant or pseudopregnant rats with decidual tissue were hypophysectomized on Day 8 and treated with 1.5 IU hCG. Control groups had decidual tissue or placentas removed and were similarly treated. Human CG stimulated progesterone production only in rats with placental or decidual tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Ecology of bottomland hardwood swamps of the southeast: a community profile

    SciTech Connect

    Wharton, C.H.; Kitchens, W.M.; Pendleton, E.C.; Sipe, T.W.

    1982-03-01

    This report synthesizes extant literature detailing the ecology of bottomland hardwood swamps in the Southeast. The geographic scope focuses the report to the hardwoods occupying the floodplains of the rivers whose drainages originate in the Appalachian Mountains/Piedmont and Coastal Plain (NC, SC, GA, and FL). The origin and dynamics of the floodplains are described and related to hydrology and physiographic provinces. Further, the biogeochemistry and interactions between the riverine and floodplain environments are discussed in conjunction with floodplain biology. Plant and animal community structure and ecological processes (productivity) are detailed and organized by ecological zones. The final chapter discusses the ecological value of the floodplain ecosystems and the nature of their relationships to adjacent uplands, downstream coastal estuaries and the atmosphere.

  20. Financial aspects of partial cutting practices in central Appalachian hardwoods. Forest Service research paper (Final)

    SciTech Connect

    Miller, G.W.

    1993-06-01

    Unveven-aged silvicultural practices can be used to regenerate and manage many eastern hardwood stands. Single-tree selection methods are feasible in stands where a desirable shade-tolerant commercial species can be regenerated following periodic harvests. A variety of partial cutting practices, including single-tree selection and diameter-limit cutting have been used for 30 years or more to manage central Appalachian hardwoods on the Fernow Experimental Forest near Parsons, West Virginia. Results from these research areas are presented to help forest managers evaluate financial aspects of partial cutting practices. Observed volume growth, product yields, changes in species composition, and changes in residual stand quality are used to evaluate potential financial returns. Also, practical economic considerations for applying partial cutting methods are discussed.

  1. Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier.

    PubMed

    Wei, Lin; Pordesimo, Lester O; Haryanto, Agus; Wooten, James

    2011-05-01

    Seeking appropriate approaches to utilize the crude glycerol produced in biodiesel production is very important for the economic viability and environmental impacts of biodiesel industry. Gasification may be one of options for addressing this issue. Co-gasification of hardwood chips blending with crude glycerol in various loading levels was undertaken in the study involving a pilot scale fixed-bed downdraft gasifier. The results indicated that crude glycerol loading levels affected the gasifier's performance and the quality of syngas produced. When crude glycerol loading level increased, the CO, CH(4), and tar concentrations of the syngas also increased but particle concentration decreased. Though further testing is suggested, downdraft gasifiers could be run well with hardwood chips blending with liquid crude glycerol up to 20 (wt%). The syngas produced had relatively good quality for fueling internal combustion engines. This study provides a considerable way to utilize crude glycerol. PMID:21435871

  2. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood.

    PubMed

    Shen, Zhengtao; Jin, Fei; Wang, Fei; McMillan, Oliver; Al-Tabbaa, Abir

    2015-10-01

    In this study, the physicochemical properties of Salisbury biochar produced from British broadleaf hardwood and its adsorption characteristics towards lead were investigated. The biochar particle size has a significant effect on its BET surface area, cation exchange capacity and sorption of lead. The kinetics data were well fitted by the Pseudo second order model. The increase of biochar dosage increased the percentage of lead removal in solutions. The increase of initial solution pH increased the percentage of lead removal across the pH range of 2-10. The calculated maximum adsorption capacities of lead by Langmuir model were 47.66 and 30.04 mg/g for 0.15 mm and 2 mm samples. The adsorption capacities of different metals decreased in the order of lead > nickel > copper > zinc calculated in mmol/g. This study suggests a great potential of biochars derived from British broadleaf hardwood to be applied in soil remediation.

  3. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    PubMed

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft. PMID:18420403

  4. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood.

    PubMed

    Shen, Zhengtao; Jin, Fei; Wang, Fei; McMillan, Oliver; Al-Tabbaa, Abir

    2015-10-01

    In this study, the physicochemical properties of Salisbury biochar produced from British broadleaf hardwood and its adsorption characteristics towards lead were investigated. The biochar particle size has a significant effect on its BET surface area, cation exchange capacity and sorption of lead. The kinetics data were well fitted by the Pseudo second order model. The increase of biochar dosage increased the percentage of lead removal in solutions. The increase of initial solution pH increased the percentage of lead removal across the pH range of 2-10. The calculated maximum adsorption capacities of lead by Langmuir model were 47.66 and 30.04 mg/g for 0.15 mm and 2 mm samples. The adsorption capacities of different metals decreased in the order of lead > nickel > copper > zinc calculated in mmol/g. This study suggests a great potential of biochars derived from British broadleaf hardwood to be applied in soil remediation. PMID:26141669

  5. Bottomland hardwood restoration in the Mississippi Alluvial Valley: Looking past the trees to see the forest

    USGS Publications Warehouse

    Wilson, R.R.; Oliver, J.M.; Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Planned restoration of bottomland hardwoods is important to adequately address negative consequences resulting from the severe loss and fragmentation of forested wetlands in the Mississippi Alluvial Valley. Reforestation efforts have been promoted through government initiatives of state and federal agencies (e.g. Wetland Reserve Program) and private conservation groups. To clarify discussions of forested wetland restoration, we offer definitions of reforestation and restoration, review historic reforestation practices, identify additional needs, and propose a conceptual framework to assist in future reforestation efforts. Future reforestation efforts should include: (1) comprehensive planning among participating agencies, (2) standardized documentation of methods, and (3) short-term and long-term monitoring protocols that permit refinement of methodologies. Implementation of these concepts will promote cooperative planning among participants and facilitate research to evaluate bottomland hardwood restoration efforts.

  6. A Case Presentation: Decidualized Endometrioma Mimicking Ovarian Cancer during Pregnancy

    PubMed Central

    Tazegül, Aybike; İncesu, Feyza Nur; Doğan, Nasuh Utku; Yılmaz, Setenay Arzu; Çelik, Çetin

    2013-01-01

    During pregnancy, masses that are larger than 5 cm and appearing in the Doppler ultrasonography as having increased blood flow, echoes of heterogeneous density, and containing solid components are suspicious for malignancy; however, differential diagnosis of decidualized endometriomas should also be considered. The patient was an 8 weeks pregnant primigravida. The ultrasonographic evaluation showed a cystic mass of size 65 × 57 mm in the left ovary that was well circumscribed, heterogeneous, with highly dense internal echo, and containing a solid component of size 8 × 14 mm. In the 12th week, the ultrasonographic examination revealed an increase in the size of the mass and increased arterial blood flow in the mass. The patient underwent surgery. It was observed that both ovaries were adherent in the Douglas pouch and that the left ovary contained an endometrioma of size 8cm. While the capsule was being peeled, lesions of soft density, with irregular surfaces, and with adhesion in the Douglas pouch were observed. The results of the frozen section revealed decidualized endometrioma and decidual structures. Even in pregnant women when adnexal masses are encountered and the ultrasonography, Doppler, MRI, and CA 125 level analysis still do not favor endometriosis, decidualized endometrioma should be considered in the differential diagnosis. PMID:23662226

  7. Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.

    ERIC Educational Resources Information Center

    Burkholder, Kathy

    This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…

  8. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  9. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  10. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    SciTech Connect

    Mayer, J.J.

    1999-12-17

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species.

  11. Rare Plants of Southeastern Hardwood Forests and the Role of Predictive Modeling

    SciTech Connect

    Imm, D.W.; Shealy, H.E., Jr.; McLeod, K.W.; Collins, B.

    2001-01-01

    Habitat prediction models for rare plants can be useful when large areas must be surveyed or populations must be established. Investigators developed a habitat prediction model for four species of Southeastern hardwood forests. These four examples suggest that models based on resource and vegetation characteristics can accurately predict habitat, but only when plants are strongly associated with these variables and the scale of modeling coincides with habitat size.

  12. Computer Vision System For Locating And Identifying Defects In Hardwood Lumber

    NASA Astrophysics Data System (ADS)

    Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.

    1989-03-01

    This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.

  13. Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.

    2013-12-01

    Phenology, annual life cycles of plants and animals, is a dynamic ecosystem attribute and an important feedback to climate change. Vegetation phenology is commonly monitored at canopy to continental scales using ground based digital repeat photography and satellite remote sensing, respectively. Existing systems which provide sufficient temporal resolution for phenological monitoring, however, lack the spectral resolution necessary to investigate the coupling of phenology with canopy chemistry (e.g. chlorophyll, nitrogen, lignin-cellulose content). Some researchers have used narrowband (<10 nm resolution) spectrometers at phenology monitoring sites, yielding new insights into seasonal changes in leaf biochemistry. Such instruments integrate the spectral characteristics of the entire canopy, however, masking considerable variability between species and plant functional types. There is an opportunity, then, for exploring the potential of imaging spectrometers to investigate the coupling of canopy phenology and the leaf biochemistry of individual trees. During the growing season of April-October 2013 we deployed an imaging spectrometer with a spectral range of 371-1042 nm and resolution of ~5 nm (Surface Optics Corporation 710; San Diego, CA) on a 35 m tall tower at the Harvard Forest, Massachusetts. The image resolution was ~0.25 megapixels and the field of view encompassed approximately 20 individual tree crowns at a distance of 20-40 m. The instrument was focused on a mixed hardwoods canopy composed of 4 deciduous tree species and one coniferous tree species. Scanning was performed daily with an acquisition frequency of 30 minutes during daylight hours. Derived imagery were used to calculate a suite of published spectral indices used to estimate foliar content of key pigments: cholorophyll, carotenoids and anthocyanins. Additionally, we calculated the photochemical reflectance index (PRI) as well as the position and slope of the red edge as indicators of mid- to

  14. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood.

    PubMed

    Huang, Caoxing; Jeuck, Ben; Du, Jing; Yong, Qiang; Chang, Hou-Min; Jameel, Hasan; Phillips, Richard

    2016-11-01

    Many biorefineries have not been commercialized due to poor economic returns from final products. In this work, a novel process has been developed to coproduce valuable sugars, xylo-oligosaccharides, and lignosulfonates from hardwood. The modified process includes a mild autohydrolysis pretreatment, which enables for the recovery of the xylo-oligosaccharides in auto-hydrolysate. Following enzymatic hydrolysis, the residue is sulfomethylated to produce lignosulfonates. Recycling the sulfomethylation residues increased both the glucan recovery and lignosulfonate production. The glucose recovery was increased from 81.7% to 87.9%. Steady state simulation using 100g of hardwood produced 46.7g sugars, 5.9g xylo-oligosaccharides, and 25.7g lignosulfonates, which were significantly higher than that produced from the no-recycling process with 39.1g sugars, 5.9g xylo-oligosaccharides, and 15.0g lignosulfonates. The results indicate that this novel biorefinery process can improve the production of fermentable sugars and lignosulfonate from hardwood as compared to a conventional biorefinery process.

  15. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood.

    PubMed

    Huang, Caoxing; Jeuck, Ben; Du, Jing; Yong, Qiang; Chang, Hou-Min; Jameel, Hasan; Phillips, Richard

    2016-11-01

    Many biorefineries have not been commercialized due to poor economic returns from final products. In this work, a novel process has been developed to coproduce valuable sugars, xylo-oligosaccharides, and lignosulfonates from hardwood. The modified process includes a mild autohydrolysis pretreatment, which enables for the recovery of the xylo-oligosaccharides in auto-hydrolysate. Following enzymatic hydrolysis, the residue is sulfomethylated to produce lignosulfonates. Recycling the sulfomethylation residues increased both the glucan recovery and lignosulfonate production. The glucose recovery was increased from 81.7% to 87.9%. Steady state simulation using 100g of hardwood produced 46.7g sugars, 5.9g xylo-oligosaccharides, and 25.7g lignosulfonates, which were significantly higher than that produced from the no-recycling process with 39.1g sugars, 5.9g xylo-oligosaccharides, and 15.0g lignosulfonates. The results indicate that this novel biorefinery process can improve the production of fermentable sugars and lignosulfonate from hardwood as compared to a conventional biorefinery process. PMID:27543951

  16. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests

    USGS Publications Warehouse

    Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.

    2012-01-01

    Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.

  17. Municipal wastewater effects on nitrogen cycling in a mature hardwood forest

    SciTech Connect

    Kim, D.Y.

    1992-01-01

    Land disposal of municipal wastewater is considered ecologically acceptable and cost effective. The success of land treatment systems, however, requires proper functioning of all ecosystem components. The impact of municipal wastewater irrigation on the structure and function of an Appalachian hardwood forest in Virginia was investigated. Four irrigation rates (17.5, 35, 70, and 140 cm yr[sup [minus]1]) were applied in this hardwood forest, and their effects on forest nutrient cycling were monitored for two years. Tree growth, seedling reproduction, tree mortality, species diversity, and N sequestering by vegetation were not changed significantly. Herbaceous ground cover increased due to irrigation, except for the 140 cm yr[sup [minus]1] treatment where the heavy spray caused physical damage to the cover. Depending on the rate applied, the mature hardwood forest system sequestered only [minus]3.4 to 8.2 kg N ha yr[sup [minus]1] in the aboveground biomass. Therefore, the fate of added N to the system became a function of N transformation processes in the soil. Nitrogen mineralization and nitrification increased as irrigation increased. Denitrification rates were not affected by irrigation; the process of denitrification did not constitute a significant N output from the forest system. The additional soil nitrate (NO[sub 3][sup [minus

  18. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  19. Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest.

    SciTech Connect

    Cromer R.B.; Lanham J.D.; Hanlin H.H.

    2002-05-01

    Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest. Cromer R.B., J.D.Lanham, and H.H. Hanlin.Forest Science, 1 May 2002, vol. 48, iss. 2, pp. 407-413(7) We compared herpetofaunal communities in recently harvested gaps, skidder trails, and unharvested depressional wetlands to assess the effects of group-selection harvesting and skidder traffic on reptiles and amphibians in a southern bottomland hardwood forest. From January 1, 1997 to December 31, 1998 we captured 24,292 individuals representing 55 species of reptiles and amphibians at the Savannah River Site in Barnwell County, South Carolina. Forty-two species (n = 6,702 individuals) were captured in gaps, 43 species (n = 8,863 individuals) were captured along skid trails between gaps and 43 species (n = 8,727 individuals) were captured in bottomland depressions over the 2 yr period. Three vegetation variables and six environmental variables were correlated with herpetofaunal abundance. Salamander abundance, especially for species in the genus Ambystoma, was negatively associated with areas with less canopy cover and pronounced rutting (i.e., gaps and skidder trails). Alternatively, treefrog (Hylidae) abundance was positively associated with gap creation. Results from this study suggest that group selection harvests and skidder rutting may alter the herpetofaunal species composition in southern bottomland hardwoods by increasing habitat suitability for some species while diminishing it for others.

  20. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  1. The endocannabinoid anandamide impairs in vitro decidualization of human cells.

    PubMed

    Almada, M; Amaral, C; Diniz-da-Costa, M; Correia-da-Silva, G; Teixeira, N A; Fonseca, B M

    2016-10-01

    Endocannabinoids (eCBs) are endogenous mediators that along with the cannabinoid receptors (CB1 and CB2), a membrane transporter and metabolic enzymes form the endocannabinoid system (ECS). Several eCBs have been discovered with emphasis on anandamide (AEA). They are involved in several biological processes such as energy balance, immune response and reproduction. Decidualization occurs during the secretory phase of human menstrual cycle, which involves proliferation and differentiation of endometrial stromal cells into decidual cells and is crucial for the establishment and progression of pregnancy. In this study, a telomerase-immortalized human endometrial stromal cell line (St-T1b) and non-differentiated primary cultures of human decidual fibroblasts from term placenta were used to characterize the ECS using immunoblotting and qRT-PCR techniques. It was shown that St-T1b cells express CB1, but not CB2, and that both receptors are expressed in HdF cells. Furthermore, the expression of fatty acid amide hydrolase (FAAH), the main degrading enzyme of AEA, increased during stromal cell differentiation. AEA inhibited cell proliferation, through deregulation of cell cycle progression and induced polyploidy. Moreover, through CB1 binding receptor, AEA also impaired cell differentiation. Therefore, AEA is proposed as a modulator of human decidualization. Our findings may provide wider implications, as deregulated levels of AEA, due to Cannabis sativa consumption or altered expression of the metabolic enzymes, may negatively regulate human endometrial stromal cell decidualization with an impact on human (in)fertility.Free Portuguese abstract: A Portuguese translation of this abstract is freely available at http://www.reproduction-online.org/content/152/4/351/suppl/DC1. PMID:27568210

  2. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    SciTech Connect

    Jiang, Yue; Hu, Yali; Zhao, Jing; Zhen, Xin; Yan, Guijun; Sun, Haixiang

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence that the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.

  3. Late Cretaceous- Cenozoic history of deciduousness and the terminal Cretaceous event.

    USGS Publications Warehouse

    Wolfe, J.A.

    1987-01-01

    Deciduousness in mesic, broad-leaved plants occurred in disturbed, middle-latitude environments during the Late Cretaceous. Only in polar environments in the Late Cretaceous was the deciduous element dominant, although of low diversity. The terminal Cretaceous event resulted in wide-spread selection for plants of deciduous habit and diversification of deciduous taxa, thus leaving a lasting imprint on Northern Hemisphere vegetation. Various environmental factors have played important roles in subsequent diversification of mesic, broad-leaved deciduous taxa and in origination and decline of broad-leaved deciduous forests. Low diversity and rarity of mesic deciduous plants in the post-Cretaceous of the Southern Hemisphere indicate that the inferred 'impact winter' of the terminal Cretaceous event had little effect on Southern Hemisphere vegetation and climate. -Author

  4. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines. PMID:25168968

  5. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.

  6. The effect of increased air humidity on northern deciduous forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Rosenvald, Katrin; Tullus, Arvo; Parts, Kaarin; Sellin, Arne; Kupper, Priit; Sõber, Jaak; Sõber, Anu; Uri, Veiko; Aosaar, Jürgen; Varik, Mats; Lõhmus, Krista

    2013-04-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. In 2006 an unique experimental facility for free air humidity manipulation (FAHM) was established in Estonia to study the functioning of deciduous forest ecosystem under altered humidity conditions. The experimental site contains humidified and control plots, each includes four types of forest ecosystem: two overstorey species (planted hybrid aspen (Populus tremula L. × P. tremuloides Michx. and silver birch (Betula pendula Roth.)) both split into two types according to understorey vegetation (diverse "forest" understory and early successional grasses). We investigated the productivity, biomass allocation and functioning of silver birch forest ecosystem in response to elevated atmospheric humidity (on average 7% over the ambient level) during four growing seasons (2008-2011). We hypothesized that elevated air humidity facilitates both above- and below-ground growth and accumulation of plant biomass. During the first three experimental seasons height, stem diameter, and stem volume (D2H) increments of trees, biomass of understory in aboveground and fine root biomass in belowground were similar or significantly reduced in humidified plots. Only the fine root and rhizome biomass of the understory was twice higher in humidified plots. However, fine root turnover speeded up for both tree and understory roots. The trends in above-ground growth changed in 2011, when current annual increments of trees height, diameter, stem volume and fine root biomass were higher in humidified plots. Functionally, trees hydraulic conductance was significantly higher and stem sap flux lower for humidified trees coinciding with significantly higher biomass of primary (in majority ectomycorrhizal) roots, morphologically thinner and longer root tips and higher specific root length. Humidification caused a shift in the root tips colonizing fungal community towards the

  7. Molecular Regulation of Parturition: The Role of the Decidual Clock.

    PubMed

    Norwitz, Errol R; Bonney, Elizabeth A; Snegovskikh, Victoria V; Williams, Michelle A; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M

    2015-04-27

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock.

  8. Molecular Regulation of Parturition: The Role of the Decidual Clock.

    PubMed

    Norwitz, Errol R; Bonney, Elizabeth A; Snegovskikh, Victoria V; Williams, Michelle A; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M

    2015-11-01

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock. PMID:25918180

  9. Human enamel veneer restoration in a deciduous tooth: clinical case.

    PubMed

    Bussadori, Sandra Kalil; do Rego, Marcos Augusto; Pereira, Rogério Junqueira; Guedes-Pinto, Antonio Carlos

    2003-01-01

    Trauma to deciduous anterior teeth, frequently occur in children, and the treatment is a big challenge for the pediatric dentistry. In these cases, besides the pain and discomfort provoked by the injury, both child and parents/persons responsible were eager to reconstruct the damage, as soon as possible. In modern operative restorative dentistry, no restorative material is able to substitute for the human dental enamel in quality, color and resistance. The aim of this paper is to relate the treatment of esthetic veneer (facet) of human dental enamel in a three-year-old child after trauma that caused concussion and accentuated color alteration. Clinical results showed an efficient esthetical resolution, revealing it to be a good alternative for treatment of traumatized anterior deciduous teeth. PMID:12597680

  10. Molecular Regulation of Parturition: The Role of the Decidual Clock

    PubMed Central

    Norwitz, Errol R.; Bonney, Elizabeth A.; Snegovskikh, Victoria V.; Williams, Michelle A.; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M.

    2015-01-01

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a “parturition cascade” exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a “placental clock.” We suggest that it is not a placental clock that regulates the timing of birth, but rather a “decidual clock.” Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock. PMID:25918180

  11. Estimates of ion sources in deciduous and coniferous throughfall

    USGS Publications Warehouse

    Puckett, L.J.

    1990-01-01

    Estimates of external and internal sources of ions in net throughfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The externel source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3- during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42- doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42- in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s-1 and 0.13 cm s-1 for the deciduous and coniferous canopies, respectively, during the dormant season, and 0.30 cm s-1 and 0.43 cm s-1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3- and SO42-, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3- and SO42- accounted for 20-47 and 34-50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50-100 per cent and the method is subject to several assumptions and limitations.

  12. [Ready-made crowns in the deciduous dentition].

    PubMed

    Schulte, A

    1999-01-01

    The following review of the literature on "prefabricated crowns for deciduous teeth" attempts to highlight the benefits and limitations of this treatment modality. The use of prefabricated crowns is indicated in the following situations: severe destruction of the clinical crown, deep approximal cavities, bilateral approximal cavities, circumferential caries, history of root canal treatment, and need for fixed space retention. Compared to amalgam restorations involving two or more surfaces, prefabricated crowns on deciduous molar teeth gave very high survival rates. They consist of a chromium-nickel-steel alloy and are reported to have an acceptable gingival tolerance profile. In contrast to the Anglo-American countries this treatment modality is quite uncommon in Germany. A probable reason for this reservation could be that many clinicians often fail to see the need for a filling in the deciduous dentition. Besides, many dentists are reluctant to use local anesthesia in children, which is inevitable in preparing and fitting a prefabricated crown. In the United States and UK dentists are less frequently confronted with this problem, as complex treatments are often carried out under nitrous oxide sedation or insufflation anesthesia. Modern filling materials have been introduced which have the potential to narrow the indications for prefabricated stainless steel crowns. Against this background, future studies are necessary to compare the survival rates of prefabricated crowns and modern filling materials.

  13. Effects of wildlife forestry on abundance of breeding birds in bottomland hardwood forests of Louisiana

    USGS Publications Warehouse

    Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.

    2009-01-01

    Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future

  14. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    SciTech Connect

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  15. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    SciTech Connect

    Castleberry, S.B.; Ford, W.M.; Miller, K.V.; Smith, W.P.

    1999-07-06

    Examination of the effects on white-tail deer browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a Southern bottomland hardwood forest over three growing seasons (1995-1997). Herbaceous richness, diversity or evenness did not differ among exclosure types in any year of the study. Overall browsing rates on both woody and herbaceous vegetation were low throughout all the three years of the study. Low browsing rates reflect seasonal changes in habitat use by deer. Other factors may have influenced the initial vegetative response more than herbivory or gap size.

  16. Leukemia Inhibitory Factor Enhances Endometrial Stromal Cell Decidualization in Humans and Mice

    PubMed Central

    Yap, Joanne; Li, Priscilla; Lane, Natalie; Dimitriadis, Evdokia

    2011-01-01

    Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus ‘primed’ HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation

  17. Deciduous Mandibular Second Molar with Supernumerary Roots and Root Canals Associated with Missing Mandibular Permanent Premolar

    PubMed Central

    Shafi, Shabina; Gambhir, Natasha; Rehani, Usha

    2011-01-01

    Morphological variations like additional roots and root canals in human deciduous dentition are rare. Knowledge of the morphology, variation of root and root canals of deciduous teeth are useful for successful endodontic treatment and exodontia. Presented here is a case report of the supernumerary roots and additional root canals of deciduous mandibular second molar (85) with congenitally bilateral missing of mandibular permanent second premolar (35 and 45) tooth bud.

  18. In vivo microstructural analysis of enamel in permanent and deciduous teeth.

    PubMed

    Gentile, Enrica; Di Stasio, Dario; Santoro, Rossella; Contaldo, Maria; Salerno, Carmen; Serpico, Rosario; Lucchese, Alberta

    2015-04-01

    Confocal microscope was used to analyze human enamel from 10 deciduous and 10 permanent teeth. Optically sectioned images were obtained. A more intense autofluorescence was found in primary teeth. This finding might be due to the greater presence of organic substances in deciduous enamel. The mean prism diameter measurement in permanent teeth enamel was 3.150 µm and 2.602 µm in deciduous teeth. The mean prism diameter in deciduous teeth was statistically least. The results indicate that a confocal microscope may be of help in analyzing and defining the microscopic features of human enamel.

  19. Cyclic decidualization of the human endometrium in reproductive health and failure.

    PubMed

    Gellersen, Birgit; Brosens, Jan J

    2014-12-01

    Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure. PMID:25141152

  20. The vernal dam: Plant-microbe competition for nitrogen in northern hardwood forests. [Allium tricoccum

    SciTech Connect

    Zak, D.R. ); Groffman, P.M. ); Pregitzer, K.S.; Tiedje, J.M. ); Christensen, S. )

    1990-04-01

    Nitrogen (N) uptake by spring ephemeral communities has been proposed as a mechanism that retains N within northern hardwood forests during the season of maximum loss. To understand better the importance of these plants in retaining N, the authors followed the movement of {sup 15}NH{sub 4}{sup +} and {sup 15}NO{sub 3}{sup {minus}} into plant and microbial biomass. Two days following isotope addition, microbial biomass represented the largest labile pool of N and contained 8.5 times as much N as Allium tricoccum L. biomass. Microbial immobilization of {sup 15}N was 10-20 times greater than uptake by A. tricoccum. Nitrification of {sup 15}NH{sub 4}{sup +} was five times lower in cores containing A. tricoccum compared to those without the spring ephemeral. Spring N retention within northern hardwood forests cannot be fully explained by plant uptake because microbial immobilization represented a significantly larger sink for N. Results suggest that plant and microbial uptake of NH{sub 4}{sup +} may reduce the quantity of substrate available for nitrification and thereby lessen the potential for NO{sub 3}{sup {minus}} loss via denitrification and leaching.

  1. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. PMID:24796872

  2. Classification of hardwood and swamp forests on the Savannah River Plant, South Carolina

    SciTech Connect

    Whipple, S.A.; Wellman, L.H.; Good, B.J.

    1981-04-01

    Fifty-eignt hardwood and swamp forest stands were sampled on the Savannah River Plant (SRP), South Carolina, to describe the relationship between the vegetational composition and the soil, topographic, and flooding characteristics of each stand. The stands were samples over the range from dry upland to deeply flooded (2.4m) sites. Seven forest communities were recognized. The boundaries between these communities are not usually distinct, but the classification serves as a basis for a discussion of the patterns of hardwood and swamp forests on the SRP and a comparison of this forest variation to variation of other forests in the Southeast. The forest communities found on the most deeply flooded sites are dominated almost exclusively by Taxodium distichum and Nyssa aquatica. With shallower flooding or only winter flooding, Fraxinus pennsylvanica, Acer rubrum, Liquidambar styraciflua, and Quercus laurifolia become important dominants. Mesic sites that are seldom, if ever, flooded are dominated by N. sylvatica, L. styraciflua, and A. rubrum. The driest upland or upper slope positions are dominated by Q. alba, Carya tomentosa, and L. styraciflua.

  3. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  4. Comparison of several artificial neural network classifiers for CT images of hardwood logs

    NASA Astrophysics Data System (ADS)

    Schmoldt, Daniel L.; He, Jing; Abbott, A. Lynn

    1998-02-01

    Knowledge of internal log defects, obtained by scanning, is critical to efficiency improvements for future hardwood sawmills. Nevertheless, before computed tomography (CT) scanning can be applied in industrial operations, we need to automatically interpret scan information so that it can provide the saw operator with the information necessary to make proper sawing decisions. Our current approach to automatically label features in CT images of hardwood logs classifies each pixel individually using a back-propagation artificial neural network (ANN) and feature vectors that include a small, local neighborhood of pixels and the distance of the target pixel to the center of the log. Initially, this ANN was able to classify clearwood, bark, decay, knots, and voids in CT images of two species of oak with 95% pixel-wise accuracy. Recently we have investigated other ANN classifiers, comparing 2D versus 3D neighborhoods and species-dependent (single species) versus species- independent (multiple species) classifiers using oak, yellow poplar, and cherry CT images. When considered individually, the resulting species-dependent classifiers yield similar levels of accuracy (96 - 98%). 3D neighborhoods work better for multiple-species classifiers and 2D is better for single-species. Under certain conditions there is no statistical difference in accuracy between single- and multiple-species classifiers, suggesting that a multiple- species classifier can be applied broadly with high accuracy.

  5. Reforestation of bottomland hardwoods and the issue of woody species diversity

    USGS Publications Warehouse

    Allen, J.A.

    1997-01-01

    Bottomland hardwood forests in the southcentral United States have been cleared extensively for agriculture, and many of the remaining forests are fragmented and degraded. During the last decade, however, approximately 75,000 ha of land-mainly agricultural fields-have been replanted or contracted for replanting, with many more acres likely to be reforested in the near future. The approach used in most reforestation projects to date has been to plant one to three overstory tree species, usually Quercus spp. (oaks), and to rely on natural dispersal for the establishment of other woody species. I critique this practice by two means. First, a brief literature review demonstrates that moderately high woody species diversity occurs in natural bottomland hardwood forests in the region. This review, which relates diversity to site characteristics, serves as a basis for comparison with stands established by means of current reforestation practices. Second, I reevaluate data on the invasion of woody species from an earlier study of 10 reforestation projects in Mississippi,with the goal of assessing the likelihood that stands with high woody species diversity will develop. I show that natural invasion cannot always be counted on to produce a diverse stand, particularly on sites more than about 60 m from an existing forest edge. I then make several recommendations for altering current reforestation pactices in order to establish stands with greater woody species diversity, a more natural appearance,and a more positive environmental impact at scales larger than individual sites.

  6. Seasonal Patterns of Denitrification and Trace Gas Emissions in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Durán, J.; Groffman, P. M.

    2012-12-01

    To determine denitrification rates and trace gas emissions in a northern hardwood forest (Hubbard Brook Experimental Forest, New Hampshire, USA), we conducted two years of seasonal chamber-based field gas flux measurements (carbon dioxide, methane, and nitrous oxide) and laboratory incubations to measure denitrification rates (nitrous oxide and dinitrogen) and carbon dioxide fluxes. We examined spatial and temporal dynamics of soil-atmosphere gas fluxes as well as relationships between environmental variables (soil moisture, soil temperature, and soil oxygen) and among the different gases. We found that denitrification in surface soils could be an important pathway for nitrogen loss in northern hardwood forest ecosystems, even if soils are rarely anoxic. While dinitrogen fluxes were particularly high during the snowmelt period, we did not see a pulse of nitrous oxide as a result of rapid soil warming as we had expected. Compared to cooler/wetter sites, we found that warmer/drier soils had higher soil respiration in early spring, but had stronger methane uptake and consistently lower nitrous oxide emissions throughout the year.

  7. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  8. Influences of Hardwood Riparian Vegetation on Stream Channel Geometry in Eastern Forested Environments

    NASA Astrophysics Data System (ADS)

    Cohen, L. J.; Furbish, D. J.

    2015-12-01

    Riparian vegetation has been recognized as a controlling factor of stream channel morphology, but specific influences on bed topography and planform geometry are yet to be fully clarified. In temperate environments, hardwood trees serve as prominent bank stabilizers and help create diverse habitats for a variety of aquatic organisms in alluvial channels. This project explores the influence of riparian vegetation on channel geometry in alluvial streams of different sizes. Exposed rootwads increase bank stability and slow channel migration rates, but also cause pool scour that affects thalweg and bedform locations downstream, implying that woody riparian vegetation influences flow conditions and two-dimensional bed geometry in alluvial streams. Field data suggest that the presence of hardwood vegetation modulates channel width, bed topography and planform geometry in low-order streams. In larger channels, rootwads have less influence on planform curvature, but create patchy variations in bed topography that establish thalweg locations and amplify relief of curvature-dominated bedforms. Flume experiments illustrate the genesis of rootwad-induced pool scour and its effect on downstream pool and bar formation. Experimental rootwad pools reflect the relative size and shape of those observed in natural channels. Introduction of riparian obstructions to planar beds also influences thalweg location several channel widths downstream, further supporting the idea of riparian influence on bedform modulation and regulation.

  9. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  10. Biomass and nutrient removals from commercial thinning and whole-tree clearcutting of central hardwoods

    NASA Astrophysics Data System (ADS)

    Tritton, Louise M.; Martin, C. Wayne; Hornbeck, James W.; Pierce, Robert S.

    1987-09-01

    The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981 82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha-1 organic matter, 5 Mg ha-1 nitrogen, 1 Mg ha-1 phosphorus, 5 Mg ha-1 potassium, 4 Mg ha-1 calcium, and 13 Mg ha-1 magnesium. An estimated 158 Mg ha-1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha-1) of the total organic matter and ⩽2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.

  11. Effects of canopy gaps and flooding on homopterans in a bottomland hardwood forest

    USGS Publications Warehouse

    Gorham, L.E.; King, S.L.; Keeland, B.D.; Mopper, S.

    2002-01-01

    Canopy disturbance is a major factor affecting forest structure and composition and, as a result of habitat alterations, can influence insect communities. We initiated a field study to quantify the effects of canopy disturbance on aerial insect abundance and distribution within a bottomland hardwood forest along the Cache River, Arkansas, USA. We used passive flight-intercept traps to sample insects in canopy gap and forest interior habitats from May to July in 1996, 1997, and 1998. The hydrologic conditions of our study site varied among years: 1996 was relatively dry, 1997 incurred a long-duration flood, and 1998 was moderately wet. Of the 34,000+ Homopterans collected, many groups were distributed in a non-uniform manner among years and between habitats. Total Homopterans, two families of Homopterans, and six morphospecies were more abundant in canopy gaps than interior forest. Many Homopteran taxa were least abundant in 1997 following almost six months of flooding. Alternatively, relatively large Homopteran abundances were associated with the dry conditions of 1996 and the moderately wet conditions of 1998. Differences in Homopteran abundance among years and habitats may be related to differences in vegetation density. Canopy gaps supported more vegetation cover than the interior forest in all but the first sampling interval. In addition, similar to Homopteran abundance, vegetation density was lower in 1997 than in 1998. These results demonstrate that natural disturbance and flooding contribute to Homopteran abundance and distribution patterns in bottomland hardwood forests of the south central United States. ?? 2002, The Society of Wetland Scientists.

  12. Assessment of the role of bottomland hardwoods in sediment and erosion control

    USGS Publications Warehouse

    Molinas, A.; Auble, Gregor T.; Segelquist, C.A.; Ischinger, Lee S.

    1988-01-01

    Drainage and clearing of bottomland hardwoods have long been recognized by the U.S. Environmental Protection Agency (EPA) and the U.S. Fish and Wildlife Service (Service) as important impacts of Federal water projects in the lower Mississippi River Valley. More recently, the water quality impacts of such projects (e.g., increases in sediments, nutrients, and pesticides) have also become of concern. In 1984, in an effort to better define problems concerning wetland losses and water degradation, EPA initiated a cooperative project with the Western Energy and Land Use Team (now the National Ecology Research Center) of the Service. Three phases of the project were identified: 1. To collect existing literature and data; 2. To select, develop, and test the utility of methods to quantify the relationships between land use, cover types, soils, hydrology, and water quality (as represented by sediment); and 3. To apply selected methodologies to several sites within the Yazoo Basin of Mississippi to determine the, potential effectiveness of various management alternatives to reduce sediment yield, increase sediment deposition, and improve water quality. Methods development focused on linking a simulation of water and sediment movement to a computerized geographic information system. We had several objectives for the resulting model. We desired that it should: 1. Estimate the importance of bottomland and hardwoods as a cover type that performs the functions of erosion and sediment control, 2. Simulate effects of proportions of ' various cover types and their specific spatial configurations, 3. Be applicable to moderately large spatial areas with minimal site-specific calibration, 4. Simulate spatial patterns of sediment loss-gain over time, and 5. Represent both sediment detachment and transport. While it was recognized that impacts and management alternatives could be sorted roughly into landscape measures and channel measures, the decision was made to focus study efforts

  13. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events

  14. Rapid Leaf Deployment Strategies in a Deciduous Savanna

    PubMed Central

    2016-01-01

    Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains. PMID:27310398

  15. Rapid Leaf Deployment Strategies in a Deciduous Savanna.

    PubMed

    February, Edmund Carl; Higgins, Steven Ian

    2016-01-01

    Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains. PMID:27310398

  16. VIP contribution to the decidualization program: regulatory T cell recruitment.

    PubMed

    Grasso, Esteban; Paparini, Daniel; Agüero, Mariana; Mor, Gil; Pérez Leirós, Claudia; Ramhorst, Rosanna

    2014-04-01

    During early pregnancy, the human uterus undergoes profound tissue remodeling characterized by leukocyte invasion and production of proinflammatory cytokines, followed by tissue repair and tolerance maintenance induction. Vasoactive intestinal peptide (VIP) is produced by trophoblast cells and modulates the maternal immune response toward a tolerogenic profile. Here, we evaluated the contribution of the VIP/VPAC to endometrial renewal, inducing decidualization and the recruitment of induced regulatory T cells (iTregs) that accompany the implantation period. For that purpose, we used an in vitro model of decidualization with a human endometrial stromal cell line (HESC) stimulated with progesterone (P4) and lipopolysaccharide (LPS) simulating the inflammatory response during implantation and human iTregs (CD4(+)CD25(+)FOXP3(+)) differentiated from naïve T cells obtained from peripheral blood mononuclear cells of fertile women. We observed that VIP and its receptor VPAC1 are constitutively expressed in HESCs and that P4 increased VIP expression. Moreover, in HESC VIP induced expression of RANTES (CCL5), one of the main chemokines involved in T cell recruitment, and this effect is enhanced by the presence of P4 and LPS. Finally, assays of the migration of iTregs toward conditioned media from HESCs revealed that endogenous VIP production induced by P4 and LPS and RANTES production were involved, as anti-RANTES neutralizing Ab or VIP antagonist prevented their migration. We conclude that VIP may have an active role in the decidualization process, thus contributing to recruitment of iTregs toward endometrial stromal cells by increasing RANTES expression in a P4-dependent manner. PMID:24492467

  17. Expanding leaves of mature deciduous forest trees rapidly become autotrophic.

    PubMed

    Keel, Sonja G; Schädel, Christina

    2010-10-01

    Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves.

  18. Herbage production, nutritive value, and animal productivity within hardwood silvopasture, open and mixed pasture systems in Appalachia, United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for livestock food products are projected to increase dramatically through 2050. Increased livestock production capacity on marginal lands will be critical to meeting demand. A 5-year research effort was undertaken to evaluate lamb and sward productivity within open and hardwood silvopasture ...

  19. Development of red oak seedlings using plastic shelters on hardwood sites in West Virginia. Forest Service research paper (Final)

    SciTech Connect

    Smith, H.C.

    1993-04-01

    Plastic shelters were used to grow red oak seedlings on good-to-excellent Appalachian hardwood growing sites in north central West Virginia. Preliminary results indicate that shelters have the potential to stimulate development of red oak seedlingheight growth, especially if height growth continues once the seedling tops are above the 5-foot-tall shelters.

  20. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.

    PubMed

    Ko, Ja Kyong; Kim, Youngmi; Ximenes, Eduardo; Ladisch, Michael R

    2015-02-01

    Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log Ro  = 8.25 to 12.51 resulted in 80-90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (Tg ), the Tg of isolated lignins was found to increase from 171 to 180°C as the severity increased from log Ro  = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis.

  1. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  2. Frequency of intrusive luxation in deciduous teeth and its effects.

    PubMed

    Carvalho, Vivian; Jacomo, Diana Ribeiro; Campos, Vera

    2010-08-01

    The aims of this study were three-fold: First, to determine the prevalence of partial and total intrusion of the primary anterior teeth. Second, to investigate the sequelae of total and partial intrusive luxation in the primary anterior teeth and in their successors and finally, to establish whether the sequelae on both deciduous and permanent teeth were related to the child's age at the time of the intrusion. Data collected from records of 169 boys and 138 girls, all between the ages of zero and 10 years, who were undergoing treatment during the period of March 1996 to December 2004. The sample was composed of 753 traumatized deciduous teeth, of which 221 presented intrusive luxation injury. Children with ages ranging from one to 4 years were the most affected with falls being the main cause of intrusion. Of all intruded teeth 128 (57.9%) were totally intruded and 93 (42.1%) partially. Pulp necrosis/premature loss and color change were the most frequent sequelae in both total and partial intrusions. Concerning permanent dentition, the most common disturbances were color change and/or enamel hypoplasia. Both types of intrusion caused eruption disturbance. Total intrusion was the most frequent type of intrusive luxation. There was no significant correlation between the child's age at the time of intrusion and the frequency of subsequent sequela on primary injured teeth (P = 0.035), between the age at the time of injury and the developmental disturbances on permanent teeth (P = 0.140).

  3. Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells

    PubMed Central

    Vallejo, Griselda; Maschi, Darío; Citrinovitz, Ana Cecilia Mestre; Aiba, Kazuhiro; Maronna, Ricardo; Yohai, Victor; Ko, Minoru S. H.; Beato, Miguel; Saragüeta, Patricia

    2009-01-01

    During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3 fold, FDR > 0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells. PMID:19780023

  4. Involvement of atypical transcription factor E2F8 in the polyploidization during mouse and human decidualization

    PubMed Central

    Qi, Qian-Rong; Zhao, Xu-Yu; Zuo, Ru-Juan; Wang, Tong-Song; Gu, Xiao-Wei; Liu, Ji-Long; Yang, Zeng-Ming

    2015-01-01

    Polyploid decidual cells are specifically differentiated cells during mouse uterine decidualization. However, little is known about the regulatory mechanism and physiological significance of polyploidization in pregnancy. Here we report a novel role of E2F8 in the polyploidization of decidual cells in mice. E2F8 is highly expressed in decidual cells and regulated by progesterone through HB-EGF/EGFR/ERK/STAT3 signaling pathway. E2F8 transcriptionally suppresses CDK1, thus triggering the polyploidization of decidual cells. E2F8-mediated polyploidization is a response to stresses which are accompanied by decidualization. Interestingly, polyploidization is not detected during human decidualization with the down-regulation of E2F8, indicating differential expression of E2F8 may lead to the difference of decidual cell polyploidization between mice and humans. PMID:25892397

  5. Health Hazard Evaluation Report HETA 82-234-1602, Black River Hardwood Company, Kingstree, South Carolina

    SciTech Connect

    Salisbury, S.; Lybarger, J.

    1985-06-01

    A health-hazard evaluation was conducted at Black River Hardwood Company, Kingstree, South Carolina in July, 1982. The evaluation was requested by the owner to investigate a possible excess of cancer among employees. There was concern that the company's water supply had been contaminated by agricultural chemicals buried in an adjacent lot in 1974. Environmental sampling data at the disposal site obtained by the South Carolina Department of Health and Environmental Control (DHEC) were reviewed. The cancer cases involved the stomach, gastrointestinal tract, lungs, and head and neck. The authors conclude that a cancer hazard among the employees does not exist. They recommend continued monitoring of the company and community water supply and using bottled drinking water until a municipal water system is available.

  6. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.

    PubMed

    Wang, G S; Pan, X J; Zhu, J Y; Gleisner, R; Rockwood, D

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180 degrees C, SPORL can achieve near-complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0-4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU beta-glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus.

  7. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    PubMed

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused. PMID:25266687

  8. Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite.

    PubMed

    Gao, Hongling; Liu, Haitang; Pang, Bo; Yu, Guang; Du, Jian; Zhang, Yuedong; Wang, Haisong; Mu, Xindong

    2014-11-01

    This study aimed to produce furfural from waste aqueous hemicellulose solution of a hardwood kraft-based dissolving pulp production processing in a green method. The maximum furfural yield of 82.4% and the xylose conversion of 96.8% were achieved at 463K, 1.0g ZSM-5, 1.05g NaCl and organic solvent-to-aqueous phase ratio of 30:15 (V/V) for 3h. The furfural yield was just 51.5% when the same concentration of pure xylose solution was used. Under the optimized condition, furfural yield was still up to 67.1% even after the fifth reused of catalyst. Catalyst recycling study showed that ZSM-5 has a certain stability and can be efficiently reused.

  9. The response of beetles to group selection harvesting in a southeastern bottomland hardwood forest.

    SciTech Connect

    Ulyshen, Michael, D.

    2005-04-01

    ABSTRACT The environmental protection and sustainable management of our remaining forests are increasingly important concerns. Group selection harvesting is an uneven-aged forest management practice that removes patches of desirable trees to create small openings mimicking natural disturbances. To determine the effects of this technique on beetles, malaise and pitfall traps were placed at the center, edge, and in the forest surrounding artificially created gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a South Carolina bottomland hardwood forest. Beetles were generally more abundant and species rich in the centers of younger gaps than in the centers of older gaps or in the forest surrounding them. There were relatively few differences in the abundance and richness of beetles between old gaps and the surrounding forest but species composition differed considerably. These differences may be explained by the uneven distribution of various resources.

  10. Structure-function relationships in hardwood--insight from micromechanical modelling.

    PubMed

    de Borst, K; Bader, T K

    2014-03-21

    A micromechanical model is presented that predicts the stiffness of wood tissues in their three principal anatomical directions, across various hardwood species. The wood polymers cellulose, hemicellulose, and lignin, common to all wood tissues, serve as the starting point. In seven homogenisation steps, the stiffnesses of these polymers are linked to the macroscopic stiffness. The good agreement of model predictions and corresponding experimental data for ten different European and tropical species confirms the functionality and accuracy of the model. The model enables investigating the influence of individual microstructural features on the overall stiffness. This is exploited to elucidate the mechanical effects of vessels and ray cells. Vessels are shown to reduce the stiffness of wood at constant overall density. This supports that a trade-off exists between the hydraulic efficiency and the mechanical support in relation to the anatomical design of wood. Ray cells are shown to act as reinforcing elements in the radial direction. PMID:24365634

  11. Disruption of hardwood nutrition by sulfur dioxide, nickel, and copper air pollution near Sudbury, Canada

    SciTech Connect

    Lozano, F.C.; Morrison, I.K.

    1981-04-01

    Foilage from each of four hardwood species - white birch (Betula papyifera Marsh.), red oak (Quercus rubra L.), red maple (Acer rubrum L.), and trembling aspen (Populus tremuloides Michx.) - growing on sites severely and moderately damaged by fumes and dustfall and on control sites near Sudbury, Ontario, and soil from beneath the trees were sampled and analyzed for various chemical constituents. Results indicated that on sites damaged by fumes and dustfall, soils were impoverished with respect to organic matter content, exchangeable bases (particularly Ca and Mg), and trace elements (particularly Mn and Zn). Levels of S, Fe, Cu, and Ni were also increased. Foilage analysis provided additional support for the proposition that soils contained near toxic to toxic levels of Ni and Cu. If conditions improve, however, with respect to suppression of Ni or Cu supply, tree growth could be limited by the availability of Ca, Mg, or Mn, or even of N or P.

  12. Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose.

    PubMed

    Eta, Valerie; Mikkola, Jyri-Pekka

    2016-01-20

    Nordic hardwood (Betula pendula) was fractionated in a batch autoclave equipped with a custom-made SpinChem(®) rotating bed reactor, at 120 °C using CO2 and CS2-based switchable ionic liquids systems. Analyses of the non-dissolved wood after treatment showed that 64 wt% of hemicelluloses and 70 wt% of lignin were removed from the native wood. Long processing periods or successive short-time treatments using fresh SILs further decreased the amount of hemicelluloses and lignin in the non-dissolved fraction to 12 and 15 wt%, respectively. The cellulose-rich fraction was partially dissolved in an organic superbase and an ionic liquid system for further derivatization. Homogeneous acylation of the dissolved cellulose in the presence or absence of catalyst resulted in cellulose acetates with variable degree of substitution (DS), depending on the treatment conditions. By varying the reaction conditions, the cellulose acetate with the desired DS could be obtained under mild conditions.

  13. Nuclear DNA amounts in 112 species of tropical hardwoods -- new estimates.

    PubMed

    Ohri, D; Bhargava, A; Chatterjee, A

    2004-09-01

    The 4C DNA values of 112 species, belonging to 37 families have a range from 0.83 pg (Bixa orellana) to 15.54 pg (Thryallis angustifolia), showing a 18.72-fold variation. The genome size varies from 0.21 pg (Bixa orellana) to 3.32 (Thespesia populnea), with a 15.8-fold difference. The Bombacaceae has the minimum range (1.08-fold) of variation, while the maximum (5.0-fold) is shown by the Fabaceae. The Boraginaceae, Lauraceae, Malpighiaceae, and Malvaceae generally have higher 4C DNA values of > 10 pg, while the Bixaceae, Caricaceae, Oxalidaceae, and Santalaceae have lower values of < 2.0 pg. These data add further to our knowledge on variation in DNA amount in tropical hardwoods. PMID:15375726

  14. Dead wood relative to slope severity in mesic loess bluff hardwood forests

    USGS Publications Warehouse

    Twedt, Daniel J.

    2012-01-01

    To aid in identification of land within Vicksburg National Military Park that was subjected to forest restoration during the 1930s, I evaluated the hypothesized relationships between maximum live tree diameter or dead wood (standing and down) and severity of slope. Disproportionate mortality among early-successional, pioneer tree species suggested maturation of pioneer upland hardwood forests. As such, input and decomposition of dead wood have likely approached equilibrium. Thus, I did not detect a useful predictive relationship between dead wood (standing or down) or maximum diameter of live trees and severity of slope. Lack of relationships between slope and large diameter trees or volume of dead wood resulted in an inability to evaluate former land use based on these parameters.

  15. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    SciTech Connect

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  16. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    SciTech Connect

    Kearns, M.; Lala, P.K.

    1982-05-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells.

  17. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.

    PubMed

    Lockwood, C J; Paidas, M; Murk, W K; Kayisli, U A; Gopinath, A; Huang, S J; Krikun, G; Schatz, F

    2009-11-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Among the cell types at the maternal fetal interface at term, TF expression is highest in decidual cells indicating that this TF meets the hemostatic demands of labor and delivery. TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggesting that the maintenance of elevated circulating progesterone provides hemostatic protection and that abruption-generated thrombin acts in an autocrine/paracrine fashion on decidual cells to promote hemostasis via enhanced TF expression.

  18. Anandamide restricts uterine stromal differentiation and is critical for complete decidualization.

    PubMed

    Fonseca, B M; Correia-da-Silva, G; Teixeira, N A

    2015-08-15

    The major endocannabinoid, anandamide (AEA), is widely distributed in the body, especially in the reproductive tissues, where it is implicated in early pregnancy events, particularly during implantation period. Although AEA is synthesized in decidual cells and showed to induce apoptosis through CB1 receptor, its roles in decidualization remain to be elucidated. This study examined the effect of AEA in the progression of decidualization both in vitro and in vivo and explored the involvement of COX-2 in its action. To determine the function of AEA during this differentiation process, we employed a primary culture system in which undifferentiated stromal cells isolated from pregnant rat uterus undergo decidualization. AEA treatment markedly interfered with the differentiation program, as revealed by α2-macroglobulin (α2-MG) expression and alkaline phosphatase activity. Additionally, it was evaluated the effects of AEA in decidual establishment in the pseudopregnant rat model. The abundance of AEA in the uterine lumen disrupted the decidualization process accompanied by a decreased expression of COX-2 and VEGF. It was also observed that uterine lumen, which failed the progression of decidualization in response to AEA, also presented lower expression of NAPE-PLD and FAAH. Thus, the mechanisms by which AEA inhibits decidualization can be either via direct actions on stromal cell differentiation within the reproductive tract system or by the inhibition of COX-2 derived products and, consequently, the vascular remodeling required to proper decidualization. In addition, the previous observations showing that higher AEA levels in pre-implantation sites are hostile to blastocyst survival may result from problems in decidual cell reaction more than with implantation failure. PMID:25960165

  19. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Vasquez, Yasmin M; Peavey, Mary C; Mazur, Erik C; Gibbons, William E; Lanz, Rainer B; DeMayo, Francesco J; Lydon, John P

    2016-04-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  20. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Vasquez, Yasmin M.; Peavey, Mary C.; Mazur, Erik C.; Gibbons, William E.; Lanz, Rainer B.; DeMayo, Francesco J.; Lydon, John P.

    2016-01-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  1. Distribution of deciduous stands in villages located in coniferous forest landscapes in Sweden.

    PubMed

    Mikusiński, Grzegorz; Angelstam, Per; Sporrong, Ulf

    2003-12-01

    Termination of fire along with active removal of deciduous trees in favor of conifers together with anthropogenic transformation of productive forest into agricultural land, have transformed northern European coniferous forests and reduced their deciduous component. Locally, however, in the villages, deciduous trees and stands were maintained, and have more recently regenerated on abandoned agricultural land. We hypothesize that the present distribution of the deciduous component is related to the village in-field/out-field zonation in different regions, which emerges from physical conditions and recent economic development expressed as land-use change. We analyzed the spatial distribution of deciduous stands in in-field and out-field zones of villages in 6 boreal/hemiboreal Swedish regions (Norrbotten, Angermanland, Jämtland, Dalarna, Bergslagen, Småland). In each region 6 individual quadrates 5 x 5 km centered on village areas were selected. We found significant regional differences in the deciduous component (DEC) in different village zones. At the scale of villages Angermanland had the highest mean proportion of DEC (17%) and Jämtland the lowest (2%). However, the amounts of the DEC varied systematically in in-field and out-field zones. DEC was highest in the in-field in the south (Småland), but generally low further north. By contrast, the amount of DEC in the out-field was highest in the north. The relative amount of DEC in the forest edge peaked in landscapes with the strongest decline in active agriculture (Angermanland, Dalarna, Bergslagen). Because former and present local villages are vital for biodiversity linked to the deciduous component, our results indicate a need for integrated management of deciduous forest within entire landscapes. This study shows that simplified satellite data are useful for estimating the spatial distribution of deciduous trees and stands at the landscape scale. However, for detailed studies better thematic resolution is

  2. Respiratory Symptoms and Lung Function in Never-Smoking Male Workers Exposed To Hardwood Dust

    PubMed Central

    Bislimovska, Dragana; Petrovska, Sunchica; Minov, Jordan

    2015-01-01

    BACKGROUND: Results from many studies suggest that workplace exposure to organic dust may lead to adverse respiratory effects in exposed workers. AIM: In order to assess the respiratory effects of the workplace exposure to hardwood dust we performed a cross-sectional study of never-smoking male workers employed in parquet manufacture and never-smoking male office workers as a control. MATERIAL AND METHODS: We performed a cross-sectional study including 37 never-smoking male workers employed in parquet manufacture and an equal number of never-smoking male office workers studied as a control. Evaluation of examined subjects included completion of a questionnaire for respiratory symptoms in the last 12 months and baseline spirometry performed according to the actual recommendations. RESULTS: We found a higher prevalence of respiratory symptoms in parquet manufacturers than in office workers with significant difference for cough and phlegm. Majority of the respiratory symptoms in the parquet manufacturers were work-related. The mean values of all spirometric parameters with exception of forced ventilatory capacity (FVC) were significantly lower in the parquet manufacturers as compared to their mean values in the office workers. We found close relationship between both the prevalence of respiratory symptoms and the reduction of spirometric parameters in the parquet manufacturers and the duration of the workplace exposure to wood dust. CONCLUSION: Our data suggest that workplace exposure to hardwood dust may lead to adverse respiratory effects indicating the need of adequate preventive measures in order to protect the respiratory health of exposed workers. PMID:27275278

  3. The importance of hydrology in restoration of bottomland hardwood wetland functions

    USGS Publications Warehouse

    Hunter, R.G.; Faulkner, S.P.; Gibson, K.A.

    2008-01-01

    Bottomland hardwood (BLH) forests have important biogeochemical functions and it is well known that certain structural components, including pulsed hydrology, hydric soils, and hydrophytic vegetation, enhance these functions. It is unclear, however, how functions of restored BLH wetlands compare to mature, undisturbed wetlands. We measured a suite of structural and functional attributes in replicated natural BLH wetlands (NAT), restored BLH wetlands with hydrology re-established (RWH), and restored BLH wetlands without hydrology re-established (RWOH) in this study. Trees were replanted in all restored wetlands at least four years prior to the study and those wetlands with hydrology re-established had flashboard risers placed in drainage ditches to allow seasonal surface flooding. Vegetation, soils, and selected biogeochemical functions were characterized at each site. There was a marked difference in woody vegetation among the wetlands that was due primarily to site age. There was also a difference in herbaceous vegetation among the restored sites that may have been related to differences in age or hydrology. Water table fluctuations of the RWH wetlands were comparable to those of the NAT wetlands. Thus, placing flashboard risers in existing drainage ditches, along with proper management, can produce a hydroperiod that is similar to that of a relatively undisturbed BLH. Average length of saturation within the upper 15 cm of soils was 37, 104, and 97 days for RWOH, RWH, and NAT, respectively. Soil moisture, denitrification potential, and soluble organic carbon concentrations differed among wetland sites, but soil carbon and nitrogen concentrations, heterotrophic microbial activity, and readily mineralizable carbon concentrations did not. Significant linear relationships were also found between soil moisture and heterotrophic microbial activity, readily mineralizable carbon, and soluble organic carbon. In addition, sedimentation rates were higher in NAT and RWH

  4. Ground-water-flow conditions within a bottomland hardwood wetland, Eastern Arkansas

    USGS Publications Warehouse

    Gonthier, G.J.

    1996-01-01

    Water levels were measured monthly at 9 staff gages and 35 wells along two transects within the Black Swamp bottomland hardwood wetland and perpendicular to the Cache River in eastern Arkansas from December 1989 to September 1992 in order to (1) describe the ground-water-flow conditions at locations within a bottomland hardwood wetland and (2) determine the relation between the frequency of different ground-water-flow conditions and physical characteristics within the wetland. Three ground-water-flow conditions predominated at various times in the Black Swamp: (1) discharge of water from the alluvial aquifer to the wetland, (2) recharge of water from the wetland into the alluvial aquifer, and (3) flow of water from the wetland into the alluvial aquifer and then to the nearby Cache River (local flow). Analyses of hydraulic head differences between surface and ground water indicate that discharge occurred 31% of the measurement times at both transects. Recharge occurred 39% of the measurement times and tended to occur more often at locations that are far from the Cache River and that overlie low ground-water levels in the lower part of the alluvial aquifer. Local ground-water flow occurred 28% of the measurement times and tended to occur more often at locations close to the Cache River. Ground-water pumpage results in water-level declines in the lower part of the alluvial aquifer near the Black Swamp wetland. When compared with an area not affected by pumping, these lower ground-water levels increased the frequency of recharge of Black Swamp water into the alluvial aquifer by nearly a factor of 7, decreased the frequency of local ground-water flow to the Cache River to less than half, and decreased the frequency of discharge by about 22%.

  5. Ecotone resilience in a coastal system of mangroves and hardwood hammocks

    NASA Astrophysics Data System (ADS)

    Turtora, M.; DeAngelis, D. L.; Teh, S. Y.; Jiang, J.

    2013-12-01

    Initial sea-level rise effects on low-lying coastline vegetation will likely result from an increase in the frequency and magnitude of storm surges. Feedbacks between vegetation and vadose zone pore-water salinity likely result in complex interactions between halophytic and glycophytic vegetation due to differential adaptive responses. In coastal Everglades National Park, relatively impermeable marl soils distributed in a ridge and swale topography overlie highly permeable karst limestone saturated with high salinity water. Soil salinity dynamics reflect pronounced rainfall seasonality. A model of MANgrove and hardwood HAMmock competition (MANHAM) has been integrated with a variable density Saturated/Unsaturated groundwater TRAnsport model (SUTRA). The combined model (MANTRA) is being used to estimate likely vegetative responses to various scenarios of changing sea-level and precipitation patterns. The mangrove/hammock regime is characterized by the occurrence of sharp ecotones over relatively shallow elevation gradients that may be maintained by a vegetation switch. A disturbance such as an input of salinity from a storm surge could upset this meta-stable boundary, leading to a regime shift of halophytic vegetation inland. MANTRA allows simulation of the interaction of vegetation with subsurface salinity dynamics while examining the sensitivity of the vegetation switch to relevant variables. The response of the halophyte/glycophyte system to storm surge overwash is predicted to depend on factors such as amount and duration of the salinity increase in the soil, the water-table elevation and salinity of the groundwater, the amount and timing of precipitation, runoff and infiltration, the extent of wind induced storm damage, and the amount of mangrove propagules that are washed into the hardwood hammock. In addition, direct mortality of hammock vegetation and increasing floating dispersal of mangrove propagules due to storm surge increase the likelihood of a regime

  6. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  7. Effects of earthworm invasion on plant species richness in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-08-01

    The invasion of non-native earthworms (Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples.

  8. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation: Subcortical insects in hardwood plantations

    SciTech Connect

    Coyle, David R.; Brissey, Courtney L.; Gandhi, Kamal J. K.

    2015-01-02

    1. We characterized subcortical insect assemblages in economically important eastern cottonwood (Populus deltoides Bartr.), sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations in the southeastern U.S.A. Furthermore, we compared insect responses between freshly-cut plant material by placing traps directly over cut hardwood logs (trap-logs), traps baited with ethanol lures and unbaited (control) traps. 2. We captured a total of 15 506 insects representing 127 species in four families in 2011 and 2013. Approximately 9% and 62% of total species and individuals, respectively, and 23% and 79% of total Scolytinae species and individuals, respectively, were non-native to North America. 3. We captured more Scolytinae using cottonwood trap-logs compared with control traps in both years, although this was the case with sycamore and sweetgum only in 2013. More woodborers were captured using cottonwood and sweetgum trap-logs compared with control traps in both years, although only with sycamore in 2013. 4. Ethanol was an effective lure for capturing non-native Scolytinae; however, not all non-native species were captured using ethanol lures. Ambrosiophilus atratus (Eichhoff) and Hypothenemus crudiae (Panzer) were captured with both trap-logs and control traps, whereas Coccotrypes distinctus (Motschulsky) and Xyleborus glabratus Eichhoff were only captured on trap-logs. 5. Indicator species analysis revealed that certain scolytines [e.g. Cnestus mutilates (Blandford) and Xylosandrus crassiusculus (Motschulsky)] showed significant associations with trap-logs or ethanol baits in poplar or sweetgum trap-logs. In general, the species composition of subcortical insects, especially woodboring insects, was distinct among the three tree species and between those associated with trap-logs and control traps.

  9. The Role of Decidual Macrophages During Normal and Pathological Pregnancy.

    PubMed

    Ning, Fen; Liu, Huishu; Lash, Gendie E

    2016-03-01

    Macrophages perform many specific functions including host defense, homeostasis, angiogenesis, and tissue development. Macrophages are the second most abundant leukocyte population in the non-pregnant endometrium and pregnant decidua and likely play a central role in the establishment and maintenance of normal pregnancy. Importantly, aberrantly activated uterine macrophages can affect trophoblast function and placental development, which may result in various adverse pregnancy outcomes ranging from pre-eclampsia to fetal growth restriction or demise. Only by fully understanding the roles of macrophage in pregnancy will we be able to develop interventions for the treatment of these various pregnancy complications. This review discusses the general origin and classification of monocytes and macrophages and focuses on the phenotype and functional roles of decidual macrophage at the maternal-fetal interface in normal pregnancy, as well as discussing the potential contribution of the abnormal state of these cells to various aspects of pregnancy pathologies. PMID:26750089

  10. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth.

    PubMed

    Sun, Xiaofei; Deng, Wenbo; Li, Yingju; Tang, Shuang; Leishman, Emma; Bradshaw, Heather B; Dey, Sudhansu K

    2016-04-01

    Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling. PMID:26900150

  11. Progesterone Receptor Transcriptome and Cistrome in Decidualized Human Endometrial Stromal Cells

    PubMed Central

    Mazur, Erik C.; Vasquez, Yasmin M.; Li, Xilong; Kommagani, Ramakrishna; Jiang, Lichun; Chen, Rui; Lanz, Rainer B.; Kovanci, Ertug; Gibbons, William E.

    2015-01-01

    Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is known to interact with certain members of the activator protein-1 (AP-1) family in the regulation of transcription. In this study, we identified the cistrome and transcriptome of PGR and identified the AP-1 factors FOSL2 and JUN to be regulated by PGR and important in the decidualization process. Direct targets of PGR were identified by integrating gene expression data from RNA sequencing with the whole-genome binding profile of PGR determined by chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in primary human endometrial stromal cells exposed to 17β-estradiol, medroxyprogesterone acetate, and cAMP to promote in vitro decidualization. Ablation of FOSL2 and JUN attenuates the induction of 2 decidual marker genes, IGFBP1 and PRL. ChIP-seq analysis of genomic binding revealed that FOSL2 is bound in proximity to 8586 distinct genes, including nearly 80% of genes bound by PGR. A comprehensive assessment of the PGR-dependent decidual transcriptome integrated with the genomic binding of PGR identified FOSL2 as a potentially important transcriptional coregulator of PGR via direct interaction with regulatory regions of genes actively regulated during decidualization. PMID:25781565

  12. Expression and localization of Luman RNA and protein during mouse implantation and decidualization.

    PubMed

    Lan, Xiangli; Jin, Yaping; Yang, Yanzhou; Lin, Pengfei; Hu, Linyong; Cui, Chenchen; Li, Qian; Li, Xiao; Wang, Aihua

    2013-07-15

    Luman (also known as LZIP and CREB3) is a basic leucine zipper transcription factor of the cAMP response element-binding protein/activating transcription factor gene family. Although Luman had specific roles near termination of Drosophila embryogenesis, the physiological functions of Luman in female mammals have apparently not been reported. Therefore, our objective was to investigate the spatiotemporal expression and regulation of Luman in the mouse uterus during the peri-implantation period. Luman protein was clearly present in the luminal and glandular epithelium on days 1 to 4 of pregnancy (day 1, presence of a vaginal plug) and was observed in decidual cells on day 6 of pregnancy. Expression had progressively increased to day 7 when the second decidual zone was formed. On day 8, apoptosis of the decidualized cells was present, and Luman protein expression was decreased (in close association with decidualization). Luman protein was also present in decidual cells of the artificially decidualized uterus. The expression of Luman was regulated by an activated embryo (according to its expression patterns during pseudopregnancy and delayed implantation). Furthermore, expression of Luman was induced by estrogen in ovariectomized mice. We have concluded that Luman might have important roles in embryo implantation and decidualization.

  13. Systematic Analysis of the Molecular Mechanism Underlying Decidualization Using a Text Mining Approach

    PubMed Central

    Liu, Ji-Long; Wang, Tong-Song

    2015-01-01

    Decidualization is a crucial process for successful embryo implantation and pregnancy in humans. Defects in decidualization during early pregnancy are associated with several pregnancy complications, such as pre-eclampsia, intrauterine growth restriction and recurrent pregnancy loss. However, the mechanism underlying decidualization remains poorly understood. In the present study, we performed a systematic analysis of decidualization-related genes using text mining. We identified 286 genes for humans and 287 genes for mice respectively, with an overlap of 111 genes shared by both species. Through enrichment test, we demonstrated that although divergence was observed, the majority of enriched gene ontology terms and pathways were shared by both species, suggesting that functional categories were more conserved than individual genes. We further constructed a decidualization-related protein-protein interaction network consisted of 344 nodes connected via 1,541 edges. We prioritized genes in this network and identified 12 genes that may be key regulators of decidualization. These findings would provide some clues for further research on the mechanism underlying decidualization. PMID:26222155

  14. Lefty inhibits in vitro decidualization by regulating P57 and cyclin D1 expressions.

    PubMed

    Li, Hong; Li, Hui; Bai, Liang; Yu, Hua

    2014-12-01

    Endometrial decidualization is highly important for successful construction and maintenance of embryo implantation and pregnancy. Lefty gene at different menstrual cycle phases has different expressions, indicating its regulatory significance. To study the mechanism of Lefty in decidualization, human endometrial stromal cells (hESCs) were cultured and induced with medroxyprogesterone acetate (MPA) and 8-bromoadenosine-cAMP (8-Br-cAMP) in vitro as a research model. Our results showed that Lefty1 overexpression inhibited MPA- and 8-Br-cAMP-induced hESC decidualization and significantly reduced the secretion of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1). With the inhibition of Lefty1 expression, hESC decidualization induced by MPA and 8-Br-cAMP became more remarkable, and the secretions of PRL and IGFBP-1 were higher too. Further tests indicated that during the process of decidualization, P57 expression increased, whereas cyclin D1 expression decreased. Although Lefty1 overexpression did not significantly change the expressions of P57 and cyclin D1, inhibition of Lefty1 expression resulted in more evident changes in P57 and cyclin D1 expressions. Meanwhile, cell cycle examination showed that Lefty1 overexpression reduced the cell cycle arrest at G1/S phase in the in vitro hESC decidualization model. Therefore, Lefty1 could regulate the cell cycle via modulating the expressions of P57 and cyclin D1 and then inhibit the decidualization in vitro. PMID:25339094

  15. Systematic Analysis of the Molecular Mechanism Underlying Decidualization Using a Text Mining Approach.

    PubMed

    Liu, Ji-Long; Wang, Tong-Song

    2015-01-01

    Decidualization is a crucial process for successful embryo implantation and pregnancy in humans. Defects in decidualization during early pregnancy are associated with several pregnancy complications, such as pre-eclampsia, intrauterine growth restriction and recurrent pregnancy loss. However, the mechanism underlying decidualization remains poorly understood. In the present study, we performed a systematic analysis of decidualization-related genes using text mining. We identified 286 genes for humans and 287 genes for mice respectively, with an overlap of 111 genes shared by both species. Through enrichment test, we demonstrated that although divergence was observed, the majority of enriched gene ontology terms and pathways were shared by both species, suggesting that functional categories were more conserved than individual genes. We further constructed a decidualization-related protein-protein interaction network consisted of 344 nodes connected via 1,541 edges. We prioritized genes in this network and identified 12 genes that may be key regulators of decidualization. These findings would provide some clues for further research on the mechanism underlying decidualization. PMID:26222155

  16. When should we extract deciduous teeth and place implants in young individuals with tooth agenesis?

    PubMed

    Bergendal, B

    2008-01-01

    The aim was to systematically review and find evidence to determine when to extract deciduous teeth and place implants in young individuals with tooth agenesis. A search was made in MEDLINE on combinations of the terms 'tooth agenesis', 'deciduous teeth' and 'dental implants'. Publications with an abstract and written in the English language only were included. To give a background to the clinical management of young individuals with agenesis of teeth, publications on epidemiology of tooth agenesis, persistence of deciduous teeth, treatment outcomes after multi-disciplinary treatment planning and experiences of treatment with dental implants in young individuals were also reviewed. A search on the terms 'tooth agenesis', 'deciduous teeth' and 'dental implants' resulted in nine references and a search on 'dental implants' and 'tooth agenesis' gave 132 references; 46 met the inclusion criteria. Only two were prospective studies on treatment with implants in young individuals. A vast majority of publications on the clinical management of young individuals with tooth agenesis are reflections of clinical experiences and single case reports. Deciduous teeth are extracted for different reasons and at different ages in an optimal plan for a good treatment result from aesthetic and functional point of view. For ethical reasons, randomized clinical trials on when to extract deciduous teeth and place implants cannot be made in young individuals. There was only limited, low level evidence on when to extract deciduous teeth and place implants. Recommendations on treatment are based mainly on clinical experience.

  17. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.

    PubMed

    Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T

    2015-06-01

    Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake.

  18. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption

    PubMed Central

    Lockwood, C.J.; Paidas, M.; Murk, W.K.; Kayisli, U.A.; Gopinath, A.; Krikun, G.; Huang, S.J.; Schatz, F.

    2009-01-01

    Vascular injury increases access and binding of plasma-derived factor VII to perivascular cell membrane-bound tissue factor (TF). The resulting TF/VIIa complex promotes hemostasis by cleaving pro-thrombin to thrombin leading to the fibrin clot. In human pregnancy, decidual cell-expressed TF prevents decidual hemorrhage (abruption). During placentation, trophoblasts remodel decidual spiral arteries into high conductance vessels. Shallow trophoblast invasion impedes decidual vascular conversion, producing an inadequate uteroplacental blood flow that elicits abruption-related placental ischemia. Thrombin induces several biological effects via cell surface protease activated receptors. In first trimester human DCs thrombin increases synthesis of sFlt-1, which elicits placental ischemia by impeding angiogenesis-related decidual vascular remodeling. During pregnacy, the fibrillar collagen-rich amnion and choriodecidua extracellular matrix (ECM) provides greater than additive tensile strength and structural integrity. Thrombin acts as an autocrine/paracrine mediator that degrades these ECMs by augmenting decidual cell expression of: 1) matrix metalloproteinases and 2) interleukin-8, a key mediator of abruption-associated decidual infiltration of neutrophils, which express several ECM degrading proteases. Our recent observations that: 1) among the cell types at the maternal fetal interface at term TF expression is highest in decidual cells indicates that this TF meets the hemostatic demands of labor and delivery; 2) TF expression in cultured term decidual cells is enhanced by progestin and thrombin suggest that maintenance of elevated circulating progesterone at term provides hemostatic protection, whereas abruption-generated thrombin can act in autocrine/paracrine fashion on DCs to promote hemostasis via enhanced TF expression. PMID:19720393

  19. Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter.

    PubMed

    Reith, Frank; Drake, Harold L; Küsel, Kirsten

    2002-07-01

    Abstract The litter layer of forest soils harbors high amounts of labile organic matter, and anaerobic decomposition processes can be initiated when oxygen is consumed more rapidly than it is supplied by diffusion. In this study, two adjacent moderately acidic forest sites, a spruce and a beech-oak forest, were selected to compare the anaerobic bacterial and fungal activities and populations of conifer and deciduous leaf litter. Most probable number (MPN) estimates of general heterotrophic aerobes and anaerobes from conifer litter equaled those from deciduous leaf litter. H(2), ethanol, formate, and lactate were initially produced with similar rates in both anoxic conifer and deciduous leaf litter microcosms. These products were rapidly consumed in deciduous leaf but not in conifer litter microcosms. Supplemental ethanol and H(2) were consumed only by deciduous leaf litter and yielded additional amounts of acetate in stoichiometries indicative of ethanol- or H(2)-dependent acetogenesis. The negligible turnover of primary fermentation products in conifer litter might be due to the low numbers of acetogens and secondary fermenters present in conifer litter compared to deciduous leaf litter. Fungi capable of anaerobic growth made up only 0.01-0.1% of the total anaerobic microorganisms cultured from conifer and deciduous leaf litter, respectively. Metabolic product profiles obtained from the highest anoxic, growth-positive MPN dilutions supplemented with antibacterial agents indicated that the dominant population of fungi, apparently mainly yeast-like cells, produced H(2), ethanol, acetate, and lactate both in conifer and deciduous leaf litter. Thus, despite acidic conditions, bacteria appear to dominate in the decomposition of carbon in anoxic microsites of both conifer and deciduous leaf litter.

  20. Results of a workshop concerning impacts of various activities on the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Horak, Gerald C.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities related to the discharge of dredged or fill material into the Nation’s waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key policy questions. The first two workshops in the series were originally conceived as technically oriented meetings that would provide the information necessary to develop policy options at the third workshop. More specifically, the first workshop was designed to examine a zonation concept as a means of characterizing different BLH communities and describing variations in their functions along a soil moisture gradient. The second workshop was perceived as an attempt to evaluate the impacts of various activities on those functions. However, one conclusion of the first workshop, which was held in December 1984 in St. Francisville, Louisiana, was that the zonation approach does not describe the variability in the functions performed by BLH ecosystems sufficiently well to allow its use as the sole basis for developing a regulatory framework. That is, factors other than zone were considered critical for an effective

  1. Morphological and anthropological aspects of human triangular deciduous lower first molar teeth.

    PubMed

    Kitagawa, Y; Manabe, Y; Oyamada, J; Rokutanda, A

    1996-04-01

    The crown and root morphology, and bilateral occurrence of human deciduous lower first molars that exhibited a triangular occlusal outline, taken from excavated samples of Japanese, Jomonese and Iraqi origin, were investigated. The crowns of triangular teeth had smaller mesiodistal and larger buccolingual diameters than normally shaped deciduous lower first molars. An elongated buccolingual diameter was derived from the buccal projection of the distobuccal cusp and lingual projection of the portion between the metaconid and distolingual cusp. In this analysis, all triangular deciduous lower first molars in which root morphology could be observed were accompanied by additional distolingual roots. Correlation between the right- and left-hand sides of this trait was high.

  2. Restoration of Upland Hardwood Tree Species on the Formerly Cultivated Soils in the Coastal Plain of South Carolina

    SciTech Connect

    Jones, R.H.; Waldrop, T.A.

    2001-08-03

    The authors studied various approaches to restore upland hardwood species to formerly cultivated soils at the SRS. Studies with direct seedling were largely a failure and resulted in very low rates of establishment. Failure was a result of predation and drought. Growth and survival of planted oaks, dogwood and pine did not vary between hardwood overstory and pine overstory conditions. Soil trenching in a forty year old loblolly stand demonstrated dramatic increases in growth of planted oaks and dogwood. When compared, survival is similar if not slightly better when seedlings are planted in the understory of canopies vs. clearcuts. However, growth is better in recent clearcuts for dogwood and white oaks. Hickory does better underplanted.

  3. Operational restoration of the Pen Branch bottomland hardwood and swamp wetlands - the research setting

    SciTech Connect

    Nelson, E.A.

    2000-01-05

    The Savannah River Swamp is a 3020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS) near Aiken, SC. Historically the swamp consisted of approximately 50 percent bald cypress-water tupelo stands, 40 percent mixed bottomland hardwood stands, and 10 percent shrub, marsh, and open water. Creek corridors were typical of Southeastern bottomland hardwood forests. The hydrology was controlled by flooding of the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. Flow in one of the tributaries, Pen Branch, was typically 0.3 m3 s-1 (10-20) cfs prior to reactor pumping and 11.0 m3 s-1 (400 cfs) during pumping. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 65 degrees C. The nearly continuous flooding of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. In the years since pumping was reduced, early succession has begun in some affected areas. Most of this has been herbs, grasses, and shrubs. Areas that have seedlings are generally willow

  4. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions

    PubMed Central

    Sundaram, Mekala; Willoughby, Janna R.; Lichti, Nathanael I.; Steele, Michael A.; Swihart, Robert K.

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is

  5. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  6. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  7. Windows of opportunity: white-tailed deer and the dynamics of northern hardwood forests of the northeastern US

    USGS Publications Warehouse

    Sage, R.W.; Porter, W.F.; Underwood, H.B.

    2003-01-01

    Herbivory, lighting regimes, and site conditions are among the most important determinants of forest regeneration success, but these are affected by a host of other factors such as weather, predation, human exploitation, pathogens, wind and fire. We draw together > 50 years of research on the Huntington Wildlife Forest in the central Adirondack Mountains of New York to explore regeneration of northern hardwoods. A series of studies each of which focused on a single factor failed to identify the cause of regeneration failure. However, integration of these studies led to broader understanding of the process of forest stand development and identified at least three interacting factors: lighting regime, competing vegetation and selective browsing by white-tailed deer (Odocoileus virginianus). The diverse 100-200 year-old hardwood stands present today probably reflect regeneration during periods of low deer density (< 2.0 deer/km super(2)) and significant forest disturbance. If this hypothesis is correct, forest managers can mimic these 'natural windows of opportunity' through manipulation of a few sensitive variables in the system. Further, these manipulations can be conducted on a relatively small geographic scale. Control of deer densities on a scale of 500 ha and understory American beech (Fagus grandifolia) on a scale of < 100 ha in conjunction with an even-aged regeneration system consistently resulted in successful establishment of desirable hardwood regeneration.

  8. Ammonia emissions from deciduous forest after leaf fall

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Sørensen, L. L.; Hertel, O.; Geels, C.; Skjøth, C. A.; Jensen, B.; Boegh, E.

    2013-07-01

    The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of -0.25 ± 0.30 μg NH3-N m-2 s-1 to emission of up to 0.67 ± 0.28 μg NH3-N m-2 s-1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution

  9. Mercury in coniferous and deciduous upland forests in Northern New England, USA: implications from climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-07-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of this transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, US. Organic horizons at coniferous stands accumulated more Total Hg (THg) (42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiple regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. We estimated Hg mean residence time (MRT) in the organic and mineral horizons at coniferous and deciduous stands using a simple two-box model. Organic horizon MRT were longer at coniferous stands (183 ± 44 yr) than deciduous stands (65 ± 15 yr). Mineral soil horizon MRT values were also longer for coniferous stands (386 ± 57 yr) than for deciduous stands (188 ± 27 yr). We concluded that organic horizon Hg accumulation is influenced by vegetation type but mineral horizons are primarily affected by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  10. Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal.

    PubMed

    Mechmech, Fatma; Chadjaa, Hassan; Rahni, Mohamed; Marinova, Mariya; Ben Akacha, Najla; Gargouri, Mohamed

    2015-09-01

    The feasibility of using hardwood hemicellulosic pre-hydrolysate recovered from a dissolving pulping process for Acetone-Butanol-Ethanol (ABE) fermentation has been investigated. Dilutions and detoxification methods based on flocculation and nanofiltration were tested to determine the inhibitory concentration of phenolic compounds and to evaluate the efficiency of inhibitors removal on fermentation. Flocculation carried out with ferric sulfate was the most effective method for removal of phenolics (56%) and acetic acid (80%). The impact on fermentation was significant, with an ABE production of 6.40 g/L and 4.25 g/L when using flocculation or combined nanofiltration/flocculation respectively, as compared to a non-significant production for the untreated hydrolysate. By decreasing the toxicity effect of inhibitors, this study reports for the first time that the use of these techniques is efficient to increase the inhibitory concentration threshold of phenols, from 0.3g/L in untreated hydrolysate, to 1.1g/L in flocculated and in nanofiltrated and flocculated hydrolysates.

  11. Seasonal Variation in the Inputs and Fate of Mercury in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Wang, X.; Holsen, T.; Mao, H.

    2014-12-01

    Northern forest ecosystems are sensitive to atmospheric mercury deposition. In this study, we examined the fate of mercury inputs to the Huntington Wildlife Forest (HWF) of the Adirondack region of New York State, USA, by conducting a mercury mass budget over the annual cycle. Mercury exchange processes analyzed included wet deposition, dry deposition, foliar accumulation, throughfall, litterfall, soil evasion, and vertical and horizontal soil drainage loss. The mercury transport processes were quantified by integrating data collected from different sources over recent years (2004-2011). Dry mercury deposition (16.3 μg m-2 yr-1) was more important than wet mercury deposition (6.3 μg m-2 yr-1) at the HWF; most of the atmospheric mercury deposition (> 60%) was retained in the forest soils where litterfall (17.2 μg m-2 yr-1) was the major input pathway. Soil evasion (6.5 μg m-2 yr-1) was the most important mercury export mechanism, exceeding mercury fluxes in lateral and vertical drainage from soil (2.8 μg m-2 yr-1). Our analysis showed marked seasonal variation in the transfers of mercury largely mediated by annual canopy development of the forest ecosystem. The upland hardwood forest ecosystem was a net sink for atmospheric mercury deposition.

  12. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste.

  13. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste. PMID:27016683

  14. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    PubMed

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  15. Lead reduction and redistribution in the forest floor in New Hampshire northern hardwoods.

    PubMed

    Yanai, Ruth D; Ray, David G; Siccama, Thomas G

    2004-01-01

    Because of the affinity of organic matter for lead, atmospheric loadings of this pollutant have been strongly retained in the forest floor. With the regulation of Pb emissions, loadings have decreased. We measured changes in Pb in forest floor horizons at a variety of northern hardwood sites in New Hampshire from the late 1970s to the 1990s. In all seven of the sites in which horizons were distinguished within the forest floor, Pb was found to be declining in the upper (Oie) horizon, but not in the underlying Oa and A horizons. At the Hubbard Brook Experimental Forest (HBEF), this loss from the Oie resulted in a 36% loss of Pb from the forest floor as a whole between 1976 and 1997 (p < 0.001). In contrast, in six stands in the Bartlett Experimental Forest (BEF), losses of Pb averaging >50% from the Oi and Oe horizons (p = 0.01) between 1979 and 1994 were compensated by gains in the Oa and A horizons. Similarly, at seven additional stands in the White Mountain National Forest, changes in the forest floor as a whole from 1980 to 1995 were not statistically significant (redistribution within the forest floor was not evaluated at these sites). Lead concentrations were highest in the Oe or Oie in the 1970s, but were highest in the Oa horizon in the 1990s. There was no significant pattern of Pb loss or retention as a function of stand age across all the sites.

  16. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials

    PubMed Central

    2016-01-01

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition–fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o-methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties. PMID:27213117

  17. Development of hardwood seed zones for Tennessee using a geographic information system

    USGS Publications Warehouse

    Post, L.S.; Schlarbaum, S.E.; Van Manen, F.; Cecich, R.A.; Saxton, A.M.; Schneider, J.F.

    2003-01-01

    For species that have no or limited information on genetic variation and adaptability to nonnative sites, there is a need for seed collection guidelines based on biological, climatological, and/or geographical criteria. Twenty-eight hardwood species are currently grown for reforestation purposes at the East Tennessee State Nursery. The majority of these species have had no genetic testing to define guidelines for seed collection location and can be distributed to sites that have a very different environment than that of seed origin(s). Poor survival and/or growth may result if seedlings are not adapted to environmental conditions at the planting location. To address this problem, 30 yr of Tennessee county precipitation and minimum temperature data were analyzed and grouped using a centroid hierarchical cluster analysis. The weather data and elevational data were entered into a Geographic Information System (GIS) and separately layered over Bailey's Ecoregions to develop a seed zone system for Tennessee. The seed zones can be used as a practical guideline for collecting seeds to ensure that the resulting seedlings will be adapted to planting environments.

  18. Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie

    2014-01-01

    Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.

  19. Results of a community-university partnership to reduce deadly hazards in hardwood floor finishing.

    PubMed

    Azaroff, Lenore S; Nguyen, Hoa Mai; Do, Tuan; Gore, Rebecca; Goldstein-Gelb, Marcy

    2011-08-01

    A community-university partnership used community-based participatory research (CBPR) to design, implement, and evaluate a multi-cultural public health campaign to eliminate flammable products and reduce use of products high in volatile organic compounds (VOCs) in hardwood floor finishing in Massachusetts. Leading participants were Vietnamese-American organizations and businesses. Following the public health campaign, a multi-lingual survey of self-reported experiences with fires, product use, exposure to outreach activities, and changes made, was conducted with floor finishers. One hundred nine floor finishers responded. Over 40% reported fires at their companies' jobs, mostly caused by lacquer sealers. Over one third had heard radio or TV shows about health and safety in floor finishing, and over half reported making changes as a result of outreach. Exposure to various outreach activities was associated with reducing use of flammable products, increasing use of low-VOC products, and greater knowledge about product flammability. However, most respondents still reported using flammable products. Outreach led by community partners reached large proportions of floor finishers, was associated with use of safer products, and adds to recent work on CBPR with immigrant workers. Continued use of flammable products supports the belief that an enforceable ban was ultimately necessary to eradicate them. PMID:21267640

  20. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    PubMed Central

    Gaines, Katie P.; Stanley, Jane W.; Meinzer, Frederick C.; McCulloh, Katherine A.; Woodruff, David R.; Chen, Weile; Adams, Thomas S.; Lin, Henry; Eissenstat, David M.

    2016-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. PMID:26546366

  1. Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil

    SciTech Connect

    Moens, L.; Black, S. K.; Myers, M. D.; Czernik, S.

    2009-01-01

    Fast-pyrolysis bio-oil that is currently produced from lignocellulosic biomass in demonstration and semicommercial plants requires significant modification to become an acceptable transportation fuel. The high acidity and chemical instability of bio-oils render them incompatible with existing petroleum refinery processes that produce gasoline and diesel fuels. To facilitate the use of bio-oil as a feedstock in a traditional refinery infrastructure, there is considerable interest in upgrading bio-oils through chemical pathways that include converting the carboxylic acids and reactive carbonyl compounds into esters and acetals using low-cost alcohols. In this article, we discuss our observations with different approaches to esterification and etherification chemistry using a crude bio-oil derived from mixed hardwoods. The high water content in crude bio-oils (ca. 20?30%) creates equilibrium limitations in the condensation reactions that hamper the upgrading process in that the neutralization and stabilization steps cannot easily be driven to completion. The lowest acid number that we were able to obtain without causing serious degradation of the flow properties of the bio-oil had a total acid number of about 20, a value that is still too high for use in a traditional petroleum refinery.

  2. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  3. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    PubMed

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  4. Bottomland hardwood reforestation for neotropical migratory birds: are we missing the forest for the trees?

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.

    1997-01-01

    Reforestation of bottomland hardwoods on lands managed for wildlife or timber production has historically emphasized planting heavy-seeded oaks (Quercus spp.). Although techniques have been developed for successful oak establishment, these plantings often require 5 or more years before establishing a 3-dimensional forest structure. We suggest that lands planted to fast-growing early-successional species, in combination with oaks, provide: (1) more expedient benefits to Neotropical migratory birds; (2) greater forest diversity; (3) more rapid economic return to landowners; and (4) enhanced public relations. Under good growing conditions, and with effective weed control, some fast-growing species can develop a substantial 3-dimensional forest structure in as few as 2 or 3 years. Forest-breeding Neotropical migratory birds use stands planted with early successional species several years before sites planted solely with oaks. Where desirable, succession to forests with a high proportion of oak species can be achieved on sites initially planted with fast-growing species through silvicultural management.

  5. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    SciTech Connect

    Michael D. Ulyshen; James L. Hanula; Scott Horn; Christopher E. Moorman.

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance or species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.

  6. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  7. Results of a community-university partnership to reduce deadly hazards in hardwood floor finishing.

    PubMed

    Azaroff, Lenore S; Nguyen, Hoa Mai; Do, Tuan; Gore, Rebecca; Goldstein-Gelb, Marcy

    2011-08-01

    A community-university partnership used community-based participatory research (CBPR) to design, implement, and evaluate a multi-cultural public health campaign to eliminate flammable products and reduce use of products high in volatile organic compounds (VOCs) in hardwood floor finishing in Massachusetts. Leading participants were Vietnamese-American organizations and businesses. Following the public health campaign, a multi-lingual survey of self-reported experiences with fires, product use, exposure to outreach activities, and changes made, was conducted with floor finishers. One hundred nine floor finishers responded. Over 40% reported fires at their companies' jobs, mostly caused by lacquer sealers. Over one third had heard radio or TV shows about health and safety in floor finishing, and over half reported making changes as a result of outreach. Exposure to various outreach activities was associated with reducing use of flammable products, increasing use of low-VOC products, and greater knowledge about product flammability. However, most respondents still reported using flammable products. Outreach led by community partners reached large proportions of floor finishers, was associated with use of safer products, and adds to recent work on CBPR with immigrant workers. Continued use of flammable products supports the belief that an enforceable ban was ultimately necessary to eradicate them.

  8. Changes in forest floor composition and chemistry along an invasive earthworm gradient in a hardwood forest

    NASA Astrophysics Data System (ADS)

    Jourdain, J. N.; Filley, T. R.; Top, S. M.; Thayer, C.; Johnson, A.; Jenkins, M.; Welle, P.; Zurn-Birkhimer, S.; Kroeger, T.; Gemscholars

    2010-12-01

    Recent studies have demonstrated how invasive European earthworm species have caused large and long lasting perturbations to forest floor dynamics and soil composition in many northern hardwood forests. The type of perturbation is driven primarily by the composition and activity of the invasive species and the original state of the forest system. Over the past 4 years we have investigated an invasive earthworm front moving through the Ojibwa Red Lake Reservation (Minnesota). Significant shifts in litter and organic horizon mass were observed, similar to other gradients identified in the region, but the species of earthworms exhibited differences compared to other reservation lands in the region--possibly driven by the availability of recreation fishing near to the sites. Sharp gradients in earthworm abundance were observed exhibiting shifts from 600- 900 individuals per meter square to no observed worms within only 500 meters. The gradients in earthworm activity also influenced decay rates of litter, as was observed by placement of litter decay bags across the gradient. Our findings demonstrate the tenuous nature of many tribal reservation forests and point to the need for policies to address spread on such species to minimize impacts to soil carbon stocks as well as culturally important plant species.

  9. Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse.

    PubMed

    Fontana, Vanina; Coll, Tamara A; Sobarzo, Cristian M A; Tito, Leticia Perez; Calvo, Juan Carlos; Cebral, Elisa

    2012-10-01

    During early placentation, matrix metalloproteinases (MMPs) play important roles in decidualization, trophoblast migration, invasion, angiogenesis, vascularization and extracellular matrix (ECM) remodeling of the endometrium. The aim of our study was to analyze the localization, distribution and differential expression of MMP-2 and -9 in the organogenic implantation site and to evaluate in vivo and in vitro decidual MMP-2 and -9 activities on day 10 of gestation in CF-1 mouse. Whole extracts for Western blotting of organogenic E10-decidua expressed MMP-2 and -9 isoforms. MMP-2 immunoreactivity was found in a granular and discrete pattern in ECM of mesometrial decidua (MD) near maternal blood vessels and slightly in non-decidualized endometrium (NDE). Immunoexpression of MMP-9 was also detected in NDE, in cytoplasm of decidual cells and ECM of vascular MD, in trophoblastic area and in growing antimesometrial deciduum. Gelatin zymography showed that MMP-9 activity was significantly lower in CM compared to the active form of direct (not cultured) and cultured decidua. The decidual active MMP-9 was significantly higher than the active MMP-2. These results show differential localization, protein expression and enzymatic activation of MMPs, suggesting specific roles for MMP-2 and MMP-9 in decidual and trophoblast tissues related to organogenic ECM remodeling and vascularization during early establishment of mouse placentation. PMID:22714107

  10. Intracrine Androgens Enhance Decidualization and Modulate Expression of Human Endometrial Receptivity Genes.

    PubMed

    Gibson, Douglas A; Simitsidellis, Ioannis; Cousins, Fiona L; Critchley, Hilary O D; Saunders, Philippa T K

    2016-01-01

    The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1-8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (5α-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/DHT. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment. PMID:26817618

  11. Endometrial glands are essential for blastocyst implantation and decidualization in the mouse uterus.

    PubMed

    Filant, Justyna; Spencer, Thomas E

    2013-04-01

    Uterine glands and their secretions are hypothesized to be essential for blastocyst implantation and decidualization in the uterus of rodents and humans. One factor solely expressed by uterine glands in mice is leukemia inhibitory factor (LIF), and Lif null mice are infertile because of defective blastocyst attachment to the uterine luminal epithelium (LE). Progesterone treatment of neonatal mice permanently ablates differentiation of uterine glands, resulting in an aglandular uterus in the adult. Progesterone-induced uterine gland knockout (PUGKO) mice were used to investigate the biological role of uterine glands in blastocyst implantation and stromal cell decidualization. As compared to controls, PUGKO mice cycled normally but were infertile. Histological assessment of PUGKO uteri on Days 5.5 and 8.5 postmating found a hatched blastocyst apposed to an intact LE without evidence of implantation or stromal cell decidualization. Expression of several implantation-related factors, including Lif and PTGS2, were altered in the PUGKO uterus, whereas expression of steroid hormone receptors and their regulated genes was not different. Artificial decidualization was observed in the uteri of control but not PUGKO mice. Further, intrauterine administration of LIF failed to promote artificial decidualization in the uterus of PUGKO mice. Thus, uterine glands and their secretions have important biological roles in blastocyst implantation and stromal cell decidualization in the uterus.

  12. Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-11-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of such a transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, USA. Organic horizons at coniferous stands accumulated more total Hg (THg; 42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiply regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. Using allometric equations, we estimated that aboveground accumulation of Hg in foliage and woody biomass was similar between vegetation types but that coniferous stands have significantly smaller annual litterfall fluxes (0.03 g ha-1 yr-1) than deciduous stands (0.24 g ha-1 yr-1). We conclude that organic horizon Hg accumulation is influenced by vegetation type but mineral horizon Hg accumulation is primarily controlled by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  13. Anandamide and decidual remodelling: COX-2 oxidative metabolism as a key regulator.

    PubMed

    Almada, M; Piscitelli, F; Fonseca, B M; Di Marzo, V; Correia-da-Silva, G; Teixeira, N

    2015-11-01

    Recently, endocannabinoids have emerged as signalling mediators in reproduction. It is widely accepted that anandamide (AEA) levels must be tightly regulated, and that a disturbance in AEA levels may impact decidual stability and regression. We have previously characterized the endocannabinoid machinery in rat decidual tissue and reported the pro-apoptotic action of AEA on rat decidual cells. Cyclooxygenase-2 (COX-2) is an inducible enzyme that plays a crucial role in early pregnancy, and is also a key modulator in the crosstalk between endocannabinoids and prostaglandins. On the other hand, AEA-oxidative metabolism by COX-2 is not merely a mean to inactivate its action, but it yields the formation of a new class of mediators, named prostaglandin-ethanolamides, or prostamides. In this study we found that AEA-induced apoptosis in decidual cells involves COX-2 metabolic pathway. AEA induced COX-2 expression through p38 MAPK, resulting in the formation of prostamide E2 (PME2). Our findings also suggest that AEA-induced effect is associated with NF-kB activation. Finally, we describe the involvement of PME2 in the induction of the intrinsic apoptotic pathway in rat decidual cells. Altogether, our findings highlight the role of COX-2 as a gatekeeper in the uterine environment and clarify the impact of the deregulation of AEA levels on the decidual remodelling process. PMID:26335727

  14. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Isebrands, J. G.; Guenther, A. B.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C 5H 8) was the primary VOC emitted, although significant quantities of monoterpenes (C 10H 16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m -2 s -1) were from northern red oak ( Quercus rubra, >110 μg(C) g -1 h -1); aspen ( Populus tremuloides, >77); willow ( Salix spp., >54); and black spruce ( Picea mariana, >10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g -1 h -1 at 25°C; those of Picea provenances were generally <10, and emission rates of a hybrid between North American and European spruces were intermediate to parental rates. More than 30 species of plants were surveyed from the sites, including several from previously unstudied

  15. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera.

  16. Deciduous tooth growth in an ancient Greek infant cemetery.

    PubMed

    Fitzgerald, Charles; Hillson, Simon

    2009-01-01

    The Kylindra cemetery on Astypalaia in the Dodecanese, in use 750 BC to 1st century AD, contains a unique skeletal collection. Over 2,400 infant inhumations, each buried in its own clay pot, have been uncovered so far. The skeletal material from each burial is embedded within a ball of accreted earth and since 2001, some 850 infant remains have been recovered and conserved. Most of these died perinatally, but some were very premature babies and some appear to have survived for several months after birth. A study to estimate ages at death of 277 teeth from 107 infants, using microstructural growth markers, is currently underway. One immediate objective is to help resolve the enigma of why such an unusually large number of infants were interred on such a remote Aegean island. Longer term objectives are to reconstruct the sequences of development of the different deciduous tooth types, providing new standards of growth for long bones, the skull and the dentition. This paper presents an interim report on the findings from the histological study, which has analysed 68 teeth from 36 individuals so far. Five of the 36 infants survived birth, three dying within the first 3 weeks of life and the other two surviving for about 3 months. Average appositional growth rates were found to be 3.6 microm/day, and initial mineralisation was found to be well below the figures in Sunderland and coworkers' study in 1987.

  17. Infrasonic wind noise under a deciduous tree canopy.

    PubMed

    Webster, Jeremy; Raspet, Richard

    2015-05-01

    In a recent paper, the infrasonic wind noise measured at the floor of a pine forest was predicted from the measured wind velocity spectrum and profile within and above the trees [Raspet and Webster, J. Acoust. Soc. Am. 137, 651-659 (2015)]. This research studies the measured and predicted wind noise under a deciduous forest with and without leaves. A calculation of the turbulence-shear interaction pressures above the canopy predicts the low frequency peak in the wind noise spectrum. The calculated turbulence-turbulence interaction pressure due to the turbulence field near the ground predicts the measured wind noise spectrum in the higher frequency region. The low frequency peak displays little dependence on whether the trees have leaves or not. The high frequency contribution with leaves is approximately an order of magnitude smaller than the contribution without leaves. Wind noise levels with leaves are very similar to the wind noise levels in the pine forest. The calculated turbulence-shear contribution from the wind within the canopy is shown to be negligible in comparison to the turbulence-turbulence contribution in both cases. In addition, the effect of taller forests and smaller roughness lengths than those of the test forest on the turbulence-shear interaction is simulated based on measured meteorological parameters.

  18. Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities.

    PubMed

    Stuble, Katharine L; Rodriguez-Cabal, Mariano A; McCormick, Gail L; Jurić, Ivan; Dunn, Robert R; Sanders, Nathan J

    2013-04-01

    Ecologists have long sought to explain the coexistence of multiple potentially competing species in local assemblages. This is especially challenging in species-rich assemblages in which interspecific competition is intense, as it often is in ant assemblages. As a result, a suite of mechanisms has been proposed to explain coexistence among potentially competing ant species: the dominance-discovery tradeoff, the dominance-thermal tolerance tradeoff, spatial segregation, temperature-based niche partitioning, and temporal niche partitioning. Through a series of observations and experiments, we examined a deciduous forest ant assemblage in eastern North America for the signature of each of these coexistence mechanisms. We failed to detect evidence for any of the commonly suggested mechanisms of coexistence, with one notable exception: ant species appear to temporally partition foraging times such that behaviourally dominant species foraged more intensely at night, while foraging by subdominant species peaked during the day. Our work, though focused on a single assemblage, indicates that many of the commonly cited mechanisms of coexistence may not be general to all ant assemblages. However, temporal segregation may play a role in promoting coexistence among ant species in at least some ecosystems, as it does in many other organisms.

  19. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera. PMID:26911160

  20. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition

    PubMed Central

    Shi, Weihua; Qin, Man; Chen, Feng; Xia, Bin

    2016-01-01

    Objectives The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity. Methods Supragingival plaque samples of teeth in various locations—the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors—were collected from 20 healthy mixed-dentition-stage children with 10–12 permanent teeth erupted. Plaque DNA was extracted, and the V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing. Results On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria) were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships. Conclusion Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age. PMID:26752284

  1. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice.

    PubMed

    Geng, Yanqing; Gao, Rufei; Chen, Xuemei; Liu, Xueqing; Liao, Xinggui; Li, Yanli; Liu, Shangjing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-11-01

    Existing evidence suggests that adverse pregnancy outcomes are closely related with dietary factors. Previous studies in mice have focused on the harm of folate deficiency (FD) on development of embryo, while the effect of low maternal folate levels on maternal intrauterine environment during early pregnancy remains unclear. Since our previous study found that FD treatment of mice causes no apparent defects in embryo implantation but is accompanied by female subfertility, we next chose to investigate a potential role of FD on molecular events after implantation. We observed that the decidual bulges began to be stunted on pregnancy day 6. The results of functional experiments in vivo and in vitro showed that FD inhibited the process of endometrial decidualization. It has been confirmed that DNA methylation participates in decidualization, and folate as a methyl donor could change the methylation patterns of genes. Thus, we hypothesized that FD impairs maternal endometrial decidualization by altering the methylation profiles of related genes. Reduced representation bisulphite sequencing was carried out to detect the methylation profiles of endometrium on pregnancy day 6-8, which is equivalent to the decidualization period in mice. The results confirmed that FD changes the methylation patterns of genome, and GO analysis of the differentially methylated regions revealed that the associated genes mainly participate in biological adhesion, biological regulation, cell proliferation, development, metabolism and signalling. In addition, we found some candidates for regulators of decidual transformation, such as Nr1h3 and Nr5a1. The data indicate that FD inhibits decidualization, possibly by altering methylation patterns of the genome in mice. PMID:26246607

  2. On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective.

    PubMed

    Baldocchi, Dennis D; Ma, Siyan; Rambal, Serge; Misson, Laurent; Ourcival, Jean-Marc; Limousin, Jean-Marc; Pereira, Joao; Papale, Dario

    2010-09-01

    We assessed the differential advantages of deciduousness and evergreenness by examining 26 site-years of carbon dioxide, water vapor, and energy flux measurements from five comparable oak woodlands in France, Italy, Portugal, and California (USA). On average, the evergreen and deciduous oak woodlands assimilated and respired similar amounts of carbon while using similar amounts of water. These results suggest that evergreen and deciduous woodlands have specific, and similar, ecological costs in mediterranean climates, and that both leaf habits are able to meet these costs. What are the mechanisms behind these findings? Deciduous oaks compensated for having a shorter growing season by attaining a greater capacity to assimilate carbon for a given amount of intercepted solar radiation during the well-watered spring period; at saturating light levels, deciduous oaks gained carbon at six times the rate of evergreen oaks. Otherwise, the two leaf habits experienced similar efficiencies in carbon use (the change in carbon respired per change in carbon assimilated), water use (the change in carbon assimilation per change in water evaporated), and rainfall use (the change in evaporation per change in rainfall). Overall, leaf area index, rather than leaf habit, was the significant factor in determining the absolute magnitude of carbon gained and water lost by each evergreen and deciduous oak woodland over an annual interval; the closed canopies assimilated and respired more carbon and transpired more water than the open canopies. Both deciduous and evergreen mediterranean oaks survive in their seasonally hot/dry, wet/ cool native range by ensuring that actual evaporation is less than the supply of water. This feat is accomplished by adjusting the leaf area index to reduce total water loss at the landscape scale, by down-regulating photosynthesis, respiration, and stomatal conductance with progressive seasonal soil water deficits, and by extending their root systems to tap

  3. Development of understory vegetation in pine and pine-hardwood shelterwood stands in the Ouachita mountains: The first 3 years. Forest Service research paper

    SciTech Connect

    Shelton, M.G.

    1997-09-01

    The shelterwood reproduction cutting method using two overstory compositions (a pine basal area of 30 square feet per acre with and without 15 square feet per acre of hardwoods) and two methods of submerchantable hardwood control (chain-saw felling with and without stump-applied herbicide) was tested in a 2x2 factorial, split-plot design with four randomized complete blocks. Total coverage of understory vegetation after 3 years was greater in the pine overstory treatment (68 percent) than in the pine-hardwood overstory treatment (46 percent) and was slightly greater for manual than chemical hardwood control (60 versus 55 percent). Results indicate that 15 square feet per acre of scattered hardwoods can be retained through at least 3 years after harvest, but additional monitoring will be needed to determine the long-term success of reproduction. Early results suggest that the herbicide treatment was not justified in the stand and site conditions tested in this study; contributing factors were the abundant pine seed production and low levels of competing vegetation.

  4. Developing a topographic model to predict the northern hardwood forest type within Carolina northern flying squirrel (Glaucomys sabrinus coloratus) recovery areas of the southern Appalachians

    USGS Publications Warehouse

    Evans, Andrew; Odom, Richard H.; Resler, Lynn M.; Ford, W. Mark; Prisley, Stephen

    2014-01-01

    The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.

  5. Social Insects Dominate Eastern US Temperate Hardwood Forest Macroinvertebrate Communities in Warmer Regions

    PubMed Central

    King, Joshua R.; Warren, Robert J.; Bradford, Mark A.

    2013-01-01

    Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079

  6. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. PMID:26009473

  7. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape

    PubMed Central

    Wang, Wen J.; He, Hong S.; Spetich, Martin A.; Shifley, Stephen R.; Thompson III, Frank R.; Fraser, Jacob S.

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition) would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak decline. PMID

  8. Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-09-01

    The invasion of exotic earthworms into northern temperate and boreal forests previously devoid of earthworms is an important driver of ecosystem change. Earthworm invasion can cause significant changes in soil structure and communities, nutrient cycles, and the diversity and abundance of herbaceous plants. However, the regional extent and patterns of this invasion are poorly known. We conducted a regional survey in the Chippewa and Chequamegon National Forests, in Minnesota and Wisconsin, U.S.A., respectively, to measure the extent and patterns of earthworm invasion and their relationship to potential earthworm introduction sites. We sampled earthworms, soils, and vegetation in 20 mature, sugar maple-dominated forest stands in each national forest and analyzed the relationship between the presence of five earthworm taxonomic groups, habitat variables, and distance to the nearest potential introduction site. Earthworm invasion was extensive but incomplete in the two national forests. Four of the six earthworm taxonomic groups occurred in 55-95% of transects; however 20% of all transects were invaded by only one taxonomic group that has relatively minor ecological effects. Earthworm taxonomic groups exhibited a similar sequence of invasion found in other studies: Dendrobaena > Aporrectodea = Lumbricus juveniles > L. rubellus > L. terrestris. Distance to the nearest road was the best predictor of earthworm invasion in Wisconsin while distance to the nearest cabin was the best predictor in Minnesota. These data allow us to make preliminary assessments of landscape patterns of earthworm invasion. As an example, we estimate that 82% of upland mesic hardwood stands in the Wisconsin region are likely invaded by most taxonomic groups while only 3% are unlikely to be invaded at present. Distance to roads and cabins provides a coarse-scale predictor of earthworm invasion to focus stand-level assessments that will help forest managers better understand current and potential

  9. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous. PMID:19880302

  10. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    SciTech Connect

    Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  11. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated.

  12. Hubbard Brook Ecosystem Study: biogeochemistry of lead in the northern hardwood forest

    SciTech Connect

    Smith, W.; Siccama, T.G.

    1981-09-01

    The average annual Pb input to the northern hardwood forest at the Hubbard Brook Experimental Forest in central New Hampshire was 266 g ha/sup -1/ year /sup -1/ based on 4 years of records. Lead output via streamwater and eroded particulate matter was 5.0 and 1.1 g ha/sup -1/ year/sup -1/, respectively. Lead concentration in precipitation averaged 22 ..mu..g liter/sup -1/ and showed a significant decline over the 4 sample years (1975 to 1978). Lead input to the ecosystem via meteorological vectors is accumulated in the forest floor. Total current Pb content of the forest floor was 8.6 kg ha/sup -1/ and showed no significant differences along the elevation gradient of the watershed (400 to 800 m). Lead concentration in the forest floor was maximum on the ridge due to a minimum forest floor mass relative to the rest of the watershed. Within the forest floor, maximum Pb concentration is in the fermented (F) layer. Total Pb content of the forest biomass (stems greater than or equal to 10 cm dbh) was 1248 g ha/sup -1/. Lead concentration in the biota was in the following order: lichens (213 ..mu..g g/sup -1/) > mosses (190 ..mu..g g/sup -1/) tree twigs (26 ..mu..g g/sup -1/) > roots (20 ..mu..g g/sup -1/) > bark (19 ..mu..g g/sup -1/) > leaves (7 ..mu..g g/sup -1/) = bracket fungi (7 ..mu..g g/sup -1/) > wood (0.7 ..mu..g g/sup -1/). Disturbance of the forest ecosystem through harvest cutting, other than through increased runoff, increased erosion, and transport of particulate matter, does not alter the biogeochemistry of Pb and does not result in increased mobility and export of Pb due to gross or subtle alterations of the behavior of Pb in the ecosystem.

  13. Nitrogen biogeochemistry in the Adirondack Mountains of New York: hardwood ecosystems and associated surface waters.

    PubMed

    Mitchell, Myron J; Driscoll, Charles T; Inamdar, Shreeram; McGee, Greg G; Mbila, Monday O; Raynal, Dudley J

    2003-01-01

    Studies on the nitrogen (N) biogeochemistry in Adirondack northern hardwood ecosystems were summarized. Specific focus was placed on results at the Huntington Forest (HFS), Pancake-Hall Creek (PHC), Woods Lake (WL), Ampersand (AMO), Catlin Lake (CLO) and Hennessy Mountain (HM). Nitrogen deposition generally decreased from west to east in the Adirondacks, and there have been no marked temporal changes in N deposition from 1978 through 1998. Second-growth western sites (WL, PHC) had higher soil solution NO(3-) concentrations and fluxes than the HFS site in the central Adirondacks. Of the two old-growth sites (AMO and CLO), AMO had substantially higher NO(3-) concentrations due to the relative dominance of sugar maple that produced litter with high N mineralization and nitrification rates. The importance of vegetation in affecting N losses was also shown for N-fixing alders in wetlands. The Adirondack Manipulation and Modeling Project (AMMP) included separate experimental N additions of (NH4)2SO4 at WL, PHC and HFS and HNO3 at WL and HFS. Patterns of N loss varied with site and form of N addition and most of the N input was retained. For 16 lake/watersheds no consistent changes in NO(3-) concentrations were found from 1982 to 1997. Simulations suggested that marked NO(3-) loss will only be manifested over extended periods. Studies at the Arbutus Watershed provided information on the role of biogeochemical and hydrological factors in affecting the spatial and temporal patterns of NO(3-) concentrations. The heterogeneous topography in the Adirondacks has generated diverse landscape features and patterns of connectivity that are especially important in regulating the temporal and spatial patterns of NO(3-) concentrations in surface waters.

  14. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    SciTech Connect

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  15. Avian response to microclimate in canopy gaps in a bottomland hardwood forest.

    SciTech Connect

    Champlin, Tracey B.; Kilgo, John C.; Gumpertz, Marcia L.; Moorman, Christopher E.

    2009-04-01

    Abstract - Microclimate may infl uence use of early successional habitat by birds. We assessed the relationships between avian habitat use and microclimate (temperature, light intensity, and relative humidity) in experimentally created canopy gaps in a bottomland hardwood forest on the Savannah River Site, SC. Gaps were 2- to 3-year-old group-selection timber harvest openings of three sizes (0.13, 0.26, 0.50 ha). Our study was conducted from spring through fall, encompassing four bird-use periods (spring migration, breeding, post-breeding, and fall migration), in 2002 and 2003. We used mist netting and simultaneously recorded microclimate variables to determine the influence of microclimate on bird habitat use. Microclimate was strongly affected by net location within canopy gaps in both years. Temperature generally was higher on the west side of gaps, light intensity was greater in gap centers, and relative humidity was higher on the east side of gaps. However, we found few relationships between bird captures and the microclimate variables. Bird captures were inversely correlated with temperature during the breeding and postbreeding periods in 2002 and positively correlated with temperature during spring 2003. Captures were high where humidity was high during post-breeding 2002, and captures were low where humidity was high during spring 2003. We conclude that variations in the local microclimate had minor infl uence on avian habitat use within gaps. Instead, habitat selection in relatively mild regions like the southeastern US is based primarily on vegetation structure, while other factors, including microclimate, are less important.

  16. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree

  17. Supplemental planting of early successional tree species during bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Outcalt, Kenneth W.

    2002-01-01

    Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These species are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional tree species often enhance vertical structure, few of these species invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation trees. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing trees: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, tree patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant trees was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. Tree heights did not differ between species or among weed control treatments. Girdling of trees by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via tree shelters did not improve survival or vertical development of sycamore or cottonwood.

  18. Climate change and the future of natural disturbances in the central hardwood region

    SciTech Connect

    Dale, Virginia H; Hughes, M. Joseph; Hayes, Daniel J

    2015-01-01

    The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel

  19. Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest.

    PubMed

    Melvin, April M; Lichstein, Jeremy W; Goodale, Christine L

    2013-12-01

    In acid-impacted forests, decreased soil pH and calcium (Ca) availability have the potential to influence biotic and abiotic controls on carbon (C) and nitrogen (N) cycling. We investigated the effects of liming on above- and belowground C and N pools and fluxes 19 years after lime addition to the Woods Lake Watershed, Adirondack Park, New York, USA. Soil pH and exchangeable Ca remained elevated in the forest floor and upper mineral soil of limed areas. Forest floor C and N stocks were significantly larger in limed plots (68 vs. 31 Mg C/ha, and 3.0 vs. 1.5 Mg N/ha), resulting from a larger mass of Oa material. Liming reduced soil basal respiration rates by 17% and 43% in the Oe and Oa horizons, respectively. Net N mineralization was significantly lower in the limed soils for both forest floor horizons. Additional measurements of forest floor depth outside of our study plots, but within the treatment and control subcatchments also showed a deeper forest floor in limed areas; however, the mean depth of limed forest floor was 5 cm shallower than that observed in our study plots. Using a differential equation model of forest floor C dynamics, we found that liming effects on C fluxes measured within our study plots could explain the small observed increase in the Oe C stock but were not large enough to explain the increase in the Oa. Our catchment-wide assessment of forest floor depth, however, indicates that our plot analysis may be an overestimate of ecosystem-scale C and N stocks. Our results suggest that the mechanisms identified in our study, primarily liming-induced reduction in decomposition rates, may account for much of the observed increase in forest floor C. These findings emphasize the importance of understanding of the effects of liming in hardwood forests, and the long-term impacts of acid deposition on forest C and N uptake and retention.

  20. Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia

    USGS Publications Warehouse

    Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M.

    2010-01-01

    Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe gap-phase dynamics of even-aged, second-growth red spruce-northern hardwood stands in West Virginia that have been significantly degraded following early Twentieth Century harvesting and wildfire. In the current stage of stand development, gaps tended to be small, with mean canopy gap and extended canopy gap sizes of 53.4m2 and 199.3m2, respectively, and a canopy turnover rate of 1.4%year-1. The majority of gaps resulted from the death of one or two trees. American beech snags were the most frequent gap maker, partially due to the elevated presence of beech-bark disease in the study area. Gaps ranged in age from 1 to 28 years, had a mean of 13 years, and were unimodal in distribution. We projected red spruce to be the eventual gap filler in approximately 40% of the gaps. However, we estimated that most average-sized gaps will close within 15-20 years before red spruce canopy ascension is projected (30-60 years). Accordingly, many understory red spruce will require more than one overhead release - an observation verified by the tree-ring record and consistent with red spruce life history characteristics. Based on our observations, silvicultural prescriptions that include overhead release treatments such as thinning from above or small gap creation through selection harvesting could be an appropriate activity to foster red spruce restoration in the central Appalachians. ?? 2010 Elsevier B.V.

  1. Crossing the pedogenetic threshold: Apparent phosphorus limitation by soil microorganisms in unglaciated acidic eastern hardwood forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Smemo, K. A.; Burke, D. J.

    2010-12-01

    The availability of soil phosphorus (P) can significantly influence microbial community composition and the ecosystem-level processes they mediate. However, the threshold at which soil microorganisms become functionally P-limited is unclear because of soil acidity effect on P availability. We reason that acidic temperate hardwood forest ecosystems are, in fact, functionally P-limited, but compensation occur via soil microbial production of phosphatase enzymes. We tested this hypothesis in glaciated and unglaciated mature mixed-mesophytic forests in eastern Ohio where both soil pH and P availability had been experientially manipulated. We measured the activity of two P acquiring soil enzymes, phosphomonoesterase (PMono) and phosphodiesterase (PDi), to understand how soil acidity and available P influence microbial function. Our experimental treatments elevated ambient soil pH from below 4.5 to around 5.5 and increased readily available phosphate from 3 to ~25 mg P/kg on glaciated soils and from 0.5 to ~5 mg P/kg on unglaciated soils. The P treatment decreased the activity of PDi by 82% relative to the control on unglaciated soils, but we observed no P treatment effect on glaciated soils. A similar result was observed for PMono. Soil pH, alone, did not significantly influence enzyme activities. Results suggest that soil microorganisms are more likely to be P-limited in older unglaciated soils. However, dramatically higher phosphatase activity in response to very low P availability suggests that an underlying ecosystem P limitation can be ameliorated by soil microbial community dynamics. This mechanism may be more important for older, unglaciated soils that have already crossed a pedogenic threshold where P availability influences ecosystem and microbial function.

  2. Fluxes of Ultrafine Particles Over and In a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.

    2013-12-01

    Given the importance of forests to land surface cover and particle removal (due to the very high deposition velocities and well-developed turbulence) there is a specific need to understand removal to, and in, forests. Fluxes of size-resolved and total particle number fluxes over (at 46 m) and in (at 7 m) a deciduous forest over a 14 month period are presented based on data from two Gill 3-D WindMaster Pro sonic anemometers, an Ultrafine Condensation Particle Counter (UCPC) operated at 10 Hz and a Fast Mobility Particle Sizer (FMPS) operated at 1 Hz. Size-resolved particle profiles during the same period are measured using a separate FMPS scanning at three measurement heights across the canopy (top, middle and bottom). Three methods are being applied to derive the total number and size-resolved fluxes from the UCPC and FMPS respectively; eddy covariance, inertial dissipation and the co-spectral approach. The results are integrated with fluxes of sensible heat, momentum and carbon dioxide derived using a Licor LI-7200. Results for the total number flux concentrations and the size-resolved concentrations derived using the three different approaches applied to the above canopy sampling level show a high degree of accord, but that the eddy-covariance fluxes are generally of smaller magnitude than those derived using the spectral methods. In keeping with prior research our results show a considerable number of fluxes are characterized by upward fluxes. Further our results show distinctly different flux diurnal profiles for the nucleation versus Aitken mode particles indicating some differential control on fluxes of particles of different sizes (including a role for aerosol dynamics). This presentation will provide details regarding the experimental approach, flux and gradient estimation methodologies, diagnose the size dependence of the fluxes, and compare and contrast the canopy and ground partitioning of the particle fluxes during leaf-on and leaf-off periods.

  3. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  4. How strong is intracanopy leaf plasticity in temperate deciduous trees?

    PubMed

    Sack, Lawren; Melcher, Peter J; Liu, Wendy H; Middleton, Erin; Pardee, Tyler

    2006-06-01

    Intracanopy plasticity in tree leaf form is a major determinant of whole-plant function and potentially of forest understory ecology. However, there exists little systematic information for the full extent of intracanopy plasticity, whether it is linked with height and exposure, or its variation across species. For arboretum-grown trees of six temperate deciduous species averaging 13-18 m in height, we quantified intracanopy plasticity for 11 leaf traits across three canopy locations (basal-interior, basal-exterior, and top). Plasticity was pronounced across the canopy, and maximum likelihood analyses indicated that plasticity was primarily linked with irradiance, regardless of height. Intracanopy plasticity (the quotient of values for top and basal-interior leaves) was often similar across species and statistically indistinguishable across species for several key traits. At canopy tops, the area of individual leaves was on average 0.5-0.6 times that at basal-interior, stomatal density 1.1-1.5 times higher, sapwood cross-sectional area up to 1.7 times higher, and leaf mass per area 1.5-2.2 times higher; guard cell and stomatal pore lengths were invariant across the canopy. Species differed in intracanopy plasticity for the mass of individual leaves, leaf margin dissection, ratio of leaf to sapwood areas, and stomatal pore area per leaf area; plasticity quotients ranged only up to ≈2. Across the six species, trait plasticities were uncorrelated and independent of the magnitude of the canopy gradient in irradiance or height and of the species' light requirements for regeneration. This convergence across species indicates general optimization or constraints in development, resulting in a bounded plasticity that improves canopy performance.

  5. How phenology influences physiology in deciduous forest spring ephemerals.

    PubMed

    Lapointe, Line

    2001-10-01

    Spring ephemerals of deciduous forest are adapted to take advantage of the high-light period available in early spring. They appear shortly after snow melt and complete their aboveground growth, including fruit production, within 2 months. After they produce new buds, they senesce and enter dormancy. Dormancy is not very deep in spring ephemerals and during summer differentiation occurs in the bud of the apparently resting organ. Low soil temperatures release dormancy, and the shoots and roots then grow slowly over autumn and winter. The goal of this paper is to show how this characteristic phenology influences many aspects of spring ephemerals' physiology, and the influences these different physiological parameters have on each other. Spring ephemerals have high photosynthetic rates that allow them to rapidly accumulate carbohydrates and complete their aboveground growth in a few weeks. To sustain high photosynthetic rates in early spring, the plants must be able to absorb water efficiently at low soil temperatures and to allocate large amounts of nutrients to the shoot to compensate for lower enzymatic activity at low temperatures. Nutrients are mainly absorbed in spring, although the root system is established in autumn. This means that a large amount of both carbohydrates and nutrients is translocated from the perennial organ to the developing shoot starting in autumn through early spring. Spring ephemerals have low nutrient absorption rates, but high resorption efficiency during leaf senescence. Nevertheless, their high nutrient needs restrict them to rich forest soils. The annual growth rate of spring ephemerals is very slow and this is more likely related to the inherent slow growth rate of the perennial organ than to their short leaf life. As soon as carbohydrate reserves are replenished in spring, sink limitation apparently builds up and induces leaf senescence. A better understanding of the factors controlling the growth rate of spring ephemerals is

  6. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  7. Decidual Macrophages and Their Roles at the Maternal-Fetal Interface

    PubMed Central

    Houser, Brandy L.

    2012-01-01

    The semi-allogeneic fetus, whose genome consists of maternally and paternally inherited alleles, must coexist with an active maternal immune system during its 9 months in utero. Macrophages are the second most abundant immune cell at the maternal-fetal interface, although populations and functions for these populations remain ill defined. We have previously reported two distinct subsets of CD14+ decidual macrophages found to be present in first trimester decidual tissue, 20 percent CD11cHI and 68 percent CD11cLO. Interestingly, CD11cHI decidual macrophages express genes associated with lipid metabolism, inflammation, and antigen presentation function and specifically upregulate CD1 molecules. Conversely, CD11cLO decidual macrophages express genes associated with extracellular matrix formation, muscle regulation, and tissue growth. The large abundance of CD11cHI decidual macrophages and their ability to process antigens more efficiently than CD11cLO macrophages suggests that CD11cHI macrophages may be important antigen processing and presenting cells at the maternal-fetal interface, while CD11cLO macrophages may perform necessary homeostatic functions during placental construction. Thus, macrophage heterogeneity may be an important and necessary division of labor that leads to both an induction of maternal immune cell tolerance to fetal antigens as well as basic homeostatic functions in human pregnancy. PMID:22461749

  8. IL-10 regulate decidual Tregs apoptosis contributing to the abnormal pregnancy with Toxoplasma gondii infection.

    PubMed

    Lao, Kaixue; Zhao, Mingdong; Li, Zhidan; Liu, Xianbing; Zhang, Haixia; Jiang, Yuzhu; Wang, Yanlin; Hu, Xuemei

    2015-12-01

    This study aims to investigate whether IL-10 regulate decidual Treg cells apoptosis to reverse the abnormal pregnancy outcomes with Toxoplasma gondii (T. gondii) infection. Recombinant mouse IL-10 (rIL-10) treatment and IL-10 deficiency (IL-10(-/-)) abnormal pregnancy animal models with T. gondii infection were established. Apoptosis related molecules cleaved Caspase-3 and Caspase-8 in decidual Treg cells were examined using flow cytometry. The levels of cleaved Caspase-3 and Caspase-8 in decidual Treg cells were up-regulated with T. gondii infection. Compared to infected group, the expressions of cleaved Caspase-3 and Caspase-8 in decidual Treg cells were down-regulated in rIL-10-treated group, while up-regulated in infected IL-10(-/-) group. In addition, pregnant outcomes were improved in rIL-10-treated group, while worse in IL-10(-/-) group compared to infected group. These findings revealed that IL-10 reduced the decidual Treg cells apoptosis contributing to improving adverse pregnant outcomes following T. gondii infection.

  9. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  10. Carbon loss by deciduous trees in a CO2-rich ancient polar environment.

    PubMed

    Royer, Dana L; Osborne, Colin P; Beerling, David J

    2003-07-01

    Fossils demonstrate that deciduous forests covered the polar regions for much of the past 250 million years when the climate was warm and atmospheric CO2 high. But the evolutionary significance of their deciduous character has remained a matter of conjecture for almost a century. The leading hypothesis argues that it was an adaptation to photoperiod, allowing the avoidance of carbon losses by respiration from a canopy of leaves unable to photosynthesize in the darkness of warm polar winters. Here we test this proposal with experiments using 'living fossil' tree species grown in a simulated polar climate with and without CO2 enrichment. We show that the quantity of carbon lost annually by shedding a deciduous canopy is significantly greater than that lost by evergreen trees through wintertime respiration and leaf litter production, irrespective of growth CO2 concentration. Scaling up our experimental observations indicates that the greater expense of being deciduous persists in mature forests, even up to latitudes of 83 degrees N, where the duration of the polar winter exceeds five months. We therefore reject the carbon-loss hypothesis as an explanation for the deciduous nature of polar forests.

  11. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGES

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristobal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukonmore » River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  12. Patterns of small mammal microhabitat utilization in cedar glade and deciduous forest habitats

    SciTech Connect

    Seagle, S.W.

    1985-01-01

    Differential microhabitat use by the small mammals inhabiting a cedar glade and a deciduous forest was investigated using discriminant function analysis of 30 structural parameters measured around the capture site of each animal. Ochrotomys nuttalli and Peromyscus leucopus utilize different microhabitats in the cedar glade, as do Blarina brevicauda and P. leucopus in the deciduous forest. P. leucopus was found to be a microhabitat generalist in the deciduous forest and a specialist in the cedar glade, whereas O. nuttalli and B. bravicauda were a microhabitat generalist and specialist, respectively. The sexes of P. leucopus were found to occupy different microhabitats in the deciduous forest but not in the cedar glade. Female P. leucopus occupied microhabitat with better protective cover in the deciduous forest. Comparisons of microhabitats used by the two species captured in each habitat with a random microhabitat sample and trap sites at which no animals were captured indicate that each habitat is a complex matrix of microhabitats, some of which are used by small mammals and some of which are not. 24 references, 5 figures, 5 tables.

  13. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  14. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    NASA Astrophysics Data System (ADS)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-07-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  15. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  16. Establishing even-aged pine and pine-hardwood mixtures in the Ouachita mountains using the shelterwood method

    SciTech Connect

    Shelton, M.G.; Baker, J.B.

    1992-01-01

    The study was established in 1989 as a joint effort among the Ouachita National Forest, the Southern Forest Experiment Station, and the University of Arkansas at Monticello. The goals of the study are: (1) to determine the levels at which pine and hardwoods are compatible in the shelterwood regeneration method by evaluating the amount, spatial distribution and development of regeneration and measuring the growth and yield of the retained seedtrees, (2) determine the damage to regeneration caused by the eventual seedtree harvest, and (3) to evaluate the wildlife habitat, water quality, and aesthetics of shelterwood stands so that comparisons can be made with uneven-aged stands.

  17. Long-term effects of a lock and dam and greentree reservoir management on a bottomland hardwood forest

    USGS Publications Warehouse

    King, S.L.; Allen, J.A.; McCoy, J.W.

    1998-01-01

    We investigated the long-term effects of a lock and dam and greentree reservoir management on a riparian bottomland hardwood forest in southern Arkansas, USA, by monitoring stress, mortality, and regeneration of bottomland hardwood trees in 53 permanent sampling plots from 1987-1995. The lock and dam and greentree reservoir management have altered the timing, depth, and duration of flooding within the wetland forest. Evaluation of daily river stage data indicates that November overbank flooding (i.e. 0.3 m above normal pool) of 1 week duration occurred only 10 times from 1950 to 1995 and four of these occurrences were the result of artificial flooding of the greentree reservoir. Results of the vegetation study indicate that the five most common dominant and co-dominant species were overcup oak, water hickory, Nuttall oak, willow oak, and sweetgum. Mortality of willow oak exceeded that of all other species except Nuttall oak. Nuttall oak, willow oak, and water hickory had much higher percentages of dead trees concentrated within the dominant and co-dominant crown classes. Probit analysis indicated that differences in stress and mortality were due to a combination of flooding and stand competition. Overcup oak appears to exhibit very little stress regardless of crown class and elevation and, with few exceptions, had a significantly greater probability of occurring within lower stress classes than any other species. Only 22 new stems were recruited into the 5 cm diameter-at-breast height size class between 1990-1995 and of these, three were Nuttall oak, three were water hickory, and one was sweetgum. No recruitment into the 5 cm diameter-at-breast height size class occurred for overcup oak or willow oak. The results of the study suggest that the forest is progressing to a more water-tolerant community dominated by overcup oak. A conservative flooding strategy would minimize tree stress and maintain quality wildlife habitat within the forested wetland.The long

  18. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.

    PubMed

    Watanabe, Yoko; Satomura, Takami; Sasa, Kaichiro; Funada, Ryo; Koike, Takayoshi

    2010-07-01

    To determine whether an elevated carbon dioxide concentration ([CO(2)]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4-year-old saplings of four deciduous broadleaved tree species - two ring-porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse-porous species (Betula maximowicziana and Acer mono) - grown for three growing seasons in a free-air CO(2) enrichment system. Elevated [CO(2)] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO(2)] on growth, physiological traits and vessels were seen in the two diffuse-porous woods. Elevated [CO(2)] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring-porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO(2)], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO(2)] in K. septemlobus. The different responses to elevated [CO(2)] suggest that the sensitivity of forest trees to CO(2) is species dependent.

  19. CARBON DIOXIDE FLUXES IN A CENTRAL HARDWOODS OAK-HICKORY FOREST ECOSYSTEM

    SciTech Connect

    Pallardy, Stephen G.; Gu, Lianhong; Hanson, Paul J; Meyers, T. P.; Wullschleger, Stan D; Yang, Bai; Hosman, K. P.

    2007-01-01

    A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with meteorological parameters were monitored continuously. Early results from this forest located on the western margin of the Eastern Deciduous Forest indicated high peak rates of canopy CO2 uptake (35-40 ?mol m-2 s-1) during the growing season. Canopy CO2 profile measurements indicated substantial accumulation of CO2 (~500 ppm) near the surface in still air at night, venting of this buildup in the morning hours under radiation-induced turbulent air flow, and small vertical gradients of CO2 during most of the subsequent light period with minimum CO2 concentrations in the canopy. Flux of CO2 from the soil ranged from 2 to 8 ?mol m-2 s-1 and increased with temperature. Data from this site and others in the network will also allow characterization of regional spatial variation in carbon fluxes as well as inter-annual differences attributable to climatic events such as droughts.

  20. Expression of the Agrobacterium rhizogenes rolC Gene in a Deciduous Forest Tree Alters Growth and Development and Leads to Stem Fasciation.

    PubMed Central

    Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O.

    1996-01-01

    We have altered the growth and development of a deciduous forest tree by transforming hybrid aspen (Populus tremula x Populus tremuloides) with the Agrobacterium rhizogenes rolC gene expressed under the strong cauliflower mosaic virus 35S promoter. We demonstrate that the genetically manipulated perennial plants, after a period of dormancy, maintain the induced phenotypical changes during the second growing period. Furthermore, mass-spectrometrical quantifications of the free and conjugated forms of indole-3-acetic acid and cytokinins and several gibberellins on one transgenic line correlate the induced developmental alterations such as stem fasciation to changes in plant hormone metabolism. We also show that the presence of the RolC protein increases the levels of the free cytokinins, but not by a process involving hydrolysis of the inactive cytokinin conjugates. PMID:12226405

  1. Expression of the Agrobacterium rhizogenes rolC Gene in a Deciduous Forest Tree Alters Growth and Development and Leads to Stem Fasciation.

    PubMed

    Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O.

    1996-10-01

    We have altered the growth and development of a deciduous forest tree by transforming hybrid aspen (Populus tremula x Populus tremuloides) with the Agrobacterium rhizogenes rolC gene expressed under the strong cauliflower mosaic virus 35S promoter. We demonstrate that the genetically manipulated perennial plants, after a period of dormancy, maintain the induced phenotypical changes during the second growing period. Furthermore, mass-spectrometrical quantifications of the free and conjugated forms of indole-3-acetic acid and cytokinins and several gibberellins on one transgenic line correlate the induced developmental alterations such as stem fasciation to changes in plant hormone metabolism. We also show that the presence of the RolC protein increases the levels of the free cytokinins, but not by a process involving hydrolysis of the inactive cytokinin conjugates.

  2. Influence of canopy foliage on turbulence above tall deciduous vegetation

    NASA Astrophysics Data System (ADS)

    Shapkalijevski, Metodija; Moene, Arnold; Ouwersloot, Huug; Patton, Edward; Vilà-Guerau de Arellano, Jordi

    2015-04-01

    approaching heights closer to the canopy top. However, the results are very sensitive to the choice of the displacement height. Our findings indicate the need (a) to account for the effects of the roughness sublayer in calculating and interpreting flux-gradient relationships and TKE above a deciduous forest, and (b) to include in these calculations a displacement height that takes the canopy leaf state into account.

  3. Intensive phenological monitoring of deciduous trees by phenological cameras

    NASA Astrophysics Data System (ADS)

    Hájková, Lenka; Možný, Martin; Bareš, Daniel; Kožnarová, Věra; Bartošová, Lenka

    2014-05-01

    Phenological observations of forest plants are time demanding and labor-intensive, the automated monitoring with digital cameras can serve as an alternative to substitute traditional phenological observations by human observers. The sensing with fixed cameras allows to obtain continuous data with high resolution and to describe the dynamics of canopy development by using simple vegetation indices (proportion of each colour) in deciduous trees. The objective of this study was to investigate the utilization of digital cameras for long-term phenological observations of particular trees (e.g. hazel, aspen, birch and rowan) based on images taken 24 times a day (period 2007-2012) obtained at the International Phenology Garden in Doksany (Czech Republic, 50°27'31" N,14°10'14" E, 158 m asl). Canon Power Shot S3 IS and Olympus E-410 cameras made images in the automatic mode every hour during the whole vegetation period. This monitoring was supplemented by measurements of CO2 (LI-6252) and Normalized Difference Vegetation Index (sensor Skye SKR-1800). Red-green-blue (RGB) colour channel information from digital images can be separately extracted in digital form (by using Sigma Scan Pro 5.0 software) and subsequently summarized through Green Index (GI = G/[R+G+B]). The relationship between Green Index and optimized Growing Season Index (iGSI) was found (R2 = 0.92, p<0.01). Subsequently the relationship between iGSI and Normalized Difference Vegetation Index (R2 = 0.7, p< 0.01) and Net Ecosystem Exchange (R2 = 0.81, p< 0.01) was analysed. Our results demonstrate the possibility of using models as an appropriate tool for monitoring temporal changes in canopy development and phenological events. It also provides data required for the calibration and direct validation of satellite observations and products. The high correlation between the iGSI and the net ecosystem carbon exchange proved that CO2 exchange processes depend significantly on the canopy development.

  4. Searching for hot spots and hot moments of soil denitrification in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Duran, J.; Morillas, L.; Roales, J.; Bailey, S. W.; McGuire, K. J.; Groffman, P. M.

    2014-12-01

    Denitrification is a key biogeochemical process that affects nitrogen (N) availability, N losses to aquatic systems, and atmospheric chemistry. In upland forests, denitrification has not been thought to be a major N pathway because it is an anaerobic microbial process that requires nitrate, labile carbon (C), and low oxygen (O2) conditions, which do not occur broadly or consistently throughout forest soils. However, there may be enough spatial and temporal heterogeneity at fine scales to support denitrification rates that are relevant at the landscape scale. To quantify the importance of spatial and temporal variability in soil denitrification in northern hardwood forests at the Hubbard Brook Experimental Forest (HBEF; New Hampshire, USA), we developed two related projects: 1) we sought to identify hot spots of biogeochemical activity, including soil denitrification potential, based on hydropedologic settings and flowpaths in a catchment during the growing season; and 2) we investigated the influence of simulated rainfall events on soil O2 and nitrous oxide concentrations, denitrification rates, and soil respiration during different seasons at HBEF. In the first study, we expected to find that sites dominated by soils with thick Bh horizons (zones of C accumulation) would have the highest denitrification rates. However, despite the variation among soil profiles found in different hydropedologic settings, we did not find significant differences in denitrification potential. Rather, when areal coverage and horizon thickness for the contrasting hydropedologic settings were accounted for, catchment-scale estimates of denitrification potential were about 1/3 higher than conventionally calculated estimates. In the second study, soil O2 in surface horizons only decreased following additions of labile C. Responses of soil respiration and denitrification to simulated rainfall were also influenced by season. While these studies highlight the complex heterogeneity in forest

  5. Fluxes of Oxidized and Reduced Iron Through a Northern Hardwood Forest Spodosol

    NASA Astrophysics Data System (ADS)

    Fuss, C. B.; Driscoll, C. T.

    2008-12-01

    Iron (Fe) is abundant among trace elements in forest ecosystems and is important in the development and function of soils. In this study we use measurements from the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA. To better understand the biogeochemical behavior of Fe and its role in the development of Spodosol soils (podsolization), we have constructed a series of mass balance equations to determine fluxes of reduced (ferrous, Fe(II)) and oxidized (ferric, Fe(III)) iron draining through the soil profile. Additionally, we measured Fe in throughfall and leaf litterfall as well as stream water to better assess inputs to and output from the soil. Soil solution fluxes of Fe were highest from the organic (Oa) horizon and decreased with depth in the mineral (Bh and Bs) horizons, consistent with podsolization theories predicting immobilization of Fe in mineral soil. The fluxes of Fe(II), Fe(III), and dissolved organic carbon (DOC) show similar patterns to each other, also consistent with hypotheses of organically-complexed Fe translocated to the spodic horizon, where co-precipitation of Fe and C occur. The portion of total Fe as Fe(II) ranges approximately 10-60% in soil solutions, seemingly high for soils that are typically considered well- drained, oxidizing environments. Analysis of total Fe and Fe(II) in leaf litter extracts from the three most abundant hardwood species show leachate to be a major source of reduced Fe to solutions draining the forest floor as approximately 50% of this Fe is Fe(II). The dissolved Fe draining the forest floor is either complexed by organic compounds during litter decomposition or is in leached directly from leaves in a complexed form. Our results indicate these organic complexes stabilize Fe(II) in solution when oxidizing conditions should promote considerably higher Fe(III)-to-Fe(II) ratios. Qualitative measurements of dissolved oxygen concentration in the soil solution range from nearly depleted to

  6. Sample size and allocation of effort in point count sampling of birds in bottomland hardwood forests

    USGS Publications Warehouse

    Smith, W.P.; Twedt, D.J.; Cooper, R.J.; Wiedenfeld, D.A.; Hamel, P.B.; Ford, R.P.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    To examine sample size requirements and optimum allocation of effort in point count sampling of bottomland hardwood forests, we computed minimum sample sizes from variation recorded during 82 point counts (May 7-May 16, 1992) from three localities containing three habitat types across three regions of the Mississippi Alluvial Valley (MAV). Also, we estimated the effect of increasing the number of points or visits by comparing results of 150 four-minute point counts obtained from each of four stands on Delta Experimental Forest (DEF) during May 8-May 21, 1991 and May 30-June 12, 1992. For each stand, we obtained bootstrap estimates of mean cumulative number of species each year from all possible combinations of six points and six visits. ANOVA was used to model cumulative species as a function of number of points visited, number of visits to each point, and interaction of points and visits. There was significant variation in numbers of birds and species between regions and localities (nested within region); neither habitat, nor the interaction between region and habitat, was significant. For a = 0.05 and a = 0.10, minimum sample size estimates (per factor level) varied by orders of magnitude depending upon the observed or specified range of desired detectable difference. For observed regional variation, 20 and 40 point counts were required to accommodate variability in total individuals (MSE = 9.28) and species (MSE = 3.79), respectively, whereas ? 25 percent of the mean could be achieved with five counts per factor level. Sample size sufficient to detect actual differences of Wood Thrush (Hylocichla mustelina) was >200, whereas the Prothonotary Warbler (Protonotaria citrea) required <10 counts. Differences in mean cumulative species were detected among number of points visited and among number of visits to a point. In the lower MAV, mean cumulative species increased with each added point through five points and with each additional visit through four visits

  7. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms.

    PubMed

    Suárez, Esteban R; Fahey, Timothy J; Yavitt, Joseph B; Groffman, Peter M; Bohlen, Patrick J

    2006-02-01

    A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community

  8. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    USGS Publications Warehouse

    Newell, P.; King, S.; Kaller, M.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees ???50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  9. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    USGS Publications Warehouse

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  10. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms.

    PubMed

    Suárez, Esteban R; Fahey, Timothy J; Yavitt, Joseph B; Groffman, Peter M; Bohlen, Patrick J

    2006-02-01

    A field study was conducted to evaluate the effects of exotic earthworm invasions on the rates of leaf litter disappearance in a northern hardwood forest in southcentral New York, USA. Specifically, we assessed whether differences in litter quality and the species composition of exotic earthworm communities affected leaf litter disappearance rates. Two forest sites with contrasting communities of exotic earthworms were selected, and disappearance rates of sugar maple and red oak litter were estimated in litter boxes in adjacent earthworm-free, transition, and earthworm-invaded plots within each site. After 540 days in the field, 1.7-3 times more litter remained in the reference plots than in the earthworm-invaded plots. In the earthworm-invaded plots, rates of disappearance of sugar maple litter were higher than for oak litter during the first year, but by the end of the experiment, the amount of sugar maple and oak litter remaining in the earthworm-invaded plots was identical within each site. The composition of the earthworm communities significantly affected the patterns of litter disappearance. In the site dominated by the anecic earthworm Lumbricus terrestris and the endogeic Aporrectodea tuberculata, the percentage of litter remaining after 540 days (approximately 17%) was significantly less than at the site dominated by L. rubellus and Octolasion tyrtaeum (approximately 27%). This difference may be attributed to the differences in feeding behavior of the two litter-feeding species: L. terrestris buries entire leaves in vertical burrows, whereas L. rubellus usually feeds on litter at the soil surface, leaving behind leaf petioles and veins. Our results showed that earthworms not only accelerate litter disappearance rates, but also may reduce the differences in decomposition rates that result from different litter qualities at later stages of decay. Similarly, our results indicate that earthworm effects on decomposition vary with earthworm community

  11. Nitrogen immobilization by wood-chip application: Protecting water quality in a northern hardwood forest

    USGS Publications Warehouse

    Homyak, P.M.; Yanai, R.D.; Burns, Douglas A.; Briggs, R.D.; Germain, R.H.

    2008-01-01

    Forest harvesting disrupts the nitrogen cycle, which may affect stream water quality by increasing nitrate concentrations, reducing pH and acid neutralizing capacity, and mobilizing aluminum and base cations. We tested the application of wood chips derived from logging slash to increase immobilization of N after harvesting, which should reduce nitrate flux to streams. In August 2004, a stand of northern hardwoods was patch-clearcut in the Catskill Mountains, NY, and four replicates of three treatments were implemented in five 0.2-ha cut patches. Wood chips were applied to the soil surface at a rate equivalent to the amount of slash smaller than eight inches in diameter (1?? treatment). A second treatment doubled that rate (2??), and a third treatment received no chips (0??). Additionally, three uncut reference plots were established in nearby forested areas. Ion exchange resin bags and soil KCl-extractions were used to monitor nitrate availability in the upper 5-10 cm of soil approximately every seven weeks, except in winter. Resin bags indicated that the wood chips retained 30% or 42% of the nitrate pulse, while for KCl extracts, the retention rate was 78% or 100% of the difference between 0?? and uncut plots. During the fall following harvest, wood-chip treated plots had resin bag soil nitrate concentrations about 25% of those in 0?? plots (p = 0.0001). In the first growing season after the cut, nitrate concentrations in wood-chip treated plots for KCl extracts were 13% of those in 0?? treatments (p = 0.03) in May and about half those in 0?? treatments (p = 0.01) in July for resin bags. During spring snowmelt, however, nitrate concentrations were high and indistinguishable among treatments, including the uncut reference plots for resin bags and below detection limit for KCl extracts. Wood chips incubated in litterbags had an initial C:N of 125:1, which then decreased to 70:1 after one year of field incubation. These changes in C:N values indicate that the wood

  12. Bisphenol A modulates receptivity and secretory function of human decidual cells: an in vitro study.

    PubMed

    Mannelli, Chiara; Szóstek, Anna Z; Lukasik, Karolina; Carotenuto, Claudiopietro; Ietta, Francesca; Romagnoli, Roberta; Ferretti, Cristina; Paulesu, Luana; Wołczynski, Slawomir; Skarzynski, Dariusz Jan

    2015-08-01

    The human endometrium is a fertility-determining tissue and a target of steroid hormones' action. Endocrine disruptors (EDs) can exert adverse effects on the physiological function of the decidua at the maternal-fetal interface. We examined the potential effects of an ED, bisphenol A (BPA), on endometrial maturation/decidualization, receptivity, and secretion of decidual factors (biomarkers). In vitro decidualized, endometrial stromal cells from six hysterectomy specimens were treated with 1  pM-1  μM of BPA, for 24  h and assessed for cell viability and proliferation. Three non-toxic concentrations of BPA (1  μM, 1  nM, and 1  pM) were selected to study its influence on secretion of cell decidualization biomarkers (IGF-binding protein and decidual prolactin (dPRL)), macrophage migration inhibitory factor (MIF) secretion, and hormone receptors' expression (estrogen receptors (ERα and ERβ); progesterone receptors (PRA and PRB); and human chorionic gonadotropin (hCG)/LH receptor (LH-R)). The results showed a decrease in cell viability (P<0.001) in response to BPA at the level of 1  mM. At the non-toxic concentrations used, BPA perturbed the expression of ERα, ERβ, PRA, PRB, and hCG/LH-R (P<0.05). Furthermore, 1  μM of BPA reduced the mRNA transcription of dPRL (P<0.05). Secretion of MIF was stimulated by all BPA treatments, the lowest concentration (1  pM) being the most effective (P<0.001). The multi-targeted disruption of BPA on decidual cells, at concentrations commonly detected in the human population, raises great concern about the possible consequences of exposure to BPA on the function of decidua and thus its potential deleterious effect on pregnancy. PMID:26021997

  13. Acceleration of the Glycolytic Flux by Steroid Receptor Coactivator-2 Is Essential for Endometrial Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Kovanci, Ertug; Gibbons, William E.; Putluri, Nagireddy; Maity, Suman; Creighton, Chad J.; Sreekumar, Arun; DeMayo, Francesco J.; Lydon, John P.; O'Malley, Bert W.

    2013-01-01

    Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy. PMID:24204309

  14. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  15. Expression, regulation and function of Egr1 during implantation and decidualization in mice.

    PubMed

    Guo, Bin; Tian, Xue-Chao; Li, Dang-Dang; Yang, Zhan-Qing; Cao, Hang; Zhang, Qiao-Ling; Liu, Ju-Xiong; Yue, Zhan-Peng

    2014-01-01

    Abstract Early growth response gene 1 (Egr1), a zinc finger transcriptional factor, plays an important role in regulating cell proliferation, differentiation and angiogenesis. Current data have shown that Egr1 is involved in follicular development, ovulation, luteinization and placental angiogenesis. However, the expression, regulation and function of Egr1 in mouse uterus during embryo implantation and decidualization are poorly understood. Here we showed that Egr1 was strongly expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy. Injection of Egr1 siRNA into the mouse uterine horn could obviously reduce the number of implanted embryos and affect the uterine vascular permeability. Further study found that Egr1 played a role through influencing the expression of cyclooxygenase-2 (Cox-2), microsomal prostaglandin E synthase 1 (mPGES-1), vascular endothelial growth factor (Vegf), transformation related protein 53 (Trp53) and matrix metallopeptidase 9 (Mmp9) genes in the process of mouse embryo implantation. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) might direct the expression of Egr1 in the uterine stromal cells. Under in vivo and in vitro artificial decidualization, Egr1 expression was significantly decreased. Overexpression of Egr1 downregulated the expression of decidual marker decidual/trophoblast PRL-related protein (Dtprp) in the uterine stromal cells, while inhibition of Egr1 upregulated the expression of Dtprp under in vitro decidualization. Estrogen and progesterone could regulate the expression of Egr1 in the ovariectomized mouse uterus and uterine stromal cells. These results suggest that Egr1 may be essential for embryo implantation and decidualization. PMID:25486203

  16. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    PubMed

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type. PMID:22834386

  17. Expression, regulation and function of Egr1 during implantation and decidualization in mice

    PubMed Central

    Guo, Bin; Tian, Xue-Chao; Li, Dang-Dang; Yang, Zhan-Qing; Cao, Hang; Zhang, Qiao-Ling; Liu, Ju-Xiong; Yue, Zhan-Peng

    2014-01-01

    Abstract Early growth response gene 1 (Egr1), a zinc finger transcriptional factor, plays an important role in regulating cell proliferation, differentiation and angiogenesis. Current data have shown that Egr1 is involved in follicular development, ovulation, luteinization and placental angiogenesis. However, the expression, regulation and function of Egr1 in mouse uterus during embryo implantation and decidualization are poorly understood. Here we showed that Egr1 was strongly expressed in the subluminal stroma surrounding the implanting blastocyst on day 5 of pregnancy. Injection of Egr1 siRNA into the mouse uterine horn could obviously reduce the number of implanted embryos and affect the uterine vascular permeability. Further study found that Egr1 played a role through influencing the expression of cyclooxygenase-2 (Cox-2), microsomal prostaglandin E synthase 1 (mPGES-1), vascular endothelial growth factor (Vegf), transformation related protein 53 (Trp53) and matrix metallopeptidase 9 (Mmp9) genes in the process of mouse embryo implantation. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) might direct the expression of Egr1 in the uterine stromal cells. Under in vivo and in vitro artificial decidualization, Egr1 expression was significantly decreased. Overexpression of Egr1 downregulated the expression of decidual marker decidual/trophoblast PRL-related protein (Dtprp) in the uterine stromal cells, while inhibition of Egr1 upregulated the expression of Dtprp under in vitro decidualization. Estrogen and progesterone could regulate the expression of Egr1 in the ovariectomized mouse uterus and uterine stromal cells. These results suggest that Egr1 may be essential for embryo implantation and decidualization. PMID:25486203

  18. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    PubMed

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  19. Phenotypic and functional analysis of human CD3- decidual leucocyte clones.

    PubMed

    Christmas, S E; Bulmer, J N; Meager, A; Johnson, P M

    1990-10-01

    CD3- leucocyte clones were generated from human first-trimester decidualized uterine endometrium in a culture system containing interleukin-2 (IL-2) and phytohaemagglutinin (PHA). All CD3- clones tested by Southern blot analysis had T-cell receptor (TcR) gamma and delta genes in germ-line configuration. Thirty-six CD3- cell clones obtained from eight decidual samples were mostly CD2+CD56+ but, unlike fresh decidual leucocytes, many were also CD16+. Morphological differences were noted between CD16+CD56+ and CD16-CD56+ clones, with the latter cells possessing granules of more variable size. All CD16+ clones expressed strong cytotoxic activity against natural killer (NK) sensitive and NK-resistant cell targets, while CD16- clones had low or negligible activity. Some CD3- clones produced high levels of interferon-gamma, tumour necrosis factor-negligible activity. Some CD3- clones produced high levels of interferon-gamma, tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) upon stimulation, but there was no relationship between specific cytokine production and cell clone phenotype or cytotoxic function. Levels of TGF-beta were generally higher than those produced by decidual CD3+ T-cell clones. Since decidual CD3- CD16- leucocytes have a low proliferative capacity in response to IL-2, and as clones with this phenotype invariably possess low NK cell activity, it is suggested that the NK cell activity of fresh decidual leucocyte populations is mediated largely by the small numbers of CD3- CD16+ cells present.

  20. Consequences of landscape patterns on the genetic composition of remnant hardwood stands in the Southeast: A pilot study.

    SciTech Connect

    Godt, Mary Jo, W.; Hamrick, J., L.

    2003-01-01

    Report of a pilot study intended to generate genetic data for a tree species in fragmented hardwood stands. It was anticipated that this data would permit assessment of the feasibility of long-term genetic research for which external funding support could be generated. A second objective was to initiate studies that addressed fundamental questions of how landscape structure, in conjunction with the population dynamics and reproductive characteristics of the tree species, influences genetic structure and long-term viability of hardwood forest stands on the Savannah River Site and in similar southeastern landscapes. Fragmentation of plant habitats can result in small, genetically isolated populations. Spatial isolation and small population size may have several consequences, including reduced reproduction, increased inbreeding and the stochastic loss of genetic variability. Such losses of genetic and genotypic diversity can reduce plant fitness and may diminish population viability. Deleterious genetic effects resulting from small population sizes can be ameliorated by gene flow via pollen and seed into fragmented populations.

  1. The Hardwood Gneiss: Evidence for high P-T Archean metamorphism in the southern province of the Lake Superior region

    SciTech Connect

    Peterson, J.W. ); Geiger, C.A. )

    1990-03-01

    The Hardwood Gneiss is an areally small unit of Precambrian granulite-grade rocks exposed in the Archean gneiss terrane of the southern Lake Superior region. The rocks are located in the southwestern portion of the Upper Peninsula of Michigan and consist of a structurally conformable package of quartzitic, metapelitic, amphibolitic, and metabasic units. Three texturally distinct garnet types are present in the metabasites and are interpreted to represent two metamorphic events. Geothermobarometry indicates conditions of {approximately}8.2-11.6 kbar and {approximately}770C for M1, and conditions of {approximately}6.0-10.1 kbar and {approximately}610-740C for M2. It is proposed that M1 was Archean and contemporaneous with a high-grade metamorphic event recorded in the Minnesota River Valley. The M2 event was probably Early Proterozoic and pre-Penokean, with metamorphic conditions more intense than those generally ascribed to the Penokean Orogeny in Michigan, but similar to the conditions reported for the Kapuskasing zone of Ontario. The high paleopressures and temperatures of the M1 event make the Hardwood Gneiss distinct from any rocks previously described in the southern Lake Superior region, and suggest intense tectonic activity during the Archean.

  2. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. PMID:26556402

  3. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production.

  4. Propagation of Some Local Fig (Ficus carica L.) Cultivars by Hardwood Cuttings under the Field Conditions in Tunisia.

    PubMed

    Aljane, Fateh; Nahdi, Sabrine

    2014-01-01

    This research was carried out in Southeast of Tunisia in 2009 and 2010, in order to study the propagation of six (Ficus carica L.) cultivars by using hardwood cuttings under the field conditions. The effect of the cultivars and the type of buds, shoots age, shoots length, and shoots diameter were recorded. Ten cuttings per cultivar and/or cutting types with three replications were planted in rooting unit. Percentage of root emergence and six morphological parameters of young fig plants were measured. Results showed that the responses of cuttings as fig nursery plants presented a high variability among the five cultivars. The most widely varied characters were % root emergence (RE) and cumulative growth of young plant (CG). The first one ranged from 10% to 90%, the second varied within 32 and 112 cm. Concerning the ''BITHER" cultivar, 6 cutting types with different age, length, and diameter were evaluated. Results showed a great variation in % of root emergence (0-90%), length of nursery plant (3-77 cm), and number of roots/nursery plant (0-29 roots). The present research showed that the hardwood cutting of local fig cultivars can be propagated under field conditions in Southeast of Tunisia.

  5. Differential action of decidual luteotropin on luteal and follicular production of testosterone and estradiol.

    PubMed

    Gibori, G; Kalison, B; Warshaw, M L; Basuray, R; Glaser, L A

    1985-05-01

    Decidual tissue of the rat produces a hormone with physiological and biochemical characteristics similar to those of PRL. Because PRL affects both follicular and luteal production of testosterone and estradiol, it was of interest to determine whether decidual luteotropin affects basal and/or LH-stimulated ovarian secretion of steroids and whether it differentially affects follicular and luteal synthesis of testosterone and estradiol. The uteri of pseudopregnant adult rats were scratched on day 5 to induce decidual tissue formation. Pseudopregnant animals without decidua were used as controls. Rats were either hypophysectomized on day 8 or left intact. They were treated with 1.5 IU hCG/day or with vehicle between days 8-9. On day 9, blood was obtained from the ovarian vein, and both corpora lutea and large antral follicles were isolated and incubated in vitro. The presence of the decidua significantly suppressed both basal and hCG-stimulated ovarian secretion of estradiol, yet enhanced progesterone production. A similar inhibitory effect of decidual tissue on hCG stimulation of testosterone and estradiol was observed in the hypophysectomized rats. When the effect of decidua on follicles and corpora lutea was studied separately, it was found that follicles of rats with decidua produced significantly less testosterone and estradiol than follicles of rats without decidua. hCG administration to either intact or hypophysectomized rats markedly enhanced the follicular capacity to produce these two steroids. However, the degree of hCG stimulation of follicular steroidogenesis was significantly reduced by the presence of decidual tissue. In contrast, the decidua did not inhibit the in vitro steroidogenic capacity of corpora lutea. Luteal tissue of intact rats with or without decidua produced similar basal amounts of testosterone and estradiol and responded to a hCG challenge with comparable increases in the production of both steroids. After hypophysectomy, however, the

  6. The nano-hardness and elastic modulus of sound deciduous canine dentin and young premolar dentin--preliminary study.

    PubMed

    Hosoya, Y; Marshall, G W

    2005-01-01

    The purpose of this study was to compare the nano-hardness and elastic modulus among deciduous and permanent dentin, buccal and lingual sides, incisal, center and cervical areas, and outer, middle and inner layers. Three premolars and three deciduous canines were bucco lingually (BL) sectioned, and three deciduous canines were mesio-distally (MD) sectioned parallel to the long axis at the center of the tooth. Hardness (H), plastic hardness (PH) and Young's modulus (Y) were measured using a nano-indentation tester. The H, PH and Y values from the deciduous canine dentin were significantly lower than those from the premolar dentin at most sites. For deciduous canine dentin, the H and PH values of the MD sectioned dentin were significantly higher than those of the BL sectioned dentin in many layers of many areas. Generally deciduous canine dentin had H, PH and Y values that decreased from outer toward the inner layers and significant differences were obtained among the layers in many areas. For MD sectioned deciduous canine and BD sectioned premolar dentin, the H, PH and Y values of the cervical area were significantly lower than those of the incisal and center areas in many layers. It is possible that optimum bonding may require different treatments for deciduous and permanent dentin and perhaps also for different intratooth locations.

  7. Modulation of Decidual Macrophage Polarization by Macrophage Colony-Stimulating Factor Derived from First-Trimester Decidual Cells: Implication in Preeclampsia.

    PubMed

    Li, Min; Piao, Longzhu; Chen, Chie-Pein; Wu, Xianqing; Yeh, Chang-Ching; Masch, Rachel; Chang, Chi-Chang; Huang, S Joseph

    2016-05-01

    During human pregnancy, immune tolerance of the fetal semiallograft occurs in the presence of abundant maternal leukocytes. At the implantation site, macrophages comprise approximately 20% of the leukocyte population and act as primary mediators of tissue remodeling. Decidual macrophages display a balance between anti-inflammatory and proinflammatory phenotypes. However, a shift to an M1 subtype is reported in preeclampsia. Granulocyte-macrophage colony-stimulating-factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are major differentiating factors that mediate M1 and M2 polarization, respectively. Previously, we observed the following: i) the preeclamptic decidua contains an excess of both macrophages and GM-CSF, ii) the preeclampsia-associated proinflammatory cytokines, IL-1β and tumor necrosis factor-α, markedly enhance GM-CSF and M-CSF expression in cultured leukocyte-free first-trimester decidual cells (FTDCs), iii) FTDC-secreted GM-CSF polarizes macrophages toward an M1 subtype. The microenvironment is a key determinant of macrophage phenotype. Thus, we examined proinflammatory stimulation of FTDC-secreted M-CSF and its role in macrophage development. Immunofluorescence staining demonstrated elevated M-CSF-positive decidual cell numbers in preeclamptic decidua. In FTDCs, IL-1β and tumor necrosis factor-α signal through the NF-κB pathway to induce M-CSF production, which does the following: i) enhances differentiation of and elevates CD163 expression in macrophages, ii) increases macrophage phagocytic capacity, and iii) inhibits signal-regulatory protein α expression by macrophages. These findings suggest that FTDC-secreted M-CSF modulates the decidual immune balance by inducing M2 macrophage polarization and phagocytic capacity in response to proinflammatory stimuli.

  8. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed Central

    Consolaro, Alberto

    2016-01-01

    Abstract When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials. PMID:27275612

  9. The Nitrogen Budget of a Northern Hardwood Forest: Sources and net Primary Productivity Requirements

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Vogel, C. S.; Gough, C. M.; Curtis, P. S.

    2006-12-01

    Nitrogen (N) limits net primary productivity (NPP) in most forests. Nearly all N required for NPP comes from decomposing organic matter, and is continuously recycled within the forest. However, atmospheric N deposition may augment forest N supply, increasing NPP. To quantify internal N cycling, atmospheric N inputs, and NPP, we developed an ecosystem-scale nitrogen (N) budget for a mixed deciduous forest in northern lower Michigan, USA. Sources of N were net N-mineralization (Nmin), wet (Dw) and bulk (Db) atmospheric N deposition, and canopy retention of bulk N deposition (CRN). We also quantified the N requirement of NPP, which was measured by biometric inventory of annual leaf, above- and belowground wood, and fine root mass production. Nmin supplied 44.3 kg N ha-1 yr-1 (88% of total annual N supply), while inorganic Dw supplied 4.8 kg N ha-1yr-1 (9% of total). Bulk organic N deposition contributed 1.5 kg N ha-1, or 3% of the total annual N supply. The forest canopy retained 2.2 kg N ha-1 of total Db, suggesting that 4% of the annual NPP N requirement could be met through canopy N uptake, if all N retained by the canopy was assimilated. Of the 53.5 kg N ha-1 yr-1 required for NPP, 61% was for fine root production, 32% was for leaf production, and 7% was for wood. Our N supply and forest NPP N requirement estimates were very close, with quantified N sources supplying 94% of the annual NPP N requirement. At our site, where Dw and organic Db provide 12% of the annual NPP N requirement, atmospheric N deposition makes a small but significant contribution to NPP. However, the minor contribution of CRN to the annual NPP N requirement indicates that N retained by the canopy has little effect on forest growth.

  10. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests. PMID:24038752

  11. Impacts of a spring heat wave on canopy processes in a northern hardwood forest.

    PubMed

    Filewod, Ben; Thomas, Sean C

    2014-02-01

    Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short-term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record-setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf-level gas-exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end-of-season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short-term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.

  12. Greater deciduous shrub abundance extends the annual period of maximum tundra greenness and increases modeled net CO2 uptake

    NASA Astrophysics Data System (ADS)

    Sweet, S. K.; Griffin, K. L.; Steltzer, H.; Gough, L.; Boelman, N.

    2014-12-01

    Satellite studies of the terrestrial Arctic report increased summer greening and longer green seasons over the past several decades, which may increase productivity and lengthen the period of carbon uptake. These trends have been attributed largely to increasing air temperatures and reduced snow cover duration. However, deciduous shrubs are concurrently becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim in this research was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) over the growing season in the northern foothills of the Brooks Range, Alaska (68º38' N, 149º34' W). We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology using the normalized difference vegetation index (NDVI) and piecewise linear regression modeling. We used a tundra plant-community specific leaf area index (LAI) model to estimate LAI throughout the season. We then used a tundra specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of maximum greenness significantly earlier than evergreen/graminoid canopies, but both communities reached the onset of senescence at similar times, resulting in a net extension of the peak green season in deciduous shrub communities compared to evergreen/graminoid communities. The combined effect of a longer peak green season and greater leaf area of deciduous shrub canopies increased the net carbon uptake in deciduous shrub communities compared to evergreen/graminoid communities. However, the longer peak season alone significantly increased carbon uptake in deciduous shrub communities, suggesting that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf

  13. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment.

    PubMed

    Xu, Yi; Romero, Roberto; Miller, Derek; Kadam, Leena; Mial, Tara N; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S; Xu, Zhonghui; Tarca, Adi L; Drewlo, Sascha; Gomez-Lopez, Nardhy

    2016-03-15

    Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.

  14. Temporal Persistence of Point Throughfall in a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Carlyle-Moses, D. E.

    2011-12-01

    For 28 rainfall events with a cumulative depth of 259.3mm, throughfall (TF) was measured using 85 stationary cylindrical gauges (catch area = 0.067 m^2 each) in a deciduous forest comprised of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.) and American beech (Fagus gradifolia Ehrh.) under growing season conditions. For rainfalls in which all gauges received TF the ratio between the maximum and minimum point TF was 11.2 for rainfalls < 2.0 mm, and 8.6, 2.7, and 1.9 for events in the range of 2.0 - 4.9, 5.0 - 9.9, and ≥ 10.0 mm, respectively. Cumulative point TF ranged from 148.4 to 239.4 mm (57.2 - 92.2 % of rainfall), representing a season-long maximum to minimum point TF ratio of 1.61. Point TF depth at each gauge for each event was converted to a normalized value. Because TF at the rainfall event scale often did not follow a normal distribution (Shapiro and Wilk test, p < 0.05) normalized TF was derived as: TFn = (TFi - TFMedian) x (MAD)^-1, where TFn represents the normalized TF value, TFi and TFMedian are the point TF at gauge i (mm) and median point TF (mm) for all gauges, respectively, and MAD is the mean absolute difference of all gauge catches from TFMedian (mm). Analyses of the temporal stability of TFn and backwards step-wise multiple regression of TFn versus rainfall depth (mm) and mean rainfall intensity (mm h^-1) were conducted revealing a complex TF spatio-temporal pattern below the canopy. Forty-one of the 85 gauges (48 %) had temporally persistent catches that were significantly (p ≤ 0.05) smaller (21 %) or larger (27 %) than the median. Many gauges that had a significant temporal persistence of TFn also exhibited significant (p ≤ 0.10) weak (r^2 < 0.10) to moderate (0.30 < r^2 < 0.50) relationships between TFn and rainfall depth and or intensity. The divergence of the TFn values from TFMedian either increased or decreased with rainfall characteristics. Other gauges showed a significant relationship with rainfall

  15. The study of barium concentration in deciduous teeth, impacted teeth, and facial bones of Polish residents.

    PubMed

    Fischer, Agnieszka; Malara, Piotr; Wiechuła, Danuta

    2014-10-01

    The study determines the concentration of Ba in mineralized tissues of deciduous teeth, permanent impacted teeth, and facial bones. The study covers the population of children and adults (aged 6-78) living in an industrial area of Poland. Teeth were analyzed in whole, with no division into dentine and enamel. Facial bones and teeth were subjected to the following preparation: washing, drying, grinding in a porcelain mortar, sample weighing (about 0.2 g), and microwave mineralization with spectrally pure nitric acid. The aim of the study was to determinate the concentration of Ba in deciduous teeth, impacted permanent teeth, and facial bones. The concentration of barium in samples was determined over the ICP OES method. The Ba concentration in the tested bone tissues amounted to 2.2-15.5 μg/g (6.6 μg/g ± 3.9). The highest concentration of Ba was present in deciduous teeth (10.5 μg/g), followed by facial bones (5.2 μg/g), and impacted teeth (4.3 μg/g) (ANOVA Kruskal-Wallis rank test, p = 0.0002). In bone tissue and impacted teeth, Ba concentration increased with age. In deciduous teeth, the level of Ba decreased with children's age.

  16. Differentiation of deciduous-calyx Korla fragrant pears using NIR hyperspectral imaging analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared hyperspectral imaging was investigated as a potential method for automatic sorting of pears according to their calyx type. The hyperspectral images were analyzed and wavebands at 1190 nm and 1199 nm were selected for differentiating deciduous-calyx fruits from persistent-calyx ones. A ...

  17. Evolution of dentition in prehistoric Ohio Valley Native Americans III. Metrics of deciduous dentition.

    PubMed

    Sciulli, P W

    2001-10-01

    Deciduous tooth size in Native Americans of the Ohio Valley area is fairly stable from the terminal Late Archaic (3200 BP) through the Late Prehistoric (350 BP) periods. Some fluctuation in average size did occur during this time. These fluctuations most likely reflect random changes due to gene drift. However, no difference in the pattern of interactions among the sizes of teeth (covariance structures) can be demonstrated during this period. Principal components analysis of the buccolingual and mesiodistal dimensions in the total sample indicate that the major axis of deciduous tooth size in the Ohio Valley population shows an allometric relationship, with the dimensions of the anterior teeth increasing (or decreasing) as the 1.33 power of the dimension of m1(1) and as the 2.0 power of the dimension of m2(2). Comparison of the Ohio Valley samples with other samples from the Eastern Woodlands suggests that geography may have played a minor role in structuring deciduous tooth size variation. For the most part, however, widely separated Eastern Woodlands populations appear to have been evolving independently with respect to deciduous tooth size.

  18. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing

    PubMed Central

    Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Bradshaw, Heather B.; Hirota, Yasushi; Dey, Sudhansu K.

    2016-01-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB. PMID:27454290

  19. Modified Distal Shoe Appliance for Premature Loss of Multiple Deciduous Molars: A Case Report

    PubMed Central

    K., Navin H.; Idris, Mohammed; Christopher, Pradeep; Rai, Niharika

    2014-01-01

    Preservation of the primary dentition until the normal time of exfoliation is one of the most important factor involved in preventive and interceptive dentistry. The premature loss of second primary molar before the eruption of permanent first molar can create a significant arch space/tooth size discrepancy. Distal shoe space maintainer is a valuable part of the Paediatric Dentist’s armamentarium in those cases where the second primary molar is prematurely lost and it helps to guide the first permanent molar into place. Conventional design poses various limitations in cases of premature loss of multiple deciduous molars. Thus, it is required to modify the conventional designs according to the needs of the patient. This case report describes an innovative modification of distal shoe appliance in cases of premature loss of multiple deciduous molars. In the present case, modification of distal shoe space maintainer was advocated because of inadequate abutments caused due to multiple loss of deciduous molars. Bilateral design of distal shoe was planned for unilateral loss of deciduous molars. PMID:25302284

  20. Compartment model for long-term contamination prediction in deciduous fruit trees after a nuclear accident

    SciTech Connect

    Antonopoulos-Domis, M.; Clouvas, A.; Gagianas, A. )

    1990-06-01

    Radiocesium contamination from the Chernobyl accident of different parts (fruits, leaves, and shoots) of selected apricot trees in North Greece was systematically measured in 1987 and 1988. The results are presented and discussed in the framework of a simple compartment model describing the long-term contamination uptake mechanism of deciduous fruit trees after a nuclear accident.

  1. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy. PMID:26602431

  2. Prenatal metal exposure in the Middle East: imprint of war in deciduous teeth of children.

    PubMed

    Savabieasfahani, M; Ali, S Sadik; Bacho, R; Savabi, O; Alsabbak, M

    2016-09-01

    In war zones, the explosion of bombs, bullets, and other ammunition releases multiple neurotoxicants into the environment. The Middle East is currently the site of heavy environmental disruption by massive bombardments. A very large number of US military bases, which release highly toxic environmental contaminants, have also been erected since 2003. Current knowledge supports the hypothesis that war-created pollution is a major cause of rising birth defects and cancers in Iraq. We created elemental bio-imaging of trace elements in deciduous teeth of children with birth defects from Iraq. Healthy and naturally shed teeth from Lebanon and Iran were also analyzed for trace elements. Lead (Pb) was highest in teeth from children with birth defects who donated their teeth from Basra, Iraq (mean 0.73-16.74 (208)Pb/(43)Ca ppm, n = 3). Pb in healthy Lebanese and Iranian teeth were 0.038-0.382 (208)Pb/(43)Ca ppm (n = 4) and 0.041-0.31 (208)Pb/(43)Ca ppm (n = 2), respectively. Our hypothesis that increased war activity coincides with increased metal levels in deciduous teeth is confirmed by this research. Lead levels were similar in Lebanese and Iranian deciduous teeth. Deciduous teeth from Iraqi children with birth defects had remarkably higher levels of Pb. Two Iraqi teeth had four times more Pb, and one tooth had as much as 50 times more Pb than samples from Lebanon and Iran. PMID:27491948

  3. The Endocannabinoid System in the Postimplantation Period: A Role during Decidualization and Placentation

    PubMed Central

    Fonseca, B. M.; Correia-da-Silva, G.; Almada, M.; Costa, M. A.; Teixeira, N. A.

    2013-01-01

    Although the detrimental effects of cannabis consumption during gestation are known for years, the vast majority of studies established a link between cannabis consumption and foetal development. The complex maternal-foetal interrelationships within the placental bed are essential for normal pregnancy, and decidua definitively contributes to the success of this process. Nevertheless, the molecular signalling network that coordinates strategies for successful decidualization and placentation are not well understood. The discovery of the endocannabinoid system highlighted new signalling mediators in various physiological processes, including reproduction. It is known that endocannabinoids present regulatory functions during blastocyst development, oviductal transport, and implantation. In addition, all the endocannabinoid machinery was found to be expressed in decidual and placental tissues. Additionally, endocannabinoid's plasmatic levels were found to fluctuate during normal gestation and to induce decidual cell death and disturb normal placental development. Moreover, aberrant endocannabinoid signalling during the period of placental development has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the endocannabinoid system in these critical processes is explored and discussed. PMID:24228028

  4. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing.

    PubMed

    Deng, Wenbo; Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Leishman, Emma; Viollet, Benoit; Bradshaw, Heather B; Hirota, Yasushi; Dey, Sudhansu K

    2016-08-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB.

  5. Spontaneous expulsion of decidualized pseudopolyps in pregnant women with uterine malformation.

    PubMed

    Gangemi, O; Petrone, M; Crivelli, F

    1987-01-01

    Two cases concerning expulsion of decidualized polyps in early pregnancy associated with uterine malformation are described. The authors discuss the differential diagnosis between the expulsion of cervical polyps during pregnancy and the ectopic pregnancy associated with polyposis. They suggest that a spontaneous expulsion of polyps or pseudopolyps during early pregnancy may be a sign of the presence of uterine malformation.

  6. Decidual Cox2 inhibition improves fetal and maternal outcomes in a preeclampsia-like mouse model

    PubMed Central

    Sones, Jenny L.; Cha, Jeeyeon; Woods, Ashley K.; Bartos, Amanda; Heyward, Christa Y.; Lob, Heinrich E.; Isroff, Catherine E.; Butler, Scott D.; Shapiro, Stephanie E.; Dey, Sudhansu K.; Davisson, Robin L.

    2016-01-01

    Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy. Defective implantation can cause adverse “ripple effects,” leading to abnormal decidualization and placentation, retarded fetal development, and poor pregnancy outcomes, such as PE and fetal growth restriction. The precise mechanism(s) of implantation defects that lead to PE remain elusive. BPH/5 mice, which spontaneously develop the cardinal features of PE, show peri-implantation defects including upregulation of Cox2 and IL-15 at the maternal-fetal interface. This was associated with decreased decidual natural killer (dNK) cells, which have important roles in establishing placental perfusion. Interestingly, a single administration of a Cox2 inhibitor (celecoxib) during decidualization restrained Cox2 and IL-15 expression, restored dNK cell numbers, improved fetal growth, and attenuated late gestational hypertension in BPH/5 female mice. This study provides evidence that decidual overexpression of Cox2 and IL-15 may trigger the adverse pregnancy outcomes reflected in the preeclamptic syndrome, underscoring the idea that Cox2 inhibitor treatment is an effective strategy for the prevention of PE-associated fetal and maternal morbidity and mortality. PMID:27159542

  7. Regulation of inflammatory and angiogenesis mediators in a functional model of decidualized endometrial stromal cells.

    PubMed

    Bourdiec, Amélie; Ahmad, Syed-Furquan; Lachhab, Asmaa; Akoum, Ali

    2016-01-01

    The mechanisms involving the expression of interleukin (IL) 1 family members in the process of preparing the endometrium to receive an embryo remain unclear. In this study, decidualization differentially skewed the balance of IL1 family receptor expression in a pattern that increases endometrial stromal cell receptivity to IL1, IL18 and IL33. Additionally, endometrial cells showed increased expression of homeobox HOXA10 and HOXA11 and LIFR, which are known to be involved in endometrial embryo receptivity. Further analyses of decidual endometrial cells revealed a significant increase in the release of potent proinflammatory, remodelling and angiogenic factors implicated in the embryo invasion process, such as VEGF (P = 0.0305), MMP9 (P = 0.0003), TIMP3 (P = 0.0001), RANTES (P = 0.0020), MCP1 (P = 0.0001) and MIF (P = 0.0068). No significant changes in endogenous IL1B secretion were observed. Decreased secretion of IL18 and decidualization increased secretion of IL33. These findings reveal a significant modulation of endometrial cell receptivity to IL1 family members during endometrial stromal cell decidualization, and suggest that the involvement of IL1 family members is important in physiological processes of endometrial receptivity, including adaptive immunology. This may be relevant to establishing a favourable uterine microenvironment for embryo implantation. PMID:26602943

  8. The clock protein period 2 synchronizes mitotic expansion and decidual transformation of human endometrial stromal cells.

    PubMed

    Muter, Joanne; Lucas, Emma S; Chan, Yi-Wah; Brighton, Paul J; Moore, Jonathan D; Lacey, Lauren; Quenby, Siobhan; Lam, Eric W-F; Brosens, Jan J

    2015-04-01

    Implantation requires coordinated interactions between the conceptus and surrounding decidual cells, but the involvement of clock genes in this process is incompletely understood. Circadian oscillations are predicated on transcriptional-translational feedback loops, which balance the activities of the transcriptional activators CLOCK (circadian locomotor output cycles kaput) and brain muscle arnt-like 1 and repressors encoded by PER (Period) and Cryptochrome genes. We show that loss of PER2 expression silences circadian oscillations in decidualizing human endometrial stromal cells (HESCs). Down-regulation occurred between 12 and 24 hours following differentiation and coincided with reduced CLOCK binding to a noncanonical E-box enhancer in the PER2 promoter. RNA sequencing revealed that premature inhibition of PER2 by small interfering RNA knockdown leads to a grossly disorganized decidual response. Gene ontology analysis highlighted a preponderance of cell cycle regulators among the 1121 genes perturbed upon PER2 knockdown. Congruently, PER2 inhibition abrogated mitotic expansion of differentiating HESCs by inducing cell cycle block at G2/M. Analysis of 70 midluteal endometrial biopsies revealed an inverse correlation between PER2 transcript levels and the number of miscarriages in women suffering reproductive failure (Spearman rank test, ρ = -0.3260; P = 0.0046). Thus, PER2 synchronizes endometrial proliferation with initiation of aperiodic decidual gene expression; uncoupling of these events may cause recurrent pregnancy loss. PMID:25573754

  9. Human Placental and Decidual Organ Cultures to Study Infections at the Maternal-fetal Interface.

    PubMed

    Rizzuto, Gabrielle A; Kapidzic, Mirhan; Gormley, Matthew; Bakardjiev, Anna I

    2016-01-01

    The placenta shows a large degree of interspecies anatomic variability. To best understand biology and pathophysiology of the human placenta, it is imperative to design experiments using human cells and tissues. An advantage of organ culture is maintenance of three-dimensional (3D) structural organization and extracellular matrix. The goal of the method described here is successful establishment of ex vivo human gestational tissue organ cultures and their healthy culture maintenance for 72-96 hr. The protocol details the immediate processing of research-consented, placental and decidual specimens fresh from the operating suite. These are abundant specimens that would otherwise be discarded. Detailed instructions on the sterile collection of these samples, including morphologic details on how to select appropriate tissues to establish 3D organ cultures, is provided. Placental villous and decidual tissues are microdissected into 2-3 mm(3) pieces and placed separately on matrix-lined transwell filters and cultured for several days. Villous and decidual organ cultures are well suited for the study of human host-pathogen interaction. As compared to other model organisms, these human cultures are particularly advantageous to examine mechanism of infection for pathogens that demonstrate variable patterns of host specificity. As an example, we demonstrate infection of placental and decidual organ cultures with the clinically relevant, facultative intracellular bacterial pathogen Listeria monocytogenes. PMID:27500727

  10. Modified distal shoe appliance for premature loss of multiple deciduous molars: a case report.

    PubMed

    Bhat, Prasanna Kumar; K, Navin H; Idris, Mohammed; Christopher, Pradeep; Rai, Niharika

    2014-08-01

    Preservation of the primary dentition until the normal time of exfoliation is one of the most important factor involved in preventive and interceptive dentistry. The premature loss of second primary molar before the eruption of permanent first molar can create a significant arch space/tooth size discrepancy. Distal shoe space maintainer is a valuable part of the Paediatric Dentist's armamentarium in those cases where the second primary molar is prematurely lost and it helps to guide the first permanent molar into place. Conventional design poses various limitations in cases of premature loss of multiple deciduous molars. Thus, it is required to modify the conventional designs according to the needs of the patient. This case report describes an innovative modification of distal shoe appliance in cases of premature loss of multiple deciduous molars. In the present case, modification of distal shoe space maintainer was advocated because of inadequate abutments caused due to multiple loss of deciduous molars. Bilateral design of distal shoe was planned for unilateral loss of deciduous molars.

  11. Prenatal metal exposure in the Middle East: imprint of war in deciduous teeth of children.

    PubMed

    Savabieasfahani, M; Ali, S Sadik; Bacho, R; Savabi, O; Alsabbak, M

    2016-09-01

    In war zones, the explosion of bombs, bullets, and other ammunition releases multiple neurotoxicants into the environment. The Middle East is currently the site of heavy environmental disruption by massive bombardments. A very large number of US military bases, which release highly toxic environmental contaminants, have also been erected since 2003. Current knowledge supports the hypothesis that war-created pollution is a major cause of rising birth defects and cancers in Iraq. We created elemental bio-imaging of trace elements in deciduous teeth of children with birth defects from Iraq. Healthy and naturally shed teeth from Lebanon and Iran were also analyzed for trace elements. Lead (Pb) was highest in teeth from children with birth defects who donated their teeth from Basra, Iraq (mean 0.73-16.74 (208)Pb/(43)Ca ppm, n = 3). Pb in healthy Lebanese and Iranian teeth were 0.038-0.382 (208)Pb/(43)Ca ppm (n = 4) and 0.041-0.31 (208)Pb/(43)Ca ppm (n = 2), respectively. Our hypothesis that increased war activity coincides with increased metal levels in deciduous teeth is confirmed by this research. Lead levels were similar in Lebanese and Iranian deciduous teeth. Deciduous teeth from Iraqi children with birth defects had remarkably higher levels of Pb. Two Iraqi teeth had four times more Pb, and one tooth had as much as 50 times more Pb than samples from Lebanon and Iran.

  12. Transcriptome analysis of a subtropical deciduous tree: autumn leaf senescence gene expression profile of Formosan gum.

    PubMed

    Wen, Chi-Hsiang; Lin, Shih-Shun; Chu, Fang-Hua

    2015-01-01

    Autumn leaf senescence is a spectacular natural phenomenon; however, the regulation networks controlling autumnal colors and the leaf senescence program remain largely unelucidated. Whether regulation of leaf senescence is similar in subtropical deciduous plants and temperate deciduous plants is also unknown. In this study, the gene expression of a subtropical deciduous tree, Formosan gum (Liquidambar formosana Hance), was profiled. The transcriptomes of April leaves (green leaves, 'G') and December leaves (red leaves, 'R') were investigated by next-generation gene sequencing. Out of 58,402 de novo assembled contigs, 32,637 were annotated as putative genes. Furthermore, the L. formosana-specific microarray designed based on total contigs was used to extend the observation period throughout the growing seasons of 2011-2013. Network analysis from the gene expression profile focused on the genes up-regulated when autumn leaf senescence occurred. LfWRKY70, LfWRKY75, LfWRKY65, LfNAC1, LfSPL14, LfNAC100 and LfMYB113 were shown to be key regulators of leaf senescnece, and the genes regulated by LfWRKY75, LfNAC1 and LfMYB113 are candidates to link chlorophyll degradation and anthocyanin biosynthesis to senescence. In summary, the gene expression profiles over the entire year of the developing leaf from subtropical deciduous trees were used for in silico analysis and the putative gene regulation in autumn coloration and leaf senescence is discussed in this study.

  13. Isotopic signals from precipitation and denitrification in nitrate in a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Wexller, S.

    2012-12-01

    mil for denitrification removal of nitrate in these hillslope soils. The isotopic composition of a time series of samples from three riparian piezometers crossing Paradise Brook shows strong connections between the riparian soil water and the stream, as well as a different dominant source of nitrate in each piezometer. Repeated surveys of stream nitrate show modest positive enrichment in N and O isotopes with a slope between 18O and 15N of 0.96, indicating either in- or near-stream denitrification or mixing between stream and hillslope water bearing a stronger denitrification signal. The dual isotope approach provides detailed information on nitrogen cycling dynamics during the summer in a northern hardwood forested catchment. Together, these observations provide strong isotopic evidence for rapid rates of denitrification during summer in the soils of this small forested catchment.

  14. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    NASA Astrophysics Data System (ADS)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  15. Quantifying the Role of Bottomland Hardwood Forest Flood Attenuation in the Central U.S

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Bulliner, E. A.; Freeman, G. W.; Scollan, D. P.; Romine, J.; Chinnasamy, P.; Huang, D.; Schulz, J.

    2010-12-01

    Contemporary floodplain management is a growing concern, particularly in regions where climate change predictions include increased precipitation such as the central U.S. and Missouri. Historically, bottomland hardwood forests (BHF) played a significant role in runoff and flood attenuation. However, most of the floodplain BHF in Missouri was removed in the 19th and 20th centuries to cultivate the rich underlying soils. In many instances, BHF conversion required the installation of drainage and flood control structures, such as drainage tiles, ditches, levees, and dams. Many stream and river channels were straightened and enlarged to further reduce flooding. Structural changes, coupled with changes in vegetation and soils, drastically altered the hydrology of streams, floodplains, and the remnant BHF. Today, century-old management practices are coming under scrutiny in the Midwest in terms of management efficacy in contemporary urbanizing watersheds. Therefore, work is being conducted in central Missouri to quantify current floodplain flow attenuation of a 303(d) listed impaired urban stream. Instrumentation was installed in lower reaches of the Hinkson Creek Watershed (230km2) in the spring of 2010 in a case study comparing a remnant BHF and an abandoned agricultural floodplain site using replicated study designs. Instrumentation includes two 80 m2 grids of nine equally spaced four meter deep piezometers to monitor groundwater flow and volumetric water content (VWC) sensor profiles that monitor VWC at 15, 30, 50, 75 and 100 cm depth. Grids were enlarged to 120 m2 to measure leaf area index (LAI), surface infiltration capacity with double ring infiltrometers, and soil characteristics. Soil characteristics were quantified by extracting soil cores at soil depths of 0, 15, 30, 50, 75 and 100 cm (n = 302). LAI in the BHF was on average 3.06 (SD = 0.65, min = 1.31, max = 4.38, n = 42). Preliminary analysis indicates that average infiltration capacity is 44 cm/hr (SD = 38

  16. A Threshold Relation Between Harvest Intensity and Stream Chemistry in a Northern Hardwood Forest of the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Murdoch, P. S.

    2006-12-01

    Clearcutting of northern hardwood forests in mountainous landscapes of the northeastern U.S. has been shown to cause large increases in stream nitrate (NO3-) concentrations accompanied by increased stream acidity, elevated losses of nutrient base cations, and aluminum concentrations sufficient to be toxic to brook trout. An 18 ha clearcut in the Catskill Mountains of southeastern New York, USA in 1997 resulted in stream NO3- concentrations that peaked at > 1,000 μmol L-1, and base cation (Ca2+, Mg2+, K+) concentrations that increased by more than three-fold during the first year after harvest. In contrast, previous timber-stand improvement harvests in 1995 and 1996 in which < 10% of tree basal area was removed from watersheds, resulted in no measurable change in stream water chemistry. Based on an analysis of these previous data, we hypothesized that there is likely a harvest threshold for changes in stream-water chemistry below which only minimal and tolerable changes in water quality occur. We tested this hypothesis by completing four forest harvests during 2002 to 2006 in which varying amounts of basal area were removed from northern hardwood forest plots and watersheds. These results have shown that at a basal area removal of about 33%, stream NO3- and K+ concentrations increased, but less than proportionally to the concentration changes observed after the clearcut. Calcium and Mg2+ concentrations increased as well, but these changes were about proportional to the concentration changes observed after the clearcut. Additionally, stream NO3- concentrations returned to background values within two years at the 33% partial harvest compared to about eight years in the clearcut. Soil-water lysimeter data from two other harvests in which 30 and 50% of basal area were removed from hardwood forest plots are consistent with that of the previous partial harvest. Nitrate concentrations increased less than proportionally to the changes observed after the clearcut, and

  17. The deciduous dentition of Griphopithecus alpani from Paşalar, Turkey.

    PubMed

    Mortzou, Georgia; Andrews, Peter

    2008-04-01

    Seventy-four hominoid primary teeth have been recovered from the middle Miocene site of Paşalar, Turkey, constituting the largest sample of deciduous teeth for any species of fossil ape. Morphological features that characterize the permanent teeth of Griphopithecus alpani from the site have also been identified in some of these deciduous teeth, including a lingual pillar on the di(1)s. These features plus the overwhelming preponderance of G. alpani permanent teeth at the site suggest that all of the deciduous teeth belong to this species. Contrary to the situation in the permanent teeth, nothing in the morphology of the primary dentition suggests the representation of a second species. The age profile of the non-adult hominoids was reconstructed based on the degree and type of wear recorded on the dp4s, the most abundant deciduous tooth in the sample, assuming a similar eruption chronology to that of Pan troglodytes. This analysis indicates underrepresentation of very young individuals in the sample and high mortality for individuals belonging to the 3-5-years age cohort, a situation that could be due to the effects of stress related to weaning. The coefficient of variation and range-index values obtained for the majority of tooth types are equal to or greater than the comparable values in a sample of P. troglodytes, in some cases at much smaller sample sizes. One possible explanation for this is that there was greater sexual dimorphism in the G. alpani deciduous dentition than in Pan, which would mirror the condition of the permanent dentition.

  18. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  19. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  20. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  1. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    PubMed

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  2. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models. PMID:26483475

  3. Human transcriptional coactivator with PDZ-binding motif (TAZ) is downregulated during decidualization.

    PubMed

    Strakova, Zuzana; Reed, Jennifer; Ihnatovych, Ivanna

    2010-06-01

    Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. However, its role in uterine physiology has not yet been described. To study its regulation during the unique process of differentiation of fibroblasts into decidual cells (decidualization), we utilized the human uterine fibroblast (HuF) in vitro cell model. Immunocytochemistry data demonstrated that the majority of the TAZ protein is localized in the nucleus. Treatment of HuF cells with the embryonic stimulus cytokine interleukin 1 beta in the presence of steroid hormones (estradiol-17 beta and medroxyprogesterone acetate) for 13 days did not cause any apparent TAZ mRNA changes but resulted in a significant TAZ protein decline (approximately 62%) in total cell lysates. Analysis of cytosolic and nuclear extracts revealed that the decline of total TAZ was caused primarily by a drop of TAZ protein levels in the nucleus. TAZ was localized on the peroxisome proliferator-activated receptor response element site (located at position -1200 bp relative to the transcription start site) of the genomic region of decidualization marker insulin-like growth factor-binding protein 1 (IGFBP1) in HuF cells as detected by chromatin immunoprecipitation. TAZ is also present in human endometrium tissue as confirmed by immunohistochemistry. During the secretory phase of the menstrual cycle, specific TAZ staining particularly diminishes in the stroma, suggesting its participation during the decidualization process, as well as implantation. During early baboon pregnancy, TAZ protein expression remains minimal in the endometrium close to the implantation site. In summary, the presented evidence shows for the first time to date TAZ protein in the human uterine tract, its downregulation during in vitro decidualization, and its localization on the IGFBP1 promoter region, all of which indicate its presence in the uterine

  4. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    PubMed

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  5. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  6. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts

    PubMed Central

    Xie, Yingying; Wang, Xiaojing; Silander, John A.

    2015-01-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041–2050 and 2090–2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models. PMID:26483475

  7. Flare Hybrids

    NASA Astrophysics Data System (ADS)

    Tomczak, M.; Dubieniecki, P.

    2015-12-01

    On the basis of the Solar Maximum Mission observations, Švestka ( Solar Phys. 121, 399, 1989) introduced a new class of flares, the so-called flare hybrids. When they start, they look like typical compact flares (phase 1), but later on, they look like flares with arcades of magnetic loops (phase 2). We summarize the characteristic features of flare hybrids in soft and hard X-rays as well as in the extreme ultraviolet; these features allow us to distinguish flare hybrids from other flares. In this article, additional energy release or long plasma cooling timescales are suggested as possible causes of phase 2. We estimate the frequency of flare hybrids, and study the magnetic configurations favorable for flare hybrid occurrence. Flare hybrids appear to be quite frequent, and the difference between the lengths of magnetic loops in the two interacting loop systems seem to be a crucial parameter for determining their characteristics.

  8. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood.

    PubMed

    Asada, Chikako; Sasaki, Chizuru; Hirano, Takeshi; Nakamura, Yoshitoshi

    2015-04-01

    This study investigated the effect of high-temperature saturated steam treatments on the chemical characteristics and enzymatic saccharification of softwood and hardwood. The weight loss and chemical modification of cedar and beech wood pieces treated at 25, 35, and 45 atm for 5 min were determined. Fourier transform infrared and X-ray diffraction analyses indicated that solubilization and removal of hemicellulose and lignin occurred by the steam treatment. The milling treatment of steam-treated wood enhanced its enzymatic saccharification. Maximum enzymatic saccharification (i.e., 94% saccharification rate of cellulose) was obtained using steam-treated beech at 35 atm for 5 min followed by milling treatment for 1 min. However, the necessity of the milling treatment for efficient enzymatic saccharification is dependent on the wood species.

  9. Effects of aerially applied glyphosate and hexazinone on hardwoods and pines in a loblolly pine plantation. Forest Service research paper

    SciTech Connect

    Haywood, J.D.

    1993-09-01

    Areas in a 4-year-old loblolly pine (Pinus taeda L.) plantation were treated with aerially applied Roundup (glyphosate), Pronone 10G (hexazinone), and Velpar L (hexazinone) plus Lo Drift (a spray additive). All herbicides were applied with appropriate helicopter-mounted equipment. The proportion of free-to-grow pine trees increased over a 2-year period in both the treated and untreated areas, but the increase was slightly greater in the treated areas. Final loblolly pine height, d.b.h., and volume per tree did not differ significantly among the four treatments. About 1,200 hardwood trees and 4,700 shrubs over 3 ft tall per acre were present at the beginning of the study.

  10. Comparing regeneration techniques for afforesting previously farmed bottomland hardwood sites in the Lower Mississippi Alluvial Valley, USA

    USGS Publications Warehouse

    Lockhart, B.R.; Keeland, B.; McCoy, J.; Dean, T.J.

    2003-01-01

    A study was implemented to test site preparation methods and artificial regeneration of three oak (Quercus spp.) species on four agricultural fields in the Lower Mississippi Alluvial Valley in Louisiana, USA. Six years after establishment, few consistent differences were found in oak density between sowing acorn methods (seed drill versus broadcast seeding), autumn sowing versus spring sowing, and sowing acorns versus planting oak seedlings. Results indicated that some degree of site preparation is needed to establish oak seedlings but few differences were found between site preparation treatments. These results indicate that no one prescription for oak regeneration fits all potential afforestation projects in the Lower Mississippi Alluvial Valley. Successful bottomland hardwood afforestation projects will require plans that include specific objectives, site evaluation, and a regeneration prescription prior to sowing the first seed or planting the first seedling.

  11. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives.

  12. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives. PMID:24403548

  13. Subfossil Leaves Reveal a New Upland Hardwood Component of the Pre-European Piedmont Landscape, Lancaster County, Pennsylvania

    PubMed Central

    Elliott, Sara J.; Wilf, Peter; Walter, Robert C.; Merritts, Dorothy J.

    2013-01-01

    Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today’s incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained “legacy” sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that

  14. A Comparison of the Effects of Clearcutting Hardwood Forests on Nitrate Movement in 3 Watersheds in Northeastern North America

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.; Beall, F. D.; Burns, D. A.

    2001-12-01

    Experimental harvests of forested watersheds have occurred in several locations throughout the United States and Canada to assess the effects of clearcutting on forest regeneration and runoff water quality. A comparison of the effects of harvesting on stream water quality at three of these watersheds --Watershed 5 at the Hubbard Brook Experimental Forest in New Hampshire (22 hectares logged during the fall 1983-winter 1984), Dry Creek in the Catskill Mountains of New York (22 hectares logged during winter, 1997), and Watershed 31 at the Turkey Lakes Watershed in western Ontario (4.62 hectares logged during late summer, 1997) indicates similarities in stream chemical response despite large differences in year of harvest, pre-harvest water quality, and geographic location. All three watersheds in the comparison contain Northern Hardwood forests. The magnitude, duration, and seasonal variability in stream nitrate concentrations following harvest were similar among the 3 watersheds studied. Harvesting during August at Turkey Lakes caused a 100 uEq/L increase in nitrate concentrations during the immediate fall, but peak nitrate concentrations in streamwater were delayed to the late summer of the following year. Watershed 5 and Dry Creek had peak nitrate concentrations in the late summer and fall of the first year following harvest. The period of recovery from peak nitrate concentration to pre-cut concentrations was similar among the sites. The summer logging at Turkey Lakes thus had the effect of lengthening the period of elevated stream nitrate concentrations relative to the winter logging operations of the other two harvests. Trends in dissolved organic carbon and ammonium were not significantly affected by the logging in comparison with the effect on nitrate concentrations, and ammonium was a minor contributor to the nitrogen yield from the watersheds. The comparison indicates a general pattern of nitrogen release following clearcutting of hardwood forests in

  15. Subfossil leaves reveal a new upland hardwood component of the pre-European Piedmont landscape,Lancaster County, Pennsylvania.

    PubMed

    Elliott, Sara J; Wilf, Peter; Walter, Robert C; Merritts, Dorothy J

    2013-01-01

    Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today's incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained "legacy" sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that

  16. Observations of reactive nitrogen oxide fluxes by eddy covariance above two mid-latitude North American mixed hardwood forests

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Murphy, J. G.

    2013-10-01

    Significant knowledge gaps persist in the understanding of forest-atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere-atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3- + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (HFWR), and a mixed hardwood forest in northern lower Michigan (PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom built two-channel analyzer based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. The magnitude of deposition scaled with NOy mixing ratios, resulting in campaign-average deposition velocities close to 0.6 cm s-1 at both locations. A~period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was 0.14 mg (N) m-2 day-1 and 0.34 mg (N) m-2 day-1 at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22% and 40% at HFWR and PROPHET, respectively.

  17. Subfossil leaves reveal a new upland hardwood component of the pre-European Piedmont landscape,Lancaster County, Pennsylvania.

    PubMed

    Elliott, Sara J; Wilf, Peter; Walter, Robert C; Merritts, Dorothy J

    2013-01-01

    Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today's incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained "legacy" sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that

  18. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees.

    PubMed

    Minocha, Rakesh; Chamberlain, Bradley; Long, Stephanie; Turlapati, Swathi A; Quigley, Gloria

    2015-05-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of tissue. For each species, calcium (Ca) and oxalate were extracted sequentially in double deionized water and 2N acetic acid, and finally, five replicate samples were extracted in 5% (0.83N) perchloric acid (PCA) and the other five in 2N hydrochloric acid (HCl); three cycles of freezing and thawing were used for each solvent. Total ions were extracted by microwave digestion. Calcium was quantified with an inductively coupled plasma emission spectrophotometer method and oxalate was eluted and quantified using a high performance liquid chromatography method. This experiment was repeated again with two conifer and two hardwood species using four trees per species, and two analytical replicates for each tree. We report here that, regardless of age of individual trees within a species, time of collection or species type, the third extraction in PCA or HCl resulted in near equimolar quantities of Ca and oxalate (r(2) ≥ 0.99). This method provides an easy estimate of the quantity of CaOx crystals using a small sample of foliar tissue. An additional benefit of PCA is that it precipitates the nucleic acids and proteins, allowing the quantification of several free/soluble metabolites such as amino acids, polyamines, organic acids and inorganic elements all from a single sample extract. PMID:25934989

  19. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees.

    PubMed

    Minocha, Rakesh; Chamberlain, Bradley; Long, Stephanie; Turlapati, Swathi A; Quigley, Gloria

    2015-05-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of tissue. For each species, calcium (Ca) and oxalate were extracted sequentially in double deionized water and 2N acetic acid, and finally, five replicate samples were extracted in 5% (0.83N) perchloric acid (PCA) and the other five in 2N hydrochloric acid (HCl); three cycles of freezing and thawing were used for each solvent. Total ions were extracted by microwave digestion. Calcium was quantified with an inductively coupled plasma emission spectrophotometer method and oxalate was eluted and quantified using a high performance liquid chromatography method. This experiment was repeated again with two conifer and two hardwood species using four trees per species, and two analytical replicates for each tree. We report here that, regardless of age of individual trees within a species, time of collection or species type, the third extraction in PCA or HCl resulted in near equimolar quantities of Ca and oxalate (r(2) ≥ 0.99). This method provides an easy estimate of the quantity of CaOx crystals using a small sample of foliar tissue. An additional benefit of PCA is that it precipitates the nucleic acids and proteins, allowing the quantification of several free/soluble metabolites such as amino acids, polyamines, organic acids and inorganic elements all from a single sample extract.

  20. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    PubMed

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy.

  1. Role of Erythronium americanum Ker. in Energy Flow and Nutrient Dynamics of a Northern Hardwood Forest Ecosystem.

    PubMed

    Muller, R N; Bormann, F H

    1976-09-17

    The aboveground activity of the spring herb, Erythronium americanum, is restricted to the period between snowmelt and forest canopy development. Its phenology and production capacity closely adapt the species to this temporal niche in northern deciduous forests. While E. americanum has a minor effect on energy flow, it may reduce losses of potassium and nitrogen from the ecosystem during the period of maximum removal by incorporating these elements in accumulating biomass. Later, during the summer, these nutrients are made available when the above-ground, nonperennating tissues decay.

  2. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain

    PubMed Central

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-01-01

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50′N, 110°49′E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species

  3. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth

    PubMed Central

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK−pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SHbaseline and SRIbaseline), after a total of 2 min (SH2min) and after 4 min (SH4min and SRI4min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SHbaseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (−90.2±11.3 VHN) than in permanent enamel (−44.3±12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  4. Ecohydrologic implications of differences in throughfall between hemlock and deciduous forest plots, West Whately, MA

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.; McNicholas, J.; Mehter, S.; Spence, C.

    2009-12-01

    Invasive pests, especially in conjunction with climate change, have the potential to transform the species composition of many forests. In the northeastern United States, the hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga Canadensis), a tree known for its ecological role more than its timber value. To begin to assess the effect on the water cycle of converting hemlock to deciduous forest, we carried out a throughfall investigation in West Whately, MA during the summer of 2009. From 3 June to 25 July, we measured the volume and chemistry of throughfall in two forest plots: one dominated by hemlock (LAI = 5.6) and one comprising a variety of deciduous species (LAI = 4.7), including many saplings and sub-canopy trees. Over the period of the study, rainfall totaled 311 mm and throughfall amounted to 276 mm (89%) in the deciduous plot and 242 mm (78%) in the hemlock stand. When compared to open precipitation, throughfall from both plots showed significantly higher levels of acid neutralizing capacity, pH, and concentrations of K+, Ca2+, and Mg2+. On an event-by-event basis, the fraction of precipitation that shows up as throughfall increases with amount, and representing interception as a constant depth, Δ, provides a reasonable fit (Δdeciduous = 2.5 mm, R2 = 0.99; Δhemlock = 5 mm, R2 = 0.96). Analysis of variance and time-stability plots indicate a strong persistent effect of collector position on throughfall depth, leading to potential efficiencies in measurement strategies. In both stands, the spatial variability of throughfall depths is higher for lower intensity events, and the coefficient of variation has a value around 30% for larger events. The skewness of throughfall depths among collectors within the hemlock plot is generally small. Throughfall depths are positively skewed in the deciduous plot, and one collector consistently received throughfall equal to twice the incident rainfall. Should hemlock stands be eliminated and

  5. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    PubMed

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK-pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SH baseline and SRI baseline), after a total of 2 min (SH2 min) and after 4 min (SH4 min and SRI4 min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN) than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4 min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  6. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    PubMed

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK-pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SH baseline and SRI baseline), after a total of 2 min (SH2 min) and after 4 min (SH4 min and SRI4 min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN) than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4 min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  7. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain.

    PubMed

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-06-08

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50'N, 110°49'E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species with

  8. Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest.

    PubMed

    Su, Yushan; Wania, Frank; Harner, Tom; Lei, Ying D

    2007-01-15

    The atmospheric deposition of several groups of semi-volatile organic compounds to a deciduous forest in Canada was determined using an indirect technique based on ratios of measured canopy interception and air concentrations. Air (gas and particle phase) and bulk deposition were sampled for 14 months from October 2001 to December 2002 at both a forest and a nearby clearing, and extracts were quantified for polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Long-term average dry deposition velocities for vapors and particle-bound species were then derived for the canopy growing period. The mean dry gaseous deposition velocity for PBDEs and PCBs to the Canadian deciduous forest was 2.7 +/- 0.52 cm x s(-1), which is similar to the only other measured value for a deciduous canopy. Particle-bound deposition velocities to the canopy due to diffusion and impaction were 0.8 cm x s(-1) for the PBDEs and 0.11 cm x s(-1) for the PAHs. Differences in the particle-bound deposition velocities between PBDEs and PAHs and between deciduous canopies in Canada and Germany are explainable by differences in particle size distribution. The interception/concentration ratios for several PAHs were too low to be interpretable as dry gaseous deposition velocities. This is likely because the measured deposition flux under the canopy was less than the deposition flux to the canopy, possibly as a result of photodegradation in the canopy. From the ratio of canopy interception and average gas-phase concentration of less chlorinated PCBs, a predictive relationship between the canopy/air partition coefficient KPA and the octanol/air partition coefficient KOA was derived (KPA = 110 KOA0.67). Despite differences in local climate and canopy composition and structure, the deposition velocities and the canopy uptake capacity measured in Canada were remarkably similar to those reported in Germany, lending credibility to the suggestion

  9. Results of a workshop concerning assessment of the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Recognizing the importance of implementing an effective, nationally consistent, and scientifically defensible regulatory program, EPA, in October 1984, issued Interim Operating Guidance to its field personnel for implementing the Section 404 regulatory program in bottomland hardwood wetlands. With the goal of improving and finalizing that guidance, EPA is sponsoring a series of workshops designed to answer key questions concerning BLH wetlands, based on the best scientific and technical information currently available. The first two workshops were directed toward summarizing existing scientific and technical knowledge concerning the functions of BLH ecosystems, the characteristics that are important to each function, and the impact of various development activities on those characteristics. The first workshop, which was held in St. Francisville, Louisiana, in December, 1984, examined a wetland zonation concept as a framework for gaining a greater understanding of BLH structure and function. The workshop set out to determine whether characterization of BLH resources as a series of relatively distinct zones, defined by concomitant variation in hydrologic regime, soils, and vegetation, might provide the basis for a useful and scientifically sound regulatory framework. For examp1e, if certain zones are of particular importance to one or more wetland functions that the Clean Water Act was intended to protect, then the zonation concept might be useful from the perspective of how various activities should be regulated. Discussions during the first workshop, however, indicated that the zonation concept provides, at best, only an incomplete picture of the structure and function of BLH ecosystems. In many cases, BLH functions are not limited to or closely correlated with particular zones and, furthermore, many factors other than zone are important determinants of BLH functions. With these responses in mind, the second workshop, held at Lake Lanier, Georgia, in July, 1985

  10. IDENTIFICATION AND EMISSION FACTORS OF MOLECULAR TRACERS IN ORGANIC AEROSOLS FROM BIOMASS BURNING PART 2. DECIDUOUS TREES. (R823990)

    EPA Science Inventory

    Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane a...

  11. The mythology of the killer deciduous canine tooth in southern Sudan.

    PubMed

    Baba, S P; Kay, E J

    1989-01-01

    In Southern Sudan it is a commonly held belief that the unerupted deciduous canine tooth is injurious to the health of infants and that it causes diarrheal diseases. The teeth are therefore often removed by native extractors in an attempt to alleviate the symptoms of these dangerous diseases. This study examined the prevalence of this practice among babies presenting at a hospital, and examined the health status of the infants involved. The 90 infants in the study had all had at least one deciduous tooth removed, and the great majority were suffering from dehydration, caused by various abdominal diseases. It is clear that an educational campaign aimed at reducing the prevalence of this practice is required.

  12. sFLT1 in preeclampsia: trophoblast defense against a decidual VEGFA barrage?

    PubMed

    Adamson, S Lee

    2014-11-01

    Preeclampsia, a life-threatening complication of human pregnancy, has a spectrum of clinical signs and is likely caused by an array of pathological mechanisms. However, elevated levels of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta and in the maternal circulation has emerged as a common finding in women with preeclampsia and likely is a causative factor in this disorder. In this issue of the JCI, Fan and colleagues provide experimental evidence from both humans and mice that suggests placental trophoblast cells overexpress sFLT1 in self defense against excessive VEGFA produced by maternal decidual cells. The authors' work thus implicates the decidual cells of the mother as the culprit responsible for increased placental expression of sFLT1, a VEGFA antagonist that enters the maternal circulation and consequently induces the clinical signs of preeclampsia.

  13. sFLT1 in preeclampsia: trophoblast defense against a decidual VEGFA barrage?

    PubMed Central

    Adamson, S. Lee

    2014-01-01

    Preeclampsia, a life-threatening complication of human pregnancy, has a spectrum of clinical signs and is likely caused by an array of pathological mechanisms. However, elevated levels of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta and in the maternal circulation has emerged as a common finding in women with preeclampsia and likely is a causative factor in this disorder. In this issue of the JCI, Fan and colleagues provide experimental evidence from both humans and mice that suggests placental trophoblast cells overexpress sFLT1 in self defense against excessive VEGFA produced by maternal decidual cells. The authors’ work thus implicates the decidual cells of the mother as the culprit responsible for increased placental expression of sFLT1, a VEGFA antagonist that enters the maternal circulation and consequently induces the clinical signs of preeclampsia. PMID:25329689

  14. Functional and Esthetic Rehabilitation during Deciduous Dentition Stage: A Case Report

    PubMed Central

    Saini, Sheeba; Sharma, Deepak

    2011-01-01

    A virtual absence of palliative, preventive and restorative care characterizes juvenile oral health care in most of the developing and underdeveloped countries. Consequently, carious cavities remain untreated, which leads to pain, discomfort and functional limitation. It further, impacts negatively upon general health and cognitive development apart from causing decreased masticatory efficiency, difficulty in speech, compromised esthetics, development of abnormal tongue habits and subsequent malocclusion and psychological problems. The restoration of severely decayed deciduous teeth especially anterior ones presents a major challenge to dentists, particularly in uncooperative children. The following case report documents the restoration of severely mutilated deciduous teeth in an emotionally immature patient resulting in an improvement in not only his oral and general health also in helping him gain more self-confidence. PMID:22013471

  15. Deciduous teeth occlusal caries detection with 655-nm diode laser confirmed by surface scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Danilo; Fonseca, Yara P. C.; Zanin, Fatima A. A.; Brugnera, Aldo, Jr.

    2000-03-01

    The morphological complexity of the occlusal surface of deciduous molar teeth is considered as a factor to increase vulnerability to caries lesion. Occlusal surface of these teeth shows sulcus, pits and fissures which allow retention of both micro-organisms and food debris which make them more susceptible to caries. In the last decades there was a significant reduction on caries of smooth surface but not on the occlusal surface where dentinal caries develops under fissures which are apparently caries-free under eye observation. This is known as a hidden caries. The occlusal surface of sound extracted deciduous molar teeth were examined using a 655 nm diode laser (DIAGNOdent - KaVo) in order to detect hidden caries. When there was indication of a hidden caries, the area was examined using SEM and confirm or not the diagnosis. The authors concludes that the diagnosis of caries using 655 diode laser is reliable and precise method.

  16. Asperosaponin VI promotes progesterone receptor expression in decidual cells via the notch signaling pathway.

    PubMed

    Gao, Jie; Zhou, Chun; Li, Yadi; Gao, Feixia; Wu, Haiwang; Yang, Lilin; Qiu, Weiyu; Zhu, Lin; Du, Xin; Lin, Weixian; Huang, Dandan; Liu, Haibin; Liang, Chun; Luo, Songping

    2016-09-01

    Recurrent spontaneous abortion (RSA) is a common clinical condition, but its reasons remain unknown in 37-79% of the affected women. The steroid hormone progesterone (P4) is an integral mediator of early pregnancy events, exerting its effects via the progesterone receptor (PR). Dipsaci Radix (DR) has long been used for treating gynecological diseases in Chinese medicine, while its molecular mechanisms and active ingredients are still unclear. We report here the progesterone-like effects of the alcohol extraction and Asperosaponin VI from DR in primary decidual cells and HeLa cell line. We first determined the safe concentration of Asperosaponin VI in the cells with MTT assay and then found by using dual luciferase reporter and Western blotting that Asperosaponin VI significantly increased PR expression. Moreover, we explored the mechanisms of action of the DR extracts and Asperosaponin VI, and the results showed that they could activate Notch signaling, suggesting that they may function by promoting decidualization. PMID:27370099

  17. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  18. Nitrate leakage from deciduous forest soils into streams on Kureha Hill, Japan.

    PubMed

    Honoki, H; Kawakami, T; Yasuda, H; Maehara, I

    2001-11-21

    Nitrate leakage from deciduous forest soils into streams was investigated for two adjacent hills. Many of the streams on Kureha Hill, located in Toyama City, Japan, have extremely high nitrate concentrations. The nitrate concentration of Hyakumakidani, one of the streams on Kureha Hill, averaged 158 microeq l(-1) and reached 470 microeq l(-1) during an episodic event. In contrast, the streams on Imizu Hill, adjacent to Kureha Hill, had low concentrations, below 15 microeq l(-1). Even during an episode, the nitrate concentrations increased to no more than 75 microeq l(-1). Both areas have similar blown forest soils, C/N ratios in O horizons, and vegetation consisting primarily of deciduous trees. However, soil incubation experiments, which lasted for 4 weeks, revealed that the nitrification rates in the surface soils of Kureha Hill were much higher than in the soils of Imizu Hill.

  19. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part I; Site Description

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, William; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    A study over a deciduous forest located in middle Massachusetts (USA) has been performed to examine the role of leaves in the forest-atmosphere interaction. Due to the seasonal presence of leaves, a deciduous forest is a 'good laboratory' to study this interaction. In this first part, a description of a 30 m micrometeorological tower as well a qualitative description of some meteorological parameters are presented. The presence of leaves affects the forest in several ways. There is a decrease of upward PAR (Photosynthetically Active Radiation) due to absorption of visible light in the canopy. Water vapor concentration increases, and the CO2 concentration decreases in the surface layer as the canopy starts to be foliated. The physical presence of the leaves is felt in other quantities such as the global albedo and the subcanopy environment.

  20. Claudin-3, claudin-7, and claudin-10 show different distribution patterns during decidualization and trophoblast invasion in mouse and human.

    PubMed

    Schumann, S; Buck, V U; Classen-Linke, I; Wennemuth, G; Grümmer, R

    2015-12-01

    Implantation of the mammalian embryo requires profound endometrial changes for successful pregnancy, including epithelial-mesenchymal transition of the luminal epithelium and stromal-epithelial transition of the stromal cells resulting in decidualization. Claudins (Cldn) determine the variability in tight junction paracellular permeability and may play a role during these epithelial and decidual changes. We here localized Cldn3, Cldn7 and Cldn10 proteins in the different compartments of murine endometrium up to day 8.5 of pregnancy (dpc) as well as in human endometrium and first trimester decidua. In murine estrous endometrium, luminal and glandular epithelium exhibited Cldn3 and Cldn7, whereas Cldn10 was only detectable in glandular epithelium. At 4.5 dpc, Cldn3 protein shifted to an apical localization, whereas Cldn7 vanished in the epithelium of the implantation chamber. At this stage, there was no stromal signal for Cldn3 and Cldn7, but a strong induction of Cldn10 in the primary decidual zone. Cldn3 proteins emerged at 5.5 dpc spreading considerably from 6.5 dpc onward in the endothelial cells of the decidual blood sinusoids and in the decidual cells of the compact antimesometrial region. In addition to Cldn3, Cldn10 was identified in human endometrial epithelia. Both proteins were not detected in human first trimester decidual cells. Cldn3 was shown in murine trophoblast giant cells as well as in human extravillous trophoblast cells and thus may have an impact on trophoblast invasion in both species. We here showed a specific claudin signature during early decidualization pointing to a role in decidual angiogenesis and regulation of trophoblast invasion. PMID:26340953

  1. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks

    SciTech Connect

    Osuna, Jessica L.; Baldocchi, Dennis D.; Kobayashi, Hideki; Dawson, Todd E.

    2015-04-08

    The California Mediterranean savanna has harsh summer conditions with minimal soil moisture, high temperature, high incoming solar radiation and little or no precipitation. Deciduous blue oaks, Quercus douglasii Hook. and Arn., are winter-deciduous obligate phreatophytes, transpiring mostly groundwater throughout the summer drought. Our objective for this work is to fully characterize the seasonal trends of photosynthesis in blue oaks as well as the mechanistic relationships between leaf structure and function.

  2. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis.

    PubMed

    Gu, Lianhong; Baldocchi, Dennis D; Wofsy, Steve C; Munger, J William; Michalsky, Joseph J; Urbanski, Shawn P; Boden, Thomas A

    2003-03-28

    Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.

  3. Enamel thickness variation of deciduous first and second upper molars in modern humans and Neanderthals.

    PubMed

    Fornai, Cinzia; Benazzi, Stefano; Svoboda, Jiří; Pap, Ildikó; Harvati, Katerina; Weber, Gerhard W

    2014-11-01

    Enamel thickness and dental tissue proportions have been recognized as effective taxonomic discriminators between Neanderthal and modern humans teeth. However, most of the research on this topic focused on permanent teeth, and little information is available for the deciduous dentition. Moreover, although worn teeth are more frequently found than unworn teeth, published data for worn teeth are scarce and methods for the assessment of their enamel thickness need to be developed. Here, we addressed this issue by studying the 2D average enamel thickness (AET) and 2D relative enamel thickness (RET) of Neanderthal and modern humans unworn to moderately worn upper first deciduous molars (dm(1)s) and upper second deciduous molars (dm(2)s). In particular, we used 3D μCT data to investigate the mesial section for dm(1)s and both mesial and buccal sections for dm(2)s. Our results confirmed previous findings of an Neanderthal derived condition of thin enamel, and thinner enamel in dm(1)s than dm(2)s in both Neanderthal and modern humans. We demonstrated that the Neanderthal 2D RET indices are significantly lower than those of modern humans at similar wear stages in both dm(1)s and dm(2)s (p < 0.05). The discriminant analysis showed that using 2D RET from dm(1) and dm(2) sections at different wear stages up to 93% of the individuals are correctly classified. Moreover, we showed that the dm(2) buccal sections, although non-conventionally used, might have an advantage on mesial sections since they distinguish as well as mesial sections but tend to be less worn. Therefore, the 2D analysis of enamel thickness is suggested as a means for taxonomic discrimination between modern humans and Neanderthal unworn to moderately worn upper deciduous molars.

  4. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism

    PubMed Central

    Pawar, S.; Laws, M. J.; Bagchi, I. C.

    2015-01-01

    Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WEd/d mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WEd/d mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WEd/d uteri. Supplementation with LIF restored decidualization in WEd/d mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment. PMID:26241389

  5. Uterine Epithelial Estrogen Receptor-α Controls Decidualization via a Paracrine Mechanism.

    PubMed

    Pawar, S; Laws, M J; Bagchi, I C; Bagchi, M K

    2015-09-01

    Steroid hormone-regulated differentiation of uterine stromal cells, known as decidualization, is essential for embryo implantation. The role of the estrogen receptor-α (ESR1) during this differentiation process is unclear. Development of conditional Esr1-null mice showed that deletion of this gene in both epithelial and stromal compartments of the uterus leads to a complete blockade of decidualization, indicating a critical role of ESR1 during this process. To further elucidate the cell type-specific function of ESR1 in the uterus, we created WE(d/d) mice in which Esr1 is ablated in uterine luminal and glandular epithelia but is retained in the stroma. Uteri of WE(d/d) mice failed to undergo decidualization, indicating that epithelial ESR1 contributes to stromal differentiation via a paracrine mechanism. We noted markedly reduced production of the leukemia inhibitory factor (LIF) in WE(d/d) uteri. Supplementation with LIF restored decidualization in WE(d/d) mice. Our study indicated that LIF acts synergistically with progesterone to induce the expression of Indian hedgehog (IHH) in uterine epithelium and its receptor patched homolog 1 in the stroma. IHH then induces the expression of chicken ovalbumin upstream promoter-transcription factor II, a transcription factor that promotes stromal differentiation. To address the mechanism by which LIF induces IHH expression, we used mice lacking uterine epithelial signal transducer and activator of transcription 3, a well-known mediator of LIF signaling. Our study revealed that LIF-mediated induction of IHH occurs without the activation of epithelial signal transducer and activator of transcription 3 but uses an alternate pathway involving the activation of the ERK1/2 kinase. Collectively our results provide unique insights into the paracrine mechanisms by which ESR1 directs epithelial-stromal dialogue during pregnancy establishment. PMID:26241389

  6. Late wisconsin climate of northern Florida and the origin of species-rich deciduous forest.

    PubMed

    Watts, W A; Stuiver, M

    1980-10-17

    Species-rich mesic forest covered northern Florida as early as 14,000 radiocarbon years before present. It probably originated in deciduous tree populations already present locally in conifer forest between 24,000 and 18,600 years before present. The cold, dry Late Wisconsin climate ended before 14,600 years before present. A transitional warm, dry phase preceded a precipitation increase at 14,000 years before present.

  7. Fibulin-5 is upregulated in decidualized human endometrial stromal cells and promotes primary human extravillous trophoblast outgrowth.

    PubMed

    Winship, Amy; Cuman, Carly; Rainczuk, Katarzyna; Dimitriadis, Evdokia

    2015-12-01

    Interactions between the highly invasive trophoblasts and the maternal uterine decidual extracellular matrix (ECM) are crucial in the determination of a successful pregnancy. Fibulin-5 (FBLN5) is a member of the fibulin family that alters cell adhesive and invasive properties and is expressed in human villous cytotrophoblasts. We aimed to determine the expression and immunolocalization of FBLN5 in human first trimester decidua and examine the effect of FBLN5 in trophoblast invasion in vitro using a first trimester placental villous outgrowth assay. We demonstrated that FBLN5 mRNA expression is upregulated in response to cAMP-mediated decidualization of primary human endometrial stromal cells, although FBLN5 itself does not enhance decidualization. We reported for the first time, FBLN5 protein production in first trimester decidual cells and also co-localization to HLAG-positive EVTs in first trimester decidua. Consequently, we investigated the effects of exogenous FBLN5 on placental villous outgrowth in vitro and demonstrated that FBLN5 promotes EVT migration/invasion. This is the first study to identify FBLN5 in decidualized human endometrial stromal cells, first trimester decidua and EVT and determine a functional role for FBLN5 in human EVTs, suggesting that decidual and or EVT-derived FBLN5 regulates EVT invasion and placentation in women. PMID:26506560

  8. Changing patterns in coastal cutthroat trout (Oncorhynchus clarki clarki) diet and prey in a gradient of deciduous canopies

    USGS Publications Warehouse

    Romero, N.; Gresswell, R.E.; Li, J.L.

    2005-01-01

    We examined the influence of riparian vegetation patterns on coastal cutthroat trout Oncorhynchus clarki clarki diet and prey from the summer of 2001 through the spring of 2002. Benthic and drifting invertebrates, allochthonous prey, and fish diet were collected from deciduous, conifer, and mixed sections of three Oregon coastal watersheds. The nine sites were best characterized as a continuum of deciduous cover, and shrub cover and proportion of deciduous canopy were positively correlated (r = 0.74). Most sources of prey (benthic invertebrate biomass, allochthonous invertebrate inputs, aquatic and total invertebrate drift) and aquatic prey ingested by coastal cutthroat trout were greater where shrub cover was more abundant. Only aquatic drift, total invertebrate drift, and allochthonous invertebrates were positively correlated with deciduous vegetation. Compared with coniferous sites, allochthonous invertebrates under deciduous and mixed canopies were almost 30% more abundant. Stream discharge likely influenced seasonal fluxes of aquatic invertebrate biomass in the benthos and drift. Aquatic insects dominated gut contents during this study; however, terrestrial prey were most common in the diet during the summer and fall. In the Pacific northwest, systematic removal of deciduous riparian vegetation to promote conifers may have unintended consequences on food resources of coastal cutthroat trout and aquatic food web interactions. ?? 2005 NRC.

  9. Evolution of the dentition in prehistoric Ohio Valley Native Americans: II. Morphology of the deciduous dentition.

    PubMed

    Sciulli, P W

    1998-06-01

    In order to evaluate the microevolutionary dynamics of morphological features of the deciduous dentition, I collected data on the variation of 57 features (33 crown and 24 root) from prehistoric Ohio Valley populations. I sampled a total of 370 individuals from 26 populations representing a lineage that inhabited the middle and upper Ohio valley region from approximately 3000 to 350 BP. Evolutionary changes in the frequencies of morphological features of the deciduous teeth in this lineage were limited. Over 80% of the features show no significant differences among the populations. The relatively few features that show consistent differences separate pre- and postmaize agricultural populations. I discuss explanations for this change in terms of selection differences or gene flow. The general pattern of morphological trait expression in the deciduous teeth of this Ohio Valley lineage corresponds to what has been termed the Mongoloid dental complex (sinodonty in the permanent teeth). I suggest additional features that, with further study, may be added to this morphological complex.

  10. Two Gravettian human deciduous teeth from Grub/Kranawetberg, lower Austria.

    PubMed

    Teschler-Nicola, M E; Antl-Weiser, W; Prossinger, H

    2004-01-01

    In this paper we present two heavily eroded tooth fragments found in Grub/Kranawetberg, a Gravettian excavation site near Stillfried, Lower Austria. Both fragments were found during wet screening of sediment taken from an area near a hearth. Overall, the cultural layer yielded a large number of stone tools and flakes as well as bony points and over sixty bone beads and bone bead fragments. They point to an absolute date of 24,400 to 25,400 BP. We present a description of the tooth fragments and identify them as remains of an early modern human. One of the fragments is a deciduous right first lower molar (84) and the other a deciduous left lateral upper incisor (62). Due to their characteristic shape and size, as well as the degree of attrition, both teeth could have belonged to one single individual--a possibility consistent with their position in the stratigraphic column. The incisor could be compared for its metrical dimensions to the few other contemporaneous Upper Palaeolithic findings showing an insignificantly smaller dimension in mesio-distal and bucco-lingual dimensions. Although the remains are limited they increase our very small sample of deciduous teeth for this time period, which is essential for a better understanding of possible evolutionary trends from the Upper Palaeolithic to the Mesolithic. PMID:15216668

  11. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice.

    PubMed

    Saben, Jessica L; Asghar, Zeenat; Rhee, Julie S; Drury, Andrea; Scheaffer, Suzanne; Moley, Kelle H

    2016-02-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment. PMID:26677880

  12. In vitro erosive effect of pediatric medicines on deciduous tooth enamel.

    PubMed

    Scatena, Camila; Galafassi, Daniel; Gomes-Silva, Jaciara Miranda; Borsatto, Maria Cristina; Serra, Mônica Campos

    2014-01-01

    This study evaluated, in vitro, the erosive potential of pediatric liquid medicines in primary tooth enamel, depending on the exposure time. Sixty deciduous incisors were randomly assigned to 4 groups (n=15), according to the immersion solutions: guaifenesin; ferrous sulfate; salbutamol sulfate and artificial saliva. The immersion cycles in the medicines were undertaken under a 1-min agitation, which wasperformed three times daily, during 28 days. Surface microhardness was measured at 7,14, 21 and 28 days. The titratable acidity and buffering capacity of the immersion media were determined. Data were analyzed by Analysis of Variance and Tukey's test (α=0.05). Salbutamol sulfate caused a gradual loss in enamel microhardness deciduous, observed at all times (p<0.005). Exposure to guaifenesin or ferrous sulfate resulted in significant decrease of enamel microhardness only after 28 days (p<0.005). In the control group (artificial saliva), microhardness did not changed (p>0.005) at any of the studied times. Scanning Electron Microscopy (SEM) images revealed that after 28 days the surfaces clearly exhibited structural loss, which was unlike those immersed in artificial saliva. Erosion of deciduous enamel was dependent on the type of medicine and exposure time. PMID:24789287

  13. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  14. Distribution of versican and hyaluronan in the mouse uterus during decidualization.

    PubMed

    San Martin, S; Soto-Suazo, M; Zorn, T M T

    2003-08-01

    Preparation for embryo implantation requires extensive adaptation of the uterine microenvironment. This process consists of cell proliferation and cell differentiation resulting in the transformation of endometrial fibroblasts into a new type of cell called decidual cell. In the present study, we followed the space-time distribution of versican and hyaluronan (HA) in different tissues of the uterus before and after embryo implantation. Fragments of mouse uteri obtained on the fourth, fifth, sixth and seventh days of pregnancy were fixed in Methacarn, embedded in Paraplast and cut into 5-microm thick sections. HA was detected using a biotinylated fragment of the proteoglycan aggrecan, which binds to this glycosaminoglycan with high affinity and specificity. Versican was detected by a polyclonal antibody. Both reactions were developed by peroxidase methods. Before embryo implantation, both HA and versican were present in the endometrial stroma. However, after embryo implantation, HA disappeared from the decidual region immediately surrounding the implantation chamber, whereas versican accumulated in the same region. The differences observed in the expression of HA and versican suggest that both molecules may participate in the process of endometrial decidualization and/or embryo implantation.

  15. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice.

    PubMed

    Saben, Jessica L; Asghar, Zeenat; Rhee, Julie S; Drury, Andrea; Scheaffer, Suzanne; Moley, Kelle H

    2016-02-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment.

  16. Comprehensive analysis of the transcriptional response of human decidual cells to lipopolysaccharide stimulation

    PubMed Central

    Himes, Katherine P.; Handley, Daniel; Chu, Tianjiao; Burke, Brian; Bunce, Kimberly; Simhan, Hyagriv N.; Peters, David G.

    2014-01-01

    Decidual cells are central to innate immunity at the maternal/fetal interface. We sought to characterize the response of decidual cells to stimulation and then removal of lipopolysaccharide (LPS) using a whole genome approach. Decidual cells were isolated from term unlabored cesarean sections. Cells were stimulated with LPS and RNA isolated both prestimulation and 2 and 24 h post-stimulation. Media were changed and RNA extracted 48 h later. Gene expression was measured using Agilent 44K whole genome microarrays. Data were visualized and interpreted using Ingenuity Pathway Analysis (IPA) software and selected (n = 5) target gene expression was verified with quantitative real-time PCR. Genes related to immune function were up-regulated at 2 and 24 h after LPS exposure and then generally returned to baseline or were at least substantially reduced after LPS removal. Pathway analysis also revealed that genes involved in lipid metabolism (specifically cholesterol and steroid biosynthesis), iron metabolism, and the plasminogen system were coordinately altered following exposure to LPS. Our novel, preliminary findings provide insight into possible mechanisms via which the host inflammatory response could contribute to preterm birth and warrant further investigation in preterm samples. PMID:22196106

  17. Uterine glands: biological roles in conceptus implantation, uterine receptivity, and decidualization

    PubMed Central

    Filant, Justyna; Spencer, Thomas E.

    2014-01-01

    All mammalian uteri contain glands in the endometrium that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). This review summarizes information related to the biological roles of uterine glands and their secretions in uterine receptivity, blastocyst/conceptus survival and implantation, and stromal cell decidualization. Studies with the ovine uterine gland knockout (UGKO) model support a primary role for uterine glands and, by inference, their secretions present in uterine luminal fluid histrotroph for conceptus survival and development. In rodents, studies with mutant and progesterone-induced UGKO mice found that uterine glands and their secretions are unequivocally required for establishment of uterine receptivity and blastocyst implantation and also may influence blastocyst trophectoderm activation and stromal cell decidualization in the uterus. Similarly in humans, histotroph from uterine glands appears critical for blastocyst implantation, uterine receptivity, and conceptus nutrition during the first trimester and uterine glands likely have a role in stromal cell decidualization. An increased understanding of uterine gland biology is important for diagnosis, prevention and treatment of fertility problems, particularly infertility and recurrent pregnancy loss, in domestic animals and humans. PMID:25023676

  18. Organic Compounds Detected in Deciduous Teeth: A Replication Study from Children with Autism in Two Samples

    PubMed Central

    Palmer, Raymond F.; Heilbrun, Lynne; Camann, David; Yau, Alice; Schultz, Stephen; Elisco, Viola; Tapia, Beatriz; Garza, Noe; Miller, Claudia

    2015-01-01

    Biological samples are an important part of investigating toxic exposures and disease outcomes. However, blood, urine, saliva, or hair can only reflect relatively recent exposures. Alternatively, deciduous teeth have served as a biomarker of early developmental exposure to heavy metals, but little has been done to assess organic toxic exposures such as pesticides, plastics, or medications. The purpose of our study was to determine if organic chemicals previously detected in a sample of typically developing children could be detected in teeth from a sample of children with autism. Eighty-three deciduous teeth from children with autism spectrum disorders (ASD) were chosen from our tooth repository. Organic compounds were assessed using liquid chromatography tandem mass spectrometry and gas chromatography methods. Consistent with a prior report from Camann et al., (2013), we have demonstrated that specific semivolatile organic chemicals relevant to autism etiology can be detected in deciduous teeth. This report provides evidence that teeth can be useful biomarkers of early life exposure for use in epidemiologic case-control studies seeking to identify differential unbiased exposures during development between those with and without specific disorders such as autism. PMID:26290670

  19. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome. PMID:26604029

  20. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2014-05-01

    In this contribution we present a study on the role of physiological phenology (defined as seasonal changes in physiological properties) as an additional driver of the ecosystem respiration (RECO) in deciduous forests. With a model-data integration approach we analyzed the RECO data from 19 deciduous sites belonging to the FLUXNET La Thuile database. We analyzed the performance of two semi-empirical models, one with (TPdGPP) and the other without (TPLinGPP) the explicit dependency of RECO on the rate at which gross primary productivity (GPP) changes in spring, the latter used as proxy of physiological phenology. We identified a clear effect of physiological phenology on RECO that needs to be included as a driver of RECO in addition to the GPP, temperature and precipitation. The semi-empirical model developed led to a decrease in root mean square error (RMSE) of about 8% and an increase in the modeling efficiency (EF) of about 6% of modeled RECO. The reduction of the model-observation bias occurred mainly in spring and in summer, while less reduction was observed at the annual time-scale. For few sites the use of the explicit description of physiological phenology did not reduce the bias in modeled RECO consistently. This might be partly related to the spatial heterogeneity of the canopy at these sites. The results obtained point toward the need of improving the current approach used for modeling the RECO in deciduous forests by including the phenological cycle of the canopy.

  1. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium.

    PubMed

    Murakami, Keisuke; Lee, Yie Hou; Lucas, Emma S; Chan, Yi-Wah; Durairaj, Ruban Peter; Takeda, Satoru; Moore, Jonathan D; Tan, Bee K; Quenby, Siobhan; Chan, Jerry K Y; Gargett, Caroline E; Brosens, Jan J

    2014-11-01

    The endometrial perivascular microenvironment is rich in mesenchymal stem-like cells that express type 1 integral membrane protein Sushi domain containing 2 (SUSD2) but the role of these cells in the decidual transformation of this tissue in pregnancy is unknown. We used an antibody directed against SUSD2 (W5C5) to isolate perivascular (W5C5(+)) and nonperivascular (W5C5(-)) fibroblasts from mid-luteal biopsies. We show that SUSD2 expression, and hence the ratio of W5C5(+):W5C5(-) cells, changes in culture depending on cell-cell contact and activation of the Notch signaling pathway. RNA sequencing revealed that cultures derived from W5C5(+) progenitor cells remain phenotypically distinct by the enrichment of novel and established endometrial perivascular signature genes. In an undifferentiated state, W5C5(+)-derived cells produced lower levels of various chemokines and inflammatory modulators when compared with their W5C5(-) counterparts. This divergence in secretomes was switched and became more pronounced upon decidualization, which transformed perivascular W5C5(+) cells into the dominant source of a range of chemokines and cytokines, including leukemia inhibitory factor and chemokine (C-C motif) ligand 7. Our findings suggest that the decidual response is spatially organized at the embryo-maternal interface with differentiating perivascular cells establishing distinct cytokine and chemokine profiles that could potentially direct trophoblast toward maternal vessels and govern local immune responses in pregnancy. PMID:25116707

  2. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  3. On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage.

    PubMed

    Baldocchi, Dennis D.; Hutchison, Boyd A.

    1986-12-01

    The foliage in a fully-leafed deciduous forest canopy is clumped. Consequently, theory indicates that the probability of beam penetration will be estimated more accurately with a model based on the negative binomial distribution than with a model based on the Poisson distribution, incorporating an assumption of a spherical leaf inclination angle distribution. Flux densities of photosynthetically active radiation (PAR) were measured in and above a deciduous forest canopy and were computed with the canopy radiative transfer models based on the negative binomial and Poisson distributions. These radiation values were used to compute canopy photosynthesis and stomatal conductance. Canopy photosynthesis and stomatal conductance, based on the negative binomial model, overestimated values computed from measured PAR profiles by 8 and 9%. respectively. The canopy photosynthesis and stomatal conductance values computed with the spherical Poisson model under-estimated measured values by 17 and 10%, respectively. Thus, the negative binomial radiative transfer model improves estimates of canopy photosynthesis and, to a lesser extent, stomatal conductance, inside a deciduous forest.

  4. Decreased type V collagen expression in human decidual tissues of spontaneous abortion during early pregnancy.

    PubMed Central

    Iwahashi, M; Nakano, R

    1998-01-01

    AIM: To provide some insight into the aetiology of spontaneous abortion, the contents of type V collagen was investigated in human decidual tissues in spontaneous abortion and normal pregnancy. METHODS: Collagens were extracted from decidual tissues in spontaneous abortion (n = 19) and normal pregnancy (n = 25). The different types of collagen alpha chains were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), stained with Coomassie brilliant blue, and measured by densitometry. The relative amounts of the alpha 1 (III) and alpha 1 (V) chains were calculated by dividing the band intensities of the alpha 1 (III) and alpha 1 (V) chains by that of the alpha 1 (I) chain. RESULTS: The ratio of the alpha 1 (V) chain to that of the alpha 1 (I) chain in decidual tissues in spontaneous abortion was significantly lower than that found in normal pregnancy (p < 0.05). CONCLUSIONS: These results suggest that type V collagen might play an important role in the maintenance of pregnancy and that decreased expression of this collagen could be associated with spontaneous abortion. Images PMID:9577371

  5. Hybrid mesons

    NASA Astrophysics Data System (ADS)

    Meyer, C. A.; Swanson, E. S.

    2015-05-01

    A review of the theoretical and experimental status of hybrid hadrons is presented. The states π1(1400) , π1(1600) , and π1(2015) are thoroughly reviewed, along with experimental results from GAMS, VES, Obelix, COMPASS, KEK, CLEO, Crystal Barrel, CLAS, and BNL. Theoretical lattice results on the gluelump spectrum, adiabatic potentials, heavy and light hybrids, and transition matrix elements are discussed. These are compared with bag, string, flux tube, and constituent gluon models. Strong and electromagnetic decay models are described and compared to lattice gauge theory results. We conclude that while good evidence for the existence of a light isovector exotic meson exists, its confirmation as a hybrid meson awaits discovery of its iso-partners. We also conclude that lattice gauge theory rules out a number of hybrid models and provides a reference to judge the success of others.

  6. Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

    SciTech Connect

    Chandrashekhar P. Joshi; Vincent L. Chiang

    2009-01-29

    Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.

  7. Hybrid SCR

    SciTech Connect

    Jantzen, T.; Zammit, K.

    1996-01-01

    Hybrid selective catalytic reduction (SCR) systems consist of either a combination of SCR techniques (i.e. in-dust SCR combined with air heater SCR) or selective noncatalytic reduction (SNCR) in combination with SCR. These Hybrid SCR systems can offer substantial benefits in reduced cost and enhanced performance; however, their applicability is very unit specific. This paper presents the results of a study to document the current experience and develop a tool by which utilities can determine the applicability of Hybrid SCR to meet their NO{sub x} reduction goals, a guideline for selecting the best configuration, and a reference for developing the design parameters necessary to implement the technology. Hybrid SCR systems have been installed and demonstrated on utility boilers. The systems have included in-duct SCR combined with air heater SCR and SNCR combined with SCR as includes a review of the results of these demonstrations as well as comments on the applicability of those results for other utility systems. Finally this document provides a reference for the development of design parameters for the implementation of Hybrid SCR. There are a number of technical and commercial considerations which must be resolved prior to designing or procuring a Hybrid SCR system. The boiler operating, temperature and emissions data necessary for the final design are presented along with the process design variables which must be specified. Procurement suggestions are included to assist the user in addressing some of the more pertinent commercial issues.

  8. Observations of reactive nitrogen oxide fluxes by eddy covariance above two midlatitude North American mixed hardwood forests

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Murphy, J. G.

    2014-03-01

    Significant knowledge gaps persist in the understanding of forest-atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere-atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3- + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NOy mixing ratios. Average midday (12:00-16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s-1 respectively. Average nighttime (00:00-04:00) deposition velocities were 0.09 ± 0.25 cm s-1 and 0.08 ± 0.16 cm s-1 respectively. At HFWR, a period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was -0.14 mg (N) m-2 day-1 and -0.34 mg (N) m-2 day-1 (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively.

  9. Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland.

    PubMed

    Risch, Anita C; Wirthner, Sven; Busse, Matt D; Page-Dumroese, Deborah S; Schütz, Martin

    2010-11-01

    Interest in soil C storage and release has increased in recent years. In addition to factors such as climate/land-use change, vertebrate animals can have a considerable impact on soil CO(2) emissions. To date, most research has considered herbivores, while the impact of omnivorous animals has rarely been investigated. Our goal was to determine how European wild boars (Sus scrofa L.), large omnivores that consume soil-inhabiting animals and belowground plant parts by grubbing in the soil, affect soil C dynamics. We measured soil respiration (CO(2)), temperature, and moisture on paired grubbed and non-grubbed plots in six hardwood forest stands for a 3-year period and sampled fine root and microbial biomass at the beginning and after 2 years of the study. We also measured the percentage of freshly disturbed forest soil within the larger surroundings of each stand and used this information together with hunting statistics and forest cover data to model the total amount of CO(2) released from Swiss forest soils due to grubbing during 1 year. Soil CO(2) emissions were significantly higher on grubbed compared to non-grubbed plots during the study. On average 23.1% more CO(2) was released from these plots, which we associated with potential alterations in CO(2) diffusion rates, incorporation of litter into the mineral soil and higher fine root/microbial biomass. Thus, wild boars considerably increased the small-scale heterogeneity of soil properties. Roughly 1% of Switzerland's surface area is similar to our sites (boar density/forest cover). Given the range of forest soil disturbance of 27-54% at our sites, the geographic information system model predicted that boar grubbing would lead to the release of an additional 49,731.10-98,454.74 t CO(2) year(-1). These values are relatively small compared to total soil emissions estimated for Swiss hardwood forests and suggest that boars will have little effect on large-scale emissions unless their numbers increase and their

  10. The impact of boreal deciduous and evergreen forests on atmospheric CO2 seasonality

    NASA Astrophysics Data System (ADS)

    Welp, L.; Graven, H. D.; Keeling, R. F.; Bi, J.

    2015-12-01

    The seasonal cycle of atmospheric CO2 is largely controlled by the terrestrial biosphere. It is well known that the seasonal amplitude of net ecosystem productivity (NEP) is the largest in the far north, where forest productivity is compressed into a short growing season. Since 1960, the seasonal amplitude of atmospheric CO2 north of 45N has increased by 35-55%. The increase in the seasonal amplitude is a difficult benchmark for coupled climate-carbon models to replicate. In fact, the models vary widely in their mean seasonal cycle representation. The boreal region has a strong influence on CO2 seasonality at Barrow. Deciduous and evergreen plant functional types (PFTs) have different patterns of NEP. We identified four pairs of nearby deciduous and evergreen forest PFTs with eddy covariance measurements. Evergreen forests show an early peak in NEP in May-June, while deciduous forests have a larger peak in NEP later in June-July. The influence of each PFT on the seasonal cycle at Barrow was computed from atmospheric transport results. We normalized the amplitude influence by the growing season NEP of the tower-based PFT flux and found that deciduous forests have 1.4 to 1.8 times more influence (per unit of growing season NEP) at Barrow than evergreen PFT. This diagnosis depends on the timing of the sharp seasonal draw-down at Barrow, which occurs too late to be explained by evergreen forests. The cycle at Barrow therefore appears to be strongly influenced by deciduous PFT, despite the dominance of evergreen PFTs in boreal forests. This paradoxical conclusion is also reached when examining the seasonality of land surface fluxes calculated using atmospheric inverse methods. We examine how these different PFTs, and possible trends in relative abundance, affect the seasonality of atmosphere CO2 using FluxNet data and atmospheric transport modelling. Our results highlight the importance of parameterizing multiple PFTs or individual species within grid cells in models in

  11. Inhibition of IL-6 Signaling Pathway by Curcumin in Uterine Decidual Cells

    PubMed Central

    Devi, Y. Sangeeta; DeVine, Majesta; DeKuiper, Justin; Ferguson, Susan; Fazleabas, Asgerally T.

    2015-01-01

    IL-6 is a multifunctional pro-inflammatory cytokine and has been implicated in many gestational disorders including preterm birth. Currently, there are no appropriate therapeutic interventions available to circumvent inflammatory-mediated gestational disorders. Therefore, the goal of this study was to identify a safe and effective pharmacological compound to counterbalance inflammatory responses in the uterus. Curcumin, a naturally-occuring polyphenolic compound, has been widely used in alternative medicine to treat inflammatory diseases. However, the anti-inflammatory effect of curcumin has not been explored in uterine decidual cells, a major source of IL-6. Therefore, we examined the effect of curcumin on IL-6 expression using two types of uterine decidual cells 1) HuF cells, primary human fibroblast cells obtained from the decidua parietalis; 2) UIII cells, a rodent non-transformed decidual cell line. Curcumin treatment completely abrogated the expression of IL-1β-induced IL-6 in these cells. Curcumin also strongly inhibited the expression of gp130, a critical molecule in IL-6 signaling, whereas expression of IL-6R and sIL-6R was not affected. Curcumin also inhibited phosphorylation and nuclear localization of STAT3, a well-known downstream mediator of IL-6 signaling. Furthermore, curcumin attenuated IL-1β-induced IL-6 promoter reporter activity suggesting transcriptional regulation. To further understand whether NF-ҡB is involved in this inhibition, we examined the effect of curcumin on the expression of p50 and p65 subunits of NF-ҡB in decidual cells. Expression of IL-1β-induced p50 mRNA was repressed by curcumin while p65 mRNA was not affected. However, curcumin treatment dramatically inhibited both p50 and p65 protein levels and prevented its nuclear localization. This effect is at least partly mediated through the deactivation of IKK, since IL-1β-induced IKKα/β phosphorylation is decreased upon curcumin treatment. Our results not only revealed

  12. Decidualization and syndecan-1 knock down sensitize endometrial stromal cells to apoptosis induced by embryonic stimuli.

    PubMed

    Boeddeker, Sarah Jean; Baston-Buest, Dunja Maria; Fehm, Tanja; Kruessel, Jan; Hess, Alexandra

    2015-01-01

    Human embryo invasion and implantation into the inner wall of the maternal uterus, the endometrium, is the pivotal process for a successful pregnancy. Whereas disruption of the endometrial epithelial layer was already correlated with the programmed cell death, the role of apoptosis of the subjacent endometrial stromal cells during implantation is indistinct. The aim was to clarify whether apoptosis plays a role in the stromal invasion and to characterize if the apoptotic susceptibility of endometrial stromal cells to embryonic stimuli is influenced by decidualization and Syndecan-1. Therefore, the immortalized human endometrial stromal cell line St-T1 was used to first generate a new cell line with a stable Syndecan-1 knock down (KdS1), and second to further decidualize the cells with progesterone. As a replacement for the ethically inapplicable embryo all cells were treated with the embryonic factors and secretion products interleukin-1β, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1 and anti-Fas antibody to mimic the embryo contact. Detection of apoptosis was verified via Caspase ELISAs, PARP cleavage and Annexin V staining. Apoptosis-related proteins were investigated via antibody arrays and underlying signaling pathways were analyzed by Western blot. Non-decidualized endometrial stromal cells showed a resistance towards apoptosis which was rescinded by decidualization and Syndecan-1 knock down independent of decidualization. This was correlated with an altered expression of several pro- and anti-apoptotic proteins and connected to a higher activation of pro-survival Akt in non-differentiated St-T1 as an upstream mediator of apoptotis-related proteins. This study provides insight into the largely elusive process of implantation, proposing an important role for stromal cell apoptosis to successfully establish a pregnancy. The impact of Syndecan-1 in attenuating the apoptotic signal is particularly interesting in the light of an already

  13. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.

    PubMed

    Ishida, Atsushi; Diloksumpun, Sapit; Ladpala, Phanumard; Staporn, Duriya; Panuthai, Samreong; Gamo, Minoru; Yazaki, Kenichi; Ishizuka, Moriyoshi; Puangchit, Ladawan

    2006-05-01

    We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.

  14. Natural Selection of Human Embryos: Decidualizing Endometrial Stromal Cells Serve as Sensors of Embryo Quality upon Implantation

    PubMed Central

    Teklenburg, Gijs; Salker, Madhuri; Molokhia, Mariam; Lavery, Stuart; Trew, Geoffrey; Aojanepong, Tepchongchit; Mardon, Helen J.; Lokugamage, Amali U.; Rai, Raj; Landles, Christian; Roelen, Bernard A. J.; Quenby, Siobhan; Kuijk, Ewart W.; Kavelaars, Annemieke; Heijnen, Cobi J.; Regan, Lesley; Brosens, Jan J.; Macklon, Nick S.

    2010-01-01

    Background Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown. Methodology/Principal Findings We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1β, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo. Conclusions Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in

  15. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

    PubMed

    Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

    2015-11-01

    Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests.

  16. Changes in Carbon Flux at the Duke Forest Hardwood Ameriflux Site Due to Land Cover/Land Use Changes

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.

    2014-12-01

    The Raleigh/Durham, North Carolina metropolitan area has been ranked by Forbes as the fastest growing cities in the United States. As a result of the rapid growth, there has been a significant amount of urban sprawl. The objective of this study was to determine if the changes in land use and land cover have caused a change in the carbon flux near the Duke Forest AmeriFlux station that was active from 2001 to 2008. The land cover and land use were assessed every two years to determine how land cover has changed at the Duke Forest Hardwoods (US-Dk2) AmeriFlux site from 2001 to 2008 using Landsat scenes. The change in land cover and land use was then compared to changes in the carbon footprint that is computed annually from 2001 to 2008. The footprint model for each wind direction determined that there are changes annually and that the research will determine if these changes are due to annual weather patterns or land use and land cover changes.

  17. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    SciTech Connect

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  18. Isolation, Purification, and Characterization of an Endogenous Root-promoting Factor Obtained from Basal Sections of Pear Hardwood Cuttings.

    PubMed

    Fadl, M S; Hartmann, H T

    1967-04-01

    Basal segments taken from Old Home and Bartlett pear hardwood cuttings collected at intervals during the rooting period in September were extracted with ethanol and fractionated by paper chromatography in different solvent systems. Different zones on the chromatograms were bioassayed by the mung bean rooting test, which showed high levels of promotion in Old Home basal extracts when the cuttings were obtained during the period of maximum rooting. Extracts from Bartlett cuttings, however, showed considerably less promotion activity in the bioassay but did show high levels of inhibitory activity.After the easily-rooted Old Home cuttings had been in the rooting medium for 10 days, a highly active endogenous root-promoting material was found in extracts from basal segments of cuttings having buds and which had been treated with indolebutyric acid. Similar extracts obtained from disbudded cuttings, or from cuttings with buds but not treated with indolebutyric acid, lacked this rooting-factor. Extracts obtained from all types of the difficult-to-root Bartlett cuttings also lacked this rooting-factor. The latter is believed to be produced by physiologically active Old Home buds, and is very effective in the mung bean bioassay, even at extremely low concentrations.From paper chromatographic studies, tests with spray reagents, solubility determinations, biological tests, UV spectrum analysis, and infrared spectroscopy, it is believed that this rooting factor could be a condensation product between exogenous auxin (indolebutyric acid) and a phenolic compound produced by physiologically active Old Home pear buds. PMID:16656535

  19. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  20. Soil nitrogen drives community-level phosphorus resorption in a co-limited system: evidence from a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    See, C. R.; Yanai, R. D.

    2013-12-01

    Fertilization studies in northeastern forests suggest that forest productivity may be co-limited by nitrogen and phosphorus. Foliar nutrient resorption is a crucial conservation mechanism for plants. Resorption controls litterfall nutrient concentration, and litterfall is the largest aboveground nutrient flux in this system. Previous studies have attempted to link the foliar resorption of P to soil P status with mixed results. We propose that in an N and P co-limited system, foliar resorption of P may be linked to N availability. Here we compare the foliar chemistry of six hardwood tree species to soil chemistry across 18 plots in 6 stands in Bartlett Experimental Forest, New Hampshire. Resorption efficiency was calculated by species as the percent difference between green and senesced leaves. We weighted the resorption efficiencies for dominant tree species in each plot by their litterfall mass to create a community-level estimate of resorption for each plot. Estimates of soil N content to 30 centimeters in the mineral soil were strongly correlated with community-level estimates of both P resorption efficiency (p=0.002) and proficiency (p=0.006). At the population level, this trend was observed in four of the six tree species sampled. Neither N nor P resorption was correlated with any of the soil P fractions we examined. If N availability drives biological P conservation, it would provide an important mechanism for the coupled cycling of N and P in co-limited systems.

  1. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites

    PubMed Central

    Song, Zhijiao; Zhang, Miaomiao; Li, Fagen; Weng, Qijie; Zhou, Chanpin; Li, Mei; Li, Jie; Huang, Huanhua; Mo, Xiaoyong; Gan, Siming

    2016-01-01

    Identification of loci or genes under natural selection is important for both understanding the genetic basis of local adaptation and practical applications, and genome scans provide a powerful means for such identification purposes. In this study, genome-wide simple sequence repeats markers (SSRs) were used to scan for molecular footprints of divergent selection in Eucalyptus grandis, a hardwood species occurring widely in costal areas from 32° S to 16° S in Australia. High population diversity levels and weak population structure were detected with putatively neutral genomic SSRs. Using three FST outlier detection methods, a total of 58 outlying SSRs were collectively identified as loci under divergent selection against three non-correlated climatic variables, namely, mean annual temperature, isothermality and annual precipitation. Using a spatial analysis method, nine significant associations were revealed between FST outlier allele frequencies and climatic variables, involving seven alleles from five SSR loci. Of the five significant SSRs, two (EUCeSSR1044 and Embra394) contained alleles of putative genes with known functional importance for response to climatic factors. Our study presents critical information on the population diversity and structure of the important woody species E. grandis and provides insight into the adaptive responses of perennial trees to climatic variations. PMID:27748400

  2. Hardwood smoke alters murine splenic T cell responses to mitogens following a 6-month whole body inhalation exposure

    SciTech Connect

    Burchiel, Scott W. . E-mail: Sburchiel@salud.unm.edu; Lauer, Fredine T.; Dunaway, Sandy L.; Zawadzki, Jerome; McDonald, Jacob D.; Reed, Matthew D.

    2005-02-01

    The purpose of these studies was to assess the effects of hardwood smoke (HWS) inhalation (30-1000 {mu}g/m{sup 3}) on the systemic immune responses of A/J mice evaluated after 6 months of daily exposures. Spleen cells obtained from mice were assessed for changes in cell number, cell surface marker expression [B, T, macrophage, and natural killer (NK) cells], and responses to B cell (LPS, endotoxin) and T cell (Con A) mitogens. Results showed that HWS smoke increased T cell proliferation in the 100 {mu}g/m{sup 3} exposure group and produced a concentration-dependent suppression of T cell proliferation at concentrations >300 {mu}g/m{sup 3}. There were no effects on B cell proliferation or in spleen cell surface marker expression. Analyses of the exposure atmospheres revealed the presence of significant levels of naphthalene and methylated napthalenes, fluorene, phenanthrene, and anthracene in the exposure chambers, as well as low concentrations of several metals (K, Ca, and Fe). Our results demonstrate that environmentally relevant concentrations of HWS may be immunosuppressive to the immune system of mice exposed during a 6-month period.

  3. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  4. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability. PMID:25979478

  5. Decomposition of hardwood leaves grown under elevated O[sub 3] and/or CO[sub 2

    SciTech Connect

    Boerner, R.E.J.; Rebbeck, J. Northeastern Forest Experiment Station, Delaware, OH )

    1993-06-01

    We measured mass loss and N release from leaves of three hardwoods which varied in O[sub 3] sensitivity: O[sub 3]-tolerant sugar maple (Acer saccharum/SM), black cherry (Prunus serotina/BC), and putatively O[sub 3]-sensitive yellow poplar (Liriodendron tulipifera/YP), grown in pots in charcoal-filtered air (CF), ambient O[sub 3], or twice ambient O[sub 3] (2X) in open top chambers. Mass loss was not affected by the O[sub 3] regime in which the leaves were grown. k values averaged SM:-0.707, BC:-0.613, and YP:-0.859. N loss from ambient O[sub 3]-grown SM was significantly greater than from CF; N loss from BC did not differ among treatments. Significantly less N was released from CF-grown YP leaves than from O[sup 3]-treated leaves. YP leaves from plants grown in pots at 2X O[sub 3] and 350 ppm supplemental CO[sub 2] in CSTRs loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF or 2X O[sub 3]. Thus, for leaves from plants grown in pots in fumigation chambers, the concentrations of both O[sub 3] and CO[sub 2] can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO[sub 2].

  6. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.

  7. Quantification of Carbon Fluxes in Tropical Deciduous Forests Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Prasad, V. Krishna; Rajagopal, T.; Kant, Yogesh; Badarinath, K. V. S.

    Biomass burning in tropics is causing drastic changes in physical, chemical and biological properties of earth's atmosphere. Biomass burning associated with slash and burn agriculture is one of the major cause of Green House Gas emissions. In the present study, study area covering tropical deciduous forests having slash and burn agriculture practice, has been considered for studying carbon dynamics. Satellite data pertaining to IRS-1C LISS III satellite data has been used for stratification of vegetation into different communities. Second order texture measures Semivariograms, Angular Second Moment (ASM) and Inverse Difference Moment (IDM) and NDVI textural algorithm have been used to capture spatial information from forest stands. Biomass estimations have been done through regression equations by using girth measurements obtained through field studies. Satellite data has been used to quantify the amount of biomass burnt in respective vegetation types. Results of the study through textural measures suggest high heterogeneity in canopy diversity for mixed dry deciduous forests. ASM and IDM are found to be high for pure stands of dry deciduous forests. NDVI textural algorithm detected a low spatial variability with respect to mixed dry deciduous forests suggesting homogeneity in plant biomass spatial variability. The average mean carbon storage has been found to be 64.34 t ha-1 C for dry deciduous forests, 129.0 t ha-1 C for mixed dry deciduous forests and 0.02 t ha-1 C for mixed scrub forests. Potential Net primary productivity for the forests ranged from 26.07 to 11.73 t ha-1 yr-1, when compared to actual productivity of 0.1 t ha-1 yr-1 to 4.6 t ha-1 yr-1. Mean carbon storage for plantations, above ground, below ground and total carbon has been found to be 16.84, 3.36 and 20.2 t ha-1 C respectively. Dry matter burnt in gms (M) obtained from satellite derived areal estimates has been found to be 1.344 × 1012 gms. Area weighted carbon release for the total study

  8. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.

    PubMed

    MacDonald, Jacqueline; Goacher, Robyn E; Abou-Zaid, Mamdouh; Master, Emma R

    2016-09-01

    White-rot fungi are distinguished by their ability to efficiently degrade lignin via lignin-modifying type II peroxidases, including manganese peroxidase (MnP) and lignin peroxidase (LiP). In the present study, time-of flight secondary ion mass spectrometry (ToF-SIMS) was used to evaluate lignin modification in three coniferous and three deciduous wood preparations following treatment with commercial preparations of LiP and MnP from two different white-rot fungi. Percent modification of lignin was calculated as a loss of intact methoxylated lignin over nonfunctionalized aromatic rings, which is consistent with oxidative cleavage of methoxy moieties within the lignin structure. Exposure to MnP resulted in greater modification of lignin in coniferous compared to deciduous wood (28 vs. 18 % modification of lignin); and greater modification of G-lignin compared to S-lignin within the deciduous wood samples (21 vs. 12 %). In contrast, exposure to LiP resulted in similar percent modification of lignin in all wood samples (21 vs 22 %), and of G- and S-lignin within the deciduous wood (22 vs. 23 %). These findings suggest that the selected MnP and LiP may particularly benefit delignification of coniferous and deciduous wood, respectively. Moreover, the current analysis further demonstrates the utility of ToF-SIMS for characterizing enzymatic modification of lignin in wood fibre along with potential advantages over UV and HPCL-MS detection of solubilized delignification products.

  9. Notch1 Is Regulated by Chorionic Gonadotropin and Progesterone in Endometrial Stromal Cells and Modulates Decidualization in Primates

    PubMed Central

    Afshar, Yalda; Miele, Lucio

    2012-01-01

    No other tissue in the body undergoes such a vast and extensive growth and remodeling in a relatively short period of time as the primate endometrium. Endometrial integrity is coordinated by ovarian hormones, namely, estrogens, progesterone, and the embryonic hormone chorionic gonadotropin (CG). These regulated events modulate the menstrual cycle and decidualization. The Notch family of transmembrane receptors regulate cellular proliferation, differentiation, and apoptosis, cellular processes required to maintain endometrial integrity. In two primate models, the human and the simulated pregnant baboon model, we demonstrated that Notch1 is increased during the window of uterine receptivity, concomitant with CG. Furthermore, CG combined with estrogens and progesterone up-regulate the level of Notch1, whereas progesterone increases the intracellular transcriptionally competent Notch1, which binds in a complex with progesterone receptor. Inhibition of Notch1 prevented decidualization, and alternatively, when decidualization is biochemically recapitulated in vitro, Notch1 is down-regulated. A focused microarray demonstrated that the Notch inhibitor, Numb, dramatically increased when Notch1 decreased during decidualization. We propose that in the endometrium, Notch has a dual role during the window of uterine receptivity. Initially, Notch1 mediates a survival signal in the uterine endometrium in response to CG from the implanting blastocyst and progesterone, so that menstrual sloughing is averted. Subsequently, Notch1 down-regulation may be critical for the transition of stromal fibroblast to decidual cells, which is essential for the establishment of a successful pregnancy. PMID:22535768

  10. The Production of Interleukin-11 and Decidualization Are Compromised in Endometrial Stromal Cells Derived from Patients with Infertility

    PubMed Central

    Karpovich, Natalia; Klemmt, Petra; McVeigh, J. Enda; Barlow, David H.; Mardon, Helen J.; Hwang, Jung Hye; Heath, John K.

    2006-01-01

    IL-11 signaling is critical for decidualization of the endometrial stroma in early pregnancy in the mouse. In this study, we investigate the function of IL-11 signaling in cAMP-induced decidualization of human endometrial stromal cells. We show that treatment of endometrial stromal cells with 8-bromo-cAMP (8-Br-cAMP) results in an increase in the levels of secreted IL-11, whereas levels of cell surface IL-11 receptor α are similar with or without 8-Br-cAMP treatment. The production of IL-11 correlates with the production of molecular markers of decidualization, prolactin and IGF-binding protein-1. The expression of these markers is inhibited when IL-11 signaling is specifically blocked in decidualizing endometrial stromal cells by the IL-11 antagonist W147A. We demonstrate that 8-Br-cAMP-induced endometrial stromal cells derived from patients with primary infertility produce lower levels of prolactin, IGF-binding protein-1, and IL-11 than cells derived from fertile women. Our results suggest that IL-11 expression is critically important during decidualization in the human endometrium, and that aberrant regulation of endometrial IL-11 production may be associated with some types of infertility. PMID:15613426

  11. Construction of a cDNA library for miniature pig mandibular deciduous molars

    PubMed Central

    2014-01-01

    Background The miniature pig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resembles that of humans. However, little information is available on the process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important. Results In our study, after serial sections were made, the development of the crown of the miniature pigs’ mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed. Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular deciduous molars (E35, E45, E50, and E60) of miniature pigs using Illumina Solexa deep sequencing. Microarray assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo sapiens genes compared with those in the mouse. Conclusion Our results not only identify the specific transcriptome and cDNA profile in developing mandibular deciduous molars of the miniature pig, but also provide useful information for investigating the molecular mechanism of tooth development in the miniature pig. PMID:24750690

  12. Forest carbon uptake in North America's aging temperate deciduous forests: A data-theory-model mismatch?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Curtis, P.; Bond-Lamberty, B. P.; Hardiman, B. S.; Scheuermann, C. M.; Nave, L. E.; Nadelhoffer, K. J.

    2015-12-01

    Century-old temperate deciduous forests in the US upper Midwest and Northeast power much of North America's terrestrial carbon sink, but these forests' carbon uptake capacity is expected to soon decline. But will this really happen? We marshal empirical data and ecological theory to show that declines in carbon uptake are not imminent in regrown temperate deciduous forests during coming decades, despite long-held assumptions and modeling results that predict declining carbon uptake during middle stages of ecosystem development. Age and production data for temperate deciduous forests, synthesized from published literature, do not provide evidence for declining net primary and ecosystem production (NPP and NEP, respectively) within the age-range most regional forests will occupy over the next half-century. Ecological theory suggests a mechanism for sustained carbon uptake in the region's aging forests in which high-frequency, low-severity disturbances maintain NPP and NEP by increasing ecosystem complexity. This theoretical model is supported by observations from the Forest Accelerated Succession Experiment in Michigan, USA, but such mechanisms sustaining production in old forests are not broadly represented in ecosystem models. Ecosystems experiencing low-frequency, high-severity disturbances that simplify ecosystem complexity do exhibit declining production during middle stages of succession, but we suggest that such scenarios have exerted a disproportionate influence on prevailing modeling and ecological assumptions regarding age-related declines in forest production. We conclude that there is wide ecological space for forests to sustain high rates of carbon uptake during middle stages of ecosystem development, and that advancing mechanistic understanding of long-term forest carbon cycle dynamics is essential to modeling the continent's future carbon sink strength.

  13. Remote Sensing Based Biophysical Characterization of Tropical Deciduous Forest in Central India

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Goroshi, S.; Sharma, N. K.; Bairagi, G. D.; Sharma, R.; Jalil, P.; Jain, A.; Sonakia, A.; Parihar, J. S.

    2011-09-01

    The paper reports the measurements of biophysical parameters using field and satellite data over a tropical deciduous forest Kanha National Park (KNP), central India. Field measurement (GBH, LAI, litter, soil moisture) was carried out over ten quadrates of 0.1ha in KNP for characterization of biophysical parameters with specified measurement protocol and sampling. Satellite based remote sensing analysis (LAI, Phenology, and NPP) was carried out using multi date observations of IRS-LISS-III, IMS-1MX, SPOT-VEGETATION and EOS-MODIS instruments. Rank correlation analysis using field data collected in the selected quadrates at KNP showed Sal (Shorea robusta) is dominant forest species followed by Lendia, Jamun (Syzygium cumini), Saja, Harra and Dhawda etc. Field measurement of Sal showed GBH range from 20 cm to 170 cm. Different forest classes such as Sal; Sal mixed with Jamun, Bamboo (Dendrocalamus strictus) etc, including grasslands/scrubland were classified with overall accuracy of 85.56 percent using March, May and October multi spectral data. Sal has distinct growth characteristics (low vegetation growth/ leaf fall in March instead of May) as compared to other vegetation species. As per the Leaf Area Index (LAI) measurement using hemispherical photographs, Sal showed the highest LAI (6.95 m2/m2) during September and lowest LAI (2.63 m2/m2) during March. Overall good agreement (r= 0.79) was found between the LAI generated from LISS-III and MODIS data product. It was observed from SPOT-VEGETATION analysis that NPP varied from 8.4 tC/ha/year (dry deciduous forest) to 14.25 tC/ha/year (Moist deciduous forest) in KNP.

  14. Laser-induced breakdown spectroscopy analysis of human deciduous teeth samples.

    PubMed

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Hayat, Asma

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) analysis of human deciduous teeth has been performed by employing Nd:YAG laser (1064 nm, 10 ns) for the evaluation of plasma parameters as well as elemental analysis. The plasma parameters, i.e., electron temperature and electron number density of laser-induced teeth plasma at various fluencies, have been evaluated. Both parameters show an increasing trend up to a certain value of laser fluence, i.e., 2.6 J/cm(2). With further increase in laser fluence up to a value of 3.9 J/cm(2), a decreasing trend is observed which is due to shielding effect. With further increase in laser fluence up to a maximum value of 10.5 J/cm(2), the insignificant changes in plasma parameters are observed which are attributed to saturation phenomenon governed by self-regulating regime. Emission spectroscopy results exhibit that laser fluence is the controlling factor for both plasma parameters. The elemental analysis was also performed at constant laser fluence of 2.6 J/cm(2) by evaluating the variation in detected elemental concentration of Ca, Fe, Sr, Zn, and Pb in three different parts of human teeth, i.e., enamel, dentine, and cementum. The lower concentration of Ca as compared to the standard values of CaCO3 (self-fabricated pellet) reveals that enamel is the most deciduous part of the human teeth. However, at the same time, it is also observed that the highest concentration of micro minerals is also found in enamel, then in dentine, and lowest in cementum. Carious or unhealthy tooth is identified by enhanced concentration of micro minerals (Pb, Sr, Zn, and Fe). The highest concentration of micro minerals as compared to other parts of teeth (dentine and root cementum) and lower concentration of Ca as compared to standard CaCO3 pellet in enamel confirm that enamel is the most deciduous part of the teeth.

  15. Spatial pattern of 137Cs in soils in a mixed deciduous forest in Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Takada, M.; Yamada, T.; Takahara, T.; Okuda, T.

    2015-12-01

    Spatial heterogeneity of 137Cs contamination was studied in a forest floor of Fukushima region, c.a. 40 km NW of Fukushima Daiichi Nuclear Power Plant (FDNPP) focusing on downwards flow from forest canopy via stemflow and throughfall which play major role in determining spatial contamination of 137Cs after the FNDP accident. Setting a study plot (400 m2) in a secondary mixed deciduous forest, dominated by Quercus crispula and Abies firma in canopy layer in August and November 2014, we sampled the souk from surface to 5 cm in depth of soils and measured 137Cs in every 2 m grids and at tree stem bases. The total estimated activity of 137Cs in soil within the study plot was approximately 210 kBq/m2, but showed large spatial heterogeneity showing 30 times of difference between the lowest and highest activities. The activity decreased with increasing distances from tree stem bases. High activity around tree stem bases was presumably due to the stemflow containing 137Cs seeped into soil only around tree stem bases that raised radioactivity in soil locally in the areas. Relatively low activity away from trees (outside canopies) may be due to small effects of stemflow and throughfall. Activity of 137Cs around bases of deciduous broadleaf trees increased with increasing the tree size. Because larger trees have higher potentials to capture larger amount of 137Cs on the tree surface, cumulative activity of 137Cs included in stemflow may increase with increasing the tree size. However evergreen coniferous tree species (Abies firma) did not show such a pattern relating to the tree size. The difference is assumed to be affected by phenological characteristics as the accident happened in winter and deciduous broadleaf trees did not have leaves and 137Cs deposited on tree bodies, while evergreen coniferous tree had leaves and 137Cs was intercepted by the canopies.

  16. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. PMID:24990223

  17. Soluble mediators and cytokines produced by human CD3- leucocyte clones from decidualized endometrium.

    PubMed

    Deniz, G; Christmas, S E; Johnson, P M

    1996-01-01

    CD3- granulated leucocyte clones have been generated from human first-trimester decidualized endometrial tissue following culture in interleukin-2 (IL-2). Supernatants from both CD3- decidual granulated leucocyte (dGL) and CD3- peripheral blood natural killer (PBNK) cell clones inhibited the proliferation of choriocarcinoma cell lines. A panel of CD3- dGL clones, with or without phytohaemagglutinin stimulation, was assayed for cytokine secretion compared with CD3- PBNK clones and fresh tissue extracts. Levels of interferon-gamma, granulocyte-macrophage colony-stimulating factor (GM-CSF), tumour necrosis factor-alpha (TNF-alpha) and IL-10 produced by stimulated CD3-CD8- dGL clones were greater than those produced by stimulated CD3-CD8+ dGL clones. In contrast, CD8+ dGL clones were more effective in production of IL-6 than CD8- dGL clones. Immunoreactive transforming growth factor-beta 2 (TGF-beta 2) was undetectable in supernatants from CD3- dGL and PBNK clones. CD3- dGL clones generally produced higher levels of all cytokines than PBNK clones. Some unstimulated CD3- dGL and PBNK clones spontaneously produced these cytokines, but usually at a reduced level. Fresh extracts of first-trimester decidual tissue contained detectable GM-CSF, TNF-alpha, IL-10,IL-6 and TGF-beta 2. Cytokine production by fresh CD3- dGL and CD3- dGL clones indicates that these cells could play an important role in the regulation of placental growth.

  18. Expression of functional molecules by human CD3- decidual granular leucocyte clones.

    PubMed

    Gudelj, L; Deniz, G; Rukavina, D; Johnson, P M; Christmas, S E

    1996-04-01

    Cell surface and cytoplasmic antigen expression by 35 CD3- decidual granular leucocyte (DGL) clones, derived from human endometrial tissue in the first trimester of pregnancy, has been compared with both that of fresh CD3- decidual leucocytes and that of CD3- peripheral blood natural killer (PBNK) cell clones (n = 12). The majority of DGL clones retained the antigenic phenotype of fresh cells, although CD103 (HML-1) was expressed on 50% of DGL clones but only 17% of fresh DGL. Both cytoplasmic CD3 zeta and CD3 epsilon chains were detected in > 90% of DGL clones in the absence of cell surface CD3. Cytoplasmic CD3 zeta was present in almost all fresh CD3- DGL, whereas CD3 epsilon was not. Most DGL clones did not express surface Fc gamma receptors I-III (CD64, -32 and -16, respectively) and complement receptors (CR) types 1 and 2 (CD35 and 21, respectively), but 43% expressed CR3 (CD11b/18); in contrast, all PBNK clones were CR3+. The NK cell-associated molecules Kp43 (CD94) and the p58 molecule recognized by the HP3E4 monoclonal antibody were both present on a higher proportion of CD3- PBNK (91% and 50%, respectively) than DGL clones (31% and 14%, respectively), despite expression of CD94 by > 90% of fresh CD56+ decidual leucocytes. Five of 35 CD3- DGL clones expressed cytoplasmic CD3 zeta in the absence of expression of CD2, CD16 or the p58 molecule recognized by HP3E4. These variations between CD3- DGL and PBNK cell clones in expression of functional molecules may be related to previously reported differences in major histocompatibility complex-non-restricted cytotoxic activities between these two cell types.

  19. Transcriptional Factor PU.1 Regulates Decidual C1q Expression in Early Pregnancy in Human.

    PubMed

    Madhukaran, Shanmuga Priyaa; Kishore, Uday; Jamil, Kaiser; Teo, Boon Heng Dennis; Choolani, Mahesh; Lu, Jinhua

    2015-01-01

    C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells (DCs). Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue-specific. Recently, PU.1 has been shown to regulate C1q gene expression in DCs and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR, and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation.

  20. Leaf domatia and foliar mite abundance in broadleaf deciduous forest of north Asia.

    PubMed

    O'Dowd, D; Pemberton, R

    1998-01-01

    Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.

  1. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K

    2008-05-01

    Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually "sun" individuals in the spring prior to their longer period in the summer shade.

  2. Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants.

    PubMed

    Kudo, Gaku; Ida, Takashi Y; Tani, Tomokazu

    2008-02-01

    Light availability in the understory of deciduous forests changes drastically within the growing season due to the foliage dynamics of canopy trees. Because flowering phenology, photosynthetic characteristics, and fruiting success respond to such strong seasonality in light availability, we hypothesized that understory plants in such ecosystems should describe distinct phenological groups or syndromes where "syndrome" is defined only as a set of characteristics that co-occur. To identify these phenological syndromes, we studied the flowering phenology, fruit or seed set, and photosynthetic characteristics for 18 perennial understory herbaceous species that differed in reproductive strategy over eight years in a deciduous forest in northern Japan. Three phenological groups emerged from this study: (1) spring bloomers, flowering and fruiting before the completion of canopy closure; (2) early-summer bloomers, flowering during the progress of canopy closure and fruiting after canopy closure; and (3) late-summer bloomers, flowering and fruiting after canopy closure. The spring bloomers had high photosynthetic rates and high fruiting abilities, but the flowering time varied considerably among years due to yearly fluctuations of snowmelt date. Bumble bee-pollinated species of spring bloomers showed variable seed-set success, while fly-pollinated species showed relatively stable seed sets over the years. The early-summer bloomers showed low fruiting abilities irrespective of pollination success, reflecting severe resource limitation with decelerating light availability during fruit development. Although the late-summer bloomers showed low photosynthetic rates under low-light conditions, high fruit-set success was attained if pollination was sufficient. These results support our hypothesis that phenological syndromes may be found in deciduous forest understory plants. Given that reproductive success of bee-pollinated spring bloomers is highly susceptible to seasonal

  3. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.

  4. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  5. Branched Arylalkenes from Cinnamates: Selectivity Inversion in Heck Reactions by Carboxylates as Deciduous Directing Groups.

    PubMed

    Tang, Jie; Hackenberger, Dagmar; Goossen, Lukas J

    2016-09-01

    A decarboxylative Mizoroki-Heck coupling of aryl halides with cinnamic acids has been developed in which the carboxylate group directs the arylation into its β-position before being tracelessly removed through protodecarboxylation. In the presence of a copper/palladium catalyst, both electron-rich and electron-deficient aryl bromides and chlorides bearing numerous functionalities were successfully coupled with broadly available cinnamates, with selective formation of 1,1-disubstituted alkenes. This reaction concept, in which the carboxylate acts as a deciduous directing group, ideally complements traditional 1,2-selective Heck reactions of styrenes. PMID:27485163

  6. Lysophosphatidic acid and sphingosine 1-phosphate metabolic pathways and their receptors are differentially regulated during decidualization of human endometrial stromal cells.

    PubMed

    Brünnert, D; Sztachelska, M; Bornkessel, F; Treder, N; Wolczynski, S; Goyal, P; Zygmunt, M

    2014-10-01

    In the luteal phase, human endometrial stromal cells (HESCs) undergo proliferation, migration and differentiation during the decidualization process under the control of the ovarian steroids progesterone and estrogen. Proper decidualization of stromal cells is required for blastocyst implantation and the development of pregnancy. The proliferation, migration and differentiation of HESCs in decidualization do not require the presence of a blastocyst but are greatly accelerated during implantation. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are potent bioactive lysophospholipids that have critical roles in various physiological and pathophysiological processes, including inflammation, angiogenesis and cancer. The expression of the enzymes involved in LPA and S1P turnover and their receptors in HESCs during decidualization has not been characterized yet. We found that the LPAR1 and LPAR6 and S1PR3 receptors are highly expressed in HESCs. LPAR1, autotaxin (ATX), an LPA producing enzyme and lipid phosphate phosphatase 3 were up-regulated during decidualization. Interestingly, the expression of all S1P receptor subtypes and LPA receptors (LPAR2-6) mRNA was down-regulated after decidualization. We found that SPHK1 is highly expressed in HESCs, and is up-regulated during decidualization. S1P phosphatase SGPP1 and S1P lyase SGPL1 are highly expressed in HESCs. SGPP1 mRNA expression was significantly up-regulated in decidualized HESCs. In conclusion, this study shows the first time that specific LPA and S1P receptors and their metabolizing enzymes are highly regulated in HESCs during decidualization. Furthermore, we suggest that LPAR1 receptor-mediated signaling in HESCs may be crucial in decidualization process. SPHK1 activity and high turnover of S1P and LPA might be essential for precise regulation of their signaling during decidualization of human endometrium and implantation. PMID:24994816

  7. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity.

    PubMed

    Vinketova, Kameliya; Mourdjeva, Milena; Oreshkova, Tsvetelina

    2016-01-01

    The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described. PMID:27239344

  8. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity

    PubMed Central

    Vinketova, Kameliya; Mourdjeva, Milena

    2016-01-01

    The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described. PMID:27239344

  9. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  10. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  11. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.

    2012-12-01

    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  12. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species.

    PubMed

    Wang, Yan; Dong, Xueyun; Wang, Hongfeng; Wang, Zhengquan; Gu, Jiacun

    2016-01-01

    Root traits in morphology, chemistry and anatomy are important to root physiological functions, but the differences between shallow and deep roots have rarely been studied in woody plants. Here, we selected three temperate hardwood species, Juglans mandshurica Maxim., Fraxinus mandschurica Rupr. and Phellodendron amurense Rupr., in plantations in northeastern China and measured morphological, anatomical and chemical traits of root tips (i.e., the first-order roots) at surface (0-10 cm) and subsurface (20-30 cm) soil layers. The objectives of this study were to identify how those traits changed with soil depth and to reveal potential functional differences. The results showed that root diameters in deep root tips were greater in J. mandshurica and F. mandschurica, but smaller in P. amurense. However, root stele diameter and the ratio of stele to root diameter in the subsurface layer were consistently greater in all three species, which may enhance their abilities to penetrate into soil. All deep roots exhibited lower tissue nitrogen concentration and respiration rate, which were possibly caused by lower nutrient availability in the subsurface soil layer. Significant differences between shallow and deep roots were observed in xylem structure, with deep roots having thicker stele, wider maximum conduit and greater number of conduits per stele. Compared with shallow roots, the theoretical hydraulic conductivities in deep roots were enhanced by 133% (J. mandshurica), 78% (F. mandschurica) and 217% (P. amurense), respectively, indicating higher efficiency of transportation. Our results suggest that trees' root tip anatomical structure and physiological activity vary substantially with soil environment.

  13. [Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast china].

    PubMed

    Hai-Long, Sun

    2013-10-01

    From June, 2007 to October, 2009, a measurement with static chamber/gas chromatograph techniques was conducted on the soil CH4 flux in a typical secondary hardwood forest in Northeast China under the effects of different harvest disturbances, i.e., uncut (control), clear cutting (including both farming and reforestation after clear cutting), 50% stand volume removed, and 25% stand volume removed. In all of the four treatments, the soil was the sink of atmospheric CH4, but cutting decreased the soil CH4 uptake flux, with the order of uncut (-85.03 microg CH4 x m;(-2) x h(-1)) > 50% stand volume removed (-80.31 microg CH4 x m(-2) x h(-1)) > 25% stand volume removed (-70.97 microg CH4 x m(-2)h(-1)) > farming after clear cutting (-65.57 microg CH4 x m(-2) x h(-1)) > reforestation after clear cutting (-62.02 miocrog CH4 x m(-2) x h(-1)). During the study period, the seasonal patterns of the soil CH4 uptake flux in all treatments were similar, with a higher value in growth season and a lower one in winter. After the harvest disturbance, the soil temperature, humidity, and NO(3-)-N, and NH(4+)-N contents were all increased, and the soil CH4 flux had a significant quadratic correlation with soil temperature, and a negative linear correlation with soil moisture content. It was suggested that the increase of the soil moisture, NO(3-)-N, and NHa(4+)-N contents after the forest harvest was the main cause of the decrease of the soil CH4 uptake flux.

  14. Changes in HPBMC markers of immmune function following controlled short-term inhalation exposures of humans to hardwood smoke.

    PubMed

    Burchiel, Scott W; Lauer, Fredine T; MacKenzie, Debra; McClain, Shea; Kuehl, Philip J; McDonald, Jacob D; Harrod, Kevin S

    2016-01-01

    Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines γIFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1β, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines. PMID:26895307

  15. [Effects of harvest disturbance on soil CH4 flux in a secondary hardwood forest in Northeast china].

    PubMed

    Hai-Long, Sun

    2013-10-01

    From June, 2007 to October, 2009, a measurement with static chamber/gas chromatograph techniques was conducted on the soil CH4 flux in a typical secondary hardwood forest in Northeast China under the effects of different harvest disturbances, i.e., uncut (control), clear cutting (including both farming and reforestation after clear cutting), 50% stand volume removed, and 25% stand volume removed. In all of the four treatments, the soil was the sink of atmospheric CH4, but cutting decreased the soil CH4 uptake flux, with the order of uncut (-85.03 microg CH4 x m;(-2) x h(-1)) > 50% stand volume removed (-80.31 microg CH4 x m(-2) x h(-1)) > 25% stand volume removed (-70.97 microg CH4 x m(-2)h(-1)) > farming after clear cutting (-65.57 microg CH4 x m(-2) x h(-1)) > reforestation after clear cutting (-62.02 miocrog CH4 x m(-2) x h(-1)). During the study period, the seasonal patterns of the soil CH4 uptake flux in all treatments were similar, with a higher value in growth season and a lower one in winter. After the harvest disturbance, the soil temperature, humidity, and NO(3-)-N, and NH(4+)-N contents were all increased, and the soil CH4 flux had a significant quadratic correlation with soil temperature, and a negative linear correlation with soil moisture content. It was suggested that the increase of the soil moisture, NO(3-)-N, and NHa(4+)-N contents after the forest harvest was the main cause of the decrease of the soil CH4 uptake flux. PMID:24483065

  16. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.

    PubMed

    Savage, Kathleen E; Parton, William J; Davidson, Eric A; Trumbore, Susan E; Frey, Serita D

    2013-08-01

    Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above- and belowground processes. The model was able to represent decadal-scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate-related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal-scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate

  17. Leaf area and foliar biomass relationships in northern hardwood forests located along an 800 km acid deposition gradient

    SciTech Connect

    Burton, A.J.; Pregitzer, K.S. ); Reed, D.D. )

    1991-09-01

    The canopies of northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.) were examined at five locations spanning 800 km along an acid deposition and climatic gradient in the Great Lakes region. Leaf area index (LAI) calculated from litterfall ranged from 6.0 to 8.0 in 1988, from 4.9 to 7.9 in 1989, and from 5.3 to 7.8 in 1990. The data suggest that maximum LAI for the sites is between 7 and 8. Insect defoliation and the allocation of assimilates to reproductive parts in large seed years reduced LAI by up to 34%. Allometric equations for leaf area and foliar biomass were not significantly different among sites. They predicted higher LAI values than were estimated from litterfall and could not account for the influences of defoliation and seed production. Canopy transmittance was a viable alternative for estimating LAI. Extinction coefficients (K) of 0.49 to 0.65 were appropriate for solar elevations of 63{degree} to 41{degree}. Patterns of specific leaf area (SLA) were similar for the sites. Average sugar maple SLA increased from 147 cm{sup 2}g{sup {minus}1} in the upper 5 m of the canopy to 389 cm{sup 2}g{sup {minus}1} in the seeding layer. Litterfall SLA averaged 196 cm{sup 2}g{sup {minus}1} for all species and 192 cm{sup 2}g{sup {minus}1} for sugar maple. Similarity among the sites in allometric relationships, maximum LAI, canopy transmittance, and patterns of SLA suggests these characteristics were controlled primarily by the similar nutrient and moisture availability at the sites. A general increasing trend in litter production along the gradient could not be attributed to N deposition or length of growing season due to year to year variability resulting from insect defoliation and seed production.

  18. Hardwood tree survival in heavy ground cover on reclaimed land in West Virginia: mowing and ripping effects.

    PubMed

    Skousen, Jeff; Gorman, Jim; Pena-Yewtukhiw, Eugenia; King, Jim; Stewart, Jason; Emerson, Paul; Delong, Curtis

    2009-01-01

    Current West Virginia coal mining regulations emphasize reforestation as a preferred postmining land use on surface mined areas. Some mined sites reclaimed to pasture are being converted to forests. In the spring of 2001, we compared the establishment and growth of five hardwood tree species on a reclaimed West Virginaia surface mine with compacted soils and a heavy grass groundcover. We planted 1-yr-old seedlings of five species (black cherry [Prunus serotina Ehrh.], red oak [Quercus rubra L.], yellow poplar [Liriodendron tulipifera L.], black walnut [Juglans nigra L.], and white ash [Fraxinus americana L.]) into sites that were mowed and unmowed on north- and south-facing aspects. We applied a ripping treatment, which loosened the compacted soils and disturbed the heavy ground cover. First year results showed >80% survival for all species. After 7 yr black cherry survival averaged 36%, red oak 47%, yellow poplar 66%, black walnut 80%, and white ash 98% across all sites and treatments. Seedling survival was best on north, unmowed, and ripped areas. Average growth (height x diameter(2)) of trees after 7 yr was greatest with white ash (434 cm(3)), followed by yellow poplar (256 cm(3)) and black walnut (138 cm(3)), then by black cherry (31 cm(3)) and red oak (27 cm(3)). Browsing by wildlife had a negative impact on tree growth especially on south aspect sites. Overall, mowing reduced survival of black cherry, red oak, and yellow poplar, but not for black walnut and white ash. Ripping increased survival of black cherry, red oak, and yellow poplar. Growth of all species was improved with ripping. Using inverse linear-quadratic plateau models, the time required for tree survival to stabilize varied from 1 yr for white ash to 6 to 9 yr for the other species. PMID:19465715

  19. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest.

    SciTech Connect

    Ulyshen, Michael, D.; Hanula, James L.; Horn, Scott; Kilgo, John, C.; Moorman, Christopher, E.

    2005-04-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.

  20. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen.

    PubMed

    Kim, Jong Sik; Sandquist, David; Sundberg, Björn; Daniel, Geoffrey

    2012-06-01

    Xylans occupy approximately one-third of the cell wall components in hardwoods and their chemical structures are well understood. However, the microdistribution of xylans (O-acetyl-4-O-methylglucuronoxylans, AcGXs) in the cell wall and their correlation with functional properties of cells in hardwood xylem is poorly understood. We demonstrate here the spatial and temporal distribution of xylans in secondary xylem cells of hybrid aspen using immunolocalization with LM10 and LM11 antibodies. Xylan labeling was detected earliest in fibers at the cell corner of the S₁ layer, and then later in vessels and ray cells respectively. Fibers showed a heterogeneous labeling pattern in the mature cell wall with stronger labeling of low substituted xylans (lsAcGXs) in the outer than inner cell wall. In contrast, vessels showed uniform labeling in the mature cell wall with stronger labeling of lsAcGXs than fibers. Xylan labeling in ray cells was detected much later than that in fibers and vessels, but was also detected at the beginning of secondary cell wall formation as in fibers and vessels with uniform labeling in the cell wall regardless of developmental stage. Interestingly, pit membranes including fiber-, vessel- and ray-vessel pits showed strong labeling of highly substituted xylans (hsAcGXs) during differentiation, although this labeling gradually disappeared during pit maturation. Together our observations indicate that there are temporal and spatial variations of xylan deposition and chemical structure of xylans between cells in aspen xylem. Differences in xylan localization between aspen (hardwood) and cedar (softwood) are also discussed.

  1. Cryopreserved Dental Pulp Tissues of Exfoliated Deciduous Teeth Is a Feasible Stem Cell Resource for Regenerative Medicine

    PubMed Central

    Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621

  2. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine.

    PubMed

    Ma, Lan; Makino, Yusuke; Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25-30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.

  3. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua

    2016-06-01

    Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved trees (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved trees (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen species were smaller than for deciduous species. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen species and deciduous species, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to tree boles; (2) the evergreen species were more likely to generate stemflow than deciduous species, and directed more intercepted rainwater to the root zone; (3) small trees were more productive in funneling stemflow than larger trees, which may provide a favorable

  4. Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest.

    PubMed

    Heberling, J Mason; Fridley, Jason D

    2016-04-01

    Non-native, invasive plants are commonly typified by trait strategies associated with high resource demands and plant invasions are often thought to be dependent upon site resource availability or disturbance. However, the invasion of shade-tolerant woody species into deciduous forests of the Eastern United States seems to contradict such generalization, as growth in this ecosystem is strongly constrained by light and, secondarily, nutrient stress. In a factorial manipulation of light and soil nitrogen availability, we established an experimental resource gradient in a secondary deciduous forest to test whether three common, woody, invasive species displayed increased metabolic performance and biomass production compared to six co-occurring woody native species, and whether these predicted differences depend upon resource supply. Using hierarchical Bayesian models of photosynthesis that included leaf trait effects, we found that invasive species exhibited functional strategies associated with higher rates of carbon gain. Further, invader metabolic and growth-related attributes were more responsive to increasing light availability than those of natives, but did not fall below average native responses even in low light. Surprisingly, neither group showed direct trait or growth responses to soil N additions. However, invasive species showed increased photosynthetic nitrogen use efficiencies with decreasing N availability, while that of natives remained constant. Although invader advantage over natives was amplified in higher resource conditions in this forest, our results indicate that some invasive species can maintain physiological advantages over co-occurring natives regardless of resource conditions. PMID:27220204

  5. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery.

    PubMed

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%).

  6. An EPR dosimetry method for rapid scanning of children following a radiation accident using deciduous teeth

    SciTech Connect

    Haskell, E.H.; Hayes, R.B.; Kenner, G.H.

    1999-02-01

    Electron paramagnetic resonance dosimetry may be applied to whole deciduous teeth of children. This makes it feasible to make direct measurement of absorbed gamma ray dose in the days and weeks following a nuclear accident, particularly if used in conjunction with a public awareness program. The technique reported here requires little sample preparation and has resulted in precision of approximately 30 mGy (1 {sigma}) for a deciduous incisor. Under conditions for rapid screening procedures, the methodology is estimated to provide 0.5 Gy accuracy. The largest error in the process is the determination of an appropriate background native signal for subtraction from the whole tooth spectrum. The native signal is superimposed on the radiation-induced signal, and the subtraction requires knowledge of a sample`s relative content of enamel and dentin along with their relative native signal intensities. Using a composite background standard, an equivalent absorbed dose of 70 {+-} 38 mGy (1 {sigma}) was determined. The lower detection limit of the technique was achieved by the elimination of anisotropic effects through rotation of the sample during measurement, together with subtraction of the standard native background signal and empty tube background spectra from the sample spectra.

  7. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery.

    PubMed

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  8. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-01-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected. PMID:25943276

  9. Measurement of soil moisture with cosmic-ray neutrons in deciduous forests

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Blume, Theresa; Güntner, Andreas

    2014-05-01

    In deciduous forests the calibration of cosmic-ray soil moisture sensors is difficult since the amount of water stored inside and on vegetation (leaves, branches, stems) varies seasonally. A one-time calibration conducted during summer can therefore introduce errors to the method that are especially pronounced in the winter season. We performed calibration in a deciduous forest at the TERENO observatory in north-eastern Germany at different times throughout the year to capture the changing influence of water in the vegetation on the calibration results. Additionally, we calibrated the cosmic-ray neutron sensor with soil samples from different soil depths (0-10 cm, 0-20 cm, 0-30 cm). We compared the resulting soil moisture time series with time series of FDR-based soil moisture point measurements at different depths. This allows us to estimate the error introduced by the influence of organic layers at the soil surface (litter, decomposed organic material) which can vary temporally. The same sensor setup was also used to look at time-lags between the cosmic-ray soil moisture signal and measurements of precipitation, intercepted water and soil moisture point measurements at different depths. Recorded time lags between point measurements and cosmic-ray soil moisture results can potentially help in tracking precipitation on its way through the canopy, the organic layer and into the soils.

  10. Boron stemflow chemistry in relation to species and season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2013-12-01

    Boron is an essential micronutrient that contributes to cell wall development and other critical plant functions. Boron deficiency is not uncommon in many forest types and plantations but may be difficult to differentiate from other impacts. The magnitude and timing of B transfer to the forest floor via stemflow is poorly understood and little is known about its variation as a function of species and season in temperate deciduous forests. We characterized this transfer in a mid-Atlantic broadleaved deciduous forest where we collected and analyzed stemflow from dominant canopy species of Fagus grandifolia (Ehrh.) [American beech] and Liriodendron tulipifera (L.) [yellow poplar]. Boron concentrations in stemflow were found to be greater from L. tulipifera compared with F. grandifolia over both seasons. Increased stemflow volume from F. grandifolia resulted in greater overall B contributions from these stems as well as greater enrichment ratios in both leaf and leafless conditions. When expressed on the basis of basal area, contributions of B to the forest floor were many times greater than gross precipitation and varied with season and meteorologic conditions.

  11. Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro.

    PubMed

    Gamundi-Segura, Silvia; Serna, Jose; Oehninger, Sergio; Horcajadas, Jose A; Arbones-Mainar, Jose M

    2015-09-01

    Obesity is defined as an excessive accumulation of adipose tissue that may lead to health complic