Science.gov

Sample records for deciduous hardwood hybrid

  1. Directional scattering properties of a winter deciduous hardwood canopy

    NASA Technical Reports Server (NTRS)

    Kimes, Daniel S.; Newcomb, W. Wayne

    1987-01-01

    The unique directional scattering properties of a deciduous hardwood forest without leaves during the winter period was measured in a visible and near-infrared band. A radiative transfer model was used to explore the scattering properties of such a forest. The reflectance distributions look similar to sparse homogeneous vegetation canopies. The overall reflectance distribution is a combination of the extreme azimuthal scattering behavior of tree limbs and the more typical scattering behavior of understory litter.

  2. Measuring and modeling the variation in species-specific transpiration in temperate deciduous hardwoods.

    PubMed

    Bowden, Joseph D; Bauerle, William L

    2008-11-01

    We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.

  3. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.

  4. Differential response by hardwood and deciduous stands in New England forests to climate change and insect-induced mortality

    NASA Astrophysics Data System (ADS)

    Munger, J. William; Wofsy, Steven C.; Orwig, David A.; Williams, Chris

    2016-04-01

    Forests in the northeastern United States include large areas dominated by mosaics of oak/maple and hemlock stands. Often the hardwood dominated stands include a significant cohort of hemlock saplings. However, long-term survival of hemlock in this region is threatened by Hemlock Wooly Adelgid (HWA), an invasive insect that is fatal to eastern hemlock. The northern limit of HWA is affected in part by winter minimum temperature and warmer winters are enabling northward expansion of HWA infestation. At the Harvard Forest in central Massachusetts, two long-term eddy flux towers are measuring carbon exchange in a >100 year old hardwood stand since 1992 (EMS- Ha1) and in a 100-200 year old hemlock stand (Ha2) since 2004. The flux measurements are complemented by vegetation dynamics plots. Carbon exchange at the two sites has distinctly different seasonality. The hardwood site has a shorter carbon uptake period, but higher peak fluxes, while the hemlock stand has a long carbon uptake period extending from spring thaw until early winter freeze. Some contribution from the evergreen hemlock in the understory is evident before canopy greenup at the EMS tower and spring and fall carbon uptake rates have been increasing and contribute in part to a trend towards larger annual carbon uptake at this site. Carbon uptake by hemlock increases with warmer temperatures in the spring and fall transition. Adelgids have reached the hemlock stand near Ha2 and have been widely distributed in the canopy since spring of 2012. The hemlock canopy in that stand is thinning and net carbon uptake and evapotranspiration have been decreasing since 2012. Adelgids have also been observed in scattered stands near the Ha1 tower, but as of 2015 the trees are still healthy. Because hemlocks stands have different seasonality and provide a distinct soil and sub-canopy light environment, their mortality and replacement by hardwood species will have significant impacts on forest dynamics, carbon balance, and

  5. Expression of anatomical leaf traits in homoploid hybrids between deciduous and evergreen species of Vaccinium.

    PubMed

    Piwczyński, M; Ponikierska, A; Puchałka, R; Corral, J M

    2013-05-01

    We investigated the anatomical expression of leaf traits in hybrids between evergreen Vaccinium vitis-idaea and deciduous V. myrtillus. We compared parents from four populations with their respective F1 hybrids and tested whether (i) transgression can be the source of novel anatomical traits in hybrids; (ii) expression of transgressive traits is more probable for traits with similar values in parents and intermediate for more distinct values, as predicted by theory; and (iii) independent origin of hybrids leads to identical trait expression profiles among populations. We found that anatomical leaf traits can be divided into four categories based on their similarity to parents: intermediate, parental-like, transgressive and non-significant. Contrary to the common view, parental-like trait values were equally important in shaping the hybrid profile, as were intermediate traits. Transgression was revealed in 17/144 cases and concerned mainly cell and tissue sizes. As predicted by theory, we observed transgressive segregation more often when there was little phenotypic divergence, but intermediate values when parental traits were differentiated. It is likely that cell and tissue sizes are phylogenetically more conserved due to stabilising selection, whereas traits such as leaf thickness and volume fraction of the intercellular spaces, showing a consistent intermediate pattern across populations, are more susceptible to directional selection. Hybrid populations showed little similarity in expression profile, with only three traits identically expressed across all populations. Thus local adaptation of parental species and specific genetic background may be of importance.

  6. AmeriFlux US-Wi1 Intermediate hardwood (IHW)

    SciTech Connect

    Chen, Jiquan

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi1 Intermediate hardwood (IHW). Site Description - The Wisconsin Intermediate Hardwoods site is located in the Washburn Ranger District of the Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The intermediate hardwoods site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. In 2001, northern hardwood stands of all ages occupied 45% of the region.

  7. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    EPA Science Inventory

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  8. AmeriFlux US-Wi3 Mature hardwood (MHW)

    DOE Data Explorer

    Chen, Jiquan [Michigan State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi3 Mature hardwood (MHW). Site Description - The Wisconsin Mature Hardwood site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. As an assemblage, the ten Wisconsin sites are indicative of the successional stages of development in the predominant stand types of a physically homogeneous landscape. The mature hardwood stand represents a typical naturally regenerated second-growth forest, free of anthropogenic disturbances for at least 70 years.

  9. AmeriFlux US-Wi8 Young hardwood clearcut (YHW)

    DOE Data Explorer

    Chen, Jiquan [Michigan State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Wi8 Young hardwood clearcut (YHW). Site Description - The Wisconsin Clearcut Young Hardwood site is located in the Washburn Ranger District of the northeastern section of Chequamegon National Forest. A member of the northern coniferous-deciduous biome, surveys from the mid-19th century indicate the region consisted of a mixed stand of red, white, and jack pines. After extensive timber harvesting, wildfires, and farming activity, the region turned into a fragmented mosaic of stands of various ages and composition. The young hardwood clearcut site is one of ten sites that collectively represent the successional stages of development in the predominant stand types of a physically homogeneous landscape. In 2001, northern hardwood stands of all ages occupied 45% of the region.

  10. Vegetation classification in southern pine mixed hardwood forests using airborne scanning laser point data.

    SciTech Connect

    McGaughey, Robert J.; Reutebuch, Stephen E.

    2012-10-15

    Forests of the southeastern United States are dominated by a relatively small number of conifer species. However, many of these forests also have a hardwood component composed of a wide variety of species that are found in all canopy positions. The presence or absence of hardwood species and their position in the canopy often dictates management activities such as thinning or prescribed burning. In addition, the characteristics of the under- and mid-story layers, often dominated by hardwood species, are key factors when assessing suitable habitat for threatened and endangered species such as the Red Cockaded Woodpecker (Picoides borealis) (RCW), making information describing the hardwood component important to forest managers. General classification of cover types using LIDAR data has been reported (Song et al. 2002, Brennan and Webster 2006) but most efforts focusing on the identification of individual species or species groups rely on some type of imagery to provide more complete spectral information for the study area. Brandtberg (2007) found that use of intensity data significantly improved LIDAR detection and classification of three leaf-off deciduous eastern species: oaks (Quercus spp.), red maple (Acer rubrum L.), and yellow poplar (Liriodendron tulipifera L.). Our primary objective was to determine the proportion of hardwood species present in the canopy using only the LIDAR point data and derived products. However, the presence of several hardwood species that retain their foliage through the winter months complicated our analyses. We present two classification approaches. The first identifies areas containing hardwood and softwood (conifer) species (H/S) and the second identifies vegetation with foliage absent or present (FA/FP) at the time of the LIDAR data acquisition. The classification results were used to develop predictor variables for forest inventory models. The ability to incorporate the proportion of hardwood and softwood was important to the

  11. Cultivation of fast-growing hardwoods

    SciTech Connect

    White, E.H.; Abrahamson, L.P. . Coll. of Environmental Science and Forestry)

    1991-10-01

    The intensive culture of hybrid poplar has received in-depth study as part of the Fast-Growing Hardwood Program. Research has concentrated on short-rotation intensive culture systems. Specific studies and operations included establishing and maintaining a nursery/cutting orchard, installing clone-site trials in central and southern New York State and initiating studies of no-till site preparation, nutrient utilization efficiency, wood quality and soil solution chemistry. The nursery/cutting orchard was used to provide material for various research plantings and as a genotype repository. Clone- site trials results showed that hybrid poplar growth potential was affected by clone type and was related to inherent soil-site conditions. No-till techniques were shown to be successful in establishing hybrid poplar in terms of survival and growth when compared to conventional clean tillage and/or no competition control, and can be considered for use on sites that are particularly prone to erosion. Nutrient use efficiency was significantly affected by clone type, and should be a consideration when selecting clones for operational planting if fertilization is to be effectively and efficiently used. Wood quality differed among clones with site condition and tree age inferred as important factors. Soil solution chemistry was minimally affected by intensive cultural practices with no measured adverse effect on soil water quality. Generally, results of these studies showed that appropriate hybrid poplar clones grown in short-rotation intensively cultured systems can be used successfully in New York State if proper site conditions exist and appropriate establishment and maintenance techniques are used. 37 refs., 4 figs., 22 tabs.

  12. 77 FR 71017 - Hardwood Plywood From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... COMMISSION Hardwood Plywood From China Determinations On the basis of the record \\1\\ developed in the subject... plywood from China that are allegedly subsidized and sold in the United States at less than fair value... and subsidized imports of hardwood plywood from China. Accordingly, effective September 27, 2012,...

  13. Thermal Insulation from Hardwood Residues

    NASA Astrophysics Data System (ADS)

    Sable, I.; Grinfelds, U.; Vikele, L.; Rozenberga, L.; Zeps, M.; Luguza, S.

    2015-11-01

    Adequate heat is one of the prerequisites for human wellbeing; therefore, building insulation is required in places where the outside temperature is not suitable for living. The climate change, with its rising temperatures and longer dry periods, promotes enlargement of the regions with conditions more convenient for hardwood species than for softwood species. Birch (Betula pendula) is the most common hardwood species in Latvia. The aim of this work was to obtain birch fibres from wood residues of plywood production and to form low-density thermal insulation boards. Board formation and production was done in the presence of water; natural binder, fire retardant and fungicide were added in different concentrations. Board properties such as density, transportability or resistance to particulate loss, thermal conductivity and reaction to fire were investigated. This study included thermal insulation boards with the density of 102-120 kg/m3; a strong correlation between density and the binder amount was found. Transportability also improved with the addition of a binder, and 0.1-0.5% of the binder was the most appropriate amount for this purpose. The measured thermal conductivity was in the range of 0.040-0.043 W/(m·K). Fire resistance increased with adding the fire retardant. We concluded that birch fibres are applicable for thermal insulation board production, and it is possible to diversify board properties, changing the amount of different additives.

  14. Taurodontism in deciduous molars

    PubMed Central

    Bafna, Yash; Kambalimath, H V; Khandelwal, Vishal; Nayak, Prathibha

    2013-01-01

    Taurodont teeth are characterised by large pulp chambers at the expense of roots. An enlarged pulp chamber, apical displacement of the pulpal floor and no constriction at the level of the cement-enamel junction are the characteristic features of taurodont tooth. It appears more frequently as an isolated anomaly but its association with syndromes and other abnormalities have also been reported. Permanent dentition is more commonly affected than deciduous dentition. This paper presents a case report of taurodontism in relation to mandibular deciduous second molars. PMID:23737594

  15. Hardwood Lumber Scaling [and] Hardwood Log Scaling and Grading. Slide Scripts.

    ERIC Educational Resources Information Center

    Wooten, D. E.; Touse, Robert D.

    These two slide scripts, part of a series of slide scripts designed for use in vocational agriculture classes, deal with scaling and grading hardwood logs and lumber. The first script includes narrations for use with 39 slides, which explain the techniques of scaling and grading hardwood logs, and the second script contains the narrations to…

  16. Electrochemically assisted pyrolysis of hardwoods

    SciTech Connect

    Koch, V.R.

    1986-08-01

    This project explored the low-temperature, electrochemically assisted pyrolysis of lignocellulosic material to low-molecular-weight organic chemicals. Through the agency of low temperature AlCl{sub 3}-based molten salts, aspen hardwood flour was reacted in AlCl{sub 3}:NaCl, AlCl{sub 3}:NaCl:KCl, and AlCl{sub 3}:BPC (n-butylpyridinium chloride) media at temperatures from 30-220 C. A wide variety of water soluble products were formed comprising CO, CO{sub 2}, keto-alcohols and low molecular weight phenolic compounds as determined by GC and FTIR spectroscopy. The compounds represented about 32% by weight of the aspen wood flour. Owing to the narrow (2 volt) electrochemical window versus an Al reference electrode, neither the wood flour nor the reaction products manifested any electro-activity. Authentic samples of cellulose, hemicellulose, and Klason lignin were also subjected to low temperature pyrolysis. Only the hemicellulose reacted to give CO{sub 2} and keto-alcohols.

  17. Orthodontic movement in deciduous teeth

    PubMed Central

    Consolaro, Alberto

    2015-01-01

    Deciduous teeth exfoliate as a result of apoptosis induced by cementoblasts, a process that reveals the mineralized portion of the root while attracting clasts. Root resorption in deciduous teeth is slow due to lack of mediators necessary to speed it up; however, it accelerates and spreads in one single direction whenever a permanent tooth pericoronal follicle, rich in epithelial growth factor (EGF), or other bone resorption mediators come near. The latter are responsible for bone resorption during eruption, and deciduous teeth root resorption and exfoliation. Should deciduous teeth be subjected to orthodontic movement or anchorage, mediators local levels will increase. Thus, one should be fully aware that root resorption in deciduous teeth will speed up and exfoliation will early occur. Treatment planning involving deciduous teeth orthodontic movement and/or anchorage should consider: Are clinical benefits relevant enough as to be worth the risk of undergoing early inconvenient root resorption? PMID:25992982

  18. Orthodontic movement in deciduous teeth.

    PubMed

    Consolaro, Alberto

    2015-01-01

    Deciduous teeth exfoliate as a result of apoptosis induced by cementoblasts, a process that reveals the mineralized portion of the root while attracting clasts. Root resorption in deciduous teeth is slow due to lack of mediators necessary to speed it up; however, it accelerates and spreads in one single direction whenever a permanent tooth pericoronal follicle, rich in epithelial growth factor (EGF), or other bone resorption mediators come near. The latter are responsible for bone resorption during eruption, and deciduous teeth root resorption and exfoliation. Should deciduous teeth be subjected to orthodontic movement or anchorage, mediators local levels will increase. Thus, one should be fully aware that root resorption in deciduous teeth will speed up and exfoliation will early occur. Treatment planning involving deciduous teeth orthodontic movement and/or anchorage should consider: Are clinical benefits relevant enough as to be worth the risk of undergoing early inconvenient root resorption?

  19. A Guide to Bottomland Hardwood Restoration

    USGS Publications Warehouse

    Allen, J.A.; Keeland, B.D.; Stanturf, J.A.; Clewell, A.F.; Kennedy, H.E.

    2001-01-01

    During the last century, a large amount of the original bottomland hardwood forest area in the United States has been lost, with losses greatest in the Lower Mississippi Alluvial Valley and East Texas. With a holistic approach in mind, this manual describes methods to restore bottomland hardwoods in the lower Midwest, including the Lower Mississippi Alluvial Valley and the southeastern United States. Bottomland hardwoods in this guide include not only the hardwood species that predominate in most forested floodplains of the area but also the softwood species such as baldcypress that often co-occur. General restoration planning considerations are discussed as well as more specific elements of bottomland hardwood restoration such as species selection, site preparation, direct seeding, planting of seedlings, and alternative options for revegetation. We recognize that most projects will probably fall more within the realm of reforestation or afforestation rather than a restoration, as some site preparation and the planting of seeds or trees may be the only actions taken. Practical information needed to restore an area is provided in the guide, and it is left up to the restorationist to decide how complete the restoration will be. Postplanting and monitoring considerations are also addressed. Restoration and management of existing forests are included because of the extensive areas of degraded natural forests in need of rehabilitation.

  20. REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH

    EPA Science Inventory

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...

  1. Biotechnology and genetic selection of fast-growing hardwoods

    SciTech Connect

    White, E.H.; Abrahamson, L.P.; Maynard, C.A. . Research Foundation)

    1989-07-01

    Hybrid poplar have been shown to be useful for a wide variety of products. Their fast growth and ease in maintaining desirable genetic character make hybrid poplar highly suited to intensive culture systems. This study was initiated to evaluate a genetic selection trail consisting of 54 hybrid poplar clones and to locate and sample eastern cottonwood (Populus deltoides Bartr.) trees for obtainment of scion material to be included in a poplar germplasm archive for future breeding purposes. Because the basis of an effective and cost efficient fast-growing hardwood plantation program is a gene pool with a broad genetic base, the quality and diversity of the genetic resource are of prime concern to the long-term success of biotechnology, agroforestry programs. Additionally, tests of the captured gene pool in site-specific genetic selection and clone-site trials are the necessary successive steps to establish a viable woody crop biomass program. The current project sought to address both of these basic issues so as to improve management opportunities for short-rotation hybrid poplar energy plantations in New York State. Results of the studies showed that short rotation intensive culture hybrid poplar systems are feasible in New York State, and can be successfully used if proper site conditions exist and appropriate establishment and maintenance techniques are used.

  2. Hardwood price reporting. Forest Service research paper

    SciTech Connect

    Sohngen, B.L.; Haynes, R.W.

    1994-02-01

    The prices for red alder (Alnus rubra) hardwood logs are published and analyzed for reliability, consistency, and robustness. Timberland managers can use these prices to make decisions about land management. They show that values for red alder logs have been increasing steadily for the last 11 years.

  3. Long Term Isoprene Flux Measurements Above a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Pressley, S. N.; Lamb, B.; Westberg, H.; Hatten, G.; Flaherty, J.

    2002-12-01

    Canopy scale emissions of isoprene from a northern hardwood forest in Michigan were measured using the eddy covariance technique during the summer growing periods from 1999 through 2001. The goal of this work was to improve our understanding of isoprene emissions from forest ecosystems to better describe the role of isoprene in local and regional atmospheric chemical cycles. A second objective of this work was to contribute to the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET) goal of characterizing the role of biogenic emissions in processing atmospheric nitrogen. Isoprene is one of the most abundant hydrocarbons in the atmosphere, and it is very reactive in the atmosphere. Long-term flux measurements are important for investigating the interannual variability in emissions due to interannual variability in climate. In addition, continuous flux data are useful for verifying canopy scale models that are used to generate emission inventories for regional photochemical models. Measurements were made in collaboration with the AmeriFlux site located at the University of Michigan Biological Station (UMBS) and the (PROPHET) site located within 100 m of the AmeriFlux Tower. The site is a 90-year old stand classified as mid-aged conifer and deciduous, with aspen and oak two of the dominant species. Fluxes of isoprene, CO2, H2O, and sensible heat were measured using a fast response isoprene sensor (FIS), an open-path infrared gas analyzer, and a 3-D sonic anemometer. Concurrent measurements of these canopy scale fluxes are useful for understanding the physiological controls on isoprene emissions and potential links between isoprene emissions and other forest ecosystem dynamics. The multi-year data set will be presented and year-to-year variations in isoprene emissions will be explored in the context of interannual variations among the other canopy scale parameters.

  4. Properties of recycled polypropylene based composites incorporating treated hardwood sawdust

    NASA Astrophysics Data System (ADS)

    Shulga, Galia; Jaunslavietis, Jevgenijs; Ozolins, Jurijs; Neiberte, Brigita; Verovkins, Anrijs; Vitolina, Sanita; Shakels, Vadims

    2016-05-01

    The effect of different treatment of hardwood sawdust under mild conditions on contact angles, adhesion energy and water sorption was studied. A comparison of these indices for the hardwood treated sawdust and the composites filled with them was performed. The treatment promoted the compatibility between the recycled polypropylene and the hardwood filler. The inclusion of the lignin-based compatibiliser in the composite, containing the ammoxidised wood filler, essentially improved its mechanical properties.

  5. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  6. 78 FR 68297 - Hardwood Lumber and Hardwood Plywood Promotion, Research and Information Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ...; business practices; and other factors. Hardwood lumber can be sold green, air dried, or kiln dried. Green... office during regular business hours or it can be viewed at http://www.regulations.gov . Pursuant to the... United States for any district in which the petitioner resides or conducts business shall have...

  7. Synergy of agroforestry and bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.; Clason, Terry R.

    2003-01-01

    Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.

  8. Photodegradation of heat treated hardwood veneers.

    PubMed

    Denes, Levente; Lang, Elemer M

    2013-01-05

    This paper outlines an investigation pertaining to color changes of hardwood veneers exposed to elevated temperature. The effects of convection and contact type heat applications on the different species were separately evaluated. The experimental analyses included two-factor, three-level randomized block designs, where the factors were the temperature and the duration of the exposure. Examined species included: Yellow-poplar (Liriodendron tulipifera L.) and red oak (Quercus rubra L.). Two way analysis of variance (ANOVA) indicated major overall effects with significant interactions between the factors for all species/heat-treatment combinations. However, pair wise comparisons (Tukey tests) revealed lack of significant differences within factors for certain levels. The gained information might be useful for adjusting drying or pressing time/temperature relations. Setting the desired colors by necessary processing operations has certain technological, economical and environmental advantages. The use of additional chemicals to create dark surfaces may be reduced or eliminated.

  9. Hardwood supply in the Pacific northwest: A policy perspective. Forest Service research paper

    SciTech Connect

    Raettig, T.L.; Connaughton, K.P.; Ahrens, G.R.

    1995-01-01

    The policy framework for the hardwood resource and hardwood industry in western Oregon and Washington is examined. Harvesting trends, harvesting behavior of public and private landowners, and harvesting regulation are presented to complete the analysis of factors affecting short-run hardwood supply. In the short term, the supply of hardwoods is generally favorable, but in the long term, the supply is uncertain and cause for concern. Hardwoods need to be recognized in forest management in the Pacific Northwest.

  10. Room 204, a classroom with hardwood floors, slate blackboard, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Room 204, a classroom with hardwood floors, slate blackboard, and original clock. - San Bernardino Valley College, Classics Building, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  11. Sulfur nutrition of deciduous trees

    NASA Astrophysics Data System (ADS)

    Herschbach, Cornelia; Rennenberg, Heinz

    2001-01-01

    Sulfur in its reduced form (-II) is an essential nutrient for growth and development, but is mainly available to plants in its oxidised form as sulfate. Deciduous trees take up sulfate by the roots from the soil solution and reduce sulfate to sulfide via assimilatory sulfate reduction in both roots and leaves. For reduction in the leaves, sulfate is loaded into the xylem and transported to the shoot. The surplus of sulfate not reduced in the chloroplast or stored in the vacuole and the surplus of reduced S not used for protein synthesis in the leaves is loaded into the phloem and transported back to the roots. Along the transport path, sulfate and glutathione (GSH) is unloaded from the phloem for storage in xylem and phloem parenchyma as well as in pit and ray cells. Re-mobilised S from storage tissues is loaded into the xylem during spring, but a phloem to xylem exchange does not appear to exist later in the season. As a consequence, a cycling pool of S was only found during the change of the seasons. The sulfate:glutathione ratio in the phloem seems to be involved in the regulation of S nutrition. This picture of S nutrition is discussed in relation to the different growth patterns of deciduous trees from the temperate climate zone, i.e. (1) terminated, (2) periodic and (3) indeterminate growth patterns, and in relation to environmental changes.

  12. Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guenther, A.; Spirig, C.; Hansel, A.; Fall, R.

    2003-12-01

    Fluxes of biogenic volatile organic compounds (VOCs) were measured at a hardwood forest in northern Michigan (UMBS, Prophet research site) over the course of the growing and senescing season. Methanol, acetaldehyde, acetone and isoprene were found to be the most abundant biogenic VOCs with maximum fluxes (mixing ratios in ppbv) of 2.0 mg m-2 h-1 (21.0), 1.0 mg m-2 h-1 (2.7), 1.6 mg m-2 h-1 (5.6) and 7.6 mg m-2 h-1 (6), respectively. The emission patterns show distinct seasonal changes and indicate a spring peak for methanol due to rapid leaf expansion and a fall peak for acetone and acetaldehyde most likely attributed to senescing and decaying biomass; isoprene emissions peaked as expected in the summer. We estimate potential source strengths of 8.9 Tg (C) y-1 methanol, 2.7 Tg (C) y-1 acetaldehyde and 7.0 Tg (C) y-1 acetone for deciduous temperate forests, which is a substantial contribution to the global atmospheric VOC budget.

  13. The role of fire during climate change in an eastern deciduous forest at Devil`s Bathtub, New York

    SciTech Connect

    Clark, J.S.; Royall, P.D.; Chumbley, C.

    1996-10-01

    Annual record of charcoal and sedimentation rate were compared with fossil pollen to investigate the role of fire in eastern deciduous forest around Devil`s Bathtub, New York, USA. Changes in peak and background charcoal suggest that changes in fire regime have accompanied the principal vegetation and climatic changes of the last 10 400 yr. A distribution of return times (50-200-yr intervals) similar to parts of modern boreal Canada prevailed when late-Glacial spruce woodland dominated the site. Expansion of Pinus banksiana appears to have altered the fire regime to one of crown fires with high particulate emissions, but return intervals similar to those of the preceding Picea forest. Expansion of Pinus strobus might be linked to change in fire occurrence, but the broad dispersal of Pinus pollen makes interpretation difficult. If Pinus strobus expansion around the site is reflected in its pollen curve, then that expansion coincides with a time of frequent fire. Alternatively, if increasing pollen abundance precedes the local expansion of trees, as has been observed elsewhere, then local expansion might correspond to an abrupt decline in fire frequency and in regional importance of fire. An abrupt decline in background charcoal follows a fire and coincides ({+-} 100 yr) with the expansion of hardwood taxa such as Fagus. The decline in background charcoal occurs over several years, suggesting that it may be linked to effects of hardwood expansion on fuels. Fires do not appear to have occurred during the time of hardwood dominance, suggesting that fire may not be an explanation for maintenance of species diversity in this deciduous forest. However, frequent occurrence of thick varves during the latter half of the Holocene suggests that the frequency of other types of disturbance may have increased. 85 refs., 13 figs., 2 tabs.

  14. Primary detection of hardwood log defects using laser surface scanning

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Thomas, Liya; Mili, Lamine; Ehrich, Roger W.; Abbott, A. Lynn; Shaffer, Clifford

    2003-05-01

    The use of laser technology to scan hardwood log surfaces for defects holds great promise for improving processing efficiency and the value and volume of lumber produced. External and internal defect detection to optimize hardwood log and lumber processing is one of the top four technological needs in the nation"s hardwood industry. The location, type, and severity of defects on hardwood logs are the key indicators of log quality and value. These visual cues provide information about internal log characteristics and products for which the log is suitable. We scanned 162 logs with a high-resolution industrial four-head laser surface scanner. The resulting data sets contain hundreds of thousands of three-dimensional coordinate points. The size of the data and noise presented special problems during processing. Robust regression models were used to fit geometric shapes to the data. The estimated orthogonal distances between the fitted model and the log surface are converted to a two-dimensional image to facilitate defect detection. Using robust regression methods and standard image processing tools we have demonstrated that severe surface defects on hardwood logs can be detected using height and contour analyses of three-dimensional laser scan data.

  15. Human Extravillous Trophoblasts Penetrate Decidual Veins and Lymphatics before Remodeling Spiral Arteries during Early Pregnancy

    PubMed Central

    He, Nannan; van Iperen, Liesbeth; de Jong, Danielle; Szuhai, Karoly; Helmerhorst, Frans M.; van der Westerlaken, Lucette A. J.; Chuva de Sousa Lopes, Susana M.

    2017-01-01

    In humans, the defective invasion of the maternal endometrium by fetal extravillous trophoblasts (EVTs) can lead to insufficient perfusion of the placenta, resulting in pregnancy complications that can put both mother and baby at risk. To study the invasion of maternal endometrium between (W)5.5–12 weeks of gestation by EVTs, we combined fluorescence in situ hybridization, immunofluorescence and immunohistochemistry to determine the presence of (male) EVTs in the vasculature of the maternal decidua. We observed that interstitial mononuclear EVTs directly entered decidual veins and lymphatics from W5.5. This invasion of decidual veins and lymphatics occurred long before endovascular EVTs remodelled decidual spiral arteries. This unexpected early entrance of interstitial mononuclear EVTs in the maternal circulation does not seem to contribute to the materno-placental vascular connection directly, but rather to establish (and expand) the materno-fetal interface through an alternative vascular route. PMID:28081266

  16. Bottomland Hardwood Forests along the Upper Mississippi River

    USGS Publications Warehouse

    Yin, Y.; Nelson, J.C.; Lubinski, S.J.

    1997-01-01

    Bottomland hardwood forests along the United States' Upper Mississippi River have been drastically reduced in acreage and repeatedly logged during the nineteenth and twentieth centuries. Conversion to agricultural land, timber harvesting, and river modifications for flood prevention and for navigation were the primary factors that caused the changes. Navigation structures and flood-prevention levees have altered the fluvial geomorphic dynamics of the river and floodplain system. Restoration and maintenance of the diversity, productivity, and natural regeneration dynamics of the bottomland hardwood forests under the modified river environment represent a major management challenge.

  17. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy.

    PubMed

    Li, Xueyan; Shen, Cha; Liu, Xueqing; He, Junlin; Ding, Yubin; Gao, Rufei; Mu, Xinyi; Geng, Yanqing; Wang, Yingxiong; Chen, Xuemei

    2017-03-01

    Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.

  18. 78 FR 76857 - Hardwood Plywood From China; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Hardwood Plywood From China; Determinations On the basis of the record \\1\\ developed in the subject investigations, the United States International Trade Commission (Commission) determines, pursuant to sections 705(b) and 735(b) of the Tariff...

  19. South Fork Telephone Switchboard Building, interior west room showing hardwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South Fork Telephone Switchboard Building, interior west room showing hardwood floor; view south - Fort McKinley, South Fork Telephone Switchboard Building, South side of Weymouth Way, approximately 100 feet west of East Side Drive, Great Diamond Island, Portland, Cumberland County, ME

  20. Prioritizing bottomland hardwood forest sites for protection and augmentation

    USGS Publications Warehouse

    Carter, J.; Biagas, J.

    2007-01-01

    Bottomland hardwood forest has been greatly diminished by conversion to agriculture. Less than 25% of the pre-Columbian bottomland hardwood forests remain in the southeastern United States. Because of the valuable ecological and hydrological functions performed by these forests, their conservation and restoration has been a high priority. Part of these restoration efforts has focused on developing tools that can be used for both assessments at the landscape level and policy implementation at the local level. The distribution of bottomland hardwood forests in the Cache and White River watersheds in eastern Arkansas were examined using existing GIS databases. Criteria were developed to select areas that should be conserved or augmented for wildlife habitat. Over 67% of the study area was classified as agriculture, with bottomland hardwood forest the next largest habitat class. The thickness of a forest fragment was defined as the radius of the largest circle that can be inscribed in a fragment. Thickness was used in three ways. First, individual forest fragments were identified and selected based on ecological function using criteria we established. Second, individual fragments that were too small to support interior species, but large enough that if moderately augmented they could recover that function, were identified and selected. These augmentable fragments were further prioritized by adjacency to habitat that might be suitable for reforestation, namely agriculture. Third, watersheds were prioritized for conservation and augmentation based on the size and distributions of forest fragment thickness and area within each watershed.

  1. Hardwood biochar influences calcareous soil physicochemical and microbiological status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of biochar application to calcareous soils are not well documented. In a laboratory incubation study, a hardwood-based, fast pyrolysis biochar was applied (0, 1, 2, and 10% by weight) to a calcareous soil. Changes in soil chemistry, water content, microbial respiration, and microbial com...

  2. [Ectopic Decidualization: A Forgotten Entity].

    PubMed

    Mendes, Joana; Costa, Antónia

    2016-01-01

    Introdução: Apesar da decidualização ectópica ser uma entidade frequentemente subdiagnosticada, pode ter impacto clínico adverso na morbimortalidade materno-fetal. O objetivo deste trabalho foi rever a evidência científica relativa a etiopatogenia, clínica, abordagem diagnóstica e terapêutica sobre esta temática. Material e Métodos: A pesquisa bibliográfica foi realizada na PubMed, Web of Science e Scopus, através da query ('deciduosis' OR 'ectopic decidualization' OR 'ectopic decidua' OR 'ectopic decidua reaction'), incluindo-se artigos publicados até 31/6/2014 e de todos os níveis de evidência. Resultados: A decidualização ectópica, geralmente, representa uma condição benigna, assintomática e sem necessidade de intervenção terapêutica. Encontra-se, maioritariamente, associada à gravidez, com regressão completa no período pós-parto. A frequência do seu diagnóstico depende da suspeição clínica, bem como do local onde surge, sendo o omento e o ovário os locais mais comuns. Quando sintomática, as principais manifestações clínicas são quadros hemorrágicos, nomeadamente hemorragia genital e hemoperitoneu. Os diagnósticos diferenciais incluem patologia maligna, sendo essencial, nestas situações, a confirmação histopatológica. O baixo índice de suspeição clínica pode levar à realização de biópsia, que pode acarretar impacto adverso grave devido à elevada friabilidade destas lesões. Discussão e Conclusão: O reconhecimento desta entidade e das suas características clínicas torna-se essencial na conduta destas doentes. Tal permite por um lado a abordagem médica precoce e adequada nos casos graves, e por outro lado (na maioria dos casos) manter a atitude expectante minimizando a iatrogenia, mantendo o desfecho favorável da decidualização ectópica.

  3. Windthrow and salvage logging in an old-growth hemlock-northern hardwoods forest

    USGS Publications Warehouse

    Lang, K.D.; Schulte, L.A.; Guntenspergen, G.R.

    2009-01-01

    Although the initial response to salvage (also known as, post-disturbance or sanitary) logging is known to vary among system components, little is known about longer term forest recovery. We examine forest overstory, understory, soil, and microtopographic response 25 years after a 1977 severe wind disturbance on the Flambeau River State Forest in Wisconsin, USA, a portion of which was salvage logged. Within this former old-growth hemlock-northern hardwoods forest, tree dominance has shifted from Eastern hemlock (Tsuga canadensis) to broad-leaf deciduous species (Ulmus americana, Acer saccharum, Tilia americana, Populus tremuloides, and Betula alleghaniensis) in both the salvaged and unsalvaged areas. While the biological legacies of pre-disturbance seedlings, saplings, and mature trees were initially more abundant in the unsalvaged area, regeneration through root suckers and stump sprouts was common in both areas. After 25 years, tree basal area, sapling density, shrub layer density, and seedling cover had converged between unsalvaged and salvaged areas. In contrast, understory herb communities differed between salvaged and unsalvaged forest, with salvaged forest containing significantly higher understory herb richness and cover, and greater dominance of species benefiting from disturbance, especially Solidago species. Soil bulk density, pH, organic carbon content, and organic nitrogen content were also significantly higher in the salvaged area. The structural legacy of tip-up microtopography remains more pronounced in the unsalvaged area, with significantly taller tip-up mounds and deeper pits. Mosses and some forest herbs, including Athyrium filix-femina and Hydrophyllum virginianum, showed strong positive responses to this tip-up microrelief, highlighting the importance of these structural legacies for understory biodiversity. In sum, although the pathways of recovery differed, this forest appeared to be as resilient to the compound disturbances of windthrow

  4. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  5. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  6. Adam12 plays a role during uterine decidualization in mice.

    PubMed

    Zhang, Li; Guo, Weixiang; Chen, Qi; Fan, Xiujun; Zhang, Ying; Duan, Enkui

    2009-12-01

    In mouse, decidualization is characterized by the proliferation of stromal cells and their differentiation into specialized type of cells (decidual cells) with polyploidy, surrounding the implanting blastocyst. However, the mechanisms involved in these processes remain poorly understood. Using multiple approaches, we have examined the role of Adam12 in decidualization during early pregnancy in mice. Adam12 is spatiotemporally expressed in decidualizing stromal cells in intact pregnant females and in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Adam12 is upregulated after progesterone treatment, which is primarily mediated by nuclear progesterone receptor. In a stromal cell culture model, the expression of Adam12 gradually rises with the progression of stromal decidualization, whereas the attenuated expression of Adam12 after siRNA knockdown significantly blocks the progression of decidualization. Our study suggests that Adam12 is involved in promoting uterine decidualization during pregnancy.

  7. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOEpatents

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  8. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOEpatents

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  9. Relating the temporal change observed by AIRSAR to surface and canopy properties of mixed conifer and hardwood forests of northern Michigan

    NASA Technical Reports Server (NTRS)

    Dobson, M. Craig; Mcdonald, Kyle; Ulaby, Fawwaz T.; Sharik, Terry

    1991-01-01

    The mixed hardwood and conifer forests of northern Michigan were overflown by a 3-frequency airborne imaging radar in Apr. and Jul. 1990. A set of 10 x 10 km test sites near the University of Michigan Biological Station at Douglas Lake and within the Hiawatha National Forest in the upper peninsula of Michigan contained training stands representing the various forest species typical of forest communities across the ecotone between the coniferous boreal forest and mid-latitude hardwood and coniferous forests. The polarimetric radar data were externally calibrated to allow interdate comparisons. The Apr. flight was prior to bud-break of deciduous species and patchy snowcover was present. The Jul. flights occurred during and 2 days after heavy rain showers, and provide a unique opportunity to examine the differences in radar backscatter attributable to intercepted precipitation. Analyses show that there are significant changes in backscattering between biophysically dissimilar forest stands on any given date and also between dates for a given forest stand. These differences in backscattering can be related to moisture properties of the forest floor and the overlying canopy and also to the quantity and organizational structure of the above-ground biomass.

  10. Insect management in deciduous orchard ecosystems: Habitat manipulation

    NASA Astrophysics Data System (ADS)

    Tedders, W. L.

    1983-01-01

    Current literature pertaining to habitat manipulation of deciduous fruit and nut orchards for pest control is reviewed. The hypothesis of pesticide-induced pest problems in deciduous orchards as well as the changing pest population dynamics of deciduous orchards is discussed An experimental habitat manipulation program for pecans, utilizing vetch cover crops to enhance lady beetle populations for pecan aphid control is presented

  11. Control of hardwood regeneration in restored carolina bay depression wetlands.

    SciTech Connect

    Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

    2012-06-01

    Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

  12. Elastic constant determination of hardwoods using ultrasonic insertion technique.

    PubMed

    Mat Daud, Anis Nazihah; Jaafar, Rosly; Ayop, Shahrul Kadri; Yaacob, Mohd Ikhwan Hadi; Rohani, Md Supar

    2017-03-01

    Ultrasonic insertion technique (IT) is an ultrasonic technique which involves sample immersion in a solution to determine its acoustic properties. IT is normally used to determine the acoustic properties of a medical phantom. We proposed the use of IT as an alternative technique to the common contact ultrasonic technique: through-transmission technique (TT) for determining the elastic constant of hardwoods in longitudinal, tangential and radial directions. The elastic constant of twelve rectangular-shaped Malaysian hardwoods from three different categories; heavy, medium and light with the density ranging from 602 to 992kgm(-3) were determined using IT and TT. Both techniques were carried out at 24.0°C surrounding temperature and utilized 2.25MHz ultrasonic transducers. Data from both techniques were compared to validate the use of the proposed technique. Findings indicated that IT offers consistent and accurate results for, tangential and radial elastic constants (TEC and REC) within 8.89% and 5.86% differences, respectively compared to TT for all tested hardwoods. IT offers an alternative technique for TEC and REC determinations of precious wood samples.

  13. Fire effects on wildlife in Central Hardwoods and Appalachian regions

    USGS Publications Warehouse

    Harper, Craig A.; Ford, William; Lashley, Marcus A.; Moorman, Christopher; Stambaugh, Michael C.

    2016-01-01

    Fire is being prescribed and used increasingly to promote ecosystem restoration (e.g., oak woodlands and savannas) and to manage wildlife habitat in the Central Hardwoods and Appalachian regions, USA. However, questions persist as to how fire affects hardwood forest communities and associated wildlife, and how fire should be used to achieve management goals. We provide an up-to-date review of fire effects on various wildlife species and their habitat in the Central Hardwoods and Appalachians. Documented direct effects (i.e., mortality) on wildlife are rare. Indirect effects (i.e., changes in habitat quality) are influenced greatly by light availability, fire frequency, and fire intensity. Unless fire intensity is great enough to kill a portion of the overstory, burning in closed-canopy forests has provided little benefit for most wildlife species in the region because it doesn’t result in enough sunlight penetration to elicit understory response. Canopy reduction through silvicultural treatment has enabled managers to use fire more effectively. Fire intensity must be kept low in hardwoods to limit damage to many species of overstory trees. However, wounding or killing trees with fire benefits many wildlife species by allowing increased sunlight to stimulate understory response, snag and subsequent cavity creation, and additions of large coarse woody debris. In general, a fire-return interval of 2 yr to 7 yr benefits a wide variety of wildlife species by providing a diverse structure in the understory; increasing browse, forage, and soft mast; and creating snags and cavities. Historically, dormant-season fire was most prevalent in these regions, and it still is when most prescribed fire is implemented in hardwood systems as burn-days are relatively few in the growing season of May through August because of shading from leaf cover and high fuel moisture. Late growing-season burning increases the window for burning, and better control on woody composition is

  14. Comparison between soil and biomass carbon in adjacent hardwood and red pine forests

    SciTech Connect

    Perala, D.A.; Rollinger, J.L.; Wilson, D.M.

    1995-06-01

    The distribution of carbon in soil and biomass was studied across Minnesota, Wisconsin, and Michigan, USA, in 40 pole-sized red pine (Pinus resinosa Ait.) plantations paired with adjacent hardwood stands. Pine and hardwood stands shared a common boundary and soil. Hardwood stands were mixed species, naturally regenerated second growth following logging. Carbon in total, standing crop averaged the same in both hardwood and red pine forest types, although the hardwoods averaged 14 years older than red pine. Coarse woody debris, shrubs, and herbs contained little carbon. Only the forest floor carbon pool was significantly different between forest types. Forest floor had a greater mass beneath red pine than hardwoods. There was no difference in total ecosystem carbon between red pine and hardwood stands. Total mineral soil aggregated across the depth profile contained the same total amount of carbon in both pine and hardwood stands; however, the carbon was found in different vertical patterns. Amounts of carbon in the upper levels of soil (0--4 cm) were higher under hardwoods, and amounts were higher under red pine at the 8--16 cm and 16--32 cm soil depths. Where July air temperatures were relatively cool, red pine stored carbon more efficiently both in the forest floor and deep in the soil. Red pine also sequestered more carbon in mineral soil with increasing April--September precipitation.

  15. The Central Hardwoods Virtual Forest Version 2.0. [CD-ROM].

    ERIC Educational Resources Information Center

    Indiana Univ.-Purdue Univ., Indianapolis.

    This CD-ROM is the second in a series of CDs allowing students to explore the trees and animals of the northern boreal forest. Using QuickTime Virtual Reality (QTVR), the Central Hardwood Virtual Forest is designed so that students are able to see views from inside the central hardwood forest and look up or down or spin around 360 degrees. The…

  16. 75 FR 7044 - T&S Hardwoods, Inc., Sylva, NC; Notice of Negative Determination Regarding Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration T&S Hardwoods, Inc., Sylva, NC; Notice of Negative Determination... facility to a foreign country. T&S Hardwoods, Inc. did not import hardwood lumber and did not...

  17. Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought.

    PubMed

    Marchin, Renée; Zeng, Hainian; Hoffmann, William

    2010-08-01

    Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.

  18. AmeriFlux CA-TPD Ontario - Turkey Point Mature Deciduous

    SciTech Connect

    Arain, M. Altaf

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-TPD Ontario - Turkey Point Mature Deciduous. Site Description - The forest is approximately 90 years old. Naturally regenerated on sandy terrain and abandoned agricultural land. Predominantly hardwood species with a few scattered conifers. Site has been managed (thinned) in the past. It has a high biodiversity with 573 tree and plant species, 102 bird species, 23 mamal species and 22 reptile and amphibian species (SWALSREP Report, 1999). The dominant tree species is white oak (Quercus alba), with other scattered broadleaf Carolinian species including sugar and red maple (Acer saccharum, A. rubrum), American beech (Fagus grandifolia), black and red oak (Q. velutina, Q. rubra) and white ash (Fraxinus americana) . There are also scattered conifers, mostly white and red pine (Pinus strobes, P. resinosa), comprising about 5% of the trees. Average tree height is 25.7 m with a stand density of 504 ± 18 trees per hectare. Average tree diameter at breast height is 22.3 cm and basal area is 0.06 m2 or approximately 29 square meters per hectare.

  19. Regional Development of Uterine Decidualization: Molecular Signaling by Hoxa-10

    PubMed Central

    DAS, SANJOY K.

    2014-01-01

    SUMMARY Uterine decidualization, a key event in implantation, is critically controlled by stromal cell proliferation and differentiation. Although the molecular mechanism that controls this event is not well understood, the general consensus is that the factors derived locally at the site of implantation influence aspects of decidualization. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to the reduced stromal cell responsiveness to progesterone (P4). While the increased stromal cell proliferation is considered to be an initiator of decidualization, the establishment of a full-grown functional decidua appears to depend on the aspects of regional proliferation and differentiation. In this regard, this article provides an overview of potential signaling mechanisms mediated by Hoxa-10 that can influence a host of genes and cell functions necessary for propagating regional decidual development. PMID:19921737

  20. Regional development of uterine decidualization: molecular signaling by Hoxa-10.

    PubMed

    Das, Sanjoy K

    2010-05-01

    Uterine decidualization, a key event in implantation, is critically controlled by stromal cell proliferation and differentiation. Although the molecular mechanism that controls this event is not well understood, the general consensus is that the factors derived locally at the site of implantation influence aspects of decidualization. Hoxa-10, a developmentally regulated homeobox transcription factor, is highly expressed in decidualizing stromal cells, and targeted deletion of Hoxa-10 in mice shows severe decidualization defects, primarily due to the reduced stromal cell responsiveness to progesterone (P(4)). While the increased stromal cell proliferation is considered to be an initiator of decidualization, the establishment of a full-grown functional decidua appears to depend on the aspects of regional proliferation and differentiation. In this regard, this article provides an overview of potential signaling mechanisms mediated by Hoxa-10 that can influence a host of genes and cell functions necessary for propagating regional decidual development.

  1. Removal of selected pollutants from aqueous media by hardwood mulch.

    PubMed

    Ray, Asim B; Selvakumar, Ariamalar; Tafuri, Anthony N

    2006-08-21

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mixture, including copper (Cu(2+)), cadmium (Cd(2+)), chromium (Cr(6+)), lead (Pb(2+)), zinc (Zn(2+)), 1,3 dichlorobenzene (DCB), naphthalene (NP), fluoranthene (FA), butylbenzylphthalate (BBP), and benzo(a)pyrene (B[a]P). Masses of the pollutants sorbed depended upon the pollutant species, contact time, and initial concentration which varied from 20 to 100%. Sorption rates of the metals, in general, were more rapid than those of the organics; however, mass removals (percent) of the organics, in contrast to those of the metals, were independent of their initial concentrations. With the exception of Cd, percentages (weight) of the metals removed declined as their initial concentrations decreased. None of the sorbed pollutants desorbed to any significant extent upon extended washing with water. It is quite feasible that in the presence of mulch the uptake of these pollutants by the aquatic species will be reduced significantly.

  2. Avian response to bottomland hardwood reforestation: the first 10 years

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Grosshuesch, D.A.

    2002-01-01

    Bttomland hardwood forests were planted on agricultural fields in Mississippi and Louisiana using either predominantly Quercus species (oaks) or Populus deltoides (eastern cottonwood). We assessed avian colonization of these reforested sites between 2 and 10 years after planting. Rapid vertical growth of cottonwoods (circa 2 - 3 m / yr) resulted in sites with forest structure that supported greater species richness of breeding birds, increased Shannon diversity indices, and supported greater territory densities than on sites planted with slower-growing oak species. Grassland birds (Spiza americana [Dickcissel], and Sturnella magna [Eastern Meadowlark]) were indicative of species breeding on oak-dominated reforestation # 10 years old. Agelaius phoeniceus (Red-winged Blackbird) and Colinus virginianus (Northern Bobwhite) characterized cottonwood reforestation # 4 years old, whereas 14 species of shrub-scrub birds (e.g., Passerina cyanea [Indigo Bunting]) and early-successional forest birds (e.g., Vireo gilvus [Warbling Vireo]) typified cottonwood reforestation 5 to 9 years after planting. Rates of daily nest survival did not differ between reforestation strategies. Nest parasitism increased markedly in older cottonwood stands, but was overwhelmed by predation as a cause of nest failure. Based on Partners in Flight prioritization scores and territory densities, the value of cottonwood reforestation for avian conservation was significantly greater than that of oak reforestation during their first 10 years. Because of benefits conferred on breeding birds, we recommend reforestation of bottomland hardwoods include a high proportion of fast-growing, early successional species such as cottonwood.

  3. Results of a workshop concerning ecological zonation in bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities concerning the discharge of dredged or fill material into the Nation's waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) Guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key questions, including the following. What are the characteristics of bottomland hardwoods (in terms of hydrology, soils, vegetation, fish, wildlife, agricultural potential, and the like) and how can the functions (e.g., flood storage, water quality maintenance, detrital export) that they perform best be quantified? How do perturbations like landclearing, levee construction, and drainage impact the functions that bottomland hardwoods perform and how can these effects best be quantified? And finally, how significant are the impacts and how is their significance likely to change under various management scenarios? The first workshop in this series was held December 3-7, 1984, in St. Francisville, Louisiana. The workshop was attended by over 40 scientists and regulators (see ACKNOWLEDGMENTS section) and facilitated by the editors of this report under an Interagency Agreement between EPA and the U.S. Fish and Wildlife

  4. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth.

    PubMed

    Lee, Hyo-Seol; Jeon, Mijeong; Jeon, Mi Jung; Kim, Seong-Oh; Kim, Seung-Hye; Lee, Jae-Ho; Lee, Jea-Ho; Ahn, Su-Jin; Shin, Yooseok; Song, Je Seon

    2015-12-01

    The aim of this study is to compare the characteristics of stem cells derived from human exfoliated deciduous teeth (SHED) from cryopreserved intact deciduous teeth with those of fresh SHED. In total, 20 exfoliated deciduous teeth were randomly divided into a fresh group (f-SHED; n = 11) and cryopreserved group (c-SHED; n = 9; stored for 1-8 months). Following thawing and separation of the pulp, the SHED cells were cultured, and the characteristics as mesenchymal stem cells were investigated using proliferation assays, cell-cycle analysis, colony-forming unit-fibroblast (CFU-F) assays, and flow cytometry analyses. Furthermore, differentiation into adipogenic and osteogenic lineages was investigated in vitro as well as in vivo via transplantation in mice. We found no significant differences between the two groups in the proliferation analyses, in the expression of mesenchymal stem cell markers, or in the adipogenic and osteogenic differentiation in vitro (p < 0.05). Furthermore, the in vivo transplantation results showed no significant differences in the quantity of bone tissue that formed or in histochemistry performance (p < 0.05). In conclusion, cryopreservation of intact exfoliated deciduous teeth appears to be a useful method for preserving SHED.

  5. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    SciTech Connect

    Loehle, C.; Iltis, H.

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  6. Microwave Moisture Measurement System for Hardwood Lumber Drying

    SciTech Connect

    Moschler, William W; Hanson, Gregory R

    2008-09-01

    The goal of this project was to develop a prototype microwave-based moisture sensor system suitable for the kiln drying of hardwood lumber. The moisture sensors developed are battery powered and are capable of communicating with a host kiln control system via spread spectrum wireless communications. We have developed two designs of the sensors working at 4.5 to 6 GHz with linear response to moisture content (MC) over a range of 6-100%. These sensors allow us to make a swept frequency microwave transmission measurement through a small area of a board. Using the prototype electronics and sensors, we have obtained measurements of MC over the above MC range for red oak and yellow poplar with standard deviations of less than 1.5% MC. We have developed data for board thickness corrections and for temperature corrections for the MC measurement system.

  7. Degradation of softwood, hardwood, and grass lignocelluloses by two Steptomyces strains

    SciTech Connect

    Antai, S.P.; Crawford, D.L.

    1981-08-01

    Two Streptomyces strains, S. viridosporus T7A and S. setonii 75Vi2, were grown on softwood, hardwood, and grass lignocelluloses, and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss over time. Results showed that both Streptomyces strains substantially degraded both the lignin and the carbohydrate components of each lignocellulose; however, these actinomycetes were more efficient decomposers of grass lignocelluloses than of hardwood or softwood lignocelluloses. In particular, these Streptomyces strains were more efficient decomposers of grass lignins than of hardwood or softwood lignins.

  8. Cusp expression of protostylid in deciduous and permanent molars

    PubMed Central

    Moreno, Sandra; Reyes, María Paula; Moreno, Freddy

    2016-01-01

    The present article is a case report on the cusp expression of protostylid in the deciduous inferior molars and in the first permanent inferior molar, in which the correspondence and bilateral symmetry of the mentioned expression can be evidenced, as well as the their relation with the foramen cecum of the mesiobuccal furrows of the deciduous and of the permanent inferior molars. PMID:28123270

  9. Cusp expression of protostylid in deciduous and permanent molars.

    PubMed

    Moreno, Sandra; Reyes, María Paula; Moreno, Freddy

    2016-01-01

    The present article is a case report on the cusp expression of protostylid in the deciduous inferior molars and in the first permanent inferior molar, in which the correspondence and bilateral symmetry of the mentioned expression can be evidenced, as well as the their relation with the foramen cecum of the mesiobuccal furrows of the deciduous and of the permanent inferior molars.

  10. Deciduous canine and permanent lateral incisor differential root resorption.

    PubMed

    Davies, K R; Schneider, G B; Southard, T E; Hillis, S L; Wertz, P W; Finkelstein, M; Hogan, M M

    2001-10-01

    When a permanent maxillary canine erupts apical to the permanent lateral incisor and the deciduous canine, resorption typically takes place only on the deciduous canine root. An understanding of this differential resorption could provide insight into the reasons for excessive iatrogenic root resorption during orthodontic tooth movement. The purpose of the present study was to examine the response of roots of permanent lateral incisors and deciduous canines to simulated resorption, and to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine. Groups of maxillary permanent lateral incisor and deciduous canine roots were exposed to 5 combinations of Ten Cate demineralizing solution, Ten Cate demineralizing solution with EDTA, and a Type I collagenase solution. Sections of the roots were examined under a polarized light microscope. Analysis of variation of the resulting root lesions demonstrated that the lesion depths for deciduous canines were greater than those for permanent lateral incisors when averaged across 4 of the conditions (F(1,24) = 7.49, P =.0115). On average, deciduous canine roots demonstrated lesions 10% deeper than did permanent lateral incisor roots. We concluded that when deciduous canine and permanent lateral incisor roots are subjected to acid and enzyme attack, reflecting the physiologic environment of an erupting permanent canine, significantly deeper demineralized lesions are seen in the deciduous roots compared with the permanent roots. This finding may partially explain the differential root resorption during permanent tooth eruption.

  11. Case of idiopathic loss of deciduous teeth and associated alveolus.

    PubMed

    Koshal, Sonita; Chaudhry, Shahid I; Johnson, Adele; Porter, Stephen

    2012-07-01

    We describe exfoliation of the lower left deciduous canine and deciduous first molar (CD) and associated alveolus of unknown cause in a 5-year-old healthy boy. Extraction of the teeth and removal of local bone led to healing without complication.

  12. Expression and Function of Kisspeptin during Mouse Decidualization

    PubMed Central

    Lin, Yan; Zong, Teng; Zhong, Chengxue; Zhang, BaoPing; Ren, Min; Kuang, HaiBin

    2014-01-01

    Background Plasma kisspeptin levels dramatically increased during the first trimester of human pregnancy, which is similar to pregnancy specific glycoprotein-human chorionic gonadotropin. However, its particular role in the implantation and decidualization has not been fully unraveled. Here, the study was conducted to investigate the expression and function of kisspeptin in mouse uterus during early pregnancy and decidualization. Methodology/Principal Findings Quantitative PCR results demonstrated that Kiss1 and GPR54 mRNA levels showed dynamic increase in the mouse uterus during early pregnancy and artificially induced decidualization in vivo. KISS-1 and GPR54 proteins were spatiotemporally expressed in decidualizing stromal cells in intact pregnant females, as well as in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Kiss1 mRNA was upregulated after progesterone or/and estradiol treatment. Moreover, in a stromal cell culture model, the expression of Kiss1 and GPR54 mRNA gradually rise with the progression of stromal cell decidualization, whereas the attenuated expression of Kiss1 using small interfering RNA approaches significantly blocked the progression of stromal cell decidualization. Conclusion our results demonstrated that Kiss1/GPR54 system was involved in promoting uterine decidualization during early pregnancy in mice. PMID:24830702

  13. Inter-annual variability in the biosphere-atmosphere exchange of carbon dioxide and water vapor in adjacent pine and hardwood forests: links to drought, disturbance, and seasonality

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Ward, E. J.; Oishi, A. C.; Stoy, P. C.

    2012-12-01

    Understanding the variation in long-term biosphere-atmosphere fluxes of carbon dioxide and water vapor is necessary to characterize the benefits and services of terrestrial ecosystems, including the highly productive forests of the Southeastern United States. This study quantifies flux variability at inter-annual times scales using eight-year eddy covariance records from two co-located ecosystems in the Duke Forest (North Carolina, USA): a hardwood deciduous forest (HW) and a pine plantation (PP), which together represent the dominant forest types in the region. When averaged across the study period, annual net ecosystem exchange of CO2 (NEE) was similar in PP and HW (NEE = -560 and -520 g C m-2 y-1 in PP and HW, respectively). Variation in annual NEE was high in both ecosystems, but higher in the pine site (CV = 0.38) as compared to the hardwood site (CV = 0.23). Gross ecosystem productivity (GEP) and ecosystem respiration (RE), which together represent the primary components of NEE, were not necessarily more variable in the pine site; however, the coupling between annual GEP and RE was weaker in PP as compared to HW, contributing to higher overall variability in PP NEE. Our results identify at least two factors contributing to this decoupling: 1) an ice storm event, which reduced PP GEP while increasing or having no effect on PP RE, and 2) two severe drought events, which cause large reductions in PP GEP but not RE. Additionally, in both ecosystems, variability in GEP and NEE is strongly related to the length of the active season (r2 = 0.60 - 0.93), a variable reflecting the seasonality of carbon assimilation that is largely independent from patterns of leaf area development.

  14. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.

    PubMed

    Tschaplinski, Timothy J.; Gebre, G. Michael; Shirshac, Terri L.

    1998-05-01

    Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy

  15. Isolation of wood-inhabiting fungi from Canadian hardwood logs.

    PubMed

    Yang, Dian-Qing

    2005-01-01

    Wood-inhabiting fungi include many molds, wood-staining fungi, and decay fungi. Most of these fungal species can result in economic losses to wood users. Studies on molds, staining fungi, and decay fungi are necessary to be able to control their growth on wood and wood products. In this study, wood-inhabiting fungi were isolated from logs of 3 major Canadian hardwood species: sugar maple, white birch, and yellow birch. Two media were used for isolation. From these 3 wood species, a total of 1198 fungal cultures were obtained from summer- and winter-harvested logs in dry storage and under water sprinkling. The results showed that most fungal species were not host specific and affected all of the wood species tested. Frequently isolated molds were Alternaria alternata, Trichoderma species, and Mucor/Rhizopus (Zygomycota) species, frequently isolated staining fungi were Ophiostoma piceae and Ophiostoma piliferum, a frequently isolated bark saprophyte was Nectria cinnabarina, and frequently isolated decay fungi were taxa of the phylum Basidiomycota. More fungal species were isolated from summer-harvested logs than from winter-harvested logs. Fewer fungal cultures, especially decay fungi, were isolated from logs in early storage than from logs in late storage.

  16. Decidual-Secreted Factors Alter Invasive Trophoblast Membrane and Secreted Proteins Implying a Role for Decidual Cell Regulation of Placentation

    PubMed Central

    Menkhorst, Ellen Melaleuca; Lane, Natalie; Winship, Amy Louise; Li, Priscilla; Yap, Joanne; Meehan, Katie; Rainczuk, Adam; Stephens, Andrew; Dimitriadis, Evdokia

    2012-01-01

    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition

  17. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest.

    PubMed

    Richardson, Andrew D; Jenkins, Julian P; Braswell, Bobby H; Hollinger, David Y; Ollinger, Scott V; Smith, Marie-Louise

    2007-05-01

    Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO(2) by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood forest. A standard, commercially available webcam was mounted at the top of the eddy covariance tower at the Bartlett AmeriFlux site. Images were collected each day around midday. Red, green, and blue color channel brightness data for a 640 x 100-pixel region-of-interest were extracted from each image. We evaluated the green-up signal extracted from webcam images against changes in the fraction of incident photosynthetically active radiation that is absorbed by the canopy (f (APAR)), a broadband normalized difference vegetation index (NDVI), and the light-saturated rate of canopy photosynthesis (A(max)), inferred from eddy flux measurements. The relative brightness of the green channel (green %) was relatively stable through the winter months. A steady rising trend in green % began around day 120 and continued through day 160, at which point a stable plateau was reached. The relative brightness of the blue channel (blue %) also responded to spring green-up, although there was more day-to-day variation in the signal because blue % was more sensitive to changes in the quality (spectral distribution) of incident radiation. Seasonal changes in blue % were most similar to those in f (APAR) and broadband NDVI, whereas changes in green % proceeded more slowly, and were drawn out over a longer period of time. Changes in A(max) lagged green-up by at least a week. We conclude that webcams offer an inexpensive means by which phenological changes in the canopy state can be quantified. A network of cameras could offer a novel opportunity to implement a regional or national phenology monitoring program.

  18. Differential expression and regulation of Tdo2 during mouse decidualization.

    PubMed

    Li, Dang-Dang; Gao, Ying-Jie; Tian, Xue-Chao; Yang, Zhan-Qing; Cao, Hang; Zhang, Qiao-Ling; Guo, Bin; Yue, Zhan-Peng

    2014-01-01

    Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6-8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1-8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.

  19. Synopsis of wetland functions and values: bottomland hardwoods with special emphasis on eastern Texas and Oklahoma

    USGS Publications Warehouse

    Wilkinson, D.L.; Schneller-McDonald, K.; Olson, R.W.; Auble, G.T.

    1987-01-01

    Bottomland hardwood wetlands are the natural cover type of many floodplain ecosystems in the southeastern United States. They are dynamic, productive systems that depend on intermittent flooding and moving water for maintenance of structure and function. Many of the diverse functions performed by bottomland hardwoods (e.g., flood control, sediment trapping, fish and wildlife habitat) are directly or indirectly valued by humans. Balanced decisions regarding bottomland hardwoods are often hindered by a limited ability to accurately specify the functions being performed by these systems and, furthermore, by an inability to evaluate these functions in economic terms. This report addresses these informational needs. It focuses on the bottomland hardwoods of eastern Texas and Oklahoma, serving as an introduction and entry to the literature. It is not intended to serve as a substitute for reference to the original literature. The first section of the report is a review of the major functions of bottomland hardwoods, grouped under the headings of hydrology, water quality, productivity, detritus, nutrients, and habitat. Although the hydrology of these areas is diverse and complex, especially with respect to groundwater, water storage at high flows can clearly function to attenuate peak flows, with possible reductions in downstream flooding damage. Water moving through a bottomland hardwood system carries with it various organic and inorganic constituents, including sediment, organic matter, nutrients, and pollutants. When waterborne materials are introduced to bottomland hardwoods (from river flooding or upland runoff), they may be retained, transformed, or transported. As a result, water quality may be significantly altered and improved. The fluctuating and flowing water regime of bottomland hardwoods is associated with generally high net primary productivity and rapid fluxes of organic matter and nutrients. These, in turn, support secondary productivity in the bottomland

  20. Deciduous molar hypomineralization and molar incisor hypomineralization.

    PubMed

    Elfrink, M E C; ten Cate, J M; Jaddoe, V W V; Hofman, A; Moll, H A; Veerkamp, J S J

    2012-06-01

    This study was embedded in the Generation R Study, a population-based prospective cohort study from fetal life until young adulthood. This study focused on the relationship between Deciduous Molar Hypomineralization (DMH) and Molar Incisor Hypomineralization (MIH). First permanent molars develop during a period similar to that of second primary molars, with possible comparable risk factors for hypomineralization. Children with DMH have a greater risk of developing MIH. Clinical photographs of clean, moist teeth were taken with an intra-oral camera in 6,161 children (49.8% girls; mean age 74.3 mos, SD ± 5.8). First permanent molars and second primary molars were scored with respect to DMH or MIH. The prevalence of DMH and MIH was 9.0% and 8.7% at child level, and 4.0% and 5.4% at tooth level. The Odds Ratio for MIH based on DMH was 4.4 (95% CI, 3.1-6.4). The relationship between the occurrence of DMH and MIH suggests a shared cause and indicates that, clinically, DMH can be used as a predictor for MIH.

  1. Hardwoods for Woody Energy Crops in the Southeast United States:Two Centuries of Practitioner Experience

    SciTech Connect

    Kline, Keith L; Coleman, Mark

    2010-01-01

    This paper summarizes opinions from forest industry experts on the potential for hardwood tree species to serve as feedstock for bioenergy in the Southeast United States. Hardwoods are of interest for bioenergy because of desirable physical qualities, genetic research advances, and growth potential. Experts observe that high productivity rates in southeastern plantations are confined to limited site conditions or require costly inputs. Eastern cottonwood and American sycamore grow quickly on rich bottomlands where they compete with higher-value crops. These species are also prone to pests and disease. Sweetgum is frost hardy, has few pest or disease problems, and grows across a broad range of sites, yet growth rates are relatively low. Eucalypts require few inputs and offer high potential productivity, but are limited by frost to the lower coastal plain and Florida. More time and investment in silviculture, selection, and breeding will be needed to develop hardwoods as competitive biofuel feedstock species. Loblolly pine has robust site requirements, growth rates rivaling hardwoods and lower costs of production. Because of existing stands and know-how, the forestry community considers loblolly pine to be a prime candidate for plantation bioenergy in the Southeast. Further research is required to study naturally regenerated hardwood biomass resources.

  2. Environmental controls on sap flow in a northern hardwood forest.

    PubMed

    Bovard, B D; Curtis, P S; Vogel, C S; Su, H-B; Schmid, H P

    2005-01-01

    Our objective was to gain a detailed understanding of how photosynthetically active radiation (PAR), vapor pressure deficit (D) and soil water interact to control transpiration in the dominant canopy species of a mixed hardwood forest in northern Lower Michigan. An improved understanding of how these environmental factors affect whole-tree water use in unmanaged ecosystems is necessary in assessing the consequences of climate change on the terrestrial water cycle. We used continuously heated sap flow sensors to measure transpiration in mature trees of four species during two successive drought events. The measurements were scaled to the stand level for comparison with eddy covariance estimates of ecosystem water flux (Fw). Photosynthetically active radiation and D together explained 82% of the daytime hourly variation in plot-level transpiration, and low soil water content generally resulted in increased stomatal sensitivity to increasing D. There were also species-specific responses to drought. Quercus rubra L. showed low water use during both dry and wet conditions, and during periods of high D. Among the study species, Acer rubrum L. showed the greatest degree of stomatal closure in response to low soil water availability. Moderate increases in stomatal sensitivity to D during dry periods were observed in Populus grandidentata Michx. and Betula papyrifera Marsh. Sap flow scaled to the plot level and Fw demonstrated similar temporal patterns of water loss suggesting that the mechanisms controlling sap flow of an individual tree also control ecosystem evapotranspiration. However, the absolute magnitude of scaled sap flow estimates was consistently lower than Fw. We conclude that species-specific responses to PAR, D and soil water content are key elements to understanding current and future water fluxes in this ecosystem.

  3. Uneven-aged management of pine and pine-hardwood mixtures in the Ouachita mountains

    SciTech Connect

    Shelton, M.G.; Baker, J.B.

    1992-01-01

    The Ouachita National Forest and the Southern Forest Experiment Station launched a long-term research project in 1988 to study uneven-aged management of shortleaf pine and pine-hardwood mixtures in the Ouachita Mountains. The successful use of uneven-aged management in the southern pines has to date been limited to pure stands. However, the maintenance of a hardwood component is desirable to enhance biological diversity, wildlife habitat, and aesthetics. The study's goals are: (1) to determine the levels at which pine and hardwoods are biologically compatible in uneven-aged stands, and (2) to evaluate the timber, wildlife, water quality, aesthetics and biodiversity associated with each management alternative so that sound decisions concerning the tradeoffs among these resources can be determined.

  4. Use of the bottomland hardwoods subset of the wetland values data base

    USGS Publications Warehouse

    Auble, Gregor T.

    1987-01-01

    This report documents a bibliographic data base concerning functions and values of bottomland hardwoods and similarly vegetated areas. This data base is being provided for a limited time (until September 30, 1988) as a supplement to the publication entitled "Synopsis of Wetland Functions and Values: Bottomland Hardwoods with Special Emphasis on Eastern Texas and Oklahoma" (Wilkinson et al. 1987). The bottomland hardwoods data base is a subset of a larger bibliographic data base, Wetland Values, developed by the National Wetlands Inventory of the U.S. Fish and Wildlife Service (Stuber 1986). The focus of these bibliographic data bases is on functions and values of wetlands; few articles on structure (e.g., phytosociology) are included.

  5. R. R. Reynolds Research Natural Area in southeastern Arkansas: A 56-year case study in pine-hardwood overstory sustainability

    SciTech Connect

    Cain, M.D.; Shelton, M.G.

    1996-12-31

    The R. R. Reynolds Research Natural Area is a 32-ha pine-hardwood forest in southeastern Arkansas, U.S.A., that originated from diameter-limit cutting of the virgin forest before 1915. In 1935, these 32 ha were reserved from timber management. Between 1937 and 1993, eight inventories were taken of all living trees greater than 9-cm DBH, using 2.5-cm DBH classes within three species groups: Pinus spp., Quercus spp., and other hardwoods. In 1994, all standing dead snags of pines and hardwoods greater than 9-cm DBH were inventoried by 2.5-cm DBH classes. During 56 years, the overstory pine-hardwood ratio remained stable in terms of relative basal area, but pine density decreased with a commensurate increase in hardwood density. In 1993, pines represented 63% of basal area but only 23% of stem density.

  6. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.

    PubMed

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-08-04

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  7. Comparative vessel anatomy of arctic deciduous and evergreen dicots.

    PubMed

    Gorsuch, D M; Oberbauer, S F; Fisher, J B

    2001-09-01

    Arctic tundra plant species exhibit striking variation in leaf character and growth form. Both are likely related to differences in vessel anatomy, and all may affect responses to climate changes in the Arctic. To investigate the relationships among leaf character, growth form, vessel anatomy, and susceptibility to freeze-thaw-induced xylem cavitation, xylem vessel characteristics were compared among six deciduous and six evergreen arctic dicot species of erect and prostrate growth forms. We hypothesized that deciduous and erect species would have larger and longer vessels than evergreen and cushion/mat-forming species. Vessel lengths, diameters, and densities were measured for each species. Theoretical vessel flow rates were calculated using Poiseuille's law for ideal capillaries. Flow rates were used to determine the susceptibility of vessels to cavitation induced by freeze-thaw events that may become more frequent with global warming. Vessel diameters were larger in deciduous species compared to evergreens, and in shrubs/trees vs. cushion/mat-forming plants. Vessel length distributions, however, did not differ for growth form or leaf character. Vessel density was greater in cushion/mat-forming species than in shrub/tree species. Deciduous plants showed a greater contribution to total conductivity by relatively larger vessels than evergreens. One of the deciduous species, Vaccinium uliginosum, is predicted to be susceptible to freeze-thaw-induced cavitation. These results have important implications for future arctic species composition and plant community structure.

  8. Leukocyte driven-decidual angiogenesis in early pregnancy

    PubMed Central

    Lima, Patricia DA; Zhang, Jianhong; Dunk, Caroline; Lye, Stephen J; Anne Croy, B

    2014-01-01

    Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed. PMID:25066422

  9. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  10. Clinical survey on type of restoration in deciduous teeth.

    PubMed

    Fukuyama, Tatsuro; Oda, Shinya; Yamashita, Haruto; Sekiguchi, Hiroshi; Yakushiji, Masashi

    2008-02-01

    This study was conducted in 533 children with 1,634 treated teeth who visited the Pediatric Dentistry Department at the Chiba Hospital of Tokyo Dental College between January and December, 2003. Restorations on deciduous tooth were categorized by age of patient and tooth type. The following observations were made: Children aged 4 (17.9%) visited the clinic most frequently and this group had the highest number of deciduous restorations (21.3%). Among the 1,634 deciduous teeth restored, metal inlays were provided in 29.4% of total teeth restored, composite resin restorations in 27.2%, stainless-steel crowns in 25.7%, composite resin full crowns in 7.7%, glass-ionomer cement restorations in 6.6%, and amalgam restorations in 3.4%. By age, composite resin was most frequently used in children aged 1 to 3. In children aged 5 to 9, metal inlay was most frequently used. Those aged 4 received mostly stainless-steel crowns. Composite resin restorations were used mostly in anterior deciduous teeth, and metal inlays mostly in deciduous molars. Previous research indicated an increasing trend towards composite resin restorations and composite resin full crowns. The present study also confirmed such a trend. While the use of metal inlays and stainless-steel crowns tended to increase until 1987, the present study indicated a trend to decrease.

  11. Leukocyte driven-decidual angiogenesis in early pregnancy.

    PubMed

    Lima, Patricia D A; Zhang, Jianhong; Dunk, Caroline; Lye, Stephen J; Croy, B Anne

    2014-11-01

    Successful pregnancy and long-term, post-natal maternal and offspring cardiac, vascular and metabolic health require key maternal cardiovascular adaptations over gestation. Within the pregnant decidualizing uterus, coordinated vascular, immunological and stromal cell changes occur. Considerable attention has been given to the roles of uterine natural killer (uNK) cells in initiating decidual spiral arterial remodeling, a process normally completed by mid-gestation in mice and in humans. However, leukocyte roles in much earlier, region specific, decidual vascular remodeling are now being defined. Interest in immune cell-promoted vascular remodeling is driven by vascular aberrations that are reported in human gestational complications such as infertility, recurrent spontaneous abortion, preeclampsia (PE) and fetal growth restriction. Appropriate maternal cardiovascular responses during pregnancy protect mothers and their children from later cardiovascular disease risk elevation. One of the earliest uterine responses to pregnancy in species with hemochorial placentation is stromal cell decidualization, which creates unique niches for angiogenesis and leukocyte recruitment. In early decidua basalis, the aspect of the implantation site that will cradle the developing placenta and provide the major blood vessels to support mature placental functions, leukocytes are greatly enriched and display specialized properties. UNK cells, the most abundant leukocyte subset in early decidua basalis, have angiogenic abilities and are essential for normal early decidual angiogenesis. The regulation of uNK cells and their roles in determining maternal and progeny cardiovascular health over pregnancy and postpartum are discussed.

  12. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.

    PubMed

    Holland, V; Koller, S; Brüggemann, W

    2014-07-01

    Climate change is one of the major issues nowadays, and Mediterranean broadleaf species have been suggested to fill possible future gaps created by climate change in Central European forests. To provide a scientific-based foundation for such practical strategies, it is important to obtain a general idea about differences and similarities in the physiology of Central European and Mediterranean species. In the present study, we evaluated the onset of leaf senescence of a broad spectrum of oak species under the Central European climate in a common garden experiment. Degradation of the photosynthetic apparatus of evergreen (Quercus ilex, Q. suber), semi-evergreen (Q.×turneri, Q.×hispanica) and deciduous oaks (Q. robur, Q. cerris, Q. frainetto, Q. pubescens) was monitored as chlorophyll content and analysed chlorophyll fluorescence induction transients. In the deciduous species, a significant decline in chlorophyll content was observed during autumn/winter, with Q. pubescens showing the slowest decline. Analysis of fluorescence induction transients revealed a significant decline in quantum efficiency of the primary photochemistry and reaction centre density and later, a decrease in quantum efficiency of end acceptor reduction. Alterations in fluorescence parameters were compared to the decline in chlorophyll content, which occurred much more slowly than expected from the fluorescence data. The evergreen species showed no decline in chlorophyll content, nor different chlorophyll a fluorescence induction behaviour despite temperature falling below 0 °C. The hybrids showed intermediate behaviour between their parental evergreen and deciduous taxa.

  13. Stem cells from deciduous tooth repair mandibular defect in swine.

    PubMed

    Zheng, Y; Liu, Y; Zhang, C M; Zhang, H Y; Li, W H; Shi, S; Le, A D; Wang, S L

    2009-03-01

    Stem cells from human exfoliated deciduous teeth have been identified as a new post-natal stem cell population with multipotential differentiation capabilities, including regeneration of mineralized tissues in vivo. To examine the efficacy of utilizing these stem cells in regenerating orofacial bone defects, we isolated stem cells from miniature pig deciduous teeth and engrafted the critical-size bone defects generated in swine mandible models. Our results indicated that stem cells from miniature pig deciduous teeth, an autologous and easily accessible stem cell source, were able to engraft and regenerate bone to repair critical-size mandibular defects at 6 months post-surgical reconstruction. This pre-clinical study in a large-animal model, specifically swine, allows for testing of a stem cells/scaffold construct in the restoration of orofacial skeletal defects and provides rapid translation of stem-cell-based therapy in orofacial reconstruction in human clinical trials.

  14. Contrasting ozone sensitivity in related evergreen and deciduous shrubs.

    PubMed

    Calatayud, Vicent; Marco, Francisco; Cerveró, Júlia; Sánchez-Peña, Gerardo; Sanz, María José

    2010-12-01

    Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO(2) assimilation and stomatal conductance (g(s)), impaired Rubisco efficiency and regeneration capacity (V(c,max,)J(max)) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed.

  15. Microscale Pressure Fluctuations Within a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Sigmon, John Thomas

    Attempts to evaluate sources of errors in estimates of fluxes from forested surfaces have been thwarted by the lack of an accurate description of the nature of air flow within forest canopies. An important property of any boundary layer flow is the occurrence of pressure fluctuations at the boundary and within the flow. This study was designed to provide an understanding of the microscale pressure fluctuations within a forest canopy and the relationship between these fluctuations and the air flow within and above the forest canopy. Pressure fluctuations were measured using a method similar to that developed by J. A. Elliott in 1972. Measurements were taken at the ground and above a deciduous forest canopy. Time series, spectra, and cross-correlations were calculated under different canopy conditions, and relationships between surface pressure fluctuations and mean windspeeds were determined. Turbulent pressure fluctuations at the forest floor did not contain the higher frequencies found over smooth terrain and were continuously occurring at frequencies greater than 0.5 Hz. Somewhat higher frequencies and larger amplitudes occurred in the pressure fluctuations above the canopy after leaf emergence than at the surface. Horizontal length scales many times larger than the average spacing of the overstory trees were predominant. While both leaf emergence of flow-through from an adjacent field had an effect on the mean windspeed profiles, only the flow-through conditions had an effect on the relationship of mean windspeed above the canopy to pressure fluctuation variance at the surface. Pressure fluctuations at the surface appeared coupled at all times to those above the canopy and were directly related to windspeed above the canopy. Pressure eddies were advected downwind at speeds approximating the mean windspeed 6-8 meters above the canopy. Shapes of the pressure spectra were affected slightly by changes in windspeed, and comparisons of spectra above and below the

  16. Incremental enamel development in modern human deciduous anterior teeth.

    PubMed

    Mahoney, Patrick

    2012-04-01

    This study reconstructs incremental enamel development for a sample of modern human deciduous mandibular (n = 42) and maxillary (n = 42) anterior (incisors and canines) teeth. Results are compared between anterior teeth, and with previous research for deciduous molars (Mahoney: Am J Phys Anthropol 144 (2011) 204-214) to identify developmental differences along the tooth row. Two hypotheses are tested: Retzius line periodicity will remain constant in teeth from the same jaw and range from 6 to 12 days among individuals, as in human permanent teeth; daily enamel secretion rates (DSRs) will not vary between deciduous teeth, as in some human permanent tooth types. A further aim is to search for links between deciduous incremental enamel development and the previously reported eruptionsequence. Retzius line periodicity in anterior teeth ranged between 5 and 6 days, but did not differ between an incisor and molar of one individual. Intradian line periodicity was 12 h. Mean cuspal DSRs varied slightly between equivalent regions along the tooth row. Mandibular incisors initiated enamel formation first, had the fastest mean DSRs, the greatest prenatal formation time, and based upon prior studies are the first deciduous tooth to erupt. Relatively rapid development in mandibular incisors in advance of early eruption may explain some of the variation in DSRs along the tooth row that cannot be explained by birth. Links between DSRs, enamel initiation times, and the deciduous eruption sequence are proposed. Anterior crown formation times presented here can contribute toward human infant age-at-death estimates. Regression equations for reconstructing formation time in worn incisors are given.

  17. Fate of pulpectomized deciduous teeth: Bilateral odontogenic cyst?

    PubMed Central

    Sandhyarani, B.; Noorani, Hina; Shivaprakash, P. K.; Dayanand, A. Huddar

    2016-01-01

    Pulpectomy is preferably more conservative treatment option than the extraction of deciduous teeth despite few undesirable consequences of obturating materials of which odontogenic cysts are one. This article aims to report a case of an 11-year-old female child having bilateral odontogenic cysts, i.e., radicular and infected dentigerous cyst followed by pulpectomy of deciduous molars using zinc oxide eugenol which was surgically enucleated and followed up to 6 months until satisfactory healing of bone was observed. The article also emphasizes on the importance of regular follow-up of the pulpectomized tooth which can be harmful otherwise. PMID:27307677

  18. Revealing the molecular structural transformation of hardwood and softwood in dilute acid flowthrough pretreatment

    DOE PAGES

    Zhang, Libing; Pu, Yunqiao; Univ. of Tennessee, Knoxville, TN; ...

    2016-10-03

    To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 °C and a flow rate of 25 mL/min with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood ligninmore » remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C–C5). As a result, effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.« less

  19. EVALUATION OF COMPONENTS FOR HARDWOOD SILVOPASTORES FOR COW-CALF OPERATORS IN THE SOUTHEASTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silvopasture systems consisting of bahiagrass (Paspalum notatum) and pines (Pinus spp.) are common in the southeastern United States. However, some producers prefer other forages to bahiagrass and there are increasing opportunities for marketing hardwoods in the region. Warm season forages and hardw...

  20. Revealing the molecular structural transformation of hardwood and softwood in dilute acid flowthrough pretreatment

    SciTech Connect

    Zhang, Libing; Pu, Yunqiao; Cort, John R.; Ragauskas, Arthur J.; Yang, Bin

    2016-10-03

    To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 °C and a flow rate of 25 mL/min with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C–C5). As a result, effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.

  1. 77 FR 65172 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... two invoices for hardwood and decorative plywood sold by Chinese exporters, as identified in... NME countries, and from India, Indonesia, and the Republic of Korea, as the Department has previously... Chinese exporters/ producers will be used as the basis for selecting the mandatory respondents....

  2. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  3. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Plywood and Composite...

  4. 40 CFR 63.2264 - Initial compliance demonstration for a hardwood veneer dryer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial compliance demonstration for a hardwood veneer dryer. 63.2264 Section 63.2264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood...

  5. Crystalliferous Bacillus cereus group bacteria from a Maryland hardwood forest are dominated by psychrotolerant strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystal forming Bacillus spp. were isolated from soil samples collected at different elevations within a mixed hardwood forest in central Maryland, and their phylogenetic relationships determined by multilocus sequence analysis. The vast majority of isolates obtained were associated with two phylog...

  6. Hardwood snag fragmentation in a pine-oak forest of southeastern Arkansas

    SciTech Connect

    Cain, M.D.

    1996-12-31

    Because snags are importnat for forest wildlife as breeding, roosting and foraging sites, resource managers who wish to maintain this component in forest stands need to be aware of snag fragmentation rates. Measurements were taken in uneven-aged pine-hardwood standards in southeastern Arkansas to determine fragmentation rates for hardwood snags 2 to 6 yr after stem injection with herbicides. Crown and bole condition of snags were also assessed. Pinus eschinata Mill. and P. taeda L. were the dominant overstory components and were udisturbed. Quercus spp. accounted for 91% of hardwoods greater than 25 cm dbh. Since small diameter snags deteriorated first, snag diameter distributions changed from uneven-sized to even-sized structure as time since mortality increased. Within 3 yr of injection, 57% of snag boles had broken below crown height. Number of wildlife cavities per snag increased with time since mortality. At 6 yr after injection, 44% of residual snags had evidence of wildlife cavities. Less than 50% of hardwoods less then 25 cm dbh were still standing 5 yr after herbicide injection.

  7. Revealing the Molecular Structural Transformation of Hardwood and Softwood in Dilute Acid Flowthrough Pretreatment

    SciTech Connect

    Zhang, Libing; Pu, Yunqiao; Cort, John R.; Ragauskas, Arthur J.; Yang, Bin

    2016-12-05

    To better understand the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g. poplar wood) and softwood (e.g. lodgepole pine wood) were investigated at temperatures of 200 °C to 270 °C and a flow rate of 25 mL/minute with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily to be degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C-C5). Unique molecular structural features that pronounced the specific recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.

  8. 77 FR 66436 - Hardwood and Decorative Plywood From the People's Republic of China: Initiation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ...- scraping or wire brushing. The face veneer may also be stained (i.e., to achieve a particular color... sanded, smoothed, scraped or stained. Hardwood and decorative plywood is generally manufactured to...., ``prefinishing''), scraping or staining (e.g., bent or molded plywood; bent or molded plywood is defined as...

  9. Plant Identification Characteristics for Deciduous Trees & Shrubs. Lesson Plans.

    ERIC Educational Resources Information Center

    Burkholder, Kathy

    This manual contains a group of lesson plans designed for use with a slide series (not included here). Its purpose is to introduce students to the basic concepts and terminology used in the identification of deciduous trees and shrubs. The manual is composed of 12 lesson plans. The first lesson is an introduction to plant identification. The…

  10. Case history development of a hybrid poplar nursery at Reynolds Metals Company, Massena, New York. Final report

    SciTech Connect

    Marler, R.L.

    1981-11-01

    Intensive cultivation of fast-growing hardwoods, such as hybrid poplars, is a promising method of assuring adequate supplies of biomass for energy purposes. This report details the establishment of a hybrid poplar nursery on formerly unused land at the Reynolds Metals Company's reduction plant in Massena, NY and presents the results obtained during the first growing season. Cuttings from the nursery replanted during the Spring of 1982 are the first phase of a 600-acre hybrid poplar plantation at the Reynolds site.

  11. Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.

    2013-12-01

    Phenology, annual life cycles of plants and animals, is a dynamic ecosystem attribute and an important feedback to climate change. Vegetation phenology is commonly monitored at canopy to continental scales using ground based digital repeat photography and satellite remote sensing, respectively. Existing systems which provide sufficient temporal resolution for phenological monitoring, however, lack the spectral resolution necessary to investigate the coupling of phenology with canopy chemistry (e.g. chlorophyll, nitrogen, lignin-cellulose content). Some researchers have used narrowband (<10 nm resolution) spectrometers at phenology monitoring sites, yielding new insights into seasonal changes in leaf biochemistry. Such instruments integrate the spectral characteristics of the entire canopy, however, masking considerable variability between species and plant functional types. There is an opportunity, then, for exploring the potential of imaging spectrometers to investigate the coupling of canopy phenology and the leaf biochemistry of individual trees. During the growing season of April-October 2013 we deployed an imaging spectrometer with a spectral range of 371-1042 nm and resolution of ~5 nm (Surface Optics Corporation 710; San Diego, CA) on a 35 m tall tower at the Harvard Forest, Massachusetts. The image resolution was ~0.25 megapixels and the field of view encompassed approximately 20 individual tree crowns at a distance of 20-40 m. The instrument was focused on a mixed hardwoods canopy composed of 4 deciduous tree species and one coniferous tree species. Scanning was performed daily with an acquisition frequency of 30 minutes during daylight hours. Derived imagery were used to calculate a suite of published spectral indices used to estimate foliar content of key pigments: cholorophyll, carotenoids and anthocyanins. Additionally, we calculated the photochemical reflectance index (PRI) as well as the position and slope of the red edge as indicators of mid- to

  12. The orphan nuclear receptor Nur77 regulates decidual prolactin expression in human endometrial stromal cells

    SciTech Connect

    Jiang, Yue; Hu, Yali; Zhao, Jing; Zhen, Xin; Yan, Guijun; Sun, Haixiang

    2011-01-14

    Research highlights: {yields} Decidually produced PRL plays a key role during pregnancy. {yields} Overexpression of Nur77 increased PRL mRNA expression and enhanced decidual PRL promoter activity. {yields} Knockdown of Nur77 decreased decidual PRL secretion induced by 8-Br-cAMP and MPA. {yields} Nur77 is a novel transcription factor that plays an active role in decidual prolactin expression. -- Abstract: Prolactin (PRL) is synthesized and released by several extrapituitary tissues, including decidualized stromal cells. Despite the important role of decidual PRL during pregnancy, little is understood about the factors involved in the proper regulation of decidual PRL expression. Here we present evidence that the transcription factor Nur77 plays an active role in decidual prolactin expression in human endometrial stromal cells (hESCs). Nur77 mRNA expression in hESCs was significantly increased after decidualization stimulated by 8-Br-cAMP and medroxyprogesterone acetate (MPA). Adenovirus-mediated overexpression of Nur77 in hESCs markedly increased PRL mRNA expression and enhanced decidual PRL promoter (dPRL/-332Luc) activity in a concentration-dependent manner. Furthermore, knockdown of Nur77 in hESCs significantly decreased decidual PRL promoter activation and substantially attenuated PRL mRNA expression and PRL secretion (P < 0.01) induced by 8-Br-cAMP and MPA. These results demonstrate that Nur77 is a novel transcription factor that contributes significantly to the regulation of prolactin gene expression in human endometrial stromal cells.

  13. Identification and partial characterization of a prolactin-like hormone produced by rat decidual tissue.

    PubMed Central

    Jayatilak, P G; Glaser, L A; Basuray, R; Kelly, P A; Gibori, G

    1985-01-01

    Previous studies have strongly, but indirectly, suggested that rat decidual tissue produces a prolactin-like hormone, decidual luteotropin, which markedly affects luteal cell function. However, it was also found that extracts of decidual tissue do not cross-react with antisera to either rat or ovine prolactin (PRL). The purpose of this study was to determine whether the decidual tissue contains a substance that binds to PRL receptors in rat luteal membranes and, if so, to identify, quantitate, and characterize this molecule with the use of an ovarian radioreceptor assay. Decidual tissue was induced in day 5 pseudopregnant rats by scratching the antimesometrial wall of the uterus; it was collected on day 9 and homogenized and extracted. Decidual tissue extracts bound specifically to ovarian PRL receptors. Graded dilutions of the extracts yielded curves that were parallel to the ovine PRL standard, indicating that decidual luteotropin competes for the same receptor sites on rat luteal membranes. To determine the levels of decidual luteotropin throughout pseudopregnancy, decidual tissue was obtained on each day between days 6-12. The PRL-like activity was detectable in decidual tissue as early as day 6, reached a maximum on day 9, and declined thereafter. The elution profile obtained from gel filtration of a day 9 decidual tissue extract displayed a major component of decidual luteotropin eluting at a Ve/Vo ratio of approximately equal to 2.0. Column chromatography indicated that decidual luteotropin corresponds to a protein with a molecular weight of 23,500. The hormone was heat labile, digestible by trypsin, and appears to contain disulfide linkages. In summary, this study reports the identification, quantitation, and partial characterization of a PRL-like hormone produced by the decidual tissue of the rat. Images PMID:2982145

  14. Ecology of bottomland hardwood swamps of the southeast: a community profile

    SciTech Connect

    Wharton, C.H.; Kitchens, W.M.; Pendleton, E.C.; Sipe, T.W.

    1982-03-01

    This report synthesizes extant literature detailing the ecology of bottomland hardwood swamps in the Southeast. The geographic scope focuses the report to the hardwoods occupying the floodplains of the rivers whose drainages originate in the Appalachian Mountains/Piedmont and Coastal Plain (NC, SC, GA, and FL). The origin and dynamics of the floodplains are described and related to hydrology and physiographic provinces. Further, the biogeochemistry and interactions between the riverine and floodplain environments are discussed in conjunction with floodplain biology. Plant and animal community structure and ecological processes (productivity) are detailed and organized by ecological zones. The final chapter discusses the ecological value of the floodplain ecosystems and the nature of their relationships to adjacent uplands, downstream coastal estuaries and the atmosphere.

  15. Bottomland hardwood restoration in the Mississippi Alluvial Valley: Looking past the trees to see the forest

    USGS Publications Warehouse

    Wilson, R.R.; Oliver, J.M.; Twedt, D.J.; Uihlein, W.B.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Planned restoration of bottomland hardwoods is important to adequately address negative consequences resulting from the severe loss and fragmentation of forested wetlands in the Mississippi Alluvial Valley. Reforestation efforts have been promoted through government initiatives of state and federal agencies (e.g. Wetland Reserve Program) and private conservation groups. To clarify discussions of forested wetland restoration, we offer definitions of reforestation and restoration, review historic reforestation practices, identify additional needs, and propose a conceptual framework to assist in future reforestation efforts. Future reforestation efforts should include: (1) comprehensive planning among participating agencies, (2) standardized documentation of methods, and (3) short-term and long-term monitoring protocols that permit refinement of methodologies. Implementation of these concepts will promote cooperative planning among participants and facilitate research to evaluate bottomland hardwood restoration efforts.

  16. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood.

    PubMed

    Shen, Zhengtao; Jin, Fei; Wang, Fei; McMillan, Oliver; Al-Tabbaa, Abir

    2015-10-01

    In this study, the physicochemical properties of Salisbury biochar produced from British broadleaf hardwood and its adsorption characteristics towards lead were investigated. The biochar particle size has a significant effect on its BET surface area, cation exchange capacity and sorption of lead. The kinetics data were well fitted by the Pseudo second order model. The increase of biochar dosage increased the percentage of lead removal in solutions. The increase of initial solution pH increased the percentage of lead removal across the pH range of 2-10. The calculated maximum adsorption capacities of lead by Langmuir model were 47.66 and 30.04 mg/g for 0.15 mm and 2 mm samples. The adsorption capacities of different metals decreased in the order of lead > nickel > copper > zinc calculated in mmol/g. This study suggests a great potential of biochars derived from British broadleaf hardwood to be applied in soil remediation.

  17. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.

  18. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    SciTech Connect

    Mayer, J.J.

    1999-12-17

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species.

  19. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  20. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  1. Biodegradation of hardwood lignocellulosics by the western poplar clearwing borer, Paranthrene robiniae (Hy. Edwards).

    PubMed

    Ke, Jing; Laskar, Dhrubojyoti Dey; Chen, Shulin

    2011-05-09

    Lignin in plant cell wall is a source of useful chemicals and also the major barrier for saccharification of lignocellulosic biomass for producing biofuel and bioproducts. Enzymatic lignin degradation/modification process could bypass the need for chemical pretreatment and thereby facilitate bioprocess consolidation. Herein, we reveal our new discovery in elucidating the process of hardwood lignin modification/degradation by clearwing borer, Paranthrene robiniae . The wood-boring clearwing borer, P. robiniae , effectively tunnels hardwood structures during the larval stage; its digestion products from wood components, however, has not yet been investigated. A series of analysis conducted in this study on tunnel walls and frass produced provided evidence of structural alterations and lignin degradation during such hardwood digestion process. The analysis included solid state (13)C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and thermogravimetric (TG) analysis; the results strongly suggest that the structural alteration of lignin primarily involved a preferential degradation of syringyl units accompanied by oxidation on the side chains of lignin guaiacyl moieties. This study also further indicated that unlike the wood-feeding termite the clearwing borer does not target cellulose as an energy source, and thus its lignin degradation ability should provide potential information on how to disassemble and utilize hardwood lignin. Overall, this biological model with an efficient lignin disruption system will provide the new insight into novel enzyme system required for effective plant cell wall disintegration for enhanced cellulose accessibility by enzymes and production of value-added lignin derived products.

  2. Western hardwoods: Value-added research and demonstration program. Forest Service general technical report

    SciTech Connect

    Green, D.; von Segen, W.; Willits, S.

    1995-09-01

    Research results from the value-added research and demonstration program for western hardwoods are summarized in this report. The intent of the program was to enhance the economy of the Pacific Northwest by helping local communities and forest industries produce wood products more efficiently. Emphasis was given to value-added products and barriers to increased utilization. The program was coordinated by the Pacific Northwest Research Station, the Pacific Northwest region of State and Private Forestry, and the Forest Products Laboratory.

  3. Predicting crown weight and bole volume of five western hardwoods. Forest Service general technical report

    SciTech Connect

    Snell, J.A.K.; Little, S.N.

    1983-03-01

    Regression equations are presented for estimating biomass of five western hardwoods: red alder (Alnus rubra), giant chinkapin (Castanopsis chrysophylla), big leaf maple (Acer macrophyllum), Pacific madrone (Arbutus memziesii), and tan oak (Lithocarpus densiflorus). Estimators are given for total crown biomass, cumulative proportions for separating crown weight into foliage and four timelag fuel diameter classes, bark weight, and bole volume (inside bark) to any specified top diameter. With one exception, the equation uses diameter at breast height as the only independent variable.

  4. Computer Vision System For Locating And Identifying Defects In Hardwood Lumber

    NASA Astrophysics Data System (ADS)

    Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.

    1989-03-01

    This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.

  5. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  6. Nocturnal insect availability in bottomland hardwood forests managed for wildlife in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Loraine Ketzler,; Christopher Comer,; Twedt, Daniel J.

    2017-01-01

    Silviculture used to alter forest structure and thereby enhance wildlife habitat has been advocated for bottomland hardwood forest management on public conservation lands in the Mississippi Alluvial Valley. Although some songbirds respond positively to these management actions to attain desired forest conditions for wildlife, the response of other species, is largely unknown. Nocturnal insects are a primary prey base for bats, thereby influencing trophic interactions within hardwood forests. To better understand how silviculture influences insect availability for bats, we conducted vegetation surveys and sampled insect biomass within silviculturally treated bottomland hardwood forest stands. We used passive blacklight traps to capture nocturnal flying insects in 64 treated and 64 untreated reference stands, located on 15 public conservation areas in Arkansas, Louisiana, and Mississippi. Dead wood and silvicultural treatments were positively associated with greater biomass of macro-Lepidoptera, macro-Coleoptera, and all insect taxa combined. Biomass of micro-Lepidoptera was negatively associated with silvicultural treatment but comprised only a small proportion of total biomass. Understanding the response of nocturnal insects to wildlife-forestry silviculture provides insight for prescribed silvicultural management affecting bat species.

  7. Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest.

    SciTech Connect

    Cromer R.B.; Lanham J.D.; Hanlin H.H.

    2002-05-01

    Herpetofaunal Response to Gap and Skidder-Rut Wetland Creation in a Southern Bottomland Hardwood Forest. Cromer R.B., J.D.Lanham, and H.H. Hanlin.Forest Science, 1 May 2002, vol. 48, iss. 2, pp. 407-413(7) We compared herpetofaunal communities in recently harvested gaps, skidder trails, and unharvested depressional wetlands to assess the effects of group-selection harvesting and skidder traffic on reptiles and amphibians in a southern bottomland hardwood forest. From January 1, 1997 to December 31, 1998 we captured 24,292 individuals representing 55 species of reptiles and amphibians at the Savannah River Site in Barnwell County, South Carolina. Forty-two species (n = 6,702 individuals) were captured in gaps, 43 species (n = 8,863 individuals) were captured along skid trails between gaps and 43 species (n = 8,727 individuals) were captured in bottomland depressions over the 2 yr period. Three vegetation variables and six environmental variables were correlated with herpetofaunal abundance. Salamander abundance, especially for species in the genus Ambystoma, was negatively associated with areas with less canopy cover and pronounced rutting (i.e., gaps and skidder trails). Alternatively, treefrog (Hylidae) abundance was positively associated with gap creation. Results from this study suggest that group selection harvests and skidder rutting may alter the herpetofaunal species composition in southern bottomland hardwoods by increasing habitat suitability for some species while diminishing it for others.

  8. Novel process for the coproduction of xylo-oligosaccharides, fermentable sugars, and lignosulfonates from hardwood.

    PubMed

    Huang, Caoxing; Jeuck, Ben; Du, Jing; Yong, Qiang; Chang, Hou-Min; Jameel, Hasan; Phillips, Richard

    2016-11-01

    Many biorefineries have not been commercialized due to poor economic returns from final products. In this work, a novel process has been developed to coproduce valuable sugars, xylo-oligosaccharides, and lignosulfonates from hardwood. The modified process includes a mild autohydrolysis pretreatment, which enables for the recovery of the xylo-oligosaccharides in auto-hydrolysate. Following enzymatic hydrolysis, the residue is sulfomethylated to produce lignosulfonates. Recycling the sulfomethylation residues increased both the glucan recovery and lignosulfonate production. The glucose recovery was increased from 81.7% to 87.9%. Steady state simulation using 100g of hardwood produced 46.7g sugars, 5.9g xylo-oligosaccharides, and 25.7g lignosulfonates, which were significantly higher than that produced from the no-recycling process with 39.1g sugars, 5.9g xylo-oligosaccharides, and 15.0g lignosulfonates. The results indicate that this novel biorefinery process can improve the production of fermentable sugars and lignosulfonate from hardwood as compared to a conventional biorefinery process.

  9. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  10. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests

    USGS Publications Warehouse

    Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.

    2012-01-01

    Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.

  11. Molecular Regulation of Parturition: The Role of the Decidual Clock.

    PubMed

    Norwitz, Errol R; Bonney, Elizabeth A; Snegovskikh, Victoria V; Williams, Michelle A; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M

    2015-04-27

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock.

  12. Molecular Regulation of Parturition: The Role of the Decidual Clock

    PubMed Central

    Norwitz, Errol R.; Bonney, Elizabeth A.; Snegovskikh, Victoria V.; Williams, Michelle A.; Phillippe, Mark; Park, Joong Shin; Abrahams, Vikki M.

    2015-01-01

    The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a “parturition cascade” exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a “placental clock.” We suggest that it is not a placental clock that regulates the timing of birth, but rather a “decidual clock.” Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock. PMID:25918180

  13. Crown diameters of the deciduous teeth of Taiwanese.

    PubMed

    Liu, H H; Dung, S Z; Yang, Y H

    2000-06-01

    The purposes of this study were (1) to characterize the crown diameters of the deciduous teeth of Taiwanese; (2) to compare the differences in the deciduous crown diameters between different populations. The results might provide odontometric information in making preformed stainless steel crowns of the Chinese population. Study casts of 90 children (51 boys and 39 girls) of aged 3 to 6 years were used in this study. The maximum mesiodistal crown diameter (the greatest distance between the contact points of the approximal surfaces) and the buccolingual crown diameter (the greatest distance at a right angle to the mesiodistal measurement) were obtained by using an electronic digital caliper. Significant differences between antimeres were found in the mesiodistal diameters of maxillary canine and maxillary molars (p < 0.001) as well as in the buccolingual diameters of mandibular molars (p < 0.05). Excellent correlations between the antimeres of the corresponding teeth were found (r = 0.70 to 0.96). Boys generally had larger crown diameters than girls with the exception of mesiodistal diameters of maxillary and mandibular canines, and mandibular lateral incisor, whereas the statistically significant gender difference was only found in the buccolingual diameter of mandibular second molar (p < 0.05). The higher the percentage of sexual dimorphism, the larger the gender differences. The percentage of sexual dimorphism ranged from 0.09 to 1.94 for mesiodistal diameters and 0.04 to 2.86 for buccolingual diameters. The mandibular second molar was the most dimorphic tooth. Variations in the crown diameters of the deciduous teeth existed among and within different populations. Deciduous mesiodistal crown diameters of Taiwanese were, in general, smaller than those of Australian aborigines, Taiwan Chinese aborigines, and Hong Kong Chinese, but larger than those of American whites. When considering the buccolingual crown diameters, our data were significantly smaller than those

  14. Decidual Cell Regulation of Natural Killer Cell–Recruiting Chemokines

    PubMed Central

    Lockwood, Charles J.; Huang, S. Joseph; Chen, Chie-Pein; Huang, Yingqun; Xu, Jie; Faramarzi, Saeed; Kayisli, Ozlem; Kayisli, Umit; Koopman, Louise; Smedts, Dineke; Buchwalder, Lynn F.; Schatz, Frederick

    2014-01-01

    First trimester human decidua is composed of decidual cells, CD56brightCD16− decidual natural killer (dNK) cells, and macrophages. Decidual cells incubated with NK cell–derived IFN-γ and either macrophage-derived TNF-α or IL-1β synergistically enhanced mRNA and protein expression of IP-10 and I-TAC. Both chemokines recruit CXCR3-expressing NK cells. This synergy required IFN-γ receptor 1 and 2 mediation via JAK/STAT and NFκB signaling pathways. However, synergy was not observed on neutrophil, monocyte, and NK cell–recruiting chemokines. Immunostaining of first trimester decidua localized IP-10, I-TAC, IFN-γR1, and -R2 to vimentin-positive decidual cells versus cytokeratin-positive interstitial trophoblasts. Flow cytometry identified high CXCR3 levels on dNK cells and minority peripheral CD56brightCD16− pNK cells and intermediate CXCR3 levels on the majority of CD56dimCD16+ pNK cells. Incubation of pNK cells with either IP-10 or I-TAC elicited concentration-dependent enhanced CXCR3 levels and migration of both pNK cell subsets that peaked at 10 ng/mL, whereas each chemokine at a concentration of 50 ng/mL inhibited CXCR3 expression and pNK cell migration. Deciduae from women with preeclampsia, a leading cause of maternal and fetal morbidity and mortality, displayed significantly lower dNK cell numbers and higher IP-10 and I-TAC levels versus gestational age–matched controls. Significantly elevated IP-10 levels in first trimester sera from women eventually developing preeclampsia compared with controls, identifying IP-10 as a novel, robust early predictor of preeclampsia. PMID:23973270

  15. Deciduous neonatal line: Width is associated with duration of delivery.

    PubMed

    Hurnanen, Jaana; Visnapuu, Vivian; Sillanpää, Matti; Löyttyniemi, Eliisa; Rautava, Jaana

    2017-02-01

    The delivery-related neonatal line (NNL) appears into the enamel of primary teeth and first permanent molars at birth and is a marker of live birth process. It varies in width and its location, is different in each deciduous tooth type, and is indicative of gestation time. It is unclear which triggers determine NNL at birth. Our objective was to investigate the effect of the duration and mode of delivery on NNL width. NNL of 129 teeth, a collection derived from a long-term, prospectively followed population cohort, was measured under light microscope. Altogether, 54 sections with most optimal plane of sectioning were analysed for the duration and mode of delivery. NNL was detected in 98% of the deciduous teeth with the median width of 9.63μm (min 3.16μm, max 27.58μm). A prolonged duration of vaginal delivery was highly significantly associated with a narrower NNL (r=-0.41, p=0.0097). No significant association was found between the width of NNL and mode of delivery (p=0.36). NNL is demonstrable in virtually all deciduous teeth. The width seems to be inversely proportional to the duration of delivery. Causes of the inverse proportion are speculated to result from altered amelogenesis induced by prolonged and intensified delivery-associated stress. Further research is needed to clarify the underlying mechanisms.

  16. Expression of epigenetic effectors in decidualizing human endometrial stromal cells.

    PubMed

    Grimaldi, Giulia; Christian, Mark; Quenby, Siobhan; Brosens, Jan J

    2012-09-01

    Cyclic differentiation of human endometrial stromal cells (HESCs) into decidual cells is a highly coordinated process essential for embryo implantation and pregnancy. This differentiation process is closely recapitulated in culture upon exposure of purified HESCs to cyclic AMP and progesterone signaling. Mining of gene expression data revealed that HESCs express 147 genes coding for epigenetic effectors, 33 (22%) of which are significantly regulated (P < 0.05) upon decidualization. Among these are genes encoding for histone-modifying proteins and their cofactors, histone-binding proteins, histone variants, CpG-binding proteins and DNA methyltransferases (DNMTs). Interestingly, more than two-thirds of differentially expressed chromatin-modifying genes are down-regulated upon the transition from a proliferative to a differentiated HESC phenotype. Despite the strong regulation of DNMTs, colorimetric and long interspersed nuclear element 1 methylation assays did not show global changes in DNA methylation levels upon differentiation of HESCs. Taken together, the coordinated regulation of diverse effector molecules suggests that complex epigenetic modification at specific loci underpins the acquisition of a decidual endometrial phenotype.

  17. Management of over-retained mandibular deciduous second molars with and without permanent successors.

    PubMed

    Sabri, Roy

    2008-01-01

    The objective of this article is to describe the various clinical situations of prolonged retention of mandibular deciduous second molars. Indications for orthodontic space closure in the absence of permanent successors and treatment alternatives in space opening, including retaining the deciduous molars, are described. Periodic monitoring, composite buildups, and indications and timing of extraction of infraoccluded and ankylosed deciduous molars with and without permanent successors are reviewed.

  18. Peroxisome proliferator-activated receptor delta expression and regulation in mouse uterus during embryo implantation and decidualization.

    PubMed

    Ding, Nai-Zheng; Teng, Chun-Bo; Ma, Hong; Ni, Hua; Ma, Xing-Hong; Xu, Li-Bin; Yang, Zeng-Ming

    2003-11-01

    The aim of this study was to examine the expression and regulation of peroxisome proliferator-activated receptor (PPAR) PPARdelta gene in mouse uterus during early pregnancy by in situ hybridization and immunohistochemistry. PPARdelta expression under pseudopregnancy, delayed implantation, hormonal treatment, and artificial decidualization was also investigated. There was a very low level of PPARdelta expression on days 1-4 of pregnancy. On day 5 when embryo implanted, PPARdelta expression was exclusively observed in the subluminal stroma surrounding the implanting blastocyst. No corresponding signals were seen in the uterus on day 5 of pregnancy. There was no detectable PPARdelta signal under delayed implantation. Once delayed implantation was terminated by estrogen treatment and embryo implanted, a strong level of PPARdelta expression was induced in the subluminal stroma surrounding the implanting blastocyst. Estrogen treatment induced a moderate level of PPARdelta expression in the glandular epithelium, while progesterone treatment had no effects in the ovariectomized mice. A strong level of PPARdelta expression was seen in the decidua on days 6-8 of pregnancy. PPARdelta expression was also induced under artificial decidualization. These data suggest that PPARdelta expression at implantation sites require the presence of an active blastocyst and may play an essential role for blastocyst implantation.

  19. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events

  20. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow.

    PubMed

    Yamada, Yoichi; Ito, Kenji; Nakamura, Sayaka; Ueda, Minoru; Nagasaka, Tetsuro

    2011-01-01

    We attempted to regenerate bone in a significant osseous defect with various stem cells from deciduous teeth, extracted from puppies, and grafted them into a parent canine mandible as an allograft, parent dental pulp, and bone marrow by tissue engineering and regenerative medicine technology using platelet-rich plasma as an autologous scaffold and signal molecules. Initially, teeth were extracted from a child and parent hybrid canine mandible region and bone marrow (canine mesenchymal stem cells; cMSCs), and parent teeth (canine dental pulp stem cells; cDPSCs), and stem cells were extracted from deciduous teeth (puppy deciduous teeth stem cells; pDTSCs). After 4 weeks, bone defects were prepared on both sides of the mandible with a trephine bar. Graft materials were implanted into these defects: 1) control (defect only), 2) platelet-rich plasma (PRP), 3) cMSCs/PRP, 4) cDPSCs/PRP, and 5) pDTSCs/PRP to investigate the effect of stem cells. The newly formed bones were evaluated by histology and histomorphometric analysis in the defects at 2, 4, and 8 weeks. According to histological observations, the cMSCs/PRP, cDPSCs/PRP, and pDTSCs/PRP groups had well-formed mature bone and neovascularization compared with the control (defect only) and PRP groups at 4 and 8 weeks, respectively, and the mineralized tissues in cMSCs/PRP, cDPSCs/PRP, and pDTSCs/PRP specimens were positive for osteocalcin at 8 weeks. Histometrically, newly formed bone areas were 19.0 ± 2.9% (control), 19.7 ± 6.0% (PRP), 52.8 ± 3.5% (cMSCs/PRP), 61.6 ± 1.3% (cDPSCs/PRP), and 54.7 ± 2.2% (pDTSCs/PRP) at 8 weeks. There were significant differences between cMSCs, cDPSCs, pDTSCs/PRP, and control and PRP groups. These results demonstrate that stem cells from deciduous teeth, dental pulp, and bone marrow with PRP have the ability to form bone, and bone formation with DTSCs might have the potential to generate a graft between a child and parent. This preclinical study could pave the way for stem cell

  1. FOXO1A differentially regulates genes of decidualization.

    PubMed

    Buzzio, Oscar L; Lu, Zhenxiao; Miller, Curt D; Unterman, Terry G; Kim, J Julie

    2006-08-01

    The forkhead box O1A (FOXO1A) has been identified as one gene that is up-regulated early in the decidualization process. To further investigate the role of FOXO1A during this process, six genes, IGFBP1, PRL, TIMP3, LAMB1, CNR1, and DCN, shown to be up-regulated during decidualization, were chosen as potential targets of FOXO1A action. Treatment of human endometrial stromal cells with hormones (estradiol and medroxyprogesterone acetate) plus dibutyryl cAMP (H+dbcAMP) for 48 h increased expression of IGFBP1, PRL, TIMP3, CNR1, and DCN but not LAMB1, as measured by real-time PCR. Silencing of FOXO1A using small interfering RNA oligonucleotides decreased IGFBP1 and DCN levels and increased CNR1, TIMP3, and PRL levels. LAMB1 was not affected. When FOXO1A was overexpressed in human endometrial stromal cells, expression of IGFBP1, DCN, and PRL increased, whereas levels of TIMP3 and CNR1 decreased. Addition of H+dbcAMP caused an increased expression of IGFBP1, PRL, and DCN beyond that of FOXO1A alone. TIMP3 and CNR1 levels decreased even further in response to H+dbcAMP compared with FOXO1A alone. LAMB1, which was unresponsive to FOXO1A, decreased when H+dbcAMP was added. Overexpressing FOXO1A also caused a change in cell shape, in that the stromal fibroblasts acquired a rounded, epithelioid appearance. Finally, reporter studies showed that cotransfection of FOXO1A significantly increased PRL promoter activity but not TIMP3 promoter activity. Addition of H+dbcAMP resulted in a significant increase in PRL promoter activity and a significant decrease in TIMP3 promoter activity. In summary, this study demonstrates the versatile nature of FOXO1A in the regulation of a number of decidualization-specific genes.

  2. Expanding leaves of mature deciduous forest trees rapidly become autotrophic.

    PubMed

    Keel, Sonja G; Schädel, Christina

    2010-10-01

    Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves.

  3. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    PubMed Central

    Tsai, Aileen I.; Hong, Hsiang-Hsi; Fu, Jen-Fen; Chang, Chih-Chun; Wang, I-Kuan; Huang, Wen-Hung; Weng, Cheng-Hao; Hsu, Ching-Wei

    2017-01-01

    This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC) isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P < 0.001) and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P < 0.001). In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P = 0.006) and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P < 0.001) was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL-) 6 and monocyte chemoattractant protein- (MCP-) 1, P < 0.01, and innate immune response [toll-like receptor 1 (TLR1) and TLR8, P < 0.05; TLR2, TLR3, and TLR6, P < 0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation. PMID:28377925

  4. Rapid Leaf Deployment Strategies in a Deciduous Savanna

    PubMed Central

    2016-01-01

    Deciduous plants avoid the costs of maintaining leaves in the unfavourable season, but carry the costs of constructing new leaves every year. Deciduousness is therefore expected in ecological situations with pronounced seasonality and low costs of leaf construction. In our study system, a seasonally dry tropical savanna, many trees are deciduous, suggesting that leaf construction costs must be low. Previous studies have, however, shown that nitrogen is limiting in this system, suggesting that leaf construction costs are high. Here we examine this conundrum using a time series of soil moisture availability, leaf phenology and nitrogen distribution in the tree canopy to illustrate how trees resorb nitrogen before leaf abscission and use stored reserves of nitrogen and carbon to construct new leaves at the onset of the growing season. Our results show that trees deployed leaves shortly before and in anticipation of the first rains with its associated pulse of nitrogen mineralisation. Our results also show that trees rapidly constructed a full canopy of leaves within two weeks of the first rains. We detected an increase in leaf nitrogen content that corresponded with the first rains and with the movement of nitrogen to more distal branches, suggesting that stored nitrogen reserves are used to construct leaves. Furthermore the stable carbon isotope ratios (δ13C) of these leaves suggest the use of stored carbon for leaf construction. Our findings suggest that the early deployment of leaves using stored nitrogen and carbon reserves is a strategy that is integrally linked with the onset of the first rains. This strategy may confer a competitive advantage over species that deploy leaves at or after the onset of the rains. PMID:27310398

  5. Effects of wildlife forestry on abundance of breeding birds in bottomland hardwood forests of Louisiana

    USGS Publications Warehouse

    Norris, Jennifer L.; Chamberlain, Michael J.; Twedt, Daniel J.

    2009-01-01

    Effects of silvicultural activities on birds are of increasing interest because of documented national declines in breeding bird populations for some species and the potential that these declines are in part due to changes in forest habitat. Silviculturally induced disturbances have been advocated as a means to achieve suitable forest conditions for priority wildlife species in bottomland hardwood forests. We evaluated how silvicultural activities on conservation lands in bottomland hardwood forests of Louisiana, USA, influenced species-specific densities of breeding birds. Our data were from independent studies, which used standardized point-count surveys for breeding birds in 124 bottomland hardwood forest stands on 12 management areas. We used Program DISTANCE 5.0, Release 2.0 (Thomas et al. 2006) to estimate density for 43 species with > 50 detections. For 36 of those species we compared density estimates among harvest regimes (individual selection, group selection, extensive harvest, and no harvest). We observed 10 species with similar densities in those harvest regimes compared with densities in stands not harvested. However, we observed 10 species that were negatively impacted by harvest with greater densities in stands not harvested, 9 species with greater densities in individual selection stands, 4 species with greater densities in group selection stands, and 4 species with greater densities in stands receiving an extensive harvest (e.g., > 40% canopy removal). Differences in intensity of harvest influenced densities of breeding birds. Moreover, community-wide avian conservation values of stands subjected to individual and group selection, and stands not harvested, were similar to each other and greater than that of stands subjected to extensive harvest that removed > 40% canopy cover. These results have implications for managers estimating breeding bird populations, in addition to predicting changes in bird communities as a result of prescribed and future

  6. Hardwood seedling growth on different mine spoil types with and without topsoil amendment.

    PubMed

    Showalter, Julia M; Burger, James A; Zipper, Carl E

    2010-01-01

    The goal of many owners of reclaimed mined land in the Appalachian region is to restore the diverse native hardwood forest for environmental, economic, and cultural reasons. However, native hardwoods often grow poorly on mined sites because they are planted in unsuitable spoils devoid of native topsoil. In a greenhouse experiment, we examined the suitability of four growth media available for use on many mined sites in the central Appalachians-forest topsoil (FT), weathered sandstone (WS), unweathered sandstone (US), and unweathered shale (UH)-as well as the effects of topsoil amendment (none vs. amended) on the growth of three native hardwood species: Fraxinus americana, Quercus rubra, and Liriodendron tulipifera. A 4 x 2 x 3 factorial greenhouse experiment was conducted with planted 1-yr-old seedlings. Tree growth, foliar nutrients, and soil properties were measured and characterized. The WS was the spoil most conducive to growth for F. americana and Q. rubra. Liriodendron tulipifera did not respond to any treatments. Tree growth was highly correlated with mineralizable soil nitrogen and extractable soil phosphorus. Topsoil amendment significantly increased growth on the UH but not on the US or WS. Topsoil amendment increased the number of native herbaceous plants growing in the pots and improved foliar nutrient content in F. americana and L. tulipifera. Many properties of the WS, such as pH, microbial activity, and water availability, more closely approximated the control soil than the US or UH. This study showed that trees are sensitive to spoil type and that certain spoil types that are conducive to good growth of native trees should be used during the reclamation process, particularly if forest topsoil is not applied. Forest topsoil amendment improved tree growth on some spoil materials, improved tree nutrition, and helped restore the native soil organisms and plants that were present before mining.

  7. Infraocclusion of secondary deciduous molars--an unusual outcome.

    PubMed

    Ponduri, Sirisha; Birnie, David J; Sandy, Jonathan R

    2009-09-01

    Infraocclusion is a condition frequently associated with primary molars. The infraoccluded primary teeth remain in a fixed position, while the teeth adjacent to them continue to erupt, moving occlusally. It is generally accepted that the cause of the altered occlusal level is ankylosis of the affected tooth. This report describes a case in which a short course of interceptive treatment with a 2 x 4 fixed appliance resulted in resolution of the infrocclusion. Recreating space for a severely infraoccluded second deciduous molar resulted in 'eruption' of the tooth without the need for extraction.

  8. Foraging behavior of three passerines in mature bottomland hardwood forests during summer.

    SciTech Connect

    Buffington, J., Matthew; Kilgo, John, C.; Sargent, Robert, A.; Miller, Karl, V.; Chapman, Brian, R.

    2001-08-01

    Attention has focused on forest management practices and the interactions between birds and their habitat, as a result of apparent declines in populations of many forest birds. Although avian diversity and abundance have been studied in various forest habitats, avian foraging behavior is less well known. Although there are published descriptions of avian foraging behaviors in the western United States descriptions from the southeastern United States are less common. This article reports on the foraging behavior of the White-eyed Vireo, Northern Parula, and Hooded Warbler in mature bottomland hardwood forests in South Carolina.

  9. Influences of Herbivory and Canopy Opening Size on Forest Regeneration in a Southern Bottomland Hardwood Forest

    SciTech Connect

    Castleberry, S.B.; Ford, W.M.; Miller, K.V.; Smith, W.P.

    1999-07-06

    Examination of the effects on white-tail deer browsing and canopy opening size on relative abundance and diversity of woody and herbaceous regeneration in various sized forest openings in a Southern bottomland hardwood forest over three growing seasons (1995-1997). Herbaceous richness, diversity or evenness did not differ among exclosure types in any year of the study. Overall browsing rates on both woody and herbaceous vegetation were low throughout all the three years of the study. Low browsing rates reflect seasonal changes in habitat use by deer. Other factors may have influenced the initial vegetative response more than herbivory or gap size.

  10. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  11. Performance of four dentine excavation methods in deciduous teeth.

    PubMed

    Celiberti, P; Francescut, P; Lussi, A

    2006-01-01

    This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.

  12. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    PubMed

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  13. Stem cells in dental pulp of deciduous teeth.

    PubMed

    Kerkis, Irina; Caplan, Arnold I

    2012-04-01

    Dental pulp from deciduous (baby) teeth, which are discarded after exfoliation, represents an advantageous source of young stem cells. Herein, we discuss the methods of deciduous teeth stem cell (DTSC) isolation and cultivation. We show that based on these methods, at least three different stem cell populations can be identified: a population similar to bone marrow-derived mesenchymal stem cells, an epithelial stem-like cells, and/or a mixed population composed of both cell types. We analyzed the embryonic origin and stem cell niche of DTSCs with respect to the advantages they can provide for their future use in cell therapies and regenerative medicine. In vitro and in vivo differentiation of the DTSC populations, their developmental potential, immunological compatibility, tissue engineering, and transplantation use in studies in animal models are also the focus of the current report. We briefly describe the derivation of induced pluripotent stem (iPS) cells from DTSCs, which can be obtained more easily and efficiently in comparison with human fibroblasts. These iPS cells represent an interesting model for the investigation of pediatric diseases and disorders. The importance of DTSC banking is also discussed.

  14. Impaired receptivity and decidualization in DHEA-induced PCOS mice

    PubMed Central

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-01-01

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study. PMID:27924832

  15. Effects of canopy gaps and flooding on homopterans in a bottomland hardwood forest

    USGS Publications Warehouse

    Gorham, L.E.; King, S.L.; Keeland, B.D.; Mopper, S.

    2002-01-01

    Canopy disturbance is a major factor affecting forest structure and composition and, as a result of habitat alterations, can influence insect communities. We initiated a field study to quantify the effects of canopy disturbance on aerial insect abundance and distribution within a bottomland hardwood forest along the Cache River, Arkansas, USA. We used passive flight-intercept traps to sample insects in canopy gap and forest interior habitats from May to July in 1996, 1997, and 1998. The hydrologic conditions of our study site varied among years: 1996 was relatively dry, 1997 incurred a long-duration flood, and 1998 was moderately wet. Of the 34,000+ Homopterans collected, many groups were distributed in a non-uniform manner among years and between habitats. Total Homopterans, two families of Homopterans, and six morphospecies were more abundant in canopy gaps than interior forest. Many Homopteran taxa were least abundant in 1997 following almost six months of flooding. Alternatively, relatively large Homopteran abundances were associated with the dry conditions of 1996 and the moderately wet conditions of 1998. Differences in Homopteran abundance among years and habitats may be related to differences in vegetation density. Canopy gaps supported more vegetation cover than the interior forest in all but the first sampling interval. In addition, similar to Homopteran abundance, vegetation density was lower in 1997 than in 1998. These results demonstrate that natural disturbance and flooding contribute to Homopteran abundance and distribution patterns in bottomland hardwood forests of the south central United States. ?? 2002, The Society of Wetland Scientists.

  16. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes.

  17. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  18. Soil nutrient changes following whole tree harvesting on three northern hardwood sites

    SciTech Connect

    Mroz, G.D.; Jurgensen, M.F.; Frederick, D.J.

    1985-01-01

    Three northern hardwood stands were clearcut to evaluate the effect of whole tree harvesting on sites of varying quality. Stands were growing on sandy, outwash soils and had red maple (Acer rubrum) site indices of 15, 19, and 20 and biomass values of 114, 165, and 181 Mg/ha. Harvesting did not alter extractable soil P levels significantly on any site. Forest floor weights decreased to similar values on all sites 1.5 years after harvest. Nitrogen losses of over 1.3 Mg/ha occurred in the top meter of soil on all sites. This was attributed to the mixing of the forest floor with the surface mineral soil by the full tree skidding and the subsequent leaching of mineralized N. Soil exchangeable K decreased more than 1 Mg/ha on all sites. Changes in Ca and Mg were much smaller on the low and medium than on the high site. These losses from surface soil horizons are higher than reported previously for clearcutting northern hardwoods on till soils. The greatest impact of whole tree harvest on soil nutrients occurred on the better sites in this study rather than on the poor quality site. (Refs. 33.).

  19. Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium.

    PubMed

    Walton, Sara; van Heiningen, Adriaan; van Walsum, Peter

    2010-03-01

    Extraction of hemicellulose from hardwood chips prior to pulping is a possible method for producing ethanol and acetic acid in an integrated forest bio-refinery, adding value to wood components normally relegated to boiler fuel. Hemicellulose was extracted from hardwood chips using green liquor, a pulping liquor intermediate consisting of aqueous NaOH, Na(2)CO(3), and Na(2)S, at 160 degrees C, held for 110 min in a 20 L rocking digester. The extracted liquor contained 3.7% solids and had a pH of 5.6. The organic content of the extracts was mainly xylo-oligosaccharides and acetic acid. Because it was dilute, the hemicellulose extract was concentrated by evaporation in a thin film evaporator. Concentrates from the evaporator reached levels of up to 10% solids. Inhibitors such as acetic acid and sodium were also concentrated by this method, presenting a challenge for the fermentation organisms. Fermentation experiments were conducted with Escherichia coli K011. The un-concentrated extract supported approximately 70% conversion of the initial sugars in 14 h. An extract evaporated down to 6% solids was also fermentable while a 10% solids extract was not initially fermentable. Strain conditioning was later found to enable fermentation at this level of concentration. Alternative processing schemes or inhibitor removal prior to fermentation are necessary to produce ethanol economically.

  20. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  1. Reforestation of bottomland hardwoods and the issue of woody species diversity

    USGS Publications Warehouse

    Allen, J.A.

    1997-01-01

    Bottomland hardwood forests in the southcentral United States have been cleared extensively for agriculture, and many of the remaining forests are fragmented and degraded. During the last decade, however, approximately 75,000 ha of land-mainly agricultural fields-have been replanted or contracted for replanting, with many more acres likely to be reforested in the near future. The approach used in most reforestation projects to date has been to plant one to three overstory tree species, usually Quercus spp. (oaks), and to rely on natural dispersal for the establishment of other woody species. I critique this practice by two means. First, a brief literature review demonstrates that moderately high woody species diversity occurs in natural bottomland hardwood forests in the region. This review, which relates diversity to site characteristics, serves as a basis for comparison with stands established by means of current reforestation practices. Second, I reevaluate data on the invasion of woody species from an earlier study of 10 reforestation projects in Mississippi,with the goal of assessing the likelihood that stands with high woody species diversity will develop. I show that natural invasion cannot always be counted on to produce a diverse stand, particularly on sites more than about 60 m from an existing forest edge. I then make several recommendations for altering current reforestation pactices in order to establish stands with greater woody species diversity, a more natural appearance,and a more positive environmental impact at scales larger than individual sites.

  2. Classification of hardwood and swamp forests on the Savannah River Plant, South Carolina

    SciTech Connect

    Whipple, S.A.; Wellman, L.H.; Good, B.J.

    1981-04-01

    Fifty-eignt hardwood and swamp forest stands were sampled on the Savannah River Plant (SRP), South Carolina, to describe the relationship between the vegetational composition and the soil, topographic, and flooding characteristics of each stand. The stands were samples over the range from dry upland to deeply flooded (2.4m) sites. Seven forest communities were recognized. The boundaries between these communities are not usually distinct, but the classification serves as a basis for a discussion of the patterns of hardwood and swamp forests on the SRP and a comparison of this forest variation to variation of other forests in the Southeast. The forest communities found on the most deeply flooded sites are dominated almost exclusively by Taxodium distichum and Nyssa aquatica. With shallower flooding or only winter flooding, Fraxinus pennsylvanica, Acer rubrum, Liquidambar styraciflua, and Quercus laurifolia become important dominants. Mesic sites that are seldom, if ever, flooded are dominated by N. sylvatica, L. styraciflua, and A. rubrum. The driest upland or upper slope positions are dominated by Q. alba, Carya tomentosa, and L. styraciflua.

  3. Assessment of the role of bottomland hardwoods in sediment and erosion control

    USGS Publications Warehouse

    Molinas, A.; Auble, Gregor T.; Segelquist, C.A.; Ischinger, Lee S.

    1988-01-01

    Drainage and clearing of bottomland hardwoods have long been recognized by the U.S. Environmental Protection Agency (EPA) and the U.S. Fish and Wildlife Service (Service) as important impacts of Federal water projects in the lower Mississippi River Valley. More recently, the water quality impacts of such projects (e.g., increases in sediments, nutrients, and pesticides) have also become of concern. In 1984, in an effort to better define problems concerning wetland losses and water degradation, EPA initiated a cooperative project with the Western Energy and Land Use Team (now the National Ecology Research Center) of the Service. Three phases of the project were identified: 1. To collect existing literature and data; 2. To select, develop, and test the utility of methods to quantify the relationships between land use, cover types, soils, hydrology, and water quality (as represented by sediment); and 3. To apply selected methodologies to several sites within the Yazoo Basin of Mississippi to determine the, potential effectiveness of various management alternatives to reduce sediment yield, increase sediment deposition, and improve water quality. Methods development focused on linking a simulation of water and sediment movement to a computerized geographic information system. We had several objectives for the resulting model. We desired that it should: 1. Estimate the importance of bottomland and hardwoods as a cover type that performs the functions of erosion and sediment control, 2. Simulate effects of proportions of ' various cover types and their specific spatial configurations, 3. Be applicable to moderately large spatial areas with minimal site-specific calibration, 4. Simulate spatial patterns of sediment loss-gain over time, and 5. Represent both sediment detachment and transport. While it was recognized that impacts and management alternatives could be sorted roughly into landscape measures and channel measures, the decision was made to focus study efforts

  4. The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: Erosion-abrasion experiments.

    PubMed

    Attin, Thomas; Wegehaupt, Florian; Gries, David; Wiegand, Annette

    2007-10-01

    Aim of the present study was to compare toothbrushing abrasion of eroded human and bovine enamel utilizing a toothpaste slurry. The surfaces of each 36 teeth from cattle and calves and from each 36 human wisdom teeth and deciduous teeth were polished. Each 12 specimens from the respective tooth type were used for assessing toothbrushing abrasion only (A), erosion only (E) and the combination of erosion and toothbrushing abrasion (EA). The EA samples were subjected to 20 cycles comprising a demineralization/remineralization procedure directly followed by toothbrushing abrasion (100 strokes, 300 g load, toothpaste slurry: 3 ml artificial saliva mixed with 1g dentifrice). Demineralization in form of erosion was performed with 1% citric acid (1 min), remineralization with artificial saliva (15 min). Between the cycles, the samples were stored in artificial saliva. Wear of the treated surfaces with reference to untreated areas was determined profilometrically. The samples subjected to abrasion only (A) did not show a significantly different wear between the different kinds of teeth. The comparisons of substance loss between teeth of different species revealed that hard tissue loss of the human deciduous teeth was significantly lower as compared to calves' teeth after both erosion and erosion-abrasion. Also, both erosion only and erosion-abrasion caused higher enamel loss in cattle's teeth than in human wisdom teeth. It is concluded that human eroded enamel offers better resistance against brushing than bovine enamel.

  5. Ion cycling in hemlock-northern hardwood forests of the southern Lake Superior region: a preliminary study.

    PubMed

    Bockheim, J G; Crowley, S E

    2002-01-01

    Upland forests of the southern Lake Superior region are diverse and contain a shifting mosaic of eastern hemlock [Tsuga canadensis (L.) Carr.] and northern hardwood forests dominated by sugar maple (Acer saccharum Marsh.). In this study, we survey the relative effects of management practice (old growth vs. managed), forest cover type (hemlock vs. northern hardwood), and soil great group (Entic Haplorthod vs. Alfic Oxyaquic Fragiorthod) on ion cycling as a precursor to a longer-term, more detailed study. Bulk precipitation, throughfall, and soil leachates at three depths were collected for two growing seasons in eight stands on the Ottawa National Forest in the Upper Peninsula of Michigan. A total of 1210 solutions were analyzed for pH, Na, K, Mg, Ca, Cl, NO3, and SO4. Losses of base cations (Ca, Mg, K) and SO4 from the bottom of the rooting zone generally were greater in old-growth than in managed northern hardwoods on both fragic and nonfragic soils. Leaching losses of base cations and NO3 usually were greater beneath old-growth northern hardwoods than beneath old-growth hemlock on both soil types and for both forest cover types and management practices on fragic than nonfragic soils. Management practice, forest cover type, and soil type all appear to affect ion cycling within these forests. All of the stands featured striking losses of base cations that probably are influenced strongly by NO3 and SO4 in atmospheric deposition.

  6. Development of red oak seedlings using plastic shelters on hardwood sites in West Virginia. Forest Service research paper (Final)

    SciTech Connect

    Smith, H.C.

    1993-04-01

    Plastic shelters were used to grow red oak seedlings on good-to-excellent Appalachian hardwood growing sites in north central West Virginia. Preliminary results indicate that shelters have the potential to stimulate development of red oak seedlingheight growth, especially if height growth continues once the seedling tops are above the 5-foot-tall shelters.

  7. 78 FR 58273 - Hardwood and Decorative Plywood From the People's Republic of China: Final Determination of Sales...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... (May 10, 2005). \\3\\ The Coalition for Fair Trade of Hardwood Plywood. \\4\\ Linyi Sanfortune Wood Co., Ltd. \\5\\ Xuzhou Jiangyang Wood Industries Co., Ltd. and Xuzhou Jiangheng Wood Products Co., Ltd. \\6... Factors Responses of Xuzhou Jiangyang Wood Industries Co. Ltd and Xuzhou Jiangheng Wood Products Co....

  8. Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose.

    PubMed

    Ko, Ja Kyong; Kim, Youngmi; Ximenes, Eduardo; Ladisch, Michael R

    2015-02-01

    Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log Ro  = 8.25 to 12.51 resulted in 80-90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (Tg ), the Tg of isolated lignins was found to increase from 171 to 180°C as the severity increased from log Ro  = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis.

  9. 75 FR 1587 - Medford-Park Falls Ranger District, Chequamegon-Nicolet National Forest, Park Falls Hardwoods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ...The USDA Forest Service, Chequamegon-Nicolet National Forest, Medford-Park Falls Ranger District intends to prepare an Environmental Impact Statement (EIS) to document the analysis and disclose the environmental effects of proposed land management activities, and corresponding alternatives within the Park Falls Hardwoods project area. The primary purpose of this proposal is to implement......

  10. Changing options for the control of deciduous fruit tree diseases.

    PubMed

    Sutton, T B

    1996-01-01

    The evolution of disease management programs for deciduous fruit trees in the United States over the past 50 years has been influenced by factors that include public concern over pesticide residues on fruit and in the environment, the development of resistance of many important tree pathogens to fungicides and bactericides, the loss of fungicide registrations and restrictions on their use due to concern for human health and the environment and/or marketing decisions by the manufacturers, and changes in cultural practices and marketing objectives. These factors have led to wider use of forecasting models and cultural controls, the development of resistance management strategies, and the introduction of new equipment and methods for pesticide application. These same factors will most likely continue to drive the fruit industry to adopt disease management programs that rely less on pesticides in the future.

  11. Dentigerous cyst associated with a formocresol pulpotomized deciduous molar.

    PubMed

    Asián-González, Eugenia; Pereira-Maestre, Manuela; Conde-Fernández, Dolores; Vilchez, Ignacio; Segura-Egea, Juan José; Gutiérrez-Pérez, José Luis

    2007-04-01

    This report presents a case of dentigerous cyst associated with a formocresol pulpotomized deciduous molar detected during routine examination. Dentigerous cyst is an epithelial-lined developmental cavity that encloses the crown of an unerupted tooth at the cementoenamel junction. The present case describes a 9-year-old girl sent to the dental clinic by her dentist, who had accidentally discovered in the panoramic radiograph a single, unilocular, well-defined, radiolucent area enclosing the second left unerupted mandibular premolar. The second left primary molar had been pulpotomized 2 years before and buccal swelling without redness occurred near the tooth, evidencing bone expansion. Surgical treatment was carried out, the tooth was extracted, and a cystectomy was performed under local anesthesia in the dental office. The histological study confirmed the suspected diagnosis of dentigerous cyst. The relation between pulpotomy and dentigerous cysts is discussed.

  12. Deciduous shrubs for ozone bioindication: Hibiscus syriacus as an example.

    PubMed

    Paoletti, Elena; Ferrara, Anna Maria; Calatayud, Vicent; Cerveró, Júlia; Giannetti, Fabio; Sanz, María José; Manning, William J

    2009-03-01

    Ozone-like visible injury was detected on Hibiscus syriacus plants used as ornamental hedges. Weekly spray of the antiozonant ethylenediurea (EDU, 300ppm) confirmed that the injury was induced by ambient ozone. EDU induced a 75% reduction in visible injury. Injury was more severe on the western than on the eastern exposure of the hedge. This factor of variability should be considered in ozone biomonitoring programmes. Seeds were collected and seedlings were artificially exposed to ozone in filtered vs. not-filtered (+30ppb) Open-Top Chambers. The level of exposure inducing visible injury in the OTC seedlings was lower than that in the ambient-grown hedge. The occurrence of visible injury in the OTC confirmed that the ozone sensitivity was heritable and suggested that symptomatic plants of this deciduous shrub population can be successfully used as ozone bioindicators. EDU is recommended as a simple tool for diagnosing ambient ozone visible injury on field vegetation.

  13. TGF-β and Physiological Root Resorption of Deciduous Teeth

    PubMed Central

    Shimazaki, Emi; Karakida, Takeo; Yamamoto, Ryuji; Kobayashi, Saeko; Fukae, Makoto; Yamakoshi, Yasuo; Asada, Yoshinobu

    2016-01-01

    The present study was performed to examine how transforming growth factor β (TGF-β) in root-surrounding tissues on deciduous teeth regulates the differentiation induction into odontoclasts during physiological root resorption. We prepared root-surrounding tissues with (R) or without (N) physiological root resorption scraped off at three regions (R1–R3 or N1–N3) from the cervical area to the apical area of the tooth and measured both TGF-β and the tartrate-resistant acid phosphatase (TRAP) activities. The TGF-β activity level was increased in N1–N3, whereas the TRAP activity was increased in R2 and R3. In vitro experiments for the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that proteins from N1–N3 and R1–R3 enhanced the TRAP activity in RAW264 cells. A genetic study indicated that the mRNA levels of TGF-β1 in N1 and N2 were significantly increased, and corresponded with levels of osteoprotegerin (OPG). In contrast, the expression level of RANKL was increased in R2 and R3. Our findings suggest that TGF-β is closely related to the regulation of OPG induction and RANKL-mediated odontoclast differentiation depending on the timing of RANKL and OPG mRNA expression in the root-surrounding tissues of deciduous teeth during physiological root resorption. PMID:28035998

  14. Different responses to shade of evergreen and deciduous oak seedlings and the effect of acorn size

    NASA Astrophysics Data System (ADS)

    Ke, Guo; Werger, Marinus J. A.

    1999-11-01

    An evergreen oak species, Cyclobalanopsis multinervis, and a deciduous oak species, Quercus aliena var. acuteserrata were grown from acorns under two light levels (full sunlight and shade at about 18 % of full sunlight, simulating the light intensities in forest clearings and gaps, respectively) for one growing season. Three hypotheses were tested: (i) the deciduous species grows faster than the evergreen species in forest gaps and clearings; (ii) the deciduous species responds more strongly in terms of growth and morphology to variation in light climate than the evergreen species; and (iii) seedling size is positively correlated to acorn size. The results showed: (i) at both light levels, the deciduous seedlings gained significantly more growth in biomass and height than the evergreen seedlings; (ii) both species produced significantly more biomass in full sunlight than in shade, without showing any significant difference in height between treatments. Increase in light intensity improved the growth of the deciduous seedlings more strongly; (iii) at a similar age, the deciduous seedlings showed a greater response in leaf morphology and biomass allocation to variation in light levels, but when compared at a similar size, biomass allocation patterns did not differ significantly between species; (iv) bigger acorns tended to produce larger seedlings, larger leaf sizes and more leaf area, between and within species. These differences demonstrate that the deciduous species is gap-dependent and has the advantage over the evergreen species in forest gaps and clearings.

  15. When should we extract deciduous teeth and place implants in young individuals with tooth agenesis?

    PubMed

    Bergendal, B

    2008-01-01

    The aim was to systematically review and find evidence to determine when to extract deciduous teeth and place implants in young individuals with tooth agenesis. A search was made in MEDLINE on combinations of the terms 'tooth agenesis', 'deciduous teeth' and 'dental implants'. Publications with an abstract and written in the English language only were included. To give a background to the clinical management of young individuals with agenesis of teeth, publications on epidemiology of tooth agenesis, persistence of deciduous teeth, treatment outcomes after multi-disciplinary treatment planning and experiences of treatment with dental implants in young individuals were also reviewed. A search on the terms 'tooth agenesis', 'deciduous teeth' and 'dental implants' resulted in nine references and a search on 'dental implants' and 'tooth agenesis' gave 132 references; 46 met the inclusion criteria. Only two were prospective studies on treatment with implants in young individuals. A vast majority of publications on the clinical management of young individuals with tooth agenesis are reflections of clinical experiences and single case reports. Deciduous teeth are extracted for different reasons and at different ages in an optimal plan for a good treatment result from aesthetic and functional point of view. For ethical reasons, randomized clinical trials on when to extract deciduous teeth and place implants cannot be made in young individuals. There was only limited, low level evidence on when to extract deciduous teeth and place implants. Recommendations on treatment are based mainly on clinical experience.

  16. Reprogramming of the retinoic acid pathway in decidualizing human endometrial stromal cells

    PubMed Central

    Ozaki, Rie; Ikemoto, Yuko; Ochiai, Asako; Matsumoto, Akemi; Kumakiri, Jun; Kitade, Mari; Itakura, Atsuo; Muter, Joanne; Brosens, Jan J; Takeda, Satoru

    2017-01-01

    Upon breaching of the endometrial surface epithelium, the implanting embryo embeds in the decidualizing stroma. Retinoic acid (RA), a metabolite of vitamin A, is an important morphogen during embryonic and fetal development, although the role of the RA pathway in the surrounding decidual cells is not understood. Here we show that decidual transformation of human endometrial stromal cells (HESCs) results in profound reprogramming of the RA signaling and metabolism pathways. Differentiating HESCs downregulate the intracellular carrier proteins CRABP2 and FABP5, responsible for transfer and binding of RA to the nuclear receptors RAR and PPARβ/δ, respectively. Furthermore, the expression of RAR, the receptor that mediates the pro-apoptotic effects of RA, was also inhibited. By contrast, PPARβ/δ, which transduces the differentiation responses of RA, was upregulated. Decidualization was also associated with increased expression of retinol-binding protein 4 (RBP4) and various enzymes involved in the metabolism of RA and its precursor, retinaldehyde (Rald), including CYP26A1, DHRS3, and RDH12. Exposure of differentiating HESCs to RA or Rald reversed the inhibition of the CRABP2-RAR pathway, perturbed the expression of decidual marker genes and triggered cell death. Taken together, the data demonstrate that decidualizing HESCs silence RA signaling by downregulating key cytoplasmic binding proteins and by increasing retinoid metabolism. However, excessive RA exposure is toxic for decidual cells and triggers a response that may lead to pregnancy failure. PMID:28253328

  17. Three-dimensional analysis of deciduous maxillary anterior teeth using cone-beam computed tomography.

    PubMed

    Jung, M-S; Lee, S-P; Kim, G-T; Choi, S-C; Park, J-H; Kim, J-W

    2012-03-01

    The recent introduction of cone-beam computed tomography (CBCT) into the medical field has allowed the nondestructive investigation of internal structures at relatively low cost and radiation exposure. The accuracy of CBCT in both two and three dimensions has been demonstrated, and CBCT has been used successfully for craniofacial anatomy. Knowing the anatomical structure of deciduous teeth is essential for clinical dentistry. However, the root structure of deciduous teeth is rarely reported because of the scarcity of intact deciduous teeth without root resorption. The aim of this study was to evaluate the intact root form of deciduous teeth using CBCT. Data from 38 young children was analyzed using an image-analyzing program. The degree of buccal dilacerations was 26.3° for deciduous maxillary central incisors (DMA), 16.5° for deciduous maxillary lateral incisors (DMB), and 17.5° for deciduous maxillary canines (DMC) in about half of the root length. The crown-to-root ratios were 0.52 for DMA, 0.48 for DMB, and 0.52 for DMC. These data will be helpful for understanding the development of dentition, and for clinical dentistry.

  18. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum

    SciTech Connect

    Lynd, L.R.; Grethlein, H.E.

    1987-01-01

    The cellulase activity in cell-free broths from Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H/sub 2/SO/sub 4/ and a 9-s residence time at 220, 210, 200, and 180/sup 0/C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of greater than 95% were obtained from 0.6 g/l mixed hardwood pretreated at 220/sup 0/C in 7 hours at broth strengths of 60 and 80% (v/v) and in approximately 48 hours with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/l are greater for wood at low broth dilutions (1.25:1 to 5:1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5:1 to 50:1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at less than 2 g substrate/liter for both pretreated wood and Avicel).

  19. Anaerobic activities of bacteria and fungi in moderately acidic conifer and deciduous leaf litter.

    PubMed

    Reith, Frank; Drake, Harold L; Küsel, Kirsten

    2002-07-01

    Abstract The litter layer of forest soils harbors high amounts of labile organic matter, and anaerobic decomposition processes can be initiated when oxygen is consumed more rapidly than it is supplied by diffusion. In this study, two adjacent moderately acidic forest sites, a spruce and a beech-oak forest, were selected to compare the anaerobic bacterial and fungal activities and populations of conifer and deciduous leaf litter. Most probable number (MPN) estimates of general heterotrophic aerobes and anaerobes from conifer litter equaled those from deciduous leaf litter. H(2), ethanol, formate, and lactate were initially produced with similar rates in both anoxic conifer and deciduous leaf litter microcosms. These products were rapidly consumed in deciduous leaf but not in conifer litter microcosms. Supplemental ethanol and H(2) were consumed only by deciduous leaf litter and yielded additional amounts of acetate in stoichiometries indicative of ethanol- or H(2)-dependent acetogenesis. The negligible turnover of primary fermentation products in conifer litter might be due to the low numbers of acetogens and secondary fermenters present in conifer litter compared to deciduous leaf litter. Fungi capable of anaerobic growth made up only 0.01-0.1% of the total anaerobic microorganisms cultured from conifer and deciduous leaf litter, respectively. Metabolic product profiles obtained from the highest anoxic, growth-positive MPN dilutions supplemented with antibacterial agents indicated that the dominant population of fungi, apparently mainly yeast-like cells, produced H(2), ethanol, acetate, and lactate both in conifer and deciduous leaf litter. Thus, despite acidic conditions, bacteria appear to dominate in the decomposition of carbon in anoxic microsites of both conifer and deciduous leaf litter.

  20. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.

    PubMed

    Sweet, Shannan K; Griffin, Kevin L; Steltzer, Heidi; Gough, Laura; Boelman, Natalie T

    2015-06-01

    Satellite studies of the terrestrial Arctic report increased summer greening and longer overall growing and peak seasons since the 1980s, which increases productivity and the period of carbon uptake. These trends are attributed to increasing air temperatures and reduced snow cover duration in spring and fall. Concurrently, deciduous shrubs are becoming increasingly abundant in tundra landscapes, which may also impact canopy phenology and productivity. Our aim was to determine the influence of greater deciduous shrub abundance on tundra canopy phenology and subsequent impacts on net ecosystem carbon exchange (NEE) during the growing and peak seasons in the arctic foothills region of Alaska. We compared deciduous shrub-dominated and evergreen/graminoid-dominated community-level canopy phenology throughout the growing season using the normalized difference vegetation index (NDVI). We used a tundra plant-community-specific leaf area index (LAI) model to estimate LAI throughout the green season and a tundra-specific NEE model to estimate the impact of greater deciduous shrub abundance and associated shifts in both leaf area and canopy phenology on tundra carbon flux. We found that deciduous shrub canopies reached the onset of peak greenness 13 days earlier and the onset of senescence 3 days earlier compared to evergreen/graminoid canopies, resulting in a 10-day extension of the peak season. The combined effect of the longer peak season and greater leaf area of deciduous shrub canopies almost tripled the modeled net carbon uptake of deciduous shrub communities compared to evergreen/graminoid communities, while the longer peak season alone resulted in 84% greater carbon uptake in deciduous shrub communities. These results suggest that greater deciduous shrub abundance increases carbon uptake not only due to greater leaf area, but also due to an extension of the period of peak greenness, which extends the period of maximum carbon uptake.

  1. Scanning electron microscope study of the effects of CO2 lasers on human deciduous tooth enamel

    NASA Astrophysics Data System (ADS)

    Borges, Denise G.; Watanabe-Sei, Ii; Brugnera, Aldo, Jr.

    1999-05-01

    This study compared the effects of a new CO2 laser device on the enamel surface of deciduous teeth in the continuous and superpulsed mode. Literature presents works on superpulsed CO2 laser specially on bone tissue and only tow studies on permanent teeth. Deciduous exfoliated noncarious human canine teeth were used from the teeth collection of the Dentistry College of the University of Sao Paulo. The results showed specific changes on the surface of human deciduous teeth enamel after application of CO2 laser and CO2 laser superpulsed.

  2. Crystalliferous Bacillus cereus group bacteria from a Maryland hardwood forest are dominated by psychrotolerant strains.

    PubMed

    Blackburn, Michael B; Martin, Phyllis A W; Kuhar, Daniel; Farrar, Robert R; Gundersen-Rindal, Dawn E

    2014-08-01

    Crystal-forming bacteria of the Bacillus cereus group were isolated from soil samples collected at different elevations within a mixed hardwood forest in central Maryland, and their phylogenetic relationships determined by multilocus sequence analysis. The vast majority of isolates obtained were associated with two phylogenetic groups known to be psychrotolerant, with very few isolates representing phylogenetic groups more typically associated with Bacillus thuringiensis. Isolates from the psychrotolerant groups were found to grow on solid media at 7 °C. Isolates of 11 highly related, novel sequence types (STs) from the psychrotolerant group that includes Bacillus weihenstephanensis were generally found at higher elevations, and were not associated with soils near streams. Isolates of two related STs from the second psychrotolerant group were nearly always found at the bottoms of ravines near streams, in areas abundant in earthworm castings.

  3. Effects of pretreatment factors on fermentable sugar production and enzymatic hydrolysis of mixed hardwood.

    PubMed

    Lim, Woo-Seok; Lee, Jae-Won

    2013-02-01

    The aim of this study was to investigate the effects of different acid catalysts and pretreatment factors on the hydrolysis of biomass compounds over a range of thermochemical pretreatments; maleic, oxalic, and sulfuric acids were each used under different pretreatment conditions. The most influential factor for fermentable sugar production in the dicarboxylic acid-pretreated mixed hardwood was pH. Reaction time was the next significant factor followed by reaction temperature. However, fermentable sugar production was more dependent on reaction temperature than time during sulfuric acid pretreatment, whereas the effect of acid concentration was considerably lower. Maleic acid pretreatment was very effective for attaining high glucose yields after enzymatic hydrolysis. The highest enzymatic hydrolysis yield was found following maleic acid pretreatment, which reached 95.56%. The trend in enzymatic hydrolysis yields that were detected concomitantly with pretreatment condition or type of acid catalyst was closely related to xylose production in the hydrolysate.

  4. Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose.

    PubMed

    Eta, Valerie; Mikkola, Jyri-Pekka

    2016-01-20

    Nordic hardwood (Betula pendula) was fractionated in a batch autoclave equipped with a custom-made SpinChem(®) rotating bed reactor, at 120 °C using CO2 and CS2-based switchable ionic liquids systems. Analyses of the non-dissolved wood after treatment showed that 64 wt% of hemicelluloses and 70 wt% of lignin were removed from the native wood. Long processing periods or successive short-time treatments using fresh SILs further decreased the amount of hemicelluloses and lignin in the non-dissolved fraction to 12 and 15 wt%, respectively. The cellulose-rich fraction was partially dissolved in an organic superbase and an ionic liquid system for further derivatization. Homogeneous acylation of the dissolved cellulose in the presence or absence of catalyst resulted in cellulose acetates with variable degree of substitution (DS), depending on the treatment conditions. By varying the reaction conditions, the cellulose acetate with the desired DS could be obtained under mild conditions.

  5. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    SciTech Connect

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  6. The response of beetles to group selection harvesting in a southeastern bottomland hardwood forest.

    SciTech Connect

    Ulyshen, Michael, D.

    2005-04-01

    ABSTRACT The environmental protection and sustainable management of our remaining forests are increasingly important concerns. Group selection harvesting is an uneven-aged forest management practice that removes patches of desirable trees to create small openings mimicking natural disturbances. To determine the effects of this technique on beetles, malaise and pitfall traps were placed at the center, edge, and in the forest surrounding artificially created gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a South Carolina bottomland hardwood forest. Beetles were generally more abundant and species rich in the centers of younger gaps than in the centers of older gaps or in the forest surrounding them. There were relatively few differences in the abundance and richness of beetles between old gaps and the surrounding forest but species composition differed considerably. These differences may be explained by the uneven distribution of various resources.

  7. Open-grown crown radius of eleven bottomland hardwood species: Prediction and use in assessing stocking

    SciTech Connect

    Goelz, J.C.G.

    1996-08-01

    Equations were prepared to predict crown radius for eleven species of open-grown bottomland hardwood trees. Crown radius was predicted as a function of diameter at breast height (dbh) and as a function of dbh, total height, and crown ratio. Equations were prepared for individual species and species groups. Pecan has the largest crowns over a broad range of dbh. Eastern cottonwood has the smallest crowns for most levels of dbh. Sweetgum has relatively small crowns for trees of small dbh, but crown radius is comparable to most species at the largest dbh. The crown radius predictions may be used to calculate crown competition factor. B-lines of stocking may be calculated that represent a stand of one species as well as a mixed-species stand of any particular species proportion.

  8. Dead wood relative to slope severity in mesic loess bluff hardwood forests

    USGS Publications Warehouse

    Twedt, Daniel J.

    2012-01-01

    To aid in identification of land within Vicksburg National Military Park that was subjected to forest restoration during the 1930s, I evaluated the hypothesized relationships between maximum live tree diameter or dead wood (standing and down) and severity of slope. Disproportionate mortality among early-successional, pioneer tree species suggested maturation of pioneer upland hardwood forests. As such, input and decomposition of dead wood have likely approached equilibrium. Thus, I did not detect a useful predictive relationship between dead wood (standing or down) or maximum diameter of live trees and severity of slope. Lack of relationships between slope and large diameter trees or volume of dead wood resulted in an inability to evaluate former land use based on these parameters.

  9. Structure-function relationships in hardwood--insight from micromechanical modelling.

    PubMed

    de Borst, K; Bader, T K

    2014-03-21

    A micromechanical model is presented that predicts the stiffness of wood tissues in their three principal anatomical directions, across various hardwood species. The wood polymers cellulose, hemicellulose, and lignin, common to all wood tissues, serve as the starting point. In seven homogenisation steps, the stiffnesses of these polymers are linked to the macroscopic stiffness. The good agreement of model predictions and corresponding experimental data for ten different European and tropical species confirms the functionality and accuracy of the model. The model enables investigating the influence of individual microstructural features on the overall stiffness. This is exploited to elucidate the mechanical effects of vessels and ray cells. Vessels are shown to reduce the stiffness of wood at constant overall density. This supports that a trade-off exists between the hydraulic efficiency and the mechanical support in relation to the anatomical design of wood. Ray cells are shown to act as reinforcing elements in the radial direction.

  10. Health Hazard Evaluation Report HETA 82-234-1602, Black River Hardwood Company, Kingstree, South Carolina

    SciTech Connect

    Salisbury, S.; Lybarger, J.

    1985-06-01

    A health-hazard evaluation was conducted at Black River Hardwood Company, Kingstree, South Carolina in July, 1982. The evaluation was requested by the owner to investigate a possible excess of cancer among employees. There was concern that the company's water supply had been contaminated by agricultural chemicals buried in an adjacent lot in 1974. Environmental sampling data at the disposal site obtained by the South Carolina Department of Health and Environmental Control (DHEC) were reviewed. The cancer cases involved the stomach, gastrointestinal tract, lungs, and head and neck. The authors conclude that a cancer hazard among the employees does not exist. They recommend continued monitoring of the company and community water supply and using bottled drinking water until a municipal water system is available.

  11. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.

    PubMed

    Wang, G S; Pan, X J; Zhu, J Y; Gleisner, R; Rockwood, D

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180 degrees C, SPORL can achieve near-complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0-4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU beta-glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus.

  12. Ecotone resilience in a coastal system of mangroves and hardwood hammocks

    NASA Astrophysics Data System (ADS)

    Turtora, M.; DeAngelis, D. L.; Teh, S. Y.; Jiang, J.

    2013-12-01

    Initial sea-level rise effects on low-lying coastline vegetation will likely result from an increase in the frequency and magnitude of storm surges. Feedbacks between vegetation and vadose zone pore-water salinity likely result in complex interactions between halophytic and glycophytic vegetation due to differential adaptive responses. In coastal Everglades National Park, relatively impermeable marl soils distributed in a ridge and swale topography overlie highly permeable karst limestone saturated with high salinity water. Soil salinity dynamics reflect pronounced rainfall seasonality. A model of MANgrove and hardwood HAMmock competition (MANHAM) has been integrated with a variable density Saturated/Unsaturated groundwater TRAnsport model (SUTRA). The combined model (MANTRA) is being used to estimate likely vegetative responses to various scenarios of changing sea-level and precipitation patterns. The mangrove/hammock regime is characterized by the occurrence of sharp ecotones over relatively shallow elevation gradients that may be maintained by a vegetation switch. A disturbance such as an input of salinity from a storm surge could upset this meta-stable boundary, leading to a regime shift of halophytic vegetation inland. MANTRA allows simulation of the interaction of vegetation with subsurface salinity dynamics while examining the sensitivity of the vegetation switch to relevant variables. The response of the halophyte/glycophyte system to storm surge overwash is predicted to depend on factors such as amount and duration of the salinity increase in the soil, the water-table elevation and salinity of the groundwater, the amount and timing of precipitation, runoff and infiltration, the extent of wind induced storm damage, and the amount of mangrove propagules that are washed into the hardwood hammock. In addition, direct mortality of hammock vegetation and increasing floating dispersal of mangrove propagules due to storm surge increase the likelihood of a regime

  13. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest.

    PubMed

    Rozendaal, Danaë M A; Kobe, Richard K

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008-2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed

  14. Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods

    PubMed Central

    Nakagawa, Kaori; Yoshinaga, Arata; Takabe, Keiji

    2012-01-01

    Background and Aims Although tension wood formation and the structure of gelatinous fibres (G-fibres) have been widely investigated, studies of the influence of the reaction phenomenon on phloem fibres have been few and incomplete in comparison with those of xylem wood fibres. This study was undertaken to clarify the influence of stem inclination on phloem fibres using several Japanese hardwood species that produce different G-fibre types in tension wood. Methods Eight hardwood species were inclined at 30–45° at the beginning of April. Specimens were collected in July and December. The cell-wall structure and lignin distribution of phloem fibres on both the tension and opposite sides were compared by light microscopy, ultraviolet microscopy, confocal laser scanning microscopy after staining with acriflavine, and transmission electron microscopy after staining with potassium permanganate. Key Results Three types of changes were found in tension-side phloem fibres: (1) increases in the proportion of the syringyl unit in lignin in the S1 and S2 layers and compound middle lamella (Cercidiphyllum japonicum), (2) formation of unlignified gelatinous layers (Melia azedarach and Acer rufinerve) and (3) increases in the number of layers (n) in the multi-layered structure of S1 + S2 + n (G + L) (Mallotus japonicus). Other species showed no obvious change in cell-wall structure or lignin distribution. Conclusions Phloem fibres of the tree species examined in our study showed three types of changes in lignin distribution and cell-wall structure. The reaction phenomenon may vary with tree species and may not be closely related to G-fibre type in tension wood. PMID:22778147

  15. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  16. Kinetic modeling of hardwood prehydrolysis. Part II. Xylan removal by dilute hydrochloric acid prehydrolysis

    SciTech Connect

    Connor, A.H.; Libkie, K.; Springer, E.L.

    1986-06-01

    A study was made of the kinetics of xylan hemicellulose removal with 0.10 M HCl at 120 degrees C from quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), American elm (Ulmus americana), red maple (Acer rubrum), and southern red oak (Quercus falcata). The mathematical model developed in Part I to describe the kinetics of xylan removal by water prehydrolysis of these species could be used to model xylan removal with dilute hydrochloric acid. Xylan removal could thus be modelled as the sum of two parallel first-order reactions - one fast and one slow. However, unlike the case with water prehydrolysis where the rate constants for the fast and slow reaction processes could be correlated with each other, they could not be correlated for HCl prehydrolysis. Instead, these constant values determined for each species clustered about average values for all the species as a whole. A single set of parameters determined from a nonlinear least squares fit of the experimental prehydrolysis data for all the species as a whole to the model could be used to describe the course of xylan removal from all the species. The fact that one set of parameters could be used suggests that the same reactions are taking place on prehydrolysis and the chemical structure and physical morphology of the xylan hemicellulose were essentially the same in the species studied and probably in all temperate hardwood species. The model thus provides a good approximation of xylan removal from any temperate hardwood with dilute hydrochloric acid at the reaction conditions studied. 20 references.

  17. The importance of hydrology in restoration of bottomland hardwood wetland functions

    USGS Publications Warehouse

    Hunter, R.G.; Faulkner, S.P.; Gibson, K.A.

    2008-01-01

    Bottomland hardwood (BLH) forests have important biogeochemical functions and it is well known that certain structural components, including pulsed hydrology, hydric soils, and hydrophytic vegetation, enhance these functions. It is unclear, however, how functions of restored BLH wetlands compare to mature, undisturbed wetlands. We measured a suite of structural and functional attributes in replicated natural BLH wetlands (NAT), restored BLH wetlands with hydrology re-established (RWH), and restored BLH wetlands without hydrology re-established (RWOH) in this study. Trees were replanted in all restored wetlands at least four years prior to the study and those wetlands with hydrology re-established had flashboard risers placed in drainage ditches to allow seasonal surface flooding. Vegetation, soils, and selected biogeochemical functions were characterized at each site. There was a marked difference in woody vegetation among the wetlands that was due primarily to site age. There was also a difference in herbaceous vegetation among the restored sites that may have been related to differences in age or hydrology. Water table fluctuations of the RWH wetlands were comparable to those of the NAT wetlands. Thus, placing flashboard risers in existing drainage ditches, along with proper management, can produce a hydroperiod that is similar to that of a relatively undisturbed BLH. Average length of saturation within the upper 15 cm of soils was 37, 104, and 97 days for RWOH, RWH, and NAT, respectively. Soil moisture, denitrification potential, and soluble organic carbon concentrations differed among wetland sites, but soil carbon and nitrogen concentrations, heterotrophic microbial activity, and readily mineralizable carbon concentrations did not. Significant linear relationships were also found between soil moisture and heterotrophic microbial activity, readily mineralizable carbon, and soluble organic carbon. In addition, sedimentation rates were higher in NAT and RWH

  18. A Forest Tent Caterpillar Outbreak Increased Resource Levels and Seedling Growth in a Northern Hardwood Forest

    PubMed Central

    Rozendaal, Danaë M. A.; Kobe, Richard K.

    2016-01-01

    In closed-canopy forests, gap formation and closure are thought to be major drivers of forest dynamics. Crown defoliation by insects, however, may also influence understory resource levels and thus forest dynamics. We evaluate the effect of a forest tent caterpillar outbreak on understory light availability, soil nutrient levels and tree seedling height growth in six sites with contrasting levels of canopy defoliation in a hardwood forest in northern lower Michigan. We compared resource levels and seedling growth of six hardwood species before, during and in the three years after the outbreak (2008–2012). Canopy openness increased strongly during the forest tent caterpillar outbreak in the four moderately and severely defoliated sites, but not in lightly defoliated sites. Total inorganic soil nitrogen concentrations increased in response to the outbreak in moderately and severely defoliated sites. The increase in total inorganic soil nitrogen was driven by a strong increase in soil nitrate, and tended to become stronger with increasing site defoliation. Seedling height growth increased for all species in the moderately and severely defoliated sites, but not in lightly defoliated sites, either during the outbreak year or in the year after the outbreak. Growth increases did not become stronger with increasing site defoliation, but were strongest in a moderately defoliated site with high soil nutrient levels. Growth increases tended to be strongest for the shade intolerant species Fraxinus americana and Prunus serotina, and the shade tolerant species Ostrya virginiana. The strong growth response of F. americana and P. serotina suggests that recurring forest tent caterpillar outbreaks may facilitate the persistence of shade intolerant species in the understory in the absence of canopy gaps. Overall, our results suggest that recurrent canopy defoliation resulting from cyclical forest insect outbreaks may be an additional driver of dynamics in temperate closed

  19. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation: Subcortical insects in hardwood plantations

    SciTech Connect

    Coyle, David R.; Brissey, Courtney L.; Gandhi, Kamal J. K.

    2015-01-02

    1. We characterized subcortical insect assemblages in economically important eastern cottonwood (Populus deltoides Bartr.), sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations in the southeastern U.S.A. Furthermore, we compared insect responses between freshly-cut plant material by placing traps directly over cut hardwood logs (trap-logs), traps baited with ethanol lures and unbaited (control) traps. 2. We captured a total of 15 506 insects representing 127 species in four families in 2011 and 2013. Approximately 9% and 62% of total species and individuals, respectively, and 23% and 79% of total Scolytinae species and individuals, respectively, were non-native to North America. 3. We captured more Scolytinae using cottonwood trap-logs compared with control traps in both years, although this was the case with sycamore and sweetgum only in 2013. More woodborers were captured using cottonwood and sweetgum trap-logs compared with control traps in both years, although only with sycamore in 2013. 4. Ethanol was an effective lure for capturing non-native Scolytinae; however, not all non-native species were captured using ethanol lures. Ambrosiophilus atratus (Eichhoff) and Hypothenemus crudiae (Panzer) were captured with both trap-logs and control traps, whereas Coccotrypes distinctus (Motschulsky) and Xyleborus glabratus Eichhoff were only captured on trap-logs. 5. Indicator species analysis revealed that certain scolytines [e.g. Cnestus mutilates (Blandford) and Xylosandrus crassiusculus (Motschulsky)] showed significant associations with trap-logs or ethanol baits in poplar or sweetgum trap-logs. In general, the species composition of subcortical insects, especially woodboring insects, was distinct among the three tree species and between those associated with trap-logs and control traps.

  20. Alkaline phosphatases contribute to uterine receptivity, implantation, decidualization and defense against bacterial endotoxin in hamsters

    PubMed Central

    Lei, Wei; Nguyen, Heidi; Brown, Naoko; Ni, Hua; Kiffer-Moreira, Tina; Reese, Jeff; Millán, José Luis; Paria, Bibhash C.

    2013-01-01

    Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types, and their hormonal regulation, cell-type and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5 and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; and both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone is the major uterine Akp2 inducer, both progesterone and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. In contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection. PMID:23929901

  1. Mercury in coniferous and deciduous upland forests in Northern New England, USA: implications from climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-07-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of this transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, US. Organic horizons at coniferous stands accumulated more Total Hg (THg) (42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiple regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. We estimated Hg mean residence time (MRT) in the organic and mineral horizons at coniferous and deciduous stands using a simple two-box model. Organic horizon MRT were longer at coniferous stands (183 ± 44 yr) than deciduous stands (65 ± 15 yr). Mineral soil horizon MRT values were also longer for coniferous stands (386 ± 57 yr) than for deciduous stands (188 ± 27 yr). We concluded that organic horizon Hg accumulation is influenced by vegetation type but mineral horizons are primarily affected by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  2. Localised enamel hypoplasia of human deciduous canines: genotype or environment?

    PubMed

    Taji, S; Hughes, T; Rogers, J; Townsend, G

    2000-06-01

    A discrete area of defective enamel formation that appears on the labial surface of the crowns of deciduous canine teeth has been described in both recent and prehistoric human populations, with reported frequencies varying from 1 to 45 per cent. Suggestions about the aetiology of this localized hypoplasia range from genotypic factors to environmental conditions and systemic effects. The major aims of this study were to describe the frequency of occurrence and pattern of expression of the lesion in Australian Aboriginal and Caucasian ethnic groups, and to clarify the role of genetic factors by examining a sample of twins. The study sample consisted of dental casts of 181 pairs of Australian Caucasian twins, 215 Aborigines and 122 Caucasian singletons, together with 253 extracted deciduous canines. Examination of dental casts and extracted teeth was undertaken under 2x magnification with emphasis being placed upon location and expression of the lesion. The defect was observed in 49 per cent of twins and 44 per cent of Aborigines, but only 36 per cent of singletons. The percentages of affected teeth in each group were: 18 per cent in twins, 17 per cent in Aborigines and 13 per cent in Caucasians. A significant proportion of the defects occurred on the mesial aspect of the labial surface, in the middle area incisocervically, with the majority in the lower jaw. A number of significant differences in frequency were observed between groups, sexes, arches and sides. The results confirm some of the findings of previous studies, but also suggest that none of environmental, genetic or systemic factors can be ruled out as being involved in aetiology of the defect. The higher incidence of the lesion occurring on the mesial aspect of the labial surface is suggestive of physical trauma. Also, the vulnerability of the prominent developing mandibular canine, with its thin or missing labial covering of bone, would be expected to lead to higher prevalence of the lesion in the lower

  3. Possible roles of the cAMP-mediators EPAC and RAP1 in decidualization of rat uterus.

    PubMed

    Kusama, Kazuya; Yoshie, Mikihiro; Tamura, Kazuhiro; Daikoku, Takiko; Takarada, Tsutomu; Tachikawa, Eiichi

    2014-06-01

    The optimal decidualization of endometrial stromal cells (ESCs) following embryo implantation is one of the critical steps to establish pregnancy in rodents and humans. This step is intricately regulated by ovarian hormones. Using in vitro human ESCs model, we previously showed that activation of a cAMP mediator, exchange protein directly activated by cAMP (EPAC), promotes ovarian steroid- or cAMP analog-induced decidualization. However, expressions and functions of EPAC and RAP1 in the uterus during pregnancy have not yet been examined. In this study, we found that the expression of EPAC2 and RAP1 was markedly upregulated in the decidual cells at the implantation sites on days 7 and 9 of pregnancy in rats. Furthermore, both delayed-implantation and artificial decidualization models showed that EPAC2 and RAP1 expression was enhanced in decidual cells. Significant activation of cAMP-responsive element-binding protein (CREB), a central transcriptional factor of cAMP signaling, was observed in decidual cells. These spatiotemporal expressions of protein related EPAC pathway are overlapped by sites with activated cAMP signaling, indicating the association of EPAC signaling with decidualization. Strikingly, further studies in in vitro rat decidualization model showed that the cAMP analog and medroxyprogesterone stimulated the expression of decidual markers, while knockdown of EPAC1/2 and RAP1 attenuated the expressions of these markers. Together, these findings suggest that EPAC and RAP1 are the crucial factors for endometrial decidualization in rat pregnancy.

  4. Anandamide and decidual remodelling: COX-2 oxidative metabolism as a key regulator.

    PubMed

    Almada, M; Piscitelli, F; Fonseca, B M; Di Marzo, V; Correia-da-Silva, G; Teixeira, N

    2015-11-01

    Recently, endocannabinoids have emerged as signalling mediators in reproduction. It is widely accepted that anandamide (AEA) levels must be tightly regulated, and that a disturbance in AEA levels may impact decidual stability and regression. We have previously characterized the endocannabinoid machinery in rat decidual tissue and reported the pro-apoptotic action of AEA on rat decidual cells. Cyclooxygenase-2 (COX-2) is an inducible enzyme that plays a crucial role in early pregnancy, and is also a key modulator in the crosstalk between endocannabinoids and prostaglandins. On the other hand, AEA-oxidative metabolism by COX-2 is not merely a mean to inactivate its action, but it yields the formation of a new class of mediators, named prostaglandin-ethanolamides, or prostamides. In this study we found that AEA-induced apoptosis in decidual cells involves COX-2 metabolic pathway. AEA induced COX-2 expression through p38 MAPK, resulting in the formation of prostamide E2 (PME2). Our findings also suggest that AEA-induced effect is associated with NF-kB activation. Finally, we describe the involvement of PME2 in the induction of the intrinsic apoptotic pathway in rat decidual cells. Altogether, our findings highlight the role of COX-2 as a gatekeeper in the uterine environment and clarify the impact of the deregulation of AEA levels on the decidual remodelling process.

  5. Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-11-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of such a transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, USA. Organic horizons at coniferous stands accumulated more total Hg (THg; 42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiply regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. Using allometric equations, we estimated that aboveground accumulation of Hg in foliage and woody biomass was similar between vegetation types but that coniferous stands have significantly smaller annual litterfall fluxes (0.03 g ha-1 yr-1) than deciduous stands (0.24 g ha-1 yr-1). We conclude that organic horizon Hg accumulation is influenced by vegetation type but mineral horizon Hg accumulation is primarily controlled by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  6. Endometrial glands are essential for blastocyst implantation and decidualization in the mouse uterus.

    PubMed

    Filant, Justyna; Spencer, Thomas E

    2013-04-01

    Uterine glands and their secretions are hypothesized to be essential for blastocyst implantation and decidualization in the uterus of rodents and humans. One factor solely expressed by uterine glands in mice is leukemia inhibitory factor (LIF), and Lif null mice are infertile because of defective blastocyst attachment to the uterine luminal epithelium (LE). Progesterone treatment of neonatal mice permanently ablates differentiation of uterine glands, resulting in an aglandular uterus in the adult. Progesterone-induced uterine gland knockout (PUGKO) mice were used to investigate the biological role of uterine glands in blastocyst implantation and stromal cell decidualization. As compared to controls, PUGKO mice cycled normally but were infertile. Histological assessment of PUGKO uteri on Days 5.5 and 8.5 postmating found a hatched blastocyst apposed to an intact LE without evidence of implantation or stromal cell decidualization. Expression of several implantation-related factors, including Lif and PTGS2, were altered in the PUGKO uterus, whereas expression of steroid hormone receptors and their regulated genes was not different. Artificial decidualization was observed in the uteri of control but not PUGKO mice. Further, intrauterine administration of LIF failed to promote artificial decidualization in the uterus of PUGKO mice. Thus, uterine glands and their secretions have important biological roles in blastocyst implantation and stromal cell decidualization in the uterus.

  7. Results of a workshop concerning impacts of various activities on the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Horak, Gerald C.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Under Section 404 of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) has regulatory responsibilities related to the discharge of dredged or fill material into the Nation’s waters. In addition to its advisory role in the U.S. Army Corps of Engineers' permit program, EPA has a number of specific authorities, including formulation of the Section 404(b)(1) guidelines, use of Section 404(c) to prohibit disposal at particular sites, and enforcement actions for unauthorized discharges. A number of recent court cases focus on the geographic scope of Section 404 jurisdiction in potential bottomland hardwood (BLH) wetlands and the nature of landclearing activities in these areas that require a permit under Section 404. Accordingly, EPA needs to establish the scientific basis for implementing its responsibilities under Section 404 in bottomland hardwoods. EPA is approaching this task through a series of workshops designed to provide current scientific information on bottomland hardwoods and to organize that information in a manner pertinent to key policy questions. The first two workshops in the series were originally conceived as technically oriented meetings that would provide the information necessary to develop policy options at the third workshop. More specifically, the first workshop was designed to examine a zonation concept as a means of characterizing different BLH communities and describing variations in their functions along a soil moisture gradient. The second workshop was perceived as an attempt to evaluate the impacts of various activities on those functions. However, one conclusion of the first workshop, which was held in December 1984 in St. Francisville, Louisiana, was that the zonation approach does not describe the variability in the functions performed by BLH ecosystems sufficiently well to allow its use as the sole basis for developing a regulatory framework. That is, factors other than zone were considered critical for an effective

  8. Ultrafine particle number fluxes over and in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Larsen, S. E.; Sørensen, L. L.

    2017-01-01

    Ultrafine particles (UFP, particles with diameters (Dp) < 100 nm) play a key role in climate forcing; thus, there is interest in improved understanding of atmosphere-surface exchange of these particles. Long-term flux measurements from a deciduous forest in the Midwestern USA (taken during December 2012 to May 2014) show that although a substantial fraction of the data period indicates upward fluxes of UFP, on average, the forest is a net sink for UFP during both leaf-active and leaf-off periods. The overall mean above-canopy UFP number flux computed from this large data set is -4.90 × 106 m-2 s-1 which re-emphasizes the importance of these ecosystems to UFP removal from the atmosphere. Although there remain major challenges to accurate estimation of the UFP number flux and in drawing inferences regarding the actual surface exchange from measurements taken above the canopy, the above the canopy mean flux is shown to be downward throughout the day (except at 23.00) with largest-magnitude fluxes during the middle of the day. On average, nearly three quarters of the total UFP capture by this ecosystem occurs at the canopy. This fraction increases to 78% during the leaf-active period, but the over-storey remains dominant over the subcanopy even during the leaf-off period.

  9. Interannual variability in ozone removal by a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Clifton, O. E.; Fiore, A. M.; Munger, J. W.; Malyshev, S.; Horowitz, L. W.; Shevliakova, E.; Paulot, F.; Murray, L. T.; Griffin, K. L.

    2017-01-01

    The ozone (O3) dry depositional sink and its contribution to observed variability in tropospheric O3 are both poorly understood. Distinguishing O3 uptake through plant stomata versus other pathways is relevant for quantifying the O3 influence on carbon and water cycles. We use a decade of O3, carbon, and energy eddy covariance (EC) fluxes at Harvard Forest to investigate interannual variability (IAV) in O3 deposition velocities (vd,O3). In each month, monthly mean vd,O3 for the highest year is twice that for the lowest. Two independent stomatal conductance estimates, based on either water vapor EC or gross primary productivity, vary little from year to year relative to canopy conductance. We conclude that nonstomatal deposition controls the substantial observed IAV in summertime vd,O3 during the 1990s over this deciduous forest. The absence of obvious relationships between meteorology and vd,O3 implies a need for additional long-term, high-quality measurements and further investigation of nonstomatal mechanisms.

  10. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera.

  11. Restoration of Upland Hardwood Tree Species on the Formerly Cultivated Soils in the Coastal Plain of South Carolina

    SciTech Connect

    Jones, R.H.; Waldrop, T.A.

    2001-08-03

    The authors studied various approaches to restore upland hardwood species to formerly cultivated soils at the SRS. Studies with direct seedling were largely a failure and resulted in very low rates of establishment. Failure was a result of predation and drought. Growth and survival of planted oaks, dogwood and pine did not vary between hardwood overstory and pine overstory conditions. Soil trenching in a forty year old loblolly stand demonstrated dramatic increases in growth of planted oaks and dogwood. When compared, survival is similar if not slightly better when seedlings are planted in the understory of canopies vs. clearcuts. However, growth is better in recent clearcuts for dogwood and white oaks. Hickory does better underplanted.

  12. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Isebrands, J. G.; Guenther, A. B.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C 5H 8) was the primary VOC emitted, although significant quantities of monoterpenes (C 10H 16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m -2 s -1) were from northern red oak ( Quercus rubra, >110 μg(C) g -1 h -1); aspen ( Populus tremuloides, >77); willow ( Salix spp., >54); and black spruce ( Picea mariana, >10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g -1 h -1 at 25°C; those of Picea provenances were generally <10, and emission rates of a hybrid between North American and European spruces were intermediate to parental rates. More than 30 species of plants were surveyed from the sites, including several from previously unstudied

  13. Operational restoration of the Pen Branch bottomland hardwood and swamp wetlands - the research setting

    SciTech Connect

    Nelson, E.A.

    2000-01-05

    The Savannah River Swamp is a 3020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy's Savannah River Site (SRS) near Aiken, SC. Historically the swamp consisted of approximately 50 percent bald cypress-water tupelo stands, 40 percent mixed bottomland hardwood stands, and 10 percent shrub, marsh, and open water. Creek corridors were typical of Southeastern bottomland hardwood forests. The hydrology was controlled by flooding of the Savannah River and by flow from four creeks that drain into the swamp prior to flow into the Savannah River. Upstream dams have caused some alteration of the water levels and timing of flooding within the floodplain. Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950's. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. Flow in one of the tributaries, Pen Branch, was typically 0.3 m3 s-1 (10-20) cfs prior to reactor pumping and 11.0 m3 s-1 (400 cfs) during pumping. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 65 degrees C. The nearly continuous flooding of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. In the years since pumping was reduced, early succession has begun in some affected areas. Most of this has been herbs, grasses, and shrubs. Areas that have seedlings are generally willow

  14. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions

    PubMed Central

    Sundaram, Mekala; Willoughby, Janna R.; Lichti, Nathanael I.; Steele, Michael A.; Swihart, Robert K.

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is

  15. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions.

    PubMed

    Sundaram, Mekala; Willoughby, Janna R; Lichti, Nathanael I; Steele, Michael A; Swihart, Robert K

    2015-01-01

    The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27-73%), and combined effects of seed traits and phylogeny of hardwood trees (5-55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 "global" axes of traits that were phylogenetically autocorrelated at the family and genus level and a third "local" axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30-76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak

  16. Windows of opportunity: white-tailed deer and the dynamics of northern hardwood forests of the northeastern US

    USGS Publications Warehouse

    Sage, R.W.; Porter, W.F.; Underwood, H.B.

    2003-01-01

    Herbivory, lighting regimes, and site conditions are among the most important determinants of forest regeneration success, but these are affected by a host of other factors such as weather, predation, human exploitation, pathogens, wind and fire. We draw together > 50 years of research on the Huntington Wildlife Forest in the central Adirondack Mountains of New York to explore regeneration of northern hardwoods. A series of studies each of which focused on a single factor failed to identify the cause of regeneration failure. However, integration of these studies led to broader understanding of the process of forest stand development and identified at least three interacting factors: lighting regime, competing vegetation and selective browsing by white-tailed deer (Odocoileus virginianus). The diverse 100-200 year-old hardwood stands present today probably reflect regeneration during periods of low deer density (< 2.0 deer/km super(2)) and significant forest disturbance. If this hypothesis is correct, forest managers can mimic these 'natural windows of opportunity' through manipulation of a few sensitive variables in the system. Further, these manipulations can be conducted on a relatively small geographic scale. Control of deer densities on a scale of 500 ha and understory American beech (Fagus grandifolia) on a scale of < 100 ha in conjunction with an even-aged regeneration system consistently resulted in successful establishment of desirable hardwood regeneration.

  17. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.

    PubMed

    Tsuchikawa, Satoru; Siesler, H W

    2003-06-01

    Fourier transform near-infrared (FT-NIR) transmission spectroscopy was applied to monitor the diffusion process of deuterium-labeled molecules in hardwood (Beech). The results are compared with previous data obtained on softwood (Sitka spruce) in order to consistently understand the state of order in cellulose of wood. The saturation accessibility and diffusion rate varied characteristically with the OH groups in different states of order in the wood substance, the diffusants, and the wood species, respectively. The variation of saturation accessibility should be associated with the fundamental difference of the fine structure such as the microfibrils in the wood substance. The effect of the anatomical cellular structure on the accessibility was reflected in the variation of the diffusion rate with the wood species. The size effect of the diffusants also played an important role for the diffusion process in wood. Since the volumetric percentage of wood fibers and wood rays is relatively similar, the dichroic effects due to the anisotropy of the cellulose chains were apparently diminished. Finally, we proposed a new interpretation of the fine structure of the microfibrils in the cell wall by comparing a series of results from hardwood and softwood. Each elementary fibril in the hardwood has a more homogeneous arrangement in the microfibrils compared to that in the softwood.

  18. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits

    PubMed Central

    Tomlinson, Kyle W.; Poorter, Lourens; Bongers, Frans; Borghetti, Fabian; Jacobs, Loes; van Langevelde, Frank

    2014-01-01

    Background and Aims Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR). Functional groups of species may differ in any of these traits, potentially resulting in (1) differences in mean RGR of groups, and (2) differences in the traits driving RGR variation within each group. We tested these predictions by comparing deciduous and evergreen savanna trees. Methods RGR, changes to biomass allocation and leaf morphology, and root non-structural carbohydrate reserves were evaluated for juveniles of 51 savanna species (34 deciduous, 17 evergreen) grown in a common garden experiment. It was anticipated that drivers of RGR would differ between leaf habit groups because deciduous species have to allocate carbohydrates to storage in roots to be able to flush leaves again, which directly compromises their LMF, whereas evergreen species are not subject to this constraint. Key Results Evergreen species had greater LMF and RGR than deciduous species. Among deciduous species LMF explained 27 % of RGR variation (SLA 34 % and NAR 29 %), whereas among evergreen species LMF explained between 2 and 17 % of RGR variation (SLA 32–35 % and NAR 38–62 %). RGR and LMF were (negatively) related to carbohydrate storage only among deciduous species. Conclusions Trade-offs between investment in carbohydrate reserves and growth occurred only among deciduous species, leading to differences in relative contribution made by the underlying components of RGR between the leaf habit groups. The results suggest that differences in drivers of RGR occur among savanna species because these have different selected strategies for coping with fire disturbance in savannas. It is expected that variation in the drivers of RGR will be found in other functional types that respond differently to particular disturbances. PMID

  19. Supragingival Microbial Profiles of Permanent and Deciduous Teeth in Children with Mixed Dentition

    PubMed Central

    Shi, Weihua; Qin, Man; Chen, Feng; Xia, Bin

    2016-01-01

    Objectives The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity. Methods Supragingival plaque samples of teeth in various locations—the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors—were collected from 20 healthy mixed-dentition-stage children with 10–12 permanent teeth erupted. Plaque DNA was extracted, and the V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing. Results On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria) were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships. Conclusion Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age. PMID:26752284

  20. Comparative Gene Expression Analysis of the Human Periodontal Ligament in Deciduous and Permanent Teeth

    PubMed Central

    Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441

  1. On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective.

    PubMed

    Baldocchi, Dennis D; Ma, Siyan; Rambal, Serge; Misson, Laurent; Ourcival, Jean-Marc; Limousin, Jean-Marc; Pereira, Joao; Papale, Dario

    2010-09-01

    We assessed the differential advantages of deciduousness and evergreenness by examining 26 site-years of carbon dioxide, water vapor, and energy flux measurements from five comparable oak woodlands in France, Italy, Portugal, and California (USA). On average, the evergreen and deciduous oak woodlands assimilated and respired similar amounts of carbon while using similar amounts of water. These results suggest that evergreen and deciduous woodlands have specific, and similar, ecological costs in mediterranean climates, and that both leaf habits are able to meet these costs. What are the mechanisms behind these findings? Deciduous oaks compensated for having a shorter growing season by attaining a greater capacity to assimilate carbon for a given amount of intercepted solar radiation during the well-watered spring period; at saturating light levels, deciduous oaks gained carbon at six times the rate of evergreen oaks. Otherwise, the two leaf habits experienced similar efficiencies in carbon use (the change in carbon respired per change in carbon assimilated), water use (the change in carbon assimilation per change in water evaporated), and rainfall use (the change in evaporation per change in rainfall). Overall, leaf area index, rather than leaf habit, was the significant factor in determining the absolute magnitude of carbon gained and water lost by each evergreen and deciduous oak woodland over an annual interval; the closed canopies assimilated and respired more carbon and transpired more water than the open canopies. Both deciduous and evergreen mediterranean oaks survive in their seasonally hot/dry, wet/ cool native range by ensuring that actual evaporation is less than the supply of water. This feat is accomplished by adjusting the leaf area index to reduce total water loss at the landscape scale, by down-regulating photosynthesis, respiration, and stomatal conductance with progressive seasonal soil water deficits, and by extending their root systems to tap

  2. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells

    PubMed Central

    Tochigi, Hideno; Kajihara, Takeshi; Mizuno, Yosuke; Mizuno, Yumi; Tamaru, Shunsuke; Kamei, Yoshimasa; Okazaki, Yasushi; Brosens, Jan J; Ishihara, Osamu

    2017-01-01

    Endometrial decidualization represents an essential step for the successful implantation of the embryo; however, the molecular mechanism behind this differentiation process remains unclear. This study aimed to identify novel microRNAs (miRNAs) involved in the regulation of decidual gene expression in human endometrial stromal cells (HESCs). An in vitro analysis of primary undifferentiated and decidualizing HESCs was conducted. HESCs were isolated from hysterectomy specimens from normally cycling premenopausal women with uterine fibroids, who were not on hormonal treatment at the time of surgery. Primary HESCs were expanded in culture and decidualized with 8-bromo-cyclic adenosine monophosphate and medroxyprogesterone acetate. Microarray analysis identified six miRNAs differentially expressed in response to decidualization of HESCs. All but one miRNA were downregulated upon decidualization, including miR-542-3p. We demonstrated that miR-542-3p overexpression inhibits the induction of major decidual marker genes, including IGFBP1, WNT4 and PRL. In addition, miR-542-3p overexpression inhibited the morphological transformation of HESCs in response to deciduogenic cues. A luciferase reporter assay confirmed that the 3′-untranslated region of IGFBP1 mRNA is targeted by miR-542-3p. The results suggest that miR-542-3p plays an important role in endometrial decidualization by regulating the expression of major decidual marker genes. PMID:28051155

  3. Seasonal Variation in the Inputs and Fate of Mercury in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Driscoll, C. T.; Wang, X.; Holsen, T.; Mao, H.

    2014-12-01

    Northern forest ecosystems are sensitive to atmospheric mercury deposition. In this study, we examined the fate of mercury inputs to the Huntington Wildlife Forest (HWF) of the Adirondack region of New York State, USA, by conducting a mercury mass budget over the annual cycle. Mercury exchange processes analyzed included wet deposition, dry deposition, foliar accumulation, throughfall, litterfall, soil evasion, and vertical and horizontal soil drainage loss. The mercury transport processes were quantified by integrating data collected from different sources over recent years (2004-2011). Dry mercury deposition (16.3 μg m-2 yr-1) was more important than wet mercury deposition (6.3 μg m-2 yr-1) at the HWF; most of the atmospheric mercury deposition (> 60%) was retained in the forest soils where litterfall (17.2 μg m-2 yr-1) was the major input pathway. Soil evasion (6.5 μg m-2 yr-1) was the most important mercury export mechanism, exceeding mercury fluxes in lateral and vertical drainage from soil (2.8 μg m-2 yr-1). Our analysis showed marked seasonal variation in the transfers of mercury largely mediated by annual canopy development of the forest ecosystem. The upland hardwood forest ecosystem was a net sink for atmospheric mercury deposition.

  4. Development of hardwood seed zones for Tennessee using a geographic information system

    USGS Publications Warehouse

    Post, L.S.; Schlarbaum, S.E.; Van Manen, F.; Cecich, R.A.; Saxton, A.M.; Schneider, J.F.

    2003-01-01

    For species that have no or limited information on genetic variation and adaptability to nonnative sites, there is a need for seed collection guidelines based on biological, climatological, and/or geographical criteria. Twenty-eight hardwood species are currently grown for reforestation purposes at the East Tennessee State Nursery. The majority of these species have had no genetic testing to define guidelines for seed collection location and can be distributed to sites that have a very different environment than that of seed origin(s). Poor survival and/or growth may result if seedlings are not adapted to environmental conditions at the planting location. To address this problem, 30 yr of Tennessee county precipitation and minimum temperature data were analyzed and grouped using a centroid hierarchical cluster analysis. The weather data and elevational data were entered into a Geographic Information System (GIS) and separately layered over Bailey's Ecoregions to develop a seed zone system for Tennessee. The seed zones can be used as a practical guideline for collecting seeds to ensure that the resulting seedlings will be adapted to planting environments.

  5. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.

    PubMed

    Zhao, Yadong; Moser, Carl; Lindström, Mikael E; Henriksson, Gunnar; Li, Jiebing

    2017-04-10

    This work reveals the structural variations of cellulose nanofibers (CNF) prepared from different cellulose sources, including softwood (Picea abies), hardwood (Eucalyptus grandis × E. urophylla), and tunicate (Ciona intestinalis), using different preparation processes and their correlations to the formation and performance of the films prepared from the CNF. Here, the CNF are prepared from wood chemical pulps and tunicate isolated cellulose by an identical homogenization treatment subsequent to either an enzymatic hydrolysis or a 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. They show a large structural diversity in terms of chemical, morphological, and crystalline structure. Among others, the tunicate CNF consist of purer cellulose and have a degree of polymerization higher than that of wood CNF. Introduction of surface charges via the TEMPO-mediated oxidation is found to have significant impacts on the structure, morphology, optical, mechanical, thermal, and hydrophobic properties of the prepared films. For example, the film density is closely related to the charge density of the used CNF, and the tensile stress of the films is correlated to the crystallinity index of the CNF. In turn, the CNF structure is determined by the cellulose sources and the preparation processes. This study provides useful information and knowledge for understanding the importance of the raw material for the quality of CNF for various types of applications.

  6. Bottomland hardwood reforestation for neotropical migratory birds: are we missing the forest for the trees?

    USGS Publications Warehouse

    Twedt, D.J.; Portwood, J.

    1997-01-01

    Reforestation of bottomland hardwoods on lands managed for wildlife or timber production has historically emphasized planting heavy-seeded oaks (Quercus spp.). Although techniques have been developed for successful oak establishment, these plantings often require 5 or more years before establishing a 3-dimensional forest structure. We suggest that lands planted to fast-growing early-successional species, in combination with oaks, provide: (1) more expedient benefits to Neotropical migratory birds; (2) greater forest diversity; (3) more rapid economic return to landowners; and (4) enhanced public relations. Under good growing conditions, and with effective weed control, some fast-growing species can develop a substantial 3-dimensional forest structure in as few as 2 or 3 years. Forest-breeding Neotropical migratory birds use stands planted with early successional species several years before sites planted solely with oaks. Where desirable, succession to forests with a high proportion of oak species can be achieved on sites initially planted with fast-growing species through silvicultural management.

  7. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania

    PubMed Central

    Gaines, Katie P.; Stanley, Jane W.; Meinzer, Frederick C.; McCulloh, Katherine A.; Woodruff, David R.; Chen, Weile; Adams, Thomas S.; Lin, Henry; Eissenstat, David M.

    2016-01-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season. PMID:26546366

  8. Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal.

    PubMed

    Mechmech, Fatma; Chadjaa, Hassan; Rahni, Mohamed; Marinova, Mariya; Ben Akacha, Najla; Gargouri, Mohamed

    2015-09-01

    The feasibility of using hardwood hemicellulosic pre-hydrolysate recovered from a dissolving pulping process for Acetone-Butanol-Ethanol (ABE) fermentation has been investigated. Dilutions and detoxification methods based on flocculation and nanofiltration were tested to determine the inhibitory concentration of phenolic compounds and to evaluate the efficiency of inhibitors removal on fermentation. Flocculation carried out with ferric sulfate was the most effective method for removal of phenolics (56%) and acetic acid (80%). The impact on fermentation was significant, with an ABE production of 6.40 g/L and 4.25 g/L when using flocculation or combined nanofiltration/flocculation respectively, as compared to a non-significant production for the untreated hydrolysate. By decreasing the toxicity effect of inhibitors, this study reports for the first time that the use of these techniques is efficient to increase the inhibitory concentration threshold of phenols, from 0.3g/L in untreated hydrolysate, to 1.1g/L in flocculated and in nanofiltrated and flocculated hydrolysates.

  9. Prioritizing bird conservation actions in the Prairie Hardwood transition of the Midwestern United States

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Crimmins, Shawn M.; Pearce, Jennie

    2014-01-01

    Large-scale planning for the conservation of species is often hindered by a poor understanding of factors limiting populations. In regions with declining wildlife populations, it is critical that objective metrics of conservation success are developed to ensure that conservation actions achieve desired results. Using spatially explicit estimates of bird abundance, we evaluated several management alternatives for conserving bird populations in the Prairie Hardwood Transition of the United States. We designed landscapes conserving species at 50% of their current predicted abundance as well as landscapes attempting to achieve species population targets (which often required the doubling of current abundance). Conserving species at reduced (half of current) abundance led to few conservation conflicts. However, because of extensive modification of the landscape to suit human use, strategies for achieving regional population targets for forest bird species would be difficult under even ideal circumstances, and even more so if maintenance of grassland bird populations is also desired. Our results indicated that large-scale restoration of agricultural lands to native grassland and forest habitats may be the most productive conservation action for increasing bird population sizes but the level of landscape transition required to approach target bird population sizes may be societally unacceptable.

  10. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials

    PubMed Central

    2016-01-01

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition–fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o-methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties. PMID:27213117

  11. Changes in forest floor composition and chemistry along an invasive earthworm gradient in a hardwood forest

    NASA Astrophysics Data System (ADS)

    Jourdain, J. N.; Filley, T. R.; Top, S. M.; Thayer, C.; Johnson, A.; Jenkins, M.; Welle, P.; Zurn-Birkhimer, S.; Kroeger, T.; Gemscholars

    2010-12-01

    Recent studies have demonstrated how invasive European earthworm species have caused large and long lasting perturbations to forest floor dynamics and soil composition in many northern hardwood forests. The type of perturbation is driven primarily by the composition and activity of the invasive species and the original state of the forest system. Over the past 4 years we have investigated an invasive earthworm front moving through the Ojibwa Red Lake Reservation (Minnesota). Significant shifts in litter and organic horizon mass were observed, similar to other gradients identified in the region, but the species of earthworms exhibited differences compared to other reservation lands in the region--possibly driven by the availability of recreation fishing near to the sites. Sharp gradients in earthworm abundance were observed exhibiting shifts from 600- 900 individuals per meter square to no observed worms within only 500 meters. The gradients in earthworm activity also influenced decay rates of litter, as was observed by placement of litter decay bags across the gradient. Our findings demonstrate the tenuous nature of many tribal reservation forests and point to the need for policies to address spread on such species to minimize impacts to soil carbon stocks as well as culturally important plant species.

  12. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose.

    PubMed

    Lai, Chenhuan; Tu, Maobing; Shi, Zhiqiang; Zheng, Ke; Olmos, Luis G; Yu, Shiyuan

    2014-07-01

    Identifying an appropriate parameter to elucidate effects of lignin on enzymatic hydrolysis is essential to understand the interactions between enzymes and lignin. Contrasting effects of hardwood organosolv lignin (EOL-SG) and softwood organosolv lignin (EOL-LP) on enzymatic hydrolysis were observed. The addition of EOL-SG (8 g/L) significantly improved the 72 h hydrolysis yields of organosolv pretreated sweetgum (OPSG) and loblolly pine (OPLP) from 49.3% to 68.6% and from 41.2% to 60.8%, respectively. In contrast, the addition of EOL-LP decreased the 72 h hydrolysis yields of OPSG and OPLP to 42.0% and 38.1%, respectively. A strong correlation between the distribution coefficients of cellulase enzymes on lignins and the changes of hydrolysis yields indicated that the inhibitory or stimulatory effects of organosolv lignins on enzymatic hydrolysis were governed by the distribution coefficients (R). The different R values probably were related to the electrostatic interactions, hydrophobic interactions and hydrogen bondings between enzymes and lignin.

  13. Kinetic modeling of hardwood prehydrolysis. Part 1. Xylan removal by water prehydrolysis

    SciTech Connect

    Conner, A.H.

    1984-04-01

    The kinetics of xylan removal from quaking aspen, paper birch, American elm, and red maple by water prehydrolysis (autohydrolysis) was reevaluated, and additional data for the water prehydrolysis of southern red oak were obtained. Xylan removal from these hardwood species can be modeled kinetically as the sum of two parallel first-order reactions - one fast and one slow. The rate constant for the fast reaction is highly correlated with the rate constant for the slow reaction for all species studied. The rate constant for initial xylan removal usually reported in the literature is actually a complex function of the rate constants for both the fast and slow reactions and is based solely on the initial data points. This paper presents an improved method for modeling xylan removal that allows modeling throughout the course of its reactions. The reason there are two different rates of xylan removal can be more easily explained on the basis of accessibility rather than any variability in the polymeric structure of the xylan being removed. Thus, the slow rate may be due to a portion of the xylan being embedded within or attached to the lignin via lignin-carbohydrate bonds.

  14. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  15. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    SciTech Connect

    Michael D. Ulyshen; James L. Hanula; Scott Horn; Christopher E. Moorman.

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance or species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.

  16. Reliance on shallow soil water in a mixed-hardwood forest in central Pennsylvania.

    PubMed

    Gaines, Katie P; Stanley, Jane W; Meinzer, Frederick C; McCulloh, Katherine A; Woodruff, David R; Chen, Weile; Adams, Thomas S; Lin, Henry; Eissenstat, David M

    2016-04-01

    We investigated depth of water uptake of trees on shale-derived soils in order to assess the importance of roots over a meter deep as a driver of water use in a central Pennsylvania catchment. This information is not only needed to improve basic understanding of water use in these forests but also to improve descriptions of root function at depth in hydrologic process models. The study took place at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We asked two main questions: (i) Do trees in a mixed-hardwood, humid temperate forest in a central Pennsylvania catchment rely on deep roots for water during dry portions of the growing season? (ii) What is the role of tree genus, size, soil depth and hillslope position on the depth of water extraction by trees? Based on multiple lines of evidence, including stable isotope natural abundance, sap flux and soil moisture depletion patterns with depth, the majority of water uptake during the dry part of the growing season occurred, on average, at less than ∼60 cm soil depth throughout the catchment. While there were some trends in depth of water uptake related to genus, tree size and soil depth, water uptake was more uniformly shallow than we expected. Our results suggest that these types of forests may rely considerably on water sources that are quite shallow, even in the drier parts of the growing season.

  17. Prediction of mixed hardwood lignin and carbohydrate content using ATR-FTIR and FT-NIR.

    PubMed

    Zhou, Chengfeng; Jiang, Wei; Via, Brian K; Fasina, Oladiran; Han, Guangting

    2015-05-05

    This study used Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy with principal component regression (PCR) and partial least squares regression (PLS) to build hardwood prediction models. Wet chemistry analysis coupled with high performance liquid chromatography (HPLC) was employed to obtain the chemical composition of these samples. Spectra loadings were studied to identify key wavenumber in the prediction of chemical composition. NIR-PLS and FTIR-PLS performed the best for extractives, lignin and xylose, whose residual predictive deviation (RPD) values were all over 3 and indicates the potential for either instrument to provide superior prediction models with NIR performing slightly better. During testing, it was found that more accurate determination of holocellulose content was possible when HPLC was used. Independent chemometric models, for FT-NIR and ATR-FTIR, identified similar functional groups responsible for the prediction of chemical composition and suggested that coupling the two techniques could strengthen interpretation and prediction.

  18. Growth of Chaetomium cellulolyticum on Alkali-Pretreated Hardwood Sawdust Solids and Pretreatment Liquor

    PubMed Central

    Pamment, N.; Moo-Young, M.; Hsieh, F.-H.; Robinson, C. W.

    1978-01-01

    The treatment of a hardwood sawdust with 1% NaOH solution at 121°C dissolved 19.7% of the dry matter, mainly hemicellulose and lignin. Fermentation of the treated solids by Chaetomium cellulolyticum for 48 h gave a product containing 12.5% crude protein (total N × 6.25) on a dry weight basis. The in vitro rumen digestibility of the 48-h fermentation product was 30%, compared to 24% for the alkali-treated but unfermented sawdust. Growth was independent of sawdust particle size in the range 40 to 100 mesh. Fermentation of the pretreatment liquor gave a product containing up to 50% crude protein (dry weight basis) with an in vitro rumen digestibility of 65 to 76%. Approximately 6.7 g of crude protein was obtained from the treated solids and 2.2 g from the pretreatment liquor per 100 g of sawdust treated. The product from the pretreatment liquor fermentation has potential as a high-protein animal feed supplement but could not be produced economically without an outlet for the relatively indigestible product from the solids fermentation. Growth on the pretreatment liquor was strongly pH dependent; there was a considerable increase in the lag phase when the pH was lowered from 7.5 to 5.2. This effect appears to be due to an inhibitor whose toxicity is reduced at high pH. PMID:16345308

  19. Decomposition and carbon storage of hardwood and softwood branches in laboratory-scale landfills.

    PubMed

    Wang, Xiaoming; Barlaz, Morton A

    2016-07-01

    Tree branches are an important component of yard waste disposed in U.S. municipal solid waste (MSW) landfills. The objective of this study was to characterize the anaerobic biodegradability of hardwood (HW) and softwood (SW) branches under simulated but optimized landfill conditions by measuring methane (CH4) yields, decay rates, the decomposition of cellulose, hemicellulose and organic carbon, as well as carbon storage factors (CSFs). Carbon conversions to CH4 and CO2 ranged from zero to 9.5% for SWs and 17.1 to 28.5% for HWs. When lipophilic or hydrophilic compounds present in some of the HW and SW samples were extracted, some samples showed increased biochemical methane potentials (BMPs). The average CH4 yield, carbon conversion, and CSF measured here, 59.4mLCH4g(-1) dry material, 13.9%, and 0.39gcarbonstoredg(-1) dry material, respectively, represent reasonable values for use in greenhouse gas inventories in the absence of detailed wood type/species data for landfilled yard waste.

  20. A multisensor system for texture-based high-speed hardwood lumber inspection

    NASA Astrophysics Data System (ADS)

    Rinnhofer, Alfred; Jakob, Gerhard; Deutschl, Edwin; Benesova, Wanda; Andreu, Jean-Philippe; Parziale, Giuseppe; Niel, Albert

    2005-03-01

    A novel solution for automatic hardwood inspection is presented. A sophisticated multi sensor system is required for reliable results. Our system works on a data stream of more than 50 MByte/Sec in input and up to 100 MByte/Sec inside the processing queue. The algorithm is divided into multiple steps. Along a fixed grid the images are decomposed into small squares. 55 texture- and color features are computed for each square. A Maximum Likelihood classifier assigns each square to one out of 12 defect classes with a recognition rate better than 97%. Depending on the defect type a dedicated threshold operation is performed for segmentation. Threshold levels and the selection of the input channel (RGB + filtered images) is the result of the former classification step. A fast algorithm computes bounding rectangles from blobs. Defect type dependent rules are used to combine rectangles. Two additional fast high resolution 3D measurement systems add board shape and 3D defect information. All defect rectangles are passing an additional plausibility check in the last data fusion process before they are delivered to the optimization computer. To guarantee a short response time, image acquisition and image processing are performed in parallel on parallel computing hardware.

  1. Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil

    SciTech Connect

    Moens, L.; Black, S. K.; Myers, M. D.; Czernik, S.

    2009-01-01

    Fast-pyrolysis bio-oil that is currently produced from lignocellulosic biomass in demonstration and semicommercial plants requires significant modification to become an acceptable transportation fuel. The high acidity and chemical instability of bio-oils render them incompatible with existing petroleum refinery processes that produce gasoline and diesel fuels. To facilitate the use of bio-oil as a feedstock in a traditional refinery infrastructure, there is considerable interest in upgrading bio-oils through chemical pathways that include converting the carboxylic acids and reactive carbonyl compounds into esters and acetals using low-cost alcohols. In this article, we discuss our observations with different approaches to esterification and etherification chemistry using a crude bio-oil derived from mixed hardwoods. The high water content in crude bio-oils (ca. 20?30%) creates equilibrium limitations in the condensation reactions that hamper the upgrading process in that the neutralization and stabilization steps cannot easily be driven to completion. The lowest acid number that we were able to obtain without causing serious degradation of the flow properties of the bio-oil had a total acid number of about 20, a value that is still too high for use in a traditional petroleum refinery.

  2. Changes in hardwood forest understory plant communities in response to European earthworm invasions.

    PubMed

    Hale, Cindy M; Frelich, Lee E; Reich, Peter B

    2006-07-01

    European earthworms are colonizing earthworm-free northern hardwood forests across North America. Leading edges of earthworm invasion provide an opportunity to investigate the response of understory plant communities to earthworm invasion and whether the species composition of the earthworm community influences that response. Four sugar maple-dominated forest sites with active earthworm invasions were identified in the Chippewa National Forest in north central Minnesota, USA. In each site, we established a 30 x 150 m sample grid that spanned a visible leading edge of earthworm invasion and sampled earthworm populations and understory vegetation over four years. Across leading edges of earthworm invasion, increasing total earthworm biomass was associated with decreasing diversity and abundance of herbaceous plants in two of four study sites, and the abundance and density of tree seedlings decreased in three of four study sites. Sample points with the most diverse earthworm species assemblage, independent of biomass, had the lowest plant diversity. Changes in understory plant community composition were most affected by increasing biomass of the earthworm species Lumbricus rubellus. Where L. rubellus was absent there was a diverse community of native herbaceous plants, but where L. rubellus biomass reached its maximum, the herbaceous-plant community was dominated by Carex pensylvanica and Arisaema triphyllum and, in some cases, was completely absent. Evidence from these forest sites suggests that earthworm invasion can lead to dramatic changes in the understory community and that the nature of these changes is influenced by the species composition of the invading earthworm community.

  3. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra).

    PubMed

    Balan, Venkatesh; Sousa, Leonardo da Costa; Chundawat, Shishir P S; Marshall, Derek; Sharma, Lekh N; Chambliss, C Kevin; Dale, Bruce E

    2009-01-01

    There is a growing need to find alternatives to crude oil as the primary feed stock for the chemicals and fuel industry and ethanol has been demonstrated to be a viable alternative. Among the various feed stocks for producing ethanol, poplar (Populus nigra x Populus maximowiczii) is considered to have great potential as a biorefinery feedstock in the United States, due to their widespread availability and good productivity in several parts of the country. We have optimized AFEX pretreatment conditions (180 degrees C, 2:1 ammonia to biomass loading, 233% moisture, 30 minutes residence time) and by using various combinations of enzymes (commercical celluloses and xylanases) to achieve high glucan and xylan conversion (93 and 65%, respectively). We have also identified and quantified several important degradation products formed during AFEX using liquid chromatography followed by mass spectrometry (LC-MS/MS). As a part of degradation product analysis, we have also quantified oligosaccharides in the AFEX water wash extracts by acid hydrolysis. It is interesting to note that corn stover (C4 grass) can be pretreated effectively using mild AFEX pretreatment conditions, while on the other hand hardwood poplar requires much harsher AFEX conditions to obtain equivalent sugar yields upon enzymatic hydrolysis. Comparing corn stover and poplar, we conclude that pretreatment severity and enzymatic hydrolysis efficiency are dictated to a large extent by lignin carbohydrate complexes and arabinoxylan cross-linkages for AFEX.

  4. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    PubMed

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  5. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  6. Multiresolution quantification of deciduousness in West Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-04-01

    The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  7. Multiresolution quantification of deciduousness in West-Central African forests

    NASA Astrophysics Data System (ADS)

    Viennois, G.; Barbier, N.; Fabre, I.; Couteron, P.

    2013-11-01

    The characterization of leaf phenology in tropical forests is of major importance for forest typology as well as to improve our understanding of earth-atmosphere-climate interactions or biogeochemical cycles. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West-Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) data were averaged over the wet and dry seasons to provide a data set of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye) and high (SPOT-5) spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry-season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in West-Central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and

  8. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  9. Antimicrobial activity of different filling pastes for deciduous tooth treatment.

    PubMed

    Antoniazzi, Bruna Feltrin; Pires, Carine Weber; Bresolin, Carmela Rampazzo; Weiss, Rita Niederauer; Praetzel, Juliana Rodrigues

    2015-01-01

    Guedes-Pinto paste is the filling material most employed in Brazil for endodontic treatment of deciduous teeth; however, the Rifocort® ointment has been removed. Thus, the aim of this study was to investigate the antimicrobial potential of filling pastes, by proposing three new pharmacological associations to replace Rifocort® ointment with drugs of already established antimicrobial power: Nebacetin® ointment, 2% Chlorhexidine Gluconate gel, and Maxitrol® ointment. A paste composed of Iodoform, Rifocort® ointment and Camphorated Paramonochlorophenol (CPC) was employed as the gold standard (G1). The other associations were: Iodoform, Nebacetin® ointment and CPC (G2); Iodoform, 2% Chlorhexidine Digluconate gel and CPC (G3); Iodoform, Maxitrol® ointment and CPC (G4). The associations were tested for Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Streptococcus oralis (S. oralis), Enterococcus faecalis (E. faecalis), Escherichia coli (E. coli), and Bacillus subtilis (B. subtilis), using the methods of dilution on solid medium - orifice agar - and broth dilution. The results were tested using statistical analysis ANOVA and Kruskal-Wallis. They showed that all the pastes had a bacteriostatic effect on all the microorganisms, without any statistically significant difference, compared with G1. S. aureus was statistically significant (multiple comparison test of Tukey), insofar as G2 and G3 presented the worst and the best performance, respectively. All associations were bactericidal for E. coli, S. aureus, S. mutans and S. oralis. Only G3 and G4 were bactericidal for E. faecalis, whereas no product was bactericidal for B. subtilis. Thus, the tested pastes have antimicrobial potential and have proved acceptable for endodontic treatment of primary teeth.

  10. Nutrient translocation in the outer canopy and understory of an eastern deciduous forest

    SciTech Connect

    Luxmoore, R.J.; Grizzard, T.; Strand, R.H.

    1981-09-01

    The translocation of nutrients into and out of outer canopy leaves of ten eastern deciduous forest species was calculated from the temporal patterns of foliar nutrient pools sampled through a growing season. The calculations accounted for average chemical leaching effects due to rainfall. There were no significant differences in translocation rate between species within the evergreen, understory, or overstory-deciduous tree groups. Evergreen species had lower translocation rates than deciduous trees. Translocation rates into leaves of deciduous species showed a very rapid increase during spring; however, by late May, foliar phosphorus was being translocated at a slow rate back to stems. A similar trend was established for nitrogen by mid-June. An internal storage pool is suggested as the major source of foliar nitrogen during the spring flush since a simulation of nitrogen uptake from soil could only account for one-fourth of the quantity of nitrogen transported to leaves by the end of May. Simulation further showed that trace levels of soluble nitrogen (0.01 ppm) in soil were sufficient to supply a deciduous forest with an estimated nitrogen uptake of 100 kg N ha/sup -1/ year/sup -1/.

  11. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGES

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; ...

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukonmore » River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  12. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    SciTech Connect

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristobal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  13. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    NASA Astrophysics Data System (ADS)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-07-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  14. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  15. Cysts in Periradicular Region of Deciduous Molars in Mixed Dentition: Retrospective Study of Five Cases

    PubMed Central

    Chavan, Ankush; Wadde, Kavita; Dewalwar, Vishal

    2014-01-01

    ABSTRACT% The cyst in mixed dentition stage cause expansion of buccal cortex, displacement of teeth and may present as case of infection. The cyst in periradicular region of deciduous molar are of frequent occurrence. The differential diagnosis of this lesion is radicular cysts of deciduous molar: developmental or infammatory dentigerous cyst of corresponding unerupted premolar. After going through the available literature of radicular cyst of deciduous molars and dentigerous cysts of developing premolars in mixed dentition we studied the five cases of cyst in periradicular region of deciduous molars in mixed dentition retrospectively for the diagnostic dilemma of radicular cyst verses dentigerous cyst. In conclusion, we can set some criteria for the diagnosis which is particularly important for treatment and for conservation of developing premolar. How to cite this article: Manekar VS, Chavan A, Wadde K, Dewalwar V. Cysts in Periradicular Region of Deciduous Molars in Mixed Dentition: Retrospective Study of Five Cases. Int J Clin Pediatr Dent 2014;7(3):229-235. PMID:25709310

  16. Expression and regulation of androgen receptor in the mouse uterus during early pregnancy and decidualization.

    PubMed

    Xu, Jingjie; Li, Mo; Zhang, Lu; Xiong, Hao; Lai, Lidan; Guo, Meijun; Zong, Teng; Zhang, Dalei; Yang, Bei; Wu, Lei; Tang, Min; Kuang, Haibin

    2015-11-01

    The androgen receptor (AR) is a ligand-activated transcription factor that is important for both the male and female reproductive systems. The expression and regulation of AR in the uterine endometrium during early pregnancy and decidualization remain relatively under-investigated, so we sought to immunohistochemically examine the spatiotemporal expression of AR in mouse uteri during the peri-implantation period as well as in response to specific steroid hormones. AR protein was found in the nuclei of uterine stromal cells starting on pregnancy Days 1 and 2, with its abundance increasing on Days 3 and 4. From pregnancy Days 5 to 9, however, the expression of AR markedly declined in stromal zones of uteri. No signal was detected in the decidualized cells surrounding the site of embryo implantation; moreover, no AR immunostaining was observed in decidualized uterine cells in an artificial oil-induced model of decidualization. Progesterone significantly inhibited AR protein expression, whereas estrogen dramatically elevated AR abundance in the stroma of ovariectomized mouse uteri. Taken together, our results are the first to demonstrate that decidualization and progesterone significantly inhibited the AR protein expression in vivo, whereas estrogen increased AR protein levels in the stromal cells of mouse uteri. These responses might be advantageous for the proliferation and differentiation of uterine stroma and for embryo implantation during early pregnancy.

  17. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  18. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    USGS Publications Warehouse

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  19. Millimeter-wave radiometry of deciduous trees at low-depression angle

    NASA Astrophysics Data System (ADS)

    Wikner, David; Dahlstrom, Robert

    1998-11-01

    Personnel from the Army Research Laboratory conducted experiments during the summer and early fall of 1996 to measure the low-depression angle brightness temperatures of deciduous trees at 94 GHz. Changes in the signatures of five different deciduous trees were recorded over several months and related to infrared temperature, sky temperature, and leaf water content. Distinct differences were found in the brightness temperatures of the deciduous trees measured. The results of these measurements are presented and a good parametric fit to the data is made, showing the consistency of canopy emissivity and reflectivity over the measurement period. In addition, suggestions are made as to how future measurements could benefit from wideband, bistatic canopy cross-section data.

  20. Influence of canopy foliage on turbulence above tall deciduous vegetation

    NASA Astrophysics Data System (ADS)

    Shapkalijevski, Metodija; Moene, Arnold; Ouwersloot, Huug; Patton, Edward; Vilà-Guerau de Arellano, Jordi

    2015-04-01

    approaching heights closer to the canopy top. However, the results are very sensitive to the choice of the displacement height. Our findings indicate the need (a) to account for the effects of the roughness sublayer in calculating and interpreting flux-gradient relationships and TKE above a deciduous forest, and (b) to include in these calculations a displacement height that takes the canopy leaf state into account.

  1. Leaf growth pattern in evergreen and deciduous species of the Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Negi, G. C. S.; Singh, S. P.

    1992-12-01

    Leaf growth patterns were investigated in 11 evergreen (with leaf life-spans of just more than 1 year) and 15 deciduous species, occurring along an elevational gradient of 600-2200 m elevation in the Central Himalaya. Records were made of the leaf initiation period, leaf population dynamics, leaf expansion, leaf mass changes, leaf longevity and related parameters. Species of both groups produced leaves at similar rates during March to April, the driest period of the year. Species of both groups had approximately fully developed foliage during the warm, wet period (mid-June to mid-September) of the monsoon. However, significant differences were found at group level in other characters: shoot length (19.5 cm per shoot for deciduous and 11.7 cm for evergreen species); leaf population per 10 cm shoot length (4.7 vs 15.0); leaf area (107.9 vs 41.4 cm2/ leaf); specific leaf mass (106.9 vs 191.3 g/m2); and leaf mass loss after the monsoon period, being rapid and higher (31.6%) in deciduous species and slow and limited in the evergreens (26.2%). However, species of the two groups showed considerable overlaps in the values of above characters. The evergreen species of the Central Himalaya resembled the deciduous species of the region more than the multi-year leaves of clearly evergreen species. The evergreens bear leaves throughout the year, but like deciduous species bear the cost of annual replacement of old leaves by new leaves. They seem to outcompete deciduous species by producing annually a greater mass of leaves of low-carbon cost (per unit leaf mass), which is capable of conducting photosynthesis all year round. A situation of less marked contrast between favourable and nonfavourable periods, with respect to temperature, seems to favour the leaf characters of the evergreens.

  2. Do evergreen and deciduous trees have different effects on net N mineralization in soil?

    PubMed

    Mueller, Kevin E; Hobbie, Sarah E; Oleksyn, Jacek; Reich, Peter B; Eissenstat, David M

    2012-06-01

    Evergreen and deciduous plants are widely expected to have different impacts on soil nitrogen (N) availability because of differences in leaf litter chemistry and ensuing effects on net N mineralization (N(min)). We evaluated this hypothesis by compiling published data on net N(min) rates beneath co-occurring stands of evergreen and deciduous trees. The compiled data included 35 sets of co-occurring stands in temperate and boreal forests. Evergreen and deciduous stands did not have consistently divergent effects on net N(min) rates; net N(min) beneath deciduous trees was higher when comparing natural stands (19 contrasts), but equivalent to evergreens in plantations (16 contrasts). We also compared net N(min) rates beneath pairs of co-occurring genera. Most pairs of genera did not differ consistently, i.e., tree species from one genus had higher net N(min) at some sites and lower net N(min) at other sites. Moreover, several common deciduous genera (Acer, Betula, Populus) and deciduous Quercus spp. did not typically have higher net N(min) rates than common evergreen genera (Pinus, Picea). There are several reasons why tree effects on net N(min) are poorly predicted by leaf habit and phylogeny. For example, the amount of N mineralized from decomposing leaves might be less than the amount of N mineralized from organic matter pools that are less affected by leaf litter traits, such as dead roots and soil organic matter. Also, effects of plant traits and plant groups on net N(min) probably depend on site-specific factors such as stand age and soil type.

  3. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  4. Concerted upregulation of CLP36 and smooth muscle actin protein expression in human endometrium during decidualization.

    PubMed

    Miehe, Ulrich; Neumaier-Wagner, Peruka; Kadyrov, Mamed; Goyal, Pankaj; Alfer, Joachim; Rath, Werner; Huppertz, Berthold

    2005-01-01

    The human endometrium prepares for implantation of the blastocyst by reorganization of its whole cellular network. Endometrial stroma cells change their phenotype starting around the 23rd day of the menstrual cycle. These predecidual stroma cells first appear next to spiral arteries, and after implantation these cells further differentiate into decidual stroma cells. The phenotypical changes in these cells during decidualization are characterized by distinct changes in the actin filaments and filament-related proteins such as alpha-actinin. The carboxy-terminal LIM domain protein with a molecular weight of 36 kDa (CLP36) is a cytoskeletal component that has been shown to associate with contractile actin filaments and to bind to alpha-actinin supporting a role for CLP36 in cytoskeletal reorganization and signal transduction by binding to signaling proteins. The expression patterns of CLP36, alpha-actinin and actin were studied in endometrial stroma cells from different stages of the menstrual cycle and in decidual stroma cells from the 6th week of gestation until the end of pregnancy. During the menstrual cycle, CLP36 is only expressed in the luminal and glandular epithelium but not in endometrial stroma cells. During decidualization and throughout pregnancy, a parallel upregulation of CLP36 and smooth muscle actin, an early marker of decidualization in the baboon, was observed in endometrial decidual cells. Since both proteins maintain a high expression level throughout pregnancy, a role of both proteins is suggested in the stabilization of the cytoskeleton of these cells that come into close contact with invading trophoblast cells.

  5. Developing a topographic model to predict the northern hardwood forest type within Carolina northern flying squirrel (Glaucomys sabrinus coloratus) recovery areas of the southern Appalachians

    USGS Publications Warehouse

    Evans, Andrew; Odom, Richard H.; Resler, Lynn M.; Ford, W. Mark; Prisley, Stephen

    2014-01-01

    The northern hardwood forest type is an important habitat component for the endangered Carolina northern flying squirrel (CNFS; Glaucomys sabrinus coloratus) for den sites and corridor habitats between boreo-montane conifer patches foraging areas. Our study related terrain data to presence of northern hardwood forest type in the recovery areas of CNFS in the southern Appalachian Mountains of western North Carolina, eastern Tennessee, and southwestern Virginia. We recorded overstory species composition and terrain variables at 338 points, to construct a robust, spatially predictive model. Terrain variables analyzed included elevation, aspect, slope gradient, site curvature, and topographic exposure. We used an information-theoretic approach to assess seven models based on associations noted in existing literature as well as an inclusive global model. Our results indicate that, on a regional scale, elevation, aspect, and topographic exposure index (TEI) are significant predictors of the presence of the northern hardwood forest type in the southern Appalachians. Our elevation + TEI model was the best approximating model (the lowest AICc score) for predicting northern hardwood forest type correctly classifying approximately 78% of our sample points. We then used these data to create region-wide predictive maps of the distribution of the northern hardwood forest type within CNFS recovery areas.

  6. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated.

  7. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings.

    PubMed

    Aldea, Mihai; Hamilton, Jason G; Resti, Joseph P; Zangerl, Arthur R; Berenbaum, May R; Frank, Thomas D; Delucia, Evan H

    2006-08-01

    Arthropods and pathogens damage leaves in natural ecosystems and may reduce photosynthesis at some distance away from directly injured tissue. We quantified the indirect effects of naturally occurring biotic damage on leaf-level photosystem II operating efficiency (Phi(PSII)) of 11 understory hardwood tree species using chlorophyll fluorescence and thermal imaging. Maps of fluorescence parameters and leaf temperature were stacked for each leaf and analyzed using a multivariate method adapted from the field of quantitative remote sensing. Two tree species, Quercus velutina and Cercis canadensis, grew in plots exposed to ambient and elevated atmospheric CO(2) and were infected with Phyllosticta fungus, providing a limited opportunity to examine the potential interaction of this element of global change and biotic damage on photosynthesis. Areas surrounding damage had depressed Phi(PSII )and increased down-regulation of PSII, and there was no evidence of compensation in the remaining tissue. The depression of Phi(PSII) caused by fungal infections and galls extended >2.5 times further from the visible damage and was approximately 40% more depressed than chewing damage. Areas of depressed Phi(PSII) around fungal infections on oaks growing in elevated CO(2) were more than 5 times larger than those grown in ambient conditions, suggesting that this element of global change may influence the indirect effects of biotic damage on photosynthesis. For a single Q. velutina sapling, the area of reduced Phi(PSII) was equal to the total area directly damaged by insects and fungi. Thus, estimates based only on the direct effect of biotic agents may greatly underestimate their actual impact on photosynthesis.

  8. Crossing the pedogenetic threshold: Apparent phosphorus limitation by soil microorganisms in unglaciated acidic eastern hardwood forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Smemo, K. A.; Burke, D. J.

    2010-12-01

    The availability of soil phosphorus (P) can significantly influence microbial community composition and the ecosystem-level processes they mediate. However, the threshold at which soil microorganisms become functionally P-limited is unclear because of soil acidity effect on P availability. We reason that acidic temperate hardwood forest ecosystems are, in fact, functionally P-limited, but compensation occur via soil microbial production of phosphatase enzymes. We tested this hypothesis in glaciated and unglaciated mature mixed-mesophytic forests in eastern Ohio where both soil pH and P availability had been experientially manipulated. We measured the activity of two P acquiring soil enzymes, phosphomonoesterase (PMono) and phosphodiesterase (PDi), to understand how soil acidity and available P influence microbial function. Our experimental treatments elevated ambient soil pH from below 4.5 to around 5.5 and increased readily available phosphate from 3 to ~25 mg P/kg on glaciated soils and from 0.5 to ~5 mg P/kg on unglaciated soils. The P treatment decreased the activity of PDi by 82% relative to the control on unglaciated soils, but we observed no P treatment effect on glaciated soils. A similar result was observed for PMono. Soil pH, alone, did not significantly influence enzyme activities. Results suggest that soil microorganisms are more likely to be P-limited in older unglaciated soils. However, dramatically higher phosphatase activity in response to very low P availability suggests that an underlying ecosystem P limitation can be ameliorated by soil microbial community dynamics. This mechanism may be more important for older, unglaciated soils that have already crossed a pedogenic threshold where P availability influences ecosystem and microbial function.

  9. Climate change and the future of natural disturbances in the central hardwood region

    SciTech Connect

    Dale, Virginia H; Hughes, M. Joseph; Hayes, Daniel J

    2015-01-01

    The spatial patterns and ecological processes of the southeastern upland hardwood forests have evolved to reflect past climatic conditions and natural disturbance regimes. Changes in climate can lead to disturbances that exceed their natural range of variation, and the impacts of these changes will depend on the vulnerability or resiliency of these ecosystems. Global Circulation Models generally project annual increases in temperature across the southeastern United States over the coming decades, but changes in precipitation are less consistent. Even more unclear is how climate change might affect future trends in the severity and frequency of natural disturbances, such as severe storms, fires, droughts, floods, and insect outbreaks. Here, we use a time-series satellite data record to map the spatial pattern and severity of broad classes of natural disturbances the southeast region. The data derived from this map allow analysis of regional-scale trends in natural and anthropogenic disturbances in the region over the last three decades. Throughout the region, between 5% and 25% of forest land is affected by some sort of disturbance each year since 1985. The time series reveals periodic droughts that themselves are widespread and of low severity but are associated with more localized, high-severity disturbances such as fire and insect outbreaks. The map also reveals extensive anthropogenic disturbance across the region in the form of forest conversion related to resource extraction and urban and residential development. We discuss how changes in climate and disturbance regimes might affect southeastern forests in the future via altering the exposure, sensitivity and adaptive capacity of these ecosystems. Changes in climate are highly likely to expose southeastern forests to more frequent and severe disturbances, but ultimately how vulnerable or resilient southeastern forests are to these changes will depend on their sensitivity and capacity to adapt to these novel

  10. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    SciTech Connect

    Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  11. Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia

    USGS Publications Warehouse

    Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M.

    2010-01-01

    Forest restoration requires an understanding of the natural disturbance regime of the target community and estimates of the historic range of variability of ecosystem components (composition, structure, and disturbance processes). Management prescriptions that support specific restoration activities should be consistent with these parameters. In this study, we describe gap-phase dynamics of even-aged, second-growth red spruce-northern hardwood stands in West Virginia that have been significantly degraded following early Twentieth Century harvesting and wildfire. In the current stage of stand development, gaps tended to be small, with mean canopy gap and extended canopy gap sizes of 53.4m2 and 199.3m2, respectively, and a canopy turnover rate of 1.4%year-1. The majority of gaps resulted from the death of one or two trees. American beech snags were the most frequent gap maker, partially due to the elevated presence of beech-bark disease in the study area. Gaps ranged in age from 1 to 28 years, had a mean of 13 years, and were unimodal in distribution. We projected red spruce to be the eventual gap filler in approximately 40% of the gaps. However, we estimated that most average-sized gaps will close within 15-20 years before red spruce canopy ascension is projected (30-60 years). Accordingly, many understory red spruce will require more than one overhead release - an observation verified by the tree-ring record and consistent with red spruce life history characteristics. Based on our observations, silvicultural prescriptions that include overhead release treatments such as thinning from above or small gap creation through selection harvesting could be an appropriate activity to foster red spruce restoration in the central Appalachians. ?? 2010 Elsevier B.V.

  12. Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest.

    PubMed

    Melvin, April M; Lichstein, Jeremy W; Goodale, Christine L

    2013-12-01

    In acid-impacted forests, decreased soil pH and calcium (Ca) availability have the potential to influence biotic and abiotic controls on carbon (C) and nitrogen (N) cycling. We investigated the effects of liming on above- and belowground C and N pools and fluxes 19 years after lime addition to the Woods Lake Watershed, Adirondack Park, New York, USA. Soil pH and exchangeable Ca remained elevated in the forest floor and upper mineral soil of limed areas. Forest floor C and N stocks were significantly larger in limed plots (68 vs. 31 Mg C/ha, and 3.0 vs. 1.5 Mg N/ha), resulting from a larger mass of Oa material. Liming reduced soil basal respiration rates by 17% and 43% in the Oe and Oa horizons, respectively. Net N mineralization was significantly lower in the limed soils for both forest floor horizons. Additional measurements of forest floor depth outside of our study plots, but within the treatment and control subcatchments also showed a deeper forest floor in limed areas; however, the mean depth of limed forest floor was 5 cm shallower than that observed in our study plots. Using a differential equation model of forest floor C dynamics, we found that liming effects on C fluxes measured within our study plots could explain the small observed increase in the Oe C stock but were not large enough to explain the increase in the Oa. Our catchment-wide assessment of forest floor depth, however, indicates that our plot analysis may be an overestimate of ecosystem-scale C and N stocks. Our results suggest that the mechanisms identified in our study, primarily liming-induced reduction in decomposition rates, may account for much of the observed increase in forest floor C. These findings emphasize the importance of understanding of the effects of liming in hardwood forests, and the long-term impacts of acid deposition on forest C and N uptake and retention.

  13. Social Insects Dominate Eastern US Temperate Hardwood Forest Macroinvertebrate Communities in Warmer Regions

    PubMed Central

    King, Joshua R.; Warren, Robert J.; Bradford, Mark A.

    2013-01-01

    Earthworms, termites, and ants are common macroinvertebrates in terrestrial environments, although for most ecosystems data on their abundance and biomass is sparse. Quantifying their areal abundance is a critical first step in understanding their functional importance. We intensively sampled dead wood, litter, and soil in eastern US temperate hardwood forests at four sites, which span much of the latitudinal range of this ecosystem, to estimate the abundance and biomass m−2 of individuals in macroinvertebrate communities. Macroinvertebrates, other than ants and termites, differed only slightly among sites in total abundance and biomass and they were similar in ordinal composition. Termites and ants were the most abundant macroinvertebrates in dead wood, and ants were the most abundant in litter and soil. Ant abundance and biomass m−2 in the southernmost site (Florida) were among the highest values recorded for ants in any ecosystem. Ant and termite biomass and abundance varied greatly across the range, from <1% of the total macroinvertebrate abundance (in the northern sites) to >95% in the southern sites. Our data reveal a pronounced shift to eusocial insect dominance with decreasing latitude in a temperate ecosystem. The extraordinarily high social insect relative abundance outside of the tropics lends support to existing data suggesting that ants, along with termites, are globally the most abundant soil macroinvertebrates, and surpass the majority of other terrestrial animal (vertebrate and invertebrate) groups in biomass m−2. Our results provide a foundation for improving our understanding of the functional role of social insects in regulating ecosystem processes in temperate forest. PMID:24116079

  14. Supplemental planting of early successional tree species during bottomland hardwood afforestation

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Outcalt, Kenneth W.

    2002-01-01

    Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These species are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional tree species often enhance vertical structure, few of these species invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation trees. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing trees: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, tree patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant trees was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. Tree heights did not differ between species or among weed control treatments. Girdling of trees by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via tree shelters did not improve survival or vertical development of sycamore or cottonwood.

  15. Long-term isoprene flux measurements above a northern hardwood forest

    NASA Astrophysics Data System (ADS)

    Pressley, Shelley; Lamb, Brian; Westberg, Hal; Flaherty, Julia; Chen, Jack; Vogel, Christoph

    2005-04-01

    We report continuous whole canopy isoprene emission fluxes from a northern hardwood forest in Michigan for the 1999-2002 growing seasons. The eddy covariance fluxes of isoprene, CO2, latent heat, and sensible heat are presented along with an analysis of the seasonal and year-to-year variations. Measurements were made in collaboration with the AmeriFlux site located at the University of Michigan Biological Station (UMBS) and the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET). In general, isoprene emissions increased throughout the day with increasing temperature and light levels, peaked at midafternoon, and declined to zero by night. There were significant variations from one 30-min period to the next, and from one day to the next. Average midday isoprene fluxes were 2.8, 3.2, and 2.9 mg C m-2 h-1 for 2000 through 2002, respectively. Insufficient data were available to include 1999. Last frost and full leaf out were significantly later in 2002 compared to the other years; however, total accumulated isoprene emissions for each year varied by less than 10%. Fully developed isoprene emissions occurred between 400 and 500 heating degree days, roughly half those required at other sites. Using long-term net ecosystem exchange measurements from the UMBS˜Flux group, isoprene emissions represent between 1.7 to 3.1% of the net carbon uptake at this site. Observations for 2000-2002 were compared with the BEIS3 emission model. Estimates agree well with observations during the midsummer period, but BEIS3 overestimates observations during the spring onset of emissions and the fall decline in emissions. This work provides a unique long-term data set useful for verifying canopy scale models and to help us better understand the dynamics of biosphere-atmosphere exchange of isoprene.

  16. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  17. Avian response to microclimate in canopy gaps in a bottomland hardwood forest.

    SciTech Connect

    Champlin, Tracey B.; Kilgo, John C.; Gumpertz, Marcia L.; Moorman, Christopher E.

    2009-04-01

    Abstract - Microclimate may infl uence use of early successional habitat by birds. We assessed the relationships between avian habitat use and microclimate (temperature, light intensity, and relative humidity) in experimentally created canopy gaps in a bottomland hardwood forest on the Savannah River Site, SC. Gaps were 2- to 3-year-old group-selection timber harvest openings of three sizes (0.13, 0.26, 0.50 ha). Our study was conducted from spring through fall, encompassing four bird-use periods (spring migration, breeding, post-breeding, and fall migration), in 2002 and 2003. We used mist netting and simultaneously recorded microclimate variables to determine the influence of microclimate on bird habitat use. Microclimate was strongly affected by net location within canopy gaps in both years. Temperature generally was higher on the west side of gaps, light intensity was greater in gap centers, and relative humidity was higher on the east side of gaps. However, we found few relationships between bird captures and the microclimate variables. Bird captures were inversely correlated with temperature during the breeding and postbreeding periods in 2002 and positively correlated with temperature during spring 2003. Captures were high where humidity was high during post-breeding 2002, and captures were low where humidity was high during spring 2003. We conclude that variations in the local microclimate had minor infl uence on avian habitat use within gaps. Instead, habitat selection in relatively mild regions like the southeastern US is based primarily on vegetation structure, while other factors, including microclimate, are less important.

  18. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    PubMed

    Wang, Wen J; He, Hong S; Spetich, Martin A; Shifley, Stephen R; Thompson Iii, Frank R; Fraser, Jacob S

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition) would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak decline.

  19. Adsorption of Clostridium thermocellum cellulases onto pretreated mixed hardwood, avicel, and lignin

    SciTech Connect

    Bernardez, T.D.; Lyford, K.; Hogsett, D.A.; Lynd, L.R. . Thayer School of Engineering)

    1993-09-20

    Adsorption of Avicel-hydrolyzing activity was examined with respect to: mixed hardwood flour pretreated with 1% sulfuric acid for 9 s at 220C (PTW220), lignin prepared from PTW220 by either acid or enzymatic hydrolysis, and Avicel. Experiments were conducted at 60C for all materials, and also at 25C for PTW220. Based on transient adsorption results and reaction rates, times were selected at which to characterize adsorption at 60C as follows: PTW220, 1 min; lignin, 30 min; and Avicel, 45 min. Similar results were obtained for adsorption of cellulase activity to PTW220 at 25 and 60C, and for lignin prepared by enzymatic and acid hydrolysis. For all materials, adsorption was described well by a Langmuir equation, although the reversibility of adsorption was not investigated. Langmuir affinity constants (L/g) were: PTW220, 109; lignin, 17.9; Avicel, 4.3; cellulose from PTW220, [ge]187. Langmuir capacity constants were 760 for PTW220 and 42 for Avicel; the cellulase binding capacity of lignin appeared to be very high under the conditions examined, and could not be determined. At low and moderate cellulase loadings at least, the majority of cellulase activity adsorbed to PTVV220 is bound to the cellulosic component. The results indicate that PTW220, and its cellulose component in particular, differ radically from Avicel with respect to adsorption. Avicel-hydrolyzing activity and CMC-hydrolyzing activities were found to bind to Avicel with a constant ratio of essentially one, consistent with adsorption of a multi-activity complex.

  20. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    SciTech Connect

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  1. Production physiology of three fast-growing hardwood species along a soil resource gradient.

    PubMed

    Henderson, Dawn E; Jose, Shibu

    2005-12-01

    We determined how specific leaf area (SLA), specific leaf nitrogen (SLN), leaf area index (LAI), light-saturated photosynthesis (Amax) and aboveground net primary productivity (ANPP) of three commercially important hardwood species, eastern cottonwood (Populus deltoides Bartr.), American sycamore (Platanus occidentalis L.) and cherrybark oak (Quercus falcata var.pagodafolia Ell.), vary across a soil resource gradient. Five treatments were applied in a randomized block design (control, irrigation only (IRR), and irrigation plus fertilization with 56, 112 or 224 kg N ha-1 year-1 (N56, N112 and N224)) with four replications per species. When trees were 6 years old, Amax, SLA, SLN, LAI and ANPP were quantified during peak leaf production within a single growing season. In all species, Amax for sun leaves was significantly higher than for shade leaves (34, 32 and 29 micromol m2 s-1 versus 27, 23 and 23 micromol m2 s-1 for cottonwood, cherrybark oak and sycamore sun and shade leaves, respectively) and tended to plateau in the N112 treatment. The SLA was significantly lower in sun than in shade leaves and reached a plateau in IRR-treated cottonwood and sycamore, and in N56-treated oak. Values of SLN peaked in the N122 treatment for cottonwood sun leaves (1.73 g N m2) and in the N56 treatment for sycamore and oak (1.54 and 1.90 g N m2, respectively). In sun and shade leaves of all species, Amax increased with increasing SLN. Cherrybark oak LAI reached a plateau across the resource gradient in the N56 treatment, whereas cottonwood and sycamore LAI reached a plateau in the IRR treatment. All species exhibited significant curvilinear relationships between canopy Amax and ANPP. These findings indicate that nutrients and water regulate leaf-level traits such as SLA and SLN, which in turn influence LAI and canopy photosynthesis, thereby affecting ANPP at the tree and stand levels.

  2. Bottomland hardwood establishment and avian colonization of reforested sites in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.

    2005-01-01

    Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree

  3. Regional extent of an ecosystem engineer: earthworm invasion in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-09-01

    The invasion of exotic earthworms into northern temperate and boreal forests previously devoid of earthworms is an important driver of ecosystem change. Earthworm invasion can cause significant changes in soil structure and communities, nutrient cycles, and the diversity and abundance of herbaceous plants. However, the regional extent and patterns of this invasion are poorly known. We conducted a regional survey in the Chippewa and Chequamegon National Forests, in Minnesota and Wisconsin, U.S.A., respectively, to measure the extent and patterns of earthworm invasion and their relationship to potential earthworm introduction sites. We sampled earthworms, soils, and vegetation in 20 mature, sugar maple-dominated forest stands in each national forest and analyzed the relationship between the presence of five earthworm taxonomic groups, habitat variables, and distance to the nearest potential introduction site. Earthworm invasion was extensive but incomplete in the two national forests. Four of the six earthworm taxonomic groups occurred in 55-95% of transects; however 20% of all transects were invaded by only one taxonomic group that has relatively minor ecological effects. Earthworm taxonomic groups exhibited a similar sequence of invasion found in other studies: Dendrobaena > Aporrectodea = Lumbricus juveniles > L. rubellus > L. terrestris. Distance to the nearest road was the best predictor of earthworm invasion in Wisconsin while distance to the nearest cabin was the best predictor in Minnesota. These data allow us to make preliminary assessments of landscape patterns of earthworm invasion. As an example, we estimate that 82% of upland mesic hardwood stands in the Wisconsin region are likely invaded by most taxonomic groups while only 3% are unlikely to be invaded at present. Distance to roads and cabins provides a coarse-scale predictor of earthworm invasion to focus stand-level assessments that will help forest managers better understand current and potential

  4. Dehydroepiandrosterone Inhibits Glucose Flux Through the Pentose Phosphate Pathway in Human and Mouse Endometrial Stromal Cells, Preventing Decidualization and Implantation

    PubMed Central

    Frolova, Antonina I.; O'Neill, Kathleen

    2011-01-01

    Endometrial stromal cells (ESC) must undergo a hormone-driven differentiation to form decidual cells as a requirement of proper embryo implantation. Recent studies from our laboratory have demonstrated that decidualizing cells require glucose transporter 1 expression and an increase in glucose use to complete this step. The present study focuses on the glucose-dependent molecular and metabolic pathways, which are required by ESC for decidualization. Inhibition of glycolysis had no effect on decidualization. However, blockade of the pentose phosphate pathway (PPP) with pharmacologic inhibitors 6-aminonicotinamide or dehydroepiandrosterone (DHEA), and short hairpin RNA-mediated knockdown of glucose-6-phosphate dehydrogenase, the rate-limiting step in the PPP, both led to strong decreases in decidual marker expression in vitro and decreased decidualization in vivo. Additionally, the studies demonstrate that inhibition is due, at least in part, to ribose-5-phosphate depletion, because exogenous nucleoside administration restored decidualization in these cells. The finding that PPP inhibition prevents decidualization of ESC is novel and clinically important, because DHEA is an endogenous hormone produced by the adrenal glands and elevated in a high proportion of women who have polycystic ovary syndrome, the most common endocrinopathy in reproductive age women. Together, this data suggest a mechanistic link between increased DHEA levels, use of glucose via the PPP, and pregnancy loss. PMID:21680659

  5. Sex determination by PCR analysis of DNA extracted from incinerated, deciduous teeth.

    PubMed

    Williams, D; Lewis, M; Franzen, T; Lissett, V; Adams, C; Whittaker, D; Tysoe, C; Butler, R

    2004-01-01

    Establishing the biological sex of human remains is a very important part of identifying victims of fire when severe soft tissue destruction has occurred. Deciduous (children's) teeth were exposed to a range of incineration temperatures 100-500 degrees C for 15 minutes. Polymerase Chain Reaction (PCR) amplification was used to identify specific human amelogenin regions. There was successful identification of human biological sex, from deciduous teeth exposed to incineration temperatures of 200 degrees C and below, using standard ethidium bromide gel staining. There was greater sensitivity using fragment analysis by laser induced fluorescence which achieved sex identification from some teeth heated to 400 degrees C.

  6. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed Central

    Consolaro, Alberto

    2016-01-01

    Abstract When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials. PMID:27275612

  7. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed

    Consolaro, Alberto

    2016-01-01

    When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials.

  8. The occurrence of copper in deciduous teeth of girls and boys living in Upper Silesian Industry Region (Southern Poland).

    PubMed

    Fischer, Agnieszka; Kwapuliński, Jerzy; Wiechuła, Danuta; Fischer, Tomasz; Loska, Małgorzata

    2008-01-25

    This work presents the results of a research concerning the copper content in different types of deciduous teeth (incisor, canine, molar) of boys and girls living in the Upper Silesian Industry Region (Southern Poland). The average copper concentration in deciduous teeth was 9.92 microg/g and was significantly higher in the deciduous teeth of boys (12.24 microg/g) in comparison to the deciduous teeth of girls (8.60 microg/g). The concentration of copper was statistically variable depending on the type of tooth (incisor, canine, molar). The results of the correlation analysis and cluster analysis indicate mainly the participation of lead, iron, manganese and chromium ions in the formation of copper content in hard tissue of deciduous teeth.

  9. Modeling the influence of dynamic zoning of forest harvesting on ecological succession in a northern hardwoods landscape.

    PubMed

    Zollner, Patrick A; Gustafson, Eric J; He, Hong S; Radeloff, Volker C; Mladenoff, David J

    2005-04-01

    Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies produce larger tracts of interior, closed canopy forest, thus increasing the value of these landscapes for interior-dependent wildlife. We used the simulation model LANDIS to examine how the implementation of a dynamic zoning strategy would change trajectories of ecological succession in the Great Divide Ranger District of the Chequamegon-Nicolet National Forest in northern Wisconsin over 500 years. The components of dynamic zoning strategies (number of zones in a scenario and the length of the hiatus between successive entries into zones) and their interaction had highly significant impacts on patterns of forest succession. Dynamic zoning scenarios with more zones and shorter hiatus lengths increased the average amount of the forest dominated by early successional aspen (Populus sp.). Dynamic zoning scenarios with two zones produced more late successional mature northern hardwoods than scenarios with four zones. Dynamic zoning scenarios with very short (30 years) or very long (120 years) hiatus lengths resulted in more late successional mature northern hardwoods than scenarios with intermediate hiatus lengths (60 and 90 years). However, none of the dynamic scenarios produced as much late successional mature northern hardwoods as the static alternative. Furthermore, the amounts of all habitat types in all dynamic zoning scenarios fluctuated greatly in time and space relative to static alternatives, which could negatively impact wildlife species that require a stable amount of habitat above some minimum critical threshold. Indeed, implementing dynamic zoning scenarios of different designs would have both

  10. Long-term effects of a lock and dam and greentree reservoir management on a bottomland hardwood forest

    USGS Publications Warehouse

    King, S.L.; Allen, J.A.; McCoy, J.W.

    1998-01-01

    We investigated the long-term effects of a lock and dam and greentree reservoir management on a riparian bottomland hardwood forest in southern Arkansas, USA, by monitoring stress, mortality, and regeneration of bottomland hardwood trees in 53 permanent sampling plots from 1987-1995. The lock and dam and greentree reservoir management have altered the timing, depth, and duration of flooding within the wetland forest. Evaluation of daily river stage data indicates that November overbank flooding (i.e. 0.3 m above normal pool) of 1 week duration occurred only 10 times from 1950 to 1995 and four of these occurrences were the result of artificial flooding of the greentree reservoir. Results of the vegetation study indicate that the five most common dominant and co-dominant species were overcup oak, water hickory, Nuttall oak, willow oak, and sweetgum. Mortality of willow oak exceeded that of all other species except Nuttall oak. Nuttall oak, willow oak, and water hickory had much higher percentages of dead trees concentrated within the dominant and co-dominant crown classes. Probit analysis indicated that differences in stress and mortality were due to a combination of flooding and stand competition. Overcup oak appears to exhibit very little stress regardless of crown class and elevation and, with few exceptions, had a significantly greater probability of occurring within lower stress classes than any other species. Only 22 new stems were recruited into the 5 cm diameter-at-breast height size class between 1990-1995 and of these, three were Nuttall oak, three were water hickory, and one was sweetgum. No recruitment into the 5 cm diameter-at-breast height size class occurred for overcup oak or willow oak. The results of the study suggest that the forest is progressing to a more water-tolerant community dominated by overcup oak. A conservative flooding strategy would minimize tree stress and maintain quality wildlife habitat within the forested wetland.The long

  11. Environmental impact assessment of a mixed tropical hardwood integrated pulp and paper mill--A case study

    SciTech Connect

    Mohamed, M. ); Landner, L. )

    1993-11-01

    An overview of the environmental impact assessment (EIA) for a mixed tropical hardwood integrated pulp and paper mill in Sabah, Malaysia, is presented. The EIA before the mill construction included, among other things, a detailed baseline study and also environmental impact predictions based on certain mill design and pollution abatement measures. Subsequent to mill construction (during the operational stage), data were gathered to determine the quality of the ambient air as well as the effluent and the receiving bay water quality. These post-construction monitoring results were then compared with the earlier impact predictions, and showed, in general, a good correspondence.

  12. Establishing even-aged pine and pine-hardwood mixtures in the Ouachita mountains using the shelterwood method

    SciTech Connect

    Shelton, M.G.; Baker, J.B.

    1992-01-01

    The study was established in 1989 as a joint effort among the Ouachita National Forest, the Southern Forest Experiment Station, and the University of Arkansas at Monticello. The goals of the study are: (1) to determine the levels at which pine and hardwoods are compatible in the shelterwood regeneration method by evaluating the amount, spatial distribution and development of regeneration and measuring the growth and yield of the retained seedtrees, (2) determine the damage to regeneration caused by the eventual seedtree harvest, and (3) to evaluate the wildlife habitat, water quality, and aesthetics of shelterwood stands so that comparisons can be made with uneven-aged stands.

  13. An M1-like Macrophage Polarization in Decidual Tissue during Spontaneous Preterm Labor That Is Attenuated by Rosiglitazone Treatment.

    PubMed

    Xu, Yi; Romero, Roberto; Miller, Derek; Kadam, Leena; Mial, Tara N; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S; Xu, Zhonghui; Tarca, Adi L; Drewlo, Sascha; Gomez-Lopez, Nardhy

    2016-03-15

    Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.

  14. Peripheral Blood Mononuclear Cells Infiltration Downregulates Decidual FAAH Activity in an LPS-Induced Embryo Resorption Model.

    PubMed

    Wolfson, Manuel Luis; Aisemberg, Julieta; Correa, Fernando; Franchi, Ana María

    2017-06-01

    Maternal infections with gram-negative bacteria are associated with miscarriage and are one of the most common complications during pregnancy. Previous studies from our group have shown that lipopolysaccharide (LPS)-activated infiltrating peripheral blood mononuclear cells (PBMC) into decidual tissue plays an important role in the establishment of a local inflammatory process that results in embryo cytotoxicity and early embryo resorption. Moreover, we have also shown that an increased endocannabinoid tone mediates LPS-induced deleterious effects during early pregnancy loss. Here, we sought to investigate whether the infiltrating PBMC modulates the decidual endocannabinoid tone and the molecular mechanisms involved. PBMC isolated from 7-day pregnant mice subjected to different treatments were co-cultured in a transwell system with decidual tissue from control 7-day pregnant mice. Decidual fatty acid amide hydrolase (FAAH) activity was measured by radioconvertion, total decidual protein nitration by Western blot (WB), and decidual FAAH nitration by immunoprecipitation followed by WB. We found that co-culture of PBMC obtained from LPS-treated mice increased the level of nitration of decidual FAAH, which resulted in a negative modulation of decidual FAAH activity. Interestingly, co-treatment with progesterone or aminoguanidine prevented this effect. We found that LPS-treated PBMC release high amounts of nitric oxide (NO) which causes tyrosine nitration of decidual FAAH, diminishing its enzymatic activity. Inactivation of FAAH, the main degrading enzyme of anandamide and similar endocannabinoids, could lead to an increased decidual endocannabinoid tone with embryotoxic effects. J. Cell. Physiol. 232: 1441-1447, 2017. © 2016 Wiley Periodicals, Inc.

  15. CARBON DIOXIDE FLUXES IN A CENTRAL HARDWOODS OAK-HICKORY FOREST ECOSYSTEM

    SciTech Connect

    Pallardy, Stephen G.; Gu, Lianhong; Hanson, Paul J; Meyers, T. P.; Wullschleger, Stan D; Yang, Bai; Hosman, K. P.

    2007-01-01

    A long-term experiment to measure carbon and water fluxes was initiated in 2004 as part of the Ameriflux network in a second-growth oak-hickory forest in central Missouri. Ecosystem-scale (~ 1 km2) canopy gas exchange (measured by eddy-covariance methods), vertical CO2 profile sampling and soil respiration along with meteorological parameters were monitored continuously. Early results from this forest located on the western margin of the Eastern Deciduous Forest indicated high peak rates of canopy CO2 uptake (35-40 ?mol m-2 s-1) during the growing season. Canopy CO2 profile measurements indicated substantial accumulation of CO2 (~500 ppm) near the surface in still air at night, venting of this buildup in the morning hours under radiation-induced turbulent air flow, and small vertical gradients of CO2 during most of the subsequent light period with minimum CO2 concentrations in the canopy. Flux of CO2 from the soil ranged from 2 to 8 ?mol m-2 s-1 and increased with temperature. Data from this site and others in the network will also allow characterization of regional spatial variation in carbon fluxes as well as inter-annual differences attributable to climatic events such as droughts.

  16. Differential anatomical responses to elevated CO2 in saplings of four hardwood species.

    PubMed

    Watanabe, Yoko; Satomura, Takami; Sasa, Kaichiro; Funada, Ryo; Koike, Takayoshi

    2010-07-01

    To determine whether an elevated carbon dioxide concentration ([CO(2)]) can induce changes in the wood structure and stem radial growth in forest trees, we investigated the anatomical features of conduit cells and cambial activity in 4-year-old saplings of four deciduous broadleaved tree species - two ring-porous (Quercus mongolica and Kalopanax septemlobus) and two diffuse-porous species (Betula maximowicziana and Acer mono) - grown for three growing seasons in a free-air CO(2) enrichment system. Elevated [CO(2)] had no effects on vessels, growth and physiological traits of Q. mongolica, whereas tree height, photosynthesis and vessel area tended to increase in K. septemlobus. No effects of [CO(2)] on growth, physiological traits and vessels were seen in the two diffuse-porous woods. Elevated [CO(2)] increased larger vessels in all species, except B. maximowicziana and number of cambial cells in two ring-porous species. Our results showed that the vessel anatomy and radial stem growth of Q. mongolica, B. maximowicziana and A. mono were not affected by elevated [CO(2)], although vessel size frequency and cambial activity in Q. mongolica were altered. In contrast, changes in vessel anatomy and cambial activity were induced by elevated [CO(2)] in K. septemlobus. The different responses to elevated [CO(2)] suggest that the sensitivity of forest trees to CO(2) is species dependent.

  17. p53 coordinates decidual sestrin 2/AMPK/mTORC1 signaling to govern parturition timing

    PubMed Central

    Cha, Jeeyeon; Yuan, Jia; Haraguchi, Hirofumi; Bartos, Amanda; Bradshaw, Heather B.; Hirota, Yasushi; Dey, Sudhansu K.

    2016-01-01

    Inflammation and oxidative stress are known risk factors for preterm birth (PTB); however, the mechanisms and pathways that influence this condition are not fully described. Previously, we showed that mTORC1 signaling is increased in mice harboring a uterine-specific deletion of transformation-related protein 53 (p53d/d mice), which exhibit premature decidual senescence that triggers spontaneous and inflammation-induced PTB. Treatment with the mTORC1 inhibitor rapamycin reduced the incidence of PTB in the p53d/d mice. Decidual senescence with heightened mTORC1 signaling is also a signature of human PTB. Here, we have identified an underlying mechanism for PTB and a potential therapeutic strategy for treating the condition. Treatment of pregnant p53d/d mice with either the antidiabetic drug metformin or the antioxidant resveratrol activated AMPK signaling and inhibited mTORC1 signaling in decidual cells. Both metformin and resveratrol protected against spontaneous and inflammation-induced PTB in p53d/d females. Using multiple approaches, we determined that p53 interacts with sestrins to coordinate an inverse relationship between AMPK and mTORC1 signaling that determines parturition timing. This signature was also observed in human decidual cells. Together, these results reveal that p53-dependent coordination of AMPK and mTORC1 signaling controls parturition timing and suggest that metformin and resveratrol have therapeutic potential to prevent PTB. PMID:27454290

  18. Analysis of developmental processes possibly related to human dental sexual dimorphism in permanent and deciduous canines.

    PubMed

    Moss, M L; Moss-Salentijn, L

    1977-05-01

    Analysis of published odontometric data on human dental sexual dimorphism indicates that this characteristic is most clearly expressed by the canine teeth. Review of the several processes involved in coronal odontogenesis suggests that such dimorphism is related to an absolutely longer period of amelogenesis for both deciduous and permanent dentitions.

  19. Differentiation of deciduous-calyx Korla fragrant pears using NIR hyperspectral imaging analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared hyperspectral imaging was investigated as a potential method for automatic sorting of pears according to their calyx type. The hyperspectral images were analyzed and wavebands at 1190 nm and 1199 nm were selected for differentiating deciduous-calyx fruits from persistent-calyx ones. A ...

  20. Compartment model for long-term contamination prediction in deciduous fruit trees after a nuclear accident

    SciTech Connect

    Antonopoulos-Domis, M.; Clouvas, A.; Gagianas, A. )

    1990-06-01

    Radiocesium contamination from the Chernobyl accident of different parts (fruits, leaves, and shoots) of selected apricot trees in North Greece was systematically measured in 1987 and 1988. The results are presented and discussed in the framework of a simple compartment model describing the long-term contamination uptake mechanism of deciduous fruit trees after a nuclear accident.

  1. Longitudinal analysis of deciduous tooth emergence: III. Sexual dimorphism in Bangladeshi, Guatemalan, Japanese, and Javanese children.

    PubMed

    Holman, Darryl J; Jones, Robert E

    2003-11-01

    Previous studies, mostly in European populations, found sex differences in the pattern of deciduous tooth emergence. Most studies find that the anterior dentition in males is precocial relative to the female dentition, and the pattern reverses so that females lead males in the emergence of the posterior deciduous dentition. Less is known about sex differences in the dental development and emergence of non-European populations. Here we examine the pattern of sex differences in deciduous tooth emergence in Japanese, Javanese, Guatemalan, and Bangladeshi children. The data come from four longitudinal or mixed longitudinal studies using similar study protocols. Survival analysis was used to estimate parameters of a log-normal distribution of emergence for each of the 10 teeth of the left dentition, and sexual dimorphism was assessed by sex-specific differences in mean emergence times and by Bennett's index. The results support the pattern of developmental cross-over observed in other populations. We conclude that there is little evidence to support the hypothesis of Tanguay et al. ([1984] J. Dent. Res. 63:65-68) that ethnic factors mediate sex differences in the emergence of deciduous teeth.

  2. The study of barium concentration in deciduous teeth, impacted teeth, and facial bones of Polish residents.

    PubMed

    Fischer, Agnieszka; Malara, Piotr; Wiechuła, Danuta

    2014-10-01

    The study determines the concentration of Ba in mineralized tissues of deciduous teeth, permanent impacted teeth, and facial bones. The study covers the population of children and adults (aged 6-78) living in an industrial area of Poland. Teeth were analyzed in whole, with no division into dentine and enamel. Facial bones and teeth were subjected to the following preparation: washing, drying, grinding in a porcelain mortar, sample weighing (about 0.2 g), and microwave mineralization with spectrally pure nitric acid. The aim of the study was to determinate the concentration of Ba in deciduous teeth, impacted permanent teeth, and facial bones. The concentration of barium in samples was determined over the ICP OES method. The Ba concentration in the tested bone tissues amounted to 2.2-15.5 μg/g (6.6 μg/g ± 3.9). The highest concentration of Ba was present in deciduous teeth (10.5 μg/g), followed by facial bones (5.2 μg/g), and impacted teeth (4.3 μg/g) (ANOVA Kruskal-Wallis rank test, p = 0.0002). In bone tissue and impacted teeth, Ba concentration increased with age. In deciduous teeth, the level of Ba decreased with children's age.

  3. The possible role of virus-specific CD8(+) memory T cells in decidual tissue.

    PubMed

    van Egmond, A; van der Keur, C; Swings, G M J S; Scherjon, S A; Claas, F H J

    2016-02-01

    The most abundant lymphocyte present in decidual tissue is the CD8(+) T cell. It has been shown that most decidual CD8(+) T cells have an effector-memory phenotype, but expressed reduced levels of perforin and granzyme B compared with the peripheral CD8(+) effector-memory T cells. The specificity of these CD8(+) memory T cells has yet to be determined. One hypothesis is that the decidual memory T cells are virus-specific T cells that should protect the fetus against incoming pathogens. As virus-specific CD8(+) memory T cells can cross-react with human leukocyte alloantigens, an alternative, but not mutually exclusive, hypothesis is that these CD8(+) T cells are fetus-specific. Using virus-specific tetramers, we found increased percentages of virus-specific CD8(+) T cells in decidual tissue compared with peripheral blood after uncomplicated pregnancy. So far, no evidence has been obtained for a cross-reactive response of these virus-specific T cells to fetal human leukocyte antigens. These results suggest that the virus-specific memory T cells accumulate in the placenta to protect the fetus from a harmful infection.

  4. Prenatal metal exposure in the Middle East: imprint of war in deciduous teeth of children.

    PubMed

    Savabieasfahani, M; Ali, S Sadik; Bacho, R; Savabi, O; Alsabbak, M

    2016-09-01

    In war zones, the explosion of bombs, bullets, and other ammunition releases multiple neurotoxicants into the environment. The Middle East is currently the site of heavy environmental disruption by massive bombardments. A very large number of US military bases, which release highly toxic environmental contaminants, have also been erected since 2003. Current knowledge supports the hypothesis that war-created pollution is a major cause of rising birth defects and cancers in Iraq. We created elemental bio-imaging of trace elements in deciduous teeth of children with birth defects from Iraq. Healthy and naturally shed teeth from Lebanon and Iran were also analyzed for trace elements. Lead (Pb) was highest in teeth from children with birth defects who donated their teeth from Basra, Iraq (mean 0.73-16.74 (208)Pb/(43)Ca ppm, n = 3). Pb in healthy Lebanese and Iranian teeth were 0.038-0.382 (208)Pb/(43)Ca ppm (n = 4) and 0.041-0.31 (208)Pb/(43)Ca ppm (n = 2), respectively. Our hypothesis that increased war activity coincides with increased metal levels in deciduous teeth is confirmed by this research. Lead levels were similar in Lebanese and Iranian deciduous teeth. Deciduous teeth from Iraqi children with birth defects had remarkably higher levels of Pb. Two Iraqi teeth had four times more Pb, and one tooth had as much as 50 times more Pb than samples from Lebanon and Iran.

  5. Changes in vascular extracellular matrix composition during decidual spiral arteriole remodeling in early human pregnancy.

    PubMed

    Smith, Samantha D; Choudhury, Ruhul H; Matos, Patricia; Horn, James A; Lye, Stephen J; Dunk, Caroline E; Aplin, John D; Jones, Rebecca L; Harris, Lynda K

    2016-05-01

    Uterine spiral arteriole (SA) remodeling in early pregnancy involves a coordinated series of events including decidual immune cell recruitment, vascular cell disruption and loss, and colonization by placental-derived extravillous trophoblast (EVT). During this process, decidual SA are converted from narrow, muscular vessels into dilated channels lacking vasomotor control. We hypothesized that this extensive alteration in SA architecture must require significant reorganization and/or breakdown of the vascular extracellular matrix (ECM). First trimester decidua basalis (30 specimens) was immunostained to identify spiral arterioles undergoing trophoblast-independent and -dependent phases of remodeling. Serial sections were then immunostained for a panel of ECM markers, to examine changes in vascular ECM during the remodeling process. The initial stages of SA remodeling were characterized by loss of laminin, elastin, fibrillin, collagen types III, IV and VI from the basement membrane, vascular media and/or adventitia, and surrounding decidual stromal cells. Loss of ECM correlated with disruption and disorganization of vascular smooth muscle cells, and the majority of changes occurred prior to extensive colonization of the vessel wall by EVT. The final stages of SA remodeling, characterized by the arrival of EVT, were associated with the increased mural deposition of fibronectin and fibrinoid. This study provides the first detailed analysis of the spatial and temporal loss of ECM from the walls of remodeling decidual SA in early pregnancy.

  6. Nutrient uptake and loss by container-grown deciduous and evergreen Rhododendron nursery plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of N fertilizer application on plant uptake and demand for other nutrients was evaluated from May 2005 to February 2006 in container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ). Increased N-availability incre...

  7. IFN type I and II induce BAFF secretion from human decidual stromal cells.

    PubMed

    Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Lundqvist, Christina; Telemo, Esbjörn; Nava, Silvia; Kaipe, Helen; Rudin, Anna

    2017-01-06

    B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers' children exhibit higher BAFF levels in cord blood than non-farmers' children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy.

  8. IFN type I and II induce BAFF secretion from human decidual stromal cells

    PubMed Central

    Lundell, Anna-Carin; Nordström, Inger; Andersson, Kerstin; Lundqvist, Christina; Telemo, Esbjörn; Nava, Silvia; Kaipe, Helen; Rudin, Anna

    2017-01-01

    B cell activating factor (BAFF) is a critical cytokine for maturation of immature B cells. In murine lymph nodes, BAFF is mainly produced by podoplanin-expressing stromal cells. We have previously shown that circulating BAFF levels are maximal at birth, and that farmers’ children exhibit higher BAFF levels in cord blood than non-farmers’ children. Here, we sought to investigate whether maternal-derived decidual stromal cells from placenta secrete BAFF and examine what factors could stimulate this production. We found that podoplanin is expressed in decidua basalis and in the underlying villous tissue as well as on isolated maternal-derived decidual stromal cells. Decidual stromal cells produced BAFF when stimulated with IFN-γ and IFN-α, and NK cells and NK-T-like cells competent of IFN-γ production were isolated from the decidua. Finally, B cells at different maturational stages are present in decidua and all expressed BAFF-R, while stromal cells did not. These findings suggest that decidual stromal cells are a cellular source of BAFF for B cells present in decidua during pregnancy. PMID:28057926

  9. Effect of hemlock and deciduous forest canopy on chemistry of throughfall, West Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Rhodes, A. L.; Guswa, A. J.; McNicholas, J.; Mehter, S.; Spence, C.

    2009-12-01

    Ecological forest successions associated with climate change and human disturbance may alter chemical loads to forested New England watersheds. Spread of the invasive insect hemlock wooly adelgid (Adelges tsugae) to eastern North America is causing decline and mortality of the eastern hemlock (Tsuga Canadensis). To begin an evaluation of whether changes in nutrient cycling and rainfall amounts could be altered by this disturbance, we investigated differences in chemistry and volume of rain and throughfall between predominately hemlock and deciduous tree stands in a secondary growth forest located in West Whately, Massachusetts. From 3 June to 25 July 2009, we sampled 14 rain events from two plots: one dominated by eastern hemlock (LAI = 5.6 with 64% of stems as hemlock) and the other dominated by a mix of deciduous species (LAI = 4.7 with 47% of stems as maple and 42% of basal area accounted as white ash). Plots consisted of a 5 x 6 meter grid of 30 collectors for measuring throughfall volume. Half of these were combined into a composite sample and analyzed for pH, acid neutralizing capacity (ANC), dissolved organic carbon (DOC), base cations (Ca2+, Mg2+, Na+, K+), anions (Cl-, NO3-, SO42+), dissolved silica, and specific conductance. Throughfall results were compared against precipitation sampled from a collector located in a nearby field. Over the period of the study, rainfall totaled 311 mm. Throughfall amounted to 242 mm (78%) in the hemlock plot and 276 mm (89%) in the deciduous plot. On an event-by-event basis, the fraction of precipitation that appears as throughfall increases with amount. Throughfall from both hemlock and deciduous plots showed significantly (p < 0.05) higher pH, ANC, DOC, K+, Ca2+, and Mg2+ concentrations than open precipitation, suggesting that the canopy counteracts some acidity in rain and adds organic carbon and nutrients to throughfall. ANC is positively correlated with K+, Ca2+, Mg2+, and DOC, indicating that cation exchange between

  10. Deciduous and Evergreen Trees Rely on Deep Water Throughout the Year in a Subtropical Seasonal Forest

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.

    2010-12-01

    In subtropical and tropical seasonal forests, trees have adapted to low shallow soil water availability during the dry season by modifying root density, rooting depth, and leaf phenology. Here we test the well known hypothesis that water uptake in deciduous trees is restricted to the shallow soil layer, which prevents them from sustaining transpiring leaves during the dry season. Evergreens, on the other hand, access perennially available deep water sources, allowing them to maintain their transpiring leaves during the dry season. To determine where in the soil profile deciduous and evergreen trees take up water, we used stable isotope analysis to measure water source use of two deciduous and three evergreen species for a period of 13 months. In addition, to test the possibility that leaflessness could alter the isotopic composition of stem water, we measured the isotopic variation in stem water caused by artificial defoliation of an evergreen species. Deciduous and evergreen trees took up water from the same depths in both the wet and dry seasons. Deciduous and evergreen trees used approximately 51% deep water (50-150cm) throughout the year, while soil from 0-20cm was the least important water source with 24 and 6% of water uptake for wet and dry seasons, respectively. Low use of shallow water (0-20cm) in the wet season was due to inconstant water availability. Though the top 20cm of soil is the location of most nutrients, the soil’s limited water availability requires plants to have access to a more reliable deep water source to meet both their dry and wet season transpirational demands. This apparent spatial uncoupling in water and nutrient uptake denotes separate resource allocation for nutrient and water acquisition. Deciduous trees showed isotopic enrichment of stem water compared to evergreen plants only during the period that deciduous trees were leafless. We explain this as isotopic enrichment of fixed pool of stem water by evaporation as our defoliation

  11. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients

    PubMed Central

    Fajardo, Alex; Piper, Frida I.; Hoch, Günter

    2013-01-01

    Background and Aims The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous–evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Methods Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous–evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Key Results Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Conclusions Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures

  12. Functional diversity response to hardwood forest management varies across taxa and spatial scales.

    PubMed

    Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A

    2017-03-15

    Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature-forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term dataset that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these datasets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while

  13. Mass balance on green liquor pre-pulping extraction of northeast mixed hardwood.

    PubMed

    Um, Byung-Hwan; van Walsum, G Peter

    2010-08-01

    A forest biorefinery configuration employing a hemicellulose pre-pulping extraction is being investigated that will retain pulp yields, reduce the organic and inorganic load for liquor recovery, and create a hemicellulose feed stream for the generation of biofuels and biomaterials. Current efforts are focused on developing extract production and conditioning processes that will result in fermentable sugars suitable for conversion to fuel alcohols or organic acid chemical products. As efforts move the process closer to commercial demonstration, it is apparent that a high level of confidence is needed in the analysis of the partitioning of fresh wood into its extracted wood and liquid extract fractions. Of particular interest is the partitioning of the carbohydrates, as these constitute the feedstock for bioconversion to fuels and chemicals. The extraction method employed utilizes green liquor derived from the kraft pulping process for pretreatment of the woodchips. To enable analysis, green liquor extraction was followed by 4% sulfuric acid hydrolysis to complete hydrolysis of the oligomers that were still present. High performance anion-exchange chromatography (HPAEC-PAD) and high performance liquid chromatography (HPLC) methods were used to analyze the carbohydrates in northern hardwood and its extract fractions. The Bio-Rad Aminex HPX-87H column did not separate mannose, xylose, and galactose, but the area of the collective peak corresponds well to the sum of these components as measured by HPAEC. In addition to sugars, standard methods were employed for quantification of the individual components (e.g., lignin, ash, nitrogen, carbon, extractives, uronic and acetic acid). The analytical mass balance closure was 102.2% and 103.6% for raw wood, 99.3% and 102.3% for extracted wood, and 94.7% and 95.6% for hemicellulose extract from the HPAEC and HPLC, respectively. The extraction mass balance was 96.9% and 98.2% for HPAEC and HPLC, respectively. The data generated

  14. Sample size and allocation of effort in point count sampling of birds in bottomland hardwood forests

    USGS Publications Warehouse

    Smith, W.P.; Twedt, D.J.; Cooper, R.J.; Wiedenfeld, D.A.; Hamel, P.B.; Ford, R.P.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    To examine sample size requirements and optimum allocation of effort in point count sampling of bottomland hardwood forests, we computed minimum sample sizes from variation recorded during 82 point counts (May 7-May 16, 1992) from three localities containing three habitat types across three regions of the Mississippi Alluvial Valley (MAV). Also, we estimated the effect of increasing the number of points or visits by comparing results of 150 four-minute point counts obtained from each of four stands on Delta Experimental Forest (DEF) during May 8-May 21, 1991 and May 30-June 12, 1992. For each stand, we obtained bootstrap estimates of mean cumulative number of species each year from all possible combinations of six points and six visits. ANOVA was used to model cumulative species as a function of number of points visited, number of visits to each point, and interaction of points and visits. There was significant variation in numbers of birds and species between regions and localities (nested within region); neither habitat, nor the interaction between region and habitat, was significant. For a = 0.05 and a = 0.10, minimum sample size estimates (per factor level) varied by orders of magnitude depending upon the observed or specified range of desired detectable difference. For observed regional variation, 20 and 40 point counts were required to accommodate variability in total individuals (MSE = 9.28) and species (MSE = 3.79), respectively, whereas ? 25 percent of the mean could be achieved with five counts per factor level. Sample size sufficient to detect actual differences of Wood Thrush (Hylocichla mustelina) was >200, whereas the Prothonotary Warbler (Protonotaria citrea) required <10 counts. Differences in mean cumulative species were detected among number of points visited and among number of visits to a point. In the lower MAV, mean cumulative species increased with each added point through five points and with each additional visit through four visits

  15. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    USGS Publications Warehouse

    Newell, P.; King, Sammy L.; Kaller, Michael D.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees >= 50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  16. Foraging behavior of pileated woodpeckers in partial cut and uncut bottomland hardwood forest

    USGS Publications Warehouse

    Newell, P.; King, S.; Kaller, M.

    2009-01-01

    In bottomland hardwood forests, partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife like Louisiana black bear (Ursus americanus luteolus), white-tailed deer (Odocoileus virginianus), and Neotropical migrants. Although partial cutting may be beneficial to some species, those that use dead wood may be negatively affected since large diameter and poor quality trees (deformed, moribund, or dead) are rare, but normally targeted for removal. On the other hand, partial cutting can create dead wood if logging slash is left on-site. We studied foraging behavior of pileated woodpeckers (Dryocopus pileatus) in one- and two-year-old partial cuts designed to benefit priority species and in uncut forest during winter, spring, and summer of 2006 and 2007 in Louisiana. Males and females did not differ in their use of tree species, dbh class, decay class, foraging height, use of foraging tactics or substrate types; however, males foraged on larger substrates than females. In both partial cut and uncut forest, standing live trees were most frequently used (83% compared to 14% for standing dead trees and 3% for coarse woody debris); however, dead trees were selected (i.e. used out of proportion to availability). Overcup oak (Quercus lyrata) and bitter pecan (Carya aquatica) were also selected and sugarberry (Celtis laevigata) avoided. Pileated woodpeckers selected trees ???50 cm dbh and avoided trees in smaller dbh classes (10-20 cm). Density of selected foraging substrates was the same in partial cut and uncut forest. Of the foraging substrates, woodpeckers spent 54% of foraging time on live branches and boles, 37% on dead branches and boles, and 9% on vines. Of the foraging tactics, the highest proportion of foraging time was spent excavating (58%), followed by pecking (14%), gleaning (14%), scaling (7%), berry-eating (4%), and probing (3%). Woodpecker use of foraging tactics and substrates, and foraging height and substrate

  17. Nitrogen immobilization by wood-chip application: Protecting water quality in a northern hardwood forest

    USGS Publications Warehouse

    Homyak, P.M.; Yanai, R.D.; Burns, Douglas A.; Briggs, R.D.; Germain, R.H.

    2008-01-01

    Forest harvesting disrupts the nitrogen cycle, which may affect stream water quality by increasing nitrate concentrations, reducing pH and acid neutralizing capacity, and mobilizing aluminum and base cations. We tested the application of wood chips derived from logging slash to increase immobilization of N after harvesting, which should reduce nitrate flux to streams. In August 2004, a stand of northern hardwoods was patch-clearcut in the Catskill Mountains, NY, and four replicates of three treatments were implemented in five 0.2-ha cut patches. Wood chips were applied to the soil surface at a rate equivalent to the amount of slash smaller than eight inches in diameter (1?? treatment). A second treatment doubled that rate (2??), and a third treatment received no chips (0??). Additionally, three uncut reference plots were established in nearby forested areas. Ion exchange resin bags and soil KCl-extractions were used to monitor nitrate availability in the upper 5-10 cm of soil approximately every seven weeks, except in winter. Resin bags indicated that the wood chips retained 30% or 42% of the nitrate pulse, while for KCl extracts, the retention rate was 78% or 100% of the difference between 0?? and uncut plots. During the fall following harvest, wood-chip treated plots had resin bag soil nitrate concentrations about 25% of those in 0?? plots (p = 0.0001). In the first growing season after the cut, nitrate concentrations in wood-chip treated plots for KCl extracts were 13% of those in 0?? treatments (p = 0.03) in May and about half those in 0?? treatments (p = 0.01) in July for resin bags. During spring snowmelt, however, nitrate concentrations were high and indistinguishable among treatments, including the uncut reference plots for resin bags and below detection limit for KCl extracts. Wood chips incubated in litterbags had an initial C:N of 125:1, which then decreased to 70:1 after one year of field incubation. These changes in C:N values indicate that the wood

  18. Fluxes of Oxidized and Reduced Iron Through a Northern Hardwood Forest Spodosol

    NASA Astrophysics Data System (ADS)

    Fuss, C. B.; Driscoll, C. T.

    2008-12-01

    Iron (Fe) is abundant among trace elements in forest ecosystems and is important in the development and function of soils. In this study we use measurements from the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA. To better understand the biogeochemical behavior of Fe and its role in the development of Spodosol soils (podsolization), we have constructed a series of mass balance equations to determine fluxes of reduced (ferrous, Fe(II)) and oxidized (ferric, Fe(III)) iron draining through the soil profile. Additionally, we measured Fe in throughfall and leaf litterfall as well as stream water to better assess inputs to and output from the soil. Soil solution fluxes of Fe were highest from the organic (Oa) horizon and decreased with depth in the mineral (Bh and Bs) horizons, consistent with podsolization theories predicting immobilization of Fe in mineral soil. The fluxes of Fe(II), Fe(III), and dissolved organic carbon (DOC) show similar patterns to each other, also consistent with hypotheses of organically-complexed Fe translocated to the spodic horizon, where co-precipitation of Fe and C occur. The portion of total Fe as Fe(II) ranges approximately 10-60% in soil solutions, seemingly high for soils that are typically considered well- drained, oxidizing environments. Analysis of total Fe and Fe(II) in leaf litter extracts from the three most abundant hardwood species show leachate to be a major source of reduced Fe to solutions draining the forest floor as approximately 50% of this Fe is Fe(II). The dissolved Fe draining the forest floor is either complexed by organic compounds during litter decomposition or is in leached directly from leaves in a complexed form. Our results indicate these organic complexes stabilize Fe(II) in solution when oxidizing conditions should promote considerably higher Fe(III)-to-Fe(II) ratios. Qualitative measurements of dissolved oxygen concentration in the soil solution range from nearly depleted to

  19. Can we Constrain Carbon Assimilation and Allocation in a Multi-Species Hardwood Forest Using Water Flux Measurements?

    NASA Astrophysics Data System (ADS)

    Schäfer, K. V.; Oren, R.; Poulter, B.; Oishi, A. C.; Ellsworth, D. S.; Katul, G. G.

    2002-12-01

    Annual carbon budgets of terrestrial ecosystems and how climate perturbations alter them remain an active research area. A combination of measurements collected at multiple spatial and temporal scales is used in conjunction with models to quantify the relationship between water fluxes and C budgets. A multi-layer model for canopy CO2 uptake is employed in which the primary input is mean canopy stomatal conductance scaled via sap-flux of water vapor (gw) in a multi-species hardwood forest stand at the Duke Forest, NC, USA. The ecophysiological model relates stomatal conductance of CO2 (gCO2) to the ratio of internal (Ci) to external CO2 concentration (Ca) that is then used to calculate net assimilation (Anet) after correction for differences in diffusivities. Modeled assimilation rates agreed well with instantaneous leaf level measurements in the upper canopy, collected via porometry and monthly daytime carbon fluxes measured via eddy-flux augmented with daytime soil and wood respiration. Additionally annual biomass production augmented with construction and maintenance respiration agreed well with annual carbon uptake. The combination of sapflux measurements and the model provide reliable constrains on CO2 budgets in terrestrial ecosystems and showed lower carbon uptake in hardwood forest of the southeast than previously published.

  20. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis.

    PubMed

    Falck, Peter; Precha-Atsawanan, Suthsiri; Grey, Carl; Immerzeel, Peter; Stålbrand, Henrik; Adlercreutz, Patrick; Karlsson, Eva Nordberg

    2013-07-31

    To compare xylans from forestry with agricultural origins, hardwood xylan (birch) and cereal arabinoxylan (rye) were hydrolyzed using two variants of the xylanase RmXyn10A, full-length enzyme and catalytic module only, from Rhodothermus marinus . Cultivations of four selected bacterial species, using the xylooligosaccharide (XOS) containing hydrolysates as carbon source, showed selective growth of Lactobacillus brevis DSMZ 1264 and Bifidobacterium adolescentis ATCC 15703. Both strains were confirmed to utilize the XOS fraction (DP 2-5), whereas putative arabinoxylooligosaccharides from the rye arabinoxylan hydrolysate were utilized by only B. adolescentis. Escherichia coli did not grow, despite its capability to grow on the monosaccharides arabinose and xylose. It was also shown that Pediococcus parvulus strain 2.6 utilized neither xylose nor XOS for growth. In summary, RmXyn10A or its catalytic module proved suitable for high-temperature hydrolysis of hardwood xylan and cereal arabinoxylan, producing XOS that could qualify as prebiotics for use in functional food products.

  1. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production.

  2. Consequences of landscape patterns on the genetic composition of remnant hardwood stands in the Southeast: A pilot study.

    SciTech Connect

    Godt, Mary Jo, W.; Hamrick, J., L.

    2003-01-01

    Report of a pilot study intended to generate genetic data for a tree species in fragmented hardwood stands. It was anticipated that this data would permit assessment of the feasibility of long-term genetic research for which external funding support could be generated. A second objective was to initiate studies that addressed fundamental questions of how landscape structure, in conjunction with the population dynamics and reproductive characteristics of the tree species, influences genetic structure and long-term viability of hardwood forest stands on the Savannah River Site and in similar southeastern landscapes. Fragmentation of plant habitats can result in small, genetically isolated populations. Spatial isolation and small population size may have several consequences, including reduced reproduction, increased inbreeding and the stochastic loss of genetic variability. Such losses of genetic and genotypic diversity can reduce plant fitness and may diminish population viability. Deleterious genetic effects resulting from small population sizes can be ameliorated by gene flow via pollen and seed into fragmented populations.

  3. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    PubMed

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase.

  4. Propagation of Some Local Fig (Ficus carica L.) Cultivars by Hardwood Cuttings under the Field Conditions in Tunisia.

    PubMed

    Aljane, Fateh; Nahdi, Sabrine

    2014-01-01

    This research was carried out in Southeast of Tunisia in 2009 and 2010, in order to study the propagation of six (Ficus carica L.) cultivars by using hardwood cuttings under the field conditions. The effect of the cultivars and the type of buds, shoots age, shoots length, and shoots diameter were recorded. Ten cuttings per cultivar and/or cutting types with three replications were planted in rooting unit. Percentage of root emergence and six morphological parameters of young fig plants were measured. Results showed that the responses of cuttings as fig nursery plants presented a high variability among the five cultivars. The most widely varied characters were % root emergence (RE) and cumulative growth of young plant (CG). The first one ranged from 10% to 90%, the second varied within 32 and 112 cm. Concerning the ''BITHER" cultivar, 6 cutting types with different age, length, and diameter were evaluated. Results showed a great variation in % of root emergence (0-90%), length of nursery plant (3-77 cm), and number of roots/nursery plant (0-29 roots). The present research showed that the hardwood cutting of local fig cultivars can be propagated under field conditions in Southeast of Tunisia.

  5. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts

    PubMed Central

    Xie, Yingying; Wang, Xiaojing; Silander, John A.

    2015-01-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041–2050 and 2090–2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models. PMID:26483475

  6. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  7. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-03

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  8. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    PubMed

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  9. An M1-like macrophage polarization in decidual tissue during spontaneous preterm labor that is attenuated by rosiglitazone treatment1

    PubMed Central

    Kadam, Leena; Mial, Tara N.; Plazyo, Olesya; Garcia-Flores, Valeria; Hassan, Sonia S.; Xu, Zhonghui; Tarca, Adi L.; Drewlo, Sascha; Gomez-Lopez, Nardhy

    2016-01-01

    Macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo an M1 polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. Herein, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) M2-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared to term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL12, but low levels of PPARγ, during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with rosiglitazone reduces the expression of TNF and IL12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with rosiglitazone reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic pro-inflammatory response in B6 mice and down-regulating mRNA and protein expression of NFκB, TNF, and IL10 in decidual and myometrial macrophages. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor, and that PPARγ activation via rosiglitazone can attenuate the macrophage-mediated pro-inflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth. PMID:26889045

  10. The Coregulator, Repressor of Estrogen Receptor Activity (REA), Is a Crucial Regulator of the Timing and Magnitude of Uterine Decidualization

    PubMed Central

    Zhao, Yuechao; Park, Sunghee; Bagchi, Milan K.; Taylor, Robert N.

    2013-01-01

    Successful implantation and maintenance of pregnancy require the transformation of uterine endometrial stromal cells into distinct decidualized cells. Although estrogen and progesterone (P4) receptors are known to be essential for decidualization, the roles of steroid receptor coregulators in this process remain largely unknown. In this study, we have established a key role for the coregulator, repressor of estrogen receptor activity (REA), in the decidualization of human endometrial stromal cells (hESCs) in vitro and of the mouse uterus in vivo. Our studies revealed that the level of REA normally decreases to half as hESC decidualization proceeds and that uterine reduction of REA in transgenic heterozygous knockout mice or small interfering RNA knockdown of REA in hESC temporally accelerated and strongly enhanced the differentiation process, as indicated by changes in cell morphology and increased expression of biomarkers of decidualization, including P4 receptor. Findings in hESC cultured in vitro with estradiol, P4, and 8-bromo-cAMP over a 10-day period mirrored observations of enhanced decidualization response in transgenic mice with heterozygous deletion of REA. Importantly, gene expression and immunohistochemical analyses revealed changes in multiple components of the Janus kinase/signal transducer and activator of transcription pathway, including marked up-regulation of signal transducer and activator of transcription 3 and IL-11, master regulators of decidualization, and the down-regulation of several suppressor of cytokine signaling family members, upon reduction of REA. The findings highlight that REA physiologically restrains endometrial stromal cell decidualization, controlling the timing and magnitude of decidualization to enable proper coordination of uterine differentiation with concurrent embryo development that is essential for implantation and optimal fertility. PMID:23392257

  11. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives.

  12. Elsevier Trophoblast Research Award Lecture: Unique properties of decidual T cells and their role in immune regulation during human pregnancy.

    PubMed

    Tilburgs, T; Claas, F H J; Scherjon, S A

    2010-03-01

    Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy.

  13. Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation.

    PubMed

    Kuroda, Katsushi; Kasuga, Jun; Arakawa, Keita; Fujikawa, Seizo

    2003-02-01

    It has been accepted that xylem ray parenchyma cells (XRPCs) in hardwood species respond to subfreezing temperatures either by deep supercooling or by extracellular freezing. Present study by cryo-scanning electron microscopy examined the freezing responses of XRPCs in five boreal hardwoods: Salix sachalinensis Fr. Schmit, Populus sieboldii Miq., Betula platyphylla Sukat. var japonica Hara, Betula pubescens Ehrh., and red osier dogwood (Cornus sericea), in which XRPCs have been reported to respond by extracellular freezing. Cryo-scanning electron microscopy observations revealed that slow cooling of xylem to -80 degrees C resulted in intracellular freezing in the majority of XRPCs in S. sachalinensis, an indication that these XRPCs had been deep supercooled. In contrast, in the majority of XRPCs in P. sieboldii, B. platyphylla, B. pubescens, and red osier dogwood, slow cooling to -80 degrees C produced slight cytorrhysis without clear evidence of intracellular freezing, suggesting that these XRPCs might respond by extracellular freezing. In these XRPCs exhibited putative extracellular freezing; however, deep etching revealed the apparent formation of intracellular ice crystals in restricted local areas. To confirm the occurrence of intracellular freezing, we rewarmed these XRPCs after cooling and observed very large intracellular ice crystals as a result of the recrystallization. Thus, the XRPCs in all the boreal hardwoods that we examined responded by deep supercooling that was accompanied with incomplete desiccation. From these results, it seems possible that limitations to the deep-supercooling ability of XRPCs might be a limiting factor for adaptation of hardwoods to cold climates.

  14. Ecohydrologic implications of differences in throughfall between hemlock and deciduous forest plots, West Whately, MA

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.; McNicholas, J.; Mehter, S.; Spence, C.

    2009-12-01

    Invasive pests, especially in conjunction with climate change, have the potential to transform the species composition of many forests. In the northeastern United States, the hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga Canadensis), a tree known for its ecological role more than its timber value. To begin to assess the effect on the water cycle of converting hemlock to deciduous forest, we carried out a throughfall investigation in West Whately, MA during the summer of 2009. From 3 June to 25 July, we measured the volume and chemistry of throughfall in two forest plots: one dominated by hemlock (LAI = 5.6) and one comprising a variety of deciduous species (LAI = 4.7), including many saplings and sub-canopy trees. Over the period of the study, rainfall totaled 311 mm and throughfall amounted to 276 mm (89%) in the deciduous plot and 242 mm (78%) in the hemlock stand. When compared to open precipitation, throughfall from both plots showed significantly higher levels of acid neutralizing capacity, pH, and concentrations of K+, Ca2+, and Mg2+. On an event-by-event basis, the fraction of precipitation that shows up as throughfall increases with amount, and representing interception as a constant depth, Δ, provides a reasonable fit (Δdeciduous = 2.5 mm, R2 = 0.99; Δhemlock = 5 mm, R2 = 0.96). Analysis of variance and time-stability plots indicate a strong persistent effect of collector position on throughfall depth, leading to potential efficiencies in measurement strategies. In both stands, the spatial variability of throughfall depths is higher for lower intensity events, and the coefficient of variation has a value around 30% for larger events. The skewness of throughfall depths among collectors within the hemlock plot is generally small. Throughfall depths are positively skewed in the deciduous plot, and one collector consistently received throughfall equal to twice the incident rainfall. Should hemlock stands be eliminated and

  15. Leaf economics of evergreen and deciduous tree species along an elevational gradient in a subtropical mountain

    PubMed Central

    Bai, Kundong; He, Chengxin; Wan, Xianchong; Jiang, Debing

    2015-01-01

    The ecophysiological mechanisms underlying the pattern of bimodal elevational distribution of evergreen tree species remain incompletely understood. Here we used leaf economics spectrum (LES) theory to explain such patterns. We measured leaf economic traits and constructed an LES for the co-existing 19 evergreen and 15 deciduous species growing in evergreen broad-leaved forest at low elevation, beech-mixed forest at middle elevation and hemlock-mixed forest at high elevation in Mao'er Mountain, Guangxi, Southern China (25°50′N, 110°49′E). Leaf economic traits presented low but significant phylogenetic signal, suggesting trait similarity between closely related species. After considering the effects of phylogenetic history, deciduous species in general showed a more acquisitive leaf strategy with a higher ratio of leaf water to dry mass, higher leaf nitrogen and phosphorous contents, higher photosynthetic and respiratory rates and greater photosynthetic nitrogen-use efficiency. In contrast, evergreen species exhibited a more conservative leaf strategy with higher leaf mass per area, greater construction costs and longer leaf life span. With the elevation-induced decreases of temperature and soil fertility, both evergreen and deciduous species showed greater resource conservation, suggesting the increasing importance of environmental filtering to community assembly with increasing elevation. We found close inter-specific correlations between leaf economic traits, suggesting that there are strong genetic constraints limiting the independent evolution of LES traits. Phylogenetic signal increased with decreasing evolutionary rate across leaf economic traits, suggesting that genetic constraints are important for the process of trait evolution. We found a significantly positive relationship between primary axis species score (PASS) distance and phylogenetic distance across species pairs and an increasing average PASS distance between evergreen and deciduous species

  16. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth.

    PubMed

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK-pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SH baseline and SRI baseline), after a total of 2 min (SH2 min) and after 4 min (SH4 min and SRI4 min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SH baseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (-90.2 ± 11.3 VHN) than in permanent enamel (-44.3 ± 12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4 min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  17. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth

    PubMed Central

    Lussi, Adrian; Carvalho, Thiago Saads

    2015-01-01

    This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK−pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SHbaseline and SRIbaseline), after a total of 2 min (SH2min) and after 4 min (SH4min and SRI4min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SHbaseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (−90.2±11.3 VHN) than in permanent enamel (−44.3±12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium

  18. Quantifying the Role of Bottomland Hardwood Forest Flood Attenuation in the Central U.S

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Bulliner, E. A.; Freeman, G. W.; Scollan, D. P.; Romine, J.; Chinnasamy, P.; Huang, D.; Schulz, J.

    2010-12-01

    Contemporary floodplain management is a growing concern, particularly in regions where climate change predictions include increased precipitation such as the central U.S. and Missouri. Historically, bottomland hardwood forests (BHF) played a significant role in runoff and flood attenuation. However, most of the floodplain BHF in Missouri was removed in the 19th and 20th centuries to cultivate the rich underlying soils. In many instances, BHF conversion required the installation of drainage and flood control structures, such as drainage tiles, ditches, levees, and dams. Many stream and river channels were straightened and enlarged to further reduce flooding. Structural changes, coupled with changes in vegetation and soils, drastically altered the hydrology of streams, floodplains, and the remnant BHF. Today, century-old management practices are coming under scrutiny in the Midwest in terms of management efficacy in contemporary urbanizing watersheds. Therefore, work is being conducted in central Missouri to quantify current floodplain flow attenuation of a 303(d) listed impaired urban stream. Instrumentation was installed in lower reaches of the Hinkson Creek Watershed (230km2) in the spring of 2010 in a case study comparing a remnant BHF and an abandoned agricultural floodplain site using replicated study designs. Instrumentation includes two 80 m2 grids of nine equally spaced four meter deep piezometers to monitor groundwater flow and volumetric water content (VWC) sensor profiles that monitor VWC at 15, 30, 50, 75 and 100 cm depth. Grids were enlarged to 120 m2 to measure leaf area index (LAI), surface infiltration capacity with double ring infiltrometers, and soil characteristics. Soil characteristics were quantified by extracting soil cores at soil depths of 0, 15, 30, 50, 75 and 100 cm (n = 302). LAI in the BHF was on average 3.06 (SD = 0.65, min = 1.31, max = 4.38, n = 42). Preliminary analysis indicates that average infiltration capacity is 44 cm/hr (SD = 38

  19. Brief communication: discrimination between European-American and African-American children based on deciduous dental metrics and morphology.

    PubMed

    Lease, Loren R; Sciulli, Paul W

    2005-01-01

    This study employs metric and morphological features of the deciduous dentition for discriminating between European-American and African-American children and providing allocation rules (regression equations). Five logistic regression equations are presented, with the percentage of correct allocation to group of between 90.1-92.6%. All five equations employ three metric traits (the mesiodistal diameters of the mandibular deciduous canines and anterior and posterior deciduous premolars) and one morphological feature (cusp number of the maxillary deciduous anterior premolar). In addition to these four variables, only two or three additional morphological features are added in carious combinations in the final equations. Correct allocation to group is 4-12% greater when combining metric and morphological features compared to using the features separately.

  20. IDENTIFICATION AND EMISSION FACTORS OF MOLECULAR TRACERS IN ORGANIC AEROSOLS FROM BIOMASS BURNING PART 2. DECIDUOUS TREES. (R823990)

    EPA Science Inventory

    Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane a...

  1. Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks

    DOE PAGES

    Osuna, Jessica L.; Baldocchi, Dennis D.; Kobayashi, Hideki; ...

    2015-04-08

    The California Mediterranean savanna has harsh summer conditions with minimal soil moisture, high temperature, high incoming solar radiation and little or no precipitation. Deciduous blue oaks, Quercus douglasii Hook. and Arn., are winter-deciduous obligate phreatophytes, transpiring mostly groundwater throughout the summer drought. Our objective for this work is to fully characterize the seasonal trends of photosynthesis in blue oaks as well as the mechanistic relationships between leaf structure and function.

  2. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  3. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part I; Site Description

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, William; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    A study over a deciduous forest located in middle Massachusetts (USA) has been performed to examine the role of leaves in the forest-atmosphere interaction. Due to the seasonal presence of leaves, a deciduous forest is a 'good laboratory' to study this interaction. In this first part, a description of a 30 m micrometeorological tower as well a qualitative description of some meteorological parameters are presented. The presence of leaves affects the forest in several ways. There is a decrease of upward PAR (Photosynthetically Active Radiation) due to absorption of visible light in the canopy. Water vapor concentration increases, and the CO2 concentration decreases in the surface layer as the canopy starts to be foliated. The physical presence of the leaves is felt in other quantities such as the global albedo and the subcanopy environment.

  4. Deciduous teeth occlusal caries detection with 655-nm diode laser confirmed by surface scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Duarte, Danilo; Fonseca, Yara P. C.; Zanin, Fatima A. A.; Brugnera, Aldo, Jr.

    2000-03-01

    The morphological complexity of the occlusal surface of deciduous molar teeth is considered as a factor to increase vulnerability to caries lesion. Occlusal surface of these teeth shows sulcus, pits and fissures which allow retention of both micro-organisms and food debris which make them more susceptible to caries. In the last decades there was a significant reduction on caries of smooth surface but not on the occlusal surface where dentinal caries develops under fissures which are apparently caries-free under eye observation. This is known as a hidden caries. The occlusal surface of sound extracted deciduous molar teeth were examined using a 655 nm diode laser (DIAGNOdent - KaVo) in order to detect hidden caries. When there was indication of a hidden caries, the area was examined using SEM and confirm or not the diagnosis. The authors concludes that the diagnosis of caries using 655 diode laser is reliable and precise method.

  5. [The cervical third of deciduous teeth. An ultrastructural study of the heard tissues by SEM].

    PubMed

    Leonardi, R; Loreto, C; Caltabiano, R; Caltabiano, C

    1996-03-01

    As information on amelocemental junction of deciduous teeth is limited, this topographical area was investigated by scanning electron microscopy (SEM) to verify differences from that of permanent teeth. Twenty-six carious and non-carious human maxillary and mandibular primary teeth were placed in a fixative immediately after extraction. Pulpal tissue was removed from the pulpal chambers and root. The primary teeth blocked onto stubs and all specimens were platinum coated and examined by SEM. In these specimens an overlapping of cementum onto to enamel and an edge to edge relationship was dominant. No gaps between enamel and cementum were observed. The amelocemental junction of deciduous teeth seem to differ to that described for permanent teeth.

  6. Congenital oligodontia of the deciduous teeth and anodontia of the permanent teeth in a cat.

    PubMed

    Vieira, Ana Luiza S; Ocarino, Natalia de M; Boeloni, Jankerle N; Serakides, Rogeria

    2009-02-01

    This report describes a rare case of congenital oligodontia of the deciduous teeth and anodontia of the permanent teeth in a cat. According to cat's veterinarian, the patient had only two deciduous upper canines and no permanent teeth had ever erupted. Post-mortem evaluation showed a complete absence of teeth in the oral cavity and inflammatory lesions were not found on the gums. Histopathological analysis of serial sections of maxilla and mandible revealed absence of odontogenic epithelium, inflammatory cells and odontoclastic resorptive lesions. Diagnosis was confirmed after both the establishment that there were no remaining dental structures and the exclusion of other relevant diseases that lead to tooth loss, such as periodontal disease, renal fibrous osteodystrophy, odontoclastic resorptive lesions, ectodermal dysplasia and trauma.

  7. Consequences and treatment after multiple avulsions of deciduous teeth--a case report.

    PubMed

    Freitas, Maria Carolina Masiero; de Castilho, Aline Rogéria Freire; Marta, Sara Nader; Francischone, Leda Aparecida; Carrara, Carlos Eduardo; Franzolin, Solange de Oliveira Braga

    2008-06-01

    The prevalence of traumatisms with avulsion of deciduous teeth varies from 7 to 13%, usually involving one tooth only. In this case report, a trauma with multiple losses of deciduous teeth and laceration of soft tissue is described as a consequence of a horse backward kick. After suture of extra-oral tissue wounds and application of anti-tetanic vaccine, the patient was referred to the emergency ambulatory of Sacred Heart University. Treatment procedures included radiographic analysis, removal of bone fragments and of a residual root of the tooth involved, remodeling and suture of intra-oral tissues. The patient was observed periodically and after full recovery, a prosthetic appliance was installed for functional and esthetic rehabilitation.

  8. Comparing regeneration techniques for afforesting previously farmed bottomland hardwood sites in the Lower Mississippi Alluvial Valley, USA

    USGS Publications Warehouse

    Lockhart, B.R.; Keeland, B.; McCoy, J.; Dean, T.J.

    2003-01-01

    A study was implemented to test site preparation methods and artificial regeneration of three oak (Quercus spp.) species on four agricultural fields in the Lower Mississippi Alluvial Valley in Louisiana, USA. Six years after establishment, few consistent differences were found in oak density between sowing acorn methods (seed drill versus broadcast seeding), autumn sowing versus spring sowing, and sowing acorns versus planting oak seedlings. Results indicated that some degree of site preparation is needed to establish oak seedlings but few differences were found between site preparation treatments. These results indicate that no one prescription for oak regeneration fits all potential afforestation projects in the Lower Mississippi Alluvial Valley. Successful bottomland hardwood afforestation projects will require plans that include specific objectives, site evaluation, and a regeneration prescription prior to sowing the first seed or planting the first seedling.

  9. Effects of aerially applied glyphosate and hexazinone on hardwoods and pines in a loblolly pine plantation. Forest Service research paper

    SciTech Connect

    Haywood, J.D.

    1993-09-01

    Areas in a 4-year-old loblolly pine (Pinus taeda L.) plantation were treated with aerially applied Roundup (glyphosate), Pronone 10G (hexazinone), and Velpar L (hexazinone) plus Lo Drift (a spray additive). All herbicides were applied with appropriate helicopter-mounted equipment. The proportion of free-to-grow pine trees increased over a 2-year period in both the treated and untreated areas, but the increase was slightly greater in the treated areas. Final loblolly pine height, d.b.h., and volume per tree did not differ significantly among the four treatments. About 1,200 hardwood trees and 4,700 shrubs over 3 ft tall per acre were present at the beginning of the study.

  10. Comparison of lab, pilot, and industrial scale low consistency mechanical refining for improvements in enzymatic digestibility of pretreated hardwood.

    PubMed

    Jones, Brandon W; Venditti, Richard; Park, Sunkyu; Jameel, Hasan

    2014-09-01

    Mechanical refining has been shown to improve biomass enzymatic digestibility. In this study industrial high-yield sodium carbonate hardwood pulp was subjected to lab, pilot and industrial refining to determine if the mechanical refining improves the enzymatic hydrolysis sugar conversion efficiency differently at different refining scales. Lab, pilot and industrial refining increased the biomass digestibility for lignocellulosic biomass relative to the unrefined material. The sugar conversion was increased from 36% to 65% at 5 FPU/g of biomass with industrial refining at 67.0 kWh/t, which was more energy efficient than lab and pilot scale refining. There is a maximum in the sugar conversion with respect to the amount of refining energy. Water retention value is a good predictor of improvements in sugar conversion for a given fiber source and composition. Improvements in biomass digestibility with refining due to lab, pilot plant and industrial refining were similar with respect to water retention value.

  11. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood.

    PubMed

    Asada, Chikako; Sasaki, Chizuru; Hirano, Takeshi; Nakamura, Yoshitoshi

    2015-04-01

    This study investigated the effect of high-temperature saturated steam treatments on the chemical characteristics and enzymatic saccharification of softwood and hardwood. The weight loss and chemical modification of cedar and beech wood pieces treated at 25, 35, and 45 atm for 5 min were determined. Fourier transform infrared and X-ray diffraction analyses indicated that solubilization and removal of hemicellulose and lignin occurred by the steam treatment. The milling treatment of steam-treated wood enhanced its enzymatic saccharification. Maximum enzymatic saccharification (i.e., 94% saccharification rate of cellulose) was obtained using steam-treated beech at 35 atm for 5 min followed by milling treatment for 1 min. However, the necessity of the milling treatment for efficient enzymatic saccharification is dependent on the wood species.

  12. Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth.

    PubMed

    Yu, Shi; Diao, Shu; Wang, Jinsong; Ding, Gang; Yang, Dongmei; Fan, Zhipeng

    2014-01-01

    Stem cells isolated from exfoliated deciduous teeth (SHEDs) are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC-) mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs) and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-α protein. In conclusion, our in vitro results showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.

  13. Sexual dimorphism in deciduous crown traits of a European derived Australian sample.

    PubMed

    Adler, C J; Donlon, D

    2010-06-15

    Sex determination of juvenile skeletal remains is a problematic area affecting physical anthropology, forensic science and archaeology. Sexual dimorphism in the morphometric crown traits of the deciduous dentition may be used to help resolve this issue. Dental stone casts from a European derived Australian sample (n=151) were used to investigate variation within crown traits of the deciduous canine and molars. The metric traits investigated were crown size, trigonid size and talonid size. The morphological features included Carabelli's trait and molar cusp number. Metric crown traits were significantly larger in males (p<0.05). The morphological crown traits were not significantly different between the sexes. The largest degree of sexual dimorphism was 11.11% in the trigonid mesiodistal diameter of the first deciduous molar. This is the first recording of the measurement in a European derived sample. Two multivariate statistics, linear functional discriminant analysis and binary logistic regression, were used to determine the success rate of sex classification from the crown traits. The most suitable was linear functional discriminant analysis, however similar results were found when using binary logistic regression. When using all variables investigated in this study, sex could be classified with accuracy of 70.2% from linear functional discriminant analysis (cross validated). The mandibular teeth had greater sexual dimorphism, classifying sex correctly 74.8% of the time compared to maxillary variables that had a success rate of 55.6%. Our results have shown that morphometric crown traits in the deciduous dentition can be used to classify sex of juvenile skeletons (11 months to 12 years) of European descent from linear functional discriminant analysis with accuracy between 70.2% and 74.8%.

  14. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ (13) C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  15. Spatial pulses of water inputs in deciduous and hemlock forest stands

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Mussehl, M.; Pecht, A.; Spence, C.

    2010-12-01

    Trees intercept and redistribute precipitation in time and space. While spatial patterns of throughfall are challenging to link to plant and canopy characteristics, many studies have shown that the spatial patterns persist through time. This persistence leads to wet and dry spots under the trees, creating spatial pulses of moisture that can affect infiltration, transpiration, and biogeochemical processes. In the northeast, the invasive hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga canadensis), and replacement of hemlock forests by other species, such as birch, maple, and oak, has the potential to alter throughfall patterns and hydrologic processes. During the summers of 2009 and 2010, we measured throughfall in both hemlock and deciduous plots to assess its spatial distribution and temporal persistence. From 3 June to 25 July 2009, we measured throughfall in one hemlock and one deciduous plot over fourteen events with rainfall totaling 311 mm. From 8 June through 28 July 2010, we measured throughfall in the same two plots plus an additional hemlock stand and a young black birch stand, and rainfall totaled 148 mm over eight events. Averaged over space and time, throughfall was 81% of open precipitation in the hemlock stands, 88% in the mixed deciduous stand, and 100% in the young black birch stand. On an event basis, spatial coefficients of variation are similar among the stands and range from 11% to 49% for rain events greater than 5 mm. With the exception of very light events, coefficients of variation are insensitive to precipitation amount. Spatial patterns of throughfall persist through time, and seasonal coefficients of variation range from 13% to 33%. All stands indicate localized concentrations of water inputs, and there were individual collectors in the deciduous stands that regularly received more than twice the stand-average throughfall.

  16. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    SciTech Connect

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio

    1996-04-01

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.

  17. Enamel thickness variation of deciduous first and second upper molars in modern humans and Neanderthals.

    PubMed

    Fornai, Cinzia; Benazzi, Stefano; Svoboda, Jiří; Pap, Ildikó; Harvati, Katerina; Weber, Gerhard W

    2014-11-01

    Enamel thickness and dental tissue proportions have been recognized as effective taxonomic discriminators between Neanderthal and modern humans teeth. However, most of the research on this topic focused on permanent teeth, and little information is available for the deciduous dentition. Moreover, although worn teeth are more frequently found than unworn teeth, published data for worn teeth are scarce and methods for the assessment of their enamel thickness need to be developed. Here, we addressed this issue by studying the 2D average enamel thickness (AET) and 2D relative enamel thickness (RET) of Neanderthal and modern humans unworn to moderately worn upper first deciduous molars (dm(1)s) and upper second deciduous molars (dm(2)s). In particular, we used 3D μCT data to investigate the mesial section for dm(1)s and both mesial and buccal sections for dm(2)s. Our results confirmed previous findings of an Neanderthal derived condition of thin enamel, and thinner enamel in dm(1)s than dm(2)s in both Neanderthal and modern humans. We demonstrated that the Neanderthal 2D RET indices are significantly lower than those of modern humans at similar wear stages in both dm(1)s and dm(2)s (p < 0.05). The discriminant analysis showed that using 2D RET from dm(1) and dm(2) sections at different wear stages up to 93% of the individuals are correctly classified. Moreover, we showed that the dm(2) buccal sections, although non-conventionally used, might have an advantage on mesial sections since they distinguish as well as mesial sections but tend to be less worn. Therefore, the 2D analysis of enamel thickness is suggested as a means for taxonomic discrimination between modern humans and Neanderthal unworn to moderately worn upper deciduous molars.

  18. Changing patterns in coastal cutthroat trout (Oncorhynchus clarki clarki) diet and prey in a gradient of deciduous canopies

    USGS Publications Warehouse

    Romero, N.; Gresswell, R.E.; Li, J.L.

    2005-01-01

    We examined the influence of riparian vegetation patterns on coastal cutthroat trout Oncorhynchus clarki clarki diet and prey from the summer of 2001 through the spring of 2002. Benthic and drifting invertebrates, allochthonous prey, and fish diet were collected from deciduous, conifer, and mixed sections of three Oregon coastal watersheds. The nine sites were best characterized as a continuum of deciduous cover, and shrub cover and proportion of deciduous canopy were positively correlated (r = 0.74). Most sources of prey (benthic invertebrate biomass, allochthonous invertebrate inputs, aquatic and total invertebrate drift) and aquatic prey ingested by coastal cutthroat trout were greater where shrub cover was more abundant. Only aquatic drift, total invertebrate drift, and allochthonous invertebrates were positively correlated with deciduous vegetation. Compared with coniferous sites, allochthonous invertebrates under deciduous and mixed canopies were almost 30% more abundant. Stream discharge likely influenced seasonal fluxes of aquatic invertebrate biomass in the benthos and drift. Aquatic insects dominated gut contents during this study; however, terrestrial prey were most common in the diet during the summer and fall. In the Pacific northwest, systematic removal of deciduous riparian vegetation to promote conifers may have unintended consequences on food resources of coastal cutthroat trout and aquatic food web interactions. ?? 2005 NRC.

  19. Subfossil Leaves Reveal a New Upland Hardwood Component of the Pre-European Piedmont Landscape, Lancaster County, Pennsylvania

    PubMed Central

    Elliott, Sara J.; Wilf, Peter; Walter, Robert C.; Merritts, Dorothy J.

    2013-01-01

    Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today’s incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained “legacy” sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that

  20. Subfossil leaves reveal a new upland hardwood component of the pre-European Piedmont landscape,Lancaster County, Pennsylvania.

    PubMed

    Elliott, Sara J; Wilf, Peter; Walter, Robert C; Merritts, Dorothy J

    2013-01-01

    Widespread deforestation, agriculture, and construction of milldams by European settlers greatly influenced valley-bottom stream morphology and riparian vegetation in the northeastern USA. The former broad, tussock-sedge wetlands with small, anastomosing channels were converted into today's incised, meandering streams with unstable banks that support mostly weedy, invasive vegetation. Vast accumulations of fine-grained "legacy" sediments that blanket the regional valley-bottom Piedmont landscape now are being reworked from stream banks, significantly impairing the ecological health of downstream water bodies, most notably the Chesapeake Bay. However, potential restoration is impaired by lack of direct knowledge of the pre-settlement riparian and upslope floral ecosystems. We studied the subfossil leaf flora of Denlingers Mill, an obsolete (breached) milldam site in southeastern Pennsylvania that exhibits a modern secondary forest growing atop thin soils, above bedrock outcrops immediately adjacent to a modified, incised stream channel. Presumably, an overhanging old-growth forest also existed on this substrate until the early 1700s and was responsible for depositing exceptionally preserved, minimally transported subfossil leaves into hydric soil strata, which immediately underlie post-European settlement legacy sediments. We interpret the eleven identified species of the subfossil assemblage to primarily represent a previously unknown, upland Red Oak-American Beech mixed hardwood forest. Some elements also appear to belong to a valley-margin Red Maple-Black Ash swamp forest, consistent with preliminary data from a nearby site. Thus, our results add significantly to a more complete understanding of the pre-European settlement landscape, especially of the hardwood tree flora. Compared with the modern forest, it is apparent that both lowland and upslope forests in the region have been modified significantly by historical activities. Our study underscores that

  1. Extraction and estimation of the quantity of calcium oxalate crystals in the foliage of conifer and hardwood trees.

    PubMed

    Minocha, Rakesh; Chamberlain, Bradley; Long, Stephanie; Turlapati, Swathi A; Quigley, Gloria

    2015-05-01

    The main goal of this study was to develop a method for the extraction and indirect estimation of the quantity of calcium oxalate (CaOx) in the foliage of trees. Foliar tissue was collected from a single tree of each species (five conifers and five hardwoods) for comparison of extractions in different solvents using 10 replicates per species from the same pool of tissue. For each species, calcium (Ca) and oxalate were extracted sequentially in double deionized water and 2N acetic acid, and finally, five replicate samples were extracted in 5% (0.83N) perchloric acid (PCA) and the other five in 2N hydrochloric acid (HCl); three cycles of freezing and thawing were used for each solvent. Total ions were extracted by microwave digestion. Calcium was quantified with an inductively coupled plasma emission spectrophotometer method and oxalate was eluted and quantified using a high performance liquid chromatography method. This experiment was repeated again with two conifer and two hardwood species using four trees per species, and two analytical replicates for each tree. We report here that, regardless of age of individual trees within a species, time of collection or species type, the third extraction in PCA or HCl resulted in near equimolar quantities of Ca and oxalate (r(2) ≥ 0.99). This method provides an easy estimate of the quantity of CaOx crystals using a small sample of foliar tissue. An additional benefit of PCA is that it precipitates the nucleic acids and proteins, allowing the quantification of several free/soluble metabolites such as amino acids, polyamines, organic acids and inorganic elements all from a single sample extract.

  2. A Comparison of the Effects of Clearcutting Hardwood Forests on Nitrate Movement in 3 Watersheds in Northeastern North America

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.; Beall, F. D.; Burns, D. A.

    2001-12-01

    Experimental harvests of forested watersheds have occurred in several locations throughout the United States and Canada to assess the effects of clearcutting on forest regeneration and runoff water quality. A comparison of the effects of harvesting on stream water quality at three of these watersheds --Watershed 5 at the Hubbard Brook Experimental Forest in New Hampshire (22 hectares logged during the fall 1983-winter 1984), Dry Creek in the Catskill Mountains of New York (22 hectares logged during winter, 1997), and Watershed 31 at the Turkey Lakes Watershed in western Ontario (4.62 hectares logged during late summer, 1997) indicates similarities in stream chemical response despite large differences in year of harvest, pre-harvest water quality, and geographic location. All three watersheds in the comparison contain Northern Hardwood forests. The magnitude, duration, and seasonal variability in stream nitrate concentrations following harvest were similar among the 3 watersheds studied. Harvesting during August at Turkey Lakes caused a 100 uEq/L increase in nitrate concentrations during the immediate fall, but peak nitrate concentrations in streamwater were delayed to the late summer of the following year. Watershed 5 and Dry Creek had peak nitrate concentrations in the late summer and fall of the first year following harvest. The period of recovery from peak nitrate concentration to pre-cut concentrations was similar among the sites. The summer logging at Turkey Lakes thus had the effect of lengthening the period of elevated stream nitrate concentrations relative to the winter logging operations of the other two harvests. Trends in dissolved organic carbon and ammonium were not significantly affected by the logging in comparison with the effect on nitrate concentrations, and ammonium was a minor contributor to the nitrogen yield from the watersheds. The comparison indicates a general pattern of nitrogen release following clearcutting of hardwood forests in

  3. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome.

  4. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  5. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  6. Breast feeding, bottle feeding, and non-nutritive sucking; effects on occlusion in deciduous dentition

    PubMed Central

    Viggiano, D; Fasano, D; Monaco, G; Strohmenger, L

    2004-01-01

    Aims: To assess the effect of the type of feeding and non-nutritive sucking activity on occlusion in deciduous dentition. Methods: Retrospective study of 1130 preschool children (3–5 years of age) who had detailed infant feeding and non-nutritive sucking activity history collected by a structured questionnaire. They all had an oral examination by a dentist, blinded to different variables evaluated. Results: Non-nutritive sucking activity has a substantial effect on altered occlusion, while the effect of bottle feeding is less marked. The type of feeding did not have an effect on open bite, which was associated (89% of children with open bite) with non-nutritive sucking. Posterior cross-bite was more frequent in bottle fed children and in those with non-nutritive sucking activity. The percentage of cross-bite was lower in breast fed children with non-nutritive sucking activity (5%) than in bottle fed children with non-nutritive sucking activity (13%). Conclusions: Data show that non-nutritive sucking activity rather than the type of feeding in the first months of life is the main risk factor for development of altered occlusion and open bite in deciduous dentition. Children with non-nutritive sucking activity and being bottle fed had more than double the risk of posterior cross-bite. Breast feeding seems to have a protective effect on development of posterior cross-bite in deciduous dentition. PMID:15557045

  7. A Changing Trend In Eruption Age and Pattern of First Deciduous Tooth: Correlation to Feeding Pattern

    PubMed Central

    Kohli, Monika V; Patil, Gururaj B.; Kulkarni, Narayan B.; Bagalkot, Kishore; Purohit, Zarana; Dave, Nilixa; Sagari, Shitalkumar G; Malaghan, Manjunath

    2014-01-01

    Background: Feeding mode during infancy and its effect on deciduous tooth appearance in oral cavity in two generations and among genders. Aim and Objective: Study aimed to compare and correlate times and patterns of deciduous tooth eruption in breastfeeding (OBF), partial breastfeeding (PBF) and spoon feeding (SF) infants and initiation of semisolid food feeding (SSF) in infants. It also aimed to address the variations in the time of eruption of first deciduous tooth and its pattern in two generations who had more than a decade of difference in ages. Materials and methods: An open-ended questionnaire study was conducted on mothers of 265 patients from two groups, generation 1 (G1)- adults who were aged 20-35 years and second group, generation 2 (G2) - children who were below 5 years of age . Results: A statistical significance was observed with respect to age, gender, generations, and frequency of breastfeeding, partial breastfeeding and time of initiation of semisolid food. Conclusion: There is a delayed eruption of teeth in present generation. For girls, it occurs at age of 7.88 months and for boys, it occurs at the age of 8.08 months. PMID:24783136

  8. MARGINAL ADAPTATION AND PERFORMANCE OF BIOACTIVE DENTAL RESTORATIVE MATERIALS IN DECIDUOUS AND YOUNG PERMANENT TEETH

    PubMed Central

    Gjorgievska, Elizabeta; Nicholson, John W.; Iljovska, Snezana; Slipper, Ian J.

    2008-01-01

    Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. Results: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers, though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. Conclusions: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits. PMID:19089281

  9. Deciduous teeth structure changes in congenital heart disease: Ultrastructure and microanalysis

    PubMed Central

    El-Sayed, Basmah; Abd-Alhakem, Gehan; Ibrahim, Fatma M.

    2014-01-01

    Objectives Oral manifestations recorded for congenital heart disease (CHD) patients include teeth hypoplasia and high caries incidence. These observations suggested that the enamel and dentin of the teeth may be altered, increasing the risk for caries incidence. This study was designed to investigate the effect of CHD on the ultrastructure and composition of deciduous sound teeth. Methods Thirty sound exfoliated human deciduous incisor teeth were selected for this study. They were divided into three groups, Group I (control) from healthy children (n = 6), Group II from acyanotic CHD children (n = 12) and Group III from cyanotic CHD children (n = 12). Each tooth was longitudinally sectioned, providing enough specimens for ultrastructure and chemical analysis using ESEM/EDAX. The results of ESEM/EDAX and dentin image analysis were statistically analyzed using one-way ANOVA test followed by Tukey’s test. Results Enamel of groups II and III showed increased dissolution and irregular orientation of enamel prisms. Orifices of dentinal tubules demonstrated widening and irregular outlines, also lateral branching increased markedly. Image analysis of dentin ESEM photomicrographs showed a highly significant increase in surface area of dentinal tubules. Decrease in calcium (Ca) and phosphorus (P) levels was statistically significant (P < 0.05). Conclusion CHDs affect the structure and chemical composition of deciduous teeth. PMID:25243076

  10. A study on regional differences in decidualization of the mouse uterus.

    PubMed

    Zhao, Miao; Zhang, Wen-Qian; Liu, Ji-Long

    2017-03-01

    Although regional differences in mouse decidualization have been recognized for decades, the molecular mechanisms remain under-studied. In the present study, by using RNA-seq, we compared transcriptomic differences between the anti-mesometrial (AM) region and the mesometrial (M) region of mouse uterus on day 8 of pregnancy. A total of 1423 differentially expressed genes were identified, of which 811 genes were up-regulated and 612 genes were down-regulated in the AM region compared to the M region. Gene ontology analysis showed that up-regulated genes were generally involved in cell metabolism and differentiation, whereas down-regulated genes were associated with lymphocyte themes and immune response. Through network analysis, we identified a total of 6 hub genes. These hub genes are likely more important than other genes due to their key positions in the network. We also examined the promoter regions of differentially expressed genes for the enrichment of transcription factor binding sites. In the end, we demonstrated that a similar regional gene expression pattern can be observed in the artificial decidualization model. Our study contributes to an increase in the knowledge on the molecular mechanisms underlying regional decidualization in mice.

  11. Organic Compounds Detected in Deciduous Teeth: A Replication Study from Children with Autism in Two Samples

    PubMed Central

    Palmer, Raymond F.; Heilbrun, Lynne; Camann, David; Yau, Alice; Schultz, Stephen; Elisco, Viola; Tapia, Beatriz; Garza, Noe; Miller, Claudia

    2015-01-01

    Biological samples are an important part of investigating toxic exposures and disease outcomes. However, blood, urine, saliva, or hair can only reflect relatively recent exposures. Alternatively, deciduous teeth have served as a biomarker of early developmental exposure to heavy metals, but little has been done to assess organic toxic exposures such as pesticides, plastics, or medications. The purpose of our study was to determine if organic chemicals previously detected in a sample of typically developing children could be detected in teeth from a sample of children with autism. Eighty-three deciduous teeth from children with autism spectrum disorders (ASD) were chosen from our tooth repository. Organic compounds were assessed using liquid chromatography tandem mass spectrometry and gas chromatography methods. Consistent with a prior report from Camann et al., (2013), we have demonstrated that specific semivolatile organic chemicals relevant to autism etiology can be detected in deciduous teeth. This report provides evidence that teeth can be useful biomarkers of early life exposure for use in epidemiologic case-control studies seeking to identify differential unbiased exposures during development between those with and without specific disorders such as autism. PMID:26290670

  12. In vitro erosive effect of pediatric medicines on deciduous tooth enamel.

    PubMed

    Scatena, Camila; Galafassi, Daniel; Gomes-Silva, Jaciara Miranda; Borsatto, Maria Cristina; Serra, Mônica Campos

    2014-01-01

    This study evaluated, in vitro, the erosive potential of pediatric liquid medicines in primary tooth enamel, depending on the exposure time. Sixty deciduous incisors were randomly assigned to 4 groups (n=15), according to the immersion solutions: guaifenesin; ferrous sulfate; salbutamol sulfate and artificial saliva. The immersion cycles in the medicines were undertaken under a 1-min agitation, which wasperformed three times daily, during 28 days. Surface microhardness was measured at 7,14, 21 and 28 days. The titratable acidity and buffering capacity of the immersion media were determined. Data were analyzed by Analysis of Variance and Tukey's test (α=0.05). Salbutamol sulfate caused a gradual loss in enamel microhardness deciduous, observed at all times (p<0.005). Exposure to guaifenesin or ferrous sulfate resulted in significant decrease of enamel microhardness only after 28 days (p<0.005). In the control group (artificial saliva), microhardness did not changed (p>0.005) at any of the studied times. Scanning Electron Microscopy (SEM) images revealed that after 28 days the surfaces clearly exhibited structural loss, which was unlike those immersed in artificial saliva. Erosion of deciduous enamel was dependent on the type of medicine and exposure time.

  13. Organic Compounds Detected in Deciduous Teeth: A Replication Study from Children with Autism in Two Samples.

    PubMed

    Palmer, Raymond F; Heilbrun, Lynne; Camann, David; Yau, Alice; Schultz, Stephen; Elisco, Viola; Tapia, Beatriz; Garza, Noe; Miller, Claudia

    2015-01-01

    Biological samples are an important part of investigating toxic exposures and disease outcomes. However, blood, urine, saliva, or hair can only reflect relatively recent exposures. Alternatively, deciduous teeth have served as a biomarker of early developmental exposure to heavy metals, but little has been done to assess organic toxic exposures such as pesticides, plastics, or medications. The purpose of our study was to determine if organic chemicals previously detected in a sample of typically developing children could be detected in teeth from a sample of children with autism. Eighty-three deciduous teeth from children with autism spectrum disorders (ASD) were chosen from our tooth repository. Organic compounds were assessed using liquid chromatography tandem mass spectrometry and gas chromatography methods. Consistent with a prior report from Camann et al., (2013), we have demonstrated that specific semivolatile organic chemicals relevant to autism etiology can be detected in deciduous teeth. This report provides evidence that teeth can be useful biomarkers of early life exposure for use in epidemiologic case-control studies seeking to identify differential unbiased exposures during development between those with and without specific disorders such as autism.

  14. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice

    PubMed Central

    Saben, Jessica L.; Asghar, Zeenat; Rhee, Julie S.; Drury, Andrea; Scheaffer, Suzanne

    2016-01-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment. PMID:26677880

  15. Excess Maternal Fructose Consumption Increases Fetal Loss and Impairs Endometrial Decidualization in Mice.

    PubMed

    Saben, Jessica L; Asghar, Zeenat; Rhee, Julie S; Drury, Andrea; Scheaffer, Suzanne; Moley, Kelle H

    2016-02-01

    The most significant increase in metabolic syndrome over the previous decade occurred in women of reproductive age, which is alarming given that metabolic syndrome is associated with reproductive problems including subfertility and early pregnancy loss. Individuals with metabolic syndrome often consume excess fructose, and several studies have concluded that excess fructose intake contributes to metabolic syndrome development. Here, we examined the effects of increased fructose consumption on pregnancy outcomes in mice. Female mice fed a high-fructose diet (HFrD) for 6 weeks developed glucose intolerance and mild fatty liver but did not develop other prominent features of metabolic syndrome such as weight gain, hyperglycemia, and hyperinsulinemia. Upon mating, HFrD-exposed mice had lower pregnancy rates and smaller litters at midgestation than chow-fed controls. To explain this phenomenon, we performed artificial decidualization experiments and found that HFrD consumption impaired decidualization. This appeared to be due to decreased circulating progesterone as exogenous progesterone administration rescued decidualization. Furthermore, HFrD intake was associated with decreased bone morphogenetic protein 2 expression and signaling, both of which were restored by exogenous progesterone. Finally, expression of forkhead box O1 and superoxide dismutase 2 [Mn] proteins were decreased in the uteri of HFrD-fed mice, suggesting that HFrD consumption promotes a prooxidative environment in the endometrium. In summary, these data suggest that excess fructose consumption impairs murine fertility by decreasing steroid hormone synthesis and promoting an adverse uterine environment.

  16. In vivo generation of decidual natural killer cells from resident hematopoietic progenitors.

    PubMed

    Chiossone, Laura; Vacca, Paola; Orecchia, Paola; Croxatto, Daniele; Damonte, Patrizia; Astigiano, Simonetta; Barbieri, Ottavia; Bottino, Cristina; Moretta, Lorenzo; Mingari, Maria Cristina

    2014-03-01

    Decidual natural killer cells accumulate at the fetal-maternal interface and play a key role in a successful pregnancy. However, their origin is still unknown. Do they derive from peripheral natural killer cells recruited in decidua or do they represent a distinct population that originates in situ? Here, we identified natural killer precursors in decidua and uterus of pregnant mice. These precursors underwent rapid in situ differentiation and large proportions of proliferating immature natural killer cells were present in decidua and uterus as early as gestation day 4.5. Here, we investigated the origin of decidua- and uterus-natural killer cells by performing transfer experiments of peripheral mature natural killer cells or precursors from EGFP(+) mice. Results showed that mature natural killer cells did not migrate into decidua and uterus, while precursors were recruited in these organs and differentiated towards natural killer cells. Moreover, decidua- and uterus-natural killer cells displayed unique phenotypic and functional features. They expressed high levels of the activating Ly49D receptor in spite of their immature phenotype. In addition, decidua- and uterus-natural killer cells were poorly cytolytic and produced low amounts of IFN-γ, while they released factors (GM-CSF, VEGF, IP-10) involved in neo-angiogenesis and tissue remodeling. Our data reveal in situ generation of decidual natural killer cells and provide an important correlation between mouse and human decidual natural killer cells, allowing further studies to be carried out on their role in pregnancy-related diseases.

  17. The impact of boreal deciduous and evergreen forests on atmospheric CO2 seasonality

    NASA Astrophysics Data System (ADS)

    Welp, L.; Graven, H. D.; Keeling, R. F.; Bi, J.

    2015-12-01

    The seasonal cycle of atmospheric CO2 is largely controlled by the terrestrial biosphere. It is well known that the seasonal amplitude of net ecosystem productivity (NEP) is the largest in the far north, where forest productivity is compressed into a short growing season. Since 1960, the seasonal amplitude of atmospheric CO2 north of 45N has increased by 35-55%. The increase in the seasonal amplitude is a difficult benchmark for coupled climate-carbon models to replicate. In fact, the models vary widely in their mean seasonal cycle representation. The boreal region has a strong influence on CO2 seasonality at Barrow. Deciduous and evergreen plant functional types (PFTs) have different patterns of NEP. We identified four pairs of nearby deciduous and evergreen forest PFTs with eddy covariance measurements. Evergreen forests show an early peak in NEP in May-June, while deciduous forests have a larger peak in NEP later in June-July. The influence of each PFT on the seasonal cycle at Barrow was computed from atmospheric transport results. We normalized the amplitude influence by the growing season NEP of the tower-based PFT flux and found that deciduous forests have 1.4 to 1.8 times more influence (per unit of growing season NEP) at Barrow than evergreen PFT. This diagnosis depends on the timing of the sharp seasonal draw-down at Barrow, which occurs too late to be explained by evergreen forests. The cycle at Barrow therefore appears to be strongly influenced by deciduous PFT, despite the dominance of evergreen PFTs in boreal forests. This paradoxical conclusion is also reached when examining the seasonality of land surface fluxes calculated using atmospheric inverse methods. We examine how these different PFTs, and possible trends in relative abundance, affect the seasonality of atmosphere CO2 using FluxNet data and atmospheric transport modelling. Our results highlight the importance of parameterizing multiple PFTs or individual species within grid cells in models in

  18. Results of a workshop concerning assessment of the functions of bottomland hardwoods

    USGS Publications Warehouse

    Roelle, James E.; Auble, Gregor T.; Hamilton, David B.; Johnson, Richard L.; Segelquist, Charles A.

    1987-01-01

    Recognizing the importance of implementing an effective, nationally consistent, and scientifically defensible regulatory program, EPA, in October 1984, issued Interim Operating Guidance to its field personnel for implementing the Section 404 regulatory program in bottomland hardwood wetlands. With the goal of improving and finalizing that guidance, EPA is sponsoring a series of workshops designed to answer key questions concerning BLH wetlands, based on the best scientific and technical information currently available. The first two workshops were directed toward summarizing existing scientific and technical knowledge concerning the functions of BLH ecosystems, the characteristics that are important to each function, and the impact of various development activities on those characteristics. The first workshop, which was held in St. Francisville, Louisiana, in December, 1984, examined a wetland zonation concept as a framework for gaining a greater understanding of BLH structure and function. The workshop set out to determine whether characterization of BLH resources as a series of relatively distinct zones, defined by concomitant variation in hydrologic regime, soils, and vegetation, might provide the basis for a useful and scientifically sound regulatory framework. For examp1e, if certain zones are of particular importance to one or more wetland functions that the Clean Water Act was intended to protect, then the zonation concept might be useful from the perspective of how various activities should be regulated. Discussions during the first workshop, however, indicated that the zonation concept provides, at best, only an incomplete picture of the structure and function of BLH ecosystems. In many cases, BLH functions are not limited to or closely correlated with particular zones and, furthermore, many factors other than zone are important determinants of BLH functions. With these responses in mind, the second workshop, held at Lake Lanier, Georgia, in July, 1985

  19. Corymbia species and hybrids: chemical and physical foliar attributes and implications for herbivory.

    PubMed

    Nahrung, Helen F; Waugh, Rachel; Andrew Hayes, Richard

    2009-09-01

    Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.

  20. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.

    PubMed

    Ishida, Atsushi; Diloksumpun, Sapit; Ladpala, Phanumard; Staporn, Duriya; Panuthai, Samreong; Gamo, Minoru; Yazaki, Kenichi; Ishizuka, Moriyoshi; Puangchit, Ladawan

    2006-05-01

    We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.

  1. Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

    SciTech Connect

    Chandrashekhar P. Joshi; Vincent L. Chiang

    2009-01-29

    Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.

  2. Environmental constraints on phenology and internal nutrient cycling in the Mediterranean winter-deciduous shrub Amelanchier ovalis Medicus.

    PubMed

    Milla, R; Castro-Díez, P; Maestro-Martínez, M; Montserrat-Martí, G

    2005-03-01

    The functional adjustments of winter-deciduous perennials to Mediterranean conditions have received little attention. The objectives of this study were: (i) to determine whether Amelanchier ovalis, a winter-deciduous shrub of Mediterranean and sub-Mediterranean regions, has nutritional and phenological traits in common with temperate zone deciduous trees and shrubs and (ii) to determine the constraints of Mediterranean environmental conditions on these traits. Over two years, phenology and nitrogen, and phosphorus concentrations were monitored monthly in the crown of A. ovalis. Leaf longevity, survival and nutrient resorption from senescing leaves were used to infer nutrient use efficiency and retention times of nutrients within the crown. In A. ovalis, bud burst was much earlier than in temperate deciduous trees and shrubs. Most vegetative and reproductive growth occurred in spring. Limited phenological development took place during the summer drought period. Unexpectedly, leaf shedding was very gradual, which might be related to water shortages in summer. Leaf longevity, nutrient resorption from senescing leaves, and maximum leaf nutrient concentrations indicated that nutrient retention times were short and nutrient use efficiency was low compared to that found in temperate deciduous plants and co-occurring Mediterranean evergreens. A. ovalis exhibited phenological development appropriate for a Mediterranean climate, although its limited ability to retain nutrients likely restricts the types of sites that it can occupy.

  3. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.

    PubMed

    MacDonald, Jacqueline; Goacher, Robyn E; Abou-Zaid, Mamdouh; Master, Emma R

    2016-09-01

    White-rot fungi are distinguished by their ability to efficiently degrade lignin via lignin-modifying type II peroxidases, including manganese peroxidase (MnP) and lignin peroxidase (LiP). In the present study, time-of flight secondary ion mass spectrometry (ToF-SIMS) was used to evaluate lignin modification in three coniferous and three deciduous wood preparations following treatment with commercial preparations of LiP and MnP from two different white-rot fungi. Percent modification of lignin was calculated as a loss of intact methoxylated lignin over nonfunctionalized aromatic rings, which is consistent with oxidative cleavage of methoxy moieties within the lignin structure. Exposure to MnP resulted in greater modification of lignin in coniferous compared to deciduous wood (28 vs. 18 % modification of lignin); and greater modification of G-lignin compared to S-lignin within the deciduous wood samples (21 vs. 12 %). In contrast, exposure to LiP resulted in similar percent modification of lignin in all wood samples (21 vs 22 %), and of G- and S-lignin within the deciduous wood (22 vs. 23 %). These findings suggest that the selected MnP and LiP may particularly benefit delignification of coniferous and deciduous wood, respectively. Moreover, the current analysis further demonstrates the utility of ToF-SIMS for characterizing enzymatic modification of lignin in wood fibre along with potential advantages over UV and HPCL-MS detection of solubilized delignification products.

  4. Quantification of Carbon Fluxes in Tropical Deciduous Forests Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Prasad, V. Krishna; Rajagopal, T.; Kant, Yogesh; Badarinath, K. V. S.

    Biomass burning in tropics is causing drastic changes in physical, chemical and biological properties of earth's atmosphere. Biomass burning associated with slash and burn agriculture is one of the major cause of Green House Gas emissions. In the present study, study area covering tropical deciduous forests having slash and burn agriculture practice, has been considered for studying carbon dynamics. Satellite data pertaining to IRS-1C LISS III satellite data has been used for stratification of vegetation into different communities. Second order texture measures Semivariograms, Angular Second Moment (ASM) and Inverse Difference Moment (IDM) and NDVI textural algorithm have been used to capture spatial information from forest stands. Biomass estimations have been done through regression equations by using girth measurements obtained through field studies. Satellite data has been used to quantify the amount of biomass burnt in respective vegetation types. Results of the study through textural measures suggest high heterogeneity in canopy diversity for mixed dry deciduous forests. ASM and IDM are found to be high for pure stands of dry deciduous forests. NDVI textural algorithm detected a low spatial variability with respect to mixed dry deciduous forests suggesting homogeneity in plant biomass spatial variability. The average mean carbon storage has been found to be 64.34 t ha-1 C for dry deciduous forests, 129.0 t ha-1 C for mixed dry deciduous forests and 0.02 t ha-1 C for mixed scrub forests. Potential Net primary productivity for the forests ranged from 26.07 to 11.73 t ha-1 yr-1, when compared to actual productivity of 0.1 t ha-1 yr-1 to 4.6 t ha-1 yr-1. Mean carbon storage for plantations, above ground, below ground and total carbon has been found to be 16.84, 3.36 and 20.2 t ha-1 C respectively. Dry matter burnt in gms (M) obtained from satellite derived areal estimates has been found to be 1.344 × 1012 gms. Area weighted carbon release for the total study

  5. Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland.

    PubMed

    Risch, Anita C; Wirthner, Sven; Busse, Matt D; Page-Dumroese, Deborah S; Schütz, Martin

    2010-11-01

    Interest in soil C storage and release has increased in recent years. In addition to factors such as climate/land-use change, vertebrate animals can have a considerable impact on soil CO(2) emissions. To date, most research has considered herbivores, while the impact of omnivorous animals has rarely been investigated. Our goal was to determine how European wild boars (Sus scrofa L.), large omnivores that consume soil-inhabiting animals and belowground plant parts by grubbing in the soil, affect soil C dynamics. We measured soil respiration (CO(2)), temperature, and moisture on paired grubbed and non-grubbed plots in six hardwood forest stands for a 3-year period and sampled fine root and microbial biomass at the beginning and after 2 years of the study. We also measured the percentage of freshly disturbed forest soil within the larger surroundings of each stand and used this information together with hunting statistics and forest cover data to model the total amount of CO(2) released from Swiss forest soils due to grubbing during 1 year. Soil CO(2) emissions were significantly higher on grubbed compared to non-grubbed plots during the study. On average 23.1% more CO(2) was released from these plots, which we associated with potential alterations in CO(2) diffusion rates, incorporation of litter into the mineral soil and higher fine root/microbial biomass. Thus, wild boars considerably increased the small-scale heterogeneity of soil properties. Roughly 1% of Switzerland's surface area is similar to our sites (boar density/forest cover). Given the range of forest soil disturbance of 27-54% at our sites, the geographic information system model predicted that boar grubbing would lead to the release of an additional 49,731.10-98,454.74 t CO(2) year(-1). These values are relatively small compared to total soil emissions estimated for Swiss hardwood forests and suggest that boars will have little effect on large-scale emissions unless their numbers increase and their

  6. Identifying Sources and Controls of Dissolved Organic Carbon Losses in Northern Hardwood Forest Ecosystems Under Elevated Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Zak, D. R.

    2004-05-01

    Anthropogenic nitrogen (N) deposition in northern hardwood forest ecosystems has modified soil carbon cycling, resulting in the substantial leaching of dissolved organic carbon (DOC). Despite the significance of this finding, the exact source of this DOC has not been found and a mechanistic explanation has been lacking. In order to identify sources of and mechanisms for this apparent N stimulation of DOC leaching, we conducted a controlled laboratory leaching experiment using soil and fresh litterfall from a previously-studied northern hardwood forest stand in northern Lower Michigan. This stand has received 10 years of both ambient and experimental (3 times ambient) atmospheric NO3- deposition. Three replicate soil and litter samples were collected from 3 plots receiving ambient and 3 plots receiving experimental NO3- deposition. Our laboratory experiment used soil and litter collected from each plot to understand if fresh leaf litter was the source of increased DOC leaching in plots receiving experimental NO3- deposition. In laboratory incubations, we investigated microbial respiration and DOC production from: 1) soil from each plot, 2) litter and soil from each plot, and 3) litter from each plot placed over sterile sand. This combination of treatments enabled us to determine the contribution of soil organic matter, fresh leaf litter, and both to DOC production. Results showed that N deposition had no significant effect on microbial respiration, but that treatment differences were significant. Most of the DOC production (75%) was associated with leaching from fresh litter. Soil was a significant sink for litter-derived DOC across the treatments, but less so in the fertilized plots where 30% more DOC was leached on average compared to un-fertilized plots. These results suggest that N deposition might not influence the production of DOC in soil and litter, but the ability of the soil to physically adsorb or the microbial population to sequester DOC inputs

  7. Observations of reactive nitrogen oxide fluxes by eddy covariance above two midlatitude North American mixed hardwood forests

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Murphy, J. G.

    2014-03-01

    Significant knowledge gaps persist in the understanding of forest-atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere-atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3- + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NOy mixing ratios. Average midday (12:00-16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s-1 respectively. Average nighttime (00:00-04:00) deposition velocities were 0.09 ± 0.25 cm s-1 and 0.08 ± 0.16 cm s-1 respectively. At HFWR, a period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was -0.14 mg (N) m-2 day-1 and -0.34 mg (N) m-2 day-1 (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively.

  8. Effects of pine-hardwood management practices on forest regeneration and woody species diversity at the Savannah River Site, South Carolina, USA.

    SciTech Connect

    K, Crider Kimberly

    2003-08-01

    Crider. Kimberly K. 2003 Effects of pine-hardwood management practices on forest regeneration and woody species diversity at the Savannah River Site, South Carolina, USA. MS Thesis. The University of Tennessee, Knoxville, Tennessee. 107 pp. Abstract: In 1989, mixed hardwood-pine forest sites at the Savannah River Site in South Carolina were chosen by USDA Forest Service employees for use in a study of the effects of a combination of forest management practices on woody species composition and diversity. The sites were surveyed for species composition, harvested commercially, burned using several severities, and planted with pine seedlings during 1990. In 1991 and 1993 the sites were surveyed again by Forest Service employees for post-disturbance species composition. I recovered and compiled the earlier pre- and post-disturbance data, and resurveyed the sites in 2002 to compare the immediate effects and the possible persistence of effects of the management treatments on woody species composition and diversity over an 11 year period. Overall, the results suggest that mixed hardwood-pine forests in the Atlantic Coastal Plain (ACP) consist of species able to vigorously recolonize following disturbances as severe as clearcutting. Although these types of management disturbances might have immediate effects on woody species composition and diversity, the results suggest that these effects are minimal over time in the absence of additional disturbance.

  9. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K

    2008-05-01

    Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually "sun" individuals in the spring prior to their longer period in the summer shade.

  10. Spatial pattern of 137Cs in soils in a mixed deciduous forest in Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Takada, M.; Yamada, T.; Takahara, T.; Okuda, T.

    2015-12-01

    Spatial heterogeneity of 137Cs contamination was studied in a forest floor of Fukushima region, c.a. 40 km NW of Fukushima Daiichi Nuclear Power Plant (FDNPP) focusing on downwards flow from forest canopy via stemflow and throughfall which play major role in determining spatial contamination of 137Cs after the FNDP accident. Setting a study plot (400 m2) in a secondary mixed deciduous forest, dominated by Quercus crispula and Abies firma in canopy layer in August and November 2014, we sampled the souk from surface to 5 cm in depth of soils and measured 137Cs in every 2 m grids and at tree stem bases. The total estimated activity of 137Cs in soil within the study plot was approximately 210 kBq/m2, but showed large spatial heterogeneity showing 30 times of difference between the lowest and highest activities. The activity decreased with increasing distances from tree stem bases. High activity around tree stem bases was presumably due to the stemflow containing 137Cs seeped into soil only around tree stem bases that raised radioactivity in soil locally in the areas. Relatively low activity away from trees (outside canopies) may be due to small effects of stemflow and throughfall. Activity of 137Cs around bases of deciduous broadleaf trees increased with increasing the tree size. Because larger trees have higher potentials to capture larger amount of 137Cs on the tree surface, cumulative activity of 137Cs included in stemflow may increase with increasing the tree size. However evergreen coniferous tree species (Abies firma) did not show such a pattern relating to the tree size. The difference is assumed to be affected by phenological characteristics as the accident happened in winter and deciduous broadleaf trees did not have leaves and 137Cs deposited on tree bodies, while evergreen coniferous tree had leaves and 137Cs was intercepted by the canopies.

  11. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.

  12. Leaf domatia and foliar mite abundance in broadleaf deciduous forest of north Asia.

    PubMed

    O'Dowd, D; Pemberton, R

    1998-01-01

    Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.

  13. Forest carbon uptake in North America's aging temperate deciduous forests: A data-theory-model mismatch?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Curtis, P.; Bond-Lamberty, B. P.; Hardiman, B. S.; Scheuermann, C. M.; Nave, L. E.; Nadelhoffer, K. J.

    2015-12-01

    Century-old temperate deciduous forests in the US upper Midwest and Northeast power much of North America's terrestrial carbon sink, but these forests' carbon uptake capacity is expected to soon decline. But will this really happen? We marshal empirical data and ecological theory to show that declines in carbon uptake are not imminent in regrown temperate deciduous forests during coming decades, despite long-held assumptions and modeling results that predict declining carbon uptake during middle stages of ecosystem development. Age and production data for temperate deciduous forests, synthesized from published literature, do not provide evidence for declining net primary and ecosystem production (NPP and NEP, respectively) within the age-range most regional forests will occupy over the next half-century. Ecological theory suggests a mechanism for sustained carbon uptake in the region's aging forests in which high-frequency, low-severity disturbances maintain NPP and NEP by increasing ecosystem complexity. This theoretical model is supported by observations from the Forest Accelerated Succession Experiment in Michigan, USA, but such mechanisms sustaining production in old forests are not broadly represented in ecosystem models. Ecosystems experiencing low-frequency, high-severity disturbances that simplify ecosystem complexity do exhibit declining production during middle stages of succession, but we suggest that such scenarios have exerted a disproportionate influence on prevailing modeling and ecological assumptions regarding age-related declines in forest production. We conclude that there is wide ecological space for forests to sustain high rates of carbon uptake during middle stages of ecosystem development, and that advancing mechanistic understanding of long-term forest carbon cycle dynamics is essential to modeling the continent's future carbon sink strength.

  14. Remote Sensing Based Biophysical Characterization of Tropical Deciduous Forest in Central India

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Goroshi, S.; Sharma, N. K.; Bairagi, G. D.; Sharma, R.; Jalil, P.; Jain, A.; Sonakia, A.; Parihar, J. S.

    2011-09-01

    The paper reports the measurements of biophysical parameters using field and satellite data over a tropical deciduous forest Kanha National Park (KNP), central India. Field measurement (GBH, LAI, litter, soil moisture) was carried out over ten quadrates of 0.1ha in KNP for characterization of biophysical parameters with specified measurement protocol and sampling. Satellite based remote sensing analysis (LAI, Phenology, and NPP) was carried out using multi date observations of IRS-LISS-III, IMS-1MX, SPOT-VEGETATION and EOS-MODIS instruments. Rank correlation analysis using field data collected in the selected quadrates at KNP showed Sal (Shorea robusta) is dominant forest species followed by Lendia, Jamun (Syzygium cumini), Saja, Harra and Dhawda etc. Field measurement of Sal showed GBH range from 20 cm to 170 cm. Different forest classes such as Sal; Sal mixed with Jamun, Bamboo (Dendrocalamus strictus) etc, including grasslands/scrubland were classified with overall accuracy of 85.56 percent using March, May and October multi spectral data. Sal has distinct growth characteristics (low vegetation growth/ leaf fall in March instead of May) as compared to other vegetation species. As per the Leaf Area Index (LAI) measurement using hemispherical photographs, Sal showed the highest LAI (6.95 m2/m2) during September and lowest LAI (2.63 m2/m2) during March. Overall good agreement (r= 0.79) was found between the LAI generated from LISS-III and MODIS data product. It was observed from SPOT-VEGETATION analysis that NPP varied from 8.4 tC/ha/year (dry deciduous forest) to 14.25 tC/ha/year (Moist deciduous forest) in KNP.

  15. Laser-induced breakdown spectroscopy analysis of human deciduous teeth samples.

    PubMed

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Hayat, Asma

    2015-12-01

    Laser-induced breakdown spectroscopy (LIBS) analysis of human deciduous teeth has been performed by employing Nd:YAG laser (1064 nm, 10 ns) for the evaluation of plasma parameters as well as elemental analysis. The plasma parameters, i.e., electron temperature and electron number density of laser-induced teeth plasma at various fluencies, have been evaluated. Both parameters show an increasing trend up to a certain value of laser fluence, i.e., 2.6 J/cm(2). With further increase in laser fluence up to a value of 3.9 J/cm(2), a decreasing trend is observed which is due to shielding effect. With further increase in laser fluence up to a maximum value of 10.5 J/cm(2), the insignificant changes in plasma parameters are observed which are attributed to saturation phenomenon governed by self-regulating regime. Emission spectroscopy results exhibit that laser fluence is the controlling factor for both plasma parameters. The elemental analysis was also performed at constant laser fluence of 2.6 J/cm(2) by evaluating the variation in detected elemental concentration of Ca, Fe, Sr, Zn, and Pb in three different parts of human teeth, i.e., enamel, dentine, and cementum. The lower concentration of Ca as compared to the standard values of CaCO3 (self-fabricated pellet) reveals that enamel is the most deciduous part of the human teeth. However, at the same time, it is also observed that the highest concentration of micro minerals is also found in enamel, then in dentine, and lowest in cementum. Carious or unhealthy tooth is identified by enhanced concentration of micro minerals (Pb, Sr, Zn, and Fe). The highest concentration of micro minerals as compared to other parts of teeth (dentine and root cementum) and lower concentration of Ca as compared to standard CaCO3 pellet in enamel confirm that enamel is the most deciduous part of the teeth.

  16. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  17. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    SciTech Connect

    Stitt, Caroline R.

    2013-09-16

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  18. Aesthetic restoration of deciduous anterior teeth after removal of carious tissue with Papacárie.

    PubMed

    Motta, Lara J; Martins, Manoela D; Porta, Kristianne P; Bussadori, Sandra K

    2009-01-01

    The development of conservative techniques for the removal of carious tissue and the improvement of dental restoration materials allow better preservation of the dental structure. Chemomechanical caries removal is a conservative and atraumatic alternative. Papacárie is a papain-based material developed to act only on the carious dentin, allowing its easy removal with a blunt curette. This study aims to present a clinical case of aesthetic restoration of both upper deciduous central incisors after the removal of carious tissue with Papacárie.

  19. Expression and regulation of stanniocalcin 1 and 2 in rat uterus during embryo implantation and decidualization.

    PubMed

    Xiao, Li-Juan; Yuan, Jin-Xiang; Song, Xin-Xin; Li, Yin-Chuan; Hu, Zhao-Yuan; Liu, Yi-Xun

    2006-06-01

    Stanniocalcin-1 (STC-1) is a recently discovered polypeptide hormone, while stanniocalcin-2 (STC-2) is a subsequently identified homologue of stanniocalcin-1. Although previous studies have shown that both STC-1 and -2 are involved in various physiological processes, such as ion transport, reproduction and development, their expression in the uterus and roles in implantation and early pregnancy are unclear. Here we have investigated the expression and regulation of both STC-1 and STC-2 in rat uterus during early pregnancy under various physiological conditions. We show that only basal levels of STC-1 and STC-2 mRNA were detected in the uterus from day one (D1) to day five (D5) of pregnancy. STC-2 immunostaining was gradually increased in the glandular epithelium from day two (D2), with a peak occurring on D5. High levels of both STC-1 and STC-2 mRNA were observed in the stoma cells at the implantation site on day six (D6) of pregnancy, whereas their immunostaining signals were also significant in the luminal epithelium. Basal levels of both STC-1 and STC-2 mRNA and STC-1 immunostaining were detected in the uterus with delayed implantation. After the delayed implantation was terminated by estrogen treatment, both STC-1 and STC-2 mRNA signals were significantly induced in the stroma underlying the luminal epithelium at the implantation site, and STC-2 immunostaining was also observed in the luminal epithelium surrounding the implanting blastocyst. Embryo transfer experiments further confirmed that STC-1 and STC-2 expression at the implantation sites was induced by the implanting blastocyst. Both STC-1 mRNA and immunostaining were seen in the decidualized cells from day seven (D7) to day nine (D9) of pregnancy. STC-2 mRNA was also found in the whole decidua from D7 to D9 of pregnancy; STC-2 protein, however, was strictly localized to the primary deciduas on D7 and D8, with a weak expression in the whole deciduas on D9. Consistent with the normal pregnancy process

  20. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  1. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  2. Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity

    PubMed Central

    Vinketova, Kameliya; Mourdjeva, Milena

    2016-01-01

    The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described. PMID:27239344

  3. Harvest-related edge effects on prey availability and foraging of hooded warblers in a bottomland hardwood forest.

    SciTech Connect

    John Kilgo

    2005-04-20

    The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did not differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.

  4. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  5. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest.

    PubMed

    Burke, David J

    2015-06-01

    Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.

  6. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae.

    PubMed

    Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T

    2010-05-01

    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3.

  7. Decomposition of hardwood leaves grown under elevated O[sub 3] and/or CO[sub 2

    SciTech Connect

    Boerner, R.E.J.; Rebbeck, J. Northeastern Forest Experiment Station, Delaware, OH )

    1993-06-01

    We measured mass loss and N release from leaves of three hardwoods which varied in O[sub 3] sensitivity: O[sub 3]-tolerant sugar maple (Acer saccharum/SM), black cherry (Prunus serotina/BC), and putatively O[sub 3]-sensitive yellow poplar (Liriodendron tulipifera/YP), grown in pots in charcoal-filtered air (CF), ambient O[sub 3], or twice ambient O[sub 3] (2X) in open top chambers. Mass loss was not affected by the O[sub 3] regime in which the leaves were grown. k values averaged SM:-0.707, BC:-0.613, and YP:-0.859. N loss from ambient O[sub 3]-grown SM was significantly greater than from CF; N loss from BC did not differ among treatments. Significantly less N was released from CF-grown YP leaves than from O[sup 3]-treated leaves. YP leaves from plants grown in pots at 2X O[sub 3] and 350 ppm supplemental CO[sub 2] in CSTRs loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF or 2X O[sub 3]. Thus, for leaves from plants grown in pots in fumigation chambers, the concentrations of both O[sub 3] and CO[sub 2] can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO[sub 2].

  8. Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood.

    PubMed

    Jeong, So-Yeon; Lee, Jae-Won

    2016-01-01

    Sequential Fenton oxidation (FO) and hydrothermal treatment were performed to improve the effect of pretreatment and enzymatic hydrolysis of mixed hardwood. The molar ratio of the Fenton reagent (FeSO4·7H2O and H2O2) was 1:25, and the reaction time was 96h. During the reaction, little or no weight loss of biomass was observed. The concentration of Fe(2+) was determined and was found to increase continuously during FO. Hydrothermal treatment at 190-210°C for 10-80min was performed following FO. Sequential FO and hydrothermal treatment showed positive effects on pretreatment and enzymatic hydrolysis. Xylose concentration in the hydrolysate was as high as 14.16g/L when FO-treated biomass was treated at 190°C, while its concentration in the raw material was 3.72g/L. After 96h of enzymatic hydrolysis, cellulose conversion in the biomass obtained following sequential treatment was 69.58-79.54%. In contrast, the conversion in the raw material (without FO) was 64.41-67.92%.

  9. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

    PubMed

    Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

    2015-11-01

    Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests.

  10. Changes in Carbon Flux at the Duke Forest Hardwood Ameriflux Site Due to Land Cover/Land Use Changes

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.

    2014-12-01

    The Raleigh/Durham, North Carolina metropolitan area has been ranked by Forbes as the fastest growing cities in the United States. As a result of the rapid growth, there has been a significant amount of urban sprawl. The objective of this study was to determine if the changes in land use and land cover have caused a change in the carbon flux near the Duke Forest AmeriFlux station that was active from 2001 to 2008. The land cover and land use were assessed every two years to determine how land cover has changed at the Duke Forest Hardwoods (US-Dk2) AmeriFlux site from 2001 to 2008 using Landsat scenes. The change in land cover and land use was then compared to changes in the carbon footprint that is computed annually from 2001 to 2008. The footprint model for each wind direction determined that there are changes annually and that the research will determine if these changes are due to annual weather patterns or land use and land cover changes.

  11. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  12. A heat wave during leaf expansion severely reduces productivity and modifies seasonal growth patterns in a northern hardwood forest.

    PubMed

    Stangler, Dominik Florian; Hamann, Andreas; Kahle, Hans-Peter; Spiecker, Heinrich

    2016-10-13

    A useful approach to monitor tree response to climate change and environmental extremes is the recording of long-term time series of stem radial variations obtained with precision dendrometers. Here, we study the impact of environmental stress on seasonal growth dynamics and productivity of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh.) in the Great Lakes, St Lawrence forest region of Ontario. Specifically, we research the effects of a spring heat wave in 2010, and a summer drought in 2012 that occurred during the 2005-14 study period. We evaluated both growth phenology (onset, cessation, duration of radial growth, time of maximum daily growth rate) and productivity (monthly and seasonal average growth rates, maximum daily growth rate, tree-ring width) and tested for differences and interactions among species and years. Productivity of sugar maple was drastically compromised by a 3-day spring heat wave in 2010 as indicated by low growth rates, very early growth cessation and a lagged growth onset in the following year. Sugar maple also responded more sensitively than yellow birch to a prolonged drought period in July 2012, but final tree-ring width was not significantly reduced due to positive responses to above-average temperatures in the preceding spring. We conclude that sugar maple, a species that currently dominates northern hardwood forests, is vulnerable to heat wave disturbances during leaf expansion, which might occur more frequently under anticipated climate change.

  13. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites

    PubMed Central

    Song, Zhijiao; Zhang, Miaomiao; Li, Fagen; Weng, Qijie; Zhou, Chanpin; Li, Mei; Li, Jie; Huang, Huanhua; Mo, Xiaoyong; Gan, Siming

    2016-01-01

    Identification of loci or genes under natural selection is important for both understanding the genetic basis of local adaptation and practical applications, and genome scans provide a powerful means for such identification purposes. In this study, genome-wide simple sequence repeats markers (SSRs) were used to scan for molecular footprints of divergent selection in Eucalyptus grandis, a hardwood species occurring widely in costal areas from 32° S to 16° S in Australia. High population diversity levels and weak population structure were detected with putatively neutral genomic SSRs. Using three FST outlier detection methods, a total of 58 outlying SSRs were collectively identified as loci under divergent selection against three non-correlated climatic variables, namely, mean annual temperature, isothermality and annual precipitation. Using a spatial analysis method, nine significant associations were revealed between FST outlier allele frequencies and climatic variables, involving seven alleles from five SSR loci. Of the five significant SSRs, two (EUCeSSR1044 and Embra394) contained alleles of putative genes with known functional importance for response to climatic factors. Our study presents critical information on the population diversity and structure of the important woody species E. grandis and provides insight into the adaptive responses of perennial trees to climatic variations. PMID:27748400

  14. Host plant phenology affects performance of an invasive weevil, Phyllobius oblongus (Coleoptera: Curculionidae), in a northern hardwood forest.

    PubMed

    Coyle, David R; Jordan, Michelle S; Raffa, Kenneth F

    2010-10-01

    We investigated how host plant phenology and plant species affected longevity, reproduction, and feeding behavior of an invasive weevil. Phyllobius oblongus L. (Coleoptera: Curculionidae) is common in northern hardwood forests of the Great Lakes Region. Adults emerge in spring, feed on foliage of woody understory plants, and oviposit in the soil. Preliminary data indicate that adults often feed on sugar maple, Acer saccharum Marshall, foliage early in the season, then feed on other species such as raspberry, Rubus spp. Whether this behavior reflects temporal changes in the quality of A. saccharum tissue or merely subsequent availability of later-season plants is unknown. We tested adult P. oblongus in laboratory assays using young (newly flushed) sugar maple foliage, old (2-3 wk postflush) sugar maple foliage, and raspberry foliage. Raspberry has indeterminate growth, thus always has young foliage available for herbivores. Survival, oviposition, and leaf consumption were recorded. In performance assays under no-choice conditions, mated pairs were provided one type of host foliage for the duration of their lives. In behavioral choice tests, all three host plants were provided simultaneously and leaf area consumption was compared. Adults survived longer on and consumed greater amounts of young maple and raspberry foliage than old maple foliage. P. oblongus preferred young maple foliage to old maple foliage early in the season, however, later in the growing season weevils showed less pronounced feeding preferences. These results suggest how leaf phenology, plant species composition, and feeding plasticity in host utilization may interact to affect P. oblongus population dynamics.

  15. Hardwood smoke alters murine splenic T cell responses to mitogens following a 6-month whole body inhalation exposure

    SciTech Connect

    Burchiel, Scott W. . E-mail: Sburchiel@salud.unm.edu; Lauer, Fredine T.; Dunaway, Sandy L.; Zawadzki, Jerome; McDonald, Jacob D.; Reed, Matthew D.

    2005-02-01

    The purpose of these studies was to assess the effects of hardwood smoke (HWS) inhalation (30-1000 {mu}g/m{sup 3}) on the systemic immune responses of A/J mice evaluated after 6 months of daily exposures. Spleen cells obtained from mice were assessed for changes in cell number, cell surface marker expression [B, T, macrophage, and natural killer (NK) cells], and responses to B cell (LPS, endotoxin) and T cell (Con A) mitogens. Results showed that HWS smoke increased T cell proliferation in the 100 {mu}g/m{sup 3} exposure group and produced a concentration-dependent suppression of T cell proliferation at concentrations >300 {mu}g/m{sup 3}. There were no effects on B cell proliferation or in spleen cell surface marker expression. Analyses of the exposure atmospheres revealed the presence of significant levels of naphthalene and methylated napthalenes, fluorene, phenanthrene, and anthracene in the exposure chambers, as well as low concentrations of several metals (K, Ca, and Fe). Our results demonstrate that environmentally relevant concentrations of HWS may be immunosuppressive to the immune system of mice exposed during a 6-month period.

  16. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua

    2016-06-01

    Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved trees (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved trees (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen species were smaller than for deciduous species. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen species and deciduous species, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to tree boles; (2) the evergreen species were more likely to generate stemflow than deciduous species, and directed more intercepted rainwater to the root zone; (3) small trees were more productive in funneling stemflow than larger trees, which may provide a favorable

  17. Hmgn1 acts downstream of C/EBPβ to regulate the decidualization of uterine stromal cells in mice.

    PubMed

    Li, Dang-Dang; Yang, Zhan-Qing; Guo, Chuan-Hui; Yue, Liang; Duan, Cui-Cui; Cao, Hang; Guo, Bin; Yue, Zhan-Peng

    2015-01-01

    Although Hmgn1 is involved in the regulation of gene expression and cellular differentiation, its physiological roles on the differentiation of uterine stromal cells during decidualization still remain unknown. Here we showed that Hmgn1 mRNA was highly expressed in the decidua on days 6-8 of pregnancy. Simultaneously, increased expression of Hmgn1 was also observed in the artificial and in vitro induced decidualization models. Hmgn1 induced the proliferation of uterine stromal cells and expression of Ccna1, Ccnb1, Ccnb2 and Cdk1 in the absence of estrogen and progesterone. Overexpression of Hmgn1 could enhance the expression of Prl8a2 and Prl3c1 which were 2 well-known differentiation markers for decidualization, whereas inhibition of Hmgn1 with specific siRNA could reduce their expression. Further studies found that Hmgn1 could mediate the effects of C/EBPβ on the expression of Prl8a2 and Prl3c1 during in vitro decidualization. In the uterine stromal cells, cAMP analog 8-Br-cAMP could stimulate the expression of Hmgn1 via C/EBPβ. Moreover, siRNA-mediated down-regulation of Hmgn1 could attenuate the effects of cAMP on the differentiation of uterine stromal cells. During in vitro decidualization, Hmgn1 might act downstream of C/EBPβ to regulate the expression of Cox-2, mPGES-1 and Vegf. Progesterone could up-regulate the expression of Hmgn1 in the ovariectomized mouse uterus, uterine epithelial cells and stromal cells. Knockdown of C/EBPβ with siRNA alleviated the up-regulation of progesterone on Hmgn1 expression. Collectively, Hmgn1 may play an important role during mouse decidualization.

  18. Cryopreserved dental pulp tissues of exfoliated deciduous teeth is a feasible stem cell resource for regenerative medicine.

    PubMed

    Ma, Lan; Makino, Yusuke; Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi

    2012-01-01

    Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25-30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.

  19. Association between Chewing Side Preference and Dental Caries among Deciduous, Mixed and Permanent Dentition

    PubMed Central

    Sharma, Reena; Kashyap, Nilotpol; Prajapati, Deepesh; Kappadi, Damodar; Wadhwa, Saakshe; Gandotra, Shina; Yadav, Poonam

    2016-01-01

    Introduction Chewing Side Preference (CSP) is said to occur when mastication is recognized exclusively/consistently or predominantly on the same side of the jaw. It can be assessed by using the direct method - visual observation and indirect methods by electric programs, such as cinematography, kinetography and computerized electromyography. Aim The present study was aimed at evaluating the prevalence of CSP in deciduous, mixed and permanent dentitions and relating its association with dental caries. Materials and Methods In a cross-sectional observational study, 240 school going children aged 3 to 18years were randomly allocated to three experimental groups according to the deciduous dentition, mixed dentition and permanent dentition period. The existence of a CSP was determined using a direct method by asking the children to chew on a piece of gum (trident sugarless). The Mann Whitney U-test was used to compare the CSP and also among the boys and girls. The Spearman’s Correlation Coefficient was used to correlate CSP and dental caries among the three study groups and also among the groups. Results CSP was observed in 69%, 83% and 76% of children with primary, mixed and permanent dentition respectively (p>0.05). There was no statistically significant association between the presence of CSP and dental caries among the three study groups. Conclusion There was a weak or no correlation between gender and distribution of CSP and between presence of CSP and dental caries. PMID:27790569

  20. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  1. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  2. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  3. Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind.

    PubMed

    Nathan, Ran; Katul, Gabriel G

    2005-06-07

    Seed terminal velocity and release height are recognized as key biotic determinants of long-distance dispersal (LDD) of seeds by wind. Yet, potential determinants at the ecosystem level, such as seasonal dynamics in foliage density characterizing many deciduous forests, have received much less attention. We integrated detailed field observations and experiments with a mechanistic wind dispersal model to assess how seasonal variation in foliage density, estimated by leaf-area index (LAI), affects LDD in deciduous forests. We found that the model, previously shown to accurately predict seed dispersal by wind, also reliably describes the effects of LAI variation on wind statistics for a wide range of canopy types. Sparser canopies are characterized by more organized vertical eddy motion that promotes LDD by uplifting seeds to higher elevations where winds are stronger. Yet, sparser canopies are also characterized by reduced mean windspeed aloft. We showed that former effect more than compensates for the latter, i.e., conditions of low LAI are favorable for LDD. This may account for the tendency of many temperate tree species to restrict seed release to either early spring or late fall, when LAI is relatively low. Sensitivity analysis reveals that the typical seasonal variation in LAI can be more important to LDD of seeds by wind than the natural variation in seed terminal velocity. Because our model accurately describes the effects of LAI variation for distinctly different sites, species, and life forms, we suggest that its results reflect a general association between LDD and foliage density dynamics.

  4. Winter photosynthesis by saplings of evergreen broad-leaved trees in a deciduous temperate forest.

    PubMed

    Miyazawa, Yoshiyuki; Kikuzawa, Kihachiro

    2005-03-01

    * Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.

  5. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate

    NASA Astrophysics Data System (ADS)

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C.

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  6. Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest.

    PubMed

    Heberling, J Mason; Fridley, Jason D

    2016-04-01

    Non-native, invasive plants are commonly typified by trait strategies associated with high resource demands and plant invasions are often thought to be dependent upon site resource availability or disturbance. However, the invasion of shade-tolerant woody species into deciduous forests of the Eastern United States seems to contradict such generalization, as growth in this ecosystem is strongly constrained by light and, secondarily, nutrient stress. In a factorial manipulation of light and soil nitrogen availability, we established an experimental resource gradient in a secondary deciduous forest to test whether three common, woody, invasive species displayed increased metabolic performance and biomass production compared to six co-occurring woody native species, and whether these predicted differences depend upon resource supply. Using hierarchical Bayesian models of photosynthesis that included leaf trait effects, we found that invasive species exhibited functional strategies associated with higher rates of carbon gain. Further, invader metabolic and growth-related attributes were more responsive to increasing light availability than those of natives, but did not fall below average native responses even in low light. Surprisingly, neither group showed direct trait or growth responses to soil N additions. However, invasive species showed increased photosynthetic nitrogen use efficiencies with decreasing N availability, while that of natives remained constant. Although invader advantage over natives was amplified in higher resource conditions in this forest, our results indicate that some invasive species can maintain physiological advantages over co-occurring natives regardless of resource conditions.

  7. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter

    NASA Astrophysics Data System (ADS)

    Gritsch, Christine; Egger, Florian; Zehetner, Franz; Zechmeister-Boltenstern, Sophie

    2016-05-01

    The forest litter layer lies at the boundary between soil and atmosphere and is a major factor in biogeochemical cycles. While there are several studies on how the litter layer controls soil trace gas emissions, litter emissions itself are less well understood, and it is still unclear how important gases respond to changing temperature and moisture. In order to assess leaf litter gas exchange, we conducted laboratory incubation experiments in which the full set of climate relevant gases, i.e., carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and nitric oxide (NO) coming from deciduous and coniferous leaf litter were measured at five temperatures and seven moisture contents. In addition, we compared litter and soil from different origin in terms of temperature/moisture responses of gas fluxes and investigated possible interactions between the two climate factors. Deciduous litter emitted more CO2 (up to 335 mg CO2-C kg-1 h-1) than coniferous litter, whereas coniferous litter released maximum amounts of NO (207 µg NO-N kg-1 h-1). N2O was only emitted from litter under very moist and warm conditions (>70% wet weight, >10°C). CH4 emissions were close to zero. Temperature sensitivities of litter emissions were generally lower than for soil emissions. Nevertheless, wet and warm conditions always enhanced litter emissions, suggesting a strong feedback effect of the litter layer to predicted future climate change.

  8. Discrimination of Deciduous Tree Species from Time Series of Unmanned Aerial System Imagery

    PubMed Central

    Lisein, Jonathan; Michez, Adrien; Claessens, Hugues; Lejeune, Philippe

    2015-01-01

    Technology advances can revolutionize Precision Forestry by providing accurate and fine forest information at tree level. This paper addresses the question of how and particularly when Unmanned Aerial System (UAS) should be used in order to efficiently discriminate deciduous tree species. The goal of this research is to determine when is the best time window to achieve an optimal species discrimination. A time series of high resolution UAS imagery was collected to cover the growing season from leaf flush to leaf fall. Full benefit was taken of the temporal resolution of UAS acquisition, one of the most promising features of small drones. The disparity in forest tree phenology is at the maximum during early spring and late autumn. But the phenology state that optimized the classification result is the one that minimizes the spectral variation within tree species groups and, at the same time, maximizes the phenologic differences between species. Sunlit tree crowns (5 deciduous species groups) were classified using a Random Forest approach for monotemporal, two-date and three-date combinations. The end of leaf flushing was the most efficient single-date time window. Multitemporal datasets definitely improve the overall classification accuracy. But single-date high resolution orthophotomosaics, acquired on optimal time-windows, result in a very good classification accuracy (overall out of bag error of 16%). PMID:26600422

  9. [Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest].

    PubMed

    Hu, Zheng-hua; Li, Han-mao; Yang, Yan-ping; Chen, Shu-tao; Li, Cen-zi; Shen, Shuang-he

    2010-08-01

    To investigate the effects of elevated nitrogen deposition on forest soil respiration, a simulated nitrogen deposition field experiment was conducted in northern subtropical deciduous broad-leave forest from April 2008 to April 2009. Nitrogen treatments included the control (no N addition, CK), low-N [50 kg x (hm2 x a)(-1), T(L)], medium-N [100 kg x (hm2 x a)(-1), T(M)], and high-N [150 kg x (hm2 x a)(-1), T(H)]. The respiration rates were measured by a static chamber-gas chromatograph method. Results showed that nitrogen deposition did not change the seasonal and daily variation patterns of soil respiration. Compared to the control, T(L), T(M) and T(H) treatments reduced soil annual average respiration rates by 8.51%, 9.74% and 11.24%, respectively. Meanwhile, T(L), T(M) and T(H) treatments decreased daily average soil respiration rates by 4.42%, 11.09% and 12.17%, respectively. Significant relationship was found between soil respiration rate and soil temperature. The Q10 (temperature sensitivity coefficients) for soil respiration of CK, T(L), T(M), and T(H) treatments were 2.53, 3.22, 2.64 and 2.92, respectively. Our findings suggested that nitrogen deposition reduced soil respiration, and increased soil respiration temperature sensitivity in northern subtropical deciduous broad-leave forest.

  10. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    PubMed

    Mahoney, Patrick

    2013-08-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel thickness along the entire human deciduous tooth row. Average enamel thickness (AET), the area and proportion of crown enamel and dentin, and a crown size proxy are calculated for incisors, canines, and molars. Allometric scaling relationships are assessed within each tooth class, and then comparisons are undertaken along the row. Generally, AET was correlated with crown size and scaled with isometry, except for second molars which scaled with positive allometry. Mean AET increased along the row and was greater on molars, where bite forces are reported to be higher. Second molars combined the largest crown size with the thickest enamel and the smallest proportion of dentin, which is consistent with a reduction in the potential for cusp fracture under high bite forces. Resistance to wear may also account for some enamel thickness variation between tooth classes. Dental reduction did not explain the trend in AET from central to lateral incisors, or from first to second molars. The gradient in AET along the deciduous tooth row is partly consistent with a functional interpretation of enamel thickness.

  11. Acute food restriction increases collagen breakdown and phagocytosis by mature decidual cells of mice.

    PubMed

    Spadacci-Morena, D D; Katz, S G

    2001-06-01

    An ultrastructural study was undertaken on antimesometrial mature decidual tissue of fed and food-restricted mice, on day 9 of pregnancy. The mean ad libitum food intake was established on mice from the 8th till the 9th day of pregnancy. Fed mice were used as controls. Experimental animals were divided into two groups: one was allowed to feed 25% of normal diet and the other 50%. Extracellular collagen fibrils were scarce in fed animals and conspicuous in food restriction. Granular electron-dense deposits and filamentous aggregates of disintegrating collagen fibrils were observed in all food-deprived mice but were rarely noted in fed animals. Intracellular vacuolar structures exhibited other typical cross-banded collagen immersed in finely granular electron-translucent material (clear vacuole) or electron-dense material containing collagen fibrils with a faint periodicity (dark vacuole). The clear and dark vacuoles were scarce in fed animals and evident in food-restricted mice, mainly in those 25% food restricted. Although collagen breakdown may be part of the normal process of decidual tissue remodelling our results suggest that it is enhanced in food-restricted animals. Thus it seems that collagen breakdown is a normal mechanism that may be regulated by the food intake of the pregnant animal.

  12. Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp.

    PubMed

    Lee, Hye-Kyung; Park, Ji-Won; Seo, You-Mi; Kim, Ha Hoon; Lee, Gene; Bae, Hyun-Sook; Park, Joo-Cheol

    2016-06-01

    For the dentin regeneration, dental epithelial cells are indispensible and must possess odontoblastic induction capability. Epithelial cell-like stem cells were recently identified in human deciduous dental pulp (DPESCs). However, their cellular characteristics remain poorly defined. The purpose of this study was to characterize DPESCs compared to HAT-7 ameloblastic cells. Expression levels of ameloblast-specific markers [odontogenic ameloblast-associated protein (Odam), matrix metalloproteinase (Mmp)-20, amelogenin, and ameloblastin] were detected in DPESCs. Co-culturing odontoblastic MDPC-23 cells with DPESCs increased expression of odontoblast differentiation markers (Dmp1 and Dspp) from days 4 to 10, while the expression of bone sialoprotein rapidly decreased. MDPC-23 cells cultured in DPESC-conditioned medium (CM) showed increased Dspp promoter activity compared with control MDPC-23 cultures. Mineralization was first observed in the CM groups from day 4 and proceeded rapidly until day 14, whereas mineralized nodules were found from day 7 in control media-cultured cells. In conclusion, DPESCs in human deciduous pulp possess ameloblast-like characteristics and differentiation properties, and substances derived from DPESCs promote odontoblastic differentiation. Thus, our results indicate that DPESCs can be a realistic epithelial source for use in odontoblastic induction and dentin formation of dental mesenchymal cells.

  13. HB-EGF directs stromal cell polyploidy and decidualization via cyclin D3 during implantation.

    PubMed

    Tan, Yi; Li, Meiling; Cox, Sandra; Davis, Marilyn K; Tawfik, Ossama; Paria, Bibhash C; Das, Sanjoy K

    2004-01-01

    Stromal cell polyploidy is a unique phenomenon that occurs during uterine decidualization following embryo implantation, although the developmental mechanism still remains elusive. The general consensus is that the aberrant expression and altered functional activity of cell cycle regulatory molecules at two particular checkpoints G1 to S and G2 to M in the cell cycle play an important role in the development of cellular polyploidy. Despite the compelling evidence of intrinsic cell cycle alteration, it has been implicated that the development of cellular polyploidy may be controlled by specific actions of extracellular growth regulators. Here we show a novel role for heparin-binding EGF-like growth factor (HB-EGF) in the developmental process of stromal cell polyploidy in mice. HB-EGF, which is one of the earliest known molecular mediators of implantation in mice and humans, promotes stromal cell polyploidy via upregulation of cyclin D3. Adenoviral delivery of antisense cyclin D3 attenuates cyclin D3 expression and abrogates HB-EGF-induced stromal cell polyploidy in vitro and in vivo. Collectively, the results demonstrate that the regulation of stromal cell polyploidy and decidualization induced by HB-EGF depend on cyclin D3 induction.

  14. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  15. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    PubMed

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.

  16. Boron stemflow chemistry in relation to species and season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2013-12-01

    Boron is an essential micronutrient that contributes to cell wall development and other critical plant functions. Boron deficiency is not uncommon in many forest types and plantations but may be difficult to differentiate from other impacts. The magnitude and timing of B transfer to the forest floor via stemflow is poorly understood and little is known about its variation as a function of species and season in temperate deciduous forests. We characterized this transfer in a mid-Atlantic broadleaved deciduous forest where we collected and analyzed stemflow from dominant canopy species of Fagus grandifolia (Ehrh.) [American beech] and Liriodendron tulipifera (L.) [yellow poplar]. Boron concentrations in stemflow were found to be greater from L. tulipifera compared with F. grandifolia over both seasons. Increased stemflow volume from F. grandifolia resulted in greater overall B contributions from these stems as well as greater enrichment ratios in both leaf and leafless conditions. When expressed on the basis of basal area, contributions of B to the forest floor were many times greater than gross precipitation and varied with season and meteorologic conditions.

  17. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    PubMed Central

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-01-01

    Tropospheric ozone concentrations have increased by 60–100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected. PMID:25943276

  18. A genomic and proteomic investigation of the impact of preimplantation factor on human decidual cells

    PubMed Central

    PAIDAS, Michael J.; KRIKUN, Graciela; HUANG, S. Joseph; JONES, Richard; ROMANO, Michael; ANNUNZIATO, Jack; BARNEA, Eytan R.

    2010-01-01

    OBJECTIVE Preimplantation factor (PIF) is a novel, 15 amino acid peptide, secreted by viable embryos. This study aims to elucidate PIF’s effects in human endometrial stromal cells (HESC) decidualized by estrogen and progestin, which mimics the pre-implantation milieu, and in first trimester decidua cultures (FTDC). STUDY DESIGN HESC or FTDC were incubated with 100nM synthetic PIF or vehicle control. Global gene expression was analyzed using microarray and pathway-analysis. Proteins were analyzed using quantitative mass-spectrometry, and PIF binding by ProtoArray. RESULTS Gene and proteomic analysis demonstrate that PIF affects immune, adhesion and apoptotic pathways. Significant upregulation in HESC (fold-change) include: NF-k-β activation via IRAKBP1 (53); TLR5 (9); FKBP15 protein (2.3); DSCAML1 (16). BCL-2 was downregulated in HESC (21.1) and FTDC (27.1). ProtoArray demonstrates PIF interaction with intracellular targets insulin degrading enzyme and beta-K+ channels. CONCLUSION PIF displays essential multi-targeted effects, of regulating immunity, promoting embryo-decidual adhesion, and regulating adaptive apoptotic processes. PMID:20452489

  19. Cervical and crown outline analysis of worn Neanderthal and modern human lower second deciduous molars.

    PubMed

    Benazzi, Stefano; Fornai, Cinzia; Buti, Laura; Toussaint, Michel; Mallegni, Francesco; Ricci, Stefano; Gruppioni, Giorgio; Weber, Gerhard W; Condemi, Silvana; Ronchitelli, Annamaria

    2012-12-01

    Despite the general increase in digital techniques for dental morphometric analyses, only a few methods are available to study worn teeth. Moreover, permanent dentitions are studied much more frequently than deciduous teeth. In this study, we address both issues by providing a taxonomic classification of Neanderthal and modern human (MH) lower second deciduous molars (dm(2) s) through the analysis of crown and cervical outlines. Crown and cervical outlines were obtained from a three-dimensional (3D) digital sample of uniformly oriented dm(2) s. Both outlines were centered on the centroid of their area and represented by 16 pseudolandmarks obtained by equiangularly spaced radial vectors out of the centroid. We removed size information from the oriented and centered outlines with a uniform scaling of the pseudolandmark configurations to unit Centroid Size. Group shape variation was evaluated separately for the dm(2) crown and cervical outlines through a shape-space principal component (PC) analysis. Finally, quadratic discriminant analysis of a subset of PCs was used to classify the specimens. Our results demonstrate that both outlines successfully separate the two groups. Neanderthals showed a buccodistal expansion and convex lingual outline shape, whilst MHs have buccodistal reduction and straight lingual outline shape. Therefore, we confirmed that the cervical outline represents an effective parameter for distinguishing between the two taxa when dealing with worn or damaged dm(2) s.

  20. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for

  1. New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy

    SciTech Connect

    Elia, Artemis; Charalambous, Fotini; Georgiades, Pantelis

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Spiral artery (SA) wall remodeling (SAR) is ill-defined and clinically important. Black-Right-Pointing-Pointer SA muscular phenotype prior to and during SAR in mice is underexplored. Black-Right-Pointing-Pointer SA muscular wall consists of contractile and non-contractile components. Black-Right-Pointing-Pointer SA wall non-contractile component may be synthetic smooth muscle. Black-Right-Pointing-Pointer Timing and extent of SA wall contractile component loss is revealed. -- Abstract: During pregnancy the walls of decidual spiral arteries (SAs) undergo clinically important structural modifications crucial for embryo survival/growth and maternal health. However, the mechanisms of SA remodeling (SAR) are poorly understood. Although an important prerequisite to this understanding is knowledge about the phenotype of SA muscular wall prior to and during the beginning of mouse SAR, this remains largely unexplored and was the main aim of this work. Using histological and immunohistochemical techniques, this study shows for the first time that during early mouse gestation, from embryonic day 7.5 (E7.5) to E10.5, the decidual SA muscular coat is not a homogeneous structure, but consists of two concentric layers. The first is a largely one cell-thick sub-endothelial layer of contractile mural cells (positive for {alpha}-smooth muscle actin, calponin and SM22{alpha}) with pericyte characteristics (NG2 positive). The second layer is thicker, and evidence is presented that it may be of the synthetic/proliferative smooth muscle phenotype, based on absence ({alpha}-smooth muscle actin and calponin) or weak (SM22{alpha}) expression of contractile mural cell markers, and presence of synthetic smooth muscle characteristics (expression of non-muscle Myosin heavy chain-IIA and of the cell proliferation marker PCNA). Importantly, immunohistochemistry and morphometrics showed that the contractile mural cell layer although prominent at E7.5-E8

  2. Simple, novel approaches to investigating biophysical characteristics of individual mid-latitude deciduous trees

    NASA Astrophysics Data System (ADS)

    Kalibo, Humphrey Wafula

    Forests play a critical role in the functioning of the biosphere and support the livelihoods of millions of people. With increasing anthropogenic influences and looming effects associated with climatic variability, it is crucial that the research community and policy makers take advantage of the capabilities afforded by remote sensing technologies to generate reliable and timely data to support management decisions. Set in the species-rich woodland of Prairie Pines in Lincoln, Nebraska, this research addresses three distinct objectives that could contribute towards forest research and management. First, three supervised classification algorithms were applied to two hyperspectral AISA-Eagle images to evaluate their capability for spectrally identifying selected tree species. The findings show that each algorithm had low to moderate overall classification accuracies (46%-62%), probably due to mixed pixels resulting from pronounced heterogeneity in tree diversity; however, the algorithms could be a rapid means to assess species composition. The second objective is an investigation into how twelve individual morphologically different deciduous trees transmit incoming photosynthetically active radiation (PAR) over the course of the growing season. It was found that more diffuse light was transmitted than direct light, dictated by seasonality, vegetation fraction (VF), and leaf size. In the final objective, VF derived from upward-looking hemispherical photographs of twelve deciduous tree canopies and eight spectral vegetation indices (VIs) calculated from in situ single leaf-level reflectance data were used to investigate whether the VIs could mimic and estimate the temporal patterns of measured VF of each tree over the growing season. The findings show that all the indices accurately depicted the temporal patterns of the photo-derived VF. NDVI and SAVI had the highest correlations (R 2 > 0.7; RMSE 0.7; E > 0.8) and closely mirrored the temporal patterns of VF for nine

  3. Root productivity of deciduous and evergreen species identified using a molecular approach

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.; Sternberg, L. O.

    2012-12-01

    The linkage between leaf traits and root structure may explain how plants integrate above and belowground traits into whole plant adaptations to environmental stresses. In dry seasonal forests, the lack of dry season precipitation dries out the relatively nutrient-rich shallow soil, leaving shallow soil water and nutrients inaccessible to uptake until the wet season. In tropical or subtropical seasonal dry forests, deciduousness may allow for the survival of shallow fine roots during the dry season. Losing leaves during the dry season reduces aboveground plant water demand, and a greater proportion of water extracted from deep soil can be used to maintain shallow roots until the wet season. Higher shallow root survival through the dry season than evergreen species means that deciduous species can take advantage of the nutrient pulse associated with the onset of the wet season. To test the above hypothesis, fine roots were collected from soil cores in a seasonally dry forest during the dry season, onset of the wet season, and the wet season and were identified to selected evergreen and deciduous study species. The fine roots of two of the selected species (Lyonia ferruginea and Carya floridana) could be identified from visual characteristics. The other three study species, which were all from the genus Quercus (Q. geminata, Q. myrtifolia, and Q. laevis), were impossible to separate visually. We developed a PCR-based restriction fragment length polymorphism (PCR-RFLP) technique, which provided a quick, simple, low-cost way to identify the species of all fine roots of our study species. We extracted DNA from all roots that were not visually identified, amplified the internal transcribed spacer region (ITS), digested the ITS region with the restriction enzyme TaqαI, and used gel electrophoresis to separate DNA fragments. Using a PCR-RFLP based root identification key that we developed for the species at Archbold Biological Station, all species that could not be

  4. Spatial distribution of Triatoma guasayana (Hemiptera:Reduviidae) in hardwood forest biotopes in Santiago del Estero, Argentina.

    PubMed

    Wisnivesky-Colli, C; Schweigmann, N J; Pietrokovsky, S; Bottazzi, V; Rabinovich, J E

    1997-03-01

    In the study area Triatoma guasayana Wygodzinsky & Abalos is the only wild triatomine found sympatric with Triatoma infestans (Klug) in peridomestic premises. The Trypanosoma cruzi Chagas wild cycle is centered around the same biotopes occupied by T. guasayana, which are also visited mainly by opossums with annual prevalences of 29-50%. Twelve hectares were sampled for 4 consecutive years during all seasons. During that time, 420 T. Guasayana individuals were collected in 11.3% of 1,188 biotopes of 4 types, which included quimiles (the cactus Opuntia quimilo), chaguares (several species of bromeliads), trees, and logs. Quimiles had the highest percentage of positive biotopes (31.5%) followed by chaguares (22.3%), whereas 5% of the logs were found infested. During all seasons, 9.6-15.2% of biotopes were found infested. Distance to artificial biotopes was not statistically significant when comparing the frequency of triatomine numbers per biotope in all biotope-season combinations. With the exception of quimiles in the fall, the mean number of triatomines was higher in chaguares during all seasons. Triatomine abundance by biotope and season strata showed a clumped distribution, except for the quimiles biotope during the summer. When pooling by seasons, the mean number of triatomines in chaguares and quimiles biotope was higher than in logs and trees, with all biotopes showing a strong clumped distribution. When pooling by biotopes, the mean number of T. guasayana was relatively similar for all seasons, with a strong clumped distribution. The strong contagious distribution of T. guasayana in the hardwood forest biotopes may explain the maintenance of the wild cycle of T. cruzi, despite the low number and the low prevalences of the insect vector.

  5. Changes in HPBMC markers of immmune function following controlled short-term inhalation exposures of humans to hardwood smoke.

    PubMed

    Burchiel, Scott W; Lauer, Fredine T; MacKenzie, Debra; McClain, Shea; Kuehl, Philip J; McDonald, Jacob D; Harrod, Kevin S

    2016-01-01

    Previous studies have shown that complex mixtures containing particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) produce systemic immunotoxicity in animal models following inhalation exposures. While we and others have shown that emissions associated with hardwood smoke (HWS), cigarette smoke and diesel exhaust can suppress the immune systems of animals in vitro and in vivo, there have been few immune function studies on human peripheral blood mononuclear cells (HPBMC) following exposure of humans to HWS. Our work shows that T cells are an important targets of PM and PAH immunotoxicity. These studies were conducted on HPBMC from 14 human volunteers receiving four 2 h nightly exposures to clean air or HWS at a concentration of 500 ug/m(3). We measured anti-CD3/anti-CD28 stimulated T-cell proliferation and HPBMC cytokine production in cell supernatants, including interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), TH1 cytokines γIFN and IL-2, TH2 cytokine IL-4, Th17 cytokine interleukin 17A (IL-17A) and interleukin 10 (IL-10). We analyzed results using analysis of variance (ANOVA), t-tests and Pearson correlation. Results showed that there was significant variation in the amount of T-cell proliferation observed following polyclonal activation with anti-CD3/anti-CD28 antibodies in both the air and HWS-exposed groups. There was not a significant effect of HWS on T-cell proliferation. However, we did find a strong relationship between the presence of proinflammatory cytokines (IL-1β, TNF-α, IL-6, but not IL-8) and the amount of T-cell proliferation seen in individual donors, demonstrating that brief exposures of humans to HWS can produce changes in systemic immunity that is associated with proinflammatory cytokines.

  6. Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species.

    PubMed

    Wang, Yan; Dong, Xueyun; Wang, Hongfeng; Wang, Zhengquan; Gu, Jiacun

    2016-01-01

    Root traits in morphology, chemistry and anatomy are important to root physiological functions, but the differences between shallow and deep roots have rarely been studied in woody plants. Here, we selected three temperate hardwood species, Juglans mandshurica Maxim., Fraxinus mandschurica Rupr. and Phellodendron amurense Rupr., in plantations in northeastern China and measured morphological, anatomical and chemical traits of root tips (i.e., the first-order roots) at surface (0-10 cm) and subsurface (20-30 cm) soil layers. The objectives of this study were to identify how those traits changed with soil depth and to reveal potential functional differences. The results showed that root diameters in deep root tips were greater in J. mandshurica and F. mandschurica, but smaller in P. amurense. However, root stele diameter and the ratio of stele to root diameter in the subsurface layer were consistently greater in all three species, which may enhance their abilities to penetrate into soil. All deep roots exhibited lower tissue nitrogen concentration and respiration rate, which were possibly caused by lower nutrient availability in the subsurface soil layer. Significant differences between shallow and deep roots were observed in xylem structure, with deep roots having thicker stele, wider maximum conduit and greater number of conduits per stele. Compared with shallow roots, the theoretical hydraulic conductivities in deep roots were enhanced by 133% (J. mandshurica), 78% (F. mandschurica) and 217% (P. amurense), respectively, indicating higher efficiency of transportation. Our results suggest that trees' root tip anatomical structure and physiological activity vary substantially with soil environment.

  7. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.

    PubMed

    Savage, Kathleen E; Parton, William J; Davidson, Eric A; Trumbore, Susan E; Frey, Serita D

    2013-08-01

    Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above- and belowground processes. The model was able to represent decadal-scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate-related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal-scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate

  8. Utilizing NASA EOS to Assist in Determining Suitable Planting Locations for Bottomland Hardwood Trees in St. Bernard Parish, Louisiana

    NASA Astrophysics Data System (ADS)

    Reahard, R. R.; Arguelles, M.; Ewing, M.; Kelly, C.; Strong, E.

    2012-12-01

    St. Bernard Parish, located in southeast Louisiana, is rapidly losing coastal forests and wetlands due to a variety of natural and anthropogenic disturbances (e.g. subsidence, saltwater intrusion, low sedimentation, nutrient deficiency, herbivory, canal dredging, levee construction, spread of invasive species, etc.). After Hurricane Katrina severely impacted the area in 2005, multiple Non-Governmental Organizations (NGOs) have focused not only on rebuilding destroyed dwellings, but on rebuilding the ecosystems that once protected the citizens of St. Bernard Parish. Volunteer groups, NGOs, and government entities often work separately and independently of each other and use different sets of information to choose the best planting sites for restoring coastal forests. Using NASA Earth Observing Systems (EOS), Natural Resource Conservation Service (NRCS) soil surveys, and ancillary road and canal data in conjunction with ground truthing, the team created maps of optimal planting sites for several species of bottomland hardwood trees to aid in unifying these organizations, who share a common goal, under one plan. The methodology for this project created a comprehensive Geographic Information System (GIS) to help identify suitable planting sites in St. Bernard Parish. This included supplementing existing elevation data using Digital Elevation Models derived from LIDAR data, and determining existing land cover in the study area from classified Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from a single low-altitude swath was used to assess the health of vegetation over an area near the Mississippi River Gulf Outlet Canal (MRGO) and Bayou La Loutre. Historic extent of coastal forests was also mapped using aerial photos collected between 1952 and 1956. The final products demonstrated yet another application of NASA EOS in the rebuilding and monitoring of coastal ecosystems in

  9. The response of ground beetles (Coleoptera: Carabidae) to selection cutting in a South Carolina bottomland hardwood forest.

    SciTech Connect

    Ulyshen, Michael, D.; Hanula, James L.; Horn, Scott; Kilgo, John, C.; Moorman, Christopher, E.

    2005-04-01

    We compared the response of ground beetles (Coleoptera: Carabidae) to the creation of canopy gaps of different size (0.13, 0.26, and 0.50 ha) and age (1 and 7 years) in a bottomland hardwood forest (South Carolina, USA). Samples were collected four times in 2001 by malaise and pitfall traps placed at the center and edge of each gap, and 50 m into the surrounding forest. Species richness was higher at the center of young gaps than in old gaps or in the forest, but there was no statistical difference in species richness between old gaps and the forests surrounding them. Carabid abundance followed the same trend, but only with the exclusion of Semiardistomis viridis (Say), a very abundant species that differed in its response to gap age compared to most other species. The carabid assemblage at the gap edge was very similar to that of the forest, and there appeared to be no distinct edge community. Species known to occur in open or disturbed habitats were more abundant at the center of young gaps than at any other location. Generalist species were relatively unaffected by the disturbance, but one species (Dicaelus dilatatus Say) was significantly less abundant at the centers of young gaps. Forest inhabiting species were less abundant at the centers of old gaps than in the forest, but not in the centers of young gaps. Comparison of community similarity at various trapping locations showed that communities at the centers of old and young gaps had the lowest similarity (46.5%). The community similarity between young gap centers and nearby forest (49.1%) and old gap centers and nearby forest (50.0%) was similarly low. These results show that while the abundance and richness of carabids in old gaps was similar to that of the surrounding forest, the species composition between the two sites differed greatly.

  10. Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves.

    PubMed

    Jouraeva, Venera A; Johnson, David L; Hassett, John P; Nowak, David J; Shipunova, Natalia A; Barbarossa, Dana

    2006-11-01

    The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (unaffected by sooty mold fungi). The selected species have similar leaf morphology and were exposed to identical environmental conditions. Intra-species comparison showed that moldy linden leaves accumulate significantly higher amounts of PAHs and metals than unaffected linden leaves. Inter-species comparison revealed that in the absence of sooty mold fungi, physico-chemical properties of epicuticular waxes, rather than the amounts of waxes, might play an important role in accumulation of particulate matter on leaves. The accumulation and/or degradation of a number of high-molecular-weight (HMW) PAHs on leaves was temperature dependent. The results show that the presence of sooty mold fungi on deciduous leaves alters either the accumulation modes and/or degradation pathways of PAHs on deciduous leaves.

  11. Two new species of Pasipha Ogren & Kawakatsu (Platyhelminthes: Continenticola) from areas of deciduous forest in southern Brazil.

    PubMed

    Amaral, Silvana Vargas Do; Leal-Zanchet, Ana Maria

    2016-09-29

    Two new species of Geoplaninae from southern Brazil are described herein. The new species, belonging to the genus Pasipha Ogren & Kawakatsu, 1990, can be distinguished from each other and from their congeners by colour pattern and characteristics of the copulatory apparatus, especially regarding the female organs and prostatic vesicle. Both new species seem to be endemic to areas covered by deciduous forest.

  12. Suppression of decidual cell response induced by dibutyltin dichloride in pseudopregnant rats: as a cause of early embryonic loss.

    PubMed

    Harazono, Akira; Ema, Makoto

    2003-01-01

    In our previous study, dibutyltin dichloride (DBTCl) caused preimplantation embryonic loss and postimplantation embryonic loss in rats following administration at 7.6 mg/kg and above on Days 0-3 and at 3.8 mg/kg and above on Days 4-7 of pregnancy, respectively. This study was designed to assess the effects of DBTCl on uterine function as a cause of early embryonic loss using pseudopregnant rats. DBTCl was given orally to pseudopregnant rats at 3.8, 7.6 or 15.2 mg/kg on pseudopregnant day (PPD) 0-3 or on PPD 4-7. The decidual cell response was induced by bilateral uterine scratch on PPD 4. The uterine weight on PPD 9 served as an index of uterine decidualization. Uterine weight and serum progesterone levels on PPD 9 were significantly decreased after administration of DBTCl at 7.6 mg/kg and above on PPD 0-3 and PPD 4-7. DBTCl had no effect on the serum estradiol levels and number of corpora lutea. Administration of progesterone reversed the suppression of uterine decidualization in rats given DBTCl on PPD 0-3. It can be concluded that DBTCl suppresses the uterine decidual cell response and decreases progesterone levels, and these effects are responsible for early embryonic loss due to DBTCl exposure.

  13. Tooth size-arch length relationships in the deciduous dentition: a comparison between contemporary and historical samples.

    PubMed

    Warren, John J; Bishara, Samir E; Yonezu, Takuro

    2003-06-01

    In a recent study, it was reported that maxillary and mandibular arch lengths were significantly shorter in a sample of contemporary children in the deciduous dentition compared with a historical sample from about 50 years earlier. The purpose of this study was to describe secular changes that might have occurred in tooth sizes and tooth size-arch length relationships in the same cohorts of contemporary and historical North American white children in the deciduous dentition. The 2 samples were similar in terms of geographic location, racial and ethnic backgrounds, and socioeconomic status. Both samples were restricted to white children with a normal overjet (<4 mm) and a normal anteroposterior molar relationship, no anterior open bite, and no crossbite. In addition, subjects were excluded if any permanent teeth were erupted. Measurements of mesiodistal tooth sizes and arch lengths of maxillary and mandibular arches were made, and tooth size-arch length discrepancies (TSALD) were determined. The results indicated that tooth sizes were generally similar in the 2 cohorts but slightly larger in contemporary children. Crowding, as measured by TSALD, was found to be common in the mandibular arch for contemporary children in the deciduous dentition of both boys and girls. Moreover, crowding was much more common and severe in contemporary children compared with children in the historical cohort. Further research is needed to determine whether the increase in mandibular crowding in the deciduous dentition will continue to be observed in the mixed and permanent dentitions and to further establish these possible secular trends.

  14. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    PubMed Central

    Tomlinson, Kyle W.; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H. T.; de Bie, Steven; Sterck, Frank J.

    2013-01-01

    Background and Aims Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Methods Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Key Results Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Conclusions Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant

  15. Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization.

    PubMed

    McConaha, M E; Eckstrum, K; An, J; Steinle, J J; Bany, B M

    2011-04-01

    During pregnancy in several species including humans and rodents, the endometrium undergoes decidualization. This process of differentiation from endometrial to decidual tissue occurs only after the onset of implantation in mice. It can also be artificially induced causing the formation of deciduomal tissue. The purpose of this study was to compare the gene expression profile of the developing decidua in pregnant mice with the deciduoma formed after artificial induction in an effort to identify conceptus-influenced changes in uterine gene expression during decidualization. We induced decidualization artificially by transferring blastocyst-sized ConA-coated agarose beads into the uterus on day 2.5 of pseudopregnancy. Recently published work has found this model to be more 'physiological' than other methods. Total RNA was isolated from blastocyst and bead-induced 'implantation' sites of the uteri of day 7.5 pregnant (decidua) and pseudopregnant (deciduoma) mice respectively. This RNA was then used for microarray analysis using Mouse Illumina BeadArray chips. This analysis revealed potential differential mRNA levels of only 45 genes between the decidua and bead-induced deciduoma tissues. We confirmed the differential mRNA levels of 31 of these genes using quantitative RT-PCR. Finally, the level and localization of some of the mRNAs for select genes (Aldh3a1, Bcmo1, Guca2b, and Inhbb) identified by our microarray analysis were examined in more detail. This study provides the identity of a small set of genes whose expression in the uterus during decidualization may be influenced by molecular signals from the conceptus.

  16. A story of the permafrost small-scale collapse at the deciduous shrub patches in the northeast Siberian tundra

    NASA Astrophysics Data System (ADS)

    Li, Bingxi; Heijmans, Monique; Sass-Klaassen, Ute; Berendse, Frank

    2014-05-01

    The recent climate change is believed to accelerate the permafrost degradation in the arctic tundra. It also, meanwhile, drove the greening of the arctic (the expansion of the deciduous shrubs). The switch of the vegetation type might largely affect the local permafrost dynamics. Previous research indicated that the cover of deciduous shrubs mitigates the local permafrost degradation. From our observations, the active layer of permafrost at the deciduous shrub patch is normally the thinnest during the growing season. However, at our northeast Siberian tundra research site we also observed the drowning of shrubs due to small-scale permafrost collapse which happened in the shrub patches. This phenomenon is still far from understood. In this study we tried to explore the reasons that triggered these events. We hypothesized that the shrub cover can no longer protect the permafrost if dying of the oldest deciduous shrubs starts. Without sufficient shrub protection, the small-scale collapse of permafrost happens. Thus, we expected that the oldest deciduous shrub (in our study is dwarf birch Betula nana) individuals existed at small-scale permafrost collapse sites and the more younger stems appeared at the margin, compared with those at the center of the patches. The lack of long-term monitoring record increased the difficulties of the study. To achieve this target, a dendrochoronolgical method was implemented in this study, helping us measuring the shrub ages precisely. From the results of the study, we concluded that the dynamics of these patches were more complicated than our original hypotheses. Although there were some evidence supporting our expectation, the other results were against that. The vegetation dynamics of the B. nana patch probably was not the main reason of the local small-scale permafrost collapse. It was further implied that the local permafrost dynamics probably play a vital role on the patch dynamics in turn.

  17. Whole-plant allocation to storage and defense in juveniles of related evergreen and deciduous shrub species.

    PubMed

    Wyka, T P; Karolewski, P; Żytkowiak, R; Chmielarz, P; Oleksyn, J

    2016-05-01

    In evergreen plants, old leaves may contribute photosynthate to initiation of shoot growth in the spring. They might also function as storage sites for carbohydrates and nitrogen (N). We hence hypothesized that whole-plant allocation of carbohydrates and N to storage in stems and roots may be lower in evergreen than in deciduous species. We selected three species pairs consisting of an evergreen and a related deciduous species: Mahonia aquifolium (Pursh) Nutt. and Berberis vulgaris L. (Berberidaceae), Prunus laurocerasus L. and Prunus serotina Ehrh. (Rosaceae), and Viburnum rhytidophyllum Hemsl. and Viburnum lantana L. (Adoxaceae). Seedlings were grown outdoors in pots and harvested on two dates during the growing season for the determination of biomass, carbohydrate and N allocation ratios. Plant size-adjusted pools of nonstructural carbohydrates in stems and roots were lower in the evergreen species of Berberidaceae and Adoxaceae, and the slope of the carbohydrate pool vs plant biomass relationship was lower in the evergreen species of Rosaceae compared with the respective deciduous species, consistent with the leading hypothesis. Pools of N in stems and roots, however, did not vary with leaf habit. In all species, foliage contained more than half of the plant's nonstructural carbohydrate pool and, in late summer, also more than half of the plant's N pool, suggesting that in juvenile individuals of evergreen species, leaves may be a major storage site. Additionally, we hypothesized that concentration of defensive phenolic compounds in leaves should be higher in evergreen than in deciduous species, because the lower carbohydrate pool in stems and roots of the former restricts their capacity for regrowth following herbivory and also because of the need to protect their longer-living foliage. Our results did not support this hypothesis, suggesting that evergreen plants may rely predominantly on structural defenses. In summary, our study indicates that leaf habit has

  18. Expression of chloroplastic genes during autumnal senescence in a deciduous tree Populus deltiodes.

    PubMed

    Reddy, M S; Trivedi, P K; Tuli, R; Sane, P V

    1997-10-01

    In Populus deltoides, a deciduous tree, the development on new leaves starts in the month of March, the leaves reach maturity by October and fall by December. Changes in the composition and function of the photosynthetic apparatus were analysed during autumnal senescence. With the progress of senescence, there was an initial increase followed by a decrease in the steady state levels of psbA, psbD/C and psaA/B gene transcripts. Decrease in the steady state level of D1 protein was faster than that of Cytochrome f. The decline in LHCP level was seen only during late senescence. Although the leaves continue to look green and healthy till late November, the electron transport driven by individual photosystems started declining by October end suggesting the onset of senescence.

  19. Growth and defense in deciduous trees and shrubs under UV-B.

    PubMed

    Julkunen-Tiitto, Riitta; Häggman, Hely; Aphalo, Pedro J; Lavola, Anu; Tegelberg, Riitta; Veteli, Timo

    2005-10-01

    Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.

  20. Changes of ndvi across vertical canopy layers in temperate deciduous forest during a litterfall period

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Ryu, Y.

    2015-12-01

    Normalized Difference Vegetation Index (NDVI) is a key variable indicating changes in vegetation dynamics and carbon flux. Previous studies have paid little attention to the changes in NDVI during litterfall period. In this study, we report the changes of NDVI across vertical canopy layers in a temperate deciduous forest during a litterfall period. To monitor changes in canopy structure, functions, and spectral properties during the litterfall period, we combined automatic observations of NDVI derived from LED-spectral sensors and LAI derived from digital cover photography installed at multiple canopy layer depths. Furthermore, we collected hyperspectral optical properties of leaves across multiple canopy layers and hyperspectral reflectance of forest background using ASD-FieldSpec. We found that NDVI in forest floor became greater than the NDVI measured from the top of canopy during the litterfall period. We discuss what satellite-derived NDVI exactly sees during the litterfall period, which will be useful to better understand forest autumn phenology at large scales.

  1. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability

    SciTech Connect

    Goulden, M.L.; Munger, J.W.; Fan, S.M.; Daube, B.C.; Wofsy, S.C.

    1996-03-15

    The annual net uptake of CO{sub 2} by a deciduous forest in New England varied from 1.4 to 2.8 metric tons of carbon per hectare between 1991 and 1995. Carbon sequestration was higher than average in 1991 because of increased photosynthesis and in 1995 because of decreased respiration. Interannual shifts in photosynthesis were associated with the timing of leaf expansion and senescence. Shifts in annual respiration were associated with anomalies in soil temperature, deep snow in winter, and drought in summer. If this ecosystem is typical of northern biomes, interannual climate variations on seasonal time scales may modify annual CO{sub 2} exchange in the Northern Hemisphere by 1 gigaton of carbon or more each year. 26 refs., 4 figs., 1 tab.

  2. Parametric analysis of synthetic aperture radar data for characterization of deciduous forest stands

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1987-01-01

    The SAR sensor parameters that affect the estimation of deciduous forest stand characteristics were examined using data sets for the Gulf Coastal Plain region, acquired by the NASA/JPL multipolarization airborne SAR. In the regression analysis, the mean digital-number values of the three polarization data are used as the independent variables to estimate the average tree height (HT), basal area (BA), and total-tree biomass (TBM). The following results were obtained: (1) in the case of simple regression and using 28 plots, vertical-vertical (VV) polarization yielded the largest correlation coefficients (r) in estimating HT, BA, and TBM; (2) in the case of multiple regression, the horizontal-horizontal (HH) and VV polarization combination yielded the largest r value in estimating HT, while the VH and HH polarization combination yielded the largest r values in estimating BA and TBM. With the addition of a third polarization, the increase in r values is insignificant.

  3. Phenology of two Ficus species in seasonal semi-deciduous forest in Southern Brazil.

    PubMed

    Bianchini, E; Emmerick, J M; Messetti, A V L; Pimenta, J A

    2015-11-01

    We analyzed the phenology of Ficus adhatodifolia Schott ex Spreng. (23 fig tree) and F. eximia Schott (12 fig tree) for 74 months in a remnant of seasonal semi-deciduous forest (23° 27'S and 51° 15'W), Southern Brazil and discussed their importance to frugivorous. Leaf drop, leaf flush, syconia production and dispersal were recorded. These phenophases occurred year-round, but seasonal peaks were recorded in both leaf phenophases for F. eximia and leaf flushing for F. adhatodifolia. Climatic variables analyzed were positively correlated with reproductive phenophases of F. adhatodifolia and negatively correlated with the vegetative phenophases of F. eximia. In despite of environmental seasonality, little seasonality in the phenology of two species was observed, especially in the reproductive phenology. Both species were important to frugivorous, but F. adhatodifolia can play a relevant role in the remnant.

  4. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    SciTech Connect

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive /sup 35/S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by /sup 35/SO/sub 4//sup 2 -/, in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab.

  5. Herbivory among habitats on the Neotropical tree Cnidoscolus quercifolius Pohl. in a seasonally deciduous forest.

    PubMed

    Coelho, M S; Belmiro, M S; Santos, J C; Fernandes, G W

    2012-08-01

    Our goal was to identify herbivory patterns from two insect guilds associated with Cnidoscolus quercifolius in a tropical deciduous forest in northeastern Brazil. We sampled four different habitats: (1) forest edge, (2) mesic (near to the perennial water source), (3) forest interior and (4) rupestrian fields. Habitat edge had lower leaf damage than rupestrian, mesic and forest interior habitats. Nevertheless, abundance of galls at the edge habitat was higher than at mesic, forest interior and/or rupestrian habitats. There was no difference in gall mortality by natural enemies among the four habitats sampled, demonstrating the absence of any influence of top-down controls related to abundance of galls. Trophic relationships were not related to the patterns of distribution among habitats of two insect herbivorous guilds associated with C. quercifolius. Our results demonstrated that environmental heterogeneity of dry forests can significantly alter important ecological interactions and experimental studies are needed to better understand the mechanisms responsible for differences in herbivory among habitats.

  6. Interaction of serum sex steroid-binding globulin with cell membranes of human decidual tissue

    SciTech Connect

    Avvakumov, G.V.; Survilo, L.I.; Strel'chenok, O.A.

    1986-01-20

    The interaction of the sex steroid-binding globulin (SBG) of human blood with plasma membranes of cells from human decidual tissue - the target tissue of estradiol - was studied. It was shown that SBG in complex with estradiol is capable of interacting specifically with these membranes. The dissociation (K/sub dis/) of this interaction is equal to (3.5 +/- 2.0) 10/sup -12/ M. The interaction of the SBG-estradiol complex with the membranes is characterized by high selectivity: such blood serum globulins as albumin, orosomucoid, transferrin, transcortin, and thyroxine-binding globulin do not compete with SBG for its binding sites on the membranes. The SBG-testosterone complex and SBG without steroid are also incapable of interacting with the membranes.

  7. A comparison of {sup 137}Cs radioactivity in localized evergreen and deciduous plant species

    SciTech Connect

    Rangel, R.C.

    1996-05-01

    A vegetation study at the Comanche Peak Steam Electric Station (CPSES) near Glen Rose, Texas was conducted in 1991 and 1992. The CPSES is a commercial nuclear power plant owned and operated by Texas Utilities Electric of Dallas, Texas. The US Nuclear Regulatory Commission (USNRC) requires the CPSES to routinely sample broadleaf vegetation in place of milk samples. Few commercial dairies exist in the vicinity. Broadleaf tree species are scarce because the climate and local limestone geology have produced a dry rolling hill topography. An evergreen juniper is the dominant tree species. Few broadleaves during the winter season have hindered year-round sampling. This study compares the environmental {sup 137}Cs concentrations between broadleaf and evergreen foliage at CPSES. Soil {sup 137}Cs concentrations from each vegetation location were also compared to the foliage {sup 137}Cs concentrations. The study`s objective was to determine if the deciduous and evergreen vegetation {sup 137}Cs concentrations are statistically the same.

  8. An Individual Tree Detection Algorithm for Dense Deciduous Forests with Spreading Branches

    NASA Astrophysics Data System (ADS)

    Shao, G.

    2015-12-01

    Individual tree information derived from LiDAR may have the potential to assist forest inventory and improve the assessment of forest structure and composition for sustainable forest management. The algorithms developed for individual tree detection are commonly focusing on finding tree tops to allocation the tree positions. However, the spreading branches (cylinder crowns) in deciduous forests cause such kind of algorithms work less effectively on dense canopy. This research applies a machine learning algorithm, mean shift, to position individual trees based on the density of LiDAR point could instead of detecting tree tops. The study site locates in a dense oak forest in Indiana, US. The selection of mean shift kernels is discussed. The constant and dynamic bandwidths of mean shit algorithms are applied and compared.

  9. Application of PTR-MS for measurements of biogenic VOC in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Spirig, C.; Neftel, A.; Steinbacher, M.; Komenda, M.; Schaub, A.

    2004-12-01

    The vegetation-atmosphere-exchange is an important process controlling the atmospheric concentration of various volatile organic compounds (VOCs) that play a major role in atmospheric chemistry. However, the quantification of VOC exchange on the ecosystem scale is still an analytical challenge. In the present study we tested and applied a proton-transfer-reaction mass spectrometry system (PTR-MS) for the measurement of biogenic VOCs in a mixed deciduous forest. VOC concentrations were calculated from the raw instrument signals based on physical principles. This method allows a consistent quantification also of compounds for which regular calibration with a gas standard is not available. It requires a regular and careful investigation of the mass-dependent ion detection characteristics of the PTR-MS, which otherwise could become a considerable error source. The PTR-MS method was tested in the laboratory for a range of oxygenated and non-oxygenated VOCs using a permeation source. The agreement was within 16% or better, which is well within the expected uncertainty. During the field measurement campaign in a deciduous forest stand, an on-line intercomparison with a state-of-the-art gas-chromatography system showed a generally good agreement. However, the relatively low ambient VOC concentrations revealed some systematic difference for acetone and isoprene, that may indicate an error in the determination of the PTR-MS offset or an interference of an unidentified isobaric compound on the detected ion mass. With the presentation of selected field results, we demonstrate the ability of the PTR-MS system to measure continuous vertical concentration profiles of biogenic VOCs throughout a forest canopy at a time resolution of 20 min. The resulting datasets provide valuable information for the study of the interactions between emission, photochemical transformation and transport processes within and above the forest canopy.

  10. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees.

    PubMed

    Lo Gullo, Maria A; Nardini, Andrea; Trifilò, Patrizia; Salleo, Sebastiano

    2005-04-01

    We studied changes in the hydraulic conductance of leaves (K(leaf)) between dawn and dusk during the growth period (July) and at midday at the beginning of autumn in four tree species. The main objectives of the study were to check the extent of diurnal and seasonal changes in K(leaf) and the relationships between K(leaf), irradiance and leaf gas exchange. Two evergreen (Aleurites moluccana and Persea americana) and two deciduous trees (Platanus orientalis and Quercus rubra) were studied. Leaf hydraulic conductance was measured every 2 h between 0700 and 1900 h in July and compared with values measured between 0900 and 1300 h in October. Other variables measured were photosynthetically active radiation (PAR), leaf conductance to water vapor (gL) and water potential (psiL). In July, K(leaf) varied by up to 75% in Pe. americana on a diurnal basis and by at least 44% in Q. rubra. The diurnal time course of K(leaf) showed a distinct increase between dawn and late morning (1100 h) and a subsequent decrease in the evening in A. moluccana and Pl. orientalis, whereas in the other two species, K(leaf) was highest just after dawn and lowest in the evening. In October, K(leaf) of all the species studied was lower than in July, with differences of 20 to 28% for A. moluccana and Pl. orientalis and of 66 to over 70% in Pe. americana and Q. rubra, respectively. Significant correlations were found between PAR and K(leaf) (in all species) as well as between gL and K(leaf) (in three out of four species). Leaf habit (evergreen or deciduous) did not influence absolute values of K(leaf) or its diurnal variation.

  11. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    SciTech Connect

    Gough, Christopher; Curtis, Peter; Hardiman, Brady; Scheuermann, Cynthia; Bond-Lamberty, Benjamin

    2016-06-29

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperate deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to

  12. Comparing Temporal Variations in LUE and GPP across Evergreen and Deciduous Forest Types

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hilker, T.; Ju, W.; Coops, N. C.; Black, T. A.; Chen, J.

    2015-12-01

    Estimating gross primary production (GPP) is an important goal of global change research. However, the relationship between GPP and its environmental drivers is highly complex and as a result, accurate modeling of GPP is difficult. One possible technique to help constrain the uncertainties is by using remote sensing data to try and determine the factors driving GPP directly from satellite imagery. In this study, we used GPP from flux data (GPP_EC) and meteorological observations of a deciduous (SOA) and a coniferous evergreen forest (DF-49) to optimize light use efficiency of sunlit (LUEsun) and shaded (LUEshaded) canopies. We based our analysis on the two-leave light use efficiency model (TL-LUE) at daily, 8 day, and 16 day scales by using the Markov chain Monte Carlo (MCMC). The photochemical reflectance index (PRI) of sunlit (PRIsun) and shaded (PRIshaded) leaves was calculated from spectral observations and related to tower based GPP at the three temporal scales. We found that the coefficient of determination (R2) between PRIsun and LUEsun, as well as PRIshaded and LUEshaded at the evergreen forest was lower than that at the deciduous forest. The modeled GPP was closely to the GPP_EC at the three temporal scales. The R2 between the GPP_EC and modeled daily GPP was the highest when using daily measures of LUE, and lowest when uisng16-day LUEsun and LUEshaded. The results indicated that LUE is an important parameter when modeling instantaneous GPP and the short term variations of it. The results help to obtain a better understanding of how many satellite observations are needed to reliably constrain existing GPP models from remote sensing data.

  13. Spectral indices for remote sensing of phytomass and deciduous shrub changes in Alaskan arctic tundra

    NASA Astrophysics Data System (ADS)

    Kushida, K.; Hobara, S.; Tsuyuzaki, S.; Watanabe, M.; Harada, K.; Kim, Y.; Shaver, G. R.; Fukuda, M.

    2010-12-01

    The relationships between spectral indices, phytomass, and plant functional types were determined by using field observations of a moist acidic tundra (MAT) and a moist non-acidic tundra (MNT) in the Toolik Lake Long Term Ecological Research (LTER) site and a sedge-shrub tundra (SS) in the Arctic National Wildlife Refuge, Alaska, USA. For the MAT and MNT observations, among aboveground phytomass, aboveground vascular phytomass, and vascular plant green phytomass, vascular plant green phytomass was the most sensitive to an exponential function of the normalized difference vegetation index (NDVI). The coefficient of determination (R2) was 0.73. Vascular plant carbon and nitrogen were estimated with exponential functions of NDVI (R2 of 0.57 and 0.53, respectively). For the MAT, MNT, and SS observations, vascular plant green phytomass was more strongly correlated with an exponential function of NDVI (ENDVI, R2 of 0.62) than any other spectral indices. On the other hand, for deciduous shrub green phytomass, the strongest correlation was with a product of an exponential function of NDVI and a spectral index (MIR - RED)/(MIR + RED) (DSSI, R2 of 0.60). Here, MIR and RED denote the bands with wavelengths 2.09-2.35 and 0.63-0.69 µm, respectively. As a result of a regression analysis, 41% of the ENDVI variance and 60% of the DSSI variance were explained by deciduous shrub green phytomass. Up to 38% of the ENDVI variance and up to 10% of the DSSI variance were explained by green phytomass of evergreen shrubs and graminoids, and phytomass of mosses/lichens. These spectral indices were applicable to evaluating tundra plant community changes.

  14. Deciduous Tree Species Alter Nitrogen and Phosphorus Availability in Mid-successional Alaskan Boreal Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A.

    2013-12-01

    In Alaskan boreal forest, increased fire severity associated with climate change is altering successional processes and ecosystem nutrient dynamics. Fire is a common disturbance in Interior Alaska and typically burns forests dominated by black spruce (Picea mariana), a tree species associated with slow nutrient turnover and high soil organic matter accumulation rates. Historically, low severity fires have driven black spruce regeneration post-fire, thereby maintaining slow nutrient cycling rates and large soil organic matter stocks. In contrast, high severity fires consume the organic layer and can lead to the establishment of deciduous tree species on exposed mineral soil, which produce less recalcitrant leaf litter and exhibit faster nutrient cycling rates. To improve our understanding of the long-term impacts of tree species composition on nutrient cycling in boreal forest, we quantified nitrogen (N) cycling rates and estimated soil N, phosphorus (P), and base cation pools in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1960 fire near Fairbanks, Alaska. Results indicate significantly higher net N mineralization in paper birch soils relative to black spruce for both the fibric organic layer and top 10 cm of mineral soil during 30-day and 90-day lab incubation studies. Net nitrification was significantly higher in the paper birch fibric layer after 90 days. Total soil N concentrations did not differ between paper birch and black spruce stands, however the black spruce organic layer was significantly larger than that of birch, resulting in larger organic layer N stocks (130 vs. 87 g N m2). In contrast, total P concentrations were significantly higher in the organic layer in birch forest, but the total P stocks did not differ significantly between species because of the larger mass of soil organic matter in the black spruce. These findings suggest that a shift towards greater deciduous

  15. Implications of altered phenology on the carbon dynamics of deciduous oak woodland

    NASA Astrophysics Data System (ADS)

    Wilkinson, Matthew; Eaton, Edward; Pinnington, Ewan; Morison, James

    2016-04-01

    The widely observed advance in spring budburst across a range of temperate forest species due to climatic warming has received considerable attention. Such changes in phenology have important implications not only for the choice of species and provenances currently being planted, which need to be suited to both current and future climatic conditions, but also for the carbon dynamics of forest ecosystems. Using a combination of phenology observations and carbon balance modelling, this study examines the influence of tree phenology and growing season length on carbon sequestration. Tree phenology and seasonal carbon dynamics were measured using phenocam images and Eddy Covariance (EC) at a deciduous oak plantation in the south-east of England (Alice Holt, Hampshire, UK). Manual phenology observations of spring budburst were also recorded in a range of European oak provenances over seven years (2004 - 2009 and again in 2013) at a trial site nearby. The EC and manual observation sites were exposed to very similar meteorological conditions. At the manual observation site there was a strong correlation between mean spring air temperature and the date of budburst in all provenances. The order in which budburst occurred was largely conserved between years and was strongly linked to source latitude, provenances that originated from southerly locations consistently reached budburst prior to those from more northerly locations. The timing of budburst in the local provenance at the manual observation site was synchronous with budburst at the EC site. The Data Assimilation Linked Ecosystem Carbon (DALEC) model was optimised for the Alice Holt site. By altering the timing of budburst within the model to reflect the observed variation in the European provenances, we assessed the implications of altered phenology on the carbon dynamics of deciduous oak in southern England.

  16. Overcoming the Challenges of Estimating Water Use in Temperate, Mixed Deciduous Forest of S. Korea

    NASA Astrophysics Data System (ADS)

    Jung, E.; Otieno Dennis, O.; Tenhunen, J. D.

    2009-12-01

    About 80% of forests in Korea occur in mountainous regions and are composed of a rich diversity of mixed deciduous tree species. Mountains in this region receive more rainfall and act as fountains that supply fresh water to the lowland and quantifying the hydrologic components of the forested mountain catchments is critical for sustainable water resource management. Forest trees play a significant role in ecosystem water budget and understanding of forest water use is crucial for water budgeting. High diversity in tree species, however, complicates the upscaling of forest water use by mixed forests, since trees are likely to function differently. A simplified approach is to identify common functionality gradients that define tree water use irrespective of phylogeny. A research initiative established under the International Training Group: Complex Terrain and Ecological Heterogeneity (TERRECO) sought to identify common structure and functionality among tree species that could allow for a convergent definition of water use in mixed deciduous forests in S. Korea. Using a wide range of thermal techniques to quantify water use in 7 different species located in 3 mountains with unidentical climates, we have related forest and tree structural properties to species water use. To understand spatial differences in tree water use, two species (Quercus dentata and Q. mongolica) were chosen as comparative species common to the three locations. Water use was significantly correlated with diameter at breast height (DBH) for all overstory species. The maximum transpiration was about 3 mm d-1 in all three different locations and daily transpiration was well described by microclimate and DBH irrespective of the location as long as soil moisture was not limiting. These initial findings are aiding our upscaling procedures.

  17. Extended leaf phenology and the autumn niche in deciduous forest invasions.

    PubMed

    Fridley, Jason D

    2012-05-17

    The phenology of growth in temperate deciduous forests, including the timing of leaf emergence and senescence, has strong control over ecosystem properties such as productivity and nutrient cycling, and has an important role in the carbon economy of understory plants. Extended leaf phenology, whereby understory species assimilate carbon in early spring before canopy closure or in late autumn after canopy fall, has been identified as a key feature of many forest species invasions, but it remains unclear whether there are systematic differences in the growth phenology of native and invasive forest species or whether invaders are more responsive to warming trends that have lengthened the duration of spring or autumn growth. Here, in a 3-year monitoring study of 43 native and 30 non-native shrub and liana species common to deciduous forests in the eastern United States, I show that extended autumn leaf phenology is a common attribute of eastern US forest invasions, where non-native species are extending the autumn growing season by an average of 4 weeks compared with natives. In contrast, there was no consistent evidence that non-natives as a group show earlier spring growth phenology, and non-natives were not better able to track interannual variation in spring temperatures. Seasonal leaf production and photosynthetic data suggest that most non-native species capture a significant proportion of their annual carbon assimilate after canopy leaf fall, a behaviour that was virtually absent in natives and consistent across five phylogenetic groups. Pronounced differences in how native and non-native understory species use pre- and post-canopy environments suggest eastern US invaders are driving a seasonal redistribution of forest productivity that may rival climate change in its impact on forest processes.

  18. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile.

    PubMed

    Koike, T; Kitao, M; Maruyama, Y; Mori, S; Lei, T T

    2001-08-01

    Photosynthetic acclimation of deciduous broad-leaved tree species was studied along a vertical gradient within the canopy of a multi-species deciduous forest in northern Japan. We investigated variations in (1) local light regime and CO2 concentration ([CO2]), and (2) morphological (area, thickness and area per mass), biochemical (nitrogen and chlorophyll concentrations) and physiological (light-saturated photosynthetic rate) attributes of leaves of seven major species on three occasions (June, August and October). We studied early successional species, alder (Alnus hirsuta (Spach) Rupr.) and birch (Betula platyphylla var. japonica (Miq.) Hara); gap phase species, walnut (Juglans ailanthifolia Carrière) and ash (Fraxinus mandshurica var. japonica Rupr.); mid-successional species, basswood (Tilia japonica (Miq.) Simonk.) and elm (Ulmus davidiana var. japonica (Rehd.) Nakai); and the late-successional species, maple (Acer mono Bunge). All but maple initiated leaf unfolding from the lower part of the crown. The [CO2] within the vertical profile ranged from 320-350 ppm in the upper canopy to 405-560 ppm near the ground. The lowest and highest ambient [CO2] occurred during the day and during the night, respectively. This trend was observed consistently during the summer, but not when trees were leafless. Chlorophyll concentration was positively related to maximum photosynthetic rate within, but not among, species. Leaf senescence started from the inner part of the crown in alder and birch, but started either in the outer or top portion of the canopy of ash, basswood and maple. Chlorophyll (Chl) to nitrogen ratio in leaves increased with decreasing photon flux density. However, Chl b concentration in all species remained stable until the beginning of leaf senescence. Maximum photosynthetic rates observed in sun leaves of early successional species, gap phase or mid-successional species, and late successional species were 12.5-14.8 micromol m(-2) s(-1), 4.1-7.8 micromol

  19. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  20. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees.

    PubMed

    Rosling, Anna; Midgley, Meghan G; Cheeke, Tanya; Urbina, Hector; Fransson, Petra; Phillips, Richard P

    2016-02-01

    Although much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring P, we hypothesized that P cycling would differ in stands dominated by trees associated with AM vs ECM fungi. We quantified soil solution P, microbial biomass P, and sequentially extracted inorganic and organic P pools from May to November in plots dominated by trees forming either AM or ECM associations in south-central Indiana, USA. Overall, fungal communities in AM and ECM plots were functionally different and soils exhibited fundamental differences in P cycling. Organic forms of P were more available in ECM plots than in AM plots. Yet inorganic P decreased and organic P accumulated over the growing season in both ECM and AM plots, resulting in increasingly P-limited microbial biomass. Collectively, our results suggest that P cycling in hardwood forests is strongly influenced by biotic processes in soil and that these are driven by plant-associated fungal communities.

  1. Carbon and Energy Fluxes Over two Mid-Latitude Deciduous Forests: Interannual and Latitudinal Variations

    NASA Astrophysics Data System (ADS)

    Schmid, H.; Grimmond, S.; Oliphant, A.; Su, H.; Vogel, C.; Scott, S.; Curtis, P.

    2001-12-01

    Hourly fluxes of energy, water vapor and CO2 are now available from two AmeriFlux sites in Indiana (MMSF, 39deg 10'N, 86deg 25' W, for the years 1998-2001, up to the end of the growth period) and Michigan (UMBS, 45deg 35' N, 84deg 42' W, for 1999-2001). Both sites are in extensive hardwood forests of a similar age, but the composition and diversity of tree species is quite different between the two locations. The latitudinal separation of more than 6.5 degrees causes also marked differences in the biophysical forcings of the ecosystem exchange, such as variations in growing season legth, summertime length of day, and soil thermal regimes in winter. The Indiana site was affected by a severe drought over much of summer and fall of 1999, whereas the Michigan site was only marginally affected by it. We present the seasonal carbon exchange dynamics and annual increments of net ecosystem exchange in the context of the energy and water availability and compare the results from four years of measurements in the light of these geographical and interannual variations in the ecosystem forcings.

  2. Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration

    USGS Publications Warehouse

    Yu, K.; Faulkner, S.P.; Baldwin, M.J.

    2008-01-01

    This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4 , and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission. ?? Journal compilation ?? 2008 Blackwell Publishing.

  3. Effects of structural complexity enhancement on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood forests

    USGS Publications Warehouse

    McKenny, H.C.; Keeton, W.S.; Donovan, T.M.

    2006-01-01

    Managing for stand structural complexity in northern hardwood forests has been proposed as a method for promoting microhabitat characteristics important to eastern red-backed salamanders (Plethodon cinereus). We evaluated the effects of alternate, structure-based silvicultural systems on red-backed salamander populations at two research sites in northwestern Vermont. Treatments included two uneven-aged approaches (single-tree selection and group-selection) and one unconventional approach, termed "structural complexity enhancement" (SCE), that promotes development of late-successional structure, including elevated levels of coarse woody debris (CWD). Treatments were applied to 2 ha units and were replicated two to four times depending on treatment. We surveyed red-backed salamanders with a natural cover search method of transects nested within vegetation plots 1 year after logging. Abundance estimates corrected for detection probability were calculated from survey data with a binomial mixture model. Abundance estimates differed between study areas and were influenced by forest structural characteristics. Model selection was conducted using Akaike Information Criteria, corrected for over-dispersed data and small sample size (QAICc). We found no difference in abundance as a response to treatment as a whole, suggesting that all of the uneven-aged silvicultural systems evaluated can maintain salamander populations after harvest. However, abundance was tied to specific structural habitat attributes associated with study plots within treatments. The most parsimonious model of habitat covariates included site, relative density of overstory trees, and density of more-decayed and less-decayed downed CWD. Abundance responded positively to the density of downed, well-decayed CWD and negatively to the density of poorly decayed CWD and to overstory relative density. CWD volume was not a strong predictor of salamander abundance. We conclude that structural complexity enhancement

  4. Horizontal and vertical movements of host-seeking Ixodes pacificus (Acari: Ixodidae) nymphs in a hardwood forest

    PubMed Central

    Lane, Robert S.; Mun, Jeomhee; Stubbs, Harrison A.

    2009-01-01

    The nymph of the western black-legged tick (Ixodes pacificus) is an important bridging vector of the Lyme disease spirochete (Borrelia burgdorferi) to humans in the far-western United States. The previously unknown dispersal capabilities of this life stage were studied in relation to logs, tree trunks, and adjacent leaf-litter areas in a mixed hardwood forest using mark-release-recapture methods. In two spatially and temporally well-spaced trials involving logs, the estimated mean distances that nymphs dispersed ranged from ≈0.04 to 0.20 m/day on logs vs 0.11 to 0.72 m/day in litter. Prior to recapture in either trial and within the confines of the sampling grids, the greatest estimated dispersal distances by individual nymphs released on logs, and in litter 0.5 m or 1.5 m from logs, were 2.4, 3.0, and 3.0 m, respectively. Nymphs released on logs or litter tended to remain within the same biotopes in which they were freed while host-seeking. In two simultaneous trials involving trunks spaced close-at-hand, nymphs released at the trunk/litter interface on all four aspects collectively dispersed a mean of 0.353 m/day on trunks vs 0.175 m/day in litter. In either trial, the greatest distances that recaptured nymphs climbed trunks, or dispersed in litter in an encircling 3-m grid, were 1.55 m and 2.97 m, respectively. Nymphs ascending trunks did not exhibit a preference for any one aspect, and the B. burgdorferi-infection prevalences in nymphs that climbed trunks (3.2–4.0%) did not differ significantly from those that moved horizontally into litter (10.5–17.6%). We conclude that I. pacificus nymphs use an ambush host-seeking strategy; that they disperse slowly in all biotopes studied; that they usually continue to host-seek in or on whatever substratum they access initially; and that B. burgdorferi-infected nymphs are as likely to move horizontally as vertically when offered a choice. PMID:20352083

  5. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    NASA Astrophysics Data System (ADS)

    Vance, George F.; David, Mark B.

    1991-12-01

    Our understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, we examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4+, NO 3-, K +, and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3-. Snowmelt resulted in NO 3- levels that decreased in time due to flushing of mineralization/nitrification by-products that had accumulated during the winter months. Total DOC ranged from 2228 to 7193 μmol L -1 with an average of 4835 μmol L -1. Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity ( E 4/E 6) ratios, CuO oxidation products, FT-IR and 13C-NMR spectra, and acidity by potentiometric titration. Results from these analyses indicate the organic acids in the forest floor leachates are similar to fulvic acids. Hydrophobic and hydrophilic acids had average exchange acidities of 0.126 and 0.148 μeq μmol -1 C, respectively, and pKa, of 4.23 and 4.33. Their FT-IR and 13C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge

  6. Reduced snow cover alters root-microbe interactions and decreases nitrification rates in a northern hardwood forest.

    PubMed

    Sorensen, Patrick O; Templer, Pamela H; Christenson, Lynn; Duran, Jorge; Fahey, Timothy; Fisk, Melany C; Groffman, Peter M; Morse, Jennifer L; Finzi, Adrien C

    2016-12-01

    competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.

  7. Spectral anisotropy of subtropical deciduous forest using MISR and MODIS data acquired under large seasonal variation in solar zenith angle

    NASA Astrophysics Data System (ADS)

    Breunig, Fábio Marcelo; Galvão, Lênio Soares; dos Santos, João Roberto; Gitelson, Anatoly A.; de Moura, Yhasmin Mendes; Teles, Thiago Sousa; Gaida, William

    2015-03-01

    Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than

  8. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying