Science.gov

Sample records for deciphering formation processes

  1. Deciphering the influence of the thermal processes on the early passive margins formation

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry; Ballard, Jean-François; Ringenbach, Jean-Claude; Chelalou, Roman; Clerc, Camille

    2015-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie , 1978), as a dogma, is used to understanding and modeling the formation and evolution of sedimentary basins . This model is based on the assumption that the extension is only by pure shear and it is instantaneous. Under this approach, the sedimentary deposits occur in two stages. i) A short step , 1 to 10 Ma , controlled by tectonics. ii) A longer step , at least 50 Ma as a result of the thermal evolution of the lithosphere.
However, most stratigraphic data indicate that less thermal model can account for documented vertical movements. The study of the thermal evolution , coupled with other tectonic models , and its consequences have never been studied in detail , although the differences may be significant and it is clear that the petrological changes associated with changes in temperature conditions , influence changes reliefs.
In addition, it seems that the relationship between basin formation and thermal evolution is not always the same:
- Sometimes the temperature rise above 50 to 100 Ma tectonic extension. In the Alps, a significant rise in geothermal gradient Permo -Triassic followed by a "cold" extension , leading to the opening of the Ligurian- Piedmont ocean, from the Middle Jurassic .

  2. Deciphering site formation processes through soil micromorphology at Contrebandiers Cave, Morocco.

    PubMed

    Aldeias, Vera; Goldberg, Paul; Dibble, Harold L; El-Hajraoui, Mohamed

    2014-04-01

    Contrebandiers Cave preserves a Late Pleistocene sequence containing Middle Stone Age (MSA) so-called Maghrebian Mousterian and Aterian occupations, spanning from ∼126 to 95 ka (thousands of years ago), followed by spatially restricted Iberomaurusian industries. Micromorphological analyses, complemented by instrumental mineralogical identification and fabric orientation, allowed for the reconstruction of the main site formation processes at the site. Initial deposition is characterized by local reworking of marine shelly sands dating to Marine Isotopic Stage 5e (MIS5e). The subsequent stratification reveals sedimentary dynamics predominantly associated with gravity-driven inputs and contributions from weathering of the encasing bedrock, at the same time that anthropogenic sediments were being accumulated. The allochthonous components reflect soil degradation and vegetation changes around the cave during the last interglacial. Human occupations seems to be somewhat ephemeral in nature, with some stratigraphic units apparently lacking archaeological components, while in others the human-associated deposits (e.g., burned bones, charcoal, and ashes) can be substantial. Ephemeral breaks in sedimentation and/or erosion followed by stabilization are mainly discernible microscopically by the presence of phosphatic-rich laminae interpreted as short-lived surfaces, peaks of increased humidity and colonization by plants. More substantial erosion affects the uppermost Aterian layers, presumably due to localized reconfigurations of the cave's roof. The subsequent Iberomaurusian deposits are not in their primary position and are associated with well-sorted silts of aeolian origin. While the effects of chemical diagenesis are limited throughout the whole stratigraphic sequence, physical bioturbation (e.g., by wasps, rodents, and earthworms) is more pervasive and leads to localized movement of the original sedimentary particles.

  3. Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; McKay, D. S.; Keller, L. P.

    2004-01-01

    Space weathering, or alteration that occurs at the surfaces of materials exposed directly to space, has been one of the primary areas of focus of lunar studies for the past several years. It is caused by processes such as micrometeorite impacts and solar wind bombardment, and effects can include microcraters, spall zones, and vapor deposits. Much of the recent work on space weathering has been concentrated on nanoscale features, especially the amorphous rims commonly found on individual lunar soil grains. The rims typically contain nanophase Fe metal globules, which, along with Fe metal globules in agglutinates, have a profound effect on optical properties of lunar soils. The nanophase metallic iron globules cause the characteristic optical changes (reddening and darkening) found in mature lunar soils.

  4. Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; McKay, D. S.; Keller, L. P.

    2004-01-01

    Space weathering, or alteration that occurs at the surfaces of materials exposed directly to space, has been one of the primary areas of focus of lunar studies for the past several years. It is caused by processes such as micrometeorite impacts and solar wind bombardment, and effects can include microcraters, spall zones, and vapor deposits. Much of the recent work on space weathering has been concentrated on nanoscale features, especially the amorphous rims commonly found on individual lunar soil grains. The rims typically contain nanophase Fe metal globules, which, along with Fe metal globules in agglutinates, have a profound effect on optical properties of lunar soils. The nanophase metallic iron globules cause the characteristic optical changes (reddening and darkening) found in mature lunar soils.

  5. Deciphering Piperidine Formation in Polyketide-Derived Indolizidines Reveals a Thioester Reduction, Transamination, and Unusual Imine Reduction Process.

    PubMed

    Peng, Haidong; Wei, Erman; Wang, Jiali; Zhang, Yanan; Cheng, Lin; Ma, Hongmin; Deng, Zixin; Qu, Xudong

    2016-12-16

    Piperidine and indolizidine are two basic units of alkaloids that are frequently observed in natural and synthetic compounds. Their biosynthesis in natural products is highly conserved and mostly derived from the incorporation of lysine cyclization products. Through in vitro reconstitution, we herein identified a novel pathway involving a group of polyketide-derived indolizidines, which comprises the processes of tandem two-electron thioester reduction, transamination, and imine reduction to convert acyl carrier protein (ACP)-tethered polyketide chains into the piperidine moieties of their indolizidine scaffolds. The enzymes that catalyze the imine reduction are distinct from previous known imine reductases, which have a fold of acyl-CoA dehydrogenase but do not require flavin for reduction. Our results not only provide a new way for the biosynthesis of the basic units of alkaloids but also show a novel class of imine reductases that may benefit the fields of biocatalysis and biomanufacturing.

  6. Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Steinhoefel, Grit; von Blanckenburg, Friedhelm; Horn, Ingo; Konhauser, Kurt O.; Beukes, Nicolas J.; Gutzmer, Jens

    2010-05-01

    To investigate the genesis of BIFs, we have determined the Fe and Si isotope composition of coexisting mineral phases in samples from the ˜2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV femtosecond laser ablation coupled to a MC-ICP-MS. Chert yields a total range of δ 30Si between -1.3‰ and -0.8‰, but the Si isotope compositions are uniform in each core section examined. This uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources such as hydrothermal vents or continental drainage. The Fe isotope composition of Fe-bearing mineral phases is much more heterogeneous compared to Si with δ 56Fe values of -2.2‰ to 0‰. This heterogeneity is likely due to variable degrees of partial Fe(II) oxidation in surface waters, precipitation of different mineral phases and post-depositional Fe redistribution. Magnetite exhibits negative δ 56Fe values, which can be attributed to a variety of diagenetic pathways: the light Fe isotope composition was inherited from the Fe(III) precursor, heavy Fe(II) was lost by abiotic reduction of the Fe(III) precursor or light Fe(II) was gained from external fluids. Micrometer-scale heterogeneities of δ 56Fe in Fe oxides are attributed to variable degrees of Fe(II) oxidation or to isotope exchange upon Fe(II) adsorption within the water column and to Fe redistribution during diagenesis. Diagenetic Fe(III) reduction caused by oxidation of organic matter and Fe redistribution is supported by the C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates yield δ 13C values of ˜-10‰, which hints at a mixed carbon source in the seawater of both organic and inorganic carbon. The ancient seawater composition is estimated to have a minimum range in δ 56Fe of -0.8‰ to 0‰, assuming that hematite and siderite have preserved their primary Fe

  7. Deciphering Dynamical Patterns of Growth Processes

    ERIC Educational Resources Information Center

    Kolakowska, A.

    2009-01-01

    Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…

  8. Deciphering Dynamical Patterns of Growth Processes

    ERIC Educational Resources Information Center

    Kolakowska, A.

    2009-01-01

    Large systems of statistical physics often display properties that are independent of particulars that characterize their microscopic components. Universal dynamical patterns are manifested by the presence of scaling laws, which provides a common insight into governing physics of processes as vastly diverse as, e.g., growth of geological…

  9. Deciphering the pathogenesis of tendinopathy: a three-stages process

    PubMed Central

    2010-01-01

    Our understanding of the pathogenesis of "tendinopathy" is based on fragmented evidences like pieces of a jigsaw puzzle. We propose a "failed healing theory" to knit these fragments together, which can explain previous observations. We also propose that albeit "overuse injury" and other insidious "micro trauma" may well be primary triggers of the process, "tendinopathy" is not an "overuse injury" per se. The typical clinical, histological and biochemical presentation relates to a localized chronic pain condition which may lead to tendon rupture, the latter attributed to mechanical weakness. Characterization of pathological "tendinotic" tissues revealed coexistence of collagenolytic injuries and an active healing process, focal hypervascularity and tissue metaplasia. These observations suggest a failed healing process as response to a triggering injury. The pathogenesis of tendinopathy can be described as a three stage process: injury, failed healing and clinical presentation. It is likely that some of these "initial injuries" heal well and we speculate that predisposing intrinsic or extrinsic factors may be involved. The injury stage involves a progressive collagenolytic tendon injury. The failed healing stage mainly refers to prolonged activation and failed resolution of the normal healing process. Finally, the matrix disturbances, increased focal vascularity and abnormal cytokine profiles contribute to the clinical presentations of chronic tendon pain or rupture. With this integrative pathogenesis theory, we can relate the known manifestations of tendinopathy and point to the "missing links". This model may guide future research on tendinopathy, until we could ultimately decipher the complete pathogenesis process and provide better treatments. PMID:21144004

  10. 17Oexcess in meteoric water: as a new isotopic parameter to decipher water cycle processes

    NASA Astrophysics Data System (ADS)

    Landais, A.; Guillevic, M.; Steen-Larsen, H.; Vimeux, F.; Bouygues, A.; Falourd, S.; Risi, C. M.; Bony, S.

    2009-12-01

    Classical water stable isotopes (dD and d18O) have been used for more than 50 years with the aim to understand the links between water cycle and climate. They provide information on either temperature or precipitation changes depending on the latitudes. Their combination, in the so-called d-excess, brings some information on climatic conditions occurring during non equilibrium processes along air masses histories (evaporation over the Oceans, reevaporation of droplets in convective systems, continental recycling or ice crystals formation). Recently, the possibility to measure with high precision d17O in water has enabled to introduce a new parameter, 17Oexcess, resulting from the combination of d18O and d17O. According to both observations and modeling works, this new isotopic parameter is able to decipher some of the non equilibrium processes: when measured in ice core, it is expected to be a more direct tracer of relative humidity of the oceanic evaporative regions than d-excess. In order to better understand what controls this new parameter as well as to extract the maximum climatic information from the combination of 17Oexcess and d-excess, we present different original studies combining these two parameters in several key regions. First, data collected in Niger, West Africa, at scales ranging from the convective system to the seasonal cycle confirm the strong influence of relative humidity on 17Oexcess through the rain reevaporation process. Second, seasonal cycles in the Zongo Valley (Tropical Bolivia) suggest that rain recycling along air masses trajectories have different signatures on d-excess and 17Oexcess leading to decipher the different processes. Third, we study how local processes (precipitation, sublimation) in polar region (Greenland) can affect 17Oexcess archived in ice core with respect to d-excess records through (1) isotopic measurements of vapor versus precipitation collected at the NEEM station and (2) seasonal cycles measured from snow pits.

  11. Geochemistry of the Neoproterozoic Johnnie Formation and Stirling Quartzite, southern Nopah Range, California: Deciphering the roles of climate, tectonics, and sedimentary process in reconstructing the early evolution of a rifted continental margin

    NASA Astrophysics Data System (ADS)

    Schoenborn, William A.

    The Neoproterozoic Stirling Quartzite and Johnnie Formation in the southern Nopah Range, southeastern California, comprise a thick sequence of predominantly siliciclastic sediment that is exposed along the Cordilleran margin. Located above the syn-rift Kingston Peak Formation, they mark the early deposits of passive margin sedimentation during the breakup of the Rodinia supercontinent. Disagreement exists between field-based observations and subsidence modeling as to whether these units represent rift or passive margin deposition. In this study, major-, trace-, and rare earth--element (REE) geochemistry, and U-Pb detrital zircon geochronology are used to determine their provenance, paleoclimatic information, and, consequently their paleotectonic setting. Geochemical and petrologic evidence confirm that Johnnie Formation mudstones and sandstones were the initial siliciclastic deposits laid along the Cordilleran Laurentian margin following the Neoproterozoic break-up of Rodinia. Johnnie Formation sediment has corrected CIA values between 63 and 83, and likely higher, which suggests moderate to intense weathering of the source. Modeling suggests the unweathered source likely possessed a composition of a 90% granodiorite + 10% high-K granite. This mixture balances petrographic observations, major element geochemistry, and the REE: (La/Sm)N = 4.19 +/- 1.26, (Gd/Yb)N = 1.34 +/- 0.38, Eu/Eu* = 0.63 +/- 0.09 and (La/Yb)N = 9.55 +/- 2.27. The hypothesis of a primary tectonic control on sediment composition (i.e. rift-basin deposition) is rejected because Johnnie Formation sediments largely lack lithic fragments that are indicative of derivation from a source area with rugged topography. Feldspars are distributed unevenly in finer grained sediments. Observed fluctuations in feldspar content of sediments from the lower to upper Johnnie Formation are attributed to increased abrasion and hydrodynamic sorting, which differentially segregated feldspars into finer grained

  12. Deciphering the Complex Signaling Systems That Regulate Intestinal Epithelial Cell Death Processes and Shedding

    PubMed Central

    Patterson, Angela M.; Watson, Alastair J. M.

    2017-01-01

    Intestinal epithelial cells play a fundamental role in maintaining homeostasis. Shedding of intestinal cells in a controlled manner is critical to maintenance of barrier function. Barrier function is maintained during this shedding process by a redistribution of tight junctional proteins to facilitate closure of the gap left by the shedding cell. However, despite the obvious importance of epithelial cell shedding to gut health, a central question is how the extrusion of epithelial cells is achieved, enabling barrier integrity to be maintained in the healthy gut and restored during inflammation remains largely unanswered. Recent studies have provided evidence that excessive epithelial cell shedding and loss of epithelial barrier integrity is triggered by exposure to lipopolysaccharide or tumor necrosis factor alpha. Subsequent studies have provided evidence of the involvement of specific cellular components and signaling mechanisms as well as the functionality of microbiota that can be either detrimental or beneficial for intestinal barrier integrity. This review will focus on the evidence and decipher how the signaling systems through which the mucosal immune system and microbiota can regulate epithelial cell shedding and how these mechanisms interact to preserve the viability of the epithelium. PMID:28769935

  13. Quantitative Proteomic and Phosphoproteomic Approaches for Deciphering the Signaling Pathway for Tension Wood Formation in Poplar.

    PubMed

    Mauriat, Mélanie; Leplé, Jean-Charles; Claverol, Stéphane; Bartholomé, Jérôme; Negroni, Luc; Richet, Nicolas; Lalanne, Céline; Bonneu, Marc; Coutand, Catherine; Plomion, Christophe

    2015-08-07

    Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.

  14. Prominence Formation Processes

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; DeVore, C. R.; Antiochos, S. K.

    2005-01-01

    Martens and Zwaan (ApJ v. 558 872) have proposed a prominence/ filament formation model in which differential rotation drives reconnection between two initially unconnected active regions to form helical field lines that support mass and are held down by overlying field. Using an MHD solver with adaptive refinement we simulated this process by imposing a shear flow meant to mimic differential rotation on two bipolar flux distributions meant to mimic distinct active regions. In some runs the flux systems are initially potential while in others they have been twisted by footpoint rotation to inject helicity prior to imposing the shear flow. The resulting structures are studied to understand the role of helicity in the formation of prominence-like structures.

  15. Developmental integration in a functional unit: deciphering processes from adult dental morphology.

    PubMed

    Labonne, Gaëlle; Navarro, Nicolas; Laffont, Rémi; Chateau-Smith, Carmela; Montuire, Sophie

    2014-01-01

    The evolution of mammalian dentition is constrained by functional necessity and by the non-independence of morphological structures. Efficient chewing implies coherent tooth coordination from development to motion, involving covariation patterns (integration) within dental parts. Using geometric morphometrics, we investigate the modular organization of the highly derived vole dentition. Integration patterns between and within the upper and lower molar rows are analyzed to identify potential modules and their origins (functional and developmental). Results support an integrated adult dentition pattern for both developmental and functional aspects. The integration patterns between opposing molar pairs suggest a transient role for the second upper and lower molars during the chewing motion. Upper and lower molar rows form coherent units but the relative integration of molar pairs is in contradiction with existing developmental models. Emphasis on the first three cusps to grow leads to a very different integration pattern, which would be congruent with developmental models. The early developmental architecture of traits is masked by later stages of growth, but may still be deciphered from the adult phenotype, if careful attention is paid to relevant features.

  16. Capturing extracellular matrix properties in vitro: Microengineering materials to decipher cell and tissue level processes

    PubMed Central

    Abdeen, Amr A; Lee, Junmin

    2016-01-01

    Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering. PMID:27075930

  17. Deciphering the Temporal Link between Pain and Sleep in a Heterogeneous Chronic Pain Patient Sample: A Multilevel Daily Process Study

    PubMed Central

    Tang, Nicole K.Y.; Goodchild, Claire E.; Sanborn, Adam N.; Howard, Jonathan; Salkovskis, Paul M.

    2012-01-01

    Objectives: Because insomnia is a common comorbidity of chronic pain, scientific and clinical interest in the relationship of pain and sleep has surged in recent years. Although experimental studies suggest a sleep-interfering property of pain and a pain-enhancing effect of sleep deprivation/fragmentation, the temporal association between pain and sleep as experienced by patients is less understood. The current study was conducted to examine the influence of presleep pain on subsequent sleep and sleep on pain reports the next day, taking into consideration other related psychophysiologic variables such as mood and arousal. Design: A daily process study, involving participants to monitor their pain, sleep, mood, and presleep arousal for 1 wk. Multilevel modeling was used to analyze the data. Setting: In the patients' natural living and sleeping environment. Patients: One hundred nineteen patients (73.9% female, mean age = 46 years) with chronic pain and concomitant insomnia. Measurement: An electronic diary was used to record patients' self-reported sleep quality/efficiency and ratings of pain, mood, and arousal at different times of the day; actigraphy was also used to provide estimates of sleep efficiency. Results: Results indicated that presleep pain was not a reliable predictor of subsequent sleep. Instead, sleep was better predicted by presleep cognitive arousal. Although sleep quality was a consistent predictor of pain the next day, the pain-relieving effect of sleep was only evident during the first half of the day. Conclusions: These findings challenge the often-assumed reciprocal relationship between pain and sleep and call for a diversification in thinking of the daily interaction of these 2 processes. Citation: Tang NKY; Goodchild CE; Sanborn AN; Howard J; Salkovskis PM. Deciphering the temporal link between pain and sleep in a heterogeneous chronic pain patient sample: a multilevel daily process study. SLEEP 2012;35(5):675-687. PMID:22547894

  18. Deciphering the Role of Surface and Subsurface Processes on Solute Dynamics at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Scanlon, T. M.; Riscassi, A. L.; Ingram, S. M.

    2008-12-01

    Nitrate (NO3-) leakage from forested watersheds due to disturbance is a well-documented but not well- understood process that can contribute to the degradation of receiving waters through eutrophication. Several studies have shown large-scale defoliation events in small forested watersheds in the Eastern U.S. cause immediate and dramatic increases in NO3- flux to steams with large differences in recovery time. Here, we analyze water-quality and discharge data collected from the time period 1992-2004 following a large-scale gypsy moth defoliation in Shenandoah National Park, Virginia. Following the defoliation, groundwater NO3- concentrations declined exponentially with a distinct seasonal pattern. Initial NO3- groundwater concentrations were related to the magnitude of defoliation within each watershed. Surprisingly, no long-term trend or seasonal pattern were found for soil water NO3- concentrations, as inferred from a mixing model applied to individual storm events. By comparing decay constants associated with groundwater discharge with constants for nitrate recovery to background concentrations, we find a hydrological imprint on the recovery time. This was confirmed by performing similar analysis on data from Hubbard Brook and Coweeta, where more rapid recovery times are attributed to the distinct biogeochemical processes associated with deforestation or crown damage. Synoptic measurements of NO3- concentrations collected on eight occasions within a stream network during the period of recovery are used to fit a model designed to capture the observed spatial variability. We find that upland terrestrial processes, rather than in-stream processes, account for the greatest proportion of this variability.

  19. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    PubMed Central

    Altavilla, Salvatore F.; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-01-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state toward a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population toward the ground state and subsequent relaxation back to the FC region. PMID:25941671

  20. Deciphering seismic signatures of physical processes in dynamic complex systems: an experimental approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Alatorre-Ibarguengoitia, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Dingwell, D. B.

    2012-12-01

    Seismic evaluation of well-controlled experimental simulations of volumetric sources (e.g. explosions, cavitations, burst, pressure drops) is a powerful tool for better understanding of the seismic wave field of complex systems. In this work, we describe two distinct well-constrained physical models, which under controlled laboratory conditions enable the simulation of complex systems; volcanic explosions and fluid-filled wells. For volcanic explosion simulations, several experiments were performed to study seismic signals associated with fragmentation processes of volcanic rocks by rapid decompression. These experiments were performed in a shock-tube apparatus at room temperature and a pressure range of 4 to 20 MPa. Pumice samples from Popocatepetl volcano of different porosity were studied. To investigate the elastic wave propagation inside a fluid-filled well, we present a hollow cylinder model surrounded by water, excited by a ultrasonic laser beam emitting pulses between 5 and 8 ns in duration, causing micro-cavitations. Adequate instrumentation of these mechanical systems, using high-precision sensors, enabled us to capture and to analyze seismic wave fields, characterizing also their source mechanism. Although these laboratory analogues have simplified geometries and media properties, these experimental investigations are based upon the hypothesis that, in comparable systems, any physical process (e.g. pressure drops, fragmentation, vibration, elastic deformation, etc) conducts to equivalent system responses, causing the same distinctive effects, which are independent on the scale. These effects engender particular seismic signatures, reflecting the dynamics of the process, and are comparable with numerical simulations and seismic field observations. Therefore, laboratory models can validate the inverse problem solution, indicating that the source mechanism and the system nature can both be inferred from field-based seismograms.

  1. Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate

    NASA Astrophysics Data System (ADS)

    Altavilla, Salvatore; Segarra-Martí, Javier; Nenov, Artur; Conti, Irene; Rivalta, Ivan; Garavelli, Marco

    2015-04-01

    The photophysics and photochemistry of water-solvated guanine monophosphate (GMP) are here characterized by means of a multireference quantum-chemical/molecular mechanics theoretical approach (CASPT2//CASSCF/AMBER) in order to elucidate the main photo-processes occurring upon UV-light irradiation. The effect of the solvent and of the phosphate group on the energetics and structural features of this system are evaluated for the first time employing high-level ab initio methods and thoroughly compared to those in vacuo previously reported in the literature and to the experimental evidence to assess to which extent they influence the photoinduced mechanisms. Solvated electronic excitation energies of solvated GMP at the Franck-Condon (FC) region show a red shift for the ππ* La and Lb states, whereas the energy of the oxygen lone-pair nπ* state is blue-shifted. The main photoinduced decay route is promoted through a ring-puckering motion along the bright lowest-lying La state towards a conical intersection (CI) with the ground state, involving a very shallow stationary point along the minimum energy pathway in contrast to the barrierless profile found in gas-phase, the point being placed at the end of the minimum energy path (MEP) thus endorsing its ultrafast deactivation in accordance with time-resolved transient and photoelectron spectroscopy experiments. The role of the nπ* state in the solvated system is severely diminished as the crossings with the initially populated La state and also with the Lb state are placed too high energetically to partake prominently in the deactivation photo-process. The proposed mechanism present in solvated and in vacuo DNA/RNA chromophores validates the intrinsic photostability mechanism through CI-mediated non-radiative processes accompanying the bright excited-state population towards the ground state and subsequent relaxation back to the FC region.

  2. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    NASA Astrophysics Data System (ADS)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  3. The Multifaceted Planetesimal Formation Process

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Blum, J.; Tanaka, H.; Ormel, C.; Bizzarro, M.; Rickman, H.

    Accumulation of dust and ice particles into planetesimals is an important step in the planet formation process. Planetesimals are the seeds of both terrestrial planets and the solid cores of gas and ice giants forming by core accretion. Leftover planetesimals in the form of asteroids, transneptunian objects, and comets provide a unique record of the physical conditions in the solar nebula. Debris from planetesimal collisions around other stars signposts that the planetesimal formation process, and hence planet formation, is ubiquitous in the Galaxy. The planetesimal formation stage extends from micrometer-sized dust and ice to bodies that can undergo runaway accretion. The latter ranges in size from 1 km to 1000 km, dependent on the planetesimal eccentricity excited by turbulent gas density fluctuations. Particles face many barriers during this growth, arising mainly from inefficient sticking, fragmentation, and radial drift. Two promising growth pathways are mass transfer, where small aggregates transfer up to 50% of their mass in high-speed collisions with much larger targets, and fluffy growth, where aggregate cross sections and sticking probabilities are enhanced by a low internal density. A wide range of particle sizes, from 1 mm to 10 m, concentrate in the turbulent gas flow. Overdense filaments fragment gravitationally into bound particle clumps, with most mass entering planetesimals of contracted radii from 100 km to 500 km, depending on local disk properties. We propose a hybrid model for planetesimal formation where particle growth starts unaided by self-gravity but later proceeds inside gravitationally collapsing pebble clumps to form planetesimals with a wide range of sizes.

  4. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  5. Negative ion formation processes: A general review

    SciTech Connect

    Alton, G.D.

    1990-01-01

    The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs.

  6. Deciphering Kepler's Planetary Systems

    NASA Astrophysics Data System (ADS)

    Lithwick, Yoram

    The theory for how planetary systems form and achieve their final configuration remains highly uncertain. Until now, theories could only be tested against a single system -- the solar system. The Kepler mission, with its abundance of planetary systems, will likely prove to be a Rosetta stone. However, much remains to be deciphered. To help realize the potential of the Kepler mission, we propose to pursue the complementary tasks of characterizing the properties of the Kepler systems and developing theories to explain these properties: 1) Characterizing Kepler systems. We will characterize these planets using the transit-time-variation (TTV) signatures obtained by the mission. We have recently derived a simple expression for the TTV, and used it to derive the masses and eccentricities of a couple dozen Kepler planets. We will extend that work by applying it to many more planets, and by deriving higher-order TTV effects that will allow us to obtain more accurate measurements by breaking degeneracies. We will also use the TTV signals, as well as other observables, to infer the intrinsic orbital architecture of Kepler planets. This will form the basis for the following study. 2) Assembling Kepler systems. Informed by our above analysis, we will try to uncover how the Kepler planets were assembled onto their current orbits. Our recent work on the resonant repulsion mechanism suggests that the final assembly was shaped by a dissipative process, and we will explore that mechanism further. We will also run simulations to test the conjecture that planetesimals were the dissipative agent responsible for final assembly -- just as they are thought to be responsible for the assembly of the planets in the outer solar system

  7. Large rock-slope failures impacting on lakes - Reconstruction of events and deciphering mobility processes at Lake Oeschinen (CH) and Lake Eibsee (D)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Anselmetti, Flavio; Gilli, Adrian; Krautblatter, Michael; Hajdas, Irka

    2017-04-01

    Among single event landslide disasters large rock-slope failures account for 75% of disasters with more than 1000 casualties. The precise determination of recurrence rates and failure volumes combined with an improved understanding of mobility processes are essential to better constrain runout models and establish early warning systems. Here we present the data sets from the two alpine regions Lake Oeschinen (CH) and Lake Eibsee (D) to show how lake studies can help to decipher the multistage character of rock-slope failures and to improve the understanding of the processes related to rock avalanche runout dynamics. We focus on such that impacted on a (paleo-) lake for two main reasons. First, the lake background sedimentation acts as a natural chronometer, which enables the stratigraphic positioning of events and helps to reconstruct the event history. This way it becomes possible to (i) decipher the multistage character of the failure of a certain rock slope and maybe detect progressive failure, (ii) determine the recurrence rates of failures at that certain rock slope, and (iii) consider energies based on estimated failure volumes, fall heights and deposition patterns. Hence, the interactions between a rock-slope failure, the water reservoir and the altered rock-slope are better understood. Second, picturing a rock avalanche running through and beyond a lake, we assume the entrainment of water and slurry to be crucial for the subsequent flow dynamics. The entrainment consumes a large share of the total energy, and orchestrates the mobility leading to fluidization, a much higher flow velocity and a longer runout-path length than expected. At Lake Oeschinen (CH) we used lake sediment cores and reflection seismic profiles in order to reconstruct the 2.5 kyrs spanning rock-slope failure history including 10 events, six of which detached from the same mountain flank, and correlated them with (pre-) historical data. The Lake Eibsee records provide insights into the

  8. Processes and problems in secondary star formation

    SciTech Connect

    Klein, R.I.; Whitaker, R.W.; Sandford M.T. II

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10/sup 4/ years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields.

  9. On the formation process of charged clusters

    NASA Astrophysics Data System (ADS)

    Wang, Youmei; Chen, Qi; Yu, M. Y.

    2016-11-01

    The clustering process of charged grains often resembles a formation stage of colloidal and spongy matter, as well as some astrophysical objects. In this paper, molecular dynamics simulation is used to simulate the formation process of clusters of massive charged grains in plasmas. It is found that, from an initially uniform distribution of grains with Maxwellian velocity distribution, a statistically stationary system of clusters, each with different dynamic as well as thermodynamic characteristics, can form. The dependence of the asymptotic, of the final, state of the cluster system on the initial temperature and density of the grains is discussed.

  10. Thermodynamics and kinetics of vesicles formation processes.

    PubMed

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications.

  11. Instabilities and structure formation in laser processing

    SciTech Connect

    Baeuerle, D.; Arenholz, E.; Arnold, N.; Heitz, J.; Kargl, P.B.

    1996-12-31

    This paper gives an overview on different types of instabilities and structure formation in various fields of laser processing. Among the examples discussed in detail are non-coherent structures observed in laser-induced chemical vapor deposition (LCVD), in laser-induced surface modifications, and in laser ablation of polymers.

  12. Bistatic SAR: Signal Processing and Image Formation.

    SciTech Connect

    Wahl, Daniel E.; Yocky, David A.

    2014-10-01

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013 on Kirtland Air Force Base, New Mexico.

  13. Oligosaccharide formation during commercial pear juice processing.

    PubMed

    Willems, Jamie L; Low, Nicholas H

    2016-08-01

    The effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.g., maltose and cellotriose) and isoprimeverose were identified as being formed during pear juice production. It was found that the majority of polysaccharide hydrolysis and oligosaccharide formation occurred during enzymatic treatment at the pear mashing stage and that the remaining processing steps had minimal impact on the carbohydrate-based chromatographic profile of pear juice. Also, all commercial enzyme preparations and conditions (time and temperature) studied produced similar carbohydrate-based chromatographic profiles.

  14. Deciphering the Mode of Action of the Processive Polysaccharide Modifying Enzyme Dermatan Sulfate Epimerase 1 by Hydrogen–Deuterium Exchange Mass Spectrometry

    PubMed Central

    Tykesson, Emil; Mao, Yang; Maccarana, Marco; Pu, Yi; Gao, Jinshan; Lin, Cheng; Zaia, Joseph; Westergren-Thorsson, Gunilla; Ellervik, Ulf; Malmström, Lars; Malmström, Anders

    2015-01-01

    Distinct from template-directed biosynthesis of nucleic acids and proteins, the enzymatic synthesis of heterogeneous polysaccharides is a complex process that is difficult to study using common analytical tools. Therefore, the mode of action and processivity of those enzymes are largely unknown. Dermatan sulfate epimerase 1 (DS-epi1) is the predominant enzyme during the formation of iduronic acid residues in the glycosaminoglycan dermatan sulfate. Using recombinant DS-epi1 as a model enzyme, we describe a tandem mass spectrometry-based method to study the mode of action of polysaccharide processing enzymes. The enzyme action on the substrate was monitored by hydrogen-deuterium exchange mass spectrometry and the sequence information was then fed into mathematical models with two different assumptions of the mode of action for the enzyme: processive reducing end to non-reducing end, and processive non-reducing end to reducing end. Model data was scored by correlation to experimental data and it was found that DS-epi1 attacks its substrate on a random position, followed by a processive mode of modification towards the non-reducing end and that the substrate affinity of the enzyme is negatively affected by each additional epimerization event. It could also be shown that the smallest active substrate was the reducing end uronic acid in a tetrasaccharide and that octasaccharides and longer oligosaccharides were optimal substrates. The method of using tandem mass spectrometry to generate sequence information of the complex enzymatic products in combination with in silico modeling can be potentially applied to study the mode of action of other enzymes involved in polysaccharide biosynthesis. PMID:26900446

  15. Star Formation Processes in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Paladino, Rosita

    2017-06-01

    The new available observational facilities allow now studies of star formation processes in nearby galaxies with the level of details so far available only for star forming regions of the Galaxy. The statistical study of the properties of giant molecular clouds in different environments are now possible. I will review the current status of these studies, and present recent ALMA observations of a nearby galaxy NGC3627. ALMA observations allow the study of giant molecular clouds properties in the different environments (arms, inter-arms, bar, bar end regions) observable in this galaxies.

  16. Mutagen formation during commercial processing of foods.

    PubMed Central

    Krone, C A; Yeh, S M; Iwaoka, W T

    1986-01-01

    Levels of bacterial mutagenicity 3-17 times above spontaneous are generated during commercial thermal processing (canning) of foods, particularly foods high in protein. The potential for other processing operations, including pasteurization, dehydration, and concentration, to produce substances active in the Ames Salmonella assay was also examined. Two heated fish model systems, canned salmon and fried sole, were established by extracting mutagen precursors from fish tissues with water. The model system studies suggest that the limiting reactants for mutagen formation differ from one food product to another, and that Maillard type browning reactions are involved in mutagen production. Bisulfite treatment was found to inhibit mutagen formation in modal systems and whole food products. Isolation and partial characterization of the mutagens in both fried and canned pink salmon showed that at least three distinct mutagens were present. These mutagens exhibited HPLC retention time patterns on C18, cyano, and amino columns different than the major mutagens present in other cooked and grilled meats and fish. PMID:3530739

  17. Deciphering indented impressions on plastic.

    PubMed

    Brown, Sharon; Klein, Asne; Chaikovsky, Alan

    2003-07-01

    The questioned document laboratory is often called upon to decipher writing that has been erased, obliterated, or that has faded. In cases like these, the original writing is no longer legible to the naked eye, but may be enhanced using various light sources. Certain remnants of the ink's components absorb into the substrate's fibers and can be visualized, usually as luminescence or absorbance. A case is described here that involved the theft of a credit card. An empty plastic credit card holder was found in the possession of a suspect, and as submitted for examination. Indented impressions could be discerned on its clear plastic window and presumably originated from the credit card that had been held in the envelope. These indented impressions were deciphered in the hope that they would reveal enough details from the credit card to establish a connection between the plastic envelope and the stolen credit card. With methods generally utilized in the toolmarks and materials laboratory and the photography laboratory of the Israel Police, most of the indented impressions on the plastic were deciphered and a connection between the plastic envelope and the stolen credit card was demonstrated.

  18. Deciphering infant mortality

    NASA Astrophysics Data System (ADS)

    Berrut, Sylvie; Pouillard, Violette; Richmond, Peter; Roehner, Bertrand M.

    2016-12-01

    This paper is about infant mortality. In line with reliability theory, "infant" refers to the time interval following birth during which the mortality (or failure) rate decreases. This definition provides a systems science perspective in which birth constitutes a sudden transition falling within the field of application of the Transient Shock (TS) conjecture put forward in Richmond and Roehner (2016c). This conjecture provides predictions about the timing and shape of the death rate peak. It says that there will be a death rate spike whenever external conditions change abruptly and drastically and also predicts that after a steep rise there will be a much longer hyperbolic relaxation process. These predictions can be tested by considering living organisms for which the transient shock occurs several days after birth. Thus, for fish there are three stages: egg, yolk-sac and young adult phases. The TS conjecture predicts a mortality spike at the end of the yolk-sac phase and this timing is indeed confirmed by observation. Secondly, the hyperbolic nature of the relaxation process can be tested using very accurate Swiss statistics for postnatal death rates spanning the period from one hour immediately after birth through to age 10 years. It turns out that since the 19th century despite a significant and large reduction in infant mortality, the shape of the age-specific death rate has remained basically unchanged. Moreover the hyperbolic pattern observed for humans is also found for small primates as recorded in the archives of zoological gardens. Our overall objective is to identify a series of cases which start from simple systems and move step by step to more complex organisms. The cases discussed here we believe represent initial landmarks in this quest.

  19. Site formation processes at Zhoukoudian, China.

    PubMed

    Goldberg, P; Weiner, S; Bar-Yosef, O; Xu, Q; Liu, J

    2001-11-01

    Zhoukoudian is often cited for its human remains and the early evidence of fire. Yet, since its first excavations over 70 years ago, detailed studies of processes responsible for the accumulation of anthropogenic and geogenic sediments in the site have been sparse. This paper provides some details of site formation processes mainly through field observations of the extant section at Locality 1, and the use of soil micromorphology and Fourier Transform Infrared Spectrometry (FTIR) analyses of the sediments. Samples from Layers 10 through 3 show extensive water deposition of fine silt-sized material (reworked loess), including fine-grained organic matter. The dark organic-rich unit in Layer 10--often cited as one of the earliest evidence of fire--is a water-laid accumulation. Much of the fine-grained sediment was derived from outside Locality 1, implying that the site was open to varying extents throughout most of its depositional history. The 4-6 m accumulation of "ashes" in Layer 4 represents subaerial water-laid silt deposits derived from the loess-covered hillslopes surrounding the site. They presumably accumulated in an open depression that formed after the collapse of the brecciated roof deposits represented by Layer 6. Diagenesis is present in many of the Layers, and is exemplified by calcite precipitation and dissolution, and localized apatite (dahllite) replacement of calcite. In Layer 4 diagenesis is more advanced, including calcite/dahllite precipitation, subaerial weathering of the loess and associated precipitation of hematite, alteration of clay and the neoformation of quartz. Many of our conclusions concur with those of Teilhard de Chardin & Young published over 70 years ago.

  20. Situ microbial plugging process for subterranean formations

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-12-17

    Subterranean paths of water flow are impeded or changed by the facilitation of microbial growth therein. Either indigenous bacterial growth may be stimulated with nutrients or the formation may be first seeded with bacteria or their spores which inhibit fluid flow after proliferation. These methods and bacteria are usable to alter the flow of water in a waterflooded oil formation and to impede the outflow of contaminated water.

  1. Process for recovering petroleum from a geological formation

    SciTech Connect

    Purcell, R. F.; Kayser, R. B.

    1985-06-11

    In the process for recovering petroleum having acidic components from a geological formation containing it by injecting steam in the formation, the improvement comprising conducting the steam injection in the presence of one or more water-soluble amines.

  2. Deciphering the Noachian Geological and Climate History of Mars: Part 2: A Noachian Stratigraphic View of Major Geologic Processes and Their Climatic Consequences

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Wordsworth, R.; Forget, F.; Turbet, M.

    2017-10-01

    We apply a stratigraphic approach to the major Noachian geological processes and observation, knowns and unknowns to provide insight into potential changes as a function of time, and to assess their climatic consequences.

  3. Scale Free Processes in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Dekel, Avishai

    According to the ΛCDM paradigm of cosmology, galaxies form at the centers of dark matter (DM) halos. While galaxy formation involves complex baryonic physics, the formation of DM halos is governed solely by gravity and cosmology. As a result, many of their properties exhibit a near scale-free behaviour, self-similar in either halo mass, cosmic time or both. This is especially true in the Einstein-de Sitter (EdS) regime, valid at redshifts z >~ 1, when cosmological scaling relations become particularly simple, and in the narrow mass range of normal galaxies, where the fluctuation power spectrum can be approximated by a power law. Since many galaxy properties are strongly correlated with halo mass, they tend to exhibit a self-similar behaviour as well. A partial list of self-similar properties include the mass function of DM halos, the structure of the cosmic web, the accretion/merger rate of matter onto halos, the density profiles of DM halos and their angular momentum, which eventually determines the galaxy structure. We briefly review these below, and comment on how they can be used in conjunction with simple toy models to gain insight into galaxy formation.

  4. Mathematical modeling of biomass fuels formation process.

    PubMed

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  5. Deciphering Decision Making: Variation in Animal Models of Effort- and Uncertainty-Based Choice Reveals Distinct Neural Circuitries Underlying Core Cognitive Processes.

    PubMed

    Winstanley, Catharine A; Floresco, Stan B

    2016-11-30

    Maladaptive decision-making is increasingly recognized to play a significant role in numerous psychiatric disorders, such that therapeutics capable of ameliorating core impairments in judgment may be beneficial in a range of patient populations. The field of "decision neuroscience" is therefore in its ascendancy, with researchers from diverse fields bringing their expertise to bear on this complex and fascinating problem. In addition to the advances in neuroimaging and computational neuroscience that contribute enormously to this area, an increase in the complexity and sophistication of behavioral paradigms designed for nonhuman laboratory animals has also had a significant impact on researchers' ability to test the causal nature of hypotheses pertaining to the neural circuitry underlying the choice process. Multiple such decision-making assays have been developed to investigate the neural and neurochemical bases of different types of cost/benefit decisions. However, what may seem like relatively trivial variation in behavioral methodologies can actually result in recruitment of distinct cognitive mechanisms, and alter the neurobiological processes that regulate choice. Here we focus on two areas of particular interest, namely, decisions that involve an assessment of uncertainty or effort, and compare some of the most prominent behavioral paradigms that have been used to investigate these processes in laboratory rodents. We illustrate how an appreciation of the diversity in the nature of these tasks can lead to important insights into the circumstances under which different neural regions make critical contributions to decision making. Copyright © 2016 the authors 0270-6474/16/3612069-11$15.00/0.

  6. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  7. Deciphering the Role of Tectonic and Climatic Processes on the Landscape Development of the Patagonian Andes Along the Liquiñe-Ofqui Fault System, Chile

    NASA Astrophysics Data System (ADS)

    Buscher, J.; Morata, D.; Arancibia, G.; Cembrano, J. M.

    2016-12-01

    Transpressional plate boundaries often exhibit a correlation between plate obliquity and crustal deformation, but establishing spatial and temporal constraints on this relationship is challenging. The presence of continuous rugged topography along many transpressional fault zones as well as along-fault translation of crustal blocks can obscure the link between plate boundary geometry and mountain belt development. The Liquiñe-Ofqui fault system in the Patagonian Andes is an intra-arc dextral-reverse fault zone linked to oblique plate convergence between the Nazca and South America plates that represents a model setting for studying transpressional landscape development. The topography along the Liquiñe-Ofqui fault system is characterized by glacially and fluvially carved rocks of the Patagonian batholith interspersed by a chain of volcanoes that extends subparallel to the fault zone. Available structural and low-temperature thermochronometry data from the region suggest that both transpressional exhumation and glacial erosion have contributed to the long-term development of the orogen (Cembrano et al., 2002; Thomson, 2002; Thomson et al., 2010). Of particular interest is a near-field locus of young cooling ages thought to reflect shear heating along the fault zone (Thomson, 2002) or focused glacial erosion (Thomson et al., 2010; Herman and Brandon, 2015). To help quantify the topographic response to tectonic and climatic processes along the fault zone, we have evaluated first-order topographic features (gross distribution of elevation, relief and slope) and conducted river profile analyses (stream length-gradient, normalized channel steepness and stream convexity indices) using SRTM digital elevation data for comparison with low-temperature thermochronometry data. Preliminary results suggest that the distribution of topographic and river profile features varies with location along the Liquiñe-Ofqui fault system.

  8. Processes and applications of electrostatic fiber formation

    NASA Astrophysics Data System (ADS)

    Rutledge, Gregory C.

    2008-12-01

    'Electrospinning' is an electrohydrodynamic jetting process that enables the production of continuous fibers, tubes and wires with diameters as small as 10 nm. The process itself is dependent upon electrostatic interactions such as charge-charge repulsion and charge-field interaction. The interplay of charge repulsion, viscoelasticity and surface tension gives rise to interesting electrohydrodynamic phenomena that challenge fundamental understanding as well as practical implementation and quality control in the final fibers. The morphology and diameter of these fibers can be understood and controlled through manipulation of fluid properties and operating parameters. The fibers thus produced are illustrative of nanotechnology in a 1-dimensional form, and have inspired considerable activity in the research community into their potential applications. Proposed uses range from high performance filtration media and membranes, to sensors and actuators, to medical devices and drug delivery vehicles. Two examples, tissue scaffold engineering and superhydrophobicity, are illustrated here.

  9. Bio-orthogonally Deciphered Binary Nanoemitters for Tumor Diagnostics.

    PubMed

    An, Hong-Wei; Qiao, Sheng-Lin; Li, Li-Li; Yang, Chao; Lin, Yao-Xin; Wang, Yi; Qiao, Zeng-Ying; Wang, Lei; Wang, Hao

    2016-08-03

    Bioinspired design concept has been recognized as one of the most promising strategies for discovering new biomaterials. However, smart biomaterials that are of growing interests in biomedical field need biological processability to meet their emergent applications in vivo. Herein, a new bio-orthogonally deciphered approach has been demonstrated for modulating optical properties of nanomaterials in living systems. The self-assembled nanoemitters based on cyanine-pyrene molecule 1 with inert optical property are designed and prepared. The structure and optical feature of the nanoemitters 1 can be efficiently and reliably modulated by a unique bio-orthogonal mechanism with abundant glutathione (GSH) as an activator. As a result, the self-assembled nanoemitters 1 spontaneously exhibits binary emissions for high-performance tumor imaging in vivo. We believe that this bio-orthogonally deciphered strategy opens a new avenue for designing variable smart biomaterials or devices in biomedical applications.

  10. Spray formation processes of impinging jet injectors

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-01-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  11. Spray formation processes of impinging jet injectors

    NASA Astrophysics Data System (ADS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-11-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  12. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.

    1987-01-01

    Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.

  13. A Process Model of Family Formation and Development

    ERIC Educational Resources Information Center

    Garland, Diana R.

    2012-01-01

    Theoretical models of family formation have assumed sexual coupling as the foundation of family life. This article proposes instead a model of family formation predicated on the processes of taking care of one another, eating together, and sharing life together. The interpersonal dynamics that distinguish a family from other close relationships…

  14. Evaluation as a Process: The Formative-Summative Continuum.

    ERIC Educational Resources Information Center

    Caudle, Sharon L.

    Rather than automatically presuming explicit conditions exist when designing an evaluation to fit the summative or formative mold, evaluators should think of an evaluation design as fitting between endpoints on an evaluation process continuum. Evaluators can blend techniques from both the formative and summative evaluation, matching actual program…

  15. A Process Model of Family Formation and Development

    ERIC Educational Resources Information Center

    Garland, Diana R.

    2012-01-01

    Theoretical models of family formation have assumed sexual coupling as the foundation of family life. This article proposes instead a model of family formation predicated on the processes of taking care of one another, eating together, and sharing life together. The interpersonal dynamics that distinguish a family from other close relationships…

  16. Processing treatments for mitigating acrylamide formation in sweetpotato French fries

    USDA-ARS?s Scientific Manuscript database

    Acrylamide formation in sweetpotato French fries (SPFF) is likely a potential health concern as there is an increasing demand for good-quality fries from carotene-rich sweetpotatoes (SP). This is the first report on acrylamide formation in SPFF as affected by processing methods. Acrylamide levels in...

  17. Evaluation as a Process: The Formative-Summative Continuum.

    ERIC Educational Resources Information Center

    Caudle, Sharon L.

    Rather than automatically presuming explicit conditions exist when designing an evaluation to fit the summative or formative mold, evaluators should think of an evaluation design as fitting between endpoints on an evaluation process continuum. Evaluators can blend techniques from both the formative and summative evaluation, matching actual program…

  18. Formative Evaluation as a Social Process: A Case Study.

    ERIC Educational Resources Information Center

    Salmon-Cox, Leslie; Holzner, Burkart

    This paper reports the results of a case study of the process of formative evaluation in the development of one unit of Individualized Science (IS). It is an analytic description of the curriculum project's experiences in formative evaluation rather than an evaluative critique. Following an introductory explanation, the IS program and the IS…

  19. Making Room for Formative Assessment Processes: A Multiple Case Study

    ERIC Educational Resources Information Center

    McEntarffer, Robert E.

    2012-01-01

    This qualitative instrumental multiple case study (Stake, 2005) explored how teachers made room for formative assessment processes in their classrooms, and how thinking about assessment changed during those formative assessment experiences. Data were gathered from six teachers over three months and included teacher interviews, student interviews,…

  20. Deciphering the histone code using mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ueberheide, Beatrix M.; Mollah, Sahana

    2007-01-01

    During the past decade, studies surrounding chromatin research have grown exponentially. A major focus of chromatin biology is centered on understanding of how histone modifications alter chromatin structure at the molecular and mechanistic levels. Discoveries are being made at a rapid pace due to the advent of new and innovative techniques. Mass spectrometry has emerged as a powerful tool in the field of histone research due to its speed, sensitivity, and ease of use. This has resulted in the identification of a number of novel histone modification sites. In consequence, new roles in biological processes have been discovered and hypothetical models, such as the `histone code' have been reaffirmed or refined. One significant advantage to using mass spectrometric techniques is that the combinations of modifications on different sites can be determined which is crucial to deciphering the `histone code'. In this manuscript, the mass spectrometric approaches developed over the past decade for both qualitative and quantitative analysis of histone post-translational modifications (PTMs) are discussed.

  1. Filament formation as a scale-free process

    NASA Astrophysics Data System (ADS)

    Vazquez-Semadeni, Enrique

    2015-08-01

    I will discuss the formation of filaments in molecular clouds, and its potential similarity with filament formation in the cosmic web. First, I will recall the formation mechanism of giant molecular clouds (GMCs) and their likely state of global, hierarchical gravitational collapse, which amplifies any anisotropies of the initial configuration. I will then briefly recall the density and structure produced by this mechanism, emphasizing the fact that filaments are flow features, funneling material from the cloud to the star-forming cores, rather than static objects. I will conclude with a comparison of the physical processes operating in GMC filament formation to that operating on the formation of extragalactic filaments, to conclude with the question of the extent to which the two processes are comparable.

  2. A computational approach for deciphering the organization of glycosaminoglycans.

    PubMed

    Spencer, Jean L; Bernanke, Joel A; Buczek-Thomas, Jo Ann; Nugent, Matthew A

    2010-02-23

    Increasing evidence has revealed important roles for complex glycans as mediators of normal and pathological processes. Glycosaminoglycans are a class of glycans that bind and regulate the function of a wide array of proteins at the cell-extracellular matrix interface. The specific sequence and chemical organization of these polymers likely define function; however, identification of the structure-function relationships of glycosaminoglycans has been met with challenges associated with the unique level of complexity and the nontemplate-driven biosynthesis of these biopolymers. To address these challenges, we have devised a computational approach to predict fine structure and patterns of domain organization of the specific glycosaminoglycan, heparan sulfate (HS). Using chemical composition data obtained after complete and partial digestion of mixtures of HS chains with specific degradative enzymes, the computational analysis produces populations of theoretical HS chains with structures that meet both biosynthesis and enzyme degradation rules. The model performs these operations through a modular format consisting of input/output sections and three routines called chainmaker, chainbreaker, and chainsorter. We applied this methodology to analyze HS preparations isolated from pulmonary fibroblasts and epithelial cells. Significant differences in the general organization of these two HS preparations were observed, with HS from epithelial cells having a greater frequency of highly sulfated domains. Epithelial HS also showed a higher density of specific HS domains that have been associated with inhibition of neutrophil elastase. Experimental analysis of elastase inhibition was consistent with the model predictions and demonstrated that HS from epithelial cells had greater inhibitory activity than HS from fibroblasts. This model establishes the conceptual framework for a new class of computational tools to use to assess patterns of domain organization within

  3. EFFECT OF SEPARATION PROCESSES ON THE FORMATION OF BROMINATED THMS

    EPA Science Inventory

    Separation treatment processes are being investigated as a way to control the formation of disinfection by-products (DBPs) in finished waters. These processes remove natural organic matter before a disinfection is applied, thus limiting the amount of material available to form D...

  4. Analysis of the Particle Formation Process of Structured Microparticles.

    PubMed

    Baldelli, Alberto; Boraey, Mohammed A; Nobes, David S; Vehring, Reinhard

    2015-08-03

    The particle formation process for microparticles of cellulose acetate butyrate dried from an acetone solution was investigated experimentally and theoretically. A monodisperse droplet chain was used to produce solution microdroplets in a size range of 55-70 μm with solution concentrations of 0.37 and 10 mg/mL. As the droplets dried in a laminar air flow with a temperature of 30, 40, or 55 °C, the particle formation process was recorded by two independent optical methods. Dried particles in a size range of 10-30 μm were collected for morphology analysis, showing hollow, elongated particles whose structure was dependent on the drying gas temperature and initial solution concentration. The setup allowed comprehensive measurements of the particle formation process to be made, including the period after initial shell formation. The early particle formation process for this system was controlled by the diffusion of cellulose acetate butyrate in the liquid phase, whereas later stages of the process were dominated by shell buckling and folding.

  5. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food.

    PubMed

    Singh, Lochan; Varshney, Jay G; Agarwal, Tripti

    2016-05-15

    Polycyclic aromatic hydrocarbons (PAHs) emerged as an important contaminant group in a gamut of processed food groups like dairy, nuts, herbs, beverages, meat products etc. Different cooking processes and processing techniques like roasting, barbecuing, grilling, smoking, heating, drying, baking, ohmic-infrared cooking etc. contribute towards its formation. The level of PAHs depends on factors like distance from heat source, fuel used, level of processing, cooking durations and methods, whereas processes like reuse, conching, concentration, crushing and storage enhance the amount of PAHs in some food items. This review paper provides insight into the impact of dietary intake of PAHs, its levels and formation mechanism in processed food items and possible interventions for prevention and reduction of the PAHs contamination. The gaps and future prospects have also been assessed.

  6. Diffused Matrix Format: a new storage and processing format for airborne hyperspectral sensor images.

    PubMed

    Martínez, Pablo; Cristo, Alejandro; Koch, Magaly; Pérez, Rosa Ma; Schmid, Thomas; Hernández, Luz M

    2010-01-01

    At present, hyperspectral images are mainly obtained with airborne sensors that are subject to turbulences while the spectrometer is acquiring the data. Therefore, geometric corrections are required to produce spatially correct images for visual interpretation and change detection analysis. This paper analyzes the data acquisition process of airborne sensors. The main objective is to propose a new data format called Diffused Matrix Format (DMF) adapted to the sensor's characteristics including its spectral and spatial information. The second objective is to compare the accuracy of the quantitative maps derived by using the DMF data structure with those obtained from raster images based on traditional data structures. Results show that DMF processing is more accurate and straightforward than conventional image processing of remotely sensed data with the advantage that the DMF file structure requires less storage space than other data formats. In addition the data processing time does not increase when DMF is used.

  7. Deciphering a neural code for vision

    PubMed Central

    Passaglia, Christopher; Dodge, Frederick; Herzog, Erik; Jackson, Scott; Barlow, Robert

    1997-01-01

    Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust “neural images” of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information. PMID:9356504

  8. On possibility of diamond formations in radiation process

    NASA Astrophysics Data System (ADS)

    Fisenko, A. V.; Semjonova, L. F.; Bolsheva, L. N.; Grachjova, T. V.; Verchovsky, A. B.; Shukolyukov, Yu. A.

    1993-03-01

    The possibility of diamond formation in radiation processes was checked by studying diamond contents in carburanium sample. The diamonds were not found and this result is discussed. At present one possible process of formation of nanometer-size diamond crystals in some meteorites and Earth's diamonds (carbonado), the radiation mechanism, is suggested: the formation of diamonds from carbonaceous matter in tracks of U fragment fissions and heavy fragmentation due to the action of energetic particles of cosmic rays. Bjakov et. al. have carried out the calculations and shown that the volume of formed diamonds in carbonaceous chondrites by radiation processes corresponds to discovery of diamond volume in chondrites. The discovery by Ozima et. al. of the unsupported fission of Xe and Kr in carbonado supports the supposition that carbonado could be formed by radiation processes. The possibility of diamond formation in radiation processes leads to the study of diamond contents in Earth's samples enriched by uranium and carbon. The attempt to release the diamonds from carburanium was undertaken.

  9. On possibility of diamond formations in radiation process

    NASA Technical Reports Server (NTRS)

    Fisenko, A. V.; Semjonova, L. F.; Bolsheva, L. N.; Grachjova, T. V.; Verchovsky, A. B.; Shukolyukov, Yu. A.

    1993-01-01

    The possibility of diamond formation in radiation processes was checked by studying diamond contents in carburanium sample. The diamonds were not found and this result is discussed. At present one possible process of formation of nanometer-size diamond crystals in some meteorites and Earth's diamonds (carbonado), the radiation mechanism, is suggested: the formation of diamonds from carbonaceous matter in tracks of U fragment fissions and heavy fragmentation due to the action of energetic particles of cosmic rays. Bjakov et. al. have carried out the calculations and shown that the volume of formed diamonds in carbonaceous chondrites by radiation processes corresponds to discovery of diamond volume in chondrites. The discovery by Ozima et. al. of the unsupported fission of Xe and Kr in carbonado supports the supposition that carbonado could be formed by radiation processes. The possibility of diamond formation in radiation processes leads to the study of diamond contents in Earth's samples enriched by uranium and carbon. The attempt to release the diamonds from carburanium was undertaken.

  10. Laboratory experiments on the microphysical formation process of Noctilucent Clouds

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Wilms, Henrike; Kitajima, Kensei; Leisner, Thomas

    2017-04-01

    Ablated meteoric material condensates in the upper atmosphere to nanometer sized meteoric smoke particles (MSPs). These particles are believed to be the major kind of nuclei for the formation of so called NoctiLucent Clouds (NLCs) in the polar summer mesosphere. However, describing the formation process of these clouds is flawed with large uncertainties mainly due to a lack of experimental data on their microphysical formation process. To investigate these processes, we produce single charged nanometer sized (1-3 nm) MSP analogues in a microwave plasma particle source. The particles are suspended in a carrier gas and transferred to a vacuum setup where they are stored in a linear ion trap (MICE). The trap allows us to apply realistic mesopause conditions in terms of temperature, background pressure and water vapor concentration. By using a time-of-flight mass spectrometer, we are able to observe adsorption and, if nucleation occurs, subsequent deposition of water vapor on the MSP analogues as a function of saturation and residence time in MICE. From these experiments, we determine critical saturations needed to activate cloud formation. However, NLCs occur during polar summer and therefore are exposed to sunlight. At the low pressures of the mesopause, MSPs may heat up with respect to the background gas temperature which significantly influences the critical saturation needed to activate cloud formation. We expose the MSP analogues trapped in MICE to laser light of a known radiation profile in order to determine the heat up of the particles as well as the resulting influence on the nucleation process. The results of our experiments describe the microphysical H2O nucleation process on MSPs at realistic mesopause conditions and therefore can be used in models to describe the formation of NLCs and countercheck the results with observational cloud properties.

  11. Morphology and formation process of diamond from glassy carbon

    NASA Astrophysics Data System (ADS)

    Miyamoto, Manabu; Akaishi, Minoru; Ohsawa, Toshikazu; Yamaoka, Shinobu; Fukunaga, Osamu

    1989-10-01

    Under static high pressure conditions in the presence of a catalyst metal, a diamond formation process was studied using glassy carbon as a starting source, which was prepared by pyrolysis of furfuryl alcohol resin. Above 1200 °C of the pyrolysis temperature, diamond formation was clearly observed in Ni, Fe, Co and their alloy catalysts. The hydrogen content in the starting carbon has a drastic effect on the diamond formation. The maximum content of the hydrogen in the glassy carbon had to be between 1200 and 2200 ppm to see diamond formation. In the Fe-rich catalyst, a characteristic needle-like diamond was formed due to the texture of the carbon source and the nature of the catalyst.

  12. Information Processing and Formation of Sociology of Science

    NASA Astrophysics Data System (ADS)

    Abe, Koichiro

    Progress and development in technology of information processing has not only effected gradually the fundamental purpose, that is providing exact information for people who need it, but also has offered many numerical data that are optimum to form Sociology of Science. To have more knowledge to understand the construction of the world with Sociology of Science can supply more devices for making scientific policy and can do more good for technology of information processing. This paper reviews these process looking through the process of formation of Sociology of Science.

  13. Investigation of formation mechanisms of chips in orthogonal cutting process

    NASA Astrophysics Data System (ADS)

    Ma, W.

    2012-08-01

    This work investigates the formation mechanisms of chips in orthogonal cutting of mild steel and the transformation conditions between various morphology chips. It is supposed that the modeling material follows the Johnson-Cook constitutive model. In orthogonal cutting process, both the plastic flow and the instability behaviors of chip materials are caused by the plane strain loadings. Therefore, the general instability behaviors of materials in plane strain state are first analyzed with linear perturbation method and a universal instability criterion is established. Based on the analytical results, the formation mechanisms of chips and the transformation conditions between continuous and serrated chips are further studied by instability phase diagram method. The results show that the chip formation strongly depends on the intensity ratios between shear and normal stresses. The ratios of dissipative rates of plastic work done by compression and shear stresses govern the transformation from continuous to serrated chips. These results are verified by the numerical simulations on the orthogonal cutting process.

  14. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue.

  15. Reducing the potential for processing contaminant formation in cereal products

    PubMed Central

    Curtis, Tanya Y.; Postles, Jennifer; Halford, Nigel G.

    2014-01-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  16. Satisfaction Formation Processes in Library Users: Understanding Multisource Effects

    ERIC Educational Resources Information Center

    Shi, Xi; Holahan, Patricia J.; Jurkat, M. Peter

    2004-01-01

    This study explores whether disconfirmation theory can explain satisfaction formation processes in library users. Both library users' needs and expectations are investigated as disconfirmation standards. Overall library user satisfaction is predicted to be a function of two independent sources--satisfaction with the information product received…

  17. Processing biological literature with customizable Web services supporting interoperable formats

    PubMed Central

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk. PMID:25006225

  18. Processing biological literature with customizable Web services supporting interoperable formats.

    PubMed

    Rak, Rafal; Batista-Navarro, Riza Theresa; Carter, Jacob; Rowley, Andrew; Ananiadou, Sophia

    2014-01-01

    Web services have become a popular means of interconnecting solutions for processing a body of scientific literature. This has fuelled research on high-level data exchange formats suitable for a given domain and ensuring the interoperability of Web services. In this article, we focus on the biological domain and consider four interoperability formats, BioC, BioNLP, XMI and RDF, that represent domain-specific and generic representations and include well-established as well as emerging specifications. We use the formats in the context of customizable Web services created in our Web-based, text-mining workbench Argo that features an ever-growing library of elementary analytics and capabilities to build and deploy Web services straight from a convenient graphical user interface. We demonstrate a 2-fold customization of Web services: by building task-specific processing pipelines from a repository of available analytics, and by configuring services to accept and produce a combination of input and output data interchange formats. We provide qualitative evaluation of the formats as well as quantitative evaluation of automatic analytics. The latter was carried out as part of our participation in the fourth edition of the BioCreative challenge. Our analytics built into Web services for recognizing biochemical concepts in BioC collections achieved the highest combined scores out of 10 participating teams. Database URL: http://argo.nactem.ac.uk.

  19. Kinetics of Elementary Processes Relevant to Incipient Soot Formation

    SciTech Connect

    Lin, M C; Heaven, M C

    2008-04-30

    Soot formation and abatement processes are some of the most important and challenging problems in hydrocarbon combustion. The key reactions involved in the formation of polycyclic aromatic hydrocarbons (PAH's), the precursors to soot, remain elusive. Small aromatic species such as C5H5, C6H6 and their derivatives are believed to play a pivotal role in incipient soot formation. The goal of this project is to establish a kinetic database for elementary reactions relevant to soot formation in its incipient stages. In the past year, we have completed by CRDS the kinetics for the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 +O2 reaction and the formation of C10H7O2 in the C10H7 + O2 reaction by directly monitoring C6H5C2H2O2 and C10H7O2 radicals in the visible region; their mechanisms have been elucidated computationally by quantum-chemical calculations. The O + C2H5OH reaction has been studied experimentally and computationally and the OH + HNCN reaction has been investigated by ab initio molecular orbital calculation. In addition, a new pulsed slit molecular beam system has been constructed and tested for spectroscopic studies of aromatic radicals and their derivatives by the cavity ringdown technique (CRDS).

  20. Modified Polar-Format Software for Processing SAR Data

    NASA Technical Reports Server (NTRS)

    Chen, Curtis

    2003-01-01

    HMPF is a computer program that implements a modified polar-format algorithm for processing data from spaceborne synthetic-aperture radar (SAR) systems. Unlike prior polar-format processing algorithms, this algorithm is based on the assumption that the radar signal wavefronts are spherical rather than planar. The algorithm provides for resampling of SAR pulse data from slant range to radial distance from the center of a reference sphere that is nominally the local Earth surface. Then, invoking the projection-slice theorem, the resampled pulse data are Fourier-transformed over radial distance, arranged in the wavenumber domain according to the acquisition geometry, resampled to a Cartesian grid, and inverse-Fourier-transformed. The result of this process is the focused SAR image. HMPF, and perhaps other programs that implement variants of the algorithm, may give better accuracy than do prior algorithms for processing strip-map SAR data from high altitudes and may give better phase preservation relative to prior polar-format algorithms for processing spotlight-mode SAR data.

  1. Controlled formation of multiple Taylor cones in electrospinning process

    NASA Astrophysics Data System (ADS)

    Vaseashta, A.

    2007-02-01

    Electrospinning is a versatile technique for preparation of micro- and nanoscale fibers using polymer solutions. The study presented here describes an observation of multiple Taylor cones in electrospinning processes. Plausible physical models explaining the formation and modeling of multiple Taylor cones in terms of the process and polymer solution parameters are presented. A thorough understanding of the process will lead to the preparation of fibers by design, system on fibers, and e-textiles having applications ranging from biomedical devices, environmental pollution and prevention, to global security and defense.

  2. Formation and Destruction Processes of Carbonaceous Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Contreras C, S.; Ricketts, C. L.; Salama, F.

    2011-05-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. Polycyclic Aromatic Hydrocarbons (PAHs) are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles (IDPs) and in meteoritic samples. Additionally, observational, laboratory, and theoretical point to PAHs, in their neutral and ionized forms, as an important component of the interstellar medium. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors (CH4, C2H4, C2H2) as well as species that include the atoms O, N, and S, have recently been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the first measurements obtained in these experiments. The formation and destruction paths of carbonaceous molecules will be discussed. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules.

  3. The formation of blobs from a pure interchange process

    SciTech Connect

    Zhu, P.; Sovinec, C. R.; Hegna, C. C.

    2015-02-15

    In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitive dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.

  4. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The collisional and dynamical processes in moon and planet formation are discussed. A hydrodynamic code of collision calculations, the orbital element changes due to gravitational scattering, a validation of the mass shifting algorithm, a theory of rotations, and the origin of asteroids are studied. A numerical model of planet growth is discussed and a methodology to evaluate the rate at which megaregolith increases its depth as a function of total accumulate number of impacts on an initially smooth, coherent surface is described.

  5. Thermal effects in cellulose pyrolysis: Relationship to char formation processes

    SciTech Connect

    Milosavljevic, I.; Oja, V.; Suuberg, E.M.

    1996-03-01

    The thermochemistry of cellulose pyrolysis has been studied by a combination of differential scanning calorimetry and thermogravimetric analysis. Additionally, the vapor pressure and heat of vaporization of levoglucosan have been determined by an effusion method. The cellulose pyrolysis has been carried out under inert gas at heating rates from 0.1 to 60 K/min. The main cellulose thermal degradation pathway is endothermic, in the absence of mass transfer limitations that promote char formation. The endothermicity is estimated to be about 538 J/g of volatiles evolved. It is concluded that this endothermicity mainly reflects a latent heat requirement for vaporizing the primary tar decomposition products. Pyrolysis can be driven in the exothermic direction by char-forming processes that compete with tar-forming processes. The formation of char is estimated to be exothermic to the extent of about 2 kJ/g of char formed. Low heating rates, in concert with mass transfer limitations, serve to drive the pyrolysis in this direction. The enthalpy of cellulose pyrolysis is thus seen to be a sensitive function of the pyrolysis conditions. Pyrolysis appears to initially follow a common thermal pathway (in terms of enthalpy required per mass of volatile loss), irrespective of heating rate. Only at some finite level of conversion does the thermal trajectory of the process follow a heating rate dependent path, as significant char formation begins to occur.

  6. Segment formation in Annelids: patterns, processes and evolution.

    PubMed

    Balavoine, Guillaume

    2014-01-01

    The debate on the origin of segmentation is a central question in the study of body plan evolution in metazoans. Annelids are the most conspicuously metameric animals as most of the trunk is formed of identical anatomical units. In this paper, I summarize the various patterns of evolution of the metameric body plan in annelids, showing the remarkable evolvability of this trait, similar to what is also found in arthropods. I then review the different modes of segment formation in the annelid tree, taking into account the various processes taking place in the life histories of these animals, including embryogenesis, post-embryonic development, regeneration and asexual reproduction. As an example of the variations that occur at the cellular and genetic level in annelid segment formation, I discuss the processes of teloblastic growth or posterior addition in key groups in the annelid tree. I propose a comprehensive definition for the teloblasts, stem cells that are responsible for sequential segment addition. There are a diversity of different mechanisms used in annelids to produce segments depending on the species, the developmental time and also the life history processes of the worm. A major goal for the future will be to reconstitute an ancestral process (or several ancestral processes) in the ancestor of the whole clade. This in turn will provide key insights in the current debate on ancestral bilaterian segmentation.

  7. Deciphering records of geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Fournier, Alexandre

    2016-06-01

    Polarity reversals of the geomagnetic field are a major feature of the Earth's dynamo. Questions remain regarding the dynamical processes that give rise to reversals and the properties of the geomagnetic field during a polarity transition. A large number of paleomagnetic reversal records have been acquired during the past 50 years in order to better constrain the structure and geometry of the transitional field. In addition, over the past two decades, numerical dynamo simulations have also provided insights into the reversal mechanism. Yet despite the large paleomagnetic database, controversial interpretations of records of the transitional field persist; they result from two characteristics inherent to all reversals, both of which are detrimental to an ambiguous analysis. On the one hand, the reversal process is rapid and requires adequate temporal resolution. On the other hand, weak field intensities during a reversal can affect the fidelity of magnetic recording in sedimentary records. This paper is aimed at reviewing critically the main reversal features derived from paleomagnetic records and at analyzing some of these features in light of numerical simulations. We discuss in detail the fidelity of the signal extracted from paleomagnetic records and pay special attention to their resolution with respect to the timing and mechanisms involved in the magnetization process. Records from marine sediments dominate the database. They give rise to transitional field models that often lead to overinterpret the data. Consequently, we attempt to separate robust results (and their subsequent interpretations) from those that do not stand on a strong observational footing. Finally, we discuss new avenues that should favor progress to better characterize and understand transitional field behavior.

  8. Deciphering the Rb phosphorylation code

    PubMed Central

    Rubin, Seth M.

    2012-01-01

    Multisite phosphorylation modulates the function of regulatory proteins with complex signaling properties and outputs. The retinoblastoma tumor suppressor protein (Rb) is inactivated by Cyclin-dependent kinase (Cdk) phosphorylation in normal and cancer cell cycles, so understanding the molecular mechanisms and effects of Rb phosphorylation is imperative. Rb functions in diverse processes regulating proliferation, and it has been speculated that multisite phosphorylation might act as a code in which discrete phosphorylations control specific activities. The idea of an Rb phosphorylation code is evaluated here in light of recent studies of Rb structure and function. Rb inactivation is discussed with an emphasis on how multisite phosphorylation changes Rb structure and associations with protein partners. PMID:23218751

  9. Formation characteristics of PCDD and PCDF during pyrolysis processes.

    PubMed

    Weber, R; Sakurai, T

    2001-12-01

    In recent years, pyrolysis processes have become technologies developed to industrial scale and discussed as alternatives to the existing waste combustion technology. However, little information is published regarding PCDD/F formation characteristics during pyrolysis processes. Two common shredder fractions--industrial light shredder (ILS) and refrigerators (REF)--both with high chlorine and copper content were pyrolysed for this pyrolysis study using a pilot plant with a capacity of 100 kg/h. At oxygen concentrations below 2% and temperatures between 430 degrees C and 470 degrees C, considerable amounts of PCDD/F were formed during the pyrolysis. More than 90% of total TEQ was found in the oil fraction (gas phase). The PCDD/PCDF ratio and the homologue pattern differed significantly from those formed during waste incineration. Considering mono- to octachlorinated congeners, up to 400 times more PCDF were formed compared to PCDD. For the investigated pyrolysis conditions, the formation of low chlorinated congeners was highly favoured. The distribution of TEQ within the individual congeners were very similar in all investigated runs. More than 80% of total TEQ stem from 2,3,7,8-substituted T4CDF and P5CDF. The isomer pattern, however, did not show significant differences compared to the common waste incineration pattern suggesting that the basic formation routes are similar.

  10. Elementary radical formation and conversion processes in. gamma. -irradiated polyvinylchloride

    SciTech Connect

    Torikai, A.; Adachi, T.; Fueki, K.

    1981-11-01

    Elementary processes of ..gamma..-irradiated polyvinylchloride (PVC) have been investigated by both electron spin resonance (ESR) and optical absorption measurements. On irradiating PVC film with ..gamma.. rays at -196/sup 0/C, alkyl-type radicals are produced. When the PVC film is warmed to room temperature, the radicals convert to polyenyl type. ..gamma.. irradiation of PVC film containing biphenyl (Ph/sub 2/) or pyrene (Py) at -196/sup 0/C yields the corresponding radical cation. The relative ESR peak heights of the radicals decrease and the G values for the formation of cation radicals increase with increasing additive concentrations. These facts indicate that energy is transferred from the precursor of the radicals to the additive. In the case of PVC film containing Py, the Py cation radical decreases the cyclohexadienyl-type radical from Py is produced by thermal annealing. A possible mechanism for radical formation and conversion is proposed.

  11. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  12. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  13. The process of tholin formation in Titan's upper atmosphere.

    PubMed

    Waite, J H; Young, D T; Cravens, T E; Coates, A J; Crary, F J; Magee, B; Westlake, J

    2007-05-11

    Titan's lower atmosphere has long been known to harbor organic aerosols (tholins) presumed to have been formed from simple molecules, such as methane and nitrogen (CH4 and N2). Up to now, it has been assumed that tholins were formed at altitudes of several hundred kilometers by processes as yet unobserved. Using measurements from a combination of mass/charge and energy/charge spectrometers on the Cassini spacecraft, we have obtained evidence for tholin formation at high altitudes (approximately 1000 kilometers) in Titan's atmosphere. The observed chemical mix strongly implies a series of chemical reactions and physical processes that lead from simple molecules (CH4 and N2) to larger, more complex molecules (80 to 350 daltons) to negatively charged massive molecules (approximately 8000 daltons), which we identify as tholins. That the process involves massive negatively charged molecules and aerosols is completely unexpected.

  14. Processing treatments for mitigating acrylamide formation in sweetpotato French fries.

    PubMed

    Truong, Van-Den; Pascua, Yvette T; Reynolds, Rong; Thompson, Roger L; Palazoğlu, T Koray; Mogol, Burce Atac; Gökmen, Vural

    2014-01-08

    Acrylamide formation in sweetpotato French fries (SPFF) is likely a potential health concern as there is an increasing demand for good-quality fries from carotene-rich sweetpotatoes (SP). This is the first report on acrylamide formation in SPFF as affected by processing methods. Acrylamide levels in SPFF from untreated SP strips fried at 165 °C for 2, 3, and 5 min were 124.9, 255.5, and 452.0 ng/g fresh weight, which were reduced by about 7 times to 16.3, 36.9, and 58.3 ng/g, respectively, when the strips were subjected to processing that included water blanching and soaking in 0.5% sodium acid pyrophosphate before frying. An additional step of strip soaking in 0.4% calcium chloride solution before par-frying increased the calcium content from 0.2 to 0.8 mg/g and decreased the acrylamide levels to 6.3, 17.6, and 35.4 ng/g, respectively. SPFF with acrylamide level of <100 ng/g or several times lower than that of white potato French fries can be obtained by integrating processing treatments commonly used in the food industry.

  15. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  16. Process and apparatus for formation of photovoltaic compounds

    DOEpatents

    Hall, Robert B.; Rocheleau, Richard E.

    1985-01-01

    The invention relates to a process and apparatus for formation and deposition of thin films on a substrate, in a vacuum, by evaporation of the elements to form a Zn.sub.x Cd.sub.1-x S compound having a preselected fixed ratio of cadmium to zinc, characterized by the evaporation of cadmium and zinc at a rate the ratio of which is proportional to the stoichiometric ratio of those elements in the intended compound and evaporation of sulfur at a rate at least twice the combined rates of cadmium and zinc, and at least twice that required by the stoichiometry of the intended compound.

  17. Process and apparatus for formation of photovoltaic compounds

    SciTech Connect

    Hall, R. B.; Rocheleau, R. E.

    1985-07-02

    The invention relates to a process and apparatus for formation and deposition of thin films on a substrate, in a vacuum, by evaporation of the elements to form a Zn /SUB x/ Cd/sub 1//sub -/ /SUB x/ S compound having a preselected fixed ratio of cadmium to zinc, characterized by the evaporation of cadmium and zinc at a rate the ratio of which is proportional to the stoichiometric ratio of those elements in the intended compound and evaporation of sulfur at a rate of at least twice the combined rates of cadmium and zinc, and at least twice that required by the stoichiometry of the intended compound.

  18. Influence of small RNAs on biofilm formation process in bacteria.

    PubMed

    Ghaz-Jahanian, Mohammad Ali; Khodaparastan, Fatemeh; Berenjian, Aydin; Jafarizadeh-Malmiri, Hoda

    2013-11-01

    Small non-coding RNAs (sRNAs) play a significant role in regulation of bacterial physiological behaviors. After sensing any environmental cue such as fluctuation of nutrient concentration, temperature, pH, and osmolarity, these sRNAs interfere to transmit these signals to target regulators and genes. sRNAs have key role in biofilm formation process by base pairing with target mRNAs or interaction with modulating proteins to both positive and negative regulation mechanisms. There are various regulatory systems to characterize the initiation and formation of special bacterial biofilms that are mostly described as two component systems based on sRNAs functions. In this study, regulatory pathways that are important for biofilm formation and genetic responses to environmental stimuli in mature biofilms were evaluated. Some of the regulatory systems that produce common types of biofilms such as curli, PGA, cellulose and polysaccharides such as alginate, colonic acid, Psl and their involved sRNAs functions were also discussed.

  19. DNA multi-ring formation via evaporation process

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Maheshwari, Siddharth; Chang, Hsueh-Chia; Zhu, Y. Elaine

    2007-03-01

    We present a study of multi-ring pattern formation of DNA aggregates during the solvent evaporation of a DNA droplet. When the contact line of a droplet is pinned at a solid substrate, a `coffee ring' pattern is often observed due to the outward flow during evaporation which carries the nonvolatile solute to the edge of the contact line. Here we report a remarkable observation of multiple rings of DNA stain, where stretched DNA molecules connect each ring. We use a high-speed confocal scanning microscope to investigate the kinetics of the multi-ring formation, when DNAs aggregate at the contact-line and cause a stick-slip receding process with periodic depinning of the contact line. A saw-tooth pattern in measured contact angle during droplet evaporation confirms the stick-slip receding dynamics, and a miscible viscous fingering pattern further confirms the stagnation flow responsible for the formation of consecutive rings. We also report a scaling behavior of the multi-ring wavelength with DNA concentration, droplet size and evaporation temperature, consistent with our proposed mechanism.

  20. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    SciTech Connect

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  1. Concept formation: a supportive process for early career nurses.

    PubMed

    Thornley, Tracey; West, Sandra

    2010-09-01

    Individuals come to understand abstract constructs such as that of the 'expert' through the formation of concepts. Time and repeated opportunity for observation to support the generalisation and abstraction of the developing concept are essential if the concept is to form successfully. Development of an effective concept of the 'expert nurse' is critical for early career nurses who are attempting to integrate theory, values and beliefs as they develop their clinical practice. This study explores the use of a concept development framework in a grounded theory study of the 'expert nurse'. Qualitative. Using grounded theory methods for data collection and analysis, semi-structured interviews were conducted with registered nurses. The participants were asked to describe their concept of the 'expert nurse' and to discuss their experience of developing this. Participants reported forming their concept of the 'expert nurse', after multiple opportunities to engage with nurses identified as 'expert'. This identification did not necessarily relate to the designated position of the 'expert nurse' or assigned mentors. When the early career nurse does not successfully form a concept of the 'expert nurse', difficulties in personal and professional development including skill/knowledge development may arise. To underpin development of their clinical practice effectively, early career nurses need to be provided with opportunities that facilitate the purposive formation of their own concept of the 'expert nurse'. Formation of this concept is not well supported by the common practice of assigning mentors. Early career nurses must be provided with the time and the opportunity to individually develop and refine their concept of the 'expert nurse'. To achieve this, strategies including providing opportunities to engage with expert nurses and discussion of the process of concept formation and its place in underpinning personal judgments may be of assistance. © 2010 Blackwell Publishing

  2. Pseudobulge Formation as a Dynamical Rather than a Secular Process

    NASA Astrophysics Data System (ADS)

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella; Madau, Piero

    2013-07-01

    We investigate the formation and evolution of the pseudobulge in "Eris," a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M vir ~= 8 × 1011 M ⊙, a photometric stellar mass M * = 3.2 × 1010 M ⊙, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z ~ 3, re-formed shortly after, and weakened again following a steady gas inflow at z <~ 1. The gradual dissolution of the bar ensued at z ~ 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  3. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    PubMed Central

    Zhou, Junbo; Li, Haiting; Quan, Can

    2013-01-01

    Supercritical fluid extraction and expansion (SFEE) patented technology combines the advantages of both supercritical fluid extraction (SFE) and rapid expansion of supercritical solution (RESS) with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid. PMID:24223031

  5. Formation of nanostructural materials induced by mechanical processings (overview)

    NASA Astrophysics Data System (ADS)

    Gaffet, E.; Abdellaoui, M.; Malhouroux-Gaffet, N.

    1995-02-01

    Mechanical alloying (MA) was firstly developed to synthesize metallic matrix composite by mechanically incorporating preformed oxide and or carbide particles into a metallic matrix. A compaction process is then applied to obtain bulk materials. During MA, powders are repeatedly welded, fractured and rewelded in a high-energy mill leading to an intimate mixing on a nano/micro-scale with the possible formation of far-from-equilibrium phases. The versatility of MA is well-known; high-volume, low-energy mills can be used to commercially produce dispersion-strengthened Al, Ni and other transition metal alloys. An overview of the dynamics of the process is presented to help gain a full appreciation of the industrial potential of the technique for synthesizing materials.

  6. Dynamics in dialysis process for liquid crystalline gel formation.

    PubMed

    Nobe, Masahiro; Dobashi, Toshiaki; Yamamoto, Takao

    2005-08-30

    The processes of gelation and liquid crystalline formation in the dialysis of Curdlan solution have been observed under crossed nicols, and the calcium concentration and pH of the inner solution were traced. The results showed that the gelation and the liquid crystalline formation occurred simultaneously to form liquid crystalline gel (LCG), but the birefringence of the LCG increased even after the gelation, suggesting further ordering of the Curdlan molecules. On the basis of the calcium ion diffusion, a simple theory for the time development of the thickness of the LCG layer was developed. The experimental and theoretical results agree very well until an amorphous gel (AG) ring appears. The whole process was expressed by a master curve by reducing time and distance data for different radius dialysis tubes by those at the final state; a scaling behavior with respect to the dialysis tube radius was found. The experimental analysis for the calcium concentrations and the pH indicates that forming Curdlan LCG with high ordering of Curdlan molecules consists of two steps: the diffusion of calcium ions inducing the ordering of Curdlan molecules and yielding cross-links simultaneously, and the local relaxation of the Curdlan molecules increasing the ordering degree further.

  7. The Stratigraphic Expression of Formative Processes in Channels

    NASA Astrophysics Data System (ADS)

    Hubbard, S. M.; Covault, J. A.; Fildani, A.; Romans, B.

    2014-12-01

    The stratigraphic record of sinuous fluvial and deep sea channel deposits contains a wealth of information about formative sedimentary processes. For fluvial systems, deposits are considered in the context of processes observed in rivers, with the point bar facies model, as an example, representing a well-established linkage between process and product. A direct link has not been achieved in the deep sea as direct monitoring of coarse-grained sediment transport is challenging, exacerbated by the sporadic and infrequent nature of flows. Until a method for direct observation is developed and widely applied, the stratigraphic record of sediment transfer in the deep sea provides a critical perspective and unique insight into processes that shape not only ancient basin margin slopes, but also the present day seascape. Despite the obvious similarity in sinuous planforms of open, single thread fluvial and deep sea channels, outcrop characteristics, validated in many instances by experimental and theoretical work, indicate different processes. Meandering fluvial systems are most commonly represented by deposits that reflect point bar migration, a process whereby bank erosion and bar growth are genetically linked. At the bed scale, cross-stratification reflects bedload sediment transport and deposition by traction sedimentation. Single thread deep sea channel-fill strata are commonly characterized by sandstone-filled channelform bodies, which reflect both traction and suspension sedimentation. Heterolithic thin beds and cross-stratification can be locally preserved above channel bases and against channel margins, but the majority of depositional thickness comprises tabular sandstone turbidites that bi-directionally lap onto channel edges. The stratal record indicates a distinction between phases of channel maintenance (e.g., erosion, sediment bypass) and phases of substantial infilling with coarse-grained sediment - they are not contemporaneous. This is a key departure from

  8. Are amphitheater headed canyons indicative of a particular formative process?

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  9. POX 186: A Dwarf Galaxy in the Process of Formation?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Vacca, William D.

    2002-12-01

    We present deep U-, V-, and I-band images of the ``ultracompact'' blue dwarf galaxy POX 186 obtained with the Planetary Camera 2 of the Hubble Space Telescope. We have also obtained a near-ultraviolet spectrum of the object with the Space Telescope Imaging Spectrograph and combine this with a new ground-based optical spectrum. The images confirm the galaxy to be extremely small, with a maximum extent of only 300 pc, a luminosity of ~10-4L*, and an estimated mass of ~107 Msolar. Its morphology is highly asymmetric, with a tail of material on its western side that may be tidal in origin. The U-band image shows this tail to be part of a stream of material in which stars have recently formed. Most of the star formation in the galaxy is, however, concentrated in a central, compact (d~10-15 pc) star cluster. We estimate this cluster to have a total mass of ~105 Msolar, to be forming stars at a rate of less than 0.05 yr-1, and to have a maximum age of a few million years. The outer regions of the galaxy are significantly redder than the cluster, with V-I colors consistent with a population dominated by K and M stars. From our analysis of the optical spectrum we find the galaxy to have a metallicity Z~=0.06 Zsolar and to contain a significant amount of internal dust [E(B-V)~=0.28] both values agree with previous estimates. While these results rule out earlier speculation that POX 186 is a protogalaxy, its morphology, mass, and active star formation suggest that it represents a recent (within ~108 yr) collision between two clumps of stars of subgalactic size (~100 pc). POX 186 may thus be a very small dwarf galaxy that, dynamically speaking, is still in the process of formation. This interpretation is supported by the fact that it resides in a void, so its morphology cannot be explained as the result of an encounter with a more massive galaxy. Clumps of stars this small may represent the building blocks required by hierarchical models of galaxy formation, and these results

  10. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  11. Chemical and Chemoenzymatic Synthesis of Glycoproteins for Deciphering Functions

    PubMed Central

    Wang, Lai-Xi; Amin, Mohammed N.

    2014-01-01

    Summary Glycoproteins are an important class of biomolecules involved in a number of biological recognition processes. However, natural and recombinant glycoproteins are usually produced as mixtures of glycoforms that differ in the structures of the pendent glycans, which are difficult to separate in pure glycoforms. As a result, synthetic homogeneous glycopeptides and glycoproteins have become indispensable probes for detailed structural and functional studies. A number of elegant chemical and biological strategies have been developed for synthetic construction of tailor-made, full-size glycoproteins to address specific biological problems. In this review, we highlight recent advances in chemical and chemoenzymatic synthesis of homogeneous glycoproteins. Selected examples are given to demonstrate the applications of tailor-made, glycan-defined glycoproteins for deciphering glycosylation functions. PMID:24439206

  12. Twenty years of protein interaction studies for biological function deciphering.

    PubMed

    Legrain, Pierre; Rain, Jean-Christophe

    2014-07-31

    Intensive methodological developments and technology innovation have been devoted to protein-protein interaction studies over 20years. Genetic indirect assays and sophisticated large scale biochemical analyses have jointly contributed to the elucidation of protein-protein interactions, still with a lot of drawbacks despite heavy investment in human resources and technologies. With the most recent developments in mass spectrometry and computational tools for studying protein content of complex samples, the initial goal of deciphering molecular bases of biological functions is now within reach. Here, we described the various steps of this process and gave examples of key milestones in this scientific story line. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

  13. Multi-modes processes for stretched spiral vortex formation

    NASA Astrophysics Data System (ADS)

    Horiuti, Kiyosi

    2004-11-01

    We studied a process for formation of the stretched spiral vortex (Lundgren 1982) in incompressible homogeneous isotropic turbulence. It was shown that multi modes exist for the configuration of alignment between the vorticity vectors along the vortex tube core and the vorticity vector along the sheet which emanates from and wraps around the tube core. A representative one is that generated via a roll-up of the vortex sheet through focusing, in which these two vorticity vectors were parallel. Alternative mechanism for formation of this parallel configuration was through the interaction of two different sheets which were initially placed perpendicular to each other. These two sheets generated a weak circulation and it gradually accumulated to form the tube core region. These two sheets were entrained by the tube core and the spiral sheets emanating from the tube core was formed. The tubes in this mode persisted for a rather long period of time. In another mode, the vorticity vectors along the sheet were in the direction transverse to those along the tube core. It was found that this mode often takes an asymmetric configuration in which the vorticity vectors along one of the sheets were parallel to those along the tube, while the vectors along another sheet were transverse to those along the tube. The configuration in which the vorticity vectors along both sheets were transverse to those along the tube core (Pullin and Lundgren 2001) was rarely found. Intense energy cascade took place with the stretching of the spiral vortex sheets. As the Reynolds number was increased, the frequency of occurrence of the spiral vortex formation increased, and the energy spectrum showed a profile close to the -5/3 law.

  14. The mineralogy and formation processes of Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, Amos

    1992-01-01

    The mineralogical nature of Mars soil is far from being understood, nor are the formation time and weathering processes known. Quantitatively, the two major mineral-forming elements in Mars soil are silicon and iron, constituting 44 and 19 percent of the soils as SiO4 and Fe2O3, respectively. The silicate phases have been studied only briefly, mostly because of their limited spectral fingerprinting in the VIS and NIR. Much attention was given to the iron minerals in the soil, due to their pronounced absorption in the VIS and NIR, making them easily detectable by telescopic observations. The available information on Mars soil mineralogy, mostly obtained by remote sensing, is reviewed, and it is hypothesized that it leads to the suggestion that nanophase short-range-order (amorphous) phases of the silicates and iron oxides abound in the soil.

  15. Modeling of the process of superhydrophobic surface formation

    NASA Astrophysics Data System (ADS)

    Lisovskaya, Galina B.; Chizhik, Sergei A.; Salamianski, Alexander E.; Agabekov, Vladimir E.; Zhavnerko, Gennady K.

    2008-07-01

    Thin composite films of nanoparticles formed by Layer-by-Layer method on a glass substrate from colloid solutions of titanium oxide, zinc oxide or silicon oxide are studied. Atomic Force microscopy, Scanning Electronic Microscopy and contact angle measurements were used for investigation of the surface properties of coatings. Bicomponent TiO2/SiO2 and ZnO/SiO2 films modified by octadecyltrichlorosilane are found to acquire superhydrophobic properties depending on the surface coatings roughness. To simulate superhydrophobic surface formation process, roughness coefficient was calculated by equation of Ventelia-Deragina. Correlation of the effect of film roughness on surface wettability depending on the number of the layers and the size of nanoparticles were demonstrated. The method developed for producing of superhydrophobic materials and can be used for production of self-cleaning surfaces.

  16. Evaluating Key Processes the Formation of Giant Planet Cores

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Thommes, E.; Duncan, M. J.

    2009-09-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments we have included a large number of physical processes that might enhance accretion. In particular, we have included: 1) aerodynamic gas drag, 2) collisional damping between planetesimals, 3) enhanced embryo cross-sections due to their atmospheres, 4) planetesimal fragmentation, and 5) planetesimal driven migration. We find that the gravitational interaction between the embryos and the planetesimals lead to the wholesale redistribution of material - regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near that embryos is cleared of planetesimals before much growth can occur. The remaining 10%, however, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of 100,000 years, the outer embryo can migrate 6 AU and grow to roughly 30 Earth-masses. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth. This work as been directly supported by a grant from the National Science Foundation (Award ID 0708775). HFL is also grateful for funding from NASA's Origins and OPR programs.

  17. Basics of Polar-Format algorithm for processing Synthetic Aperture Radar images.

    SciTech Connect

    Doerry, Armin Walter

    2012-05-01

    The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) image formation using the Polar Format (PFA) processing algorithm. This is meant to be an aid to those tasked to implement real-time image formation using the Polar Format processing algorithm.

  18. Subglacial till formation: Microscale processes within the subglacial shear zone

    NASA Astrophysics Data System (ADS)

    Hart, Jane K.

    2017-08-01

    This was a study of subglacial deformation till genesis from a modern temperate glacier, at Skálafellsjökull, Iceland. Detailed microscale properties of till samples (from Scanning Electron Microscope [SEM] and thin section analysis) were examined from a glacial site with in situ subglacial process monitoring and an exposed subglacial surface in the foreland. Two lithofacies were examined, a grey sandy till derived from the ash and basalt, and a silty reddish brown till derived from oxidized paleosols and/or tephra layers. These also represented a clay-content continuum from low (0.3%) to high (22.3%). The evolution from debris to subglacial till was investigated. This included a reduction in grain-size (21% for grey lithology, 13% reddish brown lithology), and reduction in rounding (RA) (32% for the grey lithology, 26% for the reddish brown lithology), and the quantification and analysis of the different grain erosion/comminution processes in the resultant till. It was shown that the microstructures within a till were dependent on shear strain and glaciological conditions (deformation history). The low clay content tills were dominated by linear structures (lineations and boudins, and anisotropic microfabric) whilst the higher clay content tills were dominated by rotational structures (turbates and plaster, and isotropic microfabric). These results are important in our understanding of the formation of both modern and Quaternary tills and informs our reconstruction of past glacial dynamics.

  19. Microstructural characterization of CIGS formation using different selenization processes

    NASA Astrophysics Data System (ADS)

    Liao, Kuang-Hsiang; Su, Cherng-Yuh; Ding, Yu-Ting; Koo, Horng-Show

    2013-04-01

    Cu(In1-x,Gax)Se2 (CIGS) thin films were prepared by the sputtering of CuInGa precursors followed by chalcogenization via an isothermal (one-zone) selenization and a two-zone selenization. The effects of two selenization processes on the microstructural characteristics of CIGS films were also studied. In addition, we varied the selenization temperature for the two processes between 450 °C and 580 °C to investigate this effect on the microstructural characteristics and compositions of the CIGS films. The results indicated that the CIGS thin films formed using isothermal selenization had dense grain structure whose grains increased in size after an increase in the selenized temperature. However, the Se/(Cu + In + Ga) ratios of the films indicated that Se was distributed non-uniformly in the films, with Se-saturated CIGS present on the front side of the films and incompletely formed CIGS on the back side. In addition, it was noticed that Ga accumulated in large amounts in the films, depending on the chemical affinity between In and Se. Comparatively, the films prepared using two-zone selenization showed Ga accumulation that was only slightly greater than that in the films fabricated by the isothermal selenization. It is likely that the slow selenization of the CIG precursors reduced the extent of Ga accumulation because of the presence of Se in insufficient amounts. However, the presence of Se in insufficient amounts may also format the CIGS thin films with a porous microstructure.

  20. Internal social processes of discipline formation: the case of kinanthropometry.

    PubMed

    Vangrunderbeek, Hans; Claessens, Albrecht L; Delheye, Pascal

    2013-01-01

    In 1972, the term 'kinanthropometry', derived from the Greek words 'kinein' (to move), 'anthropos' (human) and 'metrein' (to measure), was launched in the international, Francophone journal Kinanthropologie by the Canadian William Ross and the Belgians, Marcel Hebbelinck, Bart Van Gheluwe and Marie-Louise Lemmens. The authors defined this neologism as 'the scientific discipline for the study of the size, shape, proportion, scope and composition of the human being and its gross motor functions'. Presenting a theoretical framework for the analysis of the internal social processes of discipline formation - derived from the social history-of-science tradition - this article critically examines whether kinanthropometry was indeed promoted and developed by its community members as a scientific discipline. Therefore, the focus will be on its conceptualisation and positioning within the field of kinanthropology/kinesiology and on its development by a scholarly association, i.e. the International Working Group on Kinanthropometry (IWGK). The strong emphasis of the kinanthropometry community on the standardisation of measurement techniques and its practical and professional application hampered its disciplinary development. Findings of this study could serve as a basis for future 'fundamental' investigations addressing questions of disciplinary development within the field(s) of physical education, kinesiology and sport science(s).

  1. FORMATION PROCESS AND HISTORICAL FUNCTIONS OF OLD AKIHA ROAD

    NASA Astrophysics Data System (ADS)

    Nakane, Yoji; Okuda, Masao; Kani, Yukihiko; Hayakawa, Kiyoshi; Matsui, Tamotsu

    An object of this study is the old Akiha road located along the southern parts of the Akaishi Mountains in Sizuoka Prefecture. The old Akiha road between Hamamatsu city in Enshu and Iida city in Shinshu had been utilized by people for the purposes of making a pilgrimage, megalithic faith, transporting obsidian since the primitive age, practicing the mountaineering asceticism, operating the military activities in the warlike age, transporting salt from coastal area to mountainous area and so on. Through the investigation of literature, site reconnaissance and hearing, the formation process and the historical functions of the old Akiha road were studied, including the situation in medieval times or before. As the results, it was elucidated that the oldest road between two cities had located over the Hyoukoshi Pass, the road routes had the lowering trend from mountainside to riverside, and the historical functions of old Akiha road were the passage for transportation of various kinds of goods and human being, faith and culture.

  2. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes

    PubMed Central

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-01-01

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C–H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma–solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene. PMID:27841288

  3. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes

    NASA Astrophysics Data System (ADS)

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-11-01

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C–H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma–solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.

  4. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes.

    PubMed

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-11-14

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C-H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma-solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.

  5. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  6. Microinclusions in polycrystalline diamonds: insights into processes of diamond formation

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Enzmann, F.; Schwarz, J. O.; Kronz, A.

    2009-04-01

    Polycrystalline diamond aggregates (framesites) contain silicates of eclogitic and peridotitic affinity (e.g. Kurat and Dobosi, 2000). The minerals occur mostly in interstices and are intimately intergrown with the diamonds, indicating contemporaneous crystallization within the diamond stability field in the Earth's mantle. In addition to silicates, rarer phases such as Fe-carbide can sometimes be found in framesites that record unusually low local oxygen fugacity at the time of their formation (Jacob et al., 2004). Furthermore, while most gem-sized diamonds have old, often Archaean formation ages, some polycrystalline diamond aggregates have been shown to form directly preceding the kimberlite eruption (Jacob et al., 2000). Thus, these samples may provide a unique source of information on the nature and timing of small scale processes that lead to diamond formation and complement evidence from gem-sized diamonds. Here, we present a study of micro- and nano-inclusions in diamonds from a polycrystalline diamond aggregate (framesite) from the Orapa Mine (Botswana) and combine results from TEM/FIB analyses with high-resolution computerized micro-tomography (HR-µCT) and electron microprobe analyses to further constrain the formation of diamond in the Earth's mantle. Results In total, 14 microinclusions from fifteen FIB foils were investigated. Micro- and nano-inclusions identified by TEM were smaller than 1µm down to ca. 50nm in size, and are both monomineralic and multi-phase. The cavities are often lath-shaped and oriented parallel to each other; many show lattice dislocations in the surrounding diamond. In addition, inclusions are found along open cracks within the diamond single crystals. Mineral phases in the microinclusions comprise rutile, omphacite and a FeS phase (pyrrhotite). The multiphase inclusions most often consist of cavities that are only partly occupied (less than 50% of the total space), suggesting that the empty space was originally filled by a

  7. The formation process and responsive impacts of single oil droplet in submerged process.

    PubMed

    Li, Haoshuai; Meng, Long; Shen, Tiantian; Zhang, Jianrui; Bao, Mutai; Sun, Peiyan

    2017-07-26

    Simulated column was applied to research forming progress of single oil droplet in submerged process, floating progress, and study effects of environment factors and dispersants on the concentration of oil hydrocarbon in water as well as changing rules of oil droplet sizes. As expected, particular formation mechanism of single oil droplet was presented. When necking down length L is 0.5 time of oil droplet diameter (d) after expansion phase, necking down becomes long and thin; when L=2d, necking down begins to break. In floating progress, the shape changes oval and its motion trail becomes an auger-type. Fluctuation occurs at horizontal direction. Dispersants decrease oil droplet size by its dispersion effect, and cut down effect of Van Der Waals force among oil droplets. More broadly, these findings provide rare empirical evidence expounding formation mechanism of single oil droplet to increasing ability of oil spill response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evidence of biogeochemical processes in iron duricrust formation

    NASA Astrophysics Data System (ADS)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  9. Deciphering Antarctic Intermediate Water Variability during the PLIO-PLEISTOCENE

    NASA Astrophysics Data System (ADS)

    Karas, C.; deMenocal, P. B.; Goldstein, S. L.

    2015-12-01

    Antarctic Intermediate Water (AAIW) plays a fundamental role in the modern global thermohaline circulation because it is the coldwater route from the Southern Hemisphere to the North Atlantic Ocean replacing North Atlantic Deep Water (NADW) (e.g. Oppo and Curry, 2012). Additionally, AAIW is also an important source water in (sub)tropical upwelling regions in the equatorial eastern Pacific and Benguela region (Kubota et al., 2014; Sarmiento et al., 2004). Deciphering AAIW variability through time is critical to understanding its role in global climate change (e.g. Santoso and England, 2004). Our study focuses on reconstructing AAIW during the warm Pliocene (~4 million years ago) and early Pleistocene. This time period marks the transition from warm Pliocene greenhouse conditions towards icehouse conditions, which most likely affected AAIW variability (Karas et al., 2011). To reconstruct changes in AAIW formation, northward extent and possible influence on (sub)tropical upwelling regions, we will use foraminiferal neodymium isotopes (ɛNd) and benthic Mg/Ca from South Atlantic Site 516 and Southwest Pacific Site 1125.

  10. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  11. Rapid gas hydrate formation processes: Will they work?

    DOE PAGES

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  12. Formation and processing of organics in the early solar system.

    PubMed

    Kerridge, J F

    1999-01-01

    Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial

  13. Consideration of formation process for the nuclei on precursor

    NASA Astrophysics Data System (ADS)

    Nagata, J.; Okamoto, M.

    2003-12-01

    The very isotropic microwave background and the Hubble expansion indicate that the universe has evolved from an earlier state of high temperature and density that can be reasonably well described by Friedman-Lemaitre-Robertson-Walker cosmological models. The nuclear evolution of non-degenerate matter expanding from very high temperature was studied in detail for various values of the expansion rate and of the proton-neutron abundance difference and baryon density[1,2,3]. In this calculation, many nuclear reactions were included, and its results suggested important reaction process for the evolution of nuclear abundances. 3He and 4He are very important elements in these nuclear reactions as the primordial nucleosynthesis. Microscopic study for few body system is one main topic in nuclear theoretical physics. In this field, very accurate calculations are available by using the Faddeev equations[4]. Recently, many data for pd, p-3He and d-3He have been obtained including polarized observables. Model calculations for systems including 3He and 4He (for example, d + 3He -> p + 4He) are carried out using the Faddeev equations based on the meson exchange models[4]. This model reproduces well the empirical phase shifts which are determined by so-called phase-shift analyses using all of available scattering data measured at various laboratories around the world[5,6,7]. Constructions of models for the nuclear reactions including 3He and 4He will give important information for calculations of the primordial nucleosynthesis after big-ban. The calculations are carried out until the sum of the abundances at each mass number ceases to change. Various different set of initial conditions for the baryon mass density, the expansion rate and the neutron-proton ratio are used. Dusts kept in precursor asteroid nebular form precursor asteroid, then, formations of planet start [8]. Possible values of parameters in the initial conditions for theoretical calculations will be searched

  14. Heating hydrocarbon containing formations in a checkerboard pattern staged process

    SciTech Connect

    de Rouffignac, Eric Pierre; Pingo-Almada, Monica M; Miller, David Scott

    2009-06-02

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to two or more first sections of the formation with one or more first heaters in two or more of the first sections. The provided heat may mobilize first hydrocarbons in two or more of the first sections. At least some of the mobilized first hydrocarbons are produced through production wells located in two or more second sections of the formation. The first sections and the second sections are arranged in a checkerboard pattern. A portion of at least one of the second sections proximate at least one production well is provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second sections with one or more second heaters in the second sections to further heat the second sections.

  15. Heating hydrocarbon containing formations in a line drive staged process

    DOEpatents

    Miller, David Scott

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  16. Process for selectively plugging subterranean formations with a melamine resin

    SciTech Connect

    Falk, D.O.

    1984-09-25

    Highly permeable zones in a subterranean formation are selectively plugged by injecting a melamine formaldehyde solution via a well into the highly permeable zones. The solution is water soluble and preferentially enters water-containing zones where it reacts to form a resin at a temperature of from about 25/sup 0/ C. to about 120/sup 0/ C. and a pH of from about 7 to 12 and over a period of from about 1 to 4 days. The resulting resin substantially plugs the highly permeable zones in the formation.

  17. Pyruvate Formate Lyase Acts as a Formate Supplier for Metabolic Processes during Anaerobiosis in Staphylococcus aureus▿

    PubMed Central

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-01-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H+, whose regeneration requires respiration. PMID:21169491

  18. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus.

    PubMed

    Leibig, Martina; Liebeke, Manuel; Mader, Diana; Lalk, Michael; Peschel, Andreas; Götz, Friedrich

    2011-02-01

    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.

  19. Challenges of deciphering gastric cancer heterogeneity

    PubMed Central

    Hudler, Petra

    2015-01-01

    Gastric cancer is in decline in most developed countries; however, it still accounts for a notable fraction of global mortality and morbidity related to cancer. High-throughput methods are rapidly changing our view and understanding of the molecular basis of gastric carcinogenesis. Today, it is widely accepted that the molecular complexity and heterogeneity, both inter- and intra-tumour, of gastric adenocarcinomas present significant obstacles in elucidating specific biomarkers for early detection of the disease. Although genome-wide sequencing and gene expression studies have revealed the intricate nature of the molecular changes that occur in tumour landscapes, the collected data and results are complex and sometimes contradictory. Several aberrant molecules have already been tested in clinical trials, although their diagnostic and prognostic utilities have not been confirmed thus far. The gold standard for the detection of sporadic gastric cancer is still the gastric endoscopy, which is considered invasive. In addition, genome-wide association studies have confirmed that genetic variations are important contributors to increased cancer risk and could participate in the initiation of malignant transformation. This hypothesis could in part explain the late onset of sporadic gastric cancers. The elaborate interplay of polymorphic low penetrance genes and lifestyle and environmental risk factors requires additional research to decipher their relative impacts on tumorigenesis. The purpose of this article is to present details of the molecular heterogeneity of sporadic gastric cancers at the DNA, RNA, and proteome levels and to discuss issues relevant to the translation of basic research data to clinically valuable tools. The focus of this work is the identification of relevant molecular changes that could be detected non-invasively. PMID:26457012

  20. Deciphering Ecohydrological Interactions Using Stable Isotopes

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Evaristo, J. A.; Jasechko, S.

    2014-12-01

    Deciphering the nature of ecohydrological interconnections and scaling that knowledge gained at single points to watersheds is challenging. One tool that that has proved useful in this regard is stable isotope tracing. Single isotope studies have been used recently to quantify landuse change effects on streamflow source apportionment and ecological effects on transit time distributions of water at the catchment scale. However, most work to date has assumed that plant transpiration, groundwater recharge and streamflow are all sourced or mediated by the same well mixed reservoir—the soil. Recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the combined fluxes of groundwater recharge and streamflow. However, these findings have not yet been widely tested. Here we assemble the first dual isotope database for δ2H and δ18O extracted from 47 globally-distributed stable isotopic datasets. We use these data to test the ecohydrological separation hypothesis. We combine this dual isotope dataset with global precipitation, streamwater, groundwater and soil water datasets. Our results show that precipitation, streamwater and groundwater from the 47 sites plot approximately along the δ2H/δ18O slope of eight, suggesting that local precipitation inputs supply streamwater and groundwater. Soil waters extracted from the 47 studies plot below the regression of local streamwater and groundwater with a slope of 6.6±0.05 ‰. Local plant xylem waters from our matched dataset plot on a slope 6.6±0.07 ‰ consistent with local soil waters. The tight association of soil water slopes and not that of local groundwater or streamflow suggests that plants use soil water that does not itself contribute to groundwater recharge or stream water. This ubiquity of subsurface water compartmentalization is surprising and has important implications for how we

  1. Defining Sustainable Universities Following Public Opinion Formation Process

    ERIC Educational Resources Information Center

    Zaptcioglu Celikdemir, Deniz; Gunay, Gonca; Katrinli, Alev; Penbek Alpbaz, Sebnem

    2017-01-01

    Purpose: The purpose of this paper is to define the sustainable university in Turkey, by considering perspectives of various stakeholders such as experts, intellectual, public, political parties and media using public opinion formation analysis. The paper aims to re-define the "sustainable university" with all dimensions including…

  2. Well completion process for formations with unconsolidated sands

    DOEpatents

    Davies, David K.; Mondragon, III, Julius J.; Hara, Philip Scott

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  3. Core Formation Under Dynamic Conditions: Physical Processes and Geochemical Signatures

    NASA Technical Reports Server (NTRS)

    Rushmer, T.; Gaetani, G.; Jones, J. H.; Sparks, J.

    2001-01-01

    We have experimentally investigated liquid metal segregation from a solid silicate matrix under conditions of applied stress. Liquid moves in fractures and formation of fayalitic olivine from orthopyroxene by migrating Fe-Ni-S-O liquids is observed. Additional information is contained in the original extended abstract.

  4. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  5. BATHYMETRIC IRREGULARITIES, JET FORMATION, AND SUBSEQUENT MIXING PROCESSES

    EPA Science Inventory

    It is well known that bathymetric contours influence and steer currents and that irregularities in bathymetry contribute to the formation of aquatic non-buoyant jets and buoyant plumes. For example, bathymetric irregularities can channel flow through canyons or accelerate flow ov...

  6. Defining Sustainable Universities Following Public Opinion Formation Process

    ERIC Educational Resources Information Center

    Zaptcioglu Celikdemir, Deniz; Gunay, Gonca; Katrinli, Alev; Penbek Alpbaz, Sebnem

    2017-01-01

    Purpose: The purpose of this paper is to define the sustainable university in Turkey, by considering perspectives of various stakeholders such as experts, intellectual, public, political parties and media using public opinion formation analysis. The paper aims to re-define the "sustainable university" with all dimensions including…

  7. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  8. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  9. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  10. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, R.I.; Jung, S.; Mindock, C.A.

    1998-12-22

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures. 8 figs.

  11. Process for biological material carbon-carbon bond formation

    DOEpatents

    Hollingsworth, Rawle I.; Jung, Seunho; Mindock, Carol A.

    1998-01-01

    A process for providing vicinal dimethyl long chain between alkyl groups of organic compounds is described. The process uses intact or disrupted cells of various species of bacteria, particularly Thermoanaerobacter sp., Sarcina sp. and Butyrivibrio sp. The process can be conducted in an aqueous reaction mixture at room temperatures.

  12. Tool and process for stimulating a subterranean formation

    SciTech Connect

    Trost, S.A.

    1989-01-17

    A tool is described for stimulating a subterranean formation comprising, an elongate propellant stack constructed from propellant material modules that are formed from a combination of propellant materials such that the propellant module combination will have a desired burn rate, propellant modules of a center portion to have identical convex and concave surfaces as the respective top and bottom faces thereof with end propellant modules to form the propellant stack ends each having an end face to fit within or over one of the center portion propellant modules convex or concave faces; adhesive means containing grains of a propellant or explosive mixed therein to provide a burn rate that is approximately that of the propellant stack for bonding the selected propellant modules together, the adhesive means to burn with the propellant stack; means for supporting and lowering the propellant stack into a well bore to a subterranean formation to be stimulated; and means for igniting the propellant stack.

  13. Deciphering the Minimal Algorithm for Development and Information-genesis

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Tang, Chao; Li, Hao

    During development, cells with identical genomes acquires different fates in a highly organized manner. In order to decipher the principles underlining development, we used C.elegans as the model organism. Based on a large set of microscopy imaging, we first constructed a ``standard worm'' in silico: from the single zygotic cell to about 500 cell stage, the lineage, position, cell-cell contact and gene expression dynamics are quantified for each cell in order to investigate principles underlining these intensive data. Next, we reverse-engineered the possible gene-gene/cell-cell interaction rules that are capable of running a dynamic model recapitulating the early fate decisions during C.elegans development. we further formulized the C.elegans embryogenesis in the language of information genesis. Analysis towards data and model uncovered the global landscape of development in the cell fate space, suggested possible gene regulatory architectures and cell signaling processes, revealed diversity and robustness as the essential trade-offs in development, and demonstrated general strategies in building multicellular organisms.

  14. Formation of porous metal oxides in the anodization process.

    PubMed

    Sample, C; Golovin, A A

    2006-10-01

    A theory of the formation of nanoscale porous structures in oxides of metals grown by anodization is developed. It is shown that a growing oxide layer can become unstable which yields the formation of a spatially irregular array of pores. The instability is shown to result from a nonlinear dependence of electrochemical kinetics at the metal-oxide and oxide-electrolyte interfaces on the overpotential which is governed by the Butler-Volmer relation. The conditions for the instability of the oxide layer are found. The dependence of the oxide conductivity on the electric field is taken into account and is shown to have a destabilizing effect. A weakly nonlinear analysis is performed and it shows that the system evolution near the instability threshold is described by the Kuramoto-Sivashinsky equation. Farther from threshold, in the long-wave approximation, a system of strongly nonlinear equations is derived and solved numerically; this system describes the formation of deep irregular pores. In a particular case, a self-similar solution describing the propagation of a pore with a paraboloidal shape is found.

  15. The detached haze layer in Titan's mesosphere: The formation process

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Vuitton, V.

    2008-09-01

    , which is of the right order of magnitude to explain the detached layer. This hypothesis requires that additional material condense on the meteoritic smoke particles. Unfortunately, the main photochemical products on Titan (HCN, C2H2, C2H6, etc.) do not condense at the temperature and pressure in the detached layer. The saturation mixing ratio for species present in Titan's mesosphere are shown in Fig. 1. The vapour pressure of each species is calculated assuming the HASI vertical temperature profile [4]. The species that come closest to condensing are H2O and C6N2. There is some water vapor present from ablation of icy micrometeorites in Titan's atmosphere, but the mole fraction corresponding to saturation vapor pressure of water at 520 km is 1.6 × 10-2, many orders of magnitude larger than expected [11]. Similarly, the mole fraction of C6N2 at 520 km is expected to be much smaller than the saturation value of 5 × 10-6 [12]. Hence, the growth of particles through condensation cannot explain the detached haze layer. Advection processes in the atmosphere have been related to the formation of the Voyager detached haze layer [13]. In this picture, meridional winds transport the haze particles polewards, constraining them at a specific altitude region, before depositing them at the pole, while the upwelling part of the circulation transports large particles from the main haze layer upwards, enhancing in this way the opacity of the detached haze layer. Yet, the meridional winds are estimated to be υ~3 cm s-1 in the region of the stratospheric zonal jet near 0.1 mbar based on CIRS measurements [14]. Assuming this value to hold in the region of the detached haze layer implies a horizontal motion characteristic time of H~R/v = 108 s. A 40 nm particle has a settling velocity of υ S~1 cm s-1 at 500 km, and the characteristic time to fall 20 km is only 2 × 106 s implying that the particles fall out of the region before they are transported to the pole. Thus, the dynamical

  16. [Marcov processes and neuronal engram formation--a model].

    PubMed

    Mager, P P

    1975-01-01

    The multivariate partial autocorrelation bases on the noncircular serial correlation matrices and is a problem of eigen values. Autoregressive oscillations of a time series and its order can be tested. MARCOV processes are 1st order processes, they are found during the conversion of short into long time memory (conditioned avoidance response).

  17. Text Processing and Formatting: Composure, Composition and Eros.

    ERIC Educational Resources Information Center

    Blair, John C., Jr.

    1984-01-01

    Review of computer software offering text editing/processing capabilities highlights work habits, elements of computer style and composition, buffers, the CRT, line- and screen-oriented text editors, video attributes, "swapping,""cache" memory, "disk emulators," text editing versus text processing, and UNIX operating…

  18. Vetting and Letting: Cohabiting Stepfamily Formation Processes in Low-Income Black Families

    PubMed Central

    Reid, Megan; Golub, Andrew

    2015-01-01

    The authors examined cohabiting union formation processes by analyzing in-depth interview data collected from 30 individuals in cohabiting relationships: 15 low-income Black mothers of adolescents and their partners. Prior research suggests that cohabiting union formation is a gradual, nondeliberative process. In contrast, most couples in this study described a gradual but highly deliberative process. Mothers focused primarily on vetting their partners to ensure child well-being and less on when and how their partners officially came to live with them, a process the authors call vetting and letting. Mothers delineated 4 strategies to ensure their child’s well-being when vetting their partners, and their partners reported that they understood the importance of participating in this process. The authors argue that vetting and letting is a child-centered family formation process, not a partner-centered union formation process, and that cohabiting union processes may vary substantially by subpopulation. PMID:26556922

  19. Shewanella putrefaciens Adhesion and Biofilm Formation on Food Processing Surfaces

    PubMed Central

    Bagge, Dorthe; Hjelm, Mette; Johansen, Charlotte; Huber, Ingrid; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces. PMID:11319118

  20. Core Formation Process and Light Elements in the Planetary Core

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Sakairi, T.; Watanabe, K.; Kamada, S.; Sakamaki, T.; Hirao, N.

    2015-12-01

    Si, O, and S are major candidates for light elements in the planetary core. In the early stage of the planetary formation, the core formation started by percolation of the metallic liquid though silicate matrix because Fe-S-O and Fe-S-Si eutectic temperatures are significantly lower than the solidus of the silicates. Therefore, in the early stage of accretion of the planets, the eutectic liquid with S enrichment was formed and separated into the core by percolation. The major light element in the core at this stage will be sulfur. The internal pressure and temperature increased with the growth of the planets, and the metal component depleted in S was molten. The metallic melt contained both Si and O at high pressure in the deep magma ocean in the later stage. Thus, the core contains S, Si, and O in this stage of core formation. Partitioning experiments between solid and liquid metals indicate that S is partitioned into the liquid metal, whereas O is weakly into the liquid. Partitioning of Si changes with the metallic iron phases, i.e., fcc iron-alloy coexisting with the metallic liquid below 30 GPa is depleted in Si. Whereas hcp-Fe alloy above 30 GPa coexisting with the liquid favors Si. This contrast of Si partitioning provides remarkable difference in compositions of the solid inner core and liquid outer core among different terrestrial planets. Our melting experiments of the Fe-S-Si and Fe-O-S systems at high pressure indicate the core-adiabats in small planets, Mercury and Mars, are greater than the slope of the solidus and liquidus curves of these systems. Thus, in these planets, the core crystallized at the top of the liquid core and 'snowing core' formation occurred during crystallization. The solid inner core is depleted in both Si and S whereas the liquid outer core is relatively enriched in Si and S in these planets. On the other hand, the core adiabats in large planets, Earth and Venus, are smaller than the solidus and liquidus curves of the systems. The

  1. Formation processes and time scales for meteorite parent bodies

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1988-01-01

    The transition from small particles suspended in the solar nebula to the planetesimals (asteroids) that became the parent bodies of meteorites is examined. Planetesimals probably grew by coagulation of grain aggregates that collided due to different rates of settling and drag-induced orbital decay. Their growth was accompanied by radial transport of solids, possibly sufficient to deplete the primordial mass in the asteroid zone, but with relatively little mixing. The formation of asteroid-sized planetesimals was probably rapid, on a time scale less than 1 Myr.

  2. Process for recovering hydrocarbons from a hydrocarbon-bearing formation

    SciTech Connect

    Alston, R.B.; Braden, W.B.; Flournoy, K.H.

    1980-03-11

    A method is described for transporting heavy crude oil through a pipeline which involves introducing into a pipeline or well-bore with the viscous hydrocarbons an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) coupling agent whereby there is spontaneously formed a low viscosity, salt tolerant, oil-in-water emulsion. Also disclosed is a method of recovery of hydrocarbons from a hydrocarbon bearing formation employing an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) a coupling agent.

  3. Transition and separation process in brine channels formation

    SciTech Connect

    Berti, Alessia; Bochicchio, Ivana; Fabrizio, Mauro

    2016-02-15

    In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.

  4. Star formation and cosmic massive black hole formation, a universal process organized by angular momenta

    SciTech Connect

    Colgate, S. A.

    2004-01-01

    It is suggested that star formation is organized following the same principles as we have applied in a recent explanation of galaxy and massive black hole formation. In this scenario angular momentum is randomly distributed by tidal torquing among condensations, Lyman-{alpha} clouds or cores for star formation during the initial non-linear phase of collapse. This angular momentum is characterized by the parameter, {lambda}, the ratio of the angular momentum of the cloud to that of a Keplerian orbit with the same central mass and radius. This parameter is calculated in very many simulations of structure formation of the universe as well as core formation and appears to be universal and independent of any scale. The specific angular momentum during the collapse of every cloud is locally conserved and universally produces a near flat rotation curve M{sub formation of a flat rotation curve (protostellar) disk of mass M{sub dsk} {sup -}30 M{sub o} of radius R{sub dsk} {approx_equal} 1100 AU or 5.4 x 10{sup -3} pc. In such a disk {Sigma} {proportional_to} 1/R and reaches the RVI condition at R{sub crit} {approx_equal} 40 AU where M{sub

  5. Effect of channel plane form on formation process of Sandbars

    NASA Astrophysics Data System (ADS)

    Takahashi, Gen; Yasuda, Hiroyasu

    Almost no explanation is given about development process of sand bar in non-straighten channel because the phenomenon of sand bar has been investigated using straighten channel. This study conducted a numerical experiment of development process of sand bar in a meandering channel and a figure-of-eight(gourd) as fixed wall. The results shows that the development process clearly differs in channel of straighten, meandering and figure-of-eight(gourd). The result of figure-of-eight(gourd) doesn't occur mode degradation and keep multiple bars.

  6. Stellar Dynamical Processes in Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Eyer, L.

    2009-01-01

    We study how high precision astrometric measurements by SIM and GAIA of stars involved in dynamical ejection events from star clusters can constrain theories of massive star and star cluster formation. We focus on the Orion Nebula Cluster (ONC). First, we investigate the scientific potential associated with an accurate measurement of the distance and proper motion of Theta 1 Ori C, which is the most massive star in the cluster and was recently involved (about 4000 years ago) in the ejection of a B star: the Becklin-Neugebauer (BN) star. The motion of the BN star has taken it close to a massive protostar, known as source I, where it appears to have influenced the accretion and outflow activity, most likely by a tidal interaction with the accretion disk. An accurate proper motion measurement of Theta 1 Ori C will constrain BN's initial motion, allowing us to search for deflections caused by the gravitational potential of the massive protostar. Second, we search the Hipparcos catalog for candidate runaway stars, i.e. that have been dynamically ejected from the cluster over the course of the last several Myr. SIM and GAIA observations of these stars will be needed to confirm their origin from the ONC. The results of this study will constrain the star cluster formation timescale and the statistics of the population of ejected stars. JCT acknowledges support from from NSF CAREER grant AST-0645412 and a grant from NASA for SIM Science Studies.

  7. Formation of chondrules and CAIs by nebular processes

    NASA Technical Reports Server (NTRS)

    Palme, H.

    1994-01-01

    Chondrules are essential components of most chondritic meteorites. Carbonaceous chondrites, with the exception of CI chondrites, contain 30-50% chondrules, ordinary and enstatite chondrites even more. A better understanding of chondrule formation will therefore lead to an improved understanding of the origin of meteorites. Most studies of chondrules are, however, concerned with their texture and mineralogy. As chondrules, by definition, passed through a molten stage, their present texture and mineralogy can only provide information on conditions of crystallization from a melt and the subsequent solid-state cooling history. Information concerning chondrule formation is contained in their chemical and isotopic composition. The two most important observations relevant to the chemistry of the chondrules are their generally low Fe content and the large compositional variability of chondrules from a single meteorite, reflected in major variations of Mg/Si ratios, of Al and other refractory element abundances, total Fe, metal (Fe, Ni), and sulfide. This large compositional variability is surprising considering the uniform and nearly solar composition of bulk chondrites, which, in some cases, consist of more than 90% of chondrules.

  8. Formative Assessment: A Systematic and Artistic Process of Instruction for Supporting School and Lifelong Learning

    ERIC Educational Resources Information Center

    Clark, Ian

    2012-01-01

    Formative assessment is a potentially powerful instructional process because the practice of sharing assessment information that supports learning is embedded into the instructional process by design. If the potential of formative assessment is to be realized, it must transform from a collection of abstract theories and research methodologies and…

  9. Two contemporaneous processes of volcanic ash formation at Stromboli volcano, Italy

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Andronico, Daniele; Taddeucci, Jacopo

    2014-05-01

    Explosive volcanic eruptions involve the fragmentation and ejection of pyroclasts. Volcanic ash is the smallest grain size fraction and can be generated by a plethora of processes inside the conduit, during the rise of the gas-particle mixture in the conduit or the eruption column as well as during the (sub)-horizontal transport before final deposition. Volcanic deposits are commonly used to infer for fragmentation and emplacement processes. Different fragmentation modes, eruption styles and emplacement dynamics can be deciphered. Additionally, the characterisation of clasts of different types is used to infer for the ratio of fresh magma to older/altered lava or significantly older country rocks. During a 10 days observation period in May 2013, The North-East Crater of Stromboli volcano (Italy) showed weak explosive eruptions every 10-30 minutes that emitted incandescent blocks and lapilli to heights of up to 200 m above the crater as well as large amounts of black scoriaceous ash. The larger clasts were landing in the vicinity of the crater and continued rolling down the Sciara del Fuoco. Immediately upon impact, light brown ash was lofted by the rolling blocks and dispersed by the wind. These two kinds of primary volcanic ash were deposited together. The black ash is more angular and generally exhibits a higher porosity (magma with the highest porosity) whereas the brown ash (abrasion of rolling lapilli and bombs) can be significantly denser. This quasi-contemporaneous generation of fresh volcanic ash by two distinctly different processes has to be taken into consideration when discerning the ratio of juvenile/lithic components at explosive volcanoes.

  10. Formation of hypernuclei in evaporation and fission processes

    NASA Astrophysics Data System (ADS)

    Botvina, A. S.; Buyukcizmeci, N.; Ergun, A.; Ogul, R.; Bleicher, M.; Pochodzalla, J.

    2016-11-01

    There are excellent opportunities to produce excited heavy hyperresidues in relativistic hadron and peripheral heavy-ion collisions. We investigate the disintegration of such residues into hypernuclei via evaporation of baryons and light clusters and their fission. Previously these processes were well known for normal nuclei as the decay channels at low excitation energies. We have generalized these models for the case of hypermatter. In this way we make extension of nuclear reaction studies at low temperature into the strange sector. We demonstrate how the new decay channels can be integrated in the whole disintegration process. Their importance for mass and isotope distributions of produced hyperfragments is emphasized. New and exotic isotopes obtained within these processes may provide a unique opportunity for investigating hyperon interaction in nuclear matter.

  11. Chondritic Meteorites: Nebular and Parent-Body Formation Process

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Chondritic meteorites are the products of condensation, agglomeration and accretion of material in the solar nebula; these objects are the best sources of information regarding processes occurring during the early history of the solar system. We obtain large amounts of high-quality chemical and petrographic data and use them to infer chemical fractionation processes that occurred in the solar nebula and on meteorite parent bodies during thermal metamorphism, shock metamorphism and aqueous alteration. We compare diverse groups of chondrites and model their different properties in terms of processes that differed at different nebular locations or on different parent-bodies. In order to expand our set of geochemically important elements (particularly Si, C, P and S) and to distinguish the different oxidation states of Fe, Greg Kallemeyn spent three months (1 Sept. - 30 Nov. 1995) at the Smithsonian Institution to learn Eugene Jarosewich's wet chemical techniques. Key specimens from the recently established CK, CR and R chondrite groups were analyzed.

  12. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  13. Modified Process For Formation Of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1996-01-01

    Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.

  14. Modified Process For Formation Of Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1996-01-01

    Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.

  15. Thermoplastic processing of proteins for film formation--a review.

    PubMed

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability.

  16. Deciphering the geochemical and mineralogical changes of a Miocene sedimentary basin infill, Mendoza Province, Argentina

    NASA Astrophysics Data System (ADS)

    Hunger, Gabriel; Moscariello, Andrea; Ventra, Dario

    2017-04-01

    Sediments deposited in foreland basins are accurate recorders of processes acting at different temporal and spatial scales during orogenic uplift. The effects of allogenic forcing on foreland sedimentation are well known at basin-scale, but uncertainties remain in deciphering and interpreting them at higher resolution, and in differentiating them from the sedimentary changes due to autogenic processes. We present observations on the continental sedimentology and stratigraphy of the Central Argentinian Foreland. The majority of the basin infill is comprised by the Mariño Fm. and La Pilona Fm., which were deposited during the Miocene and cover almost 2000 m of stratigraphy. The large scale stratigraphy trend leads to interpret the entire alluvial system as a large fluvial fan that prograded over the proximal margin of the foreland basin. The basin infill records a continuous sediment supply from the rising Principal Cordillera and the first stages of the uplift of the Frontal Cordillera. The interaction of different allogenic forcing factors, but also autogenic processes, is recorded in the compositional changes of the sedimentary infill. This project aims to provide a detailed reconstruction of paleoenvironmental dynamics and unravel the relative roles of climate and tectonics, using a high-resolution, integrated compositional and sedimentological analysis of the Mariño Formation and the basal part of the La Pilona Formation. The followed approach embodies the use of automated QEMSCAN technology, geochemistry, heavy-minerals and radiogenic isotope analysis. Along 1500 m of stratigraphy we recognize compositional variations related to the evolution of the basin infill due to, at least, 5 phases of non-steady state conditions. Principal component analysis done with the major elements, main mineral phases and heavy minerals allow us to recognize the importance of the weathering and diagenesis in the total compositional variability. The A-CN-K ternary diagram displays

  17. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  18. Direct formation of ferrite films in wet process

    NASA Astrophysics Data System (ADS)

    Abe, M.; Tanno, Y.; Tamaura, Y.

    1985-04-01

    We have prepared a polycrystalline Co-ferrite film by the electroless ferrite-plating technique of our invention [J. Appl. Phys. 55, 2614 (1984)] in an aqueous solution at 70 °C on substrates of organic compounds (polyethylene terephthalate, polymethyl methacrylate, polycarbonate, Teflon), a stainless steel, and a polyester fiber. We used no intermediate layer, which we needed previously to enhance the adhesion of the ferrite film to the surface. By exposing the organic substrates to an rf-excited air plasma, the wettability of the surface improved, which enhanced the adhesion of the film to the substrate. Here we have measured the adhesion by a cross-cut test. The plasma forms hydrophilic groups such as -OH and -COOH, which improve the wettability. The OH group adsorbs the metal ions in the reaction solution, initiating the ferrite film formation. The glass shows a strong adhesion to the film even when it is not exposed to the plasma, because the glass has the OH group on the surface inherently. The stainless steel does not enhance the adhesion by the plasma treatment because the plasma forms no OH group on the metal surface. The adhesion power higher than ˜10 kg/cm2 has been obtained between the Co-ferrite film and the glass (not plasma treated), the polyethylene terephthalate (plasma treated) and the Teflon (plasma treated).

  19. Radical formation, chemical processing, and explosion of interstellar grains

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1976-01-01

    The ultraviolet radiation in interstellar space is shown to create a sufficient steady-state density of free radicals in the grain mantle material consisting of oxygen, carbon, nitrogen, and hydrogen to satisfy the critical condition for initiation of chain reactions. The criterion for minimum critical particle size for maintaining the chain reaction is of the order of the larger grain sizes in a distribution satisfying the average extinction and polarization measures. The triggering of the explosion of interstellar grains leading to the ejection of complex interstellar molecules is shown to be most probable where the grains are largest and where radiation is suddenly introduced; i.e., in regions of new star formation. Similar conditions prevail at the boundaries between very dark clouds and H II regions. When the energy released by the chemical activity of the free radicals is inadequate to explode the grain, the resulting mantle material must consist of extremely large organic molecules which are much more resistant to the hostile environment of H II regions than the classical dirty-ice mantles made up of water, methane, and ammonia.

  20. Signal Processing, Pattern Formation and Adaptation in Neural Oscillators

    DTIC Science & Technology

    2016-11-29

    Hoppensteadt and Izhikevich (1996, 1997) showed that a weakly connected network of neural oscillators of identical natural frequencies can memorize...from the intrinsic dynamics of an emergent oscillation (Whittington et al., 2000), and the missing pulse rhythms used here enabled us to dissociate ...musical beat processing. The Neurosciences and Music III: Disorders and Plasticity. Annals of the New York Academy of Sciences, 1169, 89-92. Grahn

  1. Formation and Degradation of Beta-casomorphins in Dairy Processing.

    PubMed

    Nguyen, Duc Doan; Johnson, Stuart Keith; Busetti, Francesco; Solah, Vicky Ann

    2015-01-01

    Milk proteins including casein are sources of peptides with bioactivity. One of these peptides is beta-casomorphin (BCM) which belongs to a group of opioid peptides formed from β-casein variants. Beta-casomorphin 7 (BCM7) has been demonstrated to be enzymatically released from the A1 or B β-casein variant. Epidemiological evidence suggests the peptide BCM 7 is a risk factor for development of human diseases, including increased risk of type 1 diabetes and cardiovascular diseases but this has not been thoroughly substantiated by research studies. High performance liquid chromatography coupled to UV-Vis and mass spectrometry detection as well as enzyme-linked immunosorbent assay (ELISA) has been used to analyze BCMs in dairy products. BCMs have been detected in raw cow's milk and human milk and a variety of commercial cheeses, but their presence has yet to be confirmed in commercial yoghurts. The finding that BCMs are present in cheese suggests they could also form in yoghurt, but be degraded during yoghurt processing. Whether BCMs do form in yoghurt and the amount of BCM forming or degrading at different processing steps needs further investigation and possibly will depend on the heat treatment and fermentation process used, but it remains an intriguing unknown.

  2. Process-induced formation of imidazoles in selected foods.

    PubMed

    Mottier, Pascal; Mujahid, Claudia; Tarres, Adrienne; Bessaire, Thomas; Stadler, Richard H

    2017-08-01

    The presence of 4-methylimidazole (4-MEI), 2-methylimidazole (2-MEI) and 2-acetyl-4-tetrahydroxybutylimidazole (THI) in some foods may result from the usage of caramel colorants E150c and E150d as food additives. This study demonstrates that alkylimidazoles are also byproducts formed from natural constituents in foods during thermal processes. A range of heat-processed foods that are known not to contain caramel colorants were analyzed by isotope dilution LC-MS/MS to determine the contamination levels. Highest 4-MEI concentrations (up to 466µg/kg) were observed in roasted barley, roasted malt and cocoa powders, with the concomitant presence of 2-MEI and/or THI in some cases, albeit at significantly lower levels. Low amounts of 4-MEI (<20µg/kg) were also detected in cereal-based foods such as breakfast cereals and bread toasted to a brown color (medium toasted). The occurrence of 4-MEI in certain processed foods is therefore not a reliable indicator of the presence of the additives E150c or E150d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Formation and Degradation of Beta-casomorphins in Dairy Processing

    PubMed Central

    Nguyen, Duc Doan; Johnson, Stuart Keith; Busetti, Francesco; Solah, Vicky Ann

    2015-01-01

    Milk proteins including casein are sources of peptides with bioactivity. One of these peptides is beta-casomorphin (BCM) which belongs to a group of opioid peptides formed from β-casein variants. Beta-casomorphin 7 (BCM7) has been demonstrated to be enzymatically released from the A1 or B β-casein variant. Epidemiological evidence suggests the peptide BCM 7 is a risk factor for development of human diseases, including increased risk of type 1 diabetes and cardiovascular diseases but this has not been thoroughly substantiated by research studies. High performance liquid chromatography coupled to UV-Vis and mass spectrometry detection as well as enzyme–linked immunosorbent assay (ELISA) has been used to analyze BCMs in dairy products. BCMs have been detected in raw cow's milk and human milk and a variety of commercial cheeses, but their presence has yet to be confirmed in commercial yoghurts. The finding that BCMs are present in cheese suggests they could also form in yoghurt, but be degraded during yoghurt processing. Whether BCMs do form in yoghurt and the amount of BCM forming or degrading at different processing steps needs further investigation and possibly will depend on the heat treatment and fermentation process used, but it remains an intriguing unknown. PMID:25077377

  4. Stochastic processes in light-assisted nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Liu, Yang; Nomura, Wataru; Yatsui, Takashi; Aida, Masaki; Kish, Laszlo B.; Ohtsu, Motoichi

    2012-05-01

    Recently, light-assisted nanofabrication have been introduced, such as the synthesis of quantum dots using photo-induced desorption that yields reduced size fluctuations or metal sputtering under light illumination resulting in self-organized, nanoparticle chains. The physical mechanisms have originally been attributed to material desorption or plasmon resonance effects. However, significant stochastic phenomena are also present that have not been explained yet. We introduce stochastic models taking account of the light-assisted processes that reproduce phenomenological characteristics consistent with the experimental observations.

  5. STARBURST-DRIVEN GALACTIC WINDS: FILAMENT FORMATION AND EMISSION PROCESSES

    SciTech Connect

    Cooper, Jackie L.; Bicknell, Geoffrey V.; Sutherland, Ralph S.; Bland-Hawthorn, Joss

    2009-09-20

    We have performed a series of three-dimensional simulations of the interaction of a supersonic wind with a nonspherical radiative cloud. These simulations are motivated by our recent three-dimensional model of a starburst-driven galactic wind interacting with an inhomogeneous disk, which shows that an optically emitting filament can be formed by the breakup and acceleration of a cloud into a supersonic wind. In this study, we consider the evolution of a cloud with two different geometries (fractal and spherical) and investigate the importance of radiative cooling on the cloud's survival. We have also undertaken a comprehensive resolution study in order to ascertain the effect of the assumed numerical resolution on the results. We find that the ability of the cloud to radiate heat is crucial for its survival, with a radiative cloud experiencing a lower degree of acceleration and having a higher relative Mach number to the flow than in the adiabatic case. This diminishes the destructive effect of the Kelvin-Helmholtz instability on the cloud. While an adiabatic cloud is destroyed over a short period of time, a radiative cloud is broken up via the Kelvin-Helmholtz instability into numerous small, dense cloudlets, which are drawn into the flow to form a filamentary structure. The degree of fragmentation is highly dependent on the resolution of the simulation, with the number of cloudlets formed increasing as the Kelvin-Helmholtz instability is better resolved. Nevertheless, there is a clear qualitative trend, with the filamentary structure still persistent at high resolution. The geometry of the cloud affects the speed at which the cloud fragments; a wind more rapidly breaks up the cloud in regions of least density. A cloud with a more inhomogeneous density distribution fragments faster than a cloud with a more uniform structure (e.g., a sphere). We confirm the mechanism behind the formation of the Halpha emitting filaments found in our global simulations of a

  6. Liquid argon TPC signal formation, signal processing and reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Baller, B.

    2017-07-01

    This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

  7. Formation of auroral arcs by plasma sheet processes

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1981-01-01

    It is noted that, in the distant plasma sheet, it is likely that curvature drift is the most important source of drift parallel to the electric field, leading to what is commonly called Fermi acceleration of the particles. The energization mechanism here is proportional to the neutral sheet current density. It is a form of field-aligned acceleration, with rapid lowering of mirror points, caused by the transverse electric field in the plasma sheet. It is noted that the process will work for both negative and positive particles. A filamentation of the neutral current sheet is postulated. Here, the maximum energization by curvature drift and the accompanying intense precipitation will form an auroral band or arc along the sheet of magnetic field lines that maps out to the local enhancement of the crosstail current, explaining inverted V events.

  8. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  9. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  10. Deciphering neuronal population codes for acute thermal pain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  11. Deciphering Neuron-Glia Compartmentalization in Cortical Energy Metabolism

    PubMed Central

    Jolivet, Renaud; Magistretti, Pierre J.; Weber, Bruno

    2009-01-01

    Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy (∼80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production (∼6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying

  12. Geochemical constraints on magma formation and transport processes

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Antoshechkina, P. M.; Dasgupta, R.; Rudge, J. F.; Asimow, P. D.

    2015-12-01

    Primitive basalts provide an invaluable probe of the mantle's thermo-chemical structure. What these samples show is that the Earth's interior is widely variable in its trace element, isotopic and even major element composition, on the km to the hemispherical scale. This heterogeneity has profound implications for not only the history of the solid Earth, but the oceans and atmosphere as well, as it represents ~4 billions of years of elemental transport back into the mantle via subduction recycling of oceanic crustal to mantle sections. Reconstructing planetary evolution through the volcanic record of mantle composition is therefore a primary aim of igneous geochemistry. However, between the solid mantle and our chemical analyses lie a series of melt generation, aggregation and transport processes, themselves poorly understood, that are potentially critical in controlling the amplitude and style of chemical heterogeneity preserved in an erupted basalt. If these processes are also sensitive to mantle potential temperature, the degree of melting and the presence of lithological heterogeneity, then the geochemical record may not only be biased as a whole, but biased in a relative sense between different geodynamic settings: such a dichotomy may be represented by ocean islands and mid-ocean ridges. Here we combine observational and modelling approaches to understand how varying conditions of melt generation and transport affect basalt chemical variability. Focusing first on Iceland, we combine new and existing melt inclusion data to investigate how chemical variability may be controlled by tectonic parameters (on versus off rift) and source enrichment. We find that on Iceland the key parameter controlling variability is enrichment, with the most enriched basalts preserving diminished variability compared with more depleted eruptions. However, on a larger scale enriched sources preserve the greatest variability: we see this both in terms of the greater variability of

  13. [The effect of encoding on false memory: examination on levels of processing and list presentation format].

    PubMed

    Hamajima, Hideki

    2004-04-01

    Using the Deese/Roediger-McDermott paradigm, the effects of lists presentation format (blocked/random) and levels of processing of critical nonpresented lures were examined. A levels-of-processing effect in a blocked presentation order was not observed for lures. Rates of false recognition and remember judgments for lures in a shallow level of processing were significantly lower than those in a deep level of processing when items from various themes were inter-mixed instead of blocked. Results showed an interaction between levels of processing and list presentation format. It is thus concluded that encoding of each word and whole list should be both considered in understanding false memory.

  14. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  15. Formative "Use" of Assessment Information: It's a Process, so Let's Say What We Mean

    ERIC Educational Resources Information Center

    Good, Robert

    2011-01-01

    The term "formative assessment" is often used to describe a type of assessment. The purpose of this paper is to challenge the use of this phrase given that "formative assessment" as a noun phrase ignores the well-established understanding that it is a process more than an object. A model that combines content, context, and strategies is presented…

  16. Wavefront curvature limitations and compensation to polar format processing for synthetic aperture radar images.

    SciTech Connect

    Doerry, Armin Walter

    2006-01-01

    Limitations on focused scene size for the Polar Format Algorithm (PFA) for Synthetic Aperture Radar (SAR) image formation are derived. A post processing filtering technique for compensating the spatially variant blurring in the image is examined. Modifications to this technique to enhance its robustness are proposed.

  17. Preparedness Formation of the Future Vocational Education Teachers to Occupational Adaptation under Conditions of Globalization Processes

    ERIC Educational Resources Information Center

    Sushentseva, Liliya

    2014-01-01

    The problem of the preparedness formation of future teachers of vocational training to the professional adaptation under conditions of globalization processes in society is considered. The analysis of scientific and educational literature devoted to the study of occupational adaptation and preparedness formation of specialists to it is carried…

  18. Preparedness Formation of the Future Vocational Education Teachers to Occupational Adaptation under Conditions of Globalization Processes

    ERIC Educational Resources Information Center

    Sushentseva, Liliya

    2014-01-01

    The problem of the preparedness formation of future teachers of vocational training to the professional adaptation under conditions of globalization processes in society is considered. The analysis of scientific and educational literature devoted to the study of occupational adaptation and preparedness formation of specialists to it is carried…

  19. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability.

    PubMed

    Kleyböcker, A; Liebrich, M; Kasina, M; Kraume, M; Wittmaier, M; Würdemann, H

    2012-06-01

    Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH>7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.

  20. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    SciTech Connect

    Kleyboecker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Wuerdemann, H.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4

  1. Formation kinetics of potential fermentation inhibitors in a steam explosion process of corn straw.

    PubMed

    Zhang, Yuzhen; Wang, Lan; Chen, Hongzhang

    2013-01-01

    The weak acids, furan derivatives, and phenolic compounds formed during lignocellulose pretreatment are potential inhibitors of subsequent enzymatic and microbial processes. In this work, the effects of the steam explosion process on the formation of weak acids, furan derivatives, and phenolic compounds were explored. The correlations of different steam explosion conditions and formation kinetics of degradation products showed that the formation of weak acids and furan derivatives was in the first-order reactions, which are expressed as [Formula: see text]. The formation of weak acids and furan derivatives increases with pretreatment temperature and time. On the other hand, the formation of phenolic compounds showed typical characteristics of continuous reaction, expressed as [Formula: see text]. The formation was affected by the active energies in two stages, temperature and time, and thus existed at extreme value. This work revealed the formation rules of weak acids, furan derivatives, and phenolic compounds in a steam explosion process and provided theoretical guidelines for improving the process and limiting the production of certain inhibitors.

  2. Deciphering skeletal patterning: clues from the limb.

    PubMed

    Mariani, Francesca V; Martin, Gail R

    2003-05-15

    Even young children can distinguish a Tyrannosaurus rex from a Brontosaurus by observing differences in bone size, shape, number and arrangement, that is, skeletal pattern. But despite our extensive knowledge about cartilage and bone formation per se, it is still largely a mystery how skeletal pattern is established. Much of what we do know has been learned from studying limb development in chicken and mouse embryos. Based on the data from such studies, models for how limb skeletal pattern is established have been proposed and continue to be hotly debated.

  3. The experimental production of matrix lumps within chondrules: Evidence of post-formational processes

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1993-01-01

    The processes that acted upon chondrules after their formation are as important clues to the nature of the early solar nebula as are the exact processes that formed the chondrules. Recent experiments have studied the rim forming processes and the effects the processes have on chondrules. We present below information on how matrix inclusions found within chondrules may have been formed and the potential usefulness of this information.

  4. The experimental production of matrix lumps within chondrules: Evidence of post-formational processes

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1993-01-01

    The processes that acted upon chondrules after their formation are as important clues to the nature of the early solar nebula as are the exact processes that formed the chondrules. Recent experiments have studied the rim forming processes and the effects the processes have on chondrules. We present below information on how matrix inclusions found within chondrules may have been formed and the potential usefulness of this information.

  5. Deciphering Martian climatic history using returned samples

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Krieger, D. B.; Brigham, C. A.

    1988-01-01

    By necessity, a Mars sample return mission must sample the upper few meters of the Martian surface. This material was subjected to a wide variety of physical processes. Presently, the most important processes are believed to be wind-driven erosion and deposition, and water ice accumulation at higher latitudes. A sample return mission represents an opportunity to better understand and quantify these important geological processes. By obtaining sample cores at key locations, it may be possible to interpret much of recent Martian climatic history.

  6. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format.

    PubMed

    Ismail, Mahmoud; Philbin, James

    2015-04-01

    The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.

  7. Fast processing of digital imaging and communications in medicine (DICOM) metadata using multiseries DICOM format

    PubMed Central

    Ismail, Mahmoud; Philbin, James

    2015-01-01

    Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117

  8. Formation of Globular Clusters with Internal Abundance Spreads in r-Process Elements: Strong Evidence for Prolonged Star Formation

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Tsujimoto, Takuji

    2017-07-01

    Several globular clusters (GCs) in the Galaxy are observed to show internal abundance spreads in r-process elements (e.g., Eu). We propose a new scenario that explains the origin of these GCs (e.g., M5 and M15). In this scenario, stars with no/little abundance variations first form from a massive molecular cloud (MC). After all of the remaining gas of the MC is expelled by numerous supernovae, gas ejected from asymptotic giant branch stars can be accumulated in the central region of the GC to form a high-density intracluster medium (ICM). Merging of neutron stars then occurs to eject r-process elements, which can be efficiently trapped in and subsequently mixed with the ICM. New stars formed from the ICM can have r-process abundances that are quite different from those of earlier generations of stars within the GC. This scenario can explain both (i) why r-process elements can be trapped within GCs and (ii) why GCs with internal abundance spreads in r-process elements do not show [Fe/H] spreads. Our model shows (i) that a large fraction of Eu-rich stars can be seen in Na-enhanced stellar populations of GCs, as observed in M15, and (ii) why most of the Galactic GCs do not exhibit such internal abundance spreads. Our model demonstrates that the observed internal spreads of r-process elements in GCs provide strong evidence for prolonged star formation (∼108 yr).

  9. Surface Layer Formation When Finish-Hardening Processing of the Parts by Smoothing

    NASA Astrophysics Data System (ADS)

    Belyaev, V. N.; Tatarkin, E. Ju

    2016-04-01

    Problems of surface layer formation of the parts, when hydraulic smoothing, are considered in this work. The results of theoretical and pilot studies of smoothing in case of nanocarbons and copper salts introduction into the process liquid are given. The influence dependences of the processing modes on roughness and microhardness of surface layer are defined.

  10. Integrating Individual Learning Processes and Organizational Knowledge Formation: Foundational Determinants for Organizational Performance

    ERIC Educational Resources Information Center

    Song, Ji Hoon; Chermack, Thomas J.; Kim, Hong Min

    2008-01-01

    This research examined the link between learning processes and knowledge formation through an integrated literature review from both academic and practical viewpoints. Individuals' learning processes and organizational knowledge creation were reviewed by means of theoretical and integrative analysis based on a lack of empirical research on the…

  11. Deciphering spectral fingerprints of habitable exoplanets.

    PubMed

    Kaltenegger, Lisa; Selsis, Frank; Fridlund, Malcolm; Lammer, Helmut; Beichman, Charles; Danchi, William; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    We discuss how to read a planet's spectrum to assess its habitability and search for the signatures of a biosphere. After a decade rich in giant exoplanet detections, observation techniques have advanced to a level where we now have the capability to find planets of less than 10 Earth masses (M(Earth)) (so-called "super Earths"), which may be habitable. How can we characterize those planets and assess whether they are habitable? This new field of exoplanet search has shown an extraordinary capacity to combine research in astrophysics, chemistry, biology, and geophysics into a new and exciting interdisciplinary approach to understanding our place in the Universe. The results of a first-generation mission will most likely generate an amazing scope of diverse planets that will set planet formation, evolution, and our planet into an overall context.

  12. Deciphering Galactic Hydrogen with 21-SPONGE

    NASA Astrophysics Data System (ADS)

    Murray, Claire; Stanimirovic, Snezana; Goss, Miller; Heiles, Carl E.; Miller Dickey, John; Lindner, Robert; Babler, Brian L.

    2017-01-01

    Neutral hydrogen (HI) in the interstellar medium (ISM) is crucial to the life cycles of galaxies. The balance between disparate phases of HI -- including the cold neutral (CNM) and warm neutral (WNM) medium -- governs the formation of dense, star-forming material, and reflects the nature of feedback in galaxies. To probe the multi-phase structure of HI, we present results from 21-SPONGE: the largest and most sensitive survey for Galactic HI absorption ever at the Karl G. Jansky Very Large Array (VLA). Complemented by HI emission from the Arecibo Observatory, 21-SPONGE is uniquely sensitive to CNM and WNM temperatures from 10-104 K and column densities from 1018-1022 cm-2. Despite our unprecedented sensitivity, the maximum temperature we detect for individual spectral lines is Ts~1500 K, although stacking analysis of 21-SPONGE absorption lines indicates the presence of pervasive, high-Ts WNM population with Ts~7000 K. To understand the physics underlying these results, we developed Autonomous Gaussian Decomposition (AGD), a Python-based tool for efficiently and objectively analyzing spectral lines. By applying AGD to 21-SPONGE and 1000s of synthetic HI spectra from 3D numerical simulations, we correct our measurements for completeness and observational biases. We further prove that we can successfully recover the temperatures and densities of real clouds along simulated lines of sight. In addition, we show that absorption line shapes are sensitive to the strength and topology of the Lyman alpha radiation field and its role in HI excitation, which are poorly-constrained yet important for understanding the energy balance of the ISM. Our results are among the first to statistically quantify the success of observational methods at reproducing true HI properties, and represent crucial steps towards understanding the role of HI in star formation.

  13. [A sheet for deciphering the cries of hospitalized elderly patients].

    PubMed

    Gomas, Jean-Marie; Tribout, Didier; Knorreck, Fanny; Denis, Michel; Petrognani, Annie; Sales, Elodie

    2014-01-01

    Crying out is not an insignificant act and it is important to fight against this misconception. Any caregiver can be confronted with this phenomenon with elderly hospitalised patients. Their cries must be understood, analysed and taken into account as they correspond to a particular situation experienced by the elderly patient. There are tools to help caregivers diagnose and reflect on this clinical context. This article presents the example of an interpretation sheet which can help caregivers decipher patients' cries.

  14. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species.

    PubMed

    Björnsdottir, Halla; Welin, Amanda; Michaëlsson, Erik; Osla, Veronica; Berg, Stefan; Christenson, Karin; Sundqvist, Martina; Dahlgren, Claes; Karlsson, Anna; Bylund, Johan

    2015-12-01

    Neutrophil extracellular traps (NETs) are mesh-like DNA fibers clad with intracellular proteins that are cast out from neutrophils in response to certain stimuli. The process is thought to depend on reactive oxygen species (ROS) generated by the phagocyte NADPH-oxidase and the ROS-modulating granule enzyme myeloperoxidase (MPO), but when, how, and where these factors contribute is so far uncertain. The neutrophil NADPH-oxidase can be activated at different cellular sites and ROS may be produced and processed by MPO within intracellular granules, even in situations where a phagosome is not formed, e.g., upon stimulation with phorbol myristate acetate (PMA). We investigated the subcellular location of ROS production and processing by MPO in the context of PMA-induced NET formation. Complete neutralization of extracellular ROS was not sufficient to block NET formation triggered by PMA, indicating that intragranular ROS are critical for NETosis. Employing a set of novel MPO-inhibitors, inhibition of NET formation correlated with inhibition of intragranular MPO activity. Also, extracellular addition of MPO was not sufficient to rescue NET formation in completely MPO-deficient neutrophils and specific neutralization by luminol of MPO-processed ROS within intracellular granules led to a complete block of PMA-triggered NET formation. We show for the first time that inhibition of intragranular MPO activity, or neutralization of intragranular MPO-processed ROS by luminol effectively block NET formation. Our data demonstrate that ROS must be formed and processed by MPO in order to trigger NET formation, and that these events have to occur within intracellular granules. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Managing fear in public health campaigns: a theory-based formative evaluation process.

    PubMed

    Cho, Hyunyi; Witte, Kim

    2005-10-01

    The HIV/AIDS infection rate of Ethiopia is one of the world's highest. Prevention campaigns should systematically incorporate and respond to at-risk population's existing beliefs, emotions, and perceived barriers in the message design process to effectively promote behavior change. However, guidelines for conducting formative evaluation that are grounded in proven risk communication theory and empirical data analysis techniques are hard to find. This article provides a five-step formative evaluation process that translates theory and research for developing effective messages for behavior change. Guided by the extended parallel process model, the five-step process helps message designers manage public's fear surrounding issues such as HIV/AIDS. An entertainment education project that used the process to design HIV/AIDS prevention messages for Ethiopian urban youth is reported. Data were collected in five urban regions of Ethiopia and analyzed according to the process to develop key messages for a 26-week radio soap opera.

  16. Surfactant process for promoting gas hydrate formation and application of the same

    DOEpatents

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  17. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    PubMed

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  18. Processes leading to formation of cube texture in cold-rolled Ni-Cr-W alloy

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, G. A.; Mudretsova, S. N.; Garshev, A. V.; Amelichev, V. A.; Samoilenkov, S. V.; Gervasieva, I. V.; Khlebnikova, Yu. V.; Rodionov, D. P.; Kaul, A. R.

    2014-01-01

    Behavior of cold-rolled fcc Ni88.4Cr9.2W2.4 alloy during heating has been studied. Two consecutive exothermic processes were detected using differential scanning calorimetry, high-temperature X-ray diffraction, and dilatometry. The processes were identified as polygonization and recrystallization, which lead to cube texture formation, as was shown by X-ray diffraction and electron backscatter diffraction. The heat effects of these processes were determined.

  19. Comparison of processes of river delta formation on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Witek, P. P.; Czechowski, L. L.

    2014-04-01

    The Cassini-Huygens mission has revealed the existence of hydrocarbon lakes and river valleys on Titan. We simulate processes of sediment transport and deposition on Titan and compare them with analogous processes on Earth and Mars, with several possible compositions of the liquid and the sediments. Our results show many similarities between the processes, but also some differences concerning e.g. the time scale of formation of depositional complexes.

  20. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences.

    PubMed

    Wright, Erik S; Yilmaz, L Safak; Noguera, Daniel R

    2012-02-01

    DECIPHER is a new method for finding 16S rRNA chimeric sequences by the use of a search-based approach. The method is based upon detecting short fragments that are uncommon in the phylogenetic group where a query sequence is classified but frequently found in another phylogenetic group. The algorithm was calibrated for full sequences (fs_DECIPHER) and short sequences (ss_DECIPHER) and benchmarked against WigeoN (Pintail), ChimeraSlayer, and Uchime using artificially generated chimeras. Overall, ss_DECIPHER and Uchime provided the highest chimera detection for sequences 100 to 600 nucleotides long (79% and 81%, respectively), but Uchime's performance deteriorated for longer sequences, while ss_DECIPHER maintained a high detection rate (89%). Both methods had low false-positive rates (1.3% and 1.6%). The more conservative fs_DECIPHER, benchmarked only for sequences longer than 600 nucleotides, had an overall detection rate lower than that of ss_DECIPHER (75%) but higher than those of the other programs. In addition, fs_DECIPHER had the lowest false-positive rate among all the benchmarked programs (<0.20%). DECIPHER was outperformed only by ChimeraSlayer and Uchime when chimeras were formed from closely related parents (less than 10% divergence). Given the differences in the programs, it was possible to detect over 89% of all chimeras with just the combination of ss_DECIPHER and Uchime. Using fs_DECIPHER, we detected between 1% and 2% additional chimeras in the RDP, SILVA, and Greengenes databases from which chimeras had already been removed with Pintail or Bellerophon. DECIPHER was implemented in the R programming language and is directly accessible through a webpage or by downloading the program as an R package (http://DECIPHER.cee.wisc.edu).

  1. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid

    NASA Astrophysics Data System (ADS)

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-01

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.

  2. Ion Beam Deposition of Thin Films: Growth Processes and Nanostructure Formation

    SciTech Connect

    Hofsaess, Hans C.

    2004-12-01

    Ion beam deposition is a process far from thermodynamic equilibrium and is in particular suited to grow metastable thin films with diamond-like properties, such as tetrahedral amorphous carbon (ta-C) and cubic boron nitride (c-BN). In this contribution the atomistic description of the deposition and growth processes are reviewed and compared to experimental results, obtained from mass selected ion beam deposition. The focus will be set to the nucleation and growth processes of boron nitride as a model system for ion based thin film formation. Furthermore, recent examples for nanostructure formation in ion deposited compound thin films will be presented. Ion beam deposited metal-carbon nano-composite thin films exhibit a variety of different morphologies such as rather homogeneous nanocluster distributions embedded in an a-C matrix, but also the self-organized formation of nanoscale multilayer structures.

  3. Aerosol effect on the warm rain formation process: Satellite observations and modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Kentaroh; Stephens, Graeme L.; Lebsock, Matthew D.

    2013-01-01

    This study demonstrates how aerosols influence the liquid precipitation formation process. This demonstration is provided by the combined use of satellite observations and global high-resolution model simulations. Methodologies developed to examine the warm cloud microphysical processes are applied to both multi-sensor satellite observations and aerosol-coupled global cloud-resolving model (GCRM) results to illustrate how the warm rain formation process is modulated under different aerosol conditions. The observational analysis exhibits process-scale signatures of rain suppression due to increased aerosols, providing observational evidence of the aerosol influence on precipitation. By contrast, the corresponding statistics obtained from the model show a much faster rain formation even for polluted aerosol conditions and much weaker reduction of precipitation in response to aerosol increase. It is then shown that this reduced sensitivity points to a fundamental model bias in the warm rain formation process that in turn biases the influence of aerosol on precipitation. A method of improving the model bias is introduced in the context of a simplified single-column model (SCM) that represents the cloud-to-rain water conversion process in a manner similar to the original GCRM. Sensitivity experiments performed by modifying the model assumptions in the SCM and their comparisons to satellite statistics both suggest that the auto-conversion scheme has a critical role in determining the precipitation response to aerosol perturbations and also provide a novel way of constraining key parameters in the auto-conversion schemes of global models.

  4. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    PubMed

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces.

  5. The KEGG resource for deciphering the genome.

    PubMed

    Kanehisa, Minoru; Goto, Susumu; Kawashima, Shuichi; Okuno, Yasushi; Hattori, Masahiro

    2004-01-01

    A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database.

  6. The KEGG resource for deciphering the genome

    PubMed Central

    Kanehisa, Minoru; Goto, Susumu; Kawashima, Shuichi; Okuno, Yasushi; Hattori, Masahiro

    2004-01-01

    A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database. PMID:14681412

  7. Mechanism of hologram formation in fixation-free rehalogenating bleaching processes

    NASA Astrophysics Data System (ADS)

    Neipp, Cristian; Pascual, Inmaculada; Belendez, Augusto

    2002-07-01

    The mechanism of hologram formation in fixation-free rehalogenating bleaching processes have been treated by different authors. The experiments carried out on Agfa 8E75 HD plates led to the conclusion that material transfer from the exposed to the unexposed zones is the main mechanism under the process. We present a simple model that explains the mechanism of hologram formation inside the emulsion. Also quantitative data obtained using both Agfa 8E75 HD and Slavich PFG-01 fine-grained red-sensitive emulsions are given and good agreement between theory and experiments are found.

  8. Relational processes and identity formation in adolescence: the example of A Separate Peace.

    PubMed

    Flum, H; Porton, H

    1995-11-01

    The process of identity formation in adolescence, specifically, the relational context of identity formation, is examined through the prism of the story of an adolescent boy's development during the Second World War at a boarding school in New Hampshire, USA--John Knowles's A Separate Peace. The discussion focuses on mirroring, on the adolescent's need to be validated and the simultaneous fear of transparency, and on idealization and deidealization. Using the book as a narrative example of the transformation of connections that are essential to the process of development, the authors discuss the complexity of male adolescent growth.

  9. Deciphering Neural Codes of Memory during Sleep.

    PubMed

    Chen, Zhe; Wilson, Matthew A

    2017-04-05

    Memories of experiences are stored in the cerebral cortex. Sleep is critical for the consolidation of hippocampal memory of wake experiences into the neocortex. Understanding representations of neural codes of hippocampal-neocortical networks during sleep would reveal important circuit mechanisms in memory consolidation and provide novel insights into memory and dreams. Although sleep-associated ensemble spike activity has been investigated, identifying the content of memory in sleep remains challenging. Here we revisit important experimental findings on sleep-associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and review computational approaches to the analysis of sleep-associated neural codes (SANCs). We focus on two analysis paradigms for sleep-associated memory and propose a new unsupervised learning framework ('memory first, meaning later') for unbiased assessment of SANCs.

  10. Deciphering calcineurin inhibitor nephrotoxicity: a pharmacological approach.

    PubMed

    Pallet, Nicolas; Legendre, Christophe

    2010-10-01

    The calcineurin inhibitors ciclosporin and tacrolimus are used to prevent acute rejection of solid organs after transplantation. Their use can lead to chronic renal damage characterized by progressive and irreversible deterioration of renal function associated with interstitial fibrosis, tubular atrophy, arteriolar hyalinosis and glomerulosclerosis. Many approaches to better understand the mechanisms of this toxicity are in use. The aim of these approaches is to find biomarkers of early kidney injury and potential therapeutic targets. Despite these efforts, the biological processes leading to calcineurin inhibitor nephrotoxicity remain poorly understood. Furthermore, the diagnosis of chronic renal damage remains inaccurate without definitive diagnostic tools, no effective prevention exists and a therapy to treat the damage has yet to be developed. In this article, theories of pharmacodynamics, pharmacokinetics, therapeutic drug monitoring and pharmacogenetics are synthesized in ways that may improve the understanding of mechanisms leading to calcineurin inhibitor toxicity. The importance of global approaches such as toxicogenomics is emphasized to characterize early cellular responses implicated in calcineurin inhibitor nephrotoxicity.

  11. Deciphering the role of exosomes in tuberculosis.

    PubMed

    Kruh-Garcia, Nicole A; Wolfe, Lisa M; Dobos, Karen M

    2015-01-01

    Exosomes were originally described as small vesicles released from reticulocytes during the maturation process. These 40-200 nm microvesicles were hypothesized to be a mechanism for the removal of membrane proteins in lieu of intracellular degradation by Harding et al. (1984) and Johnstone et al. (1987) [1,2]. Exosomes can be distinguished from other extracellular vesicles (ectosomes, apoptotic blebs) based on their size and the protein indicators intercalated in their membrane (also, linking their derivation from the endocytic pathway) by Simpson (2012) [3]. The exact role which exosomes play in cell-to-cell communication and immune modulation is a topic of intense study. However, the focus of most reports has been directed towards discovering aberrations in exosomal protein and RNA content linked to disease onset and progression, and also primarily related to cancer. Nonetheless, exosomes are now documented to be released from a wide variety of cell types by Mathivanan et al. (2012), Simpson et al. (2012) and Kalra et al. (2012) [4-6] and have been isolated from all bodily fluids; thus, exosomes are an excellent source of biomarkers. Here we describe the discoveries related to the role exosomes play in tuberculosis disease, as well as translational work in vaccine development and how circulation of these dynamic vesicles can be harnessed for diagnostic purposes.

  12. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-05-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au8-Au11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Aun precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters.

  13. Deciphering arboviral emergence within insular ecosystems.

    PubMed

    Tortosa, Pablo; Pascalis, Hervé; Guernier, Vanina; Cardinale, Eric; Le Corre, Matthieu; Goodman, Steven M; Dellagi, Koussay

    2012-08-01

    The spatial dynamics of zoonotic arthropod-borne viruses is a fashionable though challenging topic. Inter-human local transmission of a given arbovirus during an outbreak and its spread over large distances are considered as key parameters of emergence. Here, we suggest that insular ecosystems provide ideal natural "laboratory" conditions to uncouple local transmission from long distance spread, and differentiate these two processes. Due to geographic isolation, often-limited land surface area and relatively homogenous ecosystems, oceanic islands display low species richness and often-high levels of endemism. These aspects provide the means for comprehensive entomological surveys and investigations of original host/pathogen interactions. In addition, islands are interconnected through discrete anthropogenic and non-anthropogenic exchanges: whilst islands maintain a substantial level of human and domestic animal exchange with other neighbouring or distant territories, they also comprise dispersal and migratory pathways of volant organisms (insects, birds and bats). Hence, both anthropogenic and non-anthropogenic exchanges in island systems are easier to identify and investigate than in continuous, continental systems. Finally, island ecosystems tend to be notably simpler, more prone to invasive taxa and, therefore, easier to document the colonization or displacement of vector species. These different aspects are presented and overlaid upon the spread of arboviruses within two distinct insular systems: islands of Polynesia and the south-western Indian Ocean. The former have been repeatedly affected by Dengue fever epidemics, while the latter recently suffered four successive epidemics, probably of east African origin, three of which involved the emerging viruses Chikungunya, Rift Valley and Dengue fever. Here, we review some new insights into arboviral spread and evolution associated with investigations that followed these epidemics, as well as several aspects that

  14. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury.

    PubMed

    Geddis, Matthew S; Rehder, Vincent

    2003-10-15

    Growth cones are essential for neuronal pathfinding during embryonic development and again after injury, when they aid in neuronal regeneration. This study was aimed at investigating the role of kinases in the earliest events in neuronal regeneration, namely, the formation of new growth cones from injured neuronal processes. Neurites of identified snail neurons grown in vitro were severed, and the formation of growth cones was observed from the ends of such transected processes. Under control conditions, all neurites formed a new growth cone within 45 min of transection. In contrast, growth cone formation in the presence of a general kinase inhibitor, K252a, was significantly inhibited. Moreover, decreasing the phosphorylation state of neurites by activating protein phosphatases with C2-ceramide also reduced growth cone formation. Pharmacological analysis with specific kinase inhibitors suggested that targets of protein kinase C (PKC) and tyrosine kinase (PTK) phosphorylation control growth cone formation. Inhibition of PKC with calphostin C and cerebroside completely blocked growth cone formation, whereas the inhibition of PTK with erbstatin analog significantly reduced growth cone formation. In contrast, inhibitors of protein kinase A, protein kinase G, CaM-kinase II, myosin light-chain kinase, Rho kinase, and PI-3 kinase had little or no effect 45 min after transection. These results suggest that the transformation underlying the formation of a growth cone from an injured (transected) neurite stump is highly sensitive to the phosphorylation state of key target proteins. Therefore, injury-induced signaling events will determine the outcome of neuronal regeneration through their action on kinase and phosphatase activities.

  15. Investigation of cu-BTA complex formation during Cu chemical mechanical planarization process

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Shima, Shohei; Hamada, Satomi; Park, Jin-Goo

    2016-10-01

    The effect of Cu surface conditions on Cu-BTA complex formation was investigated using contact angle, electrochemical impedance spectroscopy, spectroscopic ellipsometry and XPS measurements which is of interest to Cu Chemical Mechanical Planarization (CMP) process. During Cu CMP process BTA is widely used as a corrosion inhibitor, reacts with Cu and forms a strong Cu-BTA complex. Thus, it is very essential to remove Cu-BTA complex during post-Cu CMP cleaning process as Cu-BTA complex causes severe problems such as particle contamination and watermark due to its hydrophobic nature. In this report, the Cu-BTA complex formation at various Cu surfaces (as received, pure Cu and Cu oxide) was investigated in order to understand its adsorption reaction and develop effective post-Cu CMP cleaning process.

  16. Quantifying fiber formation in meat analogs under high moisture extrusion using image processing

    NASA Astrophysics Data System (ADS)

    Ranasinghesagara, J.; Hsieh, F.; Yao, G.

    2005-11-01

    High moisture extrusion using twin-screw extruders shows great promise of producing meat analog products with vegetable proteins. The resulting products have well defined fiber formations; resemble real meat in both visual appearance and taste sensation. Developing reliable non-destructive techniques to quantify the textural properties of extrudates is important for quality control in the manufacturing process. In this study, we developed an image processing technique to automatically characterize sample fiber formation using digital imaging. The algorithm is based on statistical analysis of Hough transform. This objective method can be used as a standard method for evaluating other non-invasive methods. We have compared the fiber formation indices measured using this technique and a non-invasive fluorescence polarization method and obtained a high correlation.

  17. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  18. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction.

    PubMed

    Ogundele, Olalekan Michael; Okunnuga, Adetokunbo Adedotun; Fabiyi, Temitope Deborah; Olajide, Olayemi Joseph; Akinrinade, Ibukun Dorcas; Adeniyi, Philip Adeyemi; Ojo, Abiodun Ayodele

    2014-06-01

    Parkinson's disease has long been described to be a product of dopamine and (or) melanin loss in the substanstia nigra (SN). Although most studies have focused on dopaminergic neurons, it is important to consider the role of pigment cells in the etiology of the disease and to create an in vitro live cell model for studies involving pigmented adrenergic cells of the SN in Parkinsonism. The Melanocytes share specific features with the pigmented adrenergic neurons as both cells are pigmented, contain adrenergic receptors and have cellular processes. Although the melanocyte cellular processes are relatively short and observable only when stimulated appropriately by epinephrine and other factors or molecules. This study employs the manipulation of N-Methyl-D-Aspartate Receptor (NMDA-R), a major receptor in neuronal development, in the process formation pattern of the melanocyte in order to create a suitable model to depict cellular process elongation and shortening in pigmented adrenergic cells. NMDA-R is an important glutamate receptor implicated in neurogenesis, neuronal migration, maturation and cell death, thus we investigated the role of NMDA-R potentiation by glutamate/KCN and its inhibition by ketamine in the behavior of fish scale melanocytes in vitro. This is aimed at establishing the regulatory role of NMDA-R in this cell type (melanocytes isolated form Tilapia) in a similar manner to what is observable in the mammalian neurons. In vitro live cell culture was prepared in modified Ringer's solution following which the cells were treated as follows; Control, Glutamate, Ketamine, Glutamate + Ketamine, KCN + Ketamine and KCN. The culture was maintained for 10 min and the changes were captured in 3D-Time frame at 0, 5 and 10 min for the control and 5, 7 and 10 min for each of the treatment category. Glutamate treatment caused formation of short cellular processes localized directly on the cell body while ketamine treatment (inhibition of NMDA-R) facilitated

  19. Vague-to-Crisp Dynamics of Percept Formation Modeled as Operant (Selectionist) Process

    DTIC Science & Technology

    2013-04-04

    framework with cognitive processing and the intentional neurodynamic cycle. Vague-to-crisp dynamics of percept formation m Approved for public...13: Supplementary Note © 2013 . Published in Cognitive Neurodynamics , Vol. Ed. 0 8, (1) (2013), (, (1). DoD Components reserve a royalty-free...operant (selectionist) process Roman Ilin, J un Zhang, Leonid Perlovsky & Robert Kozma Cognitive Neurodynamics ISSN 1871 4080 Cogn Neurodyn

  20. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    SciTech Connect

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  1. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    ERIC Educational Resources Information Center

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  2. Higher-level processes in the formation and application of associations during action understanding.

    PubMed

    Heil, Lieke; van Pelt, Stan; Kwisthout, Johan; van Rooij, Iris; Bekkering, Harold

    2014-04-01

    The associative account described in the target article provides a viable explanation for the origin of mirror neurons. We argue here that if mirror neurons develop purely by associative learning, then they cannot by themselves explain intentional action understanding. Higher-level processes seem to be involved in the formation of associations as well as in their application during action understanding.

  3. Formation Processes and Impacts of Reactive and Nonreactive Minerals in Permeable Reactive Barriers

    EPA Science Inventory

    Mineral precipitates in zero-valent iron PRBs can be classified by formation processes into three groups: 1) those that result from changes in chemical conditions (i.e., changes in pH, e.g., calcite); 2) those that are a consequence of microbial activity (i.e., sulfate reduction,...

  4. FORMATION PROCESSES AND CONSEQUENCES OF REACTIVE AND NON-REACTIVE MINERAL PRECIPITATES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Mineral precipitates in zero-valent iron PRBs can be classified by formation processes into three groups: 1) those that result from changes in chemical conditions (i.e., change in pH, e.g., calcite); 2) those that are a consequence of microbial activity (i.e., sulfate reduction, ...

  5. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    ERIC Educational Resources Information Center

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  6. Formation Processes and Impacts of Reactive and Nonreactive Minerals in Permeable Reactive Barriers

    EPA Science Inventory

    Mineral precipitates in zero-valent iron PRBs can be classified by formation processes into three groups: 1) those that result from changes in chemical conditions (i.e., changes in pH, e.g., calcite); 2) those that are a consequence of microbial activity (i.e., sulfate reduction,...

  7. FORMATION PROCESSES AND CONSEQUENCES OF REACTIVE AND NON-REACTIVE MINERAL PRECIPITATES IN PERMEABLE REACTIVE BARRIERS

    EPA Science Inventory

    Mineral precipitates in zero-valent iron PRBs can be classified by formation processes into three groups: 1) those that result from changes in chemical conditions (i.e., change in pH, e.g., calcite); 2) those that are a consequence of microbial activity (i.e., sulfate reduction, ...

  8. Influence of California-style black ripe olive processing on the formation of acrylamide.

    PubMed

    Charoenprasert, Suthawan; Mitchell, Alyson

    2014-08-27

    Methods used in processing California-style black ripe olives generate acrylamide. California-style black ripe olives contain higher levels of acrylamide (409.67 ± 42.60-511.91 ± 34.08 μg kg(-1)) as compared to California-style green ripe olives (44.02 ± 3.55-105.79 ± 22.01 μg kg(-1)), Greek olives (<1.42 μg kg(-1)), and Spanish olives (not detected), indicating that the higher temperatures used to sterilize the California-style green ripe and black ripe olives are required for acrylamide formation. Preprocessing brine storage influenced the formation of acrylamide in a time-dependent manner. Acrylamide increased during the first 30 days of storage. Longer brine storage times (>30 days) result in lower acrylamide levels in the finished product. The presence of calcium ions in the preprocessing brining solution results in higher levels of acrylamide in finished products. Air oxidation during lye processing and the neutralization of olives prior to sterilization significantly increase the formation of acrylamide in the finished products. Conversely, lye-processing decreases the levels of acrylamide in the final product. These results indicate that specific steps in the California-style black ripe olive processing may be manipulated to mitigate the formation of acrylamide in finished products.

  9. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  10. Embedded Formative Assessment and Classroom Process Quality: How Do They Interact in Promoting Science Understanding?

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Klieme, Eckhard; Kunter, Mareike; Hochweber, Jan; Büttner, Gerhard; Fauth, Benjamin; Hondrich, A. Lena; Rieser, Svenja; Hertel, Silke; Hardy, Ilonca

    2015-01-01

    In this study we examine the interplay between curriculum-embedded formative assessment--a well-known teaching practice--and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students' understanding of the scientific concepts of…

  11. A System for Processing and Shelving Works of Mixed Media Format.

    ERIC Educational Resources Information Center

    Mann, Thomas J.

    1979-01-01

    A system for processing and shelving mixed media works is described, the advantage of which is its ability to make value judgments reflecting the author's intention as to which format is primary. Security needs, storage space problems, and desirability of maintaining browsing capabilities are also incorporated in this system. (Author/MBR)

  12. A Case Study on the Formation and Sharing Process of Science Classroom Norms

    ERIC Educational Resources Information Center

    Chang, Jina; Song, Jinwoong

    2016-01-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom…

  13. Processes Underlying Developmental Reversals in False-Memory Formation: Comment on Brainerd, Reyna, and Ceci (2008)

    ERIC Educational Resources Information Center

    Ghetti, Simona

    2008-01-01

    C. J. Brainerd, V. F. Reyna, and S. J. Ceci (2008) reviewed compelling evidence of developmental reversals in false-memory formation (i.e., younger children exhibit lower false-memory rates than do older children and adults) and proposed that this phenomenon depends on the development of gist processing (i.e., the ability to identify and process…

  14. Processes Underlying Developmental Reversals in False-Memory Formation: Comment on Brainerd, Reyna, and Ceci (2008)

    ERIC Educational Resources Information Center

    Ghetti, Simona

    2008-01-01

    C. J. Brainerd, V. F. Reyna, and S. J. Ceci (2008) reviewed compelling evidence of developmental reversals in false-memory formation (i.e., younger children exhibit lower false-memory rates than do older children and adults) and proposed that this phenomenon depends on the development of gist processing (i.e., the ability to identify and process…

  15. An Approach from Formative to Constructive Evaluation through an Autonomous Learning Process

    ERIC Educational Resources Information Center

    Del Campo, Marcela; Bonilla, Martha Isabel; Ahumada, Luz Stella

    2010-01-01

    The present text seeks to encourage a reflection around the meaning and possibilities of the evaluation of learning from a formative view and to focus on the aim to move towards a constructive evaluation that responds to the necessities of our students. This implies a continuous process that could be a fundamental source to get teachers aware of…

  16. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process.

    PubMed

    Wang, Lu; Kong, Deyang; Ji, Yuefei; Lu, Junhe; Yin, Xiaoming; Zhou, Quansuo

    2017-08-01

    Formation of halogenated disinfection by-products (DBPs) in sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable concerns recently. Previous studies have focused on the formation of chlorinated and brominated DBPs. This research examined the transformation of I(-) in heat activated PS oxidation process. Phenol was employed as a model compound to mimic the reactivity of dissolved natural organic matter (NOM) toward halogenation. It was found that I(-) was transformed to free iodine which attacked phenol subsequently leading to iodinated DBPs such as iodoform and iodoacetic acids. Iodophenols were detected as the intermediates during the formation of the iodoform and triiodoacetic acid (TIAA). However, diiodoacetic acid (DIAA) was formed almost concomitantly with iodophenols. In addition, the yield of DIAA was significantly higher than that of TIAA, which is distinct from conventional halogenation process. Both the facts suggest that different pathway might be involved during DIAA formation in SR-AOPs. Temperature and persulfate dose were the key factors governing the transformation process. The iodinated by-products can be further degraded by excessive SO4(-) and transformed to iodate. This study elucidated the transformation pathway of I(-) in SR-AOPs, which should be taken into consideration when persulfate was applied in environmental matrices containing iodine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Role of Historical Context in the Identity Formation Process of Late Adolescence.

    ERIC Educational Resources Information Center

    Kroger, Jane

    1993-01-01

    Investigates the impact of social and economic changes in New Zealand on the identity-formation process of late adolescents over six years of economic reforms. Results from 140 and 131 undergraduate students in 1984 and 1990, respectively, indicate that most students continue to find occupation of primary importance to self-definition. (SLD)

  18. The Impact of Social Context on the Identity-Formation Process of Norwegian Late Adolescents.

    ERIC Educational Resources Information Center

    Danielson, Lene M.; Lorem, Astrid E.; Kroger, Jane

    2000-01-01

    Compared the identity-formation process of three groups of Norwegian late adolescents: university students, employed youths, and unemployed youths. Interview data indicated that all groups considered work of primary importance to sense of identity. Three factors initiated identity transitions differently across the groups: qualities of vocational…

  19. The Professional Competence Formation in the Training Process in Higher Educational Institution

    ERIC Educational Resources Information Center

    Burganova, Roza I.; Abdugalina, Sairan E.; Shaiheslyamova, Kazyna O.

    2016-01-01

    The article is devoted to the problem of professional competence formation in the specialists' training process at the university in contemporary socio-economic and socio-cultural conditions originating in the Republic of Kazakhstan. The emphasis is laid on new scientific and pedagogical approaches to its solution. Special attention is paid to the…

  20. An Exploration of the Process of Ideological Identity Formation in Young Rural Adolescents.

    ERIC Educational Resources Information Center

    Manners, Pamela A.; Smart, David J.

    This paper explores the process of identity formation as related to adolescents' level of moral development, race, sex, and family configuration. Ego identity was operationalized into four identity statuses based on an adolescent's reported degree of exploration and goal commitment in the areas of occupation, religion, politics, and philosophy…

  1. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction

    PubMed Central

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K.

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique. PMID:26812153

  2. Deciphering Parameter Sensitivity in the BvgAS Signal Transduction.

    PubMed

    Mapder, Tarunendu; Talukder, Srijeeta; Chattopadhyay, Sudip; Banik, Suman K

    2016-01-01

    To understand the switching of different phenotypic phases of Bordetella pertussis, we propose an optimized mathematical framework for signal transduction through BvgAS two-component system. The response of the network output to the sensory input has been demonstrated in steady state. An analysis in terms of local sensitivity amplification characterizes the nature of the molecular switch. The sensitivity analysis of the model parameters within the framework of various correlation coefficients helps to decipher the contribution of the modular structure in signal propagation. Once classified, the model parameters are tuned to generate the behavior of some novel strains using simulated annealing, a stochastic optimization technique.

  3. Bromate ion formation in dark chlorination and ultraviolet/chlorination processes for bromide-containing water.

    PubMed

    Huang, Xin; Gao, Naiyun; Deng, Yang

    2008-01-01

    Bormate (BrO3(-)) is a carcinogenic chemical produced in ozonation or chlorination of bromide-containing water. Although its formation in seawater with or without sunlight has been previously investigated, the formation of bromate in dilute solutions, particularly raw water for water treatment plant, is unknown. In this article, the results of bench scale tests to measure the formation rates of bromate formation in dilute solutions, including de-ionized water and raw water from Yangtze River, were presented in dark chlorination and ultraviolet (UV)/chlorination processes. And the effects of initial pH, initial concentration of NaOCl, and UV light intensity on bromate formation in UV/chlorination of the diluted solutions were investigated. Detectable bromate was formed in dark chlorination of the two water samples with a relatively slow production rate. Under routine disinfecting conditions, the amount of formed bromate is not likely to exceed the national standards (10 microg/L). UV irradiation enhanced the decay of free chlorine, and, simultaneously, 6.6%--32% of Br was oxidized to BrO3(-). And the formation of bromate exhibited three stages: rapid stage, slow stage and plateau. Under the experimental conditions (pH = 4.41--11.07, Ccl2 = 1.23--4.50 mg/L), low pH and high chlorine concentration favored the generation of bromate. High light intensity promoted the production rate of bromate, but decreased its total generation amount due to acceleration of chlorine decomposition.

  4. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    PubMed

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparative investigation of Au nano-particle formation process dependent upon various protective agents

    NASA Astrophysics Data System (ADS)

    Eitoku, Takeshi; Taniguchi, Kazuya; Nakazato, Yuta; Ono, Shunichi; Katayama, Kenji

    2010-01-01

    Formation process of gold nanoparticles was investigated by near-field heterodyne transient grating method. In the absence of the protective agents, although the diffusion of H[AuICl2] could be observed after the photo-reduction of H[AuIIICl4], the diffusion of nanoparticle-seeds was not observed. On the other hand, in the presence of the protective agents, the diffusion of a complex molecule (Au and protective agent) and nanoparticle-seeds could be observed. From these results, it was found that enough amount of the complex is essential for the nanoparticle formation. We also investigated the formation process with four different chemicals as a protective agent. The hydrodynamic radius of nanoparticle-seeds generated in the poly(vinyl pyrrolidone) and TritonX-100 solutions were larger than those generated in the Tween 20 and Brij 58 solutions. The former two have hydrophilic chain in the molecular structure; on the other hand, the latter two have hydrophobic alkyl chain. Based on those facts, we concluded that the interaction between the chains of the complex molecule plays an important role in the nanoparticle formation process.

  6. The Policy Formation Process: A Conceptual Framework for Analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fuchs, E. F.

    1972-01-01

    A conceptual framework for analysis which is intended to assist both the policy analyst and the policy researcher in their empirical investigations into policy phenomena is developed. It is meant to facilitate understanding of the policy formation process by focusing attention on the basic forces shaping the main features of policy formation as a dynamic social-political-organizational process. The primary contribution of the framework lies in its capability to suggest useful ways of looking at policy formation reality. It provides the analyst and the researcher with a group of indicators which suggest where to look and what to look for when attempting to analyze and understand the mix of forces which energize, maintain, and direct the operation of strategic level policy systems. The framework also highlights interconnections, linkage, and relational patterns between and among important variables. The framework offers an integrated set of conceptual tools which facilitate understanding of and research on the complex and dynamic set of variables which interact in any major strategic level policy formation process.

  7. Mechanism of hologram formation in fixation-free rehalogenating bleaching processes.

    PubMed

    Neipp, Cristian; Pascual, Inmaculada; Beléndez, Augusto

    2002-07-10

    The mechanism of hologram formation in fixation-free rehalogenating bleaching processes have been treated by different authors. The experiments carried out on Agfa 8E75 HD plates led to the conclusion that material transfer from the exposed to the unexposed zones is the main mechanism under theprocess. We present a simple model that explains the mechanism of hologram formation inside the emulsion. Also quantitative data obtained using both Agfa 8E75 HD and Slavich PFG-01 fine-grained red-sensitive emulsions are given and good agreement between theory and experiments are found.

  8. Study of the formation, prevention, and recovery of plutonium from plutonium esters in the Purex process

    SciTech Connect

    Gray, L. W.; Burney, G. A.

    1981-01-01

    The Savannah River Plant uses the basic Purex process to separate /sup 239/Pu from /sup 238/U and fission products. Dark-brown, dense solids containing up to 30% Pu have previously occurred in rotameters in the plutonium finishing operations. The kinetics of formation of this mixture of DBP- and MBP-Pu esters suggest two methods to prevent the formation of the solids. A selective dissolution method using NaOH metathesis has been developed to separate the phosphate ester from the plutonium before dissolution of the residual plutonium hydroxide in a HNO/sub 3/-HF medium.

  9. Low-energy electron excitation effect on formation of graphene nanocrystallites during carbon film growth process

    NASA Astrophysics Data System (ADS)

    Chen, Wencong; Zhang, Xi; Diao, Dongfeng

    2017-09-01

    We report a low-energy electron excitation effect on the formation of graphene nanocrystallites embedded in carbon films in an electron cyclotron resonance plasma. In this work, carbon films were deposited at different irradiation electron energies and fluxes monitored using a retarding field energy analyzer, while the deposition temperature was measured using an infrared thermometer. We found that the size and concentration of graphene nanocrystallites strongly depend on the irradiation electron energy and the electron flux but not the temperature, which indicates that the electron excitation effect of the covalent bonds dominates the formation process of these nanocrystallites. This finding shed light on the new fabrication method of 2D materials.

  10. Essential processes for cognitive behavioral clinical supervision: Agenda setting, problem-solving, and formative feedback.

    PubMed

    Cummings, Jorden A; Ballantyne, Elena C; Scallion, Laura M

    2015-06-01

    Clinical supervision should be a proactive and considered endeavor, not a reactive one. To that end, supervisors should choose supervision processes that are driven by theory, best available research, and clinical experience. These processes should be aimed at helping trainees develop as clinicians. We highlight 3 supervision processes we believe should be used at each supervision meeting: agenda setting, encouraging trainee problem-solving, and formative feedback. Although these are primarily cognitive-behavioral skills, they can be helpful in combination with other supervision models. We provide example dialogue from supervision exchanges, and discuss theoretical and research support for these processes. Using these processes not only encourages trainee development but also models for them how to use the same processes and approaches with clients.

  11. Processes underlying developmental reversals in false-memory formation: comment on Brainerd, Reyna, and Ceci (2008).

    PubMed

    Ghetti, Simona

    2008-09-01

    C. J. Brainerd, V. F. Reyna, and S. J. Ceci (2008) reviewed compelling evidence of developmental reversals in false-memory formation (i.e., younger children exhibit lower false-memory rates than do older children and adults) and proposed that this phenomenon depends on the development of gist processing (i.e., the ability to identify and process the semantic theme of word lists, events, etc.). A full understanding of development reversals, however, cannot be achieved without further characterizing the role played by complementary or opposing processes. Suggestions for future research are made from this perspective.

  12. Formation of insoluble organic matter in type-1 and -2 chondrites: Radiolytic or thermal processes?

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Orthous-Daunay, F.; Beck, P.; Bonal, L.; Brunetto, R.; Dartois, E.; Pino, T.; Montagnac, G.; Rouzaud, J.; Engrand, C.; Duprat, J.

    2014-07-01

    Insoluble organic matter (IOM) extracted from primitive chondrites comes in the form of a polyaromatic solid with a structure and composition resembling that of terrestrial kerogens. It bears large D/H and ^{15}N/^{14}N isotopic ratios that point to a formation in a cold environment and ion-molecule reactions. However, the nature of the chemical and physical processes that led to its formation is still actively discussed: formation in the parent body by slight thermal metamorphism [1], inheritance from interstellar medium [2], or formation in the upper layer of the protosolar disk [3]. Post-accretional evolution of organic matter has also emerged as a critical issue, as it may disturb or even obscure pre-accretional information. In type 1 and 2 chondrites, evidence of short duration thermal heating of OM has been found using a variety of techniques [4]. In order to unravel pre-accretional from post-accretional processes, we have performed a survey of the composition and structure of IOM on a series of 27 CR, CM, CI, and ungrouped C2 carbonaceous chondrites (Tagish Lake, Bells, Essebi, Acfer 094) using infrared and multi-wavelength Raman micro-spectroscopy (244-, 514-, and 785-nm laser excitations [5]). Our results show that chondritic IOM from PCA 91008 (CM2), WIS 91600 (CM2), QUE 93005 (CM2), Tagish Lake (C2 ungrouped), and possibly Cold Bokkeveld (CM2) has been subjected to the past action of short-duration thermal metamorphism, presumably triggered by impacts. The IOM in most of the CM chondrites that experienced moderate to heavy aqueous alteration may have been slightly modified by collision-induced heating. Even IOM from chondrites that escaped significant thermal metamorphism (e.g., the most primitive CR chondrites) displays Raman characteristics consistent with a formation by thermal processing. This process may have happened either in the protosolar disk or in the parent body. However, an alternative energetic process to thermal heating is ion irradiation

  13. Formation of nitroaromatic compounds in advanced oxidation processes: Photolysis versus photocatalysis

    SciTech Connect

    Dzengel, J.; Theurich, J.; Bahnemann, D.W.

    1999-01-15

    There is a growing demand for efficient treatment of organic polluted wastewaters by advanced oxidation processes (AOPs). Besides optimization of the processes, the detailed understanding of degradation mechanisms and interactions of organic pollutants with inorganic substrates is important for technical applications of AOPs. Therefore, the aim of the present study was to investigate the influence of nitrate ions on the photooxidation of phenol for various AOPs at different pH values. Three different oxidation processes were compared in these studies: direct photolysis, TiO{sub 2}/UV, and H{sub 2}O{sub 2}/UV. Special emphasis has been laid on the analysis of byproducts especially on the formation of nitroaromatic compounds. The formation of intermediates as well as the depletion of phenol were monitored by HPLC technique. The total organic carbon content, TOC, was measured to monitor the mineralization. Highest degradation rates and lowest concentrations of intermediates were observed with TiO{sub 2}/UV being the AOP. Formation of highly toxic nitrophenols was only observed when homogeneous AOPs were employed. For the TiO{sub 2}/UV process no formation of Nitroaromatic byproducts occurred. At pH 5 formation of nitrophenols was observed employing direct photolysis in the presence of NO{sub 2}{sup {minus}}, while with H{sub 2}O{sub 2}/UV nitrophenols were detected only when the concentration of NO{sub 2}{sup {minus}} was higher than that of H{sub 2}O{sub 2}. At pH 11 no nitroaromatic intermediates were found for any AOPs compared in this study.

  14. Nucleation versus spinodal decomposition in phase formation processes in multicomponent solutions

    NASA Astrophysics Data System (ADS)

    Schmelzer, Jürn W. P.; Abyzov, Alexander S.; Möller, Jörg

    2004-10-01

    In the present paper, some further results of application of the generalized Gibbs' approach [J. W. P. Schmelzer et al., J. Chem. Phys. 112, 3820 (2000); 114, 5180 (2001); 119, 6166 (2003)] to describing new-phase formation processes are outlined. The path of cluster evolution in size and composition space is determined taking into account both thermodynamic and kinetic factors. The basic features of these paths of evolution are discussed in detail for a simple model of a binary mixture. According to this analysis, size and composition of the clusters of the newly evolving phase change in an unexpected way which is qualitatively different as compared to the classical picture of nucleation-growth processes. As shown, nucleation (i.e., the first stage of cluster formation starting from metastable initial states) exhibits properties resembling spinodal decomposition (the size remains nearly constant while the composition changes) although the presence of an activation barrier distinguishes the nucleation process from true spinodal decomposition. In addition, it is shown that phase formation both in metastable and unstable initial states near the classical spinodal may proceed via a passage of a ridge of the thermodynamic potential with a finite work of the activation barrier even though (for unstable initial states) the value of the work of critical cluster formation (corresponding to the saddle point of the thermodynamic potential) is zero. This way, it turns out that nucleation concepts—in a modified form as compared with the classical picture—may govern also phase formation processes starting from unstable initial states. In contrast to the classical Gibbs' approach, the generalized Gibbs' method provides a description of phase changes both in binodal and spinodal regions of the phase diagram and confirms the point of view assuming a continuity of the basic features of the phase transformation kinetics in the vicinity of the classical spinodal curve.

  15. Statistical Behavior of Formation Process of Magnetic Vortex State in Ni80Fe20 Nanodisks

    SciTech Connect

    Im, Mi-Young; Fischer, Peter; Keisuke, Yamada; Kasai, Shinya

    2011-01-14

    Magnetic vortices in magnetic nanodots, which are characterized by an in-plane (chirality) and an out-of-plane (polarity) magnetizations, have been intensively attracted because of their high potential for technological application to data storage and memory scheme as well as their scientific interest for an understanding of fundamental physics in magnetic nanostructures. Complete understanding of the formation process of vortex state in magnetic vortex systems is very significant issue to achieve storage and memory technologies using magnetic vortices and understand intrinsic physical properties in magnetic nanostructures. In our work, we have statistically investigated the formation process of vortex state in permalloy (Py, Ni{sub 80}Fe{sub 20}) nanodisks through the direct observation of vortex structure utilizing a magnetic transmission soft X-ray microscopy (MTXM) with a high spatial resolution down to 20 nm. Magnetic imaging in Py nanodots was performed at the Fe L{sub 3} (707 eV) absorption edge. Figure 1 shows in-plane and out-of-plane magnetic components observed in 40 nm thick nanodot arrays with different dot radius of r = 500 and 400 nm, respectively. Vortex chirality, either clockwise (CW) or counter-clockwise (CCW), and polarity, either up or down, are clearly visible in both arrays. To investigate the statistical behavior in formation process of the vortex state, the observation of vortex structure at a remanant state after saturation of nanodots by an external magnetic field of 1 kOe has been repeatedly performed over 100 times for each array. The typical MTXM images of vortex chirality taken in two successive measurements together with their overlapped images in nanodot arrays of r = 500 and 400 nm are displayed in Fig. 2. Within the statistical measurement, the formation process of chirality of either CW or CCW is quite stochastic in each nanodot. Similar behavior is also witnessed in the formation of vortex polarity observed in consecutive

  16. The tropopause inversion layer at midlatitudes: Formation processes and relation to stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P. M.; Wirth, V.

    2016-12-01

    Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.

  17. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants.

    PubMed

    Edlinger, Bernd; Schlögelhofer, Peter

    2011-03-01

    Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.

  18. Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations

    SciTech Connect

    V.S. Drozhzhin; M.Ya. Shpirt; L.D. Danilin; M.D. Kuvaev; I.V. Pikulin; G.A. Potemkin; S.A. Redyushev

    2008-04-15

    The main parameters of aluminosilicate microspheres formed at thermal power stations in Russia were studied. These parameters are responsible for the prospective industrial application of these microspheres. A comparative analysis of the properties of mineral coal components, the conditions of coal combustion, and the effects of chemical and phase-mineralogical compositions of mineral impurities in coals from almost all of the main coal deposits on the formation of microspheres was performed. The effects of thermal treatment conditions on gas evolution processes in mineral particles and on the fraction of aluminosilicate microspheres in fly ash were considered. It was found that the yield of microspheres was higher in pulverized coal combustion in furnaces with liquid slag removal, all other factors being equal. The regularities of microsphere formation were analyzed, and the mechanism of microsphere formation in fly ash during the combustion of solid fuels was considered.

  19. Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing.

    PubMed

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V

    2014-02-10

    In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

  20. The formation process of the He I lambda 10830 line in cool giant stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.

    1993-01-01

    The Final Report on the formation process of the He I lambda 10830 line in cool giant stars is presented. The research involves observing a sample of cool giant stars with ROSAT. These stars were selected from the list of bright stars which display He I lambda 10830 in absorption or emission and lie on the cool side of the coronal dividing line. With measured x ray fluxes or upper limits measured by the Position Sensitive Proportional Counter (PSPC), the role x rays play in the formation of this important line was investigated using the non-LTE radiative transfer code PANDORA. Hydrodynamic calculations were performed to investigate the contributions of acoustic wave heating in the formation of this line as well.

  1. Spontaneous formation of the unlocked state of the ribosome is a multistep process.

    PubMed

    Munro, James B; Altman, Roger B; Tung, Chang-Shung; Cate, Jamie H D; Sanbonmatsu, Kevin Y; Blanchard, Scott C

    2010-01-12

    The mechanism of substrate translocation through the ribosome is central to the rapid and faithful translation of mRNA into proteins. The rate-limiting step in translocation is an unlocking process that includes the formation of an "unlocked" intermediate state, which requires the convergence of large-scale conformational events within the ribosome including tRNA hybrid states formation, closure of the ribosomal L1 stalk domain, and subunit ratcheting. Here, by imaging of the pretranslocation ribosome complex from multiple structural perspectives using two- and three-color single-molecule fluorescence resonance energy transfer, we observe that tRNA hybrid states formation and L1 stalk closure, events central to the unlocking mechanism, are not tightly coupled. These findings reveal that the unlocked state is achieved through a stochastic-multistep process, where the extent of conformational coupling depends on the nature of tRNA substrates. These data suggest that cellular mechanisms affecting the coupling of conformational processes on the ribosome may regulate the process of translation elongation.

  2. Spontaneous formation of the unlocked state of the ribosome is a multistep process

    PubMed Central

    Munro, James B.; Altman, Roger B.; Tung, Chang-Shung; Cate, Jamie H. D.; Sanbonmatsu, Kevin Y.; Blanchard, Scott C.

    2010-01-01

    The mechanism of substrate translocation through the ribosome is central to the rapid and faithful translation of mRNA into proteins. The rate-limiting step in translocation is an unlocking process that includes the formation of an “unlocked” intermediate state, which requires the convergence of large-scale conformational events within the ribosome including tRNA hybrid states formation, closure of the ribosomal L1 stalk domain, and subunit ratcheting. Here, by imaging of the pretranslocation ribosome complex from multiple structural perspectives using two- and three-color single-molecule fluorescence resonance energy transfer, we observe that tRNA hybrid states formation and L1 stalk closure, events central to the unlocking mechanism, are not tightly coupled. These findings reveal that the unlocked state is achieved through a stochastic-multistep process, where the extent of conformational coupling depends on the nature of tRNA substrates. These data suggest that cellular mechanisms affecting the coupling of conformational processes on the ribosome may regulate the process of translation elongation. PMID:20018653

  3. Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.

    PubMed

    Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A

    2016-05-24

    Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.

  4. Dynamics of Faceted Nanoparticles Formation in a Crystalline Matrix During Ion Implantation Processing.

    PubMed

    Li, Kun-Dar

    2016-02-01

    The faceted nanoparticle synthesized by ion implantation, such as Zn, Cu or Ag nanoparticles, is one of the promising materials for the next generation of optical devices. To understand and better control the manufacturing processes of ion implantation, a theoretical model is applied to investigate the formation and evolution of faceted nanoparticles under various experimental conditions of implantation processing. In this study, the mechanisms of the anisotropic interfacial energy and kinetics with different ion distributions are taken into consideration to demonstrate the role of the crystallographic symmetry, ion energy and temperature on the faceted nanoparticles formation in a crystalline matrix. As presented in the numerical results, the morphological shape of the nanoparticles is mainly affected by the crystallographic symmetry, while the distribution of the precipitates is principally determined by the ion energy. For the condition of high-temperature implantation, a high mobility of ions causes the characteristic length of nanostructures to increase and creates a coarsening morphology of nanoparticles. It is attributed to a longer diffusion distance during the nucleation and growth processes. This model can be widely used for the predictions of the nanostructures formation with various ion implantation processes.

  5. Elucidation of an Iterative Process of Carbon-Carbon Bond Formation of Prebiotic Significance

    NASA Astrophysics Data System (ADS)

    Loison, Aurélie; Dubant, Stéphane; Adam, Pierre; Albrecht, Pierre

    2010-12-01

    Laboratory experiments carried out under plausible prebiotic conditions (under conditions that might have occurred at primitive deep-sea hydrothermal vents) in water and involving constituents that occur in the vicinity of submarine hydrothermal vents (e.g., CO, H2S, NiS) have disclosed an iterative Ni-catalyzed pathway of C-C bond formation. This pathway leads from CO to various organic molecules that comprise, notably, thiols, alkylmono- and disulfides, carboxylic acids, and related thioesters containing up to four carbon atoms. Furthermore, similar experiments with organic compounds containing various functionalities, such as thiols, carboxylic acids, thioesters, and alcohols, gave clues to the mechanisms of this novel synthetic process in which reduced metal species, in particular Ni(0), appear to be the key catalysts. Moreover, the formation of aldehydes (and ketones) as labile intermediates via a hydroformylation-related process proved to be at the core of the chain elongation process. Since this process can potentially lead to organic compounds with any chain length, it could have played a significant role in the prebiotic formation of lipidic amphiphilic molecules such as fatty acids, potential precursors of membrane constituents.

  6. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  7. Deciphering the evolutionary history of open and closed mitosis.

    PubMed

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.

  8. Deciphering the evolutionary history of open and closed mitosis

    PubMed Central

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-01-01

    Summary The origin of the nucleus at the prokaryote to eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the "closed" mitosis of some yeast but loses its integrity in the "open" mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and document patterns of mitotic nuclear variation within and among species and map them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. PMID:25458223

  9. Envirotyping for deciphering environmental impacts on crop plants.

    PubMed

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  10. Applications of all optical signal processing for advanced optical modulation formats

    NASA Astrophysics Data System (ADS)

    Nuccio, Scott R.

    signal processing may play a role in the future development of more efficient optical transmission systems. The hope is that performing signal processing in the optical domain may reduce optical-to-electronic conversion inefficiencies, eliminate bottlenecks and take advantage of the ultrahigh bandwidth inherent in optics. While 40 to 50 Gbit/s electronic components are the peak of commercial technology and 100 Gbit/s capable RF components are still in their infancy, optical signal processing of these high-speed data signals may provide a potential solution. Furthermore, any optical processing system or sub-system must be capable of handling the wide array of data formats and data rates that networks may employ. It is also worth noting that future networks may use a combination of data-rates and formats while it has been estimated that "we may start seeing the first commercial use of Terabit Ethernets by 2015". -Robert Metcalfe. To this end, the work presented in this Ph.D. dissertation is aimed at addressing the issue of optical processing for advanced optical modulation formats. All optical multiplexing and demultiplexing of Pol-MUX and phase and QAM encoded signals at the 100 Gbit/s Ethernet standard is addressed. The creation and development of an extremely large continuously tunable all-optical delay capable of handling a variety of modulation formats and data rates is presented. As optical delays are viewed as a critical element to achieve efficient and reconfigurable signal processing, the presented delay line is also utilized to enable a tunable packet buffer capable of handling data packets of varying rate, varying size, and multiple modulation formats.

  11. Motivational influences on impression formation: outcome dependency, accuracy-driven attention, and individuating processes.

    PubMed

    Neuberg, S L; Fiske, S T

    1987-09-01

    How might being outcome dependent on another person influence the processes that one uses to form impressions of that person? We designed three experiments to investigate this question with respect to short-term, task-oriented outcome dependency. In all three experiments, subjects expected to interact with a young man formerly hospitalized as a schizophrenic, and they received information about the person's attributes in either written profiles or videotapes. In Experiment 1, short-term, task-oriented outcome dependency led subjects to use relatively individuating processes (i.e., to base their impressions of the patient on his particular attributes), even under conditions that typically lead subjects to use relatively category-based processes (i.e., to base their impressions on the patient's schizophrenic label). Moreover, in the conditions that elicited individuating processes, subjects spent more time attending to the patient's particular attribute information. Experiment 2 demonstrated that the attention effects in Experiment 1 were not merely a function of impression positivity and that outcome dependency did not influence the impression formation process when attribute information in addition to category-level information was unavailable. Finally, Experiment 3 manipulated not outcome dependency but the attentional goal of forming an accurate impression. We found that accuracy-driven attention to attribute information also led to individuating processes. The results of the three experiments indicate that there are important influences of outcome dependency on impression formation. These results are consistent with a model in which the tendency for short-term, task-oriented outcome dependency to facilitate individuating impression formation processes is mediated by an increase in accuracy-driven attention to attribute information.

  12. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    DOE PAGES

    Alberi, Kirstin; Scarpulla, M. A.

    2016-06-21

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-statemore » excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. Furthermore, this effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.« less

  13. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    SciTech Connect

    Alberi, Kirstin; Scarpulla, M. A.

    2016-06-21

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-state excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. Furthermore, this effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.

  14. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    PubMed Central

    Alberi, K.; Scarpulla, M. A.

    2016-01-01

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-state excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. This effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition. PMID:27323863

  15. Suppression of compensating native defect formation during semiconductor processing via excess carriers

    NASA Astrophysics Data System (ADS)

    Alberi, K.; Scarpulla, M. A.

    2016-06-01

    In many semiconductors, compensating defects set doping limits, decrease carrier mobility, and reduce minority carrier lifetime thus limiting their utility in devices. Native defects are often responsible. Suppressing the concentrations of compensating defects during processing close to thermal equilibrium is difficult because formation enthalpies are lowered as the Fermi level moves towards the majority band edge. Excess carriers, introduced for example by photogeneration, modify the formation enthalpy of semiconductor defects and thus can be harnessed during crystal growth or annealing to suppress defect populations. Herein we develop a rigorous and general model for defect formation in the presence of steady-state excess carrier concentrations by combining the standard quasi-chemical formalism with a detailed-balance description that is applicable for any defect state in the bandgap. Considering the quasi-Fermi levels as chemical potentials, we demonstrate that increasing the minority carrier concentration increases the formation enthalpy for typical compensating centers, thus suppressing their formation. This effect is illustrated for the specific example of GaSb. While our treatment is generalized for excess carrier injection or generation in semiconductors by any means, we provide a set of guidelines for applying the concept in photoassisted physical vapor deposition.

  16. Kinetics of the formation of radicals in meat during high pressure processing.

    PubMed

    Bolumar, Tomas; Skibsted, Leif H; Orlien, Vibeke

    2012-10-15

    The kinetics of the formation of radicals in meat by high pressure processing (HPP) has been described for the first time. A threshold for the radicals to form at 400 MPa at 25 °C and at 500 MPa at 5 °C has been found. Above this threshold, an increased formation of radicals was observed with increasing pressure (400-800 MPa), temperature (5-40 °C) and time (0-60 min). The volume of activation (ΔV(#)) was found to have the value -17 ml mol(-1). The energy of activation (E(a)) was calculated to be 25-29 kJ mol(-1) within the pressure range (500-800 MPa) indicating high independence on the temperature at high pressures whereas the reaction was strongly dependent at atmospheric pressure (E(a)=181 kJ mol(-1)). According to the effect of the processing conditions on the reaction rate, three groups of increasing order of radical formation were established: (1) 55 °C at 0.1 MPa, (2) 500 and 600 MPa at 25 °C and 65 °C at 0.1 MPa, and (3) 700 MPa at 25 °C and 75 °C at 0.1 MPa. The implication of the formation of radicals as initiators of lipid oxidation under HPP is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. FTOOLS - A New Package of Programs to Manipulate and Process FITS Format Files

    NASA Astrophysics Data System (ADS)

    Pence, W. D.

    1992-05-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is developing a comprehensive set of programs to manipulate and analyze files in FITS (Flexible Image Transport System) format. One consequence of this project is to greatly expand the usage of FITS from simply a transport or interchange format to a convenient and versatile format to be used directly for data reduction and analysis. The FTOOLS utilities are specifically being written to process the data from the Astro-D X-Ray satellite, but the tools themselves are very general and can be used to analyze any FITS format file. These utilities are built on top of the FITSIO subroutine library and are written in ANSI standard Fortran or C. The software is easily portable to different processing environments and will be available as an IRAF package as well as a set of stand-alone set of executable tasks on VMS or Unix systems. The current status of the FTOOLS project will be described along with plans for future enhancements.

  18. The indication of Martian gully formation processes by slope-area analysis

    USGS Publications Warehouse

    Conway, S.J.; Balme, M.R.; Murray, J.B.; Towner, M.C.; Okubo, C.H.; Grindrod, P.M.

    2011-01-01

    The formation process of recent gullies on Mars is currently under debate. This study aims to discriminate between the proposed formation processes - pure water flow, debris flow and dry mass wasting - through the application of geomorphological indices commonly used in terrestrial geomorphology. High-resolution digital elevation models (DEMs) of Earth and Mars were used to evaluate the drainage characteristics of small slope sections. Data from Earth were used to validate the hillslope, debris-flow and alluvial process domains previously found for large fluvial catchments on Earth, and these domains were applied to gullied and ungullied slopes on Mars. In accordance with other studies, our results indicate that debris flow is one of the main processes forming the Martian gullies that were being examined. The source of the water is predominantly distributed surface melting, not an underground aquifer. Evidence is also presented indicating that other processes may have shaped Martian crater slopes, such as ice-assisted creep and solifluction, in agreement with the proposed recent Martian glacial and periglacial climate. Our results suggest that, within impact craters, different processes are acting on differently oriented slopes, but further work is needed to investigate the potential link between these observations and changes in Martian climate. ?? The Geological Society of London 2011.

  19. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.

    PubMed

    Zeng, Lanting; Zhou, Ying; Gui, Jiadong; Fu, Xiumin; Mei, Xin; Zhen, Yunpeng; Ye, Tingxiang; Du, Bing; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2016-06-22

    Indole is a characteristic volatile constituent in oolong tea. Our previous study indicated that indole was mostly accumulated at the turn over stage of oolong tea manufacturing process. However, formation of indole in tea leaves remains unknown. In this study, one tryptophan synthase α-subunit (TSA) and three tryptophan synthase β-subunits (TSBs) from tea leaves were isolated, cloned, sequenced, and functionally characterized. Combination of CsTSA and CsTSB2 recombinant protein produced in Escherichia coli exhibited the ability of transformation from indole-3-glycerol phosphate to indole. CsTSB2 was highly expressed during the turn over process of oolong tea. Continuous mechanical damage, simulating the turn over process, significantly enhanced the expression level of CsTSB2 and amount of indole. These suggested that accumulation of indole in oolong tea was due to the activation of CsTSB2 by continuous wounding stress from the turn over process. Black teas contain much less indole, although wounding stress is also involved in the manufacturing process. Stable isotope labeling indicated that tea leaf cell disruption from the rolling process of black tea did not lead to the conversion of indole, but terminated the synthesis of indole. Our study provided evidence concerning formation of indole in tea leaves for the first time.

  20. Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model.

    PubMed

    Quirino, Betania F; Bent, Andrew F

    2003-11-01

    SUMMARY The last decade has witnessed steady progress in deciphering the molecular basis of plant disease resistance and pathogen virulence. Although contributions have been made using many different plant and pathogen species, studies of the interactions between Arabidopsis thaliana and Pseudomonas syringae have yielded a particularly significant body of information. The present review focuses on recent findings regarding R gene products and the guard hypothesis, RAR1/SGT1 and other examples where protein processing activity is implicated in disease resistance or susceptibility, the use of microarray expression profiling to generate information and experimental leads, and important molecular- and genome-level discoveries regarding P. syringae effectors that mediate bacterial virulence. The development of the Arabidopsis-Pseudomonas model system is also reviewed briefly, and we close with a discussion of characteristics to consider when selecting other pathosystems as experimentally tractable models for future research.

  1. Deciphering the enigmatic face: the importance of facial dynamics in interpreting subtle facial expressions.

    PubMed

    Ambadar, Zara; Schooler, Jonathan W; Cohn, Jeffrey F

    2005-05-01

    Most studies investigating the recognition of facial expressions have focused on static displays of intense expressions. Consequently, researchers may have underestimated the importance of motion in deciphering the subtle expressions that permeate real-life situations. In two experiments, we examined the effect of motion on perception of subtle facial expressions and tested the hypotheses that motion improves affect judgment by (a) providing denser sampling of expressions, (b) providing dynamic information, (c) facilitating configural processing, and (d) enhancing the perception of change. Participants viewed faces depicting subtle facial expressions in four modes (single-static, multi-static, dynamic, and first-last). Experiment 1 demonstrated a robust effect of motion and suggested that this effect was due to the dynamic property of the expression. Experiment 2 showed that the beneficial effect of motion may be due more specifically to its role in perception of change. Together, these experiments demonstrated the importance of motion in identifying subtle facial expressions.

  2. Processes of Formation of Spheroidal Concretions and Inferences for "Blueberries" in Meridiani Planum Sediments

    NASA Technical Reports Server (NTRS)

    Coleman, Max

    2005-01-01

    The MER Opportunity Athena Science team has described spheroidal hematite nodules in sediments at Meridiani Planum on Mars [1]. They were informally referred to as "Blueberries" in the initial press releases and for brevity that is the name to be used in this abstract. Not all spheroidal objects in sediments are nodular concretions, but this paper will discuss the diagenetic processes possibly relevant to understanding the origin of the Blueberries. There are many occurrences of spheroidal diagenetic concretions in terrestrial sediments and detailed work has been done to understand the processes of their formation. In particular, it is possible to reconstruct the controls on their shapes and compositions, both mineral and chemical. Although there may not be good analogs for the Meridiani Planum hematite spherules on Earth, it may be possible to deduce the former environmental conditions that led to their formation and whether they might retain (or even be) biosignatures.

  3. HPDB-Haskell library for processing atomic biomolecular structures in Protein Data Bank format.

    PubMed

    Gajda, Michał Jan

    2013-11-23

    Protein DataBank file format is used for the majority of biomolecular data available today. Haskell is a lazy functional language that enjoys a high-level class-based type system, a growing collection of useful libraries and a reputation for efficiency. I present a fast library for processing biomolecular data in the Protein Data Bank format. I present benchmarks indicating that this library is faster than other frequently used Protein Data Bank parsing programs. The proposed library also features a convenient iterator mechanism, and a simple API modeled after BioPython. I set a new standard for convenience and efficiency of Protein Data Bank processing in a Haskell library, and release it to open source.

  4. Nanoparticle formation in the expansion process of a laser ablated plume

    NASA Astrophysics Data System (ADS)

    Takiya, T.; Umezu, I.; Yaga, M.; Han, M.

    2007-04-01

    In the present article, we describe the process of nanoparticle formation during pulsed laser ablation in an inert gas atmosphere. We investigated the interaction between laser ablated plumes and shock waves using one dimensional Eulerian fluid dynamics equations combined with a rate equation relating to a classical nucleation model of supersaturated vapors. The initial values for the plume immediately after laser irradiation onto a silicon target were calculated based on stochastic thermodynamics, which was first used by Houle et al. We found a certain case wherein the rate of nanoparticle formation becomes higher when a reflected shock wave passes through the plume. In that particular case, mono-dispersed nanoparticles can be generated by carrying out nucleation and nanoparticle growth as separate processes.

  5. Process for establishing a clear horizontal borehole in a subterranean formation

    SciTech Connect

    Richards, W.L.; Henderson, R.L.; Aul, G.N.; Pauley, B.W.

    1987-09-08

    This patent describes a process for establishing a clear, generally horizontal borehole path in a subterranean formation having sloughing or caving characteristics. The process comprises the steps of: drilling a generally horizontal borehole into a subterranean formation having sloughing or caving characteristics using a drill bit and drill pipe; lubricating the drill bit and drill pipe with a mud capable of forming a cake on the borehole walls; withdrawing the drill bit and drill pipe and replacing the drill bit with a casing shoe. The cake maintains the borehole wall integrity while the drill pipe is removed from the borehole; inserting the casing shoe and drill pipe into the borehole; simultaneously inserting a liner into the generally horizontal borehole inside of the drill pipe; and removing the drill pipe and casing shoe while holding the liner within the borehole, the casing shoe passing on the outside of the liner as it is removed, the liner providing a clean path through the borehole.

  6. V(D)J recombination coding junction formation without DNA homology: processing of coding termini.

    PubMed Central

    Boubnov, N V; Wills, Z P; Weaver, D T

    1993-01-01

    Coding junction formation in V(D)J recombination generates diversity in the antigen recognition structures of immunoglobulin and T-cell receptor molecules by combining processes of deletion of terminal coding sequences and addition of nucleotides prior to joining. We have examined the role of coding end DNA composition in junction formation with plasmid substrates containing defined homopolymers flanking the recombination signal sequence elements. We found that coding junctions formed efficiently with or without terminal DNA homology. The extent of junctional deletion was conserved independent of coding ends with increased, partial, or no DNA homology. Interestingly, G/C homopolymer coding ends showed reduced deletion regardless of DNA homology. Therefore, DNA homology cannot be the primary determinant that stabilizes coding end structures for processing and joining. PMID:8413286

  7. Molecular dynamics simulations of crystal growth from melted silicon: Defect formation processes

    SciTech Connect

    Ishimaru, Manabu; Motooka, Teruaki

    1999-07-01

    Molecular dynamics calculations have been performed to simulate crystal growth from melted silicon (Si) and defect formation processes based on the ordinary Langevin equation employing the Tersoff interatomic potential. The findings of this investigation are as follows: (1) The [110] bonds at the solid-liquid interface induce the eclipsed configurations or hexagonal Si structures which stabilize microfacets composed of the {l{underscore}brace}111{r{underscore}brace} planes. (2) Defect formation during crystal growth processes is due to misorientations at the {l{underscore}brace}111{r{underscore}brace} interfaces which result in an elementary grown-in defect structure including five- and seven-member rings. (3) The elementary grown-in defect migrates in c-Si by bond-switching motions during further crystal pulling or annealing.

  8. Verbalization and imagery in the process of formation of operator labor skills

    NASA Technical Reports Server (NTRS)

    Mistyuk, V. V.

    1975-01-01

    Sensorimotor control tests show that mastering operational skills occurs under conditions that stimulate the operator to independent active analysis and summarization of current information with the goal of clarifying the signs and the integral images that are a model of the situation. Goal directed determination of such an image requires inner and external speech, activates and improves the thinking of the operator, accelerates the training process, increases its effectiveness, and enables the formation of strategies in anticipating the course of events.

  9. Verbalization and imagery in the process of formation of operator labor skills

    NASA Technical Reports Server (NTRS)

    Mistyuk, V. V.

    1975-01-01

    Sensorimotor control tests show that mastering operational skills occurs under conditions that stimulate the operator to independent active analysis and summarization of current information with the goal of clarifying the signs and the integral images that are a model of the situation. Goal directed determination of such an image requires inner and external speech, activates and improves the thinking of the operator, accelerates the training process, increases its effectiveness, and enables the formation of strategies in anticipating the course of events.

  10. Robust carrier formation process in low-band gap organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Yonezawa, Kouhei; Kamioka, Hayato; Yasuda, Takeshi; Han, Liyuan; Moritomo, Yutaka

    2013-10-01

    By means of femto-second time-resolved spectroscopy, we investigated the carrier formation process against film morphology and temperature (T) in highly-efficient organic photovoltaic, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b '] dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl

  11. Studies into the formation of PBDEs and PBDD/Fs in the iron ore sintering process.

    PubMed

    Drage, D S; Aries, E; Harrad, S

    2014-07-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and furans (PBDD/Fs) were detected in stack emissions from UK sinter plants. The sum of 36 PBDE congeners was measured at a mean concentration of 295 ng/N m(3) with a standard deviation of 96 ng/N m(3). The mean PBDD/F concentrations were 0.14 ng WHO-TEQ/m(3) (range=0.03-0.39). PBDD/F emission concentrations were approximately ten times lower than their PCDD/F homologues. To understand the possible formation mechanisms of brominated organic species in iron ore sintering, both full-scale and laboratory experiments using an experimental sintering process were carried out. A complete PBDE mass balance was undertaken for a full scale sinter plant showing that PBDEs were already present in the raw materials such as iron ores and coke breeze and that a significant proportion of the PBDE inputs were actually destroyed during the process. A number of controlled experiments were conducted using a laboratory-scale sintering apparatus (sinter pot). These were designed to investigate: (a) mass balance of PBDEs during sintering, (b) the relationship between the availability of bromide (as KBr) and PBDE emissions, and (c) the influence of the availability of both bromide and PBDEs on PBDD/F formation. As observed in the full scale plant, the PBDEs already present in the raw materials were mostly destroyed during the process (79-96%) for all sinter pot experiments. Increasing amounts of KBr in the raw sinter mix did not result in a significant increase in PBDE formation suggesting that there was no PBDE formation in sintering via de novo synthesis. No relationship was observed between PBDE inputs and PBDD/F emissions indicating that PBDEs did not act as precursors for PBDD/Fs formation. Finally, PBDD/F formation was enhanced substantially with increasing amounts of KBr suggesting that their formation mechanism was similar to that of PCDD/Fs via de novo synthesis. Copyright © 2014 Elsevier B.V. All rights

  12. Deciphering Late-Pleistocence landscape evolution: linking proxies by combining pedo-stratigraphy and luminescence dating

    NASA Astrophysics Data System (ADS)

    Kreutzer, Sebastian; Meszner, Sascha; Faust, Dominik; Fuchs, Markus

    2014-05-01

    Interpreting former landscape evolution asks for understanding the processes that sculpt such landforms by means of deciphering complex systems. For reconstructing terrestrial Quaternary environments based on loess archives this might be considered, at least, as a three step process: (1) Identifying valuable records in appropriate morphological positions in a previously defined research area, (2) analysing the profiles by field work and laboratory methods and finally (3) linking the previously considered pseudo-isolated systems to set up a comprehensive picture. Especially the first and the last step might bring some pitfalls, as it is tempting to specify single records as pseudo-isolated, closed systems. They might be, with regard to their preservation in their specific morphological position, but in fact they are part of a complex, open system. Between 2008 and 2013, Late-Pleistocene loess archives in Saxony have been intensively investigated by field and laboratory methods. Linking pedo- and luminescence dating based chronostratigraphies, a composite profile for the entire Saxonian Loess Region has been established. With this, at least, two-fold approach we tried to avoid misinterpretations that might appear when focussing on one standard profile in an open morphological system. Our contribution focuses on this multi-proxy approach to decipher the Late-Pleistocene landscape evolution in the Saxonian Loess Region. Highlighting the challenges and advantages of combining different methods, we believe that (1) this multi-proxy approach is without alternative, (2) the combination of different profiles may simplify the more complex reality, but it may be a useful generalisation to understand and reveal the stratigraphical significance of the landscape evolution in this region.

  13. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-03-16

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Since radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of

  14. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid.

    PubMed

    Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi

    2015-03-15

    Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process.

    PubMed

    Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo

    2012-01-01

    The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.

  16. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime

    NASA Astrophysics Data System (ADS)

    Mézel, C.; Hallo, L.; Souquet, A.; Breil, J.; Hébert, D.; Guillemot, F.

    2009-12-01

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been transferred successfully for the creation of biological microarrays. Recently, modeling has been used to explain parts of the ejection transfer process. No global modeling strategy is currently available. In this paper, a hydrodynamic code is utilized to model the jet formation process and estimate the constraints obeyed by the bioelements during the transfer. A self-consistent model that includes laser energy absorption, plasma formation via ablation, and hydrodynamic processes is proposed and confirmed with experimental results. Fundamental physical mechanisms via one-dimensional modeling are presented. Two-dimensional (2D) simplified solutions of the jet formation model equations are proposed. Predicted results of the model are jet existence and its velocity. The 2D simulation results are in good agreement with a simple model presented by a previous investigator.

  17. Design and process aspects of laboratory scale SCF particle formation systems.

    PubMed

    Vemavarapu, Chandra; Mollan, Matthew J; Lodaya, Mayur; Needham, Thomas E

    2005-03-23

    Consistent production of solid drug materials of desired particle and crystallographic morphologies under cGMP conditions is a frequent challenge to pharmaceutical researchers. Supercritical fluid (SCF) technology gained significant attention in pharmaceutical research by not only showing a promise in this regard but also accommodating the principles of green chemistry. Given that this technology attained commercialization in coffee decaffeination and in the extraction of hops and other essential oils, a majority of the off-the-shelf SCF instrumentation is designed for extraction purposes. Only a selective few vendors appear to be in the early stages of manufacturing equipment designed for particle formation. The scarcity of information on the design and process engineering of laboratory scale equipment is recognized as a significant shortcoming to the technological progress. The purpose of this article is therefore to provide the information and resources necessary for startup research involving particle formation using supercritical fluids. The various stages of particle formation by supercritical fluid processing can be broadly classified into delivery, reaction, pre-expansion, expansion and collection. The importance of each of these processes in tailoring the particle morphology is discussed in this article along with presenting various alternatives to perform these operations.

  18. Self-consistent modeling of jet formation process in the nanosecond laser pulse regime

    SciTech Connect

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Hebert, D.

    2009-12-15

    Laser induced forward transfer (LIFT) is a direct printing technique. Because of its high application potential, interest continues to increase. LIFT is routinely used in printing, spray generation and thermal-spike sputtering. Biological material such as cells and proteins have already been transferred successfully for the creation of biological microarrays. Recently, modeling has been used to explain parts of the ejection transfer process. No global modeling strategy is currently available. In this paper, a hydrodynamic code is utilized to model the jet formation process and estimate the constraints obeyed by the bioelements during the transfer. A self-consistent model that includes laser energy absorption, plasma formation via ablation, and hydrodynamic processes is proposed and confirmed with experimental results. Fundamental physical mechanisms via one-dimensional modeling are presented. Two-dimensional (2D) simplified solutions of the jet formation model equations are proposed. Predicted results of the model are jet existence and its velocity. The 2D simulation results are in good agreement with a simple model presented by a previous investigator.

  19. Apparatus and process to enhance the uniform formation of hollow glass microspheres

    SciTech Connect

    Schumacher, Ray F

    2013-10-01

    A process and apparatus is provided for enhancing the formation of a uniform population of hollow glass microspheres. A burner head is used which directs incoming glass particles away from the cooler perimeter of the flame cone of the gas burner and distributes the glass particles in a uniform manner throughout the more evenly heated portions of the flame zone. As a result, as the glass particles are softened and expand by a released nucleating gas so as to form a hollow glass microsphere, the resulting hollow glass microspheres have a more uniform size and property distribution as a result of experiencing a more homogenous heat treatment process.

  20. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.

    PubMed

    Gikanga, Benson; Roshan-Eisner, Devon; Ovadia, Robert; Day, Eric S; Stauch, Oliver Boris; Maa, Yuh-Fun

    2016-10-27

    Subvisible particle formation in monoclonal antibody (mAb) drug product resulting from mixing and filling operations represents a significant processing risk that can lead to filter fouling and thereby lead to process delays or failures. Several previous studies from our lab and others demonstrated the formation of subvisible particulates in mAb formulations resulting from mixing operations using some bottom-mounted mixers or stirrer bars. It was hypothesized that the stress (e.g. shear/cavitation) derived from tight clearance and/or close contact between the impeller and shaft was responsible for SvP generation. These studies, however, could not distinguish between the two surfaces without contact (tight clearance) or between two contacting surfaces (close contact). In the present study we expand on those findings and utilize small scale mixing models that are able to, for the first time, distinguish between tight clearances and tight contact. In this study we evaluated different mixer types including a top-mounted mixer, several impeller-based bottom-mounted mixers and a rotary piston pump. The impact of tight clearance/close contact on subvisible particle formation in at-scale mixing platforms was demonstrated in the gap between the impeller and drive unit as well as between the piston and the housing of the pump. Furthermore, small-scale mixing models based on different designs of magnetic stir bars which mimic the tight clearance/close contact of the manufacturing-scale mixers also induced subvisible particles in mAb formulations. Additional small-scale models which feature tight clearance but no close contact (grinding) suggested that it is the repeated grinding/contacting of the moving parts and not the presence of tight clearance in the processing equipment that is the root cause of SvP formation. When multiple mAbs, Fabs (fragment antigen binding) or non-antibody related proteins were mixed in the small-scale mixing model, for molecules investigated, it

  1. Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond

    SciTech Connect

    Chen, Li-Ju; Tai, Nyan-Hwa; Lee, Chi-Young; Lin, I-Nan.

    2007-03-15

    Effects of pretreatment on the nuclei formation of ultrananocrystalline diamond (UNCD) on Si substrates were studied. Either precoating a thin layer of titanium ({approx}400 nm) or ultrasonication pretreatment using diamond and titanium mixed powder (D and T process) enhances the nucleation process on Si substrates markedly, and the UNCD nuclei formed and fully covered the Si substrate, when deposition was processed using the microwave-plasma-enhanced chemical-vapor deposition process for 10 min. In contrast, during the same period, ultrasonication pretreatment using diamond powders (D process) can only form large UNCD clusters, which were scarcely distributed on Si substrates. The analyses using x-ray diffractometer, secondary ion mass spectroscopy, and electron spectroscopy for chemical analysis reveal that the titanium layer reacted with carbon species in the plasma, forming crystalline TiC phase, which facilitates the subsequent formation of UNCD nuclei. The beneficial effect of Ti layer on enhancing the nucleation of UNCD is presumably owing to high solubility and high diffusivity of carbon species in Ti materials, as compared with those of Si materials.

  2. The becoming: students' reflections on the process of professional identity formation in medical education.

    PubMed

    Sharpless, Joanna; Baldwin, Nell; Cook, Robert; Kofman, Aaron; Morley-Fletcher, Alessio; Slotkin, Rebecca; Wald, Hedy S

    2015-06-01

    Professional identity formation (PIF) within medical education is the multifaceted, individualized process through which students develop new ways of being in becoming physicians. Personal backgrounds, values, expectations, interests, goals, relationships, and role models can all influence PIF and may account for diversity of both experience and the active constructive process of professional formation. Guided reflection, including reflective writing, has been used to enhance awareness and meaning making within the PIF process for both students and medical educators and to shed light on what aspects of medical education are most constructive for healthy PIF. Student voices about the PIF process now emerging in the literature are often considered and interpreted by medical educators within qualitative studies or in broad theoretical overviews of PIF.In this Commentary, the authors present a chorus of individual student voices from along the medical education trajectory. Medical students (years 1-4) and a first-year resident in pediatrics respond to a variety of questions based on prevalent PIF themes extracted from the literature to reflect on their personal experiences of PIF. Topics queried included pretending in medical education, role of relationships, impact of formal and informal curricula on PIF (valuable aspects as well as suggestions for change), and navigating and developing interprofessional relationships and identities. This work aims to vividly illustrate the diverse and personal forces at play in individual students' PIF processes and to encourage future pedagogic efforts supporting healthy, integrated PIF in medical education.

  3. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    PubMed

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.

  4. Tectonic and Aqueous Processes in the Formation of Mass-wasting Features on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Watkins, Jessica

    2015-10-01

    Fundamental to the advancement of planetary geology is an understanding of the interaction between tectonic and aqueous processes on planetary surfaces. This dissertation examines this interaction within two geomorphologic processes: landslide emplacement, on Mars and on Earth, and the formation of seasonal slope features on Mars. Long-runout landsliding in equatorial Valles Marineris, Mars is among the most prominent geomorphic occurrences shaping the canyon. However, the mechanism of landslide long-distance transport, and the highly debated role of water therein, remains elusive. Through systematic mapping of high-resolution satellite images, integrated with spectral analysis, we show that hydrated silicates played a decisive role in facilitating landslide transport by lubricating the basal sliding zone. This conclusion implies that clay minerals, generated by ancient water-rock interactions, exert a long-lasting influence on Mars surface processes. The Eureka Valley (EV) landslide is an unexamined, well-preserved long-runout landslide in arid southeast Eureka Valley, California. The field, photogeologic, spectral, and luminescence dating investigation presented here support initiation as a result of fault-generated fracture during the mid to early Holocene at minimum, and transport lubricated by the presence of basal clays, characterized by 3-D internal deformation, as the most likely EV landslide emplacement mechanism. This geomorphological characterization may be applied to long-runout landslides on Earth and other planetary surfaces, suggesting that their emplacement likely does not require the participation of water. Recurring slope lineae (RSL) are seasonal, narrow, low-albedo features extending down steep, equator-facing Mars slopes. RSL formation has been largely attributed to the seepage of near-surface water, though its source is not well understood. Through detailed analysis of high-resolution satellite images of RSL geologic contexts, we quantify the

  5. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  6. Impact of diabatic processes on the tropopause inversion layer formation in baroclinic life cycles

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar

    2015-04-01

    Observations of temperature profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL). In recent studies both diabatic and adiabatic processes have been identified to contribute to the formation of this layer. In particular, adiabatic simulations indicate a TIL formation without the explicit simulation of diabatic, i.e. radiative or humidity related, processes after wave breaking during baroclinic life cycles. One goal of this study is to assess the additional contribution of diabatic processes to the formation and strength of the TIL in such life cycles. Moreover, since irreversible stratosphere-troposphere exchange (STE) is another inherent feature of baroclinic life cycles and a consequence of diabatic processes, we study whether there is a relationship between STE and TIL. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations of baroclinic life cycles in which the TIL forms during the life cycle with the limitation of being less sharp than in observations. In a second step the combined effects of several diabatic processes are studied to further include interactions between these processes as well as to advance towards a more realistic model setup. The results suggest a much more vigorous development of the TIL due to microphysics and the release of latent heat. Moreover, radiative effects can foster an increase in static stability above the thermal tropopause when large gradients of either water vapor or cloud ice are present at the level of the tropopause. By additionally adding sub-grid scale turbulence, a co-location of high static

  7. The role of thermal and mechanical processes in the formation of the Ross Sea summer polynya

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Arrigo, Kevin R.; Holland, David M.

    2007-07-01

    Three decades of satellite observations collected during spring and early summer have shown a recurring region of ice-free water forming in the sea-ice cover of the Ross Sea, Antarctica. This Ross Sea summer polynya plays an important role in heat exchange between the ocean and atmosphere, ventilation of deep water, and is characterized by high biological productivity. Despite its appearance each year, the relative importance of different physical processes to its formation and maintenance are not widely agreed upon. Here we use a three-dimensional coupled ice/ocean model to better understand processes controlling the dynamics of the Ross Sea polynya. Results from the model control run agree favorably with satellite microwave imagery of sea ice. Model sensitivity studies suggest that polynya dynamics are insensitive to the amount of snowfall, the presence of the Ross Ice Shelf cavity, tides, and solar radiation penetrating the ice. The model results also corroborate earlier findings that both the advection of sea ice and heat entrainment from warm Modified Circumpolar Deep Water play a role in Ross Sea polynya development. More importantly, the model further demonstrates that advection of sea ice due to wind stress plays the primary role in summer polynya formation. Additionally, we suggest that (1) heat entrainment reduces the rate of sea ice formation rather than melts existing sea ice, and (2) advection of sea ice due to synoptic wind events associated with variations in atmospheric pressure are the processes primarily responsible for the formation and expansion of the Ross Sea summer polynya.

  8. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    SciTech Connect

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect the final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.

  9. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    DOE PAGES

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less

  10. A Multiwavelength Study of the Process of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Howard, Eric M.

    1996-06-01

    Massive stars live short, violent lives that have a major impact on nearby star formation and the interstellar medium (ISM). To study the process of high-mass star formation and its effect on the surrounding ISM, we have observed four regions that include 10 HII regions representing ultracompact, compact, and nearly classical HII regions: Monoceros R2; K3-50; S255-2; and NS 14. Exciting stars of the 10 HII regions span a range of masses (B1 to O4 type stars). We have placed the objects in an evolutionary sequence with K3-50A, C1, and C2 representing the earliest, ultracompact HII region stage, S255-2 and NS 14 representing an intermediate compact stage, while MonR2, K3-50B and K3-50D are more evolved, representing a nearly classical HII region stage. The process of high-mass star formation does not have a well developed theoretical basis, in part, because many complete observational studies of such regions have not been made. Toward this end, we have obtained extensive infrared images of each region mentioned above with near-infrared (NIR) broadband filters and narrow band (1-2% spectral resolution) circular variable filters (CVFs). These are complemented by radio wavelength continuum and millimeter wavelength molecular aperture synthesis observations. Massive stars spend >= 10% of their lives embedded in molecular clouds and are generally enshrouded in gas and dust when they reach the main-sequence. To account for this, we have mapped dust extinction on small spatial scales and compared these maps with dense molecular gas structures. These comparisons yield mass and molecular abundance estimates. Massive toroidal clouds are found in each region and may be ubiquitous features. Such toroidal clouds may provide the collimation necessary to form jets from strong stellar winds. Bipolar ionized outflows or jets appear well correlated with evolutionary stage, with the youngest objects producing the strongest jets. The jets appear to entrain molecular material, thereby

  11. A flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Madsen, Ian C.; Loan, Melissa J.; Scarlett, Nicola V. Y.; Wallwork, Kia S.

    2009-08-01

    The design, construction, and commissioning of a stainless steel flow cell for in situ synchrotron x-ray diffraction studies of scale formation under Bayer processing conditions is described. The use of the cell is demonstrated by a study of Al(OH)3 scale formation on a mild steel substrate from synthetic Bayer liquor at 70 °C. The cell design allows for interchangeable parts and substrates and would be suitable for the study of scale formation in other industrial processes.

  12. Modifying the processing and handling of frozen broccoli for increased sulforaphane formation.

    PubMed

    Dosz, Edward B; Jeffery, Elizabeth H

    2013-09-01

    Frozen broccoli can provide a cheaper product, with a longer shelf life and less preparation time than fresh broccoli. We previously showed that several commercially available frozen broccoli products do not retain the ability to generate the cancer-preventative agent sulforaphane. We hypothesized that this was because the necessary hydrolyzing enzyme myrosinase was destroyed during blanching, as part of the processing that frozen broccoli undergoes. This study was carried out to determine a way to overcome loss of hydrolyzing activity. Industrial blanching usually aims to inactivate peroxidase, although lipoxygenase plays a greater role in product degradation during frozen storage of broccoli. Blanching at 86 °C or higher inactivated peroxidase, lipoxygenase, and myrosinase. Blanching at 76 °C inactivated 92% of lipoxygenase activity, whereas there was only an 18% loss in myrosinase-dependent sulforaphane formation. We considered that thawing frozen broccoli might disrupt membrane integrity, allowing myrosinase and glucoraphanin to come into contact. Thawing frozen broccoli for 9 h did not support sulforaphane formation unless an exogenous source of myrosinase was added. Thermal stability studies showed that broccoli root, as a source of myrosinase, was not more heat stable than broccoli floret. Daikon radish root supported some sulforaphane formation even when heated at 125 °C for 10 min, a time and temperature comparable to or greater than microwave cooking. Daikon radish (0.25%) added to frozen broccoli that was then allowed to thaw supported sulforaphane formation without any visual alteration to that of untreated broccoli.

  13. Influence of process parameters on phosphorus recovery by struvite formation from urine.

    PubMed

    Liu, Xiaoning; Hu, Zhengyi; Zhu, Chunyou; Wen, Guoqi; Meng, Xianchao; Lu, Jia

    2013-01-01

    Batch experiments were conducted to examine the influence of various process parameters on phosphorus (P) recovery by struvite formation from urine. The results showed that the Mg/P molar ratio is one of the most important parameters affecting P recovery. The Mg/P molar ratio of 1.3 was found the most reasonable for struvite formation, and the P removal efficiency reached more than 96.6%. An increase in pH of urine solutions from 8.7 to 10.0 did not significantly affect P removal, but the quality of crystal formed at pH 10.0 was poor based on scanning electron microscopy analysis. A longer mixing time positively affected struvite formation, and compared to without mixing, the P removal efficiency increased from 72.7 to 97.3% after 5 min of mixing. The addition of seed material had no influence on the P removal efficiency, but contributed to the formation of struvite clusters.

  14. The influence of VAR processes and parameters on white spot formation in Alloy 718

    SciTech Connect

    Damkroger, B.K.; Kelley, J.B.; Schlienger, M.E.; Van Den Avyle, J.A.; Williamson, R.L.; Zanner, F.J.

    1994-05-01

    Significant progress has occurred lately regarding the classification, characterization, and formation of white spots during vacuum arc remelting (VAR). White spots have been generally split into three categories: discrete white spots, which are believed to be associated with undissolved material which has fallen in from the shelf, crown, or torus regions; dendritic white spots, usually associated with dendrite clusters having fallen from the electrode; and solidification white spots, believed to be caused by local perturbations in the solidifications conditions. Characteristics and proposed formation mechanisms of white spots are reviewed and discussed in context of physical processes occurring during VAR, such as fluid flow and arc behavior. Where possible, their formation mechanisms will be considered with respect to specific operating parameters. In order to more fully understand the formation of solidification white spots, an experimental program has been begun to characterize the solidification stability of Alloy 718 and variants with respect to changes in growth rate and thermal environment. A description of the experimental program and preliminary results are included.

  15. Process of Hypertrophic Scar Formation: Expression of Eukaryotic Initiation Factor 6

    PubMed Central

    Yang, Qing-Qing; Yang, Si-Si; Tan, Jiang-Lin; Luo, Gao-Xing; He, Wei-Feng; Wu, Jun

    2015-01-01

    Background: Hypertrophic scar is one of the most common complications and often causes the disfigurement or deformity in burn or trauma patients. Therapeutic methods on hypertrophic scar treatment have limitations due to the poor understanding of mechanisms of hypertrophic scar formation. To throw light on the molecular mechanism of hypertrophic scar formation will definitely improve the outcome of the treatment. This study aimed to illustrate the negative role of eukaryotic initiation factor 6 (eIF6) in the process of human hypertrophic scar formation, and provide a possible indicator of hypertrophic scar treatment and a potential target molecule for hypertrophic scar. Methods: In the present study, we investigated the protein expression of eIF6 in the human hypertrophic scar of different periods by immunohistochemistry and Western blot analysis. Results: In the hypertrophic scar tissue, eIF6 expression was significantly decreased and absent in the basal layer of epidermis in the early period, and increased slowly and began to appear in the basal layer of epidermis by the scar formation time. Conclusions: This study confirmed that eIF6 expression was significantly related to the development of hypertrophic scar, and the eIF6 may be a target molecule for hypertrophic scar control or could be an indicator of the outcomes for other treatment modalities. PMID:26481747

  16. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    NASA Astrophysics Data System (ADS)

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.

    2017-09-01

    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  17. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  18. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    NASA Astrophysics Data System (ADS)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M

  19. [In situ Raman spectroscopic observation of micro-processes of methane hydrate formation and dissociation].

    PubMed

    Liu, Chang-Ling; Ye, Yu-Guang; Meng, Qing-Guo; Lü, Wan-Jun; Wang, Fei-Fei

    2011-06-01

    Micro laser Raman spectroscopic technique was used for in situ observation of the micro-processes of methane hydrate formed and decomposed in a high pressure transparent capillary. The changes in clathrate structure of methane hydrate were investigated during these processes. The results show that, during hydrate formation, the Raman peak (2 917 cm(-1)) of methane gas gradually splits into two peaks (2 905 and 2 915 cm(-1)) representing large and small cages, respectively, suggesting that the dissolved methane molecules go into two different chemical environments. In the meantime, the hydrogen bonds interaction is strengthened because water is changing from liquid to solid state gradually. As a result, the O-H stretching vibrations of water shift to lower wavenumber. During the decomposition process of methane hydrates, the Raman peaks of the methane molecules both in the large and small cages gradually clear up, and finally turn into a single peak of methane gas. The experimental results show that laser Raman spectroscopy can accurately demonstrate some relevant information of hydrate crystal structure changes during the formation and dissociation processes of methane hydrate.

  20. First observation on the feasibility of scratch formation by pad-particle mixture in CMP process

    NASA Astrophysics Data System (ADS)

    Sung, In-Ha; Kim, Hong Jin; Yeo, Chang Dong

    2012-08-01

    Micro-scratch formation on a post-chemical mechanical polishing (CMP) wafer surface is one of the critical problems that should be solved for miniaturization and reliability of a semiconductor device. In this study, the mechanism of micro-scratch formation during CMP was investigated through experiments and simulations. When a used pad was utilized in the experiments, it was found that micro-scratches could be generated by the polishing process that was done with DI water and additive only without abrasive particles. In order to analyze these micro-scratches under a used pad process, the change in surface properties of the polishing pad before and after the CMP was investigated using various surface sensitive techniques. In addition, 2-dimensional finite element analysis (FEA) of CMP process was performed to verify the experimental results. Especially, the FE model with a particle put inside a pad pore was considered to examine how it plays a role in micro-scratch generation. In summary, the scientific results from experiments and simulations in this study first revealed that the pad-particle mixture could be formed on the pad surface during CMP process, which would be one of the major factors leading to micro-scratch generation.

  1. Print versus electronic journals: a preliminary investigation into the effect of journal format on research processes*

    PubMed Central

    Sathe, Nila A.; Grady, Jenifer L.; Giuse, Nunzia B.

    2002-01-01

    Purpose: To begin investigating the impact of electronic journals on research processes such as information seeking, the authors conducted a pilot journal-use study to test the hypothesis that patrons use print and electronic journals differently. Methodology: We placed fifteen high-use print titles also available in electronic format behind the circulation desk; patrons were asked to complete a survey upon requesting a journal. We also conducted a parallel survey of patrons using library computers. Both surveys asked patrons to identify themselves by user category and queried them about their journal use. Results: During the month-long study, patrons completed sixty-nine surveys of electronic and ninety surveys of print journal use. Results analysis indicated that fellows, students, and residents preferred electronic journals, and faculty preferred print journals. Patrons used print journals for reading articles and scanning contents; they employed electronic journals for printing articles and checking references. Users considered electronic journals easier to access and search than print journals; however, they reported that print journals had higher quality text and figures. Discussion/Conclusion: This study is an introductory step in examining how electronic journals affect research processes. Our data revealed that there were distinct preferences in format among categories. In addition to collection management implications for libraries, these data also have implications for publishers and educators; current electronic formats do not facilitate all types of uses and thus may be changing learning patterns as well. PMID:11999183

  2. A case study on the formation and sharing process of science classroom norms

    NASA Astrophysics Data System (ADS)

    Chang, Jina; Song, Jinwoong

    2016-03-01

    The teaching and learning of science in school are influenced by various factors, including both individual factors, such as member beliefs, and social factors, such as the power structure of the class. To understand this complex context affected by various factors in schools, we investigated the formation and sharing process of science classroom norms in connection with these factors. By examining the developmental process of science classroom norms, we identified how the norms were realized, shared, and internalized among the members. We collected data through classroom observations and interviews focusing on two elementary science classrooms in Korea. From these data, factors influencing norm formation were extracted and developed as stories about norm establishment. The results indicate that every science classroom norm was established, shared, and internalized differently according to the values ingrained in the norms, the agent of norm formation, and the members' understanding about the norm itself. The desirable norms originating from values in science education, such as having an inquiring mind, were not established spontaneously by students, but were instead established through well-organized norm networks to encourage concrete practice. Educational implications were discussed in terms of the practice of school science inquiry, cultural studies, and value-oriented education.

  3. Langevin Dynamics Deciphers the Motility Pattern of Swimming Parasites

    NASA Astrophysics Data System (ADS)

    Zaburdaev, Vasily; Uppaluri, Sravanti; Pfohl, Thomas; Engstler, Markus; Friedrich, Rudolf; Stark, Holger

    2011-05-01

    The parasite African trypanosome swims in the bloodstream of mammals and causes the highly dangerous human sleeping sickness. Cell motility is essential for the parasite’s survival within the mammalian host. We present an analysis of the random-walk pattern of a swimming trypanosome. From experimental time-autocorrelation functions for the direction of motion we identify two relaxation times that differ by an order of magnitude. They originate from the rapid deformations of the cell body and a slower rotational diffusion of the average swimming direction. Velocity fluctuations are athermal and increase for faster cells whose trajectories are also straighter. We demonstrate that such a complex dynamics is captured by two decoupled Langevin equations that decipher the complex trajectory pattern by referring it to the microscopic details of cell behavior.

  4. Decipher correlation patterns post prostatectomy: initial experience from 2 342 prospective patients

    PubMed Central

    Den, R B; Santiago-Jimenez, M; Alter, J; Schliekelman, M; Wagner, J R; Renzulli II, J F; Lee, D I; Brito, C G; Monahan, K; Gburek, B; Kella, N; Vallabhan, G; Abdollah, F; Trabulsi, E J; Lallas, C D; Gomella, L G; Woodlief, T L; Haddad, Z; Lam, L L C; Deheshi, S; Wang, Q; Choeurng, V; du Plessis, M; Jordan, J; Parks, B; Shin, H; Buerki, C; Yousefi, K; Davicioni, E; Patel, V R; Shah, N L

    2016-01-01

    Background: Currently, there are multiple commercially available RNA-based biomarkers that are Medicare approved and suggested for use by the National Comprehensive Cancer Network guidelines. There is uncertainty as to which patients benefit from genomic testing and for whom these tests should be ordered. Here, we examined the correlation patterns of Decipher assay to understand the relationship between the Decipher and patient tumor characteristics. Methods: De-identified Decipher test results (including Decipher risk scores and clinicopathologic data) from 2 342 consecutive radical prostatectomy (RP) patients tested between January and September 2015 were analyzed. For clinical testing, tumor specimen from the highest Gleason grade was sampled using a 1.5 mm tissue punch. Decipher scores were calculated based on a previously locked model. Correlations between Decipher score and clinicopathologic variables were computed using Spearman's rank correlation. Mixed-effect linear models were used to study the association of practice type and Decipher score. The significance level was 0.05 for all tests. Results: Decipher score had a positive correlation with pathologic Gleason score (PGS; r=0.37, 95% confidence interval (CI) 0.34−0.41), pathologic T-stage (r=0.31, 95% CI 0.28−0.35), CAPRA-S (r=0.32, 95% CI 0.28−0.37) and patient age (r=0.09, 95% CI 0.05-0.13). Decipher reclassified 52%, 76% and 40% of patients in CAPRA-S low-, intermediate- and high-risk groups, respectively. We detected a 28% incidence of high-risk disease through the Decipher score in pT2 patients and 7% low risk in pT3b/pT4, PGS 8−10 patients. There was no significant difference in the Decipher score between patients from community centers and those from academic centers (P=0.82). Conclusions: Although Decipher correlated with baseline tumor characteristics for over 2 000 patients, there was significant reclassification of tumor aggressiveness as compared to clinical parameters alone

  5. A novel process for methanol synthesis. [Concurrent sythesis of methly formate and methanol

    SciTech Connect

    Tierney, J.W.; Wender, I.

    1992-01-01

    A bench-scale reactor is being used to conduct studies of the conversion of synthesis gas to methanol (MeOH) by a novel process. In previous reports, we provided evidence for a two-step reaction in series, the carbonylation reaction taking place mainly in a non-equilibrium region in the vicinity of the copper chromite surface, and the hydrogenolysis reaction taking place on the surface of the copper chromite. Interaction between the two catalysts enhances the rate of methanol formation. In this quarter, we investigated the effect of pore diffusion on reaction rate and obtained an expression for the rate of reaction for the methanol/methyl formate concurrent synthesis.

  6. A coherent light scanner for optical processing of large format transparencies

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.; Shackelford, R. G.; Walsh, J. R.

    1975-01-01

    A laser scanner is discussed in which the scanning beam is random-access addressable and perpendicular to the image input plane and the irradiance of the scanned beam is controlled so that a constant average irradiance is maintained after passage through the image plane. The scanner's optical system and design are described, and its performance is evaluated. It is noted that with this scanner, data in the form of large-format transparencies can be processed without the expense, space, maintenance, and precautions attendant to the operation of a high-power laser with large-aperture collimating optics. It is shown that the scanned format as well as the diameter of the scanning beam may be increased by simple design modifications and that higher scan rates can be achieved at the expense of resolution by employing acousto-optic deflectors with different relay optics.

  7. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  8. [The effect of impression formation on memory of trait words: relation between coding and retrieval process].

    PubMed

    Takaoka, M

    2000-08-01

    Three experiments investigated the effect of impression formation of a person on the recall and recognition of trait words. The subjects were assigned to one of four groups: Impression, Memory, Impression-Memory, and Incidental groups. Each subject performed an orienting task followed by free recall and recognition tests. In a recall test, false recall of antonyms of targets occurred more often in the Memory group than in the Impression group. There was no difference in the correct recall. In a multiple choice recognition test and a yes-no recognition test, false recognition to antonyms of targets occurred more often in the Memory group than in the Impression group. Hit to targets occurred more often in the Impression group than in the Memory group. These results were interpreted as showing that formation of an impression for a person had different effects for recall and recognition tests. The results were discussed in terms of a relation between encoding and retrieval processes.

  9. SOA Formation from Aqueous Processing of BVOCs in the Southeastern United States during SOAS

    NASA Astrophysics Data System (ADS)

    Skog, K.; Keutsch, F. N.

    2013-12-01

    Secondary organic aerosol (SOA) contributes to climate change and adversely affects human health, but the formation of SOA is poorly understood. Recent studies have shown that aqueous processing of water soluble compounds like glyoxal and glycolaldehyde can help close the gap in our understanding of SOA formation. During June and July of 2013, a comprehensive suite of instruments were deployed at the Southern Oxidant and Aerosol Study (SOAS) Centreville, AL ground site measuring oxidants, glyoxal and glycolaldehyde as well as their precursors, anthropogenic influence, aerosol properties and meteorology. Results from a zero-dimensional gas phase photochemical model and a zero-dimensional aqueous SOA model will be compared to the observations. Analysis will focus on the modeled contribution of glyoxal and glycolaldehyde in the context of closing the aqueous SOA budget.

  10. Platinum Partitioning at Low Oxygen Fugacity: Implications for Core Formation Processes

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Lanziroti, A.; Newville, M.

    2016-01-01

    Highly siderophile elements (HSE = Au, Re, and the Pt-group elements) are tracers of silicate / metal interactions during planetary processes. Since most core-formation models involve some state of equilibrium between liquid silicate and liquid metal, understanding the partioning of highly siderophile elements (HSE) between silicate and metallic melts is a key issue for models of core / mantle equilibria and for core formation scenarios. However, partitioning models for HSE are still inaccurate due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variable like temperature, pressure, and oxygen fugacity. In this abstract, we describe a self-consistent set of experiments aimed at determining the valence of platinum, one of the HSE, in silicate melts. This is a key information required to parameterize the evolution of platinum partitioning with oxygen fugacity.

  11. A coherent light scanner for optical processing of large format transparencies

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.; Shackelford, R. G.; Walsh, J. R.

    1975-01-01

    A laser scanner is discussed in which the scanning beam is random-access addressable and perpendicular to the image input plane and the irradiance of the scanned beam is controlled so that a constant average irradiance is maintained after passage through the image plane. The scanner's optical system and design are described, and its performance is evaluated. It is noted that with this scanner, data in the form of large-format transparencies can be processed without the expense, space, maintenance, and precautions attendant to the operation of a high-power laser with large-aperture collimating optics. It is shown that the scanned format as well as the diameter of the scanning beam may be increased by simple design modifications and that higher scan rates can be achieved at the expense of resolution by employing acousto-optic deflectors with different relay optics.

  12. Effect of Processing Pressure on Isolated Pore Formation during Controlled Directional Solidification in Small Channels

    NASA Technical Reports Server (NTRS)

    Cox, Matthew C.; Anilkumar, Amrutur V.; Grugel, RIchard N.; Lee, Chun P.

    2008-01-01

    Directional solidification experiments were performed, using succinonitrile saturated with nitrogen gas, to examine the effects of in-situ processing pressure changes on the formation growth, and evolution of an isolated, cylindrical gaseous pore. A novel solidification facility, capable of processing thin cylindrical samples (I.D. < 1.0 mm), under controlled pressure conditions, was used for the experiments. A new experimental method for growing the isolated pore from a seed bubble is introduced. The experimental results indicate that an in-situ processing pressure change will result in either a transient change in pore diameter or a complete termination of pore growth, indicating that pressure changes can be used as a control parameter to terminate bubble growth. A simple analytical model has been introduced to explain the experimental observations.

  13. Aging and impression formation: the impact of processing skills and goals.

    PubMed

    Hess, T M; Follett, K J; McGee, K A

    1998-05-01

    Two studies assessed age differences in representations and judgments about people. Our specific interest was in examining how presumed age-related changes in processing efficiency and motivation affected performance in an impression formation task. Consistent with age-related declines in processing efficiency, we found that increasing age was associated with: (a) no change in the processing of evaluative information; (b) less use of specific traits to organize impressions; (c) poorer memory for behavioral information, especially when it contradicted expectations; and (d) less systematic relationships between memory and judgments. We also found, however, that more meaningful task goals and a focus on individual behaviors resulted in reduced age differences in the nature of representations about the target person.

  14. Study of defect formation from process step anomalies in limited boron source diffusion in crystalline silicon

    SciTech Connect

    Singha, Bandana Solanki, Chetan Singh

    2016-05-06

    In limited dopant source diffusion process, the deposition and the drive in conditions of the source play an important role in pn- junction formation. The pre diffusion anomalies can introduce defects in the emitter region during the process of diffusion which can glide into the bulk region. So, the defects formed in the emitter region due to different pre diffusion issues are studied in this work with boron spin on dopant source diffused in n-type crystalline Si. The samples are prepared for different diffusion conditions of times carried out at diffusion temperature of 900°C. Different characterization techniques used in this work confirms the presence of these defects in the emitter region. The dopant distribution under the same diffusion condition result in non- uniformity, varying the junction depth of the emitter. A single process step anomaly is sufficient enough to degrade the emitter performance and should be avoided.

  15. Combustion and structure formation in SHS processes under microgravity conditions: SHS plans for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Merzhanov, A. G.

    1995-01-01

    This paper outlines ISMAN suggestions for the joint NASA-RSA project 'Combustion and Structure formation in SHS Processes under Microgravity Conditions'. The basic ideas of this work naturally follow from our almost 30-year experience in the field of SHS. As a matter of fact, we have already obtained some results in the following two directions closely related to the microgravity problem. One is the studies on SHS processes in the field of centrifugal forces. These studies aimed at the intensification of gravity-sensitive SHS processes in multicomponent highly caloric systems forming melts at high overloads (up to 2000 g). In other words, these studies had the objectives that are inverse to those in the microgravity studies. The second group of results directly relates to the microgravity problem and the project under consideration. These experiments played the important role in establishing links between SHS and microgravity.

  16. Study of defect formation from process step anomalies in limited boron source diffusion in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Solanki, Chetan Singh

    2016-05-01

    In limited dopant source diffusion process, the deposition and the drive in conditions of the source play an important role in pn- junction formation. The pre diffusion anomalies can introduce defects in the emitter region during the process of diffusion which can glide into the bulk region. So, the defects formed in the emitter region due to different pre diffusion issues are studied in this work with boron spin on dopant source diffused in n-type crystalline Si. The samples are prepared for different diffusion conditions of times carried out at diffusion temperature of 900°C. Different characterization techniques used in this work confirms the presence of these defects in the emitter region. The dopant distribution under the same diffusion condition result in non- uniformity, varying the junction depth of the emitter. A single process step anomaly is sufficient enough to degrade the emitter performance and should be avoided.

  17. A Multi-Wavelength Investigation of the Star Formation Processes in the SHIELD Galaxies

    NASA Astrophysics Data System (ADS)

    Teich, Yaron G.; McNichols, Andrew Thomas; Cannon, John M.

    2015-08-01

    We analyze the relationships between HI mass surface density and star formation in the 12 galaxies that comprise the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD). The SHIELD galaxies were selected from the first ~10% of data from the Arecibo Legacy Fast ALFA (ALFALFA) survey; they harbor low-mass HI reservoirs (6.6 < log(M(HI)) < 7.8) that make them critical testbeds for our understanding of the process of star formation in shallow potential wells. Using HI imaging from the VLA, Hα imaging from the WIYN 3.5m telescope, and archival GALEX imaging (available for most sample members), we compare the locations and intensities of star formation with the properties of the neutral ISM. Despite the low HI column densities observed in these systems, each SHIELD galaxy has a significant blue stellar population; there is ongoing star formation in all but one of the galaxies. We find that the regions of Hα emission are co-located with regions of high HI column densities. We compare the degree of overlap of HI dense knots with local UV maxima, with the goal of identifying whether Hα or UV emission more strongly correlates with regions of high HI column density. We calculate the specific SFR and SFR density for the galaxies in the sample, and examine the relationships of HI mass and SFR (from Hα, UV, and averaged from both) for selected sources. We also calculate the star formation efficiency (SFE) for each galaxy in the sample (total SFR / total gas mass) and note its dependence on HI column density.This work is a result of collaboration with the SHIELD Team and is supported by NSF grant 1211683.

  18. Drebrin controls neuronal migration through the formation and alignment of the leading process.

    PubMed

    Dun, Xin-peng; Bandeira de Lima, Tiago; Allen, James; Geraldo, Sara; Gordon-Weeks, Phillip; Chilton, John K

    2012-03-01

    Formation of a functional nervous system requires neurons to migrate to the correct place within the developing brain. Tangentially migrating neurons are guided by a leading process which extends towards the target and is followed by the cell body. How environmental cues are coupled to specific cytoskeletal changes to produce and guide leading process growth is unknown. One such cytoskeletal modulator is drebrin, an actin-binding protein known to induce protrusions in many cell types and be important for regulating neuronal morphology. Using the migration of oculomotor neurons as a model, we have shown that drebrin is necessary for the generation and guidance of the leading process. In the absence of drebrin, leading processes are not formed and cells fail to migrate although axon growth and pathfinding appear grossly unaffected. Conversely, when levels of drebrin are elevated the leading processes turn away from their target and as a result the motor neuron cell bodies move along abnormal paths within the brain. The aberrant trajectories were highly reproducible suggesting that drebrin is required to interpret specific guidance cues. The axons and growth cones of these neurons display morphological changes, particularly increased branching and filopodial number but despite this they extend along normal developmental pathways. Collectively these results show that drebrin is initially necessary for the formation of a leading process and subsequently for this to respond to navigational signals and grow in the correct direction. Furthermore, we have shown that the actions of drebrin can be segregated within individual motor neurons to direct their migration independently of axon guidance. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process.

    PubMed

    Mosteo, R; Miguel, N; Martin-Muniesa, S; Ormad, Maria P; Ovelleiro, José L

    2009-12-30

    The presence of natural organic matter (NOM) in both surface and groundwater supplies produces toxic by-products, mainly trihalomethanes (THMs), during oxidation steps in drinking water production. This research work shows the efficiency of different advanced oxidation processes (AOPs) based on ozone for the degradation of precursors of trihalomethanes in aqueous solutions. Completed treatments comprised different preoxidation processes (chlorination and AOP: O(3), O(3)/H(2)O(2), O(3)/TiO(2) and O(3)/H(2)O(2)/TiO(2)), adsorption with PAC (optional operation), coagulation-flocculation and final postchlorination applied to synthetic samples which were prepared by dilution of the soluble fraction of a humic solution. A direct chlorination of synthetic humic samples which display dissolved organic carbon close to 3 mg l(-1) produced a THM concentration of around 1600 microg CCl(3)l(-1) (measured as THMFP). Comparisons between the trihalomethane formation potential of initial synthetic samples and samples treated by prechlorination and coagulation-flocculation-decantation show that the main factor responsible for THM reduction is the coagulation-flocculation process since a decrease of 90% is achieved. Considering the various completed treatments studied, the most recommendable include preoxidation by ozonation, adsorption by PAC, coagulation-flocculation using aluminium sulphate followed by decantation and final postchlorination.

  20. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution.

    PubMed

    Ereskovsky, Alexander V; Renard, Emmanuelle; Borchiellini, Carole

    2013-03-01

    The emergence of multicellularity is regarded as one of the major evolutionary events of life. This transition unicellularity/pluricellularity was acquired independently several times (King 2004). The acquisition of multicellularity implies the emergence of cellular cohesion and means of communication, as well as molecular mechanisms enabling the control of morphogenesis and body plan patterning. Some of these molecular tools seem to have predated the acquisition of multicellularity while others are regarded as the acquisition of specific lineages. Morphogenesis consists in the spatial migration of cells or cell layers during embryonic development, metamorphosis, asexual reproduction, growth, and regeneration, resulting in the formation and patterning of a body. In this paper, our aim is to review what is currently known concerning basal metazoans--sponges' morphogenesis from the tissular, cellular, and molecular points of view--and what remains to elucidate. Our review attempts to show that morphogenetic processes found in sponges are as diverse and complex as those found in other animals. In true epithelial sponges (Homoscleromorpha), as well as in others, we find similar cell/layer movements, cellular shape changes involved in major morphogenetic processes such as embryogenesis or larval metamorphosis. Thus, sponges can provide information enabling us to better understand early animal evolution at the molecular level but also at the cell/cell layer level. Indeed, comparison of molecular tools will only be of value if accompanied by functional data and expression studies during morphogenetic processes.

  1. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans.

    PubMed

    Friedman, Mendel

    2015-06-01

    Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.

  2. Influence of ambient pressure on the hole formation process in ultrashort pulse laser deep drilling

    NASA Astrophysics Data System (ADS)

    Döring, Sven; Richter, Sören; Ullsperger, Tobias; Tünnermann, Andreas; Nolte, Stefan

    2013-03-01

    We investigate the influence of the ambient pressure on the hole formation process during percussion drilling of silicon by applying an in-situ imaging technique. In this study the pressure is varied from atmospheric conditions down to medium vacuum of 10 !bar. Drilling was performed using an ultrashort pulse system providing 8 ps pulses with up to 125 μJ at 1030 nm. At this wavelength, the ablation behavior of silicon is comparable to metals. At the beginning of the drilling process, we observe an increased drilling efficiency by 40% already for a moderate pressure decrease to 100 mbar. The formation of an ideally shaped hole lasts for approximately 200 pulses instead of only 100 as for atmospheric conditions and therefore leads to 3 times the depth at this point. The effect can be enhanced by increasing the pulse energy, but not by decreasing pressure further. However, the number of pulses till the end of the drilling process is extended by decreasing the pressure further. For a low ambient pressure of 10 μbar, this is accompanied by an increase of the maximum achievable depth of more than 100%. Simultaneously the hole shape changes from a few ends and bulges at atmospheric conditions to numerous branches over the complete lower part of the hole at low pressure. This drilling behavior can be attributed to a better removal of ablated particles from the hole capillary with decreasing pressure, which leads to lower scattering losses for the pulse propagation inside the hole.

  3. Understanding the process of social network evolution: Online-offline integrated analysis of social tie formation

    PubMed Central

    Kwak, Doyeon

    2017-01-01

    It is important to consider the interweaving nature of online and offline social networks when we examine social network evolution. However, it is difficult to find any research that examines the process of social tie formation from an integrated perspective. In our study, we quantitatively measure offline interactions and examine the corresponding evolution of online social network in order to understand the significance of interrelationship between online and offline social factors in generating social ties. We analyze the radio signal strength indicator sensor data from a series of social events to understand offline interactions among the participants and measure the structural attributes of their existing online Facebook social networks. By monitoring the changes in their online social networks before and after offline interactions in a series of social events, we verify that the ability to develop an offline interaction into an online friendship is tied to the number of social connections that participants previously had, while the presence of shared mutual friends between a pair of participants disrupts potential new connections within the pre-designed offline social events. Thus, while our integrative approach enables us to confirm the theory of preferential attachment in the process of network formation, the common neighbor theory is not supported. Our dual-dimensional network analysis allows us to observe the actual process of social network evolution rather than to make predictions based on the assumption of self-organizing networks. PMID:28542367

  4. Mechanism of the activation process for the formation of a surface-conduction electron-emitter

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takeo; Okuda, Masahiro; Arai, Yutaka; Miyata, Hirokatsu

    2016-01-01

    The major role of the chemical reaction between a silica substrate and deposited carbon in the activation process for the formation of a surface-conduction electron emitter (SCE) is investigated. The SCE emits electrons by the tunneling effect when an electric field is applied across a nanoscale gap. The nanogap is spontaneously formed by the activation process, wherein a pulse voltage is applied between a pair of electrodes, which are separated by a narrow gap inside a vacuum chamber in the presence of hydrocarbons. At the gap, two elemental processes compete; the deposition of carbon by the electron-induced decomposition of hydrocarbons and the consumption of carbon by reaction with the silica substrate. The balance of the dynamics of the two processes, which simply depends on the temperature at the gap, is responsible for the spontaneous determination of the width of the nanogap. The calculation based on the model that involves the two competitive processes agrees with the experimental results on the activation process.

  5. Metagenomic Analysis of Some Potential Nitrogen-Fixing Bacteria in Arable Soils at Different Formation Processes.

    PubMed

    Wolińska, Agnieszka; Kuźniar, Agnieszka; Zielenkiewicz, Urszula; Banach, Artur; Izak, Dariusz; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-01-01

    The main goal of the study was to determine the diversity of the potential nitrogen-fixing (PNF) bacteria inhabiting agricultural (A) soils versus wastelands serving as controls (C). The soils were classified into three groups based on the formation process: autogenic soils (Albic Luvisols, Brunic Arenosols, Haplic Phaeozem) formed on loess material, hydrogenic soils (Mollic Gleysols, Eutric Fluvisol, Eutric Histosol) formed under the effect of stagnant water and lithogenic soils (Rendzina Leptosols) formed on limestone. In order to determine the preferable conditions for PNF bacteria, the relationships between the soil chemical features and bacterial operational taxonomic units (OTUs) were tested. Additionally, the nitrogen content and fertilisation requirement of the lithogenic (LG), autogenic (AG) and hydrogenic (HG) soils were discussed. The composition of the bacterial communities was analysed with the next-generation sequencing (NGS) by the Ion Torrent™ technology. The sequences were clustered into OTU based on a 99 % similarity threshold. The arable soils tested were distinctly dominated by β-Proteobacteria representatives of PNF bacteria belonging to the genus Burkholderia. Bacteria from the α-Proteobacteria class and Devosia genus were subdominants. A free-living Cyanobacteria population dominated in A rather than in C soils. We have found that both soil agricultural management and soil formation processes are the most conducive factors for PNF bacteria, as a majority of these microorganisms inhabit the AG group of soils, whilst the LG soils with the lowest abundance of PNF bacteria revealed the need for additional mineral fertilisation. Our studies have also indicated that there are close relationships between soil classification with respect to soil formation processes and PNF bacteria preference for occupation of soil niches.

  6. Formation of asymmetrical structured silica controlled by a phase separation process and implication for biosilicification.

    PubMed

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification.

  7. Automated system function allocation and display format: Task information processing requirements

    NASA Technical Reports Server (NTRS)

    Czerwinski, Mary P.

    1993-01-01

    An important consideration when designing the interface to an intelligent system concerns function allocation between the system and the user. The display of information could be held constant, or 'fixed', leaving the user with the task of searching through all of the available information, integrating it, and classifying the data into a known system state. On the other hand, the system, based on its own intelligent diagnosis, could display only relevant information in order to reduce the user's search set. The user would still be left the task of perceiving and integrating the data and classifying it into the appropriate system state. Finally, the system could display the patterns of data. In this scenario, the task of integrating the data is carried out by the system, and the user's information processing load is reduced, leaving only the tasks of perception and classification of the patterns of data. Humans are especially adept at this form of display processing. Although others have examined the relative effectiveness of alphanumeric and graphical display formats, it is interesting to reexamine this issue together with the function allocation problem. Currently, Johnson Space Center is the test site for an intelligent Thermal Control System (TCS), TEXSYS, being tested for use with Space Station Freedom. Expert TCS engineers, as well as novices, were asked to classify several displays of TEXSYS data into various system states (including nominal and anomalous states). Three different display formats were used: fixed, subset, and graphical. The hypothesis tested was that the graphical displays would provide for fewer errors and faster classification times by both experts and novices, regardless of the kind of system state represented within the display. The subset displays were hypothesized to be the second most effective display format/function allocation condition, based on the fact that the search set is reduced in these displays. Both the subset and the

  8. Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification

    PubMed Central

    Shi, Jia-Yuan; Yao, Qi-Zhi; Li, Xi-Ming; Zhou, Gen-Tao; Fu, Sheng-Quan

    2013-01-01

    Biogenetic silica displays intricate patterns assembling from nano- to microsize level and interesting non-spherical structures differentiating in specific directions. Several model systems have been proposed to explain the formation of biosilica nanostructures. Of them, phase separation based on the physicochemical properties of organic amines was considered to be responsible for the pattern formation of biosilica. In this paper, using tetraethyl orthosilicate (TEOS, Si(OCH2CH3)4) as silica precursor, phospholipid (PL) and dodecylamine (DA) were introduced to initiate phase separation of organic components and influence silica precipitation. Morphology, structure and composition of the mineralized products were characterized using a range of techniques including field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), infrared spectra (IR), and nitrogen physisorption. The results demonstrate that the phase separation process of the organic components leads to the formation of asymmetrically non-spherical silica structures, and the aspect ratios of the asymmetrical structures can be well controlled by varying the concentration of PL and DA. On the basis of the time-dependent experiments, a tentative mechanism is also proposed to illustrate the asymmetrical morphogenesis. Therefore, our results imply that in addition to explaining the hierarchical porous nanopatterning of biosilica, the phase separation process may also be responsible for the growth differentiation of siliceous structures in specific directions. Because organic amine (e.g., long-chair polyamines), phospholipids (e.g., silicalemma) and the phase separation process are associated with the biosilicification of diatoms, our results may provide a new insight into the mechanism of biosilicification. PMID:23585878

  9. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    SciTech Connect

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  10. Theoretical study on the formation process of Cross-Linked β-Cyclodextrin molecular tubes

    NASA Astrophysics Data System (ADS)

    Reis, Vitória S.; Santos, Eliziane S.; Bonsolhos, Daniela N. F.; Guimarães, Luciana; De Almeida, Wagner B.; Nascimento, Clebio S.

    2017-06-01

    This paper reports a theoretical investigation using semiempirical and DFT calculations in order to evaluate structural and energetic properties related to the formation process of Cross-Linked β-Cyclodextrin molecular tubes. As result, TT spatial orientation was found to be the most favorable among the dimeric tubes. The overall stability order, TT > HH > HT, does not change with the number of cross-linking groups. Besides, we have shown that tubes with 3 cross-linking in their structures are the most stable ones due to steric and repulsion factors which is in perfect agreement with experimental data.

  11. Analytical Model for Chip Formation in Case of Orthogonal Machining Process

    NASA Astrophysics Data System (ADS)

    Salvatore, Ferdinando; Mabrouki, Tarek; Hamdi, Hédi

    2011-01-01

    The present work deals with the presentation of analytical methodology allowing the modelling of chip formation. For that a "decomposition approach", based on assuming that the material removal is the summation of two contributions: ploughing and pure cut was adopted. Moreover, this analytical model was calibrated by a finite element model and experimental data in terms of temperature and forces evolutions. The global aim is to propose to the industrial community, an efficient rapid-execution analytical model concerning the material removal in the case of an orthogonal cutting process.

  12. Kinetics and microtextures formation during serpentinization: role of grain scale processes and transport

    NASA Astrophysics Data System (ADS)

    malvoisin, B.; Brunet, F.; Carlut, J. H.

    2013-12-01

    Serpentinization of mantle rocks plays a key role on the physical properties of the lithosphere at mid-ocean ridges and in subduction zones. This reaction is controlled by processes occurring at scales ranging from the grain to the lithosphere but the relative importance of these processes on the kinetics and microtextures formation has not been investigated. First, hydrothermal experiments on powders of San Carlos olivine at 500 bars in the 250 - 350 °C range were monitored with a magnetic method to study the kinetics and processes of the reaction at the grain scale. For an initial grain size (IGS) > 5 μm, lizardite, brucite, magnetite and hydrogen formed at a rate one to two orders of magnitude slower than the kinetics used to model serpentinization-related processes. Moreover, the serpentinization rate decreased linearly with the square of the IGS and reaction progress vs. time curves displayed a sigmoid form. The kinetics were controlled by the dissolution of olivine increasing with its reactive surface area which was generated with two cooperating processes (etch pits and grain fracturing) during the first stages of the reaction. Then, hydrothermal experiments were conducted on sintered San Carlos olivine to investigate the role of transport on the reaction. On sintered with a grain size of 1 to 5 μm, low reaction progresses of ~ 3 % in 10 months were obtained and the rate of serpentinization was one order of magnitude slower than on powders and one order of magnitude faster than on a single grain of the size of the sintered. Kinetics were controlled by a coupling between the reaction rate at the grain scale and the rate of fluid pathways formation at grain boundaries. Lizardite precipitated where olivine dissolved whereas magnetite and brucite segregated at the surface of the sintered. These results are in agreement with the observation of magnetite formation and segregation in fractures in naturally serpentinized peridotites and could explain the sparse

  13. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.

  14. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.

    PubMed

    Mayer, Brooke K; Daugherty, Erin; Abbaszadegan, Morteza

    2015-02-01

    Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models. The top-performing indicator, SUVA, generally correlated positively with trihalomethanes and haloacetic acids, but limited-energy photocatalysis yielded contrasting negative correlations. The accuracy of predicted DBP values from models based on bulk parameters was generally poor, regardless of use and extent of AOP treatment and type of source water. Though performance improved for scenarios bounded by conditions used in model development, only 0.5% of the model/dataset pairings satisfied all measured parameter boundary conditions, thereby introducing skepticism toward model usefulness. Study findings suggest that caution should be employed when using bulk indicators and/or models as a metric for AOP mitigation of DBP formation potential, particularly for limited-energy/chemical inputs.

  15. Development of a carbonaceous selective absorber for solar thermal energy collection and process for its formation

    NASA Astrophysics Data System (ADS)

    Garrison, John D.

    1989-02-01

    The main goal of the US Department of Energy supported part of this project is to develop information about controlling the complicated chemical processes involved in the formation of a carbonaceous selective absorber and learn what equipment will allow production of this absorber commercially. The work necessary to accomplish this goal is not yet complete. Formation of the carbonaceous selective absorber in the conveyor oven tried so far has been unsatisfactory, because the proper conditions for applying the carbonaceous coating in each conveyor oven fabricated, either have been difficult to obtain, or have been difficult to maintain over an extended period of time. A new conveyor oven is nearing completion which is expected to allow formation of the carbonaceous selective absorber on absorber tubes in a continuous operation over many days without the necessity of cleaning the conveyor oven or changing the thickness of the electroplated nickel catalyst to compensate for changes in the coating environment in the oven. Work under this project concerned with forming and sealing glass panels to test ideas on evacuated glass solar collector designs and production have been generally quite satisfactory. Delays in completion of the selective absorber work, has caused postponement of the fabrication of a small prototype evacuated glass solar collector panel. Preliminary cost estimates of the selective absorber and solar collector panel indicate that this collector system should be lower in cost than evacuated solar collectors now on the market.

  16. The Link between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    NASA Astrophysics Data System (ADS)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; Steiner, Andrew W.

    2016-12-01

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.

  17. Analysis of glow discharges for understanding the process of film formation

    NASA Technical Reports Server (NTRS)

    Venugopalan, M.; Avni, R.

    1984-01-01

    The physical and chemical processes which occur during the formation of different types of films in a variety of glow discharge plasmas are discussed. Emphasis is placed on plasma diagnostic experiments using spectroscopic methods, probe analysis, mass spectrometric sampling and magnetic resonance techniques which are well suited to investigate the neutral and ionized gas phase species as well as some aspects of plasma surface interactions. The results on metallic, semi-conducting and insulating films are reviewed in conjunction with proposed models and the problem encountered under film deposition conditions. It is concluded that the understanding of film deposition process requires additional experimental information on plasma surface interactions of free radicals and the synergetic effects where photon, electron and ion bombardment change the reactivity of the incident radical with the surface.

  18. Model of the accumulation process in the formation of planetary systems. I. Numerical experiments

    SciTech Connect

    Eneev, T.M.; Kozlov, N.N.

    1981-04-01

    This work considers the evolution of a plane protoplanetary nebula consisting of a large number of bodies (protoplanets), which interact gravitationally, combine on contact, and move in the field of a massive central body (the sun or a planet). It is assumed that the gravitational interaction between bodies occurs only during their binary close approach. It is also assumed that the bodies move in Keplerian orbits between close approaches and that the orbits of all the bodies are circular at the initial time of evolution of the cloud. The so-called limit model of the accumulation process, in which each close approach of bodies is terminated by their combining, is considered. It is shown that in the course of evolution of such a model there appear annular zones of material condensation whose subsequent development leads to the formation of planets with predominantly direct rotation about their axes. The principal numerical results are obtained by computer simulation of the planetary accumulation process.

  19. Numerical Simulation of the Processes of Icing on Airfoils with Formation of a "Barrier" Ice

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, A. A.; Alekseenko, S. V.

    2014-05-01

    Software and methods allowing one to model the processes of formation of a "barrier" ice on the unprotected part of an airfoil have been developed with the use of the Reynolds-averaged Navier-Stokes equations for a compressible gas, which are closed with the aid of the Spalart-Allmaras model of turbulence. An inertial model is used to describe the motion of overcooled water droplets. In modeling the process of ice accretion, differential equations of mass, momentum, and energy conservation are used for each element of the surface. The initial equations are made discrete by means of the control volume approach. The influence of the height of ice accretions and of their location on the character of air-droplet flow past a NACA 0012 airfoil and on its aerodynamic characteristics has been analyzed.

  20. Kinetics of the process of formation and high-temperature oxidation of electrospark coatings on steel

    SciTech Connect

    Verkhoturov, A.D.; Chiplik, V.N.; Egorov, F.F.; Lavrenko, V.A.; Podchernyaeva, I.A.; Shemet, V.Z.

    1986-10-01

    This work is a study of the kinetics of formation and of the heat resistance of electrospark coatings based on the composite TiB/sub 2/-Mo with varying molybdenum content. In the process of electrospark alloying they measured the specific erosion of the anode and the increase in weight of the cathode with an accuracy not worse than 5%. Electrospark coatings of TiB/sub 2/-Mo on steel 45 are marked by improved scaling resistance at temperatures above 900 C. Their scaling resistance and also the effectiveness of the process of electrospark alloying increase with increasing content of the phase B-MoB in the coating because molybdenum borate forms during its high-temperature oxidation. Illustrations and table are included.

  1. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    In this study, we have investigated the post-adsorption process of ytterbium (Yb) phosphate nano-particle formation by Saccharomyces cerevisiae (yeast). The yeast grown in P-rich medium were exposed to 1.44 × 10-4 mol/L Yb(III) solution for 2-120 h, and 2 months at 25 ± 1 °C at an initial pH of 3, 4, or 5, respectively. Ytterbium concentrations in solutions decreased as a function of exposure time. Field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (FESEM), transmission electron microscopy (TEM), and synchrotron-based extended X-ray absorption fine structure (EXAFS) analyses revealed that nano-sized blocky Yb phosphate with an amorphous phase formed on the yeast cells surfaces in the solutions with Yb. These nano-sized precipitates that formed on the cell surfaces remained stable even after 2 months of exposure at 25 ± 1 °C around neutral pHs. The EXAFS data revealed that the chemical state of the accumulated Yb on the cell surfaces changed from the adsorption on both phosphate and carboxyl sites at 30 min to Yb phosphate precipitates at 5 days, indicating the Yb-phosphate precipitation as a major post-adsorption process. In addition, the precipitation of Yb phosphate occurred on cell surfaces during 7 days of exposure in Yb-free solution after 2 h of exposure (short-term Yb adsorption) in Yb solution. These results suggest that the released P from the inside of yeast cells reacted with adsorbed Yb on cell surfaces, resulting in the formation of Yb precipitates, even though no P was added to the exposure solution. In an abiotic system, the EXAFS data showed that the speciation of sorbed Yb on the reference materials, carboxymethyl cellulose and Ln resin, did not change even when the Yb was exposed to P solution, without forming Yb phosphate precipitates. This result strongly suggests that the cell surface of the yeast plays an important role in the Yb-phosphate precipitation process, not only as a carrier of the

  2. Ventifact Formation in the Mojave Desert: Field Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Laity, J. E.; Bridges, N. T.; Boyle, T. K.

    2001-01-01

    Two field studies in the Mojave Desert, California, shed light on processes of ventifact formation. The field sites are located on a ridge at Little Cowhole Mountain, which lies approximately 12 km south of Baker, and on an unnamed ridge situated along the northern boundary of the Mojave River Sink (Rasor Road site). The rocks at Little Cowhole Mountain are a blue-grey marble/dolomite, whereas those at Rasor Road are Miocene volcanic rocks (basalt). At both sites the abrasive agent is a fine-grained aeolian sand which was probably derived largely from the Mojave River. There are minimal modem inputs of sand to either site: abrasion occurs as a result of unique climatic and topographic conditions which allow pre-existing sand to be recycled from one aspect of the ridge to the other. Climatic conditions are well suited for ventifact formation. Owing, to the dry climate (marked by low average relative humidity, infrequent dew, and low annual rainfall), rates of chemical weathering are low. Where resurfacing of the rocks by sand abrasion proceeds at a rate greater than weathering, the ventifacts are considered "active." Active ventifacts are found atop and straddling the ridge crests, in the zone of maximum wind velocity and sediment supply. Inactive ventifacts occur where modem weathering Processes exceed abrasion rates; principally on the basal two-thirds of the hillslope, where wind velocity and sediment supply are lower. At intermediate locations between the slope base and crest, ventifacts are either active or inactive, depending on local conditions. The presence of relict ventifacts at the study sites, as well as elsewhere in the eastern Mojave Desert, suggests that the conditions for venti fact formation must have been more intense and extensive in the past. Together, the studies illustrate that the processes that interact to form ventifacts are highly complex, and must be studied at many scales. Small-scale effects, such as local topography, plant cover, or

  3. Ventifact Formation in the Mojave Desert: Field Analogs for Martian Processes

    NASA Technical Reports Server (NTRS)

    Laity, J. E.; Bridges, N. T.; Boyle, T. K.

    2001-01-01

    Two field studies in the Mojave Desert, California, shed light on processes of ventifact formation. The field sites are located on a ridge at Little Cowhole Mountain, which lies approximately 12 km south of Baker, and on an unnamed ridge situated along the northern boundary of the Mojave River Sink (Rasor Road site). The rocks at Little Cowhole Mountain are a blue-grey marble/dolomite, whereas those at Rasor Road are Miocene volcanic rocks (basalt). At both sites the abrasive agent is a fine-grained aeolian sand which was probably derived largely from the Mojave River. There are minimal modem inputs of sand to either site: abrasion occurs as a result of unique climatic and topographic conditions which allow pre-existing sand to be recycled from one aspect of the ridge to the other. Climatic conditions are well suited for ventifact formation. Owing, to the dry climate (marked by low average relative humidity, infrequent dew, and low annual rainfall), rates of chemical weathering are low. Where resurfacing of the rocks by sand abrasion proceeds at a rate greater than weathering, the ventifacts are considered "active." Active ventifacts are found atop and straddling the ridge crests, in the zone of maximum wind velocity and sediment supply. Inactive ventifacts occur where modem weathering Processes exceed abrasion rates; principally on the basal two-thirds of the hillslope, where wind velocity and sediment supply are lower. At intermediate locations between the slope base and crest, ventifacts are either active or inactive, depending on local conditions. The presence of relict ventifacts at the study sites, as well as elsewhere in the eastern Mojave Desert, suggests that the conditions for venti fact formation must have been more intense and extensive in the past. Together, the studies illustrate that the processes that interact to form ventifacts are highly complex, and must be studied at many scales. Small-scale effects, such as local topography, plant cover, or

  4. Tromantadine inhibits HSV-1 induced syncytia formation and viral glycoprotein processing

    SciTech Connect

    Ickes, D.E.

    1989-01-01

    Tromantadine inhibits a late event in Herpes Simplex Virus Type 1 (HSV-1) replication, visualized by the inhibition of both the size and number of syncytia. Tromantadine can be added at any time between 1 and 9 h post infection with complete inhibition of syncytia formation. Glycan synthesis of the viral glycoproteins, important for syncytia formation, is incomplete due to tromantadine treatment. Tromantadine does not inhibit the initiation of glycosylation, since viral glycoproteins, gX{sub t}, synthesized in the presence of tromantadine still incorporate {sup 3}H-glucosamine. Tromantadine does not inhibit the transport of t e viral glycoproteins to the cell surface, since glycoproteins B, C, and D are expressed, as demonstrated by immunofluorescence. Tromantadine inhibition of HSV-1 glycoprotein processing is demonstrated by an increase in mobility of the radioimmunoprecipitated gX{sub t}, on SDS-PAGE. The gX{sub t} of KOS, a non-syncytial strain of HSV-1, had a similar increase in mobility, suggesting that the block in glycoprotein processing is a general effect of tromantadine treatment. Fucose, which is incorporated into oligosaccharides in the medial Golgi, is incorporated into gX{sub t}, indicating that the tromantadine block in glycoprotein processing occurs after this step. Lectin binding studies and SDS-PAGE analysis of gC processed in the presence of tromantadine, gC{sub t}, indicates that it has terminal galactose residues in both N- and O-linked glycans (binds Peanut and Ricin Agglutinins, respectively). The inhibition of sialylation of N-linked glycans by tromantadine was indicated by the extent of the increase in SDS-PAGE mobility of the G protein from Vesicular Stomatitis Virus. O-glycanase digestion and SDS-PAGE analysis of gC{sub t} indicate that the O-linked disaccharide NAcGal-Galactose is present.

  5. Modeling the Formation of Giant Planet Cores. I. Evaluating Key Processes

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-04-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material—regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ~105 years, the outer embryo can migrate ~6 AU and grow to roughly 30 M ⊕. This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  6. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    SciTech Connect

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-04-15

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of {approx}10{sup 5} years, the outer embryo can migrate {approx}6 AU and grow to roughly 30 M {sub +}. This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  7. The Role of the Auroral Processes in the Formation of the Outer Electron Radiation Belt

    NASA Astrophysics Data System (ADS)

    Stepanova, M. V.; Antonova, E. E.; Pinto, V. A.; Moya, P. S.; Riazantseva, M.; Ovchinnikov, I.

    2016-12-01

    The role of the auroral processes in the formation of the outer electron radiation belt during storms is analyzed using the data of RBSP mission, low orbiting satellites and ground based observations. We analyze fluxes of the low energy precipitating ions using data of the Defense Meteorological Satellite Program (DMSP). The location of the auroral electrojet is obtained from the IMAGE magnetometer network, and of the electron distribution in the outer radiation belt from the RBSP mission. We take into account the latest results on the auroral oval mapping in accordance with which the most part of the auroral oval maps not to the plasma sheet. It maps into the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. The development of the ring current and its high latitude continuation generates strong distortion of the Earth's magnetic field and corresponding adiabatic variation of the relativistic electron fluxes. This adiabatic variation should be considered for the analysis of the processes of the acceleration of relativistic electrons and formation of the outer radiation belt. We also analyze the plasma pressure profiles during storms and demonstrate the formation of sharp plasma pressure peak at the equatorial boundary of the auroral oval. It is shown that the observed this peak is directly connected to the creation of the seed population of relativistic electrons. We discuss the possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations.

  8. Formation of nanoporous pyrobitumen residues during maturation processes within the Barnett Shale (Fort Worth Basin)

    NASA Astrophysics Data System (ADS)

    Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.-M.; Horsfield, B.

    2012-04-01

    Hydrocarbon generation processes occur within organic-rich shales as a response to increases in thermal maturation. Shale gas reservoir quality is thought to be largely dependent on the extent to which solid organic material has been converted to pore space during catagenesis. Although pores may drastically vary in variety and abundance within differing shales, the occurrence of nanopores within organic particles has recently been documented for an important number of gas shale systems (i.e., Barnett, Haynesville, Utica, Eagle Ford, Woodford, Horn River, Marcellus, Posidonia …). However, despite their ubiquitous nature, the formation and the geochemical nature of these nanoporous organic compounds remain unclear. Here, we present the characterization of samples from the organic-rich Mississippian Barnett shale gas system (Fort Worth Basin, Texas, USA) at varying stages of thermal maturation. Using a combination of compositional organic geochemistry and spectromicroscopy techniques, including synchrotron-based scanning transmission X-ray microscopy (STXM - data collected using the CLS 10ID-1 STXM beamline) and transmission electron microscopy (TEM), we document a net increase in sample geochemical heterogeneity with increasing maturity. In addition to the presence of bitumen in samples of oil window maturity, very likely genetically derived from thermally degraded kerogen, the formation of nanoporous pyrobitumen has been inferred for samples of gas window maturity, likely resulting from the formation of gaseous hydrocarbons by secondary cracking of bitumen compounds. By providing in-situ insights into the fate of bitumen and pyrobitumen as a response to the thermal evolution of the macromolecular structure of kerogen, the present contribution constitutes an important step towards better constraining hydrocarbon generation processes occurring within unconventional gas shale systems.

  9. [Formation process of nitrogenous disinfection byproduct trichloronitromethane in drinking water and its influencing factors].

    PubMed

    Ding, Chun-Sheng; Zou, Bang-Wen; Miao, Jia; Fu, Yang-Ping; Shen, Jia-Chen

    2013-08-01

    A novel method is described in this paper, which uses methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of nitrogenous disinfection byproduct trichloronitromethane (TCNM) by gas chromatography mass spectrometry (GC-MS). The formation process of TCNM and its influencing factors were evaluated with methylamine as the precursor during chlorination. The results indicated that the TCNM amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the TCNM amount increased with the increase of pH value. It was found that the TCNM amount increased with the increase of chlorine addition when the chlorine dosage was in the range of 2-8 mmol x L(-1). However, the TCNM amount was reduced when the chlorine dosage was enhanced from 8 mmol x L(-1) to 12 mmol x L(-1), under which conditions the concentration of free chlorine was higher and methylamine was turned into nitriles and aldehydes through other reactions. It was also found that the TCNM amount increased with the increase of methylamine addition when the methylamine dosage was in the range of 0.5-4 mmol x L(-1). Temperature was another important factor that affected the TCNM formation from methylamine especially in the range of 10-30 degrees C and the higher the temperature, the more the TCNM amount produced. The formation process of TCNM from methylamine by chlorination was in accordance with the mechanism of an electrophilic reaction, in which HClO and ClO(-) could be used as the electrophilic reagents to attack methylamine and then to form TCNM.

  10. Processes of annual moraine formation at a temperate alpine valley glacier: glacier dynamics and climatic controls

    NASA Astrophysics Data System (ADS)

    Lukas, S.

    2012-04-01

    This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been formed since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland, that advances up a reverse bedrock slope. They reach heights of 0.5-1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines comprise proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified. (1) Inefficient bulldozing of a gently-sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead-ice incorporation upon retreat. (2) Terrestrial ice-contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills. Debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season. (3) A steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre-existing foreland sediments by wholesale folding. Ice surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveal that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high-mountain environments and suggests avenues for further

  11. Laboratory Observations of a New Grain Accretion Process: Implications for the Formation of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Curtis, S. A.; Minetto, F.; Nuth, J. A.; Marshall, J. R.; Calle, C.

    2009-12-01

    Grain accretion is an essential yet poorly understood process in the building of planets from the early solar nebula. The spontaneous dipole-formation based linear aggregation behavior of small grains in a randomly charged, weak gravity environment, such as the early solar nebula or planetary regolith, has been documented. The disaggregation of grains when the environment develops a sufficient net charge has also been observed. Here, we examine the potential for these behaviors to contribute to the growth of planetesimals in such environments by observing the behavior of grains on a surface in a low discharge environment with a net overall charge. The resulting grains were accelerated, repelled from, attracted to, and reaggregated on surrounding surfaces. These accelerated monocharged grains could potentially provide ballistic mechanical energy to induce triboelectric dipole formation on less charged surrounding grains and thus accretion via inelastic collisions wherein the grains stick together post collision . We demonstrate this behavior through a series of experiments undertaken in a space simulating laboratory environment. Grains are readily accelerated by weak electron beams in the milliamp range in the presence of a moderate electric field of 500-1000 volts through the onset of a discharge. Initially neutral grains in the 20 micron size range extremely rapidly attain a charge to mass ratio that causes sufficient inter grain electrostatic repulsion to implant the grains on the vacuum chamber walls. Similar weak discharge processes in the solar nebula could thus enhance the relative velocities between solar nebula grains inside and outside of the discharge volume, giving rise to increased collisions and hence meeting a necessary conditions for increased accretion. This behavior would allow triboelectric transfer of charge from smaller grains to larger grains or surfaces and thus differential charge of these larger surfaces to create greater potential for

  12. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    NASA Technical Reports Server (NTRS)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  13. Formation process of TiO2 nanotube arrays prepared by anodic oxidation method.

    PubMed

    Li, Hongyi; Liu, Man; Wang, Hong; Wu, Junshu; Su, Penglei; Li, Dasheng; Wang, Jinshu

    2013-06-01

    TiO2 nanotube array thin films have great potential in many fields, such as solar cell, photo catalyst, photo-induced cathodic protection for metals and bioactivity. In order to investigate the formation process of the TiO2 nanotube array thin films, the EIS spectrum and current density were measured during the anodic oxidation. The results showed that the formation process could be divided into four stages. The current density decreased sharply at the first stage, and then increased at the second stage, followed by declining and finally remained constant value. In addition, the current density increased with the anodic voltage. The EIS spectrum varied in different stage. The simulated circuit was composed three sections, the first sections indicated the resistance of the electrolyte, the second one gave the double layer structure between the electrolyte and titanium electrode, the third one was a inductive loop, which represented the anions absorbed on the surface of the TiO2 nanotube's wall. The more cations were absorbed, the higher value of the inductive loop would be. The EIS results showed that the value increased with the outer voltage, which means that more cations were absorbed under the higher anodic voltage.

  14. E-cadherin junction formation involves an active kinetic nucleation process

    SciTech Connect

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.

  15. E-cadherin junction formation involves an active kinetic nucleation process

    DOE PAGES

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; ...

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  16. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    NASA Astrophysics Data System (ADS)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  17. Numerical analysis of the formation process of aerosols in the alveoli

    NASA Astrophysics Data System (ADS)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  18. Effects of stacking fault energy on defect formation process in face-centered cubic metals

    NASA Astrophysics Data System (ADS)

    Okita, Taira; Yang, Yingjuan; Hirabayashi, Junichi; Itakura, Mitsuhiro; Suzuki, Katsuyuki

    2016-05-01

    To elucidate the effect of stacking fault energies (SFEs) on defect formation by the collision cascade process for face-centred cubic metals, we used six sets of interatomic potentials with different SFEs while keeping the other properties almost identical. Molecular dynamic simulations of the collision cascade were carried out using these potentials with primary knock-on atom energies (EPKA) of 10 and 20 keV at 100 K. Neither the number of residual defects nor the size distributions for both self-interstitial atom (SIA) type and vacancy type clusters were affected by the difference in the SFE. In the case of EPKA = 20 keV, the ratio of glissile SIA clusters increased as the SFE decreased, which was not expected by a prediction based on the classical dislocation theory. The trend did not change after annealing at 1100 K for 100 ps. For vacancy clusters, few stacking fault tetrahedrons (SFTs) formed before the annealing. However, lower SFEs tended to increase the SFT fraction after the annealing, where large vacancy clusters formed at considerable densities. The findings of this study can be used to characterise the defect formation process in low SFE metals such as austenitic stainless steels.

  19. Level of processing modulates the neural correlates of emotional memory formation.

    PubMed

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  20. Effect of annealing process on the phase formation in poly(vinylidene fluoride) thin films

    SciTech Connect

    Abdullah, Ibtisam Yahya; Yahaya, Muhammad; Jumali, Mohd Hafizuddin Haji; Shanshool, Haider Mohammed

    2014-09-03

    This work reports the initial study on the effect of annealing process on the crystalline phase of poly(vinylidene fluoride) (PVDF) thin film. PVDF powder was dissolved in N,N-dimethylformamide before spin-coated onto a glass substrate to form a film. The films were annealed at 30°C, 90°C and 110°C for 5 hrs. The crystalline phase of the powder PVDF as received was investigated by using XRD and FTIR techniques. Moreover, the crystalline phases of thin films after annealing were investigated by using the same techniques. XRD analysis showed that in powder form PVDF exists in α-phase. Each annealed PVDF thin films exhibited identical formation of three-phases material namely γ (as major phase) while α and β phases as the minor phases. The FTIR analysis showed that the powder form of PVDF exists in α and β phases. FTIR measurement further confirmed the XRD results implying that the annealing process has no significant effect on the phase formation in PVDF films.

  1. Magneto-optical indicator film study of the hybrid exchange spring formation and evolution processes

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. I.; Gornakov, V. S.; Kabanov, Yu. P.; Shapiro, A. J.; Shull, R. D.; Chien, C. L.; Jiang, J. S.; Bader, S. D.

    2003-03-01

    The elementary events of the remagnetization processes in nanocomposite magnetic bilayers were investigated using iron-garnet indicator films with in-plane anisotropy. We have observed hybrid domain walls consisting of both ferromagnetic and antiferromagnetic sections perpendicular to the interface. The external magnetic field shifts only the ferromagnetic part of the domain walls. This leads to the formation of a hybrid exchange spin spring parallel to the interface. The processes of spring nucleation and untwisting occur at different locations. With the field oriented antiparallel to the macroscopic unidirectional anisotropy, remagnetization of the soft ferromagnet layer in the hard/soft nanocomposite starts by the formation of an exchange spring consisting of micrometer-scale sub-domains with opposite direction spin twisting. A rotating magnetic field (smaller than some critical value) creates firstly a single-chiral spin spiral; this spiral then loses stability, incoherently untwists and gradually inverts its chirality with increasing field rotation. Untwisting of the hybrid exchange spring at higher fields leads to the creation of unusual hybrid non-180° domain walls. The initial (ground) state of the bilayer with such noncollinear magnetized domains is not restored after stopping the field rotation and returning it to zero. The revealed phenomena are attributed to the influence of the dispersion in the unidirectional anisotropy induced by magnetization frustration in the interface and bilayer crystal lattice defects.

  2. Processes and controlling factors of polygenetic dolomite formation in the Transdanubian Range, Hungary: a synopsis

    NASA Astrophysics Data System (ADS)

    Haas, János; Hips, Kinga; Budai, Tamás; Győri, Orsolya; Lukoczki, Georgina; Kele, Sándor; Demény, Attila; Poros, Zsófia

    2017-04-01

    In the Transdanubian Range (Hungary), dolostone and dolomitic limestone appear in a number of sedimentary successions formed from the Late Permian to the Late Triassic in various depositional settings and under various diagenetic conditions, whereas only a negligible amount of dolomite was detected in the post-Triassic formations. Seven dolomite-bearing units representing ramp, small and large carbonate platforms, and intraplatform basin settings are presented in this synopsis. In most cases, multi-stage and polygenetic dolomitization was inferred. The main mass of the dolostones was formed via near-surface diagenetic processes, which were commonly preceded by the formation of synsedimentary dolomite. Accordingly, surficial conditions that prevailed during sediment deposition controlled the dolomite-forming processes and thus the lateral extension and the time span of dolomitization. The area of episodic subaerial exposure was a critical controlling factor of the lateral extension of the near-surface dolomite genesis, whereas its temporal extension was mostly governed by climate. Burial diagenesis usually resulted in only moderate dolomitization, either in connection with compactional fluid flow or via thermal convection. The Triassic fault zones provided conduits for fluid flow that led to both replacive dolomitization and dolomite cement precipitation. In the Late Triassic extensional basins, synsedimentary fault-controlled dolomitization of basinal deposits was reconstructed.

  3. Processes and controlling factors of polygenetic dolomite formation in the Transdanubian Range, Hungary: a synopsis

    NASA Astrophysics Data System (ADS)

    Haas, János; Hips, Kinga; Budai, Tamás; Győri, Orsolya; Lukoczki, Georgina; Kele, Sándor; Demény, Attila; Poros, Zsófia

    2016-06-01

    In the Transdanubian Range (Hungary), dolostone and dolomitic limestone appear in a number of sedimentary successions formed from the Late Permian to the Late Triassic in various depositional settings and under various diagenetic conditions, whereas only a negligible amount of dolomite was detected in the post-Triassic formations. Seven dolomite-bearing units representing ramp, small and large carbonate platforms, and intraplatform basin settings are presented in this synopsis. In most cases, multi-stage and polygenetic dolomitization was inferred. The main mass of the dolostones was formed via near-surface diagenetic processes, which were commonly preceded by the formation of synsedimentary dolomite. Accordingly, surficial conditions that prevailed during sediment deposition controlled the dolomite-forming processes and thus the lateral extension and the time span of dolomitization. The area of episodic subaerial exposure was a critical controlling factor of the lateral extension of the near-surface dolomite genesis, whereas its temporal extension was mostly governed by climate. Burial diagenesis usually resulted in only moderate dolomitization, either in connection with compactional fluid flow or via thermal convection. The Triassic fault zones provided conduits for fluid flow that led to both replacive dolomitization and dolomite cement precipitation. In the Late Triassic extensional basins, synsedimentary fault-controlled dolomitization of basinal deposits was reconstructed.

  4. E-cadherin junction formation involves an active kinetic nucleation process

    PubMed Central

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  5. Deciphering systemic lupus erythematosus-associated serum biomarkers reflecting apoptosis and disease activity.

    PubMed

    Delfani, P; Sturfelt, G; Gullstrand, B; Carlsson, A; Kassandra, M; Borrebaeck, C A K; Bengtsson, A A; Wingren, C

    2017-04-01

    Systemic lupus erythematosus (SLE) is a severe chronic inflammatory autoimmune connective tissue disease. Despite major efforts, SLE remains a poorly understood disease with unpredictable course, unknown etiology and complex pathogenesis. Apoptosis combined with deficiency in clearing apoptotic cells is an important etiopathogenic event in SLE, which could contribute to the increased load of potential autoantigen(s); however, the lack of disease-specific protein signatures deciphering SLE and the underlying biological processes is striking and represents a key limitation. In this retrospective pilot study, we explored the immune system as a specific sensor for disease, in order to advance our understanding of SLE. To this end, we determined multiplexed serum protein expression profiles of crude SLE serum samples, using antibody microarrays. The aim was to identify differential immunoprofiles, or snapshots of the immune response modulated by the disease, reflecting apoptosis, a key process in the etiology of SLE and disease activity. The results showed that multiplexed panels of SLE-associated serum biomarkers could be decoded, in particular reflecting disease activity, but potentially the apoptosis process as well. While the former biomarkers could display a potential future use for prognosis, the latter biomarkers might help shed further light on the apoptosis process taking place in SLE.

  6. Transmembrane Form Agrin-induced Process Formation Requires Lipid Rafts and the Activation of Fyn and MAPK*S⃞

    PubMed Central

    Ramseger, Rene; White, Robin; Kröger, Stephan

    2009-01-01

    Overexpression or clustering of the transmembrane form of the extracellular matrix heparan sulfate proteoglycan agrin (TM-agrin) induces the formation of highly dynamic filopodia-like processes on axons and dendrites from central and peripheral nervous system-derived neurons. Here we show that the formation of these processes is paralleled by a partitioning of TM-agrin into lipid rafts, that lipid rafts and transmembrane-agrin colocalize on the processes, that extraction of lipid rafts with methyl-β-cyclodextrin leads to a dose-dependent reduction of process formation, that inhibition of lipid raft synthesis prevents process formation, and that the continuous presence of lipid rafts is required for the maintenance of the processes. Association of TM-agrin with lipid rafts results in the phosphorylation and activation of the Src family kinase Fyn and subsequently in the phosphorylation and activation of MAPK. Inhibition of Fyn or MAPK activation inhibits process formation. These results demonstrate that the formation of filopodia-like processes by TM-agrin is the result of the activation of a complex intracellular signaling cascade, supporting the hypothesis that TM-agrin is a receptor or coreceptor on neurons. PMID:19139104

  7. The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    NASA Technical Reports Server (NTRS)

    Kudryashov, B. A.; Shapiro, F. B.; Lomovskaya, F. B.; Lyapina, L. A.

    1979-01-01

    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex.

  8. Microemulsions and Aggregation Formation in Extraction Processes for Used Nuclear Fuel: Thermodynamic and Structural Studies

    SciTech Connect

    Nilsson, Mikael

    2016-05-04

    Advanced nuclear fuel cycles rely on successful chemical separation of various elements in the used fuel. Numerous solvent extraction (SX) processes have been developed for the recovery and purification of metal ions from this used material. However, the predictability of process operations has been challenged by the lack of a fundamental understanding of the chemical interactions in several of these separation systems. For example, gaps in the thermodynamic description of the mechanism and the complexes formed will make predictions very challenging. Recent studies of certain extraction systems under development and a number of more established SX processes have suggested that aggregate formation in the organic phase results in a transformation of its selectivity and efficiency. Aggregation phenomena have consistently been interfering in SX process development, and have, over the years, become synonymous with an undesirable effect that must be prevented. This multiyear, multicollaborative research effort was carried out to study solvation and self-organization in non-aqueous solutions at conditions promoting aggregation phenomena. Our approach to this challenging topic was to investigate extraction systems comprising more than one extraction reagent where synergy of the metal ion could be observed. These systems were probed for the existence of stable microemulsions in the organic phase, and a number of high-end characterization tools were employed to elucidate the role of the aggregates in metal ion extraction. The ultimate goal was to find connections between synergy of metal ion extraction and reverse micellar formation. Our main accomplishment for this project was the expansion of the understanding of metal ion complexation in the extraction system combining tributyl phosphate (TBP) and dibutyl phosphoric acid (HDBP). We have found that for this system no direct correlation exists for the metal ion extraction and the formation of aggregates, meaning that the

  9. Flame Experiments at the Advanced Light Source: New Insights into Soot Formation Processes

    PubMed Central

    Hansen, Nils; Skeen, Scott A.; Michelsen, Hope A.; Wilson, Kevin R.; Kohse-Höinghaus, Katharina

    2014-01-01

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory1-4. This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range5,6. The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species’ profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates7. The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles4. The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the

  10. Flame experiments at the advanced light source: new insights into soot formation processes.

    PubMed

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-05-26

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  11. N,N-dimethylpiperidinium (mepiquat) Part 2. Formation in roasted coffee and barley during thermal processing.

    PubMed

    Wermann, Silke; Theurillat, Viviane; Verzegnassi, Ludovica; Hofmann, Jocelyne; Kuchenbecker, Ralf; Constable, Anne; Delatour, Thierry; Stadler, Richard H

    2014-01-01

    Previous work in model systems has demonstrated that mepiquat can be formed under typical roasting conditions from the amino acid lysine via the Maillard reaction and trigonelline, the latter alkaloid serving as a methyl donor. This study shows for the first time that mepiquat is formed in low mg kg(-1) amounts during the coffee roasting process and consequently can be detected in roast and ground as well as soluble coffee up to levels of 1.4 mg kg(-1). Darker roast coffees contain relatively higher amounts of mepiquat versus light roasted beans, with an excellent correlation of mepiquat formation to roast colour (r(2) = 0.99) in robusta beans. A survey of 20 of the major green coffee origins (robusta and arabica coffees) showed the absence of mepiquat (<0.005 mg kg(-1)). Preliminary studies indicate that mepiquat is not formed during processing (thermal treatment) in most of the cereal-based foods such as pizza and ready-to-eat cereals, but was detected in barley after roasting (0.64 mg kg(-1)). Mepiquat can therefore be considered a process-induced compound formed from natural constituents during the roasting process. Even considering a high intake of seven cups per day of soluble coffee containing 1.4 mg kg(-1) mepiquat in the coffee powder (the highest amount measured in this study), the resulting intake would exhaust less than 0.2% of the ADI of mepiquat.

  12. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products.

    PubMed

    Khan, Muhammad I; Min, Joong-Seok; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk-Hwan; Lee, Mooha; Jo, Cheorun

    2015-08-11

    Cholesterol is an important biological compound; however, its oxidation products have been proven to be harmful to human health. Cooking, storage, and reheating methods significantly affect the safety of meat products, as they contribute to the production of cholesterol oxidation products (COPs). Three cooking methods were used to cook sausages, loin ham, bacon, luncheon meat, and pressed ham, in order to investigate the effect of cooking, storage, and reheating on total cholesterol and on the formation of COPs. Cooked samples were stored at 4 °C and reheated after 3 and 6 storage days by the same cooking method or by microwaving. The samples were assessed for total lipids, cholesterol, and cholesterol oxides. The average cholesterol content in the processed meat varied from 76.0 mg/100 g to 201.70 mg/100 g. Microwaved ham showed the lowest cholesterol content compared to that of other processed meat products. Significant differences were found in cholesterol content and cholesterol oxidation products depending on cooking, storage, and reheating methods. Six cholesterol oxides were found in processed meat, of which 7β-hydroxycholesterol and α-epoxides were detected as the major oxidation products. Microwaving and oven grilling resulted in higher production of COPs in processed meat as compared with other cooking methods. Refrigerated storage tended to significantly increase the COPs content.

  13. [Influence of temperature on spatial fibrin clot formation process in thrombodynamics].

    PubMed

    Shcherbina, I A; Lipets, E N; Abaeva, A A; Balandina, A N; Ataullakhanov, F I

    2014-01-01

    In this study we have investigated the process of spatial fibrin clot formation in non-steered platelet-free plasma at the temperatures from 20°C to 43°C using thrombodynamics - the novel in vitro hemostasis assay, which imitates the process of hemostatic clot growth in vivo. During data processing the following parameters were calculated: initial (V i ) and stationary (V st ) rates of clot growth which characterize initiation and propagation phases of clotting process, and clot size on the 30 th minute. The temperature dependence of extrinsic and intrinsic tenase activities, which determine values of the initial and stationary clot growth rates, respectively, have been also measured. It was established that the temperature lowering from 37°C to 24°C extends mainly on the initiation phase of clot growth, while the stationary rate of clot growth changes insignificantly. Meanwhile none of the thrombodynamics parameters shows the dramatic change of plasma coagulation system condition at the temperature of 24°C (acute hypothermia). Using the thrombodynamics assay an assumption, that the temperature lowering does not change the state of plasma hemostasis system significantly has been confirmed.

  14. Processes of benthic foraminiferal fossil assemblage formation on the continental slope

    SciTech Connect

    Loubere, P. )

    1991-03-01

    Theoretical analysis of benethic foraminiferal fossil assemblage formation shows that the assemblage eventually preserved in the sediments is an integrated result of species' test production rate, microhabitat behavior, and biogeochemical processes that control the probability of species' test preservation. The biogeochemical processes that influence test preservation in slope sediments are controlled by the flux of organic carbon to the sea-bed and the botton water oxygen concentration. These variables also affect the depth of the biotic habitation zone in the sediments. Therefore, organic carbon flux and bottom water oxygen content should be reflected in benthic foraminiferal fossil assemblages for both ecologic and taphonomic reasons. An integrated study of fossil assemblage generation was conducted on the Gulf of Mexico continental slope using box cores collected along depth transects across the oxygen minimum, and using live and dead assemblage analysis combined with {sup 210}Pb measurements to quantify biotic activity in the sediments and pore water nutrient and metals analysis to quantify biogeochemical processes acting in the sediment habitation zone. The results show that the size of the habitation zone and live standing stock are influenced by organic carbon flux and oxygen supply to the sea-bed. The fossil assemblage is created progressively through the upper 10-20 cm of sediment and biologichemically driven test destruction (taphonomic process) is important in determining the assemblage that enters the geologic record.

  15. International Processes of Education Policy Formation: An Analytic Framework and the Case of Plan 2021 in El Salvador

    ERIC Educational Resources Information Center

    Edwards, D. Brent, Jr.

    2013-01-01

    This article uses multiple perspectives to frame international processes of education policy formation and then applies the framework to El Salvador's Plan 2021 between 2003 and 2005. These perspectives are policy attraction, policy negotiation, policy imposition, and policy hybridization. Research reveals that the formation of Plan 2021 was the…

  16. Formation of the Foreign Language Discursive Competence of Pedagogical Faculties Students in the Process of Intercultural Dialogue

    ERIC Educational Resources Information Center

    Ponomarenko, Larisa N.; Zlobina, Irina S.; Galitskih, Elena O.; Rublyova, Olga S.

    2017-01-01

    The article presents the main ideas of concept of foreign language discursive competence formation among university and secondary school students by means of intercultural dialogue. The concept includes fundamental principles, activity stages of educational process, and criteria of foreign language discursive competence formation. Innovation of…

  17. International Processes of Education Policy Formation: An Analytic Framework and the Case of Plan 2021 in El Salvador

    ERIC Educational Resources Information Center

    Edwards, D. Brent, Jr.

    2013-01-01

    This article uses multiple perspectives to frame international processes of education policy formation and then applies the framework to El Salvador's Plan 2021 between 2003 and 2005. These perspectives are policy attraction, policy negotiation, policy imposition, and policy hybridization. Research reveals that the formation of Plan 2021 was the…

  18. Extension of the sasCIF format and its applications for data processing and deposition

    SciTech Connect

    Kachala, Michael; Westbrook, John; Svergun, Dmitri

    2016-02-01

    Recent advances in small-angle scattering (SAS) experimental facilities and data analysis methods have prompted a dramatic increase in the number of users and of projects conducted, causing an upsurge in the number of objects studied, experimental data available and structural models generated. To organize the data and models and make them accessible to the community, the Task Forces on SAS and hybrid methods for the International Union of Crystallography and the Worldwide Protein Data Bank envisage developing a federated approach to SAS data and model archiving. Within the framework of this approach, the existing databases may exchange information and provide independent but synchronized entries to users. At present, ways of exchanging information between the various SAS databases are not established, leading to possible duplication and incompatibility of entries, and limiting the opportunities for data-driven research for SAS users. In this work, a solution is developed to resolve these issues and provide a universal exchange format for the community, based on the use of the widely adopted crystallographic information framework (CIF). The previous version of the sasCIF format, implemented as an extension of the core CIF dictionary, has been available since 2000 to facilitate SAS data exchange between laboratories. The sasCIF format has now been extended to describe comprehensively the necessary experimental information, results and models, including relevant metadata for SAS data analysis and for deposition into a database. Processing tools for these files (sasCIFtools) have been developed, and these are available both as standalone open-source programs and integrated into the SAS Biological Data Bank, allowing the export and import of data entries as sasCIF files. Software modules to save the relevant information directly from beamline data-processing pipelines in sasCIF format are also developed. Lastly, this update of sasCIF and the

  19. Extension of the sasCIF format and its applications for data processing and deposition.

    PubMed

    Kachala, Michael; Westbrook, John; Svergun, Dmitri

    2016-02-01

    Recent advances in small-angle scattering (SAS) experimental facilities and data analysis methods have prompted a dramatic increase in the number of users and of projects conducted, causing an upsurge in the number of objects studied, experimental data available and structural models generated. To organize the data and models and make them accessible to the community, the Task Forces on SAS and hybrid methods for the International Union of Crystallography and the Worldwide Protein Data Bank envisage developing a federated approach to SAS data and model archiving. Within the framework of this approach, the existing databases may exchange information and provide independent but synchronized entries to users. At present, ways of exchanging information between the various SAS databases are not established, leading to possible duplication and incompatibility of entries, and limiting the opportunities for data-driven research for SAS users. In this work, a solution is developed to resolve these issues and provide a universal exchange format for the community, based on the use of the widely adopted crystallographic information framework (CIF). The previous version of the sasCIF format, implemented as an extension of the core CIF dictionary, has been available since 2000 to facilitate SAS data exchange between laboratories. The sasCIF format has now been extended to describe comprehensively the necessary experimental information, results and models, including relevant metadata for SAS data analysis and for deposition into a database. Processing tools for these files (sasCIFtools) have been developed, and these are available both as standalone open-source programs and integrated into the SAS Biological Data Bank, allowing the export and import of data entries as sasCIF files. Software modules to save the relevant information directly from beamline data-processing pipelines in sasCIF format are also developed. This update of sasCIF and the relevant tools are an important

  20. Extension of the sasCIF format and its applications for data processing and deposition

    DOE PAGES

    Kachala, Michael; Westbrook, John; Svergun, Dmitri

    2016-02-01

    Recent advances in small-angle scattering (SAS) experimental facilities and data analysis methods have prompted a dramatic increase in the number of users and of projects conducted, causing an upsurge in the number of objects studied, experimental data available and structural models generated. To organize the data and models and make them accessible to the community, the Task Forces on SAS and hybrid methods for the International Union of Crystallography and the Worldwide Protein Data Bank envisage developing a federated approach to SAS data and model archiving. Within the framework of this approach, the existing databases may exchange information and providemore » independent but synchronized entries to users. At present, ways of exchanging information between the various SAS databases are not established, leading to possible duplication and incompatibility of entries, and limiting the opportunities for data-driven research for SAS users. In this work, a solution is developed to resolve these issues and provide a universal exchange format for the community, based on the use of the widely adopted crystallographic information framework (CIF). The previous version of the sasCIF format, implemented as an extension of the core CIF dictionary, has been available since 2000 to facilitate SAS data exchange between laboratories. The sasCIF format has now been extended to describe comprehensively the necessary experimental information, results and models, including relevant metadata for SAS data analysis and for deposition into a database. Processing tools for these files (sasCIFtools) have been developed, and these are available both as standalone open-source programs and integrated into the SAS Biological Data Bank, allowing the export and import of data entries as sasCIF files. Software modules to save the relevant information directly from beamline data-processing pipelines in sasCIF format are also developed. Lastly, this update of sasCIF and the relevant tools are

  1. Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes.

    PubMed

    Tseng, Hsu-Wen; Pitt, Miranda E; Glant, Tibor T; McRae, Allan F; Kenna, Tony J; Brown, Matthew A; Pettit, Allison R; Thomas, Gethin P

    2016-01-29

    Ankylosing spondylitis (AS) is an immune-mediated arthritis particularly targeting the spine and pelvis and is characterised by inflammation, osteoproliferation and frequently ankylosis. Current treatments that predominately target inflammatory pathways have disappointing efficacy in slowing disease progression. Thus, a better understanding of the causal association and pathological progression from inflammation to bone formation, particularly whether inflammation directly initiates osteoproliferation, is required. The proteoglycan-induced spondylitis (PGISp) mouse model of AS was used to histopathologically map the progressive axial disease events, assess molecular changes during disease progression and define disease progression using unbiased clustering of semi-quantitative histology. PGISp mice were followed over a 24-week time course. Spinal disease was assessed using a novel semi-quantitative histological scoring system that independently evaluated the breadth of pathological features associated with PGISp axial disease, including inflammation, joint destruction and excessive tissue formation (osteoproliferation). Matrix components were identified using immunohistochemistry. Disease initiated with inflammation at the periphery of the intervertebral disc (IVD) adjacent to the longitudinal ligament, reminiscent of enthesitis, and was associated with upregulated tumor necrosis factor and metalloproteinases. After a lag phase, established inflammation was temporospatially associated with destruction of IVDs, cartilage and bone. At later time points, advanced disease was characterised by substantially reduced inflammation, excessive tissue formation and ectopic chondrocyte expansion. These distinct features differentiated affected mice into early, intermediate and advanced disease stages. Excessive tissue formation was observed in vertebral joints only if the IVD was destroyed as a consequence of the early inflammation. Ectopic excessive tissue was predominantly

  2. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    SciTech Connect

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by monitoring carbon via

  3. Modern Limnology and Varve Formation Processes in Lake Montcortès (Southern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Trapote forné, M.; López, P.; Puche, E.; Safont, E.; Cañellas-Boltà, N.; Gomà, J.; Buchaca, T.; Pérez-Zanón, N.; Sigró, J.; Rull, V.; Vegas-Vilarrúbia, T.

    2015-12-01

    Lake Montcortès is a karstic lake located in Catalonian Pyrenees (Spain). Its sediments consist of biogenic varves composed of a couplet of calcite and organic matter layers and occasional detrital layer. Previous studies of the lake's sediments spanning the last 1500 years proposed that the lake was meromictic and that calcite layers formed due to endogenic precipitation in the epilimnion during spring/summer, driven by diatom blooms. These processes would have been influenced by variations in calcium saturation, trophic state and water temperature of the lake. The presence of phosphorous and biological differences between planktonic diatoms Cyclotella comta and C.cyclopuncta, would have produced additional differences in calcite sublayering. In order to improve comprehension of limnological variables that influence varve formation processes, monthly field campaigns including sediment traps deployment have been carried out during two concurrent years (2013-2015). The lake mixed once during winter. Endogenic calcite precipitation related with high primary production and calcium saturation in metalimnetic water was confirmed. Trapped material composition revealed low but constant calcite precipitation through the year with higher intensities during summer and autumn, coinciding with high relative abundances of C. cyclopuncta and C.ocellata. Nutrient content was very low throughout both years, particularly phosphorous. It seems to be removed by coprecipitation of calcium phosphate with calcite during summer, probably inhibiting part of calcite precipitation reaction. In contrast to previous hypotheses, currently calcite precipitation occurs through the whole year, mainly during summer and autumn months, and may be triggered by nucleation with picoplankton. Our study shows that processes leading to varve formation are highly complex and that any extrapolation to different regions or time periods should be handled with caution

  4. Ion-induced Processing of Cosmic Silicates: A Possible Formation Pathway to GEMS

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Sabri, T.; Wendler, E.; Henning, Th.

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO4 and Mg2SiO4 grains by 10 and 20 keV protons and 90 keV Ar+ ions. The Ar+ ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe2+) ions and the formation of iron inclusions in the MgFeSiO4 grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si4+ and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  5. DECIPHERING NATURALLY-OCCURRING PB CONTAMINATION IMPACTING DRINKING WATER WELLS: SHAKER VILLAGE CATCHMENT, MAINE.

    EPA Science Inventory

    Trace Pb concentrations in groundwater within glacial deposits across Maine fluctuate considerably. Deciphering the distribution and sources of naturally occurring Pb in groundwater with only the use of conventional anomaly identification techniques presents a challenge. In a rep...

  6. A low-energy chilled ammonia process exploiting controlled solid formation for post-combustion CO2 capture.

    PubMed

    Sutter, Daniel; Gazzani, Matteo; Mazzotti, Marco

    2016-10-20

    A new ammonia-based process for CO2 capture from flue gas has been developed, which utilizes the formation of solid ammonium bicarbonate to increase the CO2 concentration in the regeneration section of the process. Precipitation, separation, and dissolution of the solid phase are realized in a dedicated process section, while the packed absorption and desorption columns remain free of solids. Additionally, the CO2 wash section applies solid formation to enable a reduction of the wash water consumption. A rigorous performance assessment employing the SPECCA index (Specific Primary Energy Consumption for CO2 Avoided) has been implemented to allow for a comparison of the overall energy penalty between the new process and a standard ammonia-based capture process without solid formation. A thorough understanding of the relevant solid-solid-liquid-vapor phase equilibria and an accurate modeling of them have enabled the synthesis of the process, and have inspired the development of the optimization algorithm used to screen a wide range of operating conditions in equilibrium-based process simulations. Under the assumptions on which the analysis is based, the new process with controlled solid formation achieved a SPECCA of 2.43 MJ kgCO2(-1), corresponding to a reduction of 17% compared to the process without solid formation (with a SPECCA of 2.93 MJ kgCO2(-1)). Ways forward to confirm this significant improvement, and to increase the accuracy of the optimization are also discussed.

  7. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  8. Hydrologic Connectivity as a Window into Pattern Conditions and Formation Processes in Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Larsen, L. G.; Choi, J.; Nungesser, M. K.; Harvey, J. W.

    2011-12-01

    Patterned aquatic ecosystems exhibit different types and degrees of hydrologic connectivity, from isolated open-water patches in some inland marshes, to cross-slope strings and flarks of striped fens, to along-slope ridges and sloughs of low-gradient subtropical wetlands, to dendritic channels of coastal marshes. The nature and degree of this connectivity are closely linked to landscape function. For example, hydrologic connectivity perpendicular to river channel thalwegs relates to the exchange of sediment and nutrients between channels and floodplains, whereas connectivity parallel to a dominant flow direction affects fish migration or the likelihood of contaminant transport. Characteristics of hydrologic connectivity reflect not only the results of landscape pattern but also the mechanisms responsible for pattern creation. Quantifying those connectivity characteristics provides a robust means to identify landscapes likely formed under a consistent set of processes or to compare the output of landscape simulation models to actual landscapes in order to determine whether the models capture the most relevant landscape formation processes. However, established methods for quantifying isotropic patch connectivity are often ill suited for strongly patterned landscapes or hydroscapes in which directional flow is important. Using graph theory principles, we developed two alternative indices of directional hydrologic connectivity: the maximum flow index (MFI) and directional connectivity index (DCI), which quantify the connectivity of flow paths along a particular axis of interest. The MFI is sensitive to the existence of any hydrologic connection along the direction of interest, whereas the DCI is sensitive to the linearity of connections along that direction. Curves of directional connectivity over a range of angular bearings provide a quantitative, information-dense representation of landscape structure that can be related to subtle differences in the physical

  9. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the

  10. Deciphering Jupiter's atmospheric dynamics using the upcoming Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Kaspi, Yohai; Galanti, Eli

    2016-07-01

    This summer, the Juno spacecraft will arrive at Jupiter in course for close flybys of the planet, obtaining a high precision gravity spectrum of Jupiter. This data can be used to estimate the depth of Jupiter's observed cloud-level wind, and decipher the possible internal flows, that might be decoupled from the surface wind. In this talk, we discuss the Juno gravity experiment, and the possible outcomes with regard to the flows on Jupiter. We show several ways in which the gravity spectrum might be used to study the large scale flows: 1. measurements of the high order even harmonics which beyond J10 are dominated by the dynamics; 2. measurements of odd gravity harmonics which have no contribution from a static planet, and therefore are a pure signature of dynamics; 3. upper limits on the depth of the surface flow can be obtained by comparing low order even harmonics from dynamical models to the difference between the measured low order even harmonics and the largest possible values of a static planet; 4. direct latitudinally varying measurements of the gravity field exerted on the spacecraft. We will discuss how these methods may be applied given the expected sensitivities of the Juno gravity experiment. In addition, we present an inverse adjoint model, which allows given the gravity data, to infer the flows that produce it. This will allow, hopefully, to make significant progress in one of the longest-standing question in planetary atmospheric dynamics regarding the nature of the flows on the giant planets.

  11. A versatile method for deciphering plant membrane proteomes.

    PubMed

    Rolland, Norbert; Ferro, Myriam; Ephritikhine, Geneviève; Marmagne, Anne; Ramus, Claire; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Bourguignon, Jacques; Barbier-Brygoo, Hélène; Joyard, Jacques; Garin, Jérome

    2006-01-01

    Proteomics is a very powerful approach to link the information contained in sequenced genomes, like that of Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. This article summarizes the different steps of a versatile strategy that has been developed to decipher plant membrane proteomes. Initiated with envelope membranes from spinach chloroplasts, this strategy has been adapted to thylakoids, and further extended to a series of membranes from the model plant Arabidopsis: chloroplast envelope membranes, plasma membrane, and mitochondrial membranes. The first step is the preparation of highly purified membrane fractions from plant tissues. The second step in the strategy is the fractionation of membrane proteins on the basis of their physico-chemical properties. Chloroform/methanol extraction and washing of membranes with NaOH, NaCl or any other agent led to the simplification of the protein content of the fraction to be analysed. The next step is the genuine proteomic step, i.e. the separation of proteins by 1D-gel electrophoresis followed by in-gel proteolytic digestion of the polypeptides, analysis of the proteolytic peptides using mass spectrometry, and protein identification by searching through databases. The last step is the validation of the procedure by checking the subcellular location. The results obtained by using this strategy demonstrate that a combination of different proteomics approaches, together with bioinformatics, indeed provide a better understanding of the biochemical machinery of the different plant membranes at the molecular level.

  12. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  13. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure.

    PubMed

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A; Garmendia, Junkal; Bengoechea, José A

    2015-11-17

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.

  14. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition.

    PubMed

    Kubik, Grzegorz; Summerer, Daniel

    2015-07-17

    Epigenetic modification at the 5-position of cytosine is a key regulatory element of mammalian gene expression with important roles in genome stability, development, and disease. The repertoire of cytosine modifications has long been confined to only 5-methylcytosine (mC) but has recently been expanded by the discovery of 5-hydroxymethyl-, 5-formyl-, and 5-carboxylcytosine. These are key intermediates of active mC demethylation but may additionally represent new epigenetic marks with distinct biological roles. This leap in chemical complexity of epigenetic cytosine modifications has not only created a pressing need for analytical approaches that enable unraveling of their functions, it has also created new challenges for such analyses with respect to sensitivity and selectivity. The crucial step of any such approach that defines its analytic potential is the strategy used for the actual differentiation of the cytosine 5-modifications from one another, and this selectivity can in principle be provided either by chemoselective conversions or by selective, molecular recognition events. While the former strategy has been particularly successful for accurate genomic profiling of cytosine modifications in vitro, the latter strategy provides interesting perspectives for simplified profiling of natural, untreated DNA, as well as for emerging applications such as single cell analysis and the monitoring of cytosine modification in vivo. We here review analytical techniques for the deciphering of epigenetic cytosine modifications with an emphasis on approaches that are based on the direct molecular recognition of these modifications in DNA.

  15. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure

    PubMed Central

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M.; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G.; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A.; Garmendia, Junkal; Bengoechea, José A.

    2015-01-01

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern. PMID:26578797

  16. Deciphering modular and dynamic behaviors of transcriptional networks.

    PubMed

    Zhan, Ming

    2007-01-01

    The coordinated and dynamic modulation or interaction of genes or proteins acts as an important mechanism used by a cell in functional regulation. Recent studies have shown that many transcriptional networks exhibit a scale-free topology and hierarchical modular architecture. It has also been shown that transcriptional networks or pathways are dynamic and behave only in certain ways and controlled manners in response to disease development, changing cellular conditions, and different environmental factors. Moreover, evolutionarily conserved and divergent transcriptional modules underline fundamental and species-specific molecular mechanisms controlling disease development or cellular phenotypes. Various computational algorithms have been developed to explore transcriptional networks and modules from gene expression data. In silico studies have also been made to mimic the dynamic behavior of regulatory networks, analyzing how disease or cellular phenotypes arise from the connectivity or networks of genes and their products. Here, we review the recent development in computational biology research on deciphering modular and dynamic behaviors of transcriptional networks, highlighting important findings. We also demonstrate how these computational algorithms can be applied in systems biology studies as on disease, stem cells, and drug discovery.

  17. The process of ghost-rock karstification and its role in the formation of cave systems

    NASA Astrophysics Data System (ADS)

    Dubois, C.; Quinif, Y.; Baele, J.-M.; Barriquand, L.; Bini, A.; Bruxelles, L.; Dandurand, G.; Havron, C.; Kaufmann, O.; Lans, B.; Maire, R.; Martin, J.; Rodet, J.; Rowberry, M. D.; Tognini, P.; Vergari, A.

    2014-04-01

    This paper presents an extensive review of the process of ghost-rock karstification and highlights its role in the formation of cave systems. The process integrates chemical weathering and mechanical erosion and extends a number of existing theories pertaining to continental landscape development. It is a two stage process that differs in many respects from the traditional single-stage process of karstification by total removal. The first stage is characterised by chemical dissolution and removal of the soluble species. It requires low hydrodynamic energy and creates a ghost-rock feature filled with residual alterite. The second stage is characterised by mechanical erosion of the undissolved particles. It requires high hydrodynamic energy and it is only then that open galleries are created. The transition from the first stage to the second is driven by the amount of energy within the thermodynamic system. The process is illustrated by detailed field observations and the results of the laboratory analyses of samples taken from the karstotype area around Soignies in southern Belgium. Thereafter, a series of case studies provide a synthesis of field observations and laboratory analyses from across western Europe. These studies come from geologically distinct parts of Belgium, France, Italy, and the United Kingdom. The process of ghost-rock karstification challenges a number of axioms associated with the process of karstification by total removal. On the basis of the evidence presented it is argued that it is no longer acceptable to use karst morphologies as a basis with which to infer specific karstogenetic processes and it is no longer necessary for a karst system to relate to base level as ghost-rock karstification proceeds along transmissive pathways in the rock. There is also some evidence to suggest that ghost-rock karstification may be superseded by karstification by total removal, and vice versa, according to the amount of energy within the thermodynamic system

  18. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Mckee, C. F.

    1979-01-01

    The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.

  19. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    PubMed

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  20. Ionic liquid effects on a multistep process. Increased product formation due to enhancement of all steps.

    PubMed

    Keaveney, Sinead T; Haines, Ronald S; Harper, Jason B

    2015-09-07

    The reaction of a series of substituted benzaldehydes with hexylamine was examined in acetonitrile and an ionic liquid. In acetonitrile, as the electron withdrawing nature of the substituent increases, the overall addition-elimination process becomes faster as does the build-up of the aminol intermediate. Under equivalent conditions in an ionic liquid, less intermediate build up is observed, and the effect on the rate on varying the substituent is different to that in acetonitrile. Extensive kinetic analysis shows that the ionic liquid solvent increases the rate constant of all steps of the reaction, resulting in faster product formation relative to acetonitrile; these effects increase with the proportion of ionic liquid in the reaction mixture. Differences in the equilibrium position of the addition step in the ionic liquid were found to account for both the decrease in intermediate build up relative to acetonitrile, as well as the differing trend in the overall rate of product formation as the substituent was changed. The microscopic origins of these ionic liquid effects were probed through temperature dependent analyses, highlighting the subtle balance of interactions between the ionic liquid and species along the reaction coordinate, particularly the importance of charge development in the transition state.

  1. CONSTRAINTS ON FEEDBACK PROCESSES DURING THE FORMATION OF EARLY-TYPE GALAXIES

    SciTech Connect

    Trevisan, M.; De La Rosa, I. G.; La Barbera, F.; De Carvalho, R. R.

    2012-06-20

    Galaxies are found to obey scaling relations between a number of observables. These relations follow different trends at the low- and high-mass ends. The processes driving the curvature of scaling relations remain uncertain. In this Letter, we focus on the specific family of early-type galaxies, deriving the star formation histories of a complete sample of visually classified galaxies from Sloan Digital Sky Survey DR7 over the redshift range 0.01 < z < 0.025, covering a stellar mass interval from 10{sup 9} to 3 Multiplication-Sign 10{sup 11} M{sub Sun }. Our sample features the characteristic 'knee' in the surface brightness versus mass distribution at M{sub *} {approx} 3 Multiplication-Sign 10{sup 10} M{sub Sun} . We find a clear difference between the age and metallicity distributions of the stellar populations above and beyond this knee, which suggests a sudden transition from a constant, highly efficient mode of star formation in high-mass galaxies, gradually decreasing toward the low-mass end of the sample. At fixed mass, our early-type sample is more efficient in building up the stellar content at early times in comparison to the general population of galaxies, with half of the stars already in place by redshift z {approx} 2 for all masses. The metallicity-age trend in low-mass galaxies is not compatible with infall of metal-poor gas, suggesting instead an outflow-driven relation.

  2. Polymer-melt interactions during casting formation in the lost foam process

    SciTech Connect

    Shivkumar, S.; Yao, X.; Makhlouf, M.

    1995-07-01

    The lost foam casting process utilizes injection modeled polymeric foam patterns for the production of metallic components. Foamed polymer patterns of the desired shape are coated with a water-based refractory slurry, dried and embedded in unbonded sand. Molten metal is poured directly on the coated polymer. The polymer undergoes thermal degradation and is gradually replaced by the liquid metal to yield the casting after solidification. Expanded polystyrene (EPS) is the most common pattern material used in commercial practice. The use of EPS patterns with ferrous castings may result in the formation of carbonaceous defects in the casting. Consequently, polymethylmethacrylate (PMMA) and copolymers of EPS and PMMA have been developed for ferrous castings. The thermal degradation of the foamed pattern results in the formation of gaseous degradation products and of a partially depolymerized viscous residue. The fraction of viscous residue increased with temperature and is essentially constant above about 650 C. During the filling of EPS patterns, nearly 60% of the polymer is converted to the viscous residue and 40% is transformed to gaseous products. In the case of PMM, almost 60% of the polymer undergoing degradation at the metal front is transformed to gaseous products. The melt flow velocity during the filling of the mold generally increases with temperature.

  3. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  4. Laticiferous canal formation in fruits of Decaisnea fargesii: a programmed cell death process?

    PubMed

    Zhou, Ya-Fu; Liu, Wen-Zhe

    2011-10-01

    Programmed cell death (PCD), a topic of abiding interest, remodels plants at the cell, tissue, and organ levels involving various developmental processes of plants. The aim of this study is to provide a morphological characterization of evidence of PCD involvement in the laticiferous canal formation in fruit of Decaisnea fargesii. Several ultrastructural features of PCD have been observed including disintegration of vacuole and plasma membranes, cell wall degeneration, degenerated cytoplasm, abundant membrane structures and flocculent material, mitochondria and misshapen nuclei coupled with degraded plastids in vacuoles, and nuclei enveloped by rubber granule. In D. fargesii, the nuclei of the secretory epidermal cells become TUNEL-positive from the sunken stage to the late expanding stage, then DAPI-negative during the mature stage, indicating an early event of deoxyribonucleic acid (DNA) cleavage and a late event of complete DNA degeneration. Gel electrophoresis indicates that DNA cleavage is random and does not result in the laddering pattern indicating multiples of internucleosomal units. During the PCD of secretory epidermal cells, the rubber granules continue to be synthesized and accumulated in the secretory epidermal cells despite nuclear degradation. The PCD's role in laticiferous canal formation suggests that PCD may play important roles in gland development of plants.

  5. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes.

    PubMed

    Li, Tong; Jiang, Yan; An, Xiaoqiang; Liu, Huijuan; Hu, Chun; Qu, Jiuhui

    2016-10-01

    The synergistic effect of ultraviolet light (UV) and chlorine on the structural transformation of Humic Acid (HA) and formation of chloro-disinfection byproducts (DBPs) in water were investigated, with chlorination as a reference. The transformation and mineralization of HA were enhanced upon co-exposure to UV and chlorine. Electron spin resonance (ESR) studies revealed that hydroxyl radical (OH) and chlorine radical (Cl) were predominant active species in a pH range from 4 to 7, while Cl dominated at pH 2 and pH higher than 7. The impact of different radicals on the transformation of HA was investigated by UV254, fluorescence and TOC measurements. OH were found to be responsible for the removal of chromophoric groups and mineralization of HA, while Cl mainly reacted with HA and intermediates from HA degradation. Due to the competitive and synergistic reaction of OH and Cl with HA, higher removal of HA and lower formation of chloro-DBPs appeared in UV-chlorine than chlorination, thus the combined UV-chlorine processes should be a promising method for water purification. Copyright © 2016. Published by Elsevier Ltd.

  6. Empirical analysis of the lane formation process in bidirectional pedestrian flow

    NASA Astrophysics Data System (ADS)

    Feliciani, Claudio; Nishinari, Katsuhiro

    2016-09-01

    This paper presents an experimental study on pedestrian bidirectional streams and the mechanisms leading to spontaneous lane formation by examining the flow formed by two groups of people walking toward each other in a mock corridor. Flow ratio is changed by changing each group size while maintaining comparable total flow and density. By tracking the trajectories of each pedestrian and analyzing the data obtained, five different phases were recognized as contributing to the transition from unidirectional to bidirectional flow including the spontaneous creation and dissolution of lanes. It has been shown that a statistical treatment is required to understand the fundamental characteristics of pedestrian dynamics and some two-dimensional quantities such as order parameter and rotation range were introduced to allow a more complete analysis. All the quantities observed showed a clear relationship with flow ratio and helped distinguishing between the different characteristic phases of the experiment. Results show that balanced bidirectional flow becomes the most stable configuration after lanes are formed, but the lane creation process requires pedestrians to laterally move to a largest extent compared to low flow-ratio configurations. This finding allows us to understand the reasons why balanced bidirectional flow is efficient at low densities, but quickly leads to deadlock formation at high densities.

  7. Control of Listeria monocytogenes in the processing environment by understanding biofilm formation and resistance to sanitizers.

    PubMed

    Manios, Stavros G; Skandamis, Panagiotis N

    2014-01-01

    Listeria monocytogenes can colonize in the food processing environment and thus pose a greater risk of cross-contamination to food. One of the proposed mechanisms that facilitates such colonization is biofilm formation. As part of a biofilm, it is hypothesized that L. monocytogenes can survive sanitization procedures. In addition, biofilms are difficult to remove and may require additional physical and chemical mechanisms to reduce their presence and occurrence. The initial stage of biofilm formation is attachment to surfaces, and therefore it is important to be able to determine the ability of L. monocytogenes strains to attach to various inert surfaces. In this chapter, methods to study bacterial attachment to surfaces are described. Attachment is commonly induced by bringing planktonic cells into contact with plastic, glass, or stainless steel surfaces with or without food residues ("soil") in batch or continuous (e.g., with constant flow of nutrients) culture. Measurement of biofilm formed is carried out by detaching cells (with various mechanical methods) and measuring the viable counts or by measuring the total attached biomass. Resistance of biofilms to sanitizers is commonly carried out by exposure of the whole model surface bearing the attached cells to a solution of sanitizer, followed by measuring the survivors as described above.

  8. Chain formation and aging process in biocompatible polydisperse ferrofluids: experimental investigation and Monte Carlo simulations.

    PubMed

    Bakuzis, Andris Figueiroa; Branquinho, Luis César; e Castro, Leonardo Luiz; e Eloi, Marcos Tiago de Amaral; Miotto, Ronei

    2013-05-01

    We review the use of Monte Carlo simulations in the description of magnetic nanoparticles dispersed in a liquid carrier. Our main focus is the use of theory and simulation as tools for the description of the properties of ferrofluids. In particular, we report on the influence of polydispersity and short-range interaction on the self-organization of nanoparticles. Such contributions are shown to be extremely important for systems characterized by particles with diameters smaller than 10nm. A new 3D polydisperse Monte Carlo implementation for biocompatible magnetic colloids is proposed. As an example, theoretical and simulation results for an ionic-surfacted ferrofluid dispersed in a NaCl solution are directly compared to experimental data (transmission electron microscopy - TEM, magneto-transmissivity, and electron magnetic resonance - EMR). Our combined theoretical and experimental results suggest that during the aging process two possible mechanisms are likely to be observed: the nanoparticle's grafting decreases due to aggregate formation and the Hamaker constant increases due to oxidation. In addition, we also briefly discuss theoretical agglomerate formation models and compare them to experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Hall effect on a Merging Formation Process of a Field-Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku

    2015-11-01

    Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.

  10. Formation mechanism of atomic cluster structures in Al-Mg alloy during rapid solidification processes

    SciTech Connect

    Liu Fengxiang; Liu Rangsu Hou Zhaoyang; Liu Hairong; Tian Zean; Zhou Lili

    2009-02-15

    The rapid solidification processes of Al{sub 50}Mg{sub 50} liquid alloy consisting of 50,000 atoms have been simulated by using molecular dynamics method based on the effective pair potential derived from the pseudopotential theory. The formation mechanisms of atomic clusters during the rapid solidification processes have been investigated adopting a new cluster description method-cluster-type index method (CTIM). The simulated partial structure factors are in good agreement with the experimental results. And Al-Mg amorphous structure characterized with Al-centered icosahedral topological short-range order (SRO) is found to form during the rapid solidification processes. The icosahedral cluster plays a key role in the microstructure transition. Besides, it is also found that the size distribution of various clusters in the system presents a magic number sequence of 13, 19, 23, 25, 29, 31, 33, 37, .... The magic clusters are more stable and mainly correspond to the incompact arrangements of linked icosahedra in the form of rings, chains or dendrites. And each magic number point stands correspondingly for one certain combining form of icosahedra. This magic number sequence is different from that generated in the solidification structure of liquid Al and those obtained by methods of gaseous deposition and ionic spray, etc.

  11. Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology

    NASA Astrophysics Data System (ADS)

    Sumarno, Rahim, Rizki; Trisanti, Prida Novarita

    2017-05-01

    Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.

  12. Formation and emission of brominated dioxins and furans during secondary aluminum smelting processes.

    PubMed

    Wang, Mei; Liu, Guorui; Jiang, Xiaoxu; Li, Sumei; Liu, Wenbin; Zheng, Minghui

    2016-03-01

    Secondary aluminum smelting (SAl) processes have previously been found to be important sources of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs). It is crucial that the key factors that influence the formation and emission of PBDD/Fs are identified to allow techniques for decreasing PBDD/F emissions during SAl processes to be developed. In this study, stack gas samples were collected from four typical secondary aluminum smelters that used different raw materials, and the samples were analyzed to allow differences between PBDD/F emissions from different SAl plants to be assessed. The composition of the raw materials was found to be one of the key factors influencing the amounts of PBDD/Fs emitted. The PBDD/F emission factors (per tonne of aluminum produced) for the plants using 100% (Plant1), 80% (Plant2), and 50% (Plant3) dirty aluminum scrap in the raw material feed were 180, 86, and 14 μg t(-1), respectively. The amounts of PBDD/Fs emitted at different stages of the smelting process (feeding-fusion, refining, and casting) were compared, and the feeding-fusion stage was found to be the main stage in which PBDD/Fs were formed and emitted. Effective aluminum scrap pretreatments could significantly decrease PBDD/F emissions. Much higher polybrominated dibenzofuran concentrations than polybrominated dibenzo-p-dioxin concentrations were found throughout the SAl process. The more-brominated congeners (including octabromodibenzo-p-dioxin, octabromodibenzofuran, heptabromodibenzo-p-dioxins, and heptabromodibenzofurans) were the dominant contributors to the total PBDD/F concentrations. The results could help in the development of techniques and strategies for controlling PBDD/F emissions during metallurgical processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Learning processes in the professional development of mental health counselors: knowledge restructuring and illness script formation.

    PubMed

    Strasser, Josef; Gruber, Hans

    2015-05-01

    An important part of learning processes in the professional development of counselors is the integration of declarative knowledge and professional experience. It was investigated in-how-far mental health counselors at different levels of expertise (experts, intermediates, novices) differ in their availability of experience-based knowledge structures. Participants were prompted with 20 client problems. They had to explain those problems, the explanations were analyzed using think-aloud protocols. The results show that experts' knowledge is organized in script-like structures that integrate declarative knowledge and professional experience and help experts in accessing relevant information about cases. Novices revealed less integrated knowledge structures. It is concluded that knowledge restructuring and illness script formation are crucial parts of the professional learning of counselors.

  14. Teachers and the religious socialization of adolescents: facilitation of meaningful religious identity formation processes.

    PubMed

    Cohen-Malayev, Maya; Schachter, Elli P; Rich, Yisrael

    2014-02-01

    This study investigated the effects of religious education on student religious identity over and above parent religiosity by examining student perceptions of two aspects of teacher functioning: teacher caring and teacher as role-model. We posited that effects of these variables on students' religious identity are mediated by student perceptions that the school provides a non-alienating religious atmosphere and meaningful religious studies. Participants were 2691 male and female students (grades 9-12) in 152 classes of 25 schools from the Jewish public-religious sector in Israel. Results indicate that in addition to their parents' religiosity, adolescents' perceptions of their teachers as role models and their religious studies as meaningful are important variables affecting their religious identity. Moreover, this research suggests that religious identity formation processes flourish in an educational environment which students perceive as accommodating religious exploration. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  15. Experimental and Computational Analysis of Water-Droplet Formation and Ejection Process Using Hollow Microneedle

    NASA Astrophysics Data System (ADS)

    Kato, Norihisa; Oka, Ryotaro; Sakai, Takahiro; Shibata, Takayuki; Kawashima, Takahiro; Nagai, Moeto; Mineta, Takashi; Makino, Eiji

    2011-06-01

    In this paper, we present the possibility of liquid delivery using fabricated hollow silicon dioxide microneedles of approximately 2 µm in diameter. As a fundamental study, the water-droplet formation and ejection process was examined via dynamic observations during water ejection tests and computational fluid dynamics (CFD) analysis. The experimental results indicated that fluid flow in a microneedle follows the Hagen-Poiseuille law, i.e., the flow rate is approximately directly proportional to the fourth power of the inner diameter. Moreover, the ejection pressure and maximum droplet curvature obtained using the proposed microfluid ejection model were in good agreement with the experimental results. The resulting ejection pressure is equal to the theoretical pressure difference of a spherical droplet, which is determined using the Young-Laplace equation. The maximum curvature of a droplet formed at the tip of a microneedle can be estimated on the basis of the contact angle theory expressed by the Young equation.

  16. A formative approach to strategic message targeting through soap operas: using selective processing theories.

    PubMed

    Dutta-Bergman, Mohan J

    2006-01-01

    In the past 2 decades, soap operas have been used extensively to attain prosocial change in other parts of the world. The role of the soap opera in achieving social change has become of special interest to strategic health message designers and planners in the United States. Before a strategic approach is implemented, however, researchers need to conduct formative research to interrogate the viability of soap operas and guide communication strategies. This article constructs a profile of the soap opera user who is younger, less educated, and earns less than the nonuser. Using selective processing theory, I argue that the health-oriented individual is most likely to remember health content from soap operas and incorporate the content in future behavior. Strategic media planning and message construction guidelines are provided for the use of soap operas as vehicles for reinforcing positive health behaviors and introducing new behaviors in the health oriented segment.

  17. The characteristics and processes of NO{sub x} formation/destruction in staged combustion

    SciTech Connect

    Xu, Zhe; Hayashi, Shigeru; Takagi, Toshimi

    1999-07-01

    The characteristics and processes of NO formation and destruction in methane-air staged combustion taking place in the re-burning technique were studied numerically by using detailed chemical kinetics compiled by GRL Special attention was paid to the effects of equivalence ratio, temperature and pressure. The model of staged combustion used in the computation consists of three stages: firstly well-stirred reactor, and then two one-dimensional plug flows, one with a secondary fuel inlet, the other a secondary air inlet. It is assumed that the secondary fuel is injected instantaneously at the inlet of the second stage, and the secondary air is injected over a certain time along the flow in the third stage. After their injection, secondary fuel and air are rapidly mixed with the primary combustion gas which comes from the previous stage. The results are described.

  18. Formation of porous surface layers in reaction bonded silicon nitride during processing

    NASA Technical Reports Server (NTRS)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  19. [Functional asymmetry of electric processes in the rabbit brain cortex at formation of the hunger dominant].

    PubMed

    Rusinova, E V

    2011-01-01

    The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.

  20. Synthesis and formation mechanism of pinnoite by the phase transition process

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Dong, Yaping; Peng, Jiaoyu; Wang, Liping; Li, Wu

    2016-06-01

    Pinnoite (MgB2O(OH)6) for the first time was synthesized using the solid-liquid-solid conversion method. The effects of reaction time, pH value and concentrations of magnesium and borate were investigated. Pinnoite was synthesized under the optimum condition of 8 mmol hungtsaoite and 1% boric acid solution at 80 °C. The products were determined using X-ray diffraction, Fourier-transform infrared spectroscopy, TG-DSC and a UV-vis spectrometer. The change processes of the surface morphology of pinnoite were investigated using scanning electron microscopy. In addition, the formation mechanism of pinnoite was discussed according to the changes in the content of precipitation and pH value.

  1. Near-infrared image formation and processing for the extraction of hand veins

    NASA Astrophysics Data System (ADS)

    Bouzida, Nabila; Hakim Bendada, Abdel; Maldague, Xavier P.

    2010-10-01

    The main objective of this work is to extract the hand vein network using a non-invasive technique in the near-infrared region (NIR). The visualization of the veins is based on a relevant feature of the blood in relation with certain wavelengths of the electromagnetic spectrum. In the present paper, we first introduce the image formation in the NIR spectral band. Then, the acquisition system will be presented as well as the method used for the image processing in order to extract the vein signature. Extractions of this pattern on the finger, on the wrist and on the dorsal hand are achieved after exposing the hand to an optical stimulation by reflection or transmission of light. We present meaningful results of the extracted vein pattern demonstrating the utility of the method for a clinical application like the diagnosis of vein disease, of primitive varicose vein and also for applications in vein biometrics.

  2. Formation process of a strong water-repellent alumina surface by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Li, Hui; Song, Yongfeng; Wang, Yulong

    2010-03-01

    A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1° is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.

  3. Monitoring process of human keloid formation based on second harmonic generation imaging

    NASA Astrophysics Data System (ADS)

    Jiang, X. S.; Chen, S.; Chen, J. X.; Zhu, X. Q.; Zheng, L. Q.; Zhuo, S. M.; Wang, D. J.

    2011-09-01

    In this paper, the morphological variation of collagen among the whole dermis from keloid tissue was investigated using second harmonic generation (SHG) microscopy. In the deep dermis of keloids, collagen bundles show apparently regular gap. In the middle dermis, the collagen bundles are randomly oriented and loosely arranged in the pattern of fine mesh while the collagen bundles are organized in a parallel manner in the superficial dermis near the epidermis. The developed parameters COI and BD can be used to further quantitatively describe these changes. Our results demonstrate the potential of SHG microscopy to understand the formation process of human keloid scar at the cellular level through imaging collagen variations in different depth of dermis.

  4. Cosmochemical evidence for astrophysical processes during the formation of our solar system.

    PubMed

    MacPherson, Glenn J; Boss, Alan

    2011-11-29

    Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially (60)Fe, (26)Al, and (41)Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been "triggered" by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides. Because the Sun formed in a region where many other stars were forming more or less contemporaneously, the bi-polar outflows from all such stars enriched the local region in interstellar silicate and oxide dust. This may explain several observed anomalies in the meteorite record: a near absence of detectable (no extreme isotopic properties) presolar silicate grains and a dichotomy in the isotope record between (26)Al and nucleosynthetic (nonradiogenic) anomalies.

  5. Transcriptional Analysis of Biofilm Formation Processes in the Anaerobic, Hyperthermophilic Bacterium Thermotoga maritima

    PubMed Central

    Pysz, Marybeth A.; Conners, Shannon B.; Montero, Clemente I.; Shockley, Keith R.; Johnson, Matthew R.; Ward, Donald E.; Kelly, Robert M.

    2004-01-01

    Thermotoga maritima, a fermentative, anaerobic, hyperthermophilic bacterium, was found to attach to bioreactor glass walls, nylon mesh, and polycarbonate filters during chemostat cultivation on maltose-based media at 80°C. A whole-genome cDNA microarray was used to examine differential expression patterns between biofilm and planktonic populations. Mixed-model statistical analysis revealed differential expression (twofold or more) of 114 open reading frames in sessile cells (6% of the genome), over a third of which were initially annotated as hypothetical proteins in the T. maritima genome. Among the previously annotated genes in the T. maritima genome, which showed expression changes during biofilm growth, were several that corresponded to biofilm formation genes identified in mesophilic bacteria (i.e., Pseudomonas species, Escherichia coli, and Staphylococcus epidermidis). Most notably, T. maritima biofilm-bound cells exhibited increased transcription of genes involved in iron and sulfur transport, as well as in biosynthesis of cysteine, thiamine, NAD, and isoprenoid side chains of quinones. These findings were all consistent with the up-regulation of iron-sulfur cluster assembly and repair functions in biofilm cells. Significant up-regulation of several β-specific glycosidases was also noted in biofilm cells, despite the fact that maltose was the primary carbon source fed to the chemostat. The reasons for increased β-glycosidase levels are unclear but are likely related to the processing of biofilm-based polysaccharides. In addition to revealing insights into the phenotype of sessile T. maritima communities, the methodology developed here can be extended to study other anaerobic biofilm formation processes as well as to examine aspects of microbial ecology in hydrothermal environments. PMID:15466556

  6. Formation of carbon vacancy in 4H silicon carbide during high-temperature processing

    NASA Astrophysics Data System (ADS)

    Ayedh, H. M.; Bobal, V.; Nipoti, R.; Hallén, A.; Svensson, B. G.

    2014-01-01

    As-grown and pre-oxidized silicon carbide (SiC) samples of polytype 4H have been annealed at temperatures up to 1950 °C for 10 min duration using inductive heating, or at 2000 °C for 30 s using microwave heating. The samples consisted of a n-type high-purity epitaxial layer grown on 4° off-axis ⟨0001⟩ n+-substrate and the evolution of the carbon vacancy (VC) concentration in the epitaxial layer was monitored by deep level transient spectroscopy via the characteristic Z1/2 peak. Z1/2 appears at ˜0.7 eV below the conduction band edge and arises from the doubly negative charge state of VC. The concentration of VC increases strongly after treatment at temperatures ≥ 1600 °C and it reaches almost 1015 cm-3 after the inductive heating at 1950 °C. A formation enthalpy of ˜5.0 eV is deduced for VC, in close agreement with recent theoretical predictions in the literature, and the entropy factor is found to be ˜5 k (k denotes Boltzmann's constant). The latter value indicates substantial lattice relaxation around VC, consistent with VC being a negative-U system exhibiting considerable Jahn-Teller distortion. The microwave heated samples show evidence of non-equilibrium conditions due to the short duration used and display a lower content of VC than the inductively heated ones. Finally, concentration-versus-depth profiles of VC favour formation in the "bulk" of the epitaxial layer as the prevailing process and not a Schottky type process at the surface.

  7. Cosmochemical evidence for astrophysical processes during the formation of our solar system

    PubMed Central

    MacPherson, Glenn J.; Boss, Alan

    2011-01-01

    Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially 60Fe, 26Al, and 41Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been “triggered” by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides. Because the Sun formed in a region where many other stars were forming more or less contemporaneously, the bi-polar outflows from all such stars enriched the local region in interstellar silicate and oxide dust. This may explain several observed anomalies in the meteorite record: a near absence of detectable (no extreme isotopic properties) presolar silicate grains and a dichotomy in the isotope record between 26Al and nucleosynthetic (nonradiogenic) anomalies. PMID:22106251

  8. The Formation Process of Silico-Ferrite of Calcium (SFC) from Binary Calcium Ferrite

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Guo, Xing-Min

    2014-08-01

    Silico-ferrite of calcium (SFC) is a significant equilibrium crystalline phase in the Fe2O3-CaO-SiO2 (FCS) ternary system and a key bonding phase in the sintering process of fine iron ore. In this work, the formation process of SFC from binary calcium ferrite has been determined by X-ray diffraction and field-emission scanning electron microscopy. Experiments were carried out under air at 1473 K (1200 °C) by adding SiO2 and Fe2O3 into CaO·Fe2O3 (CF). It was found that the formation of SFC is dominated by solid-state reactions in the FCS ternary system, in which Fe2O3 reacts with CaO·Fe2O3 to form the binary calcium ferrite phase. The chemical composition of binary calcium ferrite is Ca2.5Fe15.5O25 and approximately Ca2Fe12O20 (CaO·3Fe2O3). Then Si4+ and Ca2+ ions take the place of Fe3+ ion in preference located on the octahedral layers which belongs to (0 0 18) plane of binary calcium ferrite. The crystal structure of binary calcium ferrite gradually transforms from orthorhombic to triclinic, and the grain is refined with the addition of silica due to the smaller radius of Si4+ ion. A solid solution SFC forms completely when the content of SiO2 reaches approximately 3.37 wt pct at 1473 K (1200 °C).

  9. Bubble Formation and Transport during Microgravity Materials Processing: Model Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2003-01-01

    Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.

  10. Bubble Formation and Transport during Microgravity Materials Processing: Model Experiments on the Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2003-01-01

    Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.

  11. Deciphering Transcriptional Programming during Pod and Seed Development Using RNA-Seq in Pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha T.; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K.; Varshney, Rajeev K.

    2016-01-01

    Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits. PMID:27760186

  12. DeGNServer: deciphering genome-scale gene networks through high performance reverse engineering analysis.

    PubMed

    Li, Jun; Wei, Hairong; Zhao, Patrick Xuechun

    2013-01-01

    Analysis of genome-scale gene networks (GNs) using large-scale gene expression data provides unprecedented opportunities to uncover gene interactions and regulatory networks involved in various biological processes and developmental programs, leading to accelerated discovery of novel knowledge of various biological processes, pathways and systems. The widely used context likelihood of relatedness (CLR) method based on the mutual information (MI) for scoring the similarity of gene pairs is one of the accurate methods currently available for inferring GNs. However, the MI-based reverse engineering method can achieve satisfactory performance only when sample size exceeds one hundred. This in turn limits their applications for GN construction from expression data set with small sample size. We developed a high performance web server, DeGNServer, to reverse engineering and decipher genome-scale networks. It extended the CLR method by integration of different correlation methods that are suitable for analyzing data sets ranging from moderate to large scale such as expression profiles with tens to hundreds of microarray hybridizations, and implemented all analysis algorithms using parallel computing techniques to infer gene-gene association at extraordinary speed. In addition, we integrated the SNBuilder and GeNa algorithms for subnetwork extraction and functional module discovery. DeGNServer is publicly and freely available online.

  13. Deciphering the Transitional Tectonics of the Southern Alaska Margin Through Gulf Sedimentology and Geophysics: IODP Expedition 341

    NASA Astrophysics Data System (ADS)

    Reece, R.; Gulick, S. P. S.; Jaeger, J. M.

    2014-12-01

    Southern Alaska is a complex amalgam of tectonic environments, centered on the subduction/collision of the Yakutat Block with North America. Along the Aleutians in the west, the Pacific Plate subducts normally beneath North America, with a gradually shallowing subduction angle towards the Yakutat Terrane to the east. The western region of the Yakutat Block undergoes nearly flat-slab subduction beneath North America, whereas it transitions to collision in the northeast, which is the primary driver for the growth of the Chugach-St. Elias orogen. Farther to the east, the collisional system transitions to a transform boundary with the Fairweather-Queen Charlotte fault system. The collisional system contributes to farfield tectonic effects in many regions, including northern Alaska and the Pacific Plate, but also combines with glaciation to drive sedimentation in the Gulf of Alaska. Glaciation has periodically increased in the St. Elias Range since the Miocene, but began dominating erosion and spurred enhanced exhumation since the intensification of Northern Hemisphere glaciation, at ~2.5 Ma. Results from IODP Expedition 341 show the first appearance of ice-rafted debris and a doubling of Gulf sedimentation at site U1417 at this age, and a major increase in sedimentation at ~1 Ma at sites U1417 and U1418. Glacigenic sediment flux into the Gulf of Alaska represents the majority of accumulation in the deepwater Surveyor Fan, and was the impetus for formation of the Surveyor Channel system. Climate events correlate to three major differentiable sequences across the Surveyor Fan that have been previously mapped using seismic reflection profiles. The change in morphology observed throughout the sequences allows us to characterize the influence that a glaciated orogen can have in shaping margin processes and the sediment pathways from source to sink. IODP Expedition 341 results allow us to now apply this method at higher resolution time scales (i.e., 100 kyr). We will explore

  14. Weathering processes and pickeringite formation in a sulfidic schist: a consideration in acid precipitation neutralization studies

    SciTech Connect

    Parnell, R.A. Jr.

    1983-01-01

    Extremely low abrasion pH values (2.8-3.3) characterize the weathering products of the Partridge Formation, a Middle-Ordovician metamorphosed, black, sulfidic shale. The local occurrence is observed of two sulfates that are rare in the Northeast: pickeringite and jarosite. X-ray diffraction studies of the weathering residues and the sulfate efflorescences have also identified dioctahedral and trioctahedral illite, kaolinite, vermiculite, and an 11-12 Angstrom phase, thought to be a type of randomly-interstratified biotite-vermiculite. From the mineralogical studies, qualitative weathering processes for the schist are formulated. A probable mechanism for the intense chemical weathering of the schist appears to be oxidation of iron sulfides to form iron oxide-hydroxides, sulfates, and sulfuric acid. This natural weathering process is proposed as an analog to anthropogenic low pH rock weathering resulting from acid precipitation. In the Northeast, natural weathering rates, may, in places, significantly affect the water chemistry and mineralogy used to quantify total (natural plus anthropogenic) weathering and leaching rates. 27 references, 4 figures.

  15. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    PubMed Central

    Zhang, Huibin; Liu, Xinli; Jiang, Yao

    2017-01-01

    Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2), silicon (Si) and graphite (C) elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process. PMID:28772515

  16. Zeolite Formation and Weathering Processes Within the Martian Regolith: An Antarctic Analog

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Wentworth, S. J.; Socki, R. A.

    2003-01-01

    As more information is obtained about the nature of the surface compositions and processes operating on Mars, it is clear that significant erosional and depositional features are present on the surface. Apparent aqueous or other fluid activity on Mars has produced many of the erosional and outflow features observed. Evidence of aqueous activity on Mars has been reported by earlier studies. Gooding and colleagues championed the cause of pre-terrestrial aqueous alteration processes recorded in Martian meteorites. Oxygen isotope studies on Martian meteorites by Karlsson et al. and Romenek et al. gave evidence for two separate water reservoirs on Mars. The oxygen isotopic compositions of the host silicate minerals was different from the oxygen isotopic composition of the secondary alteration products within the SNC meteorites. This implied that the oxygen associated with fluids which produced the secondary alteration was from volatiles which were possibly added to the planetary inventory after formation of the primary silicates from which the SNC s were formed. The source of the oxygen may have been from a cometary or volatile-rich veneer added to the planet in its first 600 million years.

  17. Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing.

    PubMed

    Hawkins, Lelia N; Baril, Molly J; Sedehi, Nahzaneen; Galloway, Melissa M; De Haan, David O; Schill, Gregory P; Tolbert, Margaret A

    2014-02-18

    Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for <1 h, but semisolid when dried for 20 h under ambient conditions. The RH required for flow (liquification) during humidification experiments followed the order methylglyoxal > glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.

  18. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING.

    PubMed

    Fernández-Delgado, Milagro; Rojas, Héctor; Duque, Zoilabet; Suárez, Paula; Contreras, Monica; García-Amado, M Alexandra; Alciaturi, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.

  19. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation

    PubMed Central

    Mugler, Christopher Frederick; Hondele, Maria; Heinrich, Stephanie; Sachdev, Ruchika; Vallotton, Pascal; Koek, Adriana Y; Chan, Leon Y; Weis, Karsten

    2016-01-01

    Translational repression and mRNA degradation are critical mechanisms of posttranscriptional gene regulation that help cells respond to internal and external cues. In response to certain stress conditions, many mRNA decay factors are enriched in processing bodies (PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast, mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction between Dhh1 and Not1, the central scaffold of the CCR4-NOT complex and an activator of the Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of Dhh1 as a critical regulator of PB formation. DOI: http://dx.doi.org/10.7554/eLife.18746.001 PMID:27692063

  20. What is the deficit in phonological processing deficits: Auditory sensitivity, masking, or category formation?

    PubMed Central

    Nittrouer, Susan; Shune, Samantha; Lowenstein, Joanna H.

    2012-01-01

    Although children with language impairments, including those associated with reading, usually demonstrate deficits in phonological processing, there is minimal agreement as to the source of those deficits. This study examined two problems hypothesized to be possible sources: either poor auditory sensitivity to speech-relevant acoustic properties, mainly formant transitions, or enhanced masking of those properties. Adults and 8-year-olds with and without phonological processing deficits (PPD) participated. Children with PPD demonstrated weaker abilities than children with typical language development (TLD) in reading, sentence recall, and phonological awareness. Dependent measures were: 1) word recognition; 2) discrimination of spectral glides; and 3) phonetic judgments based on spectral and temporal cues. All tasks were conducted in quiet and in noise. Children with PPD showed neither poorer auditory sensitivity nor greater masking than adults and children with TLD, but did demonstrate an unanticipated deficit in category formation for non-speech sounds. These results suggest that these children may have an underlying deficit in perceptually organizing sensory information to form coherent categories. PMID:21109251

  1. Zeolite Formation and Weathering Processes Within the Martian Regolith: An Antarctic Analog

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Wentworth, S. J.; Socki, R. A.

    2003-01-01

    As more information is obtained about the nature of the surface compositions and processes operating on Mars, it is clear that significant erosional and depositional features are present on the surface. Apparent aqueous or other fluid activity on Mars has produced many of the erosional and outflow features observed. Evidence of aqueous activity on Mars has been reported by earlier studies. Gooding and colleagues championed the cause of pre-terrestrial aqueous alteration processes recorded in Martian meteorites. Oxygen isotope studies on Martian meteorites by Karlsson et al. and Romenek et al. gave evidence for two separate water reservoirs on Mars. The oxygen isotopic compositions of the host silicate minerals was different from the oxygen isotopic composition of the secondary alteration products within the SNC meteorites. This implied that the oxygen associated with fluids which produced the secondary alteration was from volatiles which were possibly added to the planetary inventory after formation of the primary silicates from which the SNC s were formed. The source of the oxygen may have been from a cometary or volatile-rich veneer added to the planet in its first 600 million years.

  2. BIOFILM FORMATION OF Vibrio cholerae ON STAINLESS STEEL USED IN FOOD PROCESSING

    PubMed Central

    FERNÁNDEZ-DELGADO, Milagro; ROJAS, Héctor; DUQUE, Zoilabet; SUÁREZ, Paula; CONTRERAS, Monica; GARCÍA-AMADO, M. Alexandra; ALCIATURI, Carlos

    2016-01-01

    Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing. PMID:27253749

  3. Native microflora in fresh-cut produce processing plants and their potentials for biofilm formation.

    PubMed

    Liu, Nancy T; Lefcourt, Alan M; Nou, Xiangwu; Shelton, Daniel R; Zhang, Guodong; Lo, Y Martin

    2013-05-01

    Representative food contact and nonfood contact surfaces in two mid-sized, fresh-cut processing facilities were sampled for microbiological analyses after routine daily sanitization. Mesophilic and psychrotrophic bacteria on the sampled surfaces were isolated by plating on nonselective bacterial media. Alternatively, bacteria were isolated after an incubation period that allowed the formation of heterogeneous biofilms on stainless steel beads. Of over 1,000 tested isolates, most were capable of forming biofilms, with approximately 30 % being strong or moderate biofilm formers. Selected isolates (117) were subjected to species identification by using the Biolog Gen III microbial identification system. They distributed among 23 genera, which included soil bacteria, plant-related bacteria, coliforms, and opportunistic plant- or human-pathogenic bacteria. The most commonly identified bacteria species were Pseudomonas fluorescens, Rahnella aquatilis, and Ralstonia insidiosa. The high prevalence of R. insidiosa, a strong biofilm former, and P. fluorescens, a moderate biofilm former, suggests that they were established residents in the sampled plants. These results suggest that native microflora capable of forming biofilms are widely distributed in fresh-produce processing environments.

  4. Formation risk of toxic and other unwanted compounds in pressure-assisted thermally processed foods.

    PubMed

    Bravo, K Segovia; Ramírez, R; Durst, R; Escobedo-Avellaneda, Z J; Welti-Chanes, J; Sanz, P D; Torres, J A

    2012-01-01

    Consumers demand, in addition to excellent eating quality, high standards of microbial and chemical safety in shelf-stable foods. This requires improving conventional processing technologies and developing new alternatives such as pressure-assisted thermal processing (PATP). Studies in PATP foods on the kinetics of chemical reactions at temperatures (approximately 100 to 120 °C) inactivating bacterial spores in low-acid foods are severely lacking. This review focuses on a specific chemical safety risk in PATP foods: models predicting if the activation volume value (V(a) ) of a chemical reaction is positive or negative, and indicating if the reaction rate constant will decrease or increase with pressure, respectively, are not available. Therefore, the pressure effect on reactions producing toxic compounds must be determined experimentally. A recent model solution study showed that acrylamide formation, a potential risk in PATP foods, is actually inhibited by pressure (that is, its V(a) value must be positive). This favorable finding was not predictable and still needs to be confirmed in food systems. Similar studies are required for other reactions producing toxic compounds including polycyclic aromatic hydrocarbons, heterocyclic amines, N-nitroso compounds, and hormone like-peptides. Studies on PATP inactivation of prions, and screening methods to detect the presence of other toxicity risks of PATP foods, are also reviewed.

  5. Influence of Powder Metallurgical Processing Routes on Phase Formations in a Multicomponent NbSi-Alloy

    NASA Astrophysics Data System (ADS)

    Seemüller, C.; Hartwig, T.; Mulser, M.; Adkins, N.; Wickins, M.; Heilmaier, M.

    2014-09-01

    Refractory metal silicide composites on the basis of Nbss-Nb5Si3 have been investigated as potential alternatives for nickel-base superalloys for years because of their low densities and good high-temperature strengths. NbSi-based composites are typically produced by arc-melting or casting. Samples in this study, however, were produced by powder metallurgy because of the potential for near net-shape component fabrication with very homogeneous microstructures. Either gas atomized powder or high-energy mechanically alloyed elemental powders were compacted by powder injection molding or hot isostatic pressing. Heat treatments were applied for phase stability evaluation. Slight compositional changes (oxygen, nitrogen, or iron) introduced by the processing route, i.e., powder production and consolidation, can affect phase formations and phase transitions during the process. Special focus is put on the distinction between different silicides (Nb5Si3 and Nb3Si) and silicide modifications (α-, β-, and γ-Nb5Si3), respectively. These were evaluated by x-ray diffraction and energy-dispersive spectroscopy measurements with the additional inclusion of thermodynamic calculations using the calculated phase diagram method.

  6. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies.

    PubMed

    Stojanović, Zoran S; Ignjatović, Nenad; Wu, Victoria; Žunič, Vojka; Veselinović, Ljiljana; Škapin, Srečo; Miljković, Miroslav; Uskoković, Vuk; Uskoković, Dragan

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous

  7. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    PubMed Central

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological

  8. Deciphering transcriptional regulations coordinating the response to environmental changes.

    PubMed

    Acuña, Vicente; Aravena, Andrés; Guziolowski, Carito; Eveillard, Damien; Siegel, Anne; Maass, Alejandro

    2016-01-16

    Gene co-expression evidenced as a response to environmental changes has shown that transcriptional activity is coordinated, which pinpoints the role of transcriptional regulatory networks (TRNs). Nevertheless, the prediction of TRNs based on the affinity of transcription factors (TFs) with binding sites (BSs) generally produces an over-estimation of the observable TF/BS relations within the network and therefore many of the predicted relations are spurious. We present LOMBARDE, a bioinformatics method that extracts from a TRN determined from a set of predicted TF/BS affinities a subnetwork explaining a given set of observed co-expressions by choosing the TFs and BSs most likely to be involved in the co-regulation. LOMBARDE solves an optimization problem which selects confident paths within a given TRN that join a putative common regulator with two co-expressed genes via regulatory cascades. To evaluate the method, we used public data of Escherichia coli to produce a regulatory network that explained almost all observed co-expressions while using only 19 % of the input TF/BS affinities but including about 66 % of the independent experimentally validated regulations in the input data. When all known validated TF/BS affinities were integrated into the input data the precision of LOMBARDE increased significantly. The topological characteristics of the subnetwork that was obtained were similar to the characteristics described for known validated TRNs. LOMBARDE provides a useful modeling scheme for deciphering the regulatory mechanisms that underlie the phenotypic responses of an organism to environmental challenges. The method can become a reliable tool for further research on genome-scale transcriptional regulation studies.

  9. Functional metagenomics to decipher food-microbe-host crosstalk.

    PubMed

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  10. Carbon Disulfide (CS2) Mechanisms in Formation of Atmospheric Carbon Dioxide (CO2) Formation from Unconventional Shale Gas Extraction and Processing Operations and Global Climate Change.

    PubMed

    Rich, Alisa L; Patel, Jay T

    2015-01-01

    Carbon disulfide (CS2) has been historically associated with the production of rayon, cellophane, and carbon tetrachloride. This study identifies multiple mechanisms by which CS2 contributes to the formation of CO2 in the atmosphere. CS2 and other associated sulfide compounds were found by this study to be present in emissions from unconventional shale gas extraction and processing (E&P) operations. The breakdown products of CS2; carbonyl sulfide (COS), carbon monoxide (CO), and sulfur dioxide (SO2) are indirect greenhouse gases (GHGs) that contribute to CO2 levels in the atmosphere. The heat-trapping nature of CO2 has been found to increase the surface temperature, resulting in regional and global climate change. The purpose of this study is to identify five mechanisms by which CS2 and the breakdown products of CS2 contribute to atmospheric concentrations of CO2. The five mechanisms of CO2 formation are as follows: Chemical Interaction of CS2 and hydrogen sulfide (H2S) present in natural gas at high temperatures, resulting in CO2 formation;Combustion of CS2 in the presence of oxygen producing SO2 and CO2;Photolysis of CS2 leading to the formation of COS, CO, and SO2, which are indirect contributors to CO2 formation;One-step hydrolysis of CS2, producing reactive intermediates and ultimately forming H2S and CO2;Two-step hydrolysis of CS2 forming the reactive COS intermediate that reacts with an additional water molecule, ultimately forming H2S and CO2. CS2 and COS additionally are implicated in the formation of SO2 in the stratosphere and/or troposphere. SO2 is an indirect contributor to CO2 formation and is implicated in global climate change.

  11. Determining if Active Learning through a Formative Assessment Process Translates to Better Performance in Summative Assessment

    ERIC Educational Resources Information Center

    Grosas, Aidan Bradley; Raju, Shiwani Rani; Schuett, Burkhardt Siegfried; Chuck, Jo-Anne; Millar, Thomas James

    2016-01-01

    Formative assessment used in a level 2 unit, Immunology, gave outcomes that were both surprising and applicable across disciplines. Four formative tests were given and reviewed during class time. The students' attitudes to formative assessment were evaluated using questionnaires and its effectiveness in closing the gap was measured by the…

  12. Determining if Active Learning through a Formative Assessment Process Translates to Better Performance in Summative Assessment

    ERIC Educational Resources Information Center

    Grosas, Aidan Bradley; Raju, Shiwani Rani; Schuett, Burkhardt Siegfried; Chuck, Jo-Anne; Millar, Thomas James

    2016-01-01

    Formative assessment used in a level 2 unit, Immunology, gave outcomes that were both surprising and applicable across disciplines. Four formative tests were given and reviewed during class time. The students' attitudes to formative assessment were evaluated using questionnaires and its effectiveness in closing the gap was measured by the…

  13. Formation and Processing of Secondary Organic Aerosol from Catechol as a Model for Atmospheric HULIS

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Krüger, Heinz-Ulrich; Grothe, Hinrich; Zetzsch, Cornelius

    2010-05-01

    A particular fraction of the secondary organic aerosol (SOA) termed HUmic Like Substances (HULIS) attracted attention only recently in atmospheric aerosol, initiating a discourse about their aromaticity and other properties, such as reactivity and hygroscopicity. A major portion of HULIS originates from volatile organic compounds, which are formed by abiotic oxidation reactions involving mainly OH radicals, ozone, nitrogen oxides and possibly halogens. Subsequently, the particles provide surface for heterogeneous reactions with atmospheric trace gases. Thus, aerosol smog-chamber studies with appropriate precursors are needed to generate SOA with HULIS qualities in situ inside the smog chamber and study their possible interactions. Catechol and guaiacol were chosen as aromatic precursors for synthetic HULIS production. The SOA was produced in a 700 L aerosol smog chamber, equipped with a solar simulator. SOA formation from each precursor was investigated at simulated environmental conditions (humidity, light, and presence of oxidizers) and characterized with respect to HULIS properties by particle classifiers, Fourier Transform IR spectroscopy (by long-path absorption and attenuated total reflection), UV/VIS spectroscopy, high-resolution mass-spectroscopy and temperature-programmed-desorption mass-spectrometry. High-resolution imaging was obtained using Field Emission Gun Scanning Electron Microscopy (FEGSEM). After HULIS formation the aerosol particles were exposed to atmospheric halogen species to study their processing with those trace gases, released by sea salt-activation. Those investigations show that aromatic precursors like catechol and guaiacol are suitable to form synthetic HULIS for laboratory-scale measurements with physical and chemical properties described in literature. However, sunlight and relative humidity play a major role in particle production and composition of functional groups, which are the anchor points for heterogeneous atmospheric

  14. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D. )

    1996-01-01

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO[sub 2] enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of hydrocarbon-stained fractures oriented both at high angles and parallel to bedding. In later stage breccia zones, internal organization is disrupted and consists of fragments of the host rock surrounded by hydrocarbons. Subsurface studies which include core and FMS data demonstrate comparable shear-related features in the Monterey Formation. Oil-stained breccia zones are observed in core from the Antelope Shale from a field near BVH. Breccia zones are documented in FMS data from offshore Monterey fields and similar features are being sought in FMS data from SJV in Antelope Shale.

  15. Hydrocarbon transport and shearing processes in the Antelope Shale, Monterey Formation, San Joaquin Valley, California

    SciTech Connect

    Dholakia, S.K.; Aydin, A.; Pollard, D.D.

    1996-12-31

    An essential component of the development and management of a fractured reservoir is the basic understanding of the fracture system and its effect on hydrocarbon flow. In the Antelope Shale, a siliceous shale member of the Monterey Formation in the Buena Vista Hills field (BVH), San Joaquin Valley (SJV), the relationship between the fracture system and hydrocarbon productivity is poorly understood. An integrative approach, employing both geological and geophysical methods, to fracture characterization in the Antelope Shale is important for a better understanding of the connected fracture network and for identifying hydrocarbon-carrying fractures. This knowledge will aid in future reservoir management plans for the BVH field, specifically CO{sub 2} enhanced oil recovery from the existing reservoir. Field studies of the Antelope Shale at Chico Martinez Creek in the SJV demonstrate the importance of shearing processes for the migration of hydrocarbons. Hydrocarbons primarily occur in brecciated zones which are oriented parallel to bedding. The internal architecture of early stage breccia zones is well-organized with sets of h