On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
Ren, Yue; Li, Jinhai; Aswani Kumar, Cherukuri; Liu, Wenqi
2014-01-01
Rule acquisition is one of the main purposes in the analysis of formal decision contexts. Up to now, there have been several types of rules in formal decision contexts such as decision rules, decision implications, and granular rules, which can be viewed as ∧-rules since all of them have the following form: "if conditions 1,2,…, and m hold, then decisions hold." In order to enrich the existing rule acquisition theory in formal decision contexts, this study puts forward two new types of rules which are called ∨-rules and ∨-∧ mixed rules based on formal, object-oriented, and property-oriented concept lattices. Moreover, a comparison of ∨-rules, ∨-∧ mixed rules, and ∧-rules is made from the perspectives of inclusion and inference relationships. Finally, some real examples and numerical experiments are conducted to compare the proposed rule acquisition algorithms with the existing one in terms of the running efficiency.
Ren, Yue; Aswani Kumar, Cherukuri; Liu, Wenqi
2014-01-01
Rule acquisition is one of the main purposes in the analysis of formal decision contexts. Up to now, there have been several types of rules in formal decision contexts such as decision rules, decision implications, and granular rules, which can be viewed as ∧-rules since all of them have the following form: “if conditions 1,2,…, and m hold, then decisions hold.” In order to enrich the existing rule acquisition theory in formal decision contexts, this study puts forward two new types of rules which are called ∨-rules and ∨-∧ mixed rules based on formal, object-oriented, and property-oriented concept lattices. Moreover, a comparison of ∨-rules, ∨-∧ mixed rules, and ∧-rules is made from the perspectives of inclusion and inference relationships. Finally, some real examples and numerical experiments are conducted to compare the proposed rule acquisition algorithms with the existing one in terms of the running efficiency. PMID:25165744
Evaluation of a rule base for decision making in general practice.
Essex, B; Healy, M
1994-01-01
BACKGROUND. Decision making in general practice relies heavily on judgmental expertise. It should be possible to codify this expertise into rules and principles. AIM. A study was undertaken to evaluate the effectiveness, of rules from a rule base designed to improve students' and trainees' management decisions relating to patients seen in general practice. METHOD. The rule base was developed after studying decisions about and management of thousands of patients seen in one general practice over an eight year period. Vignettes were presented to 93 fourth year medical students and 179 general practitioner trainees. They recorded their perception and management of each case before and after being presented with a selection of relevant rules. Participants also commented on their level of agreement with each of the rules provided with the vignettes. A panel of five independent assessors then rated as good, acceptable or poor, the participants' perception and management of each case before and after seeing the rules. RESULTS. Exposure to a few selected rules of thumb improved the problem perception and management decisions of both undergraduates and trainees. The degree of improvement was not related to previous experience or to the stated level of agreement with the proposed rules. The assessors identified difficulties students and trainees experienced in changing their perceptions and management decisions when the rules suggested options they had not considered. CONCLUSION. The rules developed to improve decision making skills in general practice are effective when used with vignettes. The next phase is to transform the rule base into an expert system to train students and doctors to acquire decision making skills. It could also be used to provide decision support when confronted with difficult management decisions in general practice. PMID:8204334
A Swarm Optimization approach for clinical knowledge mining.
Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A
2015-10-01
Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores
ERIC Educational Resources Information Center
Douglas, Karen M.; Mislevy, Robert J.
2010-01-01
Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…
Automated rule-base creation via CLIPS-Induce
NASA Technical Reports Server (NTRS)
Murphy, Patrick M.
1994-01-01
Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.
2012-01-01
Clinical decision rules are an increasingly common presence in the biomedical literature and represent one strategy of enhancing clinical-decision making with the goal of improving the efficiency and effectiveness of healthcare delivery. In the context of rehabilitation research, clinical decision rules have been predominantly aimed at classifying patients by predicting their treatment response to specific therapies. Traditionally, recommendations for developing clinical decision rules propose a multistep process (derivation, validation, impact analysis) using defined methodology. Research efforts aimed at developing a “diagnosis-based clinical decision rule” have departed from this convention. Recent publications in this line of research have used the modified terminology “diagnosis-based clinical decision guide.” Modifications to terminology and methodology surrounding clinical decision rules can make it more difficult for clinicians to recognize the level of evidence associated with a decision rule and understand how this evidence should be implemented to inform patient care. We provide a brief overview of clinical decision rule development in the context of the rehabilitation literature and two specific papers recently published in Chiropractic and Manual Therapies. PMID:22726639
48 CFR 6103.306 - Decisions [Rule 306].
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Decisions [Rule 306]. 6103.306 Section 6103.306 Federal Acquisition Regulations System CIVILIAN BOARD OF CONTRACT APPEALS, GENERAL SERVICES ADMINISTRATION TRANSPORTATION RATE CASES 6103.306 Decisions [Rule 306]. The judge will issue a written decision based upon the record,...
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).
Bayesian design of decision rules for failure detection
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Willsky, A. S.
1984-01-01
The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.
Conformance Testing: Measurement Decision Rules
NASA Technical Reports Server (NTRS)
Mimbs, Scott M.
2010-01-01
The goal of a Quality Management System (QMS) as specified in ISO 9001 and AS9100 is to provide assurance to the customer that end products meet specifications. Measuring devices, often called measuring and test equipment (MTE), are used to provide the evidence of product conformity to specified requirements. Unfortunately, processes that employ MTE can become a weak link to the overall QMS if proper attention is not given to the measurement process design, capability, and implementation. Documented "decision rules" establish the requirements to ensure measurement processes provide the measurement data that supports the needs of the QMS. Measurement data are used to make the decisions that impact all areas of technology. Whether measurements support research, design, production, or maintenance, ensuring the data supports the decision is crucial. Measurement data quality can be critical to the resulting consequences of measurement-based decisions. Historically, most industries required simplistic, one-size-fits-all decision rules for measurements. One-size-fits-all rules in some cases are not rigorous enough to provide adequate measurement results, while in other cases are overly conservative and too costly to implement. Ideally, decision rules should be rigorous enough to match the criticality of the parameter being measured, while being flexible enough to be cost effective. The goal of a decision rule is to ensure that measurement processes provide data with a sufficient level of quality to support the decisions being made - no more, no less. This paper discusses the basic concepts of providing measurement-based evidence that end products meet specifications. Although relevant to all measurement-based conformance tests, the target audience is the MTE end-user, which is anyone using MTE other than calibration service providers. Topics include measurement fundamentals, the associated decision risks, verifying conformance to specifications, and basic measurement decisions rules.
Zhang, Wenyu; Zhang, Zhenjiang
2015-01-01
Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399
Interpretable Decision Sets: A Joint Framework for Description and Prediction
Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec
2016-01-01
One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627
Rule Extracting based on MCG with its Application in Helicopter Power Train Fault Diagnosis
NASA Astrophysics Data System (ADS)
Wang, M.; Hu, N. Q.; Qin, G. J.
2011-07-01
In order to extract decision rules for fault diagnosis from incomplete historical test records for knowledge-based damage assessment of helicopter power train structure. A method that can directly extract the optimal generalized decision rules from incomplete information based on GrC was proposed. Based on semantic analysis of unknown attribute value, the granule was extended to handle incomplete information. Maximum characteristic granule (MCG) was defined based on characteristic relation, and MCG was used to construct the resolution function matrix. The optimal general decision rule was introduced, with the basic equivalent forms of propositional logic, the rules were extracted and reduction from incomplete information table. Combined with a fault diagnosis example of power train, the application approach of the method was present, and the validity of this method in knowledge acquisition was proved.
Bhanji, Jamil P.; Beer, Jennifer S.; Bunge, Silvia A.
2014-01-01
A decision may be difficult because complex information processing is required to evaluate choices according to deterministic decision rules and/or because it is not certain which choice will lead to the best outcome in a probabilistic context. Factors that tax decision making such as decision rule complexity and low decision certainty should be disambiguated for a more complete understanding of the decision making process. Previous studies have examined the brain regions that are modulated by decision rule complexity or by decision certainty but have not examined these factors together in the context of a single task or study. In the present functional magnetic resonance imaging study, both decision rule complexity and decision certainty were varied in comparable decision tasks. Further, the level of certainty about which choice to make (choice certainty) was varied separately from certainty about the final outcome resulting from a choice (outcome certainty). Lateral prefrontal cortex, dorsal anterior cingulate cortex, and bilateral anterior insula were modulated by decision rule complexity. Anterior insula was engaged more strongly by low than high choice certainty decisions, whereas ventromedial prefrontal cortex showed the opposite pattern. These regions showed no effect of the independent manipulation of outcome certainty. The results disambiguate the influence of decision rule complexity, choice certainty, and outcome certainty on activity in diverse brain regions that have been implicated in decision making. Lateral prefrontal cortex plays a key role in implementing deterministic decision rules, ventromedial prefrontal cortex in probabilistic rules, and anterior insula in both. PMID:19781652
Automatic rule generation for high-level vision
NASA Technical Reports Server (NTRS)
Rhee, Frank Chung-Hoon; Krishnapuram, Raghu
1992-01-01
A new fuzzy set based technique that was developed for decision making is discussed. It is a method to generate fuzzy decision rules automatically for image analysis. This paper proposes a method to generate rule-based approaches to solve problems such as autonomous navigation and image understanding automatically from training data. The proposed method is also capable of filtering out irrelevant features and criteria from the rules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, D.W.; Allen, B.C.; Van Landingham, C.B.
1998-12-31
The decision rules commonly employed to determine the need for cleanup are evaluated both to identify conditions under which they lead to erroneous conclusions and to quantify the rate that such errors occur. Their performance is also compared with that of other applicable decision rules. The authors based the evaluation of decision rules on simulations. Results are presented as power curves. These curves demonstrate that the degree of statistical control achieved is independent of the form of the null hypothesis. The loss of statistical control that occurs when a decision rule is applied to a data set that does notmore » satisfy the rule`s validity criteria is also clearly demonstrated. Some of the rules evaluated do not offer the formal statistical control that is an inherent design feature of other rules. Nevertheless, results indicate that such informal decision rules may provide superior overall control of error rates, when their application is restricted to data exhibiting particular characteristics. The results reported here are limited to decision rules applied to uncensored and lognormally distributed data. To optimize decision rules, it is necessary to evaluate their behavior when applied to data exhibiting a range of characteristics that bracket those common to field data. The performance of decision rules applied to data sets exhibiting a broader range of characteristics is reported in the second paper of this study.« less
An Autonomous Flight Safety System
2008-11-01
are taken. AFSS can take vehicle navigation data from redundant onboard sensors and make flight termination decisions using software-based rules...implemented on redundant flight processors. By basing these decisions on actual Instantaneous Impact Predictions and by providing for an arbitrary...number of mission rules, it is the contention of the AFSS development team that the decision making process used by Missile Flight Control Officers
Dehghani Soufi, Mahsa; Samad-Soltani, Taha; Shams Vahdati, Samad; Rezaei-Hachesu, Peyman
2018-06-01
Fast and accurate patient triage for the response process is a critical first step in emergency situations. This process is often performed using a paper-based mode, which intensifies workload and difficulty, wastes time, and is at risk of human errors. This study aims to design and evaluate a decision support system (DSS) to determine the triage level. A combination of the Rule-Based Reasoning (RBR) and Fuzzy Logic Classifier (FLC) approaches were used to predict the triage level of patients according to the triage specialist's opinions and Emergency Severity Index (ESI) guidelines. RBR was applied for modeling the first to fourth decision points of the ESI algorithm. The data relating to vital signs were used as input variables and modeled using fuzzy logic. Narrative knowledge was converted to If-Then rules using XML. The extracted rules were then used to create the rule-based engine and predict the triage levels. Fourteen RBR and 27 fuzzy rules were extracted and used in the rule-based engine. The performance of the system was evaluated using three methods with real triage data. The accuracy of the clinical decision support systems (CDSSs; in the test data) was 99.44%. The evaluation of the error rate revealed that, when using the traditional method, 13.4% of the patients were miss-triaged, which is statically significant. The completeness of the documentation also improved from 76.72% to 98.5%. Designed system was effective in determining the triage level of patients and it proved helpful for nurses as they made decisions, generated nursing diagnoses based on triage guidelines. The hybrid approach can reduce triage misdiagnosis in a highly accurate manner and improve the triage outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls
NASA Technical Reports Server (NTRS)
Anastasiadis, Stergios
1991-01-01
Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.
A Decision Making Methodology in Support of the Business Rules Lifecycle
NASA Technical Reports Server (NTRS)
Wild, Christopher; Rosca, Daniela
1998-01-01
The business rules that underlie an enterprise emerge as a new category of system requirements that represent decisions about how to run the business, and which are characterized by their business-orientation and their propensity for change. In this report, we introduce a decision making methodology which addresses several aspects of the business rules lifecycle: acquisition, deployment and evolution. We describe a meta-model for representing business rules in terms of an enterprise model, and also a decision support submodel for reasoning about and deriving the rules. The possibility for lifecycle automated assistance is demonstrated in terms of the automatic extraction of business rules from the decision structure. A system based on the metamodel has been implemented, including the extraction algorithm. This is the final report for Daniela Rosca's PhD fellowship. It describes the work we have done over the past year, current research and the list of publications associated with her thesis topic.
Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care.
Sesen, M Berkan; Peake, Michael D; Banares-Alcantara, Rene; Tse, Donald; Kadir, Timor; Stanley, Roz; Gleeson, Fergus; Brady, Michael
2014-09-06
Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection decisions in the lung cancer MDTs. A novel feature of LCA is its ability to provide rule-based and probabilistic decision support within a single platform. The guideline-based CDS is based on clinical guideline rules, while the probabilistic CDS is based on a Bayesian network trained on the English Lung Cancer Audit Database (LUCADA). We assess rule-based and probabilistic recommendations based on their concordances with the treatments recorded in LUCADA. Our results reveal that the guideline rule-based recommendations perform well in simulating the recorded treatments with exact and partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the exact and partial concordance rates achieved with probabilistic results are relatively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils a complementary role in providing accurate survival estimations. Compared to recorded treatments, both CDS approaches promote higher resection rates and multimodality treatments.
Application of decision rules for empowering of Indonesian telematics services SMEs
NASA Astrophysics Data System (ADS)
Tosida, E. T.; Hairlangga, O.; Amirudin, F.; Ridwanah, M.
2018-03-01
The independence of the field of telematics became one of Indonesia's vision in 2024. One effort to achieve it can be done by empowering SMEs in the field of telematics. Empowerment carried out need a practical mechanism by utilizing data centered, including through the National Economic Census database (Susenas). Based on the Susenas can be formulated the decision rules of determining the provision of assistance for SMEs in the field of telematics. The way it did by generating the rule base through the classification technique. The CART algorithm-based decision rule model performs better than C45 and ID3 models. The high level of performance model is also in line with the regulations applied by the government. This becomes one of the strengths of research, because the resulting model is consistent with the existing conditions in Indonesia. The rules base generated from the three classification techniques show different rules. The CART technique has pattern matching with the realization of activities in The Ministry of Cooperatives and SMEs. So far, the government has difficulty in referring data related to the empowerment of SMEs telematics services. Therefore, the findings resulting from this research can be used as an alternative decision support system related to the program of empowerment of SMEs in telematics.
Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya
2006-01-01
We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.
A study of some nine-element decision rules. [for multispectral recognition of remote sensing
NASA Technical Reports Server (NTRS)
Richardson, W.
1974-01-01
A nine-element rule is one that makes a classification decision for each pixel based on data from that pixel and its eight immediate neighbors. Three such rules, all fast and simple to use, are defined and tested. All performed substantially better on field interiors than the best one-point rule. Qualitative results indicate that fine detail and contradictory testimony tend to be overlooked by the rules.
Derosiere, Gerard; Zénon, Alexandre; Alamia, Andrea; Duque, Julie
2017-02-01
In the present study, we investigated the functional contribution of the human primary motor cortex (M1) to motor decisions. Continuous theta burst stimulation (cTBS) was used to alter M1 activity while participants performed a decision-making task in which the reward associated with the subjects' responses (right hand finger movements) depended on explicit and implicit value-based rules. Subjects performed the task over two consecutive days and cTBS occurred in the middle of Day 2, once the subjects were just about to implement implicit rules, in addition to the explicit instructions, to choose their responses, as evident in the control group (cTBS over the right somatosensory cortex). Interestingly, cTBS over the left M1 prevented subjects from implementing the implicit value-based rule while its implementation was enhanced in the group receiving cTBS over the right M1. Hence, cTBS had opposite effects depending on whether it was applied on the contralateral or ipsilateral M1. The use of the explicit value-based rule was unaffected by cTBS in the three groups of subject. Overall, the present study provides evidence for a functional contribution of M1 to the implementation of freshly acquired implicit rules, possibly through its involvement in a cortico-subcortical network controlling value-based motor decisions. Copyright © 2016 Elsevier Inc. All rights reserved.
Presenting Germany's drug pricing rule as a cost-per-QALY rule.
Gandjour, Afschin
2012-06-01
In Germany, the Institute for Quality and Efficiency in Health Care (IQWiG) makes recommendations for ceiling prices of drugs based on an evaluation of the relationship between costs and effectiveness. To set ceiling prices, IQWiG uses the following decision rule: the incremental cost-effectiveness ratio of a new drug compared with the next effective intervention should not be higher than that of the next effective intervention compared to its comparator. The purpose of this paper is to show that IQWiG's decision rule can be presented as a cost-per-QALY rule by using equity-weighted QALYs. This transformation shows where both rules share commonalities. Furthermore, it makes the underlying ethical implications of IQWiG's decision rule transparent and open to debate.
How power influences moral thinking.
Lammers, Joris; Stapel, Diederik A
2009-08-01
The authors conducted 5 studies to test the idea that both thinking about and having power affects the way in which people resolve moral dilemmas. It is shown that high power increases the use of rule-based (deontological) moral thinking styles, whereas low power increases reliance on outcome-based (consequentialist) moral thinking. Stated differently, in determining whether an act is right or wrong, the powerful focus on whether rules and principles are violated, whereas the powerless focus on the consequences. For this reason, the powerful are also more inclined to stick to the rules, irrespective of whether this has positive or negative effects, whereas the powerless are more inclined to make exceptions. The first 3 experiments show that thinking about power increases rule-based thinking and decreases outcome-based thinking in participants' moral decision making. A 4th experiment shows the mediating role of moral orientation in the effect of power on moral decisions. The 5th experiment demonstrates the role of self-interest by showing that the power-moral link is reversed when rule-based decisions threaten participants' own self-interests.
Evolving optimised decision rules for intrusion detection using particle swarm paradigm
NASA Astrophysics Data System (ADS)
Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.
2012-12-01
The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.
Sendi, Pedram; Al, Maiwenn J; Gafni, Amiram; Birch, Stephen
2004-05-01
Bridges and Terris (Soc. Sci. Med. (2004)) critique our paper on the alternative decision rule of economic evaluation in the presence of uncertainty and constrained resources within the context of a portfolio of health care programs (Sendi et al. Soc. Sci. Med. 57 (2003) 2207). They argue that by not adopting a formal portfolio theory approach we overlook the optimal solution. We show that these arguments stem from a fundamental misunderstanding of the alternative decision rule of economic evaluation. In particular, the portfolio theory approach advocated by Bridges and Terris is based on the same theoretical assumptions that the alternative decision rule set out to relax. Moreover, Bridges and Terris acknowledge that the proposed portfolio theory approach may not identify the optimal solution to resource allocation problems. Hence, it provides neither theoretical nor practical improvements to the proposed alternative decision rule.
Jacob, Louis; Uvarova, Maria; Boulet, Sandrine; Begaj, Inva; Chevret, Sylvie
2016-06-02
Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure. We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds. Our findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3). Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates. ClinicalTrials.gov Identifier: NCT01342692 .
Web-based Weather Expert System (WES) for Space Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Rajkumar, T.
2003-01-01
The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.
An Intelligent Decision Support System for Workforce Forecast
2011-01-01
ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models
Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.
Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K
2008-07-01
A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.
Extraneous factors in judicial decisions
Danziger, Shai; Levav, Jonathan; Avnaim-Pesso, Liora
2011-01-01
Are judicial rulings based solely on laws and facts? Legal formalism holds that judges apply legal reasons to the facts of a case in a rational, mechanical, and deliberative manner. In contrast, legal realists argue that the rational application of legal reasons does not sufficiently explain the decisions of judges and that psychological, political, and social factors influence judicial rulings. We test the common caricature of realism that justice is “what the judge ate for breakfast” in sequential parole decisions made by experienced judges. We record the judges’ two daily food breaks, which result in segmenting the deliberations of the day into three distinct “decision sessions.” We find that the percentage of favorable rulings drops gradually from ≈65% to nearly zero within each decision session and returns abruptly to ≈65% after a break. Our findings suggest that judicial rulings can be swayed by extraneous variables that should have no bearing on legal decisions. PMID:21482790
Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.
2014-01-01
Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187
Knowledge-based reasoning in the Paladin tactical decision generation system
NASA Technical Reports Server (NTRS)
Chappell, Alan R.
1993-01-01
A real-time tactical decision generation system for air combat engagements, Paladin, has been developed. A pilot's job in air combat includes tasks that are largely symbolic. These symbolic tasks are generally performed through the application of experience and training (i.e. knowledge) gathered over years of flying a fighter aircraft. Two such tasks, situation assessment and throttle control, are identified and broken out in Paladin to be handled by specialized knowledge based systems. Knowledge pertaining to these tasks is encoded into rule-bases to provide the foundation for decisions. Paladin uses a custom built inference engine and a partitioned rule-base structure to give these symbolic results in real-time. This paper provides an overview of knowledge-based reasoning systems as a subset of rule-based systems. The knowledge used by Paladin in generating results as well as the system design for real-time execution is discussed.
McGinn, Thomas G; McCullagh, Lauren; Kannry, Joseph; Knaus, Megan; Sofianou, Anastasia; Wisnivesky, Juan P; Mann, Devin M
2013-09-23
There is consensus that incorporating clinical decision support into electronic health records will improve quality of care, contain costs, and reduce overtreatment, but this potential has yet to be demonstrated in clinical trials. To assess the influence of a customized evidence-based clinical decision support tool on the management of respiratory tract infections and on the effectiveness of integrating evidence at the point of care. In a randomized clinical trial, we implemented 2 well-validated integrated clinical prediction rules, namely, the Walsh rule for streptococcal pharyngitis and the Heckerling rule for pneumonia. INTERVENTIONS AND MAIN OUTCOMES AND MEASURES: The intervention group had access to the integrated clinical prediction rule tool and chose whether to complete risk score calculators, order medications, and generate progress notes to assist with complex decision making at the point of care. The intervention group completed the integrated clinical prediction rule tool in 57.5% of visits. Providers in the intervention group were significantly less likely to order antibiotics than the control group (age-adjusted relative risk, 0.74; 95% CI, 0.60-0.92). The absolute risk of the intervention was 9.2%, and the number needed to treat was 10.8. The intervention group was significantly less likely to order rapid streptococcal tests compared with the control group (relative risk, 0.75; 95% CI, 0.58-0.97; P= .03). The integrated clinical prediction rule process for integrating complex evidence-based clinical decision report tools is of relevant importance for national initiatives, such as Meaningful Use. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01386047.
Linan, Margaret K; Sottara, Davide; Freimuth, Robert R
2015-01-01
Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.
A Bayesian model averaging method for the derivation of reservoir operating rules
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai
2015-09-01
Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.
MacGillivray, Brian H
2017-08-01
In many environmental and public health domains, heuristic methods of risk and decision analysis must be relied upon, either because problem structures are ambiguous, reliable data is lacking, or decisions are urgent. This introduces an additional source of uncertainty beyond model and measurement error - uncertainty stemming from relying on inexact inference rules. Here we identify and analyse heuristics used to prioritise risk objects, to discriminate between signal and noise, to weight evidence, to construct models, to extrapolate beyond datasets, and to make policy. Some of these heuristics are based on causal generalisations, yet can misfire when these relationships are presumed rather than tested (e.g. surrogates in clinical trials). Others are conventions designed to confer stability to decision analysis, yet which may introduce serious error when applied ritualistically (e.g. significance testing). Some heuristics can be traced back to formal justifications, but only subject to strong assumptions that are often violated in practical applications. Heuristic decision rules (e.g. feasibility rules) in principle act as surrogates for utility maximisation or distributional concerns, yet in practice may neglect costs and benefits, be based on arbitrary thresholds, and be prone to gaming. We highlight the problem of rule-entrenchment, where analytical choices that are in principle contestable are arbitrarily fixed in practice, masking uncertainty and potentially introducing bias. Strategies for making risk and decision analysis more rigorous include: formalising the assumptions and scope conditions under which heuristics should be applied; testing rather than presuming their underlying empirical or theoretical justifications; using sensitivity analysis, simulations, multiple bias analysis, and deductive systems of inference (e.g. directed acyclic graphs) to characterise rule uncertainty and refine heuristics; adopting "recovery schemes" to correct for known biases; and basing decision rules on clearly articulated values and evidence, rather than convention. Copyright © 2017. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Van Norman, Ethan R.; Parker, David C.
2018-01-01
Recent simulations suggest that trend line decision rules applied to curriculum-based measurement of reading progress monitoring data may lead to inaccurate interpretations unless data are collected for upward of 3 months. The authors of those studies did not manipulate goal line slope or account for a student's level of initial performance when…
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision was made. Unique to this work is the fuzzy set representation of the conditions or attributes upon which the decision make may base his fuzzy set decision. From our examples, we infer certain and possible rules containing fuzzy terms. It should be stressed that the procedure determines how closely the expert follows the conditions under consideration in making his decision. We offer two examples pertaining to the possible decision to close a customer service center of a public utility company. In the first example, the decision maker does not follow too closely the conditions. In the second example, the conditions are much more relevant to the decision of the expert.
Jabez Christopher, J; Khanna Nehemiah, H; Kannan, A
2015-10-01
Allergic Rhinitis is a universal common disease, especially in populated cities and urban areas. Diagnosis and treatment of Allergic Rhinitis will improve the quality of life of allergic patients. Though skin tests remain the gold standard test for diagnosis of allergic disorders, clinical experts are required for accurate interpretation of test outcomes. This work presents a clinical decision support system (CDSS) to assist junior clinicians in the diagnosis of Allergic Rhinitis. Intradermal Skin tests were performed on patients who had plausible allergic symptoms. Based on patient׳s history, 40 clinically relevant allergens were tested. 872 patients who had allergic symptoms were considered for this study. The rule based classification approach and the clinical test results were used to develop and validate the CDSS. Clinical relevance of the CDSS was compared with the Score for Allergic Rhinitis (SFAR). Tests were conducted for junior clinicians to assess their diagnostic capability in the absence of an expert. The class based Association rule generation approach provides a concise set of rules that is further validated by clinical experts. The interpretations of the experts are considered as the gold standard. The CDSS diagnoses the presence or absence of rhinitis with an accuracy of 88.31%. The allergy specialist and the junior clinicians prefer the rule based approach for its comprehendible knowledge model. The Clinical Decision Support Systems with rule based classification approach assists junior doctors and clinicians in the diagnosis of Allergic Rhinitis to make reliable decisions based on the reports of intradermal skin tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wright, Adam; Pang, Justine; Feblowitz, Joshua C; Maloney, Francine L; Wilcox, Allison R; Ramelson, Harley Z; Schneider, Louise I; Bates, David W
2011-01-01
Accurate knowledge of a patient's medical problems is critical for clinical decision making, quality measurement, research, billing and clinical decision support. Common structured sources of problem information include the patient problem list and billing data; however, these sources are often inaccurate or incomplete. To develop and validate methods of automatically inferring patient problems from clinical and billing data, and to provide a knowledge base for inferring problems. We identified 17 target conditions and designed and validated a set of rules for identifying patient problems based on medications, laboratory results, billing codes, and vital signs. A panel of physicians provided input on a preliminary set of rules. Based on this input, we tested candidate rules on a sample of 100,000 patient records to assess their performance compared to gold standard manual chart review. The physician panel selected a final rule for each condition, which was validated on an independent sample of 100,000 records to assess its accuracy. Seventeen rules were developed for inferring patient problems. Analysis using a validation set of 100,000 randomly selected patients showed high sensitivity (range: 62.8-100.0%) and positive predictive value (range: 79.8-99.6%) for most rules. Overall, the inference rules performed better than using either the problem list or billing data alone. We developed and validated a set of rules for inferring patient problems. These rules have a variety of applications, including clinical decision support, care improvement, augmentation of the problem list, and identification of patients for research cohorts.
Ambrosino, R; Buchanan, B G; Cooper, G F; Fine, M J
1995-01-01
Cost-effective health care is at the forefront of today's important health-related issues. A research team at the University of Pittsburgh has been interested in lowering the cost of medical care by attempting to define a subset of patients with community-acquire pneumonia for whom outpatient therapy is appropriate and safe. Sensitivity and specificity requirements for this domain make it difficult to use rule-based learning algorithms with standard measures of performance based on accuracy. This paper describes the use of misclassification costs to assist a rule-based machine-learning program in deriving a decision-support aid for choosing outpatient therapy for patients with community-acquired pneumonia.
Multicriteria meta-heuristics for AGV dispatching control based on computational intelligence.
Naso, David; Turchiano, Biagio
2005-04-01
In many manufacturing environments, automated guided vehicles are used to move the processed materials between various pickup and delivery points. The assignment of vehicles to unit loads is a complex problem that is often solved in real-time with simple dispatching rules. This paper proposes an automated guided vehicles dispatching approach based on computational intelligence. We adopt a fuzzy multicriteria decision strategy to simultaneously take into account multiple aspects in every dispatching decision. Since the typical short-term view of dispatching rules is one of the main limitations of such real-time assignment heuristics, we also incorporate in the multicriteria algorithm a specific heuristic rule that takes into account the empty-vehicle travel on a longer time-horizon. Moreover, we also adopt a genetic algorithm to tune the weights associated to each decision criteria in the global decision algorithm. The proposed approach is validated by means of a comparison with other dispatching rules, and with other recently proposed multicriteria dispatching strategies also based on computational Intelligence. The analysis of the results obtained by the proposed dispatching approach in both nominal and perturbed operating conditions (congestions, faults) confirms its effectiveness.
Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.
Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab
2017-09-01
Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.
Dixon, Matthew L.; Christoff, Kalina
2012-01-01
Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives. PMID:23284730
Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Zhong, Xionghu
2015-01-01
Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. PMID:26251908
Orthogonal search-based rule extraction for modelling the decision to transfuse.
Etchells, T A; Harrison, M J
2006-04-01
Data from an audit relating to transfusion decisions during intermediate or major surgery were analysed to determine the strengths of certain factors in the decision making process. The analysis, using orthogonal search-based rule extraction (OSRE) from a trained neural network, demonstrated that the risk of tissue hypoxia (ROTH) assessed using a 100-mm visual analogue scale, the haemoglobin value (Hb) and the presence or absence of on-going haemorrhage (OGH) were able to reproduce the transfusion decisions with a joint specificity of 0.96 and sensitivity of 0.93 and a positive predictive value of 0.9. The rules indicating transfusion were: 1. ROTH > 32 mm and Hb < 94 g x l(-1); 2. ROTH > 13 mm and Hb < 87 g x l(-1); 3. ROTH > 38 mm, Hb < 102 g x l(-1) and OGH; 4. Hb < 78 g x l(-1).
Van Norman, Ethan R; Christ, Theodore J
2016-10-01
Curriculum based measurement of oral reading (CBM-R) is used to monitor the effects of academic interventions for individual students. Decisions to continue, modify, or terminate these interventions are made by interpreting time series CBM-R data. Such interpretation is founded upon visual analysis or the application of decision rules. The purpose of this study was to compare the accuracy of visual analysis and decision rules. Visual analysts interpreted 108 CBM-R progress monitoring graphs one of three ways: (a) without graphic aids, (b) with a goal line, or (c) with a goal line and a trend line. Graphs differed along three dimensions, including trend magnitude, variability of observations, and duration of data collection. Automated trend line and data point decision rules were also applied to each graph. Inferential analyses permitted the estimation of the probability of a correct decision (i.e., the student is improving - continue the intervention, or the student is not improving - discontinue the intervention) for each evaluation method as a function of trend magnitude, variability of observations, and duration of data collection. All evaluation methods performed better when students made adequate progress. Visual analysis and decision rules performed similarly when observations were less variable. Results suggest that educators should collect data for more than six weeks, take steps to control measurement error, and visually analyze graphs when data are variable. Implications for practice and research are discussed. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd
2016-04-01
This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.
Pang, Justine; Feblowitz, Joshua C; Maloney, Francine L; Wilcox, Allison R; Ramelson, Harley Z; Schneider, Louise I; Bates, David W
2011-01-01
Background Accurate knowledge of a patient's medical problems is critical for clinical decision making, quality measurement, research, billing and clinical decision support. Common structured sources of problem information include the patient problem list and billing data; however, these sources are often inaccurate or incomplete. Objective To develop and validate methods of automatically inferring patient problems from clinical and billing data, and to provide a knowledge base for inferring problems. Study design and methods We identified 17 target conditions and designed and validated a set of rules for identifying patient problems based on medications, laboratory results, billing codes, and vital signs. A panel of physicians provided input on a preliminary set of rules. Based on this input, we tested candidate rules on a sample of 100 000 patient records to assess their performance compared to gold standard manual chart review. The physician panel selected a final rule for each condition, which was validated on an independent sample of 100 000 records to assess its accuracy. Results Seventeen rules were developed for inferring patient problems. Analysis using a validation set of 100 000 randomly selected patients showed high sensitivity (range: 62.8–100.0%) and positive predictive value (range: 79.8–99.6%) for most rules. Overall, the inference rules performed better than using either the problem list or billing data alone. Conclusion We developed and validated a set of rules for inferring patient problems. These rules have a variety of applications, including clinical decision support, care improvement, augmentation of the problem list, and identification of patients for research cohorts. PMID:21613643
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
Proposed Clinical Decision Rules to Diagnose Acute Rhinosinusitis Among Adults in Primary Care.
Ebell, Mark H; Hansen, Jens Georg
2017-07-01
To reduce inappropriate antibiotic prescribing, we sought to develop a clinical decision rule for the diagnosis of acute rhinosinusitis and acute bacterial rhinosinusitis. Multivariate analysis and classification and regression tree (CART) analysis were used to develop clinical decision rules for the diagnosis of acute rhinosinusitis, defined using 3 different reference standards (purulent antral puncture fluid or abnormal finding on a computed tomographic (CT) scan; for acute bacterial rhinosinusitis, we used a positive bacterial culture of antral fluid). Signs, symptoms, C-reactive protein (CRP), and reference standard tests were prospectively recorded in 175 Danish patients aged 18 to 65 years seeking care for suspected acute rhinosinusitis. For each reference standard, we developed 2 clinical decision rules: a point score based on a logistic regression model and an algorithm based on a CART model. We identified low-, moderate-, and high-risk groups for acute rhinosinusitis or acute bacterial rhinosinusitis for each clinical decision rule. The point scores each had between 5 and 6 predictors, and an area under the receiver operating characteristic curve (AUROCC) between 0.721 and 0.767. For positive bacterial culture as the reference standard, low-, moderate-, and high-risk groups had a 16%, 49%, and 73% likelihood of acute bacterial rhinosinusitis, respectively. CART models had an AUROCC ranging from 0.783 to 0.827. For positive bacterial culture as the reference standard, low-, moderate-, and high-risk groups had a likelihood of acute bacterial rhinosinusitis of 6%, 31%, and 59% respectively. We have developed a series of clinical decision rules integrating signs, symptoms, and CRP to diagnose acute rhinosinusitis and acute bacterial rhinosinusitis with good accuracy. They now require prospective validation and an assessment of their effect on clinical and process outcomes. © 2017 Annals of Family Medicine, Inc.
Systematic Analysis of the Decision Rules of Traditional Chinese Medicine
Bin-Rong, Ma; Xi-Yuan, Jiang; Su-Ming, Liso; Huai-ning, Zhu; Xiu-ru, Lin
1981-01-01
Chinese traditional medicine has evolved over many centuries, and has accumulated a body of observed relationships between symptoms, signs and prognoses, and the efficacy of alternative treatments and prescriptions. With the assistance of a computer-based clinical data base for recording the diagnostic and therapeutic practice of skilled practitioners of Chinese traditional medicine, a systematic program is being conducted to identify and define the clinical decision-making rules that underlie current practice.
Life insurance risk assessment using a fuzzy logic expert system
NASA Technical Reports Server (NTRS)
Carreno, Luis A.; Steel, Roy A.
1992-01-01
In this paper, we present a knowledge based system that combines fuzzy processing with rule-based processing to form an improved decision aid for evaluating risk for life insurance. This application illustrates the use of FuzzyCLIPS to build a knowledge based decision support system possessing fuzzy components to improve user interactions and KBS performance. The results employing FuzzyCLIPS are compared with the results obtained from the solution of the problem using traditional numerical equations. The design of the fuzzy solution consists of a CLIPS rule-based system for some factors combined with fuzzy logic rules for others. This paper describes the problem, proposes a solution, presents the results, and provides a sample output of the software product.
The Relative Success of Recognition-Based Inference in Multichoice Decisions
ERIC Educational Resources Information Center
McCloy, Rachel; Beaman, C. Philip; Smith, Philip T.
2008-01-01
The utility of an "ecologically rational" recognition-based decision rule in multichoice decision problems is analyzed, varying the type of judgment required (greater or lesser). The maximum size and range of a counterintuitive advantage associated with recognition-based judgment (the "less-is-more effect") is identified for a range of cue…
Assessing the structure of non-routine decision processes in Airline Operations Control.
Richters, Floor; Schraagen, Jan Maarten; Heerkens, Hans
2016-03-01
Unfamiliar severe disruptions challenge Airline Operations Control professionals most, as their expertise is stretched to its limits. This study has elicited the structure of Airline Operations Control professionals' decision process during unfamiliar disruptions by mapping three macrocognitive activities on the decision ladder: sensemaking, option evaluation and action planning. The relationship between this structure and decision quality was measured. A simulated task was staged, based on which think-aloud protocols were obtained. Results show that the general decision process structure resembles the structure of experts working under routine conditions, in terms of the general structure of the macrocognitive activities, and the rule-based approach used to identify options and actions. Surprisingly, high quality of decision outcomes was found to relate to the use of rule-based strategies. This implies that successful professionals are capable of dealing with unfamiliar problems by reframing them into familiar ones, rather than to engage in knowledge-based processing. Practitioner Summary: We examined the macrocognitive structure of Airline Operations Control professionals' decision process during a simulated unfamiliar disruption in relation to decision quality. Results suggest that successful professionals are capable of dealing with unfamiliar problems by reframing them into familiar ones, rather than to engage in knowledge-based processing.
Scalable software architectures for decision support.
Musen, M A
1999-12-01
Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.
Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges.
Klabunde, Anna; Willekens, Frans
We review agent-based models (ABM) of human migration with respect to their decision-making rules. The most prominent behavioural theories used as decision rules are the random utility theory, as implemented in the discrete choice model, and the theory of planned behaviour. We identify the critical choices that must be made in developing an ABM, namely the modelling of decision processes and social networks. We also discuss two challenges that hamper the widespread use of ABM in the study of migration and, more broadly, demography and the social sciences: (a) the choice and the operationalisation of a behavioural theory (decision-making and social interaction) and (b) the selection of empirical evidence to validate the model. We offer advice on how these challenges might be overcome.
Wolf, Max; Krause, Jens; Carney, Patricia A; Bogart, Andy; Kurvers, Ralf H J M
2015-01-01
While collective intelligence (CI) is a powerful approach to increase decision accuracy, few attempts have been made to unlock its potential in medical decision-making. Here we investigated the performance of three well-known collective intelligence rules ("majority", "quorum", and "weighted quorum") when applied to mammography screening. For any particular mammogram, these rules aggregate the independent assessments of multiple radiologists into a single decision (recall the patient for additional workup or not). We found that, compared to single radiologists, any of these CI-rules both increases true positives (i.e., recalls of patients with cancer) and decreases false positives (i.e., recalls of patients without cancer), thereby overcoming one of the fundamental limitations to decision accuracy that individual radiologists face. Importantly, we find that all CI-rules systematically outperform even the best-performing individual radiologist in the respective group. Our findings demonstrate that CI can be employed to improve mammography screening; similarly, CI may have the potential to improve medical decision-making in a much wider range of contexts, including many areas of diagnostic imaging and, more generally, diagnostic decisions that are based on the subjective interpretation of evidence.
Bau, Cho-Tsan; Huang, Chung-Yi
2014-01-01
Abstract Objective: To construct a clinical decision support system (CDSS) for undergoing surgery based on domain ontology and rules reasoning in the setting of hospitalized diabetic patients. Materials and Methods: The ontology was created with a modified ontology development method, including specification and conceptualization, formalization, implementation, and evaluation and maintenance. The Protégé–Web Ontology Language editor was used to implement the ontology. Embedded clinical knowledge was elicited to complement the domain ontology with formal concept analysis. The decision rules were translated into JENA format, which JENA can use to infer recommendations based on patient clinical situations. Results: The ontology includes 31 classes and 13 properties, plus 38 JENA rules that were built to generate recommendations. The evaluation studies confirmed the correctness of the ontology, acceptance of recommendations, satisfaction with the system, and usefulness of the ontology for glycemic management of diabetic patients undergoing surgery, especially for domain experts. Conclusions: The contribution of this research is to set up an evidence-based hybrid ontology and an evaluation method for CDSS. The system can help clinicians to achieve inpatient glycemic control in diabetic patients undergoing surgery while avoiding hypoglycemia. PMID:24730353
Bau, Cho-Tsan; Chen, Rung-Ching; Huang, Chung-Yi
2014-05-01
To construct a clinical decision support system (CDSS) for undergoing surgery based on domain ontology and rules reasoning in the setting of hospitalized diabetic patients. The ontology was created with a modified ontology development method, including specification and conceptualization, formalization, implementation, and evaluation and maintenance. The Protégé-Web Ontology Language editor was used to implement the ontology. Embedded clinical knowledge was elicited to complement the domain ontology with formal concept analysis. The decision rules were translated into JENA format, which JENA can use to infer recommendations based on patient clinical situations. The ontology includes 31 classes and 13 properties, plus 38 JENA rules that were built to generate recommendations. The evaluation studies confirmed the correctness of the ontology, acceptance of recommendations, satisfaction with the system, and usefulness of the ontology for glycemic management of diabetic patients undergoing surgery, especially for domain experts. The contribution of this research is to set up an evidence-based hybrid ontology and an evaluation method for CDSS. The system can help clinicians to achieve inpatient glycemic control in diabetic patients undergoing surgery while avoiding hypoglycemia.
Integrated modelling of stormwater treatment systems uptake.
Castonguay, A C; Iftekhar, M S; Urich, C; Bach, P M; Deletic, A
2018-05-24
Nature-based solutions provide a variety of benefits in growing cities, ranging from stormwater treatment to amenity provision such as aesthetics. However, the decision-making process involved in the installation of such green infrastructure is not straightforward, as much uncertainty around the location, size, costs and benefits impedes systematic decision-making. We developed a model to simulate decision rules used by local municipalities to install nature-based stormwater treatment systems, namely constructed wetlands, ponds/basins and raingardens. The model was used to test twenty-four scenarios of policy-making, by combining four asset selection, two location selection and three budget constraint decision rules. Based on the case study of a local municipality in Metropolitan Melbourne, Australia, the modelled uptake of stormwater treatment systems was compared with attributes of real-world systems for the simulation period. Results show that the actual budgeted funding is not reliable to predict systems' uptake and that policy-makers are more likely to plan expenditures based on installation costs. The model was able to replicate the cumulative treatment capacity and the location of systems. As such, it offers a novel approach to investigate the impact of using different decision rules to provide environmental services considering biophysical and economic factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Making sense of information in noisy networks: human communication, gossip, and distortion.
Laidre, Mark E; Lamb, Alex; Shultz, Susanne; Olsen, Megan
2013-01-21
Information from others can be unreliable. Humans nevertheless act on such information, including gossip, to make various social calculations, thus raising the question of whether individuals can sort through social information to identify what is, in fact, true. Inspired by empirical literature on people's decision-making when considering gossip, we built an agent-based simulation model to examine how well simple decision rules could make sense of information as it propagated through a network. Our simulations revealed that a minimalistic decision-rule 'Bit-wise mode' - which compared information from multiple sources and then sought a consensus majority for each component bit within the message - was consistently the most successful at converging upon the truth. This decision rule attained high relative fitness even in maximally noisy networks, composed entirely of nodes that distorted the message. The rule was also superior to other decision rules regardless of its frequency in the population. Simulations carried out with variable agent memory constraints, different numbers of observers who initiated information propagation, and a variety of network types suggested that the single most important factor in making sense of information was the number of independent sources that agents could consult. Broadly, our model suggests that despite the distortion information is subject to in the real world, it is nevertheless possible to make sense of it based on simple Darwinian computations that integrate multiple sources. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
Failure detection system design methodology. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chow, E. Y.
1980-01-01
The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.
Textural features for image classification
NASA Technical Reports Server (NTRS)
Haralick, R. M.; Dinstein, I.; Shanmugam, K.
1973-01-01
Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.
Pronk, Anjoeka; Stewart, Patricia A; Coble, Joseph B; Katki, Hormuzd A; Wheeler, David C; Colt, Joanne S; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R; Johnson, Alison; Waddell, Richard; Verrill, Castine; Cherala, Sai; Silverman, Debra T; Friesen, Melissa C
2012-10-01
Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to questionnaire responses to assess diesel exhaust exposure in the population-based case-control New England Bladder Cancer Study. 2631 participants reported 14 983 jobs; 2749 jobs were administered questionnaires ('modules') with diesel-relevant questions. We applied decision rules to assign exposure metrics based either on the occupational history (OH) responses (OH estimates) or on the module responses (module estimates); we then combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed individually to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module and one-by-one review estimates. The proportion of exposed jobs was 20-25% for all jobs, depending on approach, and 54-60% for jobs with diesel-relevant modules. The OH/module and one-by-one review estimates had moderately high agreement for all jobs (κ(w)=0.68-0.81) and for jobs with diesel-relevant modules (κ(w)=0.62-0.78) for the probability, intensity and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies.
A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea.
Rodsutti, Julvit; Hensley, Michael; Thakkinstian, Ammarin; D'Este, Catherine; Attia, John
2004-06-15
To derive and validate a clinical decision rule that can help to prioritize patients who are on waiting lists for polysomnography, Prospective data collection on consecutive patients referred to a sleep center. The Newcastle Sleep Disorders Centre, University of Newcastle, NSW, Australia. Consecutive adult patients who had been scheduled for initial diagnostic polysomnography. Eight hundred and thirty-seven patients were used for derivation of the decision rule. An apnea-hypopnoea index of at least 5 was used as the cutoff point to diagnose sleep apnea. Fifteen clinical features were included in the analyses using logistic regression to construct a model from the derivation data set. Only 5 variables--age, sex, body mass index, snoring, and stopping breathing during sleep--were significantly associated with sleep apnea. A scoring scheme based on regression coefficients was developed, and the total score was trichotomized into low-, moderate-, and high-risk groups with prevalence of sleep apnea of 8%, 51%, and 82%, respectively. Color-coded tables were developed for ease of use. The clinical decision rule was validated on a separate set of 243 patients. Receiver operating characteristic analysis confirmed that the decision rule performed well, with the area under the curve being similar for both the derivation and validation sets: 0.81 and 0.79, P =.612. We conclude that this decision rule was able to accurately classify the risk of sleep apnea and will be useful for prioritizing patients with suspected sleep apnea who are on waiting lists for polysomnography.
Characteristics of knowledge content in a curated online evidence library.
Varada, Sowmya; Lacson, Ronilda; Raja, Ali S; Ip, Ivan K; Schneider, Louise; Osterbur, David; Bain, Paul; Vetrano, Nicole; Cellini, Jacqueline; Mita, Carol; Coletti, Margaret; Whelan, Julia; Khorasani, Ramin
2018-05-01
To describe types of recommendations represented in a curated online evidence library, report on the quality of evidence-based recommendations pertaining to diagnostic imaging exams, and assess underlying knowledge representation. The evidence library is populated with clinical decision rules, professional society guidelines, and locally developed best practice guidelines. Individual recommendations were graded based on a standard methodology and compared using chi-square test. Strength of evidence ranged from grade 1 (systematic review) through grade 5 (recommendations based on expert opinion). Finally, variations in the underlying representation of these recommendations were identified. The library contains 546 individual imaging-related recommendations. Only 15% (16/106) of recommendations from clinical decision rules were grade 5 vs 83% (526/636) from professional society practice guidelines and local best practice guidelines that cited grade 5 studies (P < .0001). Minor head trauma, pulmonary embolism, and appendicitis were topic areas supported by the highest quality of evidence. Three main variations in underlying representations of recommendations were "single-decision," "branching," and "score-based." Most recommendations were grade 5, largely because studies to test and validate many recommendations were absent. Recommendation types vary in amount and complexity and, accordingly, the structure and syntax of statements they generate. However, they can be represented in single-decision, branching, and score-based representations. In a curated evidence library with graded imaging-based recommendations, evidence quality varied widely, with decision rules providing the highest-quality recommendations. The library may be helpful in highlighting evidence gaps, comparing recommendations from varied sources on similar clinical topics, and prioritizing imaging recommendations to inform clinical decision support implementation.
Optimal Sequential Rules for Computer-Based Instruction.
ERIC Educational Resources Information Center
Vos, Hans J.
1998-01-01
Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…
An overview of bipolar qualitative decision rules
NASA Astrophysics Data System (ADS)
Bonnefon, Jean-Francois; Dubois, Didier; Fargier, Hélène
Making a good decision is often a matter of listing and comparing positive and negative arguments, as studies in cognitive psychology have shown. In such cases, the evaluation scale should be considered bipolar, that is, negative and positive values are explicitly distinguished. Generally, positive and negative features are evaluated separately, as done in Cumulative Prospect Theory. However, contrary to the latter framework that presupposes genuine numerical assessments, decisions are often made on the basis of an ordinal ranking of the pros and the cons, and focusing on the most salient features, i.e., the decision process is qualitative. In this paper, we report on a project aiming at characterizing several decision rules, based on possibilistic order of magnitude reasoning, and tailored for the joint handling of positive and negative affects, and at testing their empirical validity. The simplest rules can be viewed as extensions of the maximin and maximax criteria to the bipolar case and, like them, suffer from a lack of discrimination power. More decisive rules that refine them are also proposed. They account for both the principle of Pareto-efficiency and the notion of order of magnitude reasoning. The most decisive one uses a lexicographic ranking of the pros and cons. It comes down to a special case of Cumulative Prospect Theory, and subsumes the “Take the best” heuristic.
Haunted by a doppelgänger: irrelevant facial similarity affects rule-based judgments.
von Helversen, Bettina; Herzog, Stefan M; Rieskamp, Jörg
2014-01-01
Judging other people is a common and important task. Every day professionals make decisions that affect the lives of other people when they diagnose medical conditions, grant parole, or hire new employees. To prevent discrimination, professional standards require that decision makers render accurate and unbiased judgments solely based on relevant information. Facial similarity to previously encountered persons can be a potential source of bias. Psychological research suggests that people only rely on similarity-based judgment strategies if the provided information does not allow them to make accurate rule-based judgments. Our study shows, however, that facial similarity to previously encountered persons influences judgment even in situations in which relevant information is available for making accurate rule-based judgments and where similarity is irrelevant for the task and relying on similarity is detrimental. In two experiments in an employment context we show that applicants who looked similar to high-performing former employees were judged as more suitable than applicants who looked similar to low-performing former employees. This similarity effect was found despite the fact that the participants used the relevant résumé information about the applicants by following a rule-based judgment strategy. These findings suggest that similarity-based and rule-based processes simultaneously underlie human judgment.
Characterizing Rule-Based Category Learning Deficits in Patients with Parkinson's Disease
ERIC Educational Resources Information Center
Filoteo, J. Vincent; Maddox, W. Todd; Ing, A. David; Song, David D.
2007-01-01
Parkinson's disease (PD) patients and normal controls were tested in three category learning experiments to determine if previously observed rule-based category learning impairments in PD patients were due to deficits in selective attention or working memory. In Experiment 1, optimal categorization required participants to base their decision on a…
Decision blocks: A tool for automating decision making in CLIPS
NASA Technical Reports Server (NTRS)
Eick, Christoph F.; Mehta, Nikhil N.
1991-01-01
The human capability of making complex decision is one of the most fascinating facets of human intelligence, especially if vague, judgemental, default or uncertain knowledge is involved. Unfortunately, most existing rule based forward chaining languages are not very suitable to simulate this aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring decision block to provide better support for the design and implementation of rule based decision support systems. A language called BIRBAL, which is defined on the top of CLIPS, for the specification of decision blocks, is introduced. Empirical experiments involving the comparison of the length of CLIPS program with the corresponding BIRBAL program for three different applications are surveyed. The results of these experiments suggest that for decision making intensive applications, a CLIPS program tends to be about three times longer than the corresponding BIRBAL program.
Extracting decision rules from police accident reports through decision trees.
de Oña, Juan; López, Griselda; Abellán, Joaquín
2013-01-01
Given the current number of road accidents, the aim of many road safety analysts is to identify the main factors that contribute to crash severity. To pinpoint those factors, this paper shows an application that applies some of the methods most commonly used to build decision trees (DTs), which have not been applied to the road safety field before. An analysis of accidents on rural highways in the province of Granada (Spain) between 2003 and 2009 (both inclusive) showed that the methods used to build DTs serve our purpose and may even be complementary. Applying these methods has enabled potentially useful decision rules to be extracted that could be used by road safety analysts. For instance, some of the rules may indicate that women, contrary to men, increase their risk of severity under bad lighting conditions. The rules could be used in road safety campaigns to mitigate specific problems. This would enable managers to implement priority actions based on a classification of accidents by types (depending on their severity). However, the primary importance of this proposal is that other databases not used here (i.e. other infrastructure, roads and countries) could be used to identify unconventional problems in a manner easy for road safety managers to understand, as decision rules. Copyright © 2012 Elsevier Ltd. All rights reserved.
Combined rule extraction and feature elimination in supervised classification.
Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E
2012-09-01
There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW which were designed to automate functions and decisions associated with a combat aircraft's subsystems, are discussed. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base and to assess the cooperation between the rule bases. Simulation and comparative workload results for two mission scenarios are given. The scenarios are inbound surface-to-air-missile attack on the aircraft and pilot incapacitation. The methodology used to develop the AUTOCREW knowledge bases is summarized. Issues involved in designing the navigation sensor selection expert in AUTOCREW's NAVIGATOR knowledge base are discussed in detail. The performance of seven navigation systems aiding a medium-accuracy INS was investigated using Kalman filter covariance analyses. A navigation sensor management (NSM) expert system was formulated from covariance simulation data using the analysis of variance (ANOVA) method and the ID3 algorithm. ANOVA results show that statistically different position accuracies are obtained when different navaids are used, the number of navaids aiding the INS is varied, the aircraft's trajectory is varied, and the performance history is varied. The ID3 algorithm determines the NSM expert's classification rules in the form of decision trees. The performance of these decision trees was assessed on two arbitrary trajectories, and the results demonstrate that the NSM expert adapts to new situations and provides reasonable estimates of the expected hybrid performance.
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512
NASA Astrophysics Data System (ADS)
Ma, Junhai; Xie, Lei
2018-02-01
This paper, based on the China's communications and the current situation of the mobile phone industry, focuses on the stability of a supply chain system that consists of one supplier and one bounded rational retailer. We explore the influence of the decision makers' loss sensitivity and decision adjustment speed on the stability of the supply chain. It is found that when the retailer is not sensitive to the loss or adjusts decisions cautiously, the system can be stable. The single-retailer model is extended to a multi-retailer one to study the influence of competition on the system stability. The results show that the market share of each retailer does not affect the system stability when it is fixed. The decision of each retailer does not affect that of any other retailer and the system stability. We present two decision adjustment rules (;bounded rationality expectation (BRE); and "adaptive exponential smoothing (AES)") and compare their performances on the system stability, and find that the AES rule does not affect the system stability, while the BRE rule will make the system stability be sensitive to the retailers' loss sensitivity and the decision adjustment speed. We also reveal the unstable system's negative impact on the retailers' decisions and profits, to emphasize the importance to maintain the system stability.
Pronk, Anjoeka; Stewart, Patricia A.; Coble, Joseph B.; Katki, Hormuzd A.; Wheeler, David C.; Colt, Joanne S.; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Waddell, Richard; Verrill, Castine; Cherala, Sai; Silverman, Debra T.; Friesen, Melissa C.
2012-01-01
Objectives Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to the questionnaire responses to assess diesel exhaust exposure in the New England Bladder Cancer Study, a population-based case-control study. Methods 2,631 participants reported 14,983 jobs; 2,749 jobs were administered questionnaires (‘modules’) with diesel-relevant questions. We applied decision rules to assign exposure metrics based solely on the occupational history responses (OH estimates) and based on the module responses (module estimates); we combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed one at a time to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module, and one-by-one review estimates. Results The proportion of exposed jobs was 20–25% for all jobs, depending on approach, and 54–60% for jobs with diesel-relevant modules. The OH/module and one-by-one review had moderately high agreement for all jobs (κw=0.68–0.81) and for jobs with diesel-relevant modules (κw=0.62–0.78) for the probability, intensity, and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. Conclusions The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies. PMID:22843440
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.; Abbott, Kathy H.
1987-01-01
A traditional programming technique for controlling the display of optional flight information in a civil transport cockpit is compared to a rule-based technique for the same function. This application required complex decision logic and a frequently modified rule base. The techniques are evaluated for execution efficiency and implementation ease; the criterion used to calculate the execution efficiency is the total number of steps required to isolate hypotheses that were true and the criteria used to evaluate the implementability are ease of modification and verification and explanation capability. It is observed that the traditional program is more efficient than the rule-based program; however, the rule-based programming technique is more applicable for improving programmer productivity.
A programmable rules engine to provide clinical decision support using HTML forms.
Heusinkveld, J; Geissbuhler, A; Sheshelidze, D; Miller, R
1999-01-01
The authors have developed a simple method for specifying rules to be applied to information on HTML forms. This approach allows clinical experts, who lack the programming expertise needed to write CGI scripts, to construct and maintain domain-specific knowledge and ordering capabilities within WizOrder, the order-entry and decision support system used at Vanderbilt Hospital. The clinical knowledge base maintainers use HTML editors to create forms and spreadsheet programs for rule entry. A test environment has been developed which uses Netscape to display forms; the production environment displays forms using an embedded browser.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
Implementing a Commercial Rule Base as a Medication Order Safety Net
Reichley, Richard M.; Seaton, Terry L.; Resetar, Ervina; Micek, Scott T.; Scott, Karen L.; Fraser, Victoria J.; Dunagan, W. Claiborne; Bailey, Thomas C.
2005-01-01
A commercial rule base (Cerner Multum) was used to identify medication orders exceeding recommended dosage limits at five hospitals within BJC HealthCare, an integrated health care system. During initial testing, clinical pharmacists determined that there was an excessive number of nuisance and clinically insignificant alerts, with an overall alert rate of 9.2%. A method for customizing the commercial rule base was implemented to increase rule specificity for problematic rules. The system was subsequently deployed at two facilities and achieved alert rates of less than 1%. Pharmacists screened these alerts and contacted ordering physicians in 21% of cases. Physicians made therapeutic changes in response to 38% of alerts presented to them. By applying simple techniques to customize rules, commercial rule bases can be used to rapidly deploy a safety net to screen drug orders for excessive dosages, while preserving the rule architecture for later implementations of more finely tuned clinical decision support. PMID:15802481
NASA Astrophysics Data System (ADS)
Chaubey, I.; Vema, V. K.; Sudheer, K.
2016-12-01
Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.
Error-associated behaviors and error rates for robotic geology
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin
2004-01-01
This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.
Microcomputer-based classification of environmental data in municipal areas
NASA Astrophysics Data System (ADS)
Thiergärtner, H.
1995-10-01
Multivariate data-processing methods used in mineral resource identification can be used to classify urban regions. Using elements of expert systems, geographical information systems, as well as known classification and prognosis systems, it is possible to outline a single model that consists of resistant and of temporary parts of a knowledge base including graphical input and output treatment and of resistant and temporary elements of a bank of methods and algorithms. Whereas decision rules created by experts will be stored in expert systems directly, powerful classification rules in form of resistant but latent (implicit) decision algorithms may be implemented in the suggested model. The latent functions will be transformed into temporary explicit decision rules by learning processes depending on the actual task(s), parameter set(s), pixels selection(s), and expert control(s). This takes place both at supervised and nonsupervised classification of multivariately described pixel sets representing municipal subareas. The model is outlined briefly and illustrated by results obtained in a target area covering a part of the city of Berlin (Germany).
Samwald, Matthias; Miñarro Giménez, Jose Antonio; Boyce, Richard D; Freimuth, Robert R; Adlassnig, Klaus-Peter; Dumontier, Michel
2015-02-22
Every year, hundreds of thousands of patients experience treatment failure or adverse drug reactions (ADRs), many of which could be prevented by pharmacogenomic testing. However, the primary knowledge needed for clinical pharmacogenomics is currently dispersed over disparate data structures and captured in unstructured or semi-structured formalizations. This is a source of potential ambiguity and complexity, making it difficult to create reliable information technology systems for enabling clinical pharmacogenomics. We developed Web Ontology Language (OWL) ontologies and automated reasoning methodologies to meet the following goals: 1) provide a simple and concise formalism for representing pharmacogenomic knowledge, 2) finde errors and insufficient definitions in pharmacogenomic knowledge bases, 3) automatically assign alleles and phenotypes to patients, 4) match patients to clinically appropriate pharmacogenomic guidelines and clinical decision support messages and 5) facilitate the detection of inconsistencies and overlaps between pharmacogenomic treatment guidelines from different sources. We evaluated different reasoning systems and test our approach with a large collection of publicly available genetic profiles. Our methodology proved to be a novel and useful choice for representing, analyzing and using pharmacogenomic data. The Genomic Clinical Decision Support (Genomic CDS) ontology represents 336 SNPs with 707 variants; 665 haplotypes related to 43 genes; 22 rules related to drug-response phenotypes; and 308 clinical decision support rules. OWL reasoning identified CDS rules with overlapping target populations but differing treatment recommendations. Only a modest number of clinical decision support rules were triggered for a collection of 943 public genetic profiles. We found significant performance differences across available OWL reasoners. The ontology-based framework we developed can be used to represent, organize and reason over the growing wealth of pharmacogenomic knowledge, as well as to identify errors, inconsistencies and insufficient definitions in source data sets or individual patient data. Our study highlights both advantages and potential practical issues with such an ontology-based approach.
An Expert-System Engine With Operative Probabilities
NASA Technical Reports Server (NTRS)
Orlando, N. E.; Palmer, M. T.; Wallace, R. S.
1986-01-01
Program enables proof-of-concepts tests of expert systems under development. AESOP is rule-based inference engine for expert system, which makes decisions about particular situation given user-supplied hypotheses, rules, and answers to questions drawn from rules. If knowledge base containing hypotheses and rules governing environment is available to AESOP, almost any situation within that environment resolved by answering questions asked by AESOP. Questions answered with YES, NO, MAYBE, DON'T KNOW, DON'T CARE, or with probability factor ranging from 0 to 10. AESOP written in Franz LISP for interactive execution.
Research of Litchi Diseases Diagnosis Expertsystem Based on Rbr and Cbr
NASA Astrophysics Data System (ADS)
Xu, Bing; Liu, Liqun
To conquer the bottleneck problems existing in the traditional rule-based reasoning diseases diagnosis system, such as low reasoning efficiency and lack of flexibility, etc.. It researched the integrated case-based reasoning (CBR) and rule-based reasoning (RBR) technology, and put forward a litchi diseases diagnosis expert system (LDDES) with integrated reasoning method. The method use data mining and knowledge obtaining technology to establish knowledge base and case library. It adopt rules to instruct the retrieval and matching for CBR, and use association rule and decision trees algorithm to calculate case similarity.The experiment shows that the method can increase the system's flexibility and reasoning ability, and improve the accuracy of litchi diseases diagnosis.
A Compensatory Approach to Optimal Selection with Mastery Scores. Research Report 94-2.
ERIC Educational Resources Information Center
van der Linden, Wim J.; Vos, Hans J.
This paper presents some Bayesian theories of simultaneous optimization of decision rules for test-based decisions. Simultaneous decision making arises when an institution has to make a series of selection, placement, or mastery decisions with respect to subjects from a population. An obvious example is the use of individualized instruction in…
Gimbel, Ronald W; Pirrallo, Ronald G; Lowe, Steven C; Wright, David W; Zhang, Lu; Woo, Min-Jae; Fontelo, Paul; Liu, Fang; Connor, Zachary
2018-03-12
The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.e. Canadian CT Head Rule - CCHR), findings from malpractice cases related to clinicians not ordering CT imaging in mild head trauma cases, and estimated patient out-of-pocket cost might influence clinician brain CT ordering. Understanding what type and how information may influence clinical decision making in the ordering advanced medical imaging is important in shaping the optimal design and implementation of related clinical decision support systems. Multi-center, double-blinded simulation-based randomized controlled trial. Following standardized clinical vignette presentation, clinicians made an initial imaging decision for the patient. This was followed by additional information on decision support rules, malpractice outcome review, and patient cost; each with opportunity to modify their initial order. The malpractice and cost information differed by assigned group to test the any temporal relationship. The simulation closed with a second vignette and an imaging decision. One hundred sixteen of the 167 participants (66.9%) initially ordered a brain CT scan. After CCHR presentation, the number of clinicians ordering a CT dropped to 76 (45.8%), representing a 21.1% reduction in CT ordering (P = 0.002). This reduction in CT ordering was maintained, in comparison to initial imaging orders, when presented with malpractice review information (p = 0.002) and patient cost information (p = 0.002). About 57% of clinicians changed their order during study, while 43% never modified their imaging order. This study suggests that ED clinician brain CT imaging decisions may be influenced by clinical decision support rules, patient out-of-pocket cost information and findings from malpractice case review. NCT03449862 , February 27, 2018, Retrospectively registered.
ERIC Educational Resources Information Center
Ardoin, Scott P.; Christ, Theodore J.; Morena, Laura S.; Cormier, Damien C.; Klingbeil, David A.
2013-01-01
Research and policy have established that data are necessary to guide decisions within education. Many of these decisions are made within problem solving and response to intervention frameworks for service delivery. Curriculum-Based Measurement in Reading (CBM-R) is a widely used data collection procedure within those models of service delivery.…
Ethical Decisions in Experience-Based Training and Development Programs.
ERIC Educational Resources Information Center
Gass, Michael A.; Wurdinger, Scott
1993-01-01
Illustrates how principle and virtue ethics can be applied to decision-making processes in experience-based training and development programs. Principle ethics is guided by predetermined rules and assumes that issues being examined are somewhat similar in context, whereas virtue ethics assumes that "correct behavior" is determined from…
Biometric image enhancement using decision rule based image fusion techniques
NASA Astrophysics Data System (ADS)
Sagayee, G. Mary Amirtha; Arumugam, S.
2010-02-01
Introducing biometrics into information systems may result in considerable benefits. Most of the researchers confirmed that the finger print is widely used than the iris or face and more over it is the primary choice for most privacy concerned applications. For finger prints applications, choosing proper sensor is at risk. The proposed work deals about, how the image quality can be improved by introducing image fusion technique at sensor levels. The results of the images after introducing the decision rule based image fusion technique are evaluated and analyzed with its entropy levels and root mean square error.
Leroy, S; Marc, E; Adamsbaum, C; Gendrel, D; Bréart, G; Chalumeau, M
2006-03-01
To test the reproducibility of a highly sensitive clinical decision rule proposed to predict vesicoureteral reflux (VUR) after a first febrile urinary tract infection in children. This rule combines clinical (family history of uropathology, male gender, young age), biological (raised C reactive protein), and radiological (urinary tract dilation on renal ultrasound) predictors in a score, and provides 100% sensitivity. A retrospective hospital based cohort study included all children, 1 month to 4 years old, with a first febrile urinary tract infection. The sensitivities and specificities of the rule at the two previously proposed score thresholds (< or =0 and < or =5) to predict respectively, all-grade or grade > or =3 VUR, were calculated. A total of 149 children were included. VUR prevalence was 25%. The rule yielded 100% sensitivity and 3% specificity for all-grade VUR, and 93% sensitivity and 13% specificity for grade > or =3 VUR. Some methodological weaknesses explain this lack of reproducibility. The reproducibility of the previously proposed decision rule was poor and its potential contribution to clinical management of children with febrile urinary tract infection seems to be modest.
Leroy, S; Marc, E; Adamsbaum, C; Gendrel, D; Bréart, G; Chalumeau, M
2006-01-01
Aims To test the reproducibility of a highly sensitive clinical decision rule proposed to predict vesicoureteral reflux (VUR) after a first febrile urinary tract infection in children. This rule combines clinical (family history of uropathology, male gender, young age), biological (raised C reactive protein), and radiological (urinary tract dilation on renal ultrasound) predictors in a score, and provides 100% sensitivity. Methods A retrospective hospital based cohort study included all children, 1 month to 4 years old, with a first febrile urinary tract infection. The sensitivities and specificities of the rule at the two previously proposed score thresholds (⩽0 and ⩽5) to predict respectively, all‐grade or grade ⩾3 VUR, were calculated. Results A total of 149 children were included. VUR prevalence was 25%. The rule yielded 100% sensitivity and 3% specificity for all‐grade VUR, and 93% sensitivity and 13% specificity for grade ⩾3 VUR. Some methodological weaknesses explain this lack of reproducibility. Conclusions The reproducibility of the previously proposed decision rule was poor and its potential contribution to clinical management of children with febrile urinary tract infection seems to be modest. PMID:15890693
Decision Rules Used in Academic Program Closure: Where the Rubber Meets the Road.
ERIC Educational Resources Information Center
Eckel, Peter D.
2002-01-01
Adopted a decision/action rationality framework to explore the criteria used to close academic programs at four universities. Findings suggested that decisions are based upon criteria other than those usually stated (e.g., cost, quality, and centrality), and that process leads to criteria generation. (EV)
Toward sensor-based context aware systems.
Sakurai, Yoshitaka; Takada, Kouhei; Anisetti, Marco; Bellandi, Valerio; Ceravolo, Paolo; Damiani, Ernesto; Tsuruta, Setsuo
2012-01-01
This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.
The prefabricated building risk decision research of DM technology on the basis of Rough Set
NASA Astrophysics Data System (ADS)
Guo, Z. L.; Zhang, W. B.; Ma, L. H.
2017-08-01
With the resources crises and more serious pollution, the green building has been strongly advocated by most countries and become a new building style in the construction field. Compared with traditional building, the prefabricated building has its own irreplaceable advantages but is influenced by many uncertainties. So far, a majority of scholars have been studying based on qualitative researches from all of the word. This paper profoundly expounds its significance about the prefabricated building. On the premise of the existing research methods, combined with rough set theory, this paper redefines the factors which affect the prefabricated building risk. Moreover, it quantifies risk factors and establish an expert knowledge base through assessing. And then reduced risk factors about the redundant attributes and attribute values, finally form the simplest decision rule. This simplest decision rule, which is based on the DM technology of rough set theory, provides prefabricated building with a controllable new decision-making method.
Decision Rules and Group Rationality: Cognitive Gain or Standstill?
Curşeu, Petru Lucian; Jansen, Rob J. G.; Chappin, Maryse M. H.
2013-01-01
Recent research in group cognition points towards the existence of collective cognitive competencies that transcend individual group members’ cognitive competencies. Since rationality is a key cognitive competence for group decision making, and group cognition emerges from the coordination of individual cognition during social interactions, this study tests the extent to which collaborative and consultative decision rules impact the emergence of group rationality. Using a set of decision tasks adapted from the heuristics and biases literature, we evaluate rationality as the extent to which individual choices are aligned with a normative ideal. We further operationalize group rationality as cognitive synergy (the extent to which collective rationality exceeds average or best individual rationality in the group), and we test the effect of collaborative and consultative decision rules in a sample of 176 groups. Our results show that the collaborative decision rule has superior synergic effects as compared to the consultative decision rule. The ninety one groups working in a collaborative fashion made more rational choices (above and beyond the average rationality of their members) than the eighty five groups working in a consultative fashion. Moreover, the groups using a collaborative decision rule were closer to the rationality of their best member than groups using consultative decision rules. Nevertheless, on average groups did not outperformed their best member. Therefore, our results reveal how decision rules prescribing interpersonal interactions impact on the emergence of collective cognitive competencies. They also open potential venues for further research on the emergence of collective rationality in human decision-making groups. PMID:23451050
Decision rules and group rationality: cognitive gain or standstill?
Curşeu, Petru Lucian; Jansen, Rob J G; Chappin, Maryse M H
2013-01-01
Recent research in group cognition points towards the existence of collective cognitive competencies that transcend individual group members' cognitive competencies. Since rationality is a key cognitive competence for group decision making, and group cognition emerges from the coordination of individual cognition during social interactions, this study tests the extent to which collaborative and consultative decision rules impact the emergence of group rationality. Using a set of decision tasks adapted from the heuristics and biases literature, we evaluate rationality as the extent to which individual choices are aligned with a normative ideal. We further operationalize group rationality as cognitive synergy (the extent to which collective rationality exceeds average or best individual rationality in the group), and we test the effect of collaborative and consultative decision rules in a sample of 176 groups. Our results show that the collaborative decision rule has superior synergic effects as compared to the consultative decision rule. The ninety one groups working in a collaborative fashion made more rational choices (above and beyond the average rationality of their members) than the eighty five groups working in a consultative fashion. Moreover, the groups using a collaborative decision rule were closer to the rationality of their best member than groups using consultative decision rules. Nevertheless, on average groups did not outperformed their best member. Therefore, our results reveal how decision rules prescribing interpersonal interactions impact on the emergence of collective cognitive competencies. They also open potential venues for further research on the emergence of collective rationality in human decision-making groups.
A programmable rules engine to provide clinical decision support using HTML forms.
Heusinkveld, J.; Geissbuhler, A.; Sheshelidze, D.; Miller, R.
1999-01-01
The authors have developed a simple method for specifying rules to be applied to information on HTML forms. This approach allows clinical experts, who lack the programming expertise needed to write CGI scripts, to construct and maintain domain-specific knowledge and ordering capabilities within WizOrder, the order-entry and decision support system used at Vanderbilt Hospital. The clinical knowledge base maintainers use HTML editors to create forms and spreadsheet programs for rule entry. A test environment has been developed which uses Netscape to display forms; the production environment displays forms using an embedded browser. Images Figure 1 PMID:10566470
Induction of belief decision trees from data
NASA Astrophysics Data System (ADS)
AbuDahab, Khalil; Xu, Dong-ling; Keane, John
2012-09-01
In this paper, a method for acquiring belief rule-bases by inductive inference from data is described and evaluated. Existing methods extract traditional rules inductively from data, with consequents that are believed to be either 100% true or 100% false. Belief rules can capture uncertain or incomplete knowledge using uncertain belief degrees in consequents. Instead of using singled-value consequents, each belief rule deals with a set of collectively exhaustive and mutually exclusive consequents. The proposed method extracts belief rules from data which contain uncertain or incomplete knowledge.
46 CFR 201.3 - Authentication of rules, orders, determinations and decisions of the Administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Authentication of rules, orders, determinations and decisions of the Administration. 201.3 Section 201.3 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF....3 Authentication of rules, orders, determinations and decisions of the Administration. All rules...
Collaborative Brain-Computer Interface for Aiding Decision-Making
Poli, Riccardo; Valeriani, Davide; Cinel, Caterina
2014-01-01
We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739
Flu Diagnosis System Using Jaccard Index and Rough Set Approaches
NASA Astrophysics Data System (ADS)
Efendi, Riswan; Azah Samsudin, Noor; Mat Deris, Mustafa; Guan Ting, Yip
2018-04-01
Jaccard index and rough set approaches have been frequently implemented in decision support systems with various domain applications. Both approaches are appropriate to be considered for categorical data analysis. This paper presents the applications of sets operations for flu diagnosis systems based on two different approaches, such as, Jaccard index and rough set. These two different approaches are established using set operations concept, namely intersection and subset. The step-by-step procedure is demonstrated from each approach in diagnosing flu system. The similarity and dissimilarity indexes between conditional symptoms and decision are measured using Jaccard approach. Additionally, the rough set is used to build decision support rules. Moreover, the decision support rules are established using redundant data analysis and elimination of unclassified elements. A number data sets is considered to attempt the step-by-step procedure from each approach. The result has shown that rough set can be used to support Jaccard approaches in establishing decision support rules. Additionally, Jaccard index is better approach for investigating the worst condition of patients. While, the definitely and possibly patients with or without flu can be determined using rough set approach. The rules may improve the performance of medical diagnosis systems. Therefore, inexperienced doctors and patients are easier in preliminary flu diagnosis.
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C. A.; Zielstorff, R. D.; Fox, R. L.; O'Connell, E. M.; Carroll, D. L.; Conley, K. A.; Fitzgerald, P.; Eng, T. K.; Martin, A.; Zidik, C. M.; Segal, M.
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring. PMID:11079970
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C A; Zielstorff, R D; Fox, R L; O'Connell, E M; Carroll, D L; Conley, K A; Fitzgerald, P; Eng, T K; Martin, A; Zidik, C M; Segal, M
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring.
18 CFR 385.602 - Submission of settlement offers (Rule 602).
Code of Federal Regulations, 2010 CFR
2010-04-01
... settlement issues, if the record contains substantial evidence upon which to base a reasoned decision or the... reasonably be based; or (B) Take other action which the Commission determines to be appropriate. (iii) If... contains substantial evidence from which the Commission may reach a reasoned decision on the merits of the...
Ontology based decision system for breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra
2018-04-01
In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.
Extraction of decision rules via imprecise probabilities
NASA Astrophysics Data System (ADS)
Abellán, Joaquín; López, Griselda; Garach, Laura; Castellano, Javier G.
2017-05-01
Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.
Learning stage-dependent effect of M1 disruption on value-based motor decisions.
Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie
2017-11-15
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.
Computational mate choice: theory and empirical evidence.
Castellano, Sergio; Cadeddu, Giorgia; Cermelli, Paolo
2012-06-01
The present review is based on the thesis that mate choice results from information-processing mechanisms governed by computational rules and that, to understand how females choose their mates, we should identify which are the sources of information and how they are used to make decisions. We describe mate choice as a three-step computational process and for each step we present theories and review empirical evidence. The first step is a perceptual process. It describes the acquisition of evidence, that is, how females use multiple cues and signals to assign an attractiveness value to prospective mates (the preference function hypothesis). The second step is a decisional process. It describes the construction of the decision variable (DV), which integrates evidence (private information by direct assessment), priors (public information), and value (perceived utility) of prospective mates into a quantity that is used by a decision rule (DR) to produce a choice. We make the assumption that females are optimal Bayesian decision makers and we derive a formal model of DV that can explain the effects of preference functions, mate copying, social context, and females' state and condition on the patterns of mate choice. The third step of mating decision is a deliberative process that depends on the DRs. We identify two main categories of DRs (absolute and comparative rules), and review the normative models of mate sampling tactics associated to them. We highlight the limits of the normative approach and present a class of computational models (sequential-sampling models) that are based on the assumption that DVs accumulate noisy evidence over time until a decision threshold is reached. These models force us to rethink the dichotomy between comparative and absolute decision rules, between discrimination and recognition, and even between rational and irrational choice. Since they have a robust biological basis, we think they may represent a useful theoretical tool for behavioural ecologist interested in integrating proximate and ultimate causes of mate choice. Copyright © 2012 Elsevier B.V. All rights reserved.
Sideline coverage: when to get radiographs? A review of clinical decision tools.
Gould, Sara J; Cardone, Dennis A; Munyak, John; Underwood, Philipp J; Gould, Stephen A
2014-05-01
Sidelines coverage presents unique challenges in the evaluation of injured athletes. Health care providers may be confronted with the question of when to obtain radiographs following an injury. Given that most sidelines coverage occurs outside the elite level, radiographs are not readily available at the time of injury, and the decision of when to send a player for radiographs must be made based on physical examination. Clinical tools have been developed to aid in identifying injuries that are likely to result in radiographically important fractures or dislocations. A search for the keywords x-ray and decision rule along with the anatomic locations shoulder, elbow, wrist, knee, and ankle was performed using the PubMed database. No limits were set regarding year of publication. We selected meta-analyses, randomized controlled trials, and survey results. Our selection focused on the largest, most well-studied published reports. We also attempted to include studies that reported the application of the rules to the field of sports medicine. Retrospective literature review. Level 4. The Ottawa Foot and Ankle Rules have been validated and implemented and are appropriate for use in both pediatric and adult populations. The Ottawa Knee Rules have been widely studied, validated, and accepted for evaluation of knee injuries. There are promising studies of decision rules for clinically important fractures of the wrist, but these studies have not been validated. The elbow has been evaluated with good outcomes via the elbow extension test, which has been validated in both single and multicenter studies. Currently, there are no reliable clinical decision tools for traumatic sports injuries to the shoulder to aid in the decision of when to obtain radiographs. Clinical decision tools have been developed to aid in the diagnosis and management of injuries commonly sustained during sporting events. Tools that have been appropriately validated in populations outside the initial study population can assist sports medicine physicians in the decision of when to get radiographs from the sidelines.
Regan, Tracey J; Taylor, Barbara L; Thompson, Grant G; Cochrane, Jean Fitts; Ralls, Katherine; Runge, Michael C; Merrick, Richard
2013-08-01
Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case-by-case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by increasing transparency and consistency. Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
ERIC Educational Resources Information Center
Kunisch, Joseph Martin
2012-01-01
Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…
A Model for Evidence Accumulation in the Lexical Decision Task
ERIC Educational Resources Information Center
Wagenmakers, Eric-Jan; Steyvers, Mark; Raaijmakers, Jeroen G. W.; Shiffrin, Richard M.; van Rijn, Hedderik; Zeelenberg, Rene
2004-01-01
We present a new model for lexical decision, REM-LD, that is based on REM theory (e.g., Shiffrin & Steyvers, 1997). REM-LD uses a principled (i.e., Bayes' rule) decision process that simultaneously considers the diagnosticity of the evidence for the 'WORD' response and the 'NONWORD' response. The model calculates the odds ratio that the presented…
42 CFR 405.1046 - Notice of an ALJ decision.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Reconsiderations, and Appeals Under Original Medicare (Part A and Part B) Alj Hearings § 405.1046 Notice of an ALJ decision. (a) General rule. Unless the ALJ dismisses the hearing, the ALJ will issue a written decision... must be based on evidence offered at the hearing or otherwise admitted into the record. The ALJ mails a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-20
... determination or decision. The type and number of CEs we purchase will depend on the claimant's allegations and... decisions relating to the Federal old-age, survivors, disability, supplemental security income, special veterans benefits, and black lung benefits programs. SSRs may be based on determinations or decisions made...
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2013-04-01
Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total water stored in the reservoirs) and the month of the year as inputs; and the demand deliveries as outputs. The developed simulation management model integrates the fuzzy-ruled system of the operation of the two main reservoirs of the basin with the corresponding mass balance equations, the physical or boundary conditions and the water allocation rules among the competing demands. Historical information on inflow time series is used as inputs to the model simulation, being trained and validated using historical information on reservoir storage level and flow in several streams of the Mijares river. This methodology provides a more flexible and close to real policies approach. The model is easy to develop and to understand due to its rule-based structure, which mimics the human way of thinking. This can improve cooperation and negotiation between managers, decision-makers and stakeholders. The approach can be also applied to analyze the historical operation of the reservoir (what we have called a reservoir operation "audit").
Assessing Financial Education Methods: Principles vs. Rules-of-Thumb Approaches
ERIC Educational Resources Information Center
Skimmyhorn, William L.; Davies, Evan R.; Mun, David; Mitchell, Brian
2016-01-01
Despite thousands of programs and tremendous public and private interest in improving financial decision-making, little is known about how best to teach financial education. Using an experimental approach, the authors estimated the effects of two different education methodologies (principles-based and rules-of-thumb) on the knowledge,…
The optimum decision rules for the oddity task.
Versfeld, N J; Dai, H; Green, D M
1996-01-01
This paper presents the optimum decision rule for an m-interval oddity task in which m-1 intervals contain the same signal and one is different or odd. The optimum decision rule depends on the degree of correlation among observations. The present approach unifies the different strategies that occur with "roved" or "fixed" experiments (Macmillan & Creelman, 1991, p. 147). It is shown that the commonly used decision rule for an m-interval oddity task corresponds to the special case of highly correlated observations. However, as is also true for the same-different paradigm, there exists a different optimum decision rule when the observations are independent. The relation between the probability of a correct response and d' is derived for the three-interval oddity task. Tables are presented of this relation for the three-, four-, and five-interval oddity task. Finally, an experimental method is proposed that allows one to determine the decision rule used by the observer in an oddity experiment.
Virtue vs utility: Alternative foundations for computer ethics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artz, J.M.
1994-12-31
Ethical decisions within the field of computers and information systems are made at two levels by two distinctly different groups of people. At the level of general principles, ethical issues are debated by academics and industry representatives in an attempt to decide what is proper behavior on issues such as hacking, privacy, and copying software. At another level, that of particular situations, individuals make ethical decisions regarding what is good and proper for them in their particular situation. They may use the general rules provided by the experts or they may decide that these rules do not apply in theirmore » particular situation. Currently, the literature on computer ethics provides some opinions regarding the general rules, and some guidance for developing further general rules. What is missing is guidance for individuals making ethical decisions in particular situations. For the past two hundred years, ethics has been dominated by conduct based ethical theories such as utilitarianism which attempt to describe how people must be behave in order to be moral individuals. Recently, weaknesses in conduct based approaches such as utilitarianism have led moral philosophers to reexamine character based ethical theories such as virtue ethics which dates back to the Greek philosophers Plato and Aristotle. This paper will compare utilitarianism and virtue ethics with respect to the foundations they provide for computer ethics. It will be argued that the very nature of computer ethics and the need to provide guidance to individuals making particular moral decisions points to the ethics of virtue as a superior philosophical foundation for computer ethics. The paper will conclude with the implications of this position for researchers, teachers and writers within the field of computer ethics.« less
Marc-André Parisien; Dave R. Junor; Victor G. Kafka
2006-01-01
This study used a rule-based approach to prioritize locations of fuel treatments in the boreal mixedwood forest of western Canada. The burn probability (BP) in and around Prince Albert National Park in Saskatchewan was mapped using the Burn-P3 (Probability, Prediction, and Planning) model. Fuel treatment locations were determined according to three scenarios and five...
Rosi, Alessia; Bruine de Bruin, Wändi; Del Missier, Fabio; Cavallini, Elena; Russo, Riccardo
2017-12-28
Older adults perform worse than younger adults when applying decision rules to choose between options that vary along multiple attributes. Although previous studies have shown that general fluid cognitive abilities contribute to the accurate application of decision rules, relatively little is known about which specific cognitive abilities play the most important role. We examined the independent roles of working memory, verbal fluency, semantic knowledge, and components of executive functioning. We found that age-related decline in applying decision rules was statistically mediated by age-related decline in working memory and verbal fluency. Our results have implications for theories of aging and decision-making.
Rule-based optimization and multicriteria decision support for packaging a truck chassis
NASA Astrophysics Data System (ADS)
Berger, Martin; Lindroth, Peter; Welke, Richard
2017-06-01
Trucks are highly individualized products where exchangeable parts are flexibly combined to suit different customer requirements, this leading to a great complexity in product development. Therefore, an optimization approach based on constraint programming is proposed for automatically packaging parts of a truck chassis by following packaging rules expressed as constraints. A multicriteria decision support system is developed where a database of truck layouts is computed, among which interactive navigation then can be performed. The work has been performed in cooperation with Volvo Group Trucks Technology (GTT), from which specific rules have been used. Several scenarios are described where the methods developed can be successfully applied and lead to less time-consuming manual work, fewer mistakes, and greater flexibility in configuring trucks. A numerical evaluation is also presented showing the efficiency and practical relevance of the methods, which are implemented in a software tool.
A rule-based system for real-time analysis of control systems
NASA Astrophysics Data System (ADS)
Larson, Richard R.; Millard, D. Edward
1992-10-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
Model-Based Anomaly Detection for a Transparent Optical Transmission System
NASA Astrophysics Data System (ADS)
Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.
In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
A rule-based system for real-time analysis of control systems
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Millard, D. Edward
1992-01-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin
2004-01-01
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
A Cognitive Architecture for Human Performance Process Model Research
1992-11-01
individually defined, updatable world representation which is a description of the world as the operator knows it. It contains rules for decisions, an...operate it), and rules of engagement (knowledge about the operator’s expected behavior). The HPP model works in the following way. Information enters...based models depict the problem-solving processes of experts. The experts’ knowledge is represented in symbol structures, along with rules for
Verification and Validation of KBS with Neural Network Components
NASA Technical Reports Server (NTRS)
Wen, Wu; Callahan, John
1996-01-01
Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.
Ma, Wei Ji; Shen, Shan; Dziugaite, Gintare; van den Berg, Ronald
2015-01-01
In tasks such as visual search and change detection, a key question is how observers integrate noisy measurements from multiple locations to make a decision. Decision rules proposed to model this process haven fallen into two categories: Bayes-optimal (ideal observer) rules and ad-hoc rules. Among the latter, the maximum-of-outputs (max) rule has been most prominent. Reviewing recent work and performing new model comparisons across a range of paradigms, we find that in all cases except for one, the optimal rule describes human data as well as or better than every max rule either previously proposed or newly introduced here. This casts doubt on the utility of the max rule for understanding perceptual decision-making. PMID:25584425
Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei
2016-01-01
Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2016-04-01
This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to foresee future inflows depending on present and past hydrological and meteorological variables actually used by the reservoir managers to define likely inflow scenarios. A Decision Support System (DSS) was created coupling the FRB systems and the inflow prediction scheme in order to give the user a set of possible optimal releases in response to the reservoir states at the beginning of the irrigation season and the fuzzy inflow projections made using hydrological and meteorological information. The results show that the optimal DSS created using the FRB operating policies are able to increase the amount of water allocated to the users in 20 to 50 Mm3 per irrigation season with respect to the current policies. Consequently, the mechanism used to define optimal operating rules and transform them into a DSS is able to increase the water deliveries in the Jucar River Basin, combining expert criteria and optimization algorithms in an efficient way. This study has been partially supported by the IMPADAPT project (CGL2013-48424-C2-1-R) with Spanish MINECO (Ministerio de Economía y Competitividad) and FEDER funds. It also has received funding from the European Union's Horizon 2020 research and innovation programme under the IMPREX project (grant agreement no: 641.811).
Schaafsma, Murk; van der Deijl, Wilfred; Smits, Jacqueline M; Rahmel, Axel O; de Vries Robbé, Pieter F; Hoitsma, Andries J
2011-05-01
Organ allocation systems have become complex and difficult to comprehend. We introduced decision tables to specify the rules of allocation systems for different organs. A rule engine with decision tables as input was tested for the Kidney Allocation System (ETKAS). We compared this rule engine with the currently used ETKAS by running 11,000 historical match runs and by running the rule engine in parallel with the ETKAS on our allocation system. Decision tables were easy to implement and successful in verifying correctness, completeness, and consistency. The outcomes of the 11,000 historical matches in the rule engine and the ETKAS were exactly the same. Running the rule engine simultaneously in parallel and in real time with the ETKAS also produced no differences. Specifying organ allocation rules in decision tables is already a great step forward in enhancing the clarity of the systems. Yet, using these tables as rule engine input for matches optimizes the flexibility, simplicity and clarity of the whole process, from specification to the performed matches, and in addition this new method allows well controlled simulations. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.
NASA Astrophysics Data System (ADS)
Ye, Wei; Song, Wei
2018-02-01
In The Paper, the remote sensing monitoring of sea ice problem was turned into a classification problem in data mining. Based on the statistic of the related band data of HJ1B remote sensing images, the main bands of HJ1B images related with the reflectance of seawater and sea ice were found. On the basis, the decision tree rules for sea ice monitoring were constructed by the related bands found above, and then the rules were applied to Liaodong Bay area seriously covered by sea ice for sea ice monitoring. The result proved that the method is effective.
Decentralisation of Health Services in Fiji: A Decision Space Analysis.
Mohammed, Jalal; North, Nicola; Ashton, Toni
2015-11-15
Decentralisation aims to bring services closer to the community and has been advocated in the health sector to improve quality, access and equity, and to empower local agencies, increase innovation and efficiency and bring healthcare and decision-making as close as possible to where people live and work. Fiji has attempted two approaches to decentralisation. The current approach reflects a model of deconcentration of outpatient services from the tertiary level hospital to the peripheral health centres in the Suva subdivision. Using a modified decision space approach developed by Bossert, this study measures decision space created in five broad categories (finance, service organisation, human resources, access rules, and governance rules) within the decentralised services. Fiji's centrally managed historical-based allocation of financial resources and management of human resources resulted in no decision space for decentralised agents. Narrow decision space was created in the service organisation category where, with limited decision space created over access rules, Fiji has seen greater usage of its decentralised health centres. There remains limited decision space in governance. The current wave of decentralisation reveals that, whilst the workload has shifted from the tertiary hospital to the peripheral health centres, it has been accompanied by limited transfer of administrative authority, suggesting that Fiji's deconcentration reflects the transfer of workload only with decision-making in the five functional areas remaining largely centralised. As such, the benefits of decentralisation for users and providers are likely to be limited. © 2016 by Kerman University of Medical Sciences.
Rurkhamet, Busagarin; Nanthavanij, Suebsak
2004-12-01
One important factor that leads to the development of musculoskeletal disorders (MSD) and cumulative trauma disorders (CTD) among visual display terminal (VDT) users is their work posture. While operating a VDT, a user's body posture is strongly influenced by the task, VDT workstation settings, and layout of computer accessories. This paper presents an analytic and rule-based decision support tool called EQ-DeX (an ergonomics and quantitative design expert system) that is developed to provide valid and practical recommendations regarding the adjustment of a VDT workstation and the arrangement of computer accessories. The paper explains the structure and components of EQ-DeX, input data, rules, and adjustment and arrangement algorithms. From input information such as gender, age, body height, task, etc., EQ-DeX uses analytic and rule-based algorithms to estimate quantitative settings of a computer table and a chair, as well as locations of computer accessories such as monitor, document holder, keyboard, and mouse. With the input and output screens that are designed using the concept of usability, the interactions between the user and EQ-DeX are convenient. Examples are also presented to demonstrate the recommendations generated by EQ-DeX.
38 CFR 20.1303 - Rule 1303. Nonprecedential nature of Board decisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Rule 1303. Nonprecedential nature of Board decisions. 20.1303 Section 20.1303 Pensions, Bonuses, and Veterans' Relief....1303 Rule 1303. Nonprecedential nature of Board decisions. Although the Board strives for consistency...
38 CFR 20.1303 - Rule 1303. Nonprecedential nature of Board decisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Rule 1303. Nonprecedential nature of Board decisions. 20.1303 Section 20.1303 Pensions, Bonuses, and Veterans' Relief....1303 Rule 1303. Nonprecedential nature of Board decisions. Although the Board strives for consistency...
38 CFR 20.1303 - Rule 1303. Nonprecedential nature of Board decisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Rule 1303. Nonprecedential nature of Board decisions. 20.1303 Section 20.1303 Pensions, Bonuses, and Veterans' Relief....1303 Rule 1303. Nonprecedential nature of Board decisions. Although the Board strives for consistency...
38 CFR 20.1303 - Rule 1303. Nonprecedential nature of Board decisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Rule 1303. Nonprecedential nature of Board decisions. 20.1303 Section 20.1303 Pensions, Bonuses, and Veterans' Relief....1303 Rule 1303. Nonprecedential nature of Board decisions. Although the Board strives for consistency...
38 CFR 20.1303 - Rule 1303. Nonprecedential nature of Board decisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Rule 1303. Nonprecedential nature of Board decisions. 20.1303 Section 20.1303 Pensions, Bonuses, and Veterans' Relief....1303 Rule 1303. Nonprecedential nature of Board decisions. Although the Board strives for consistency...
19 CFR 177.10 - Publication of decisions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Publication of decisions. 177.10 Section 177.10... TREASURY (CONTINUED) ADMINISTRATIVE RULINGS General Ruling Procedure § 177.10 Publication of decisions. (a....8(a)(3). (b) [Reserved] (c) Changes of practice. Before the publication of a ruling which has the...
Gould, Sara J.; Cardone, Dennis A.; Munyak, John; Underwood, Philipp J.; Gould, Stephen A.
2014-01-01
Context: Sidelines coverage presents unique challenges in the evaluation of injured athletes. Health care providers may be confronted with the question of when to obtain radiographs following an injury. Given that most sidelines coverage occurs outside the elite level, radiographs are not readily available at the time of injury, and the decision of when to send a player for radiographs must be made based on physical examination. Clinical tools have been developed to aid in identifying injuries that are likely to result in radiographically important fractures or dislocations. Evidence Acquisition: A search for the keywords x-ray and decision rule along with the anatomic locations shoulder, elbow, wrist, knee, and ankle was performed using the PubMed database. No limits were set regarding year of publication. We selected meta-analyses, randomized controlled trials, and survey results. Our selection focused on the largest, most well-studied published reports. We also attempted to include studies that reported the application of the rules to the field of sports medicine. Study Design: Retrospective literature review. Level of Evidence: Level 4. Results: The Ottawa Foot and Ankle Rules have been validated and implemented and are appropriate for use in both pediatric and adult populations. The Ottawa Knee Rules have been widely studied, validated, and accepted for evaluation of knee injuries. There are promising studies of decision rules for clinically important fractures of the wrist, but these studies have not been validated. The elbow has been evaluated with good outcomes via the elbow extension test, which has been validated in both single and multicenter studies. Currently, there are no reliable clinical decision tools for traumatic sports injuries to the shoulder to aid in the decision of when to obtain radiographs. Conclusion: Clinical decision tools have been developed to aid in the diagnosis and management of injuries commonly sustained during sporting events. Tools that have been appropriately validated in populations outside the initial study population can assist sports medicine physicians in the decision of when to get radiographs from the sidelines. PMID:24790698
RANWAR: rank-based weighted association rule mining from gene expression and methylation data.
Mallik, Saurav; Mukhopadhyay, Anirban; Maulik, Ujjwal
2015-01-01
Ranking of association rules is currently an interesting topic in data mining and bioinformatics. The huge number of evolved rules of items (or, genes) by association rule mining (ARM) algorithms makes confusion to the decision maker. In this article, we propose a weighted rule-mining technique (say, RANWAR or rank-based weighted association rule-mining) to rank the rules using two novel rule-interestingness measures, viz., rank-based weighted condensed support (wcs) and weighted condensed confidence (wcc) measures to bypass the problem. These measures are basically depended on the rank of items (genes). Using the rank, we assign weight to each item. RANWAR generates much less number of frequent itemsets than the state-of-the-art association rule mining algorithms. Thus, it saves time of execution of the algorithm. We run RANWAR on gene expression and methylation datasets. The genes of the top rules are biologically validated by Gene Ontologies (GOs) and KEGG pathway analyses. Many top ranked rules extracted from RANWAR that hold poor ranks in traditional Apriori, are highly biologically significant to the related diseases. Finally, the top rules evolved from RANWAR, that are not in Apriori, are reported.
Babl, Franz E; Lyttle, Mark D; Bressan, Silvia; Borland, Meredith; Phillips, Natalie; Kochar, Amit; Dalziel, Stuart R; Dalton, Sarah; Cheek, John A; Furyk, Jeremy; Gilhotra, Yuri; Neutze, Jocelyn; Ward, Brenton; Donath, Susan; Jachno, Kim; Crowe, Louise; Williams, Amanda; Oakley, Ed
2014-06-13
Head injuries in children are responsible for a large number of emergency department visits. Failure to identify a clinically significant intracranial injury in a timely fashion may result in long term neurodisability and death. Whilst cranial computed tomography (CT) provides rapid and definitive identification of intracranial injuries, it is resource intensive and associated with radiation induced cancer. Evidence based head injury clinical decision rules have been derived to aid physicians in identifying patients at risk of having a clinically significant intracranial injury. Three rules have been identified as being of high quality and accuracy: the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) from Canada, the Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) from the UK, and the prediction rule for the identification of children at very low risk of clinically important traumatic brain injury developed by the Pediatric Emergency Care Applied Research Network (PECARN) from the USA. This study aims to prospectively validate and compare the performance accuracy of these three clinical decision rules when applied outside the derivation setting. This study is a prospective observational study of children aged 0 to less than 18 years presenting to 10 emergency departments within the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network in Australia and New Zealand after head injuries of any severity. Predictor variables identified in CATCH, CHALICE and PECARN clinical decision rules will be collected. Patients will be managed as per the treating clinicians at the participating hospitals. All patients not undergoing cranial CT will receive a follow up call 14 to 90 days after the injury. Outcome data collected will include results of cranial CTs (if performed) and details of admission, intubation, neurosurgery and death. The performance accuracy of each of the rules will be assessed using rule specific outcomes and inclusion and exclusion criteria. This study will allow the simultaneous comparative application and validation of three major paediatric head injury clinical decision rules outside their derivation setting. The study is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR)- ACTRN12614000463673 (registered 2 May 2014).
Sáez, Carlos; Bresó, Adrián; Vicente, Javier; Robles, Montserrat; García-Gómez, Juan Miguel
2013-03-01
The success of Clinical Decision Support Systems (CDSS) greatly depends on its capability of being integrated in Health Information Systems (HIS). Several proposals have been published up to date to permit CDSS gathering patient data from HIS. Some base the CDSS data input on the HL7 reference model, however, they are tailored to specific CDSS or clinical guidelines technologies, or do not focus on standardizing the CDSS resultant knowledge. We propose a solution for facilitating semantic interoperability to rule-based CDSS focusing on standardized input and output documents conforming an HL7-CDA wrapper. We define the HL7-CDA restrictions in a HL7-CDA implementation guide. Patient data and rule inference results are mapped respectively to and from the CDSS by means of a binding method based on an XML binding file. As an independent clinical document, the results of a CDSS can present clinical and legal validity. The proposed solution is being applied in a CDSS for providing patient-specific recommendations for the care management of outpatients with diabetes mellitus. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...-Adviser has designed the following quantitative stock selection rules to make allocation decisions and to..., the Sub-Adviser's investment process is quantitative. Based on extensive historical research, the Sub... open-end fund's portfolio composition must be subject to procedures designed to prevent the use and...
Newsvendor problem under complete uncertainty: a case of innovative products.
Gaspars-Wieloch, Helena
2017-01-01
The paper presents a new scenario-based decision rule for the classical version of the newsvendor problem (NP) under complete uncertainty (i.e. uncertainty with unknown probabilities). So far, NP has been analyzed under uncertainty with known probabilities or under uncertainty with partial information (probabilities known incompletely). The novel approach is designed for the sale of new, innovative products, where it is quite complicated to define probabilities or even probability-like quantities, because there are no data available for forecasting the upcoming demand via statistical analysis. The new procedure described in the contribution is based on a hybrid of Hurwicz and Bayes decision rules. It takes into account the decision maker's attitude towards risk (measured by coefficients of optimism and pessimism) and the dispersion (asymmetry, range, frequency of extremes values) of payoffs connected with particular order quantities. It does not require any information about the probability distribution.
Linearly Adjustable International Portfolios
NASA Astrophysics Data System (ADS)
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Ma, Wei Ji; Shen, Shan; Dziugaite, Gintare; van den Berg, Ronald
2015-11-01
In tasks such as visual search and change detection, a key question is how observers integrate noisy measurements from multiple locations to make a decision. Decision rules proposed to model this process have fallen into two categories: Bayes-optimal (ideal observer) rules and ad-hoc rules. Among the latter, the maximum-of-outputs (max) rule has been the most prominent. Reviewing recent work and performing new model comparisons across a range of paradigms, we find that in all cases except for one, the optimal rule describes human data as well as or better than every max rule either previously proposed or newly introduced here. This casts doubt on the utility of the max rule for understanding perceptual decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive decision rules for the acquisition of nature reserves.
Turner, Will R; Wilcove, David S
2006-04-01
Although reserve-design algorithms have shown promise for increasing the efficiency of conservation planning, recent work casts doubt on the usefulness of some of these approaches in practice. Using three data sets that vary widely in size and complexity, we compared various decision rules for acquiring reserve networks over multiyear periods. We explored three factors that are often important in real-world conservation efforts: uncertain availability of sites for acquisition, degradation of sites, and overall budget constraints. We evaluated the relative strengths and weaknesses of existing optimal and heuristic decision rules and developed a new set of adaptive decision rules that combine the strengths of existing optimal and heuristic approaches. All three of the new adaptive rules performed better than the existing rules we tested under virtually all scenarios of site availability, site degradation, and budget constraints. Moreover, the adaptive rules required no additional data beyond what was readily available and were relatively easy to compute.
SAMS--a systems architecture for developing intelligent health information systems.
Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa
2013-12-01
In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.
NASA Astrophysics Data System (ADS)
Park, J.; Yoo, K.
2013-12-01
For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.
TOXPERT: An Expert System for Risk Assessment
Soto, R. J.; Osimitz, T. G.; Oleson, A.
1988-01-01
TOXPERT is an artificial intelligence based system used to model product safety, toxicology (TOX) and regulatory (REG) decision processes. An expert system shell uses backward chaining rule control to link “marketing approval” goals to the type of product, REG agency, exposure conditions and TOX. Marketing risks are primarily a function of the TOX, hazards and exposure potential. The method employed differentiates between REG requirements in goal seeking control for various types of products. This is accomplished by controlling rule execution by defining frames for each REG agency. In addition, TOXPERT produces classifications of TOX ratings and suggested product labeling. This production rule system uses principles of TOX, REGs, corporate guidelines and internal “rules of thumb.” TOXPERT acts as an advisor for this narrow domain. Advantages are that it can make routine decisions freeing professional's time for more complex problem solving, provide backup and training.
Newgard, C D; Hedges, J R; Stone, J V; Lenfesty, B; Diggs, B; Arthur, M; Mullins, R J
2005-12-01
To derive a clinical decision rule for people with traumatic brain injury (TBI) that enables early identification of patients requiring specialised trauma care. We collected data from 1999 through 2003 on a retrospective cohort of consecutive people aged 18-65 years with a serious head injury (AIS > or =3), transported directly from the scene of injury, and evaluated in the ED. Information on 22 demographical, physiological, radiographic, and lab variables was collected. Resource based "high therapeutic intensity" measures occurring within 72 hours of ED arrival (the outcome measure) were identified a priori and included: neurosurgical intervention, exploratory laparotomy, intensive care interventions, or death. We used classification and regression tree analysis to derive and cross validate the decision rule. 504 consecutive trauma patients were identified as having a serious head injury: 246 (49%) required at least one of the HTI measures. Five ED variables (GCS, respiratory rate, age, temperature, and pulse rate) identified subjects requiring at least one of the HTI measures with 94% sensitivity (95% CI 91 to 97%) and 63% specificity (95% CI 57 to 69%) in the derivation sample, and 90% sensitivity and 55% specificity using cross validation. This decision rule identified among a cohort of head injured patients evaluated in the ED the majority of those who urgently required specialised trauma care. The rule will require prospective validation in injured people presenting to non-tertiary care hospitals before implementation can be recommended.
Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences.
Latty, Tanya; Beekman, Madeleine
2011-01-22
Most models of animal foraging and consumer choice assume that individuals make choices based on the absolute value of items and are therefore 'economically rational'. However, frequent violations of rationality by animals, including humans, suggest that animals use comparative valuation rules. Are comparative valuation strategies a consequence of the way brains process information, or are they an intrinsic feature of biological decision-making? Here, we examine the principles of rationality in an organism with radically different information-processing mechanisms: the brainless, unicellular, slime mould Physarum polycephalum. We offered P. polycephalum amoebas a choice between food options that varied in food quality and light exposure (P. polycephalum is photophobic). The use of an absolute valuation rule will lead to two properties: transitivity and independence of irrelevant alternatives (IIA). Transitivity is satisfied if preferences have a consistent, linear ordering, while IIA states that a decision maker's preference for an item should not change if the choice set is expanded. A violation of either of these principles suggests the use of comparative rather than absolute valuation rules. Physarum polycephalum satisfied transitivity by having linear preference rankings. However, P. polycephalum's preference for a focal alternative increased when a third, inferior quality option was added to the choice set, thus violating IIA and suggesting the use of a comparative valuation process. The discovery of comparative valuation rules in a unicellular organism suggests that comparative valuation rules are ubiquitous, if not universal, among biological decision makers.
DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia
2016-01-01
Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846
Rural performance based planning guidebook.
DOT National Transportation Integrated Search
2017-02-01
Performance-based transportation planning has existed for many years. Recently, it is becoming : more accepted and practiced as a result of federal rules. It is fast becoming the cornerstone for : transportation decision making throughout the country...
Salzmann-Erikson, Martin
2017-11-01
Ward rules in psychiatric care aim to promote safety for both patients and staff. Simultaneously, ward rules are associated with increased patient violence, leading to neither a safe work environment nor a safe caring environment. Although ward rules are routinely used, few studies have explicitly accounted for their impact. To describe the process of a team development project considering ward rule issues, and to develop a working model to empower staff in their daily in-patient psychiatric nursing practices. The design of this study is explorative and descriptive. Participatory action research methodology was applied to understand ward rules. Data consists of audio-recorded group discussions, observations and field notes, together creating a data set of 556 text pages. More than 100 specific ward rules were identified. In this process, the word rules was relinquished in favor of adopting the term principles, since rules are inconsistent with a caring ideology. A linguistic transition led to the development of a framework embracing the (1) Principle of Safety, (2) Principle of Structure and (3) Principle of Interplay. The principles were linked to normative guidelines and applied ethical theories: deontology, consequentialism and ethics of care. The work model reminded staff about the principles, empowered their professional decision-making, decreased collegial conflicts because of increased acceptance for individual decisions, and, in general, improved well-being at work. Furthermore, the work model also empowered staff to find support for their decisions based on principles that are grounded in the ethics of totality.
Elements of decisional dynamics: An agent-based approach applied to artificial financial market
NASA Astrophysics Data System (ADS)
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Elements of decisional dynamics: An agent-based approach applied to artificial financial market.
Lucas, Iris; Cotsaftis, Michel; Bertelle, Cyrille
2018-02-01
This paper introduces an original mathematical description for describing agents' decision-making process in the case of problems affected by both individual and collective behaviors in systems characterized by nonlinear, path dependent, and self-organizing interactions. An application to artificial financial markets is proposed by designing a multi-agent system based on the proposed formalization. In this application, agents' decision-making process is based on fuzzy logic rules and the price dynamics is purely deterministic according to the basic matching rules of a central order book. Finally, while putting most parameters under evolutionary control, the computational agent-based system is able to replicate several stylized facts of financial time series (distributions of stock returns showing a heavy tail with positive excess kurtosis, absence of autocorrelations in stock returns, and volatility clustering phenomenon).
Healthcare provider perceptions of clinical prediction rules
Richardson, Safiya; Khan, Sundas; McCullagh, Lauren; Kline, Myriam; Mann, Devin; McGinn, Thomas
2015-01-01
Objectives To examine internal medicine and emergency medicine healthcare provider perceptions of usefulness of specific clinical prediction rules. Setting The study took place in two academic medical centres. A web-based survey was distributed and completed by participants between 1 January and 31 May 2013. Participants Medical doctors, doctors of osteopathy or nurse practitioners employed in the internal medicine or emergency medicine departments at either institution. Primary and secondary outcome measures The primary outcome was to identify the clinical prediction rules perceived as most useful by healthcare providers specialising in internal medicine and emergency medicine. Secondary outcomes included comparing usefulness scores of specific clinical prediction rules based on provider specialty, and evaluating associations between usefulness scores and perceived characteristics of these clinical prediction rules. Results Of the 401 healthcare providers asked to participate, a total of 263 (66%), completed the survey. The CHADS2 score was chosen by most internal medicine providers (72%), and Pulmonary Embolism Rule-Out Criteria (PERC) score by most emergency medicine providers (45%), as one of the top three most useful from a list of 24 clinical prediction rules. Emergency medicine providers rated their top three significantly more positively, compared with internal medicine providers, as having a better fit into their workflow (p=0.004), helping more with decision-making (p=0.037), better fitting into their thought process when diagnosing patients (p=0.001) and overall, on a 10-point scale, more useful (p=0.009). For all providers, the perceived qualities of useful at point of care, helps with decision making, saves time diagnosing, fits into thought process, and should be the standard of clinical care correlated highly (≥0.65) with overall 10-point usefulness scores. Conclusions Healthcare providers describe clear preferences for certain clinical prediction rules, based on medical specialty. PMID:26338684
NASA Astrophysics Data System (ADS)
Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte
2017-04-01
Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.
Perry, Jeffrey J; Stiell, Ian G
2006-12-01
Traumatic injuries to the ankle/foot, knee, cervical spine, and head are very commonly seen in emergency and accident departments around the world. There has been much interest in the development of clinical decision rules to help guide the investigations of these patients in a standardised and cost-effective manner. In this article we reviewed the impact of the Ottawa ankle rules, Ottawa knee rules, Canadian C-spine rule and the Canadian CT head rule. The studies conducted have confirmed that the use of well developed clinical decision rules results in less radiography, less time spent in the emergency department and does not decrease patient satisfaction or result in misdiagnosis. Emergency physicians around the world should adopt the use of clinical decision rules for ankle/foot, knee, cervical spine and minor head injuries. With relatively simple implementation strategies, care can be standardized and costs reduced while providing excellent clinical care.
Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...
Applying Generalizability Theory for Making Quantitative RTI Progress-Monitoring Decisions
ERIC Educational Resources Information Center
Fan, Chung-Hau; Hansmann, Paul R.
2015-01-01
Language in the Individuals With Disabilities Education Improvement Act (IDEIA) allows the use of response-to-intervention (RTI) methodology in the identification of specific learning disabilities. However, there is no consensus on decision rules using curriculum-based measurement of oral reading fluency (CBM-R) for defining responsiveness. The…
17 CFR 171.1 - Scope of rules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the aggrieved party's appeal; (2) A decision in an arbitration action brought pursuant to section 17(b... associated with a member based solely on that person's failure to pay an arbitration award or a settlement... to pursue the right to appeal an adverse decision to the Appeals Committee of the National Futures...
17 CFR 171.1 - Scope of rules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the aggrieved party's appeal; (2) A decision in an arbitration action brought pursuant to section 17(b... associated with a member based solely on that person's failure to pay an arbitration award or a settlement... to pursue the right to appeal an adverse decision to the Appeals Committee of the National Futures...
Machine Reading as a Cognitive Science Research Instrument
2007-01-01
perspectives on decision making emerge: deontological and consequentialist. Deontological decisions are made based one’s duties or rules and the...there is a vaccine which would cure the disease, but also it will kill 1% of the recipients of the vaccine, a deontological decision maker would...Tanner, C., Medin D. L., Iliev R. (Forthcoming) "Influence of Deontological vs. Consequentialist Orientations on Act Choices and Framing Effects
Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.
Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng
2018-04-20
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
Realistic decision-making processes in a vaccination game
NASA Astrophysics Data System (ADS)
Iwamura, Yoshiro; Tanimoto, Jun
2018-03-01
Previous studies of vaccination games have nearly always assumed a pairwise comparison between a focal and neighboring player for the strategy updating rule, which comes from numerous compiled studies on spatial versions of 2-player and 2-strategy (2 × 2) games such as the spatial prisoner's dilemma (SPD). We propose, in this study, new update rules because the human decision-making process of whether to commit to a vaccination is obviously influenced by a "sense of crisis" or "fear" urging him/her toward vaccination, otherwise they will likely be infected. The rule assumes that an agent evaluates whether getting a vaccination or trying to free ride should be attempted based on observations of whether neighboring non-vaccinators were able to successfully free ride during the previous time-step. Compared to the conventional updating rule (standard pairwise comparison assuming a Fermi function), the new rules generally realize higher vaccination coverage and smaller final epidemic sizes. One rule in particular shows very good performance with significantly smaller epidemic sizes despite comparable levels of vaccination coverage. This is because the specific update rule helps vaccinators spread widely in the domain, which effectively hampers the spread of epidemics.
Decision Rules Used in Academic Program Closure: Where the Rubber Meets the Road.
ERIC Educational Resources Information Center
Eckel, Peter D.
This study examines, from an organizational perspective, decision rules guiding program discontinuance, testing the framework of decision rule rationality versus action rationality. A multi-site case study method was used; interviews were conducted with 11-16 individuals at each of four research I or II universities that had discontinued at least…
Fific, Mario; Little, Daniel R; Nosofsky, Robert M
2010-04-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli along a set of component dimensions. Those independent decisions are then combined via logical rules to determine the overall categorization response. The time course of the independent decisions is modeled via random-walk processes operating along individual dimensions. Alternative mental architectures are used as mechanisms for combining the independent decisions to implement the logical rules. We derive fundamental qualitative contrasts for distinguishing among the predictions of the rule models and major alternative models of classification RT. We also use the models to predict detailed RT-distribution data associated with individual stimuli in tasks of speeded perceptual classification. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Myers, Catherine E.; Sheynin, Jony; Baldson, Tarryn; Luzardo, Andre; Beck, Kevin D.; Hogarth, Lee; Haber, Paul; Moustafa, Ahmed A.
2016-01-01
Addiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals’ performance on the task. Although behavioral results showed thatopioid-addicted individuals performed as well as controls on both reward- and punishment-based learning, the modeling results suggested subtle differences in how decisions were made between the two groups. Specifically, the opioid-addicted group showed decreased tendency to repeat prior responses, meaning that they were more likely to “chase reward” when expectancies were violated, whereas controls were more likely to stick with a previously-successful response rule, despite occasional expectancy violations. This tendency to chase short-term reward, potentially at the expense of developing rules that maximize reward over the long term, may be a contributing factor to opioid addiction. Further work is indicated to better understand whether this tendency arises as a result of brain changes in the wake of continued opioid use/abuse, or might be a pre-existing factor that may contribute to risk for addiction. PMID:26381438
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
NASA Astrophysics Data System (ADS)
Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe
2017-04-01
Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.
14 CFR 16.227 - Standard of proof.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or rule in a party's favor only if the decision or ruling...
Hybrid modeling of nitrate fate in large catchments using fuzzy-rules
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Haberlandt, Uwe
2010-05-01
Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.
Emergency physicians' attitudes toward and use of clinical decision rules for radiography.
Graham, I D; Stiell, I G; Laupacis, A; O'Connor, A M; Wells, G A
1998-02-01
1) To assess Canadian emergency physicians' (EPs') use of and attitudes toward 2 radiographic clinical decision rules that have recently been developed and to identify physician characteristics associated with decision rule use; 2) to determine the use of CT head and cervical spine radiography by EPs and their beliefs about the appropriateness of expert recommendations supporting the routine use of these radiographic procedures; and 3) to determine the potential acceptance of clinical decision rules for CT scan in patients with minor head injury and cervical spine radiography in trauma patients. A cross-sectional anonymous mail survey of a random sample of 300 members of the Canadian Association of Emergency Physicians using Dillman's Total Design Method for mail surveys. Of 288 eligible physicians, 232 (81%) responded. More than 95% of the respondents stated they currently used the Ottawa Ankle Rules and were willing to consider using the newly developed Ottawa Knee Rule. Physician characteristics related to frequent use of the Ottawa Ankle Rules were younger age, fewer years since graduating from medical school, part time or resident employment status, working in a hospital without a CT scanner, and believing that decision rules are not oversimplified cookbook medicine or too rigid to apply. Eighty-five percent did not agree that all patients with minor head injuries should receive a CT head scan and only 3.5% stated they always refer such patients for CT scan. Similarly, 78.5% of the respondents did not agree that all trauma patients should receive cervical spine radiography and only 13.2% said they always refer such patients for cervical spine radiography. Ninety-seven and 98% stated they would be willing to consider using well-validated decision rules for CT scan of the head and cervical spine radiography, respectively. Fifty-two percent and 67% of the respondents required the proposed CT and C-spine to be 100% sensitive for identifying serious injuries, respectively. Canadian EPs are generally supportive of clinical decision rules and, in particular, have very positive attitudes toward the Ottawa Ankle and Knee Rules. Furthermore, EPs disagree with recommendations for routine use of CT head and cervical spine radiography and strongly support the development of well-validated decision rules for the use of CT head and cervical spine radiography. Most EPs expected the latter rules to be 100% sensitive for acute clinically significant lesions.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Simpson, James
2010-01-01
The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.
An automated approach to the design of decision tree classifiers
NASA Technical Reports Server (NTRS)
Argentiero, P.; Chin, P.; Beaudet, P.
1980-01-01
The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.
The neural system of metacognition accompanying decision-making in the prefrontal cortex
Qiu, Lirong; Su, Jie; Ni, Yinmei; Bai, Yang; Zhang, Xuesong; Li, Xiaoli
2018-01-01
Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable. PMID:29684004
Graham, I D; Stiell, I G; Laupacis, A; McAuley, L; Howell, M; Clancy, M; Durieux, P; Simon, N; Emparanza, J I; Aginaga, J R; O'connor, A; Wells, G
2001-03-01
We evaluate the international diffusion of the Ottawa Ankle and Knee Rules and determine emergency physicians' attitudes toward clinical decision rules in general. We conducted a cross-sectional, self-administered mail survey of random samples of 500 members each of the American College of Emergency Physicians, Canadian Association of Emergency Physicians, British Association for Accident and Emergency Medicine, Spanish Society for Emergency Medicine, and all members (n=1,350) of the French Speaking Society of Emergency Physicians, France. Main outcome measures were awareness of the Ottawa Ankle and Knee Rules, reported use of these rules, and attitudes toward clinical decision rules in general. A total of 1,769 (57%) emergency physicians responded, with country-specific response rates between 49% (United States and France) and 79% (Canada). More than 69% of physicians in all countries, except Spain, were aware of the Ottawa Ankle Rules. Use of the Ottawa Ankle Rules differed by country with more than 70% of all responding Canadian and United Kingdom physicians reporting frequent use of the rules compared with fewer than one third of US, French, and Spanish physicians. The Ottawa Knee Rule was less well known and less used by physicians in all countries. Most physicians in all countries viewed decision rules as intended to improve the quality of health care (>78%), a convenient source of advice (>67%), and good educational tools (>61%). Of all physicians, those from the United States held the least positive attitudes toward decision rules. This constitutes the largest international survey of emergency physicians' attitudes toward and use of clinical decision rules. Striking differences were apparent among countries with regard to knowledge and use of decision rules. Despite similar awareness in the United States, Canada, and the United Kingdom, US physicians appeared much less likely to use the Ottawa Ankle Rules. Future research should investigate factors leading to differences in rates of diffusion among countries and address strategies to enhance dissemination and implementation of such rules in the emergency department.
C-learning: A new classification framework to estimate optimal dynamic treatment regimes.
Zhang, Baqun; Zhang, Min
2017-12-11
A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification techniques and it allows incorporation of patient's characteristics and treatment history to improve performance, hence enjoying advantages of both the traditional outcome regression-based methods (Q- and A-learning) and the more recent direct optimization methods. The superior performance and flexibility of the proposed methods are illustrated through extensive simulation studies. © 2017, The International Biometric Society.
Extracting fuzzy rules under uncertainty and measuring definability using rough sets
NASA Technical Reports Server (NTRS)
Culas, Donald E.
1991-01-01
Although computers have come a long way since their invention, they are basically able to handle only crisp values at the hardware level. Unfortunately, the world we live in consists of problems which fail to fall into this category, i.e., uncertainty is all too common. A problem is looked at which involves uncertainty. To be specific, attributes are dealt with which are fuzzy sets. Under this condition, knowledge is acquired by looking at examples. In each example, a condition as well as a decision is made available. Based on the examples given, two sets of rules are extracted, certain and possible. Furthermore, measures are constructed of how much these rules are believed in, and finally, the decisions are defined as a function of the terms used in the conditions.
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
Narrative dynamics in social groups: A discrete choice model
NASA Astrophysics Data System (ADS)
Antoci, A.; Bellanca, N.; Galdi, G.; Sodini, M.
2018-05-01
Individuals follow different rules for action: they react swiftly, grasping the short-term advantages in sight, or they waste cognitive resources to complete otherwise easy tasks, but they are able to plan ahead future complex decisions. Scholars from different disciplines studied the conditions under which either decision rule may enhance the fitness of its adopters, with a focus on the environmental features. However, we here propose that a crucial feature of the evolution of populations and their decision rules is rather inter-group interactions. Indeed, we study what happens when two groups support different decision rules, encapsulated in narratives, and their populations interact with each other. In particular, we assume that the payoff of each rule depends on the share of both social groups which adopt such rules. We then describe the most salient dynamics scenarios and identify the conditions which lead to chaotic dynamics and multistability regimes.
Evaluation of Decision Rules in a Tiered Assessment of Inhalation Exposure to Nanomaterials.
Brouwer, Derk; Boessen, Ruud; van Duuren-Stuurman, Birgit; Bard, Delphine; Moehlmann, Carsten; Bekker, Cindy; Fransman, Wouter; Klein Entink, Rinke
2016-10-01
Tiered or stepwise approaches to assess occupational exposure to nano-objects, and their agglomerates and aggregates have been proposed, which require decision rules (DRs) to move to a next tier, or terminate the assessment. In a desk study the performance of a number of DRs based on the evaluation of results from direct reading instruments was investigated by both statistical simulations and the application of the DRs to real workplace data sets. A statistical model that accounts for autocorrelation patterns in time-series, i.e. autoregressive integrated moving average (ARIMA), was used as 'gold' standard. The simulations showed that none of the proposed DRs covered the entire range of simulated scenarios with respect to the ARIMA model parameters, however, a combined DR showed a slightly better agreement. Application of the DRs to real workplace datasets (n = 117) revealed sensitivity up to 0.72, whereas the lowest observed specificity was 0.95. The selection of the most appropriate DR is very much dependent on the consequences of the decision, i.e. ruling in or ruling out of scenarios for further evaluation. Since a basic assessment may also comprise of other type of measurements and information, an evaluation logic was proposed which embeds the DRs, but furthermore supports decision making in view of a tiered-approach exposure assessment. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
A conceptual review of decision making in social dilemmas: applying a logic of appropriateness.
Weber, J Mark; Kopelman, Shirli; Messick, David M
2004-01-01
Despite decades of experimental social dilemma research, "theoretical integration has proven elusive" (Smithson & Foddy, 1999, p. 14). To advance a theory of decision making in social dilemmas, this article provides a conceptual review of the literature that applies a "logic of appropriateness" (March, 1994) framework. The appropriateness framework suggests that people making decisions ask themselves (explicitly or implicitly), "What does a person like me do in a situation like this? " This question identifies 3 significant factors: recognition and classification of the kind of situation encountered, the identity of the individual making the decision, and the application of rules or heuristics in guiding behavioral choice. In contrast with dominant rational choice models, the appropriateness framework proposed accommodates the inherently social nature of social dilemmas, and the role of rule and heuristic based processing. Implications for the interpretation of past findings and the direction of future research are discussed.
The US Court of Appeals for the D.C. Circuit Ruling to Stay the CSAPR
The United States Court of Appeals for the D.C. Circuit issued its ruling to stay the CSAPR pending judicial review. The court's decision is not a decision on the merits of the rule. EPA is ensuring the transition back to the Clean Air Interstate Rule.
Is expected utility theory normative for medical decision making?
Cohen, B J
1996-01-01
Expected utility theory is felt by its proponents to be a normative theory of decision making under uncertainty. The theory starts with some simple axioms that are held to be rules that any rational person would follow. It can be shown that if one adheres to these axioms, a numerical quantity, generally referred to as utility, can be assigned to each possible outcome, with the preferred course of action being that which has the highest expected utility. One of these axioms, the independence principle, is controversial, and is frequently violated in experimental situations. Proponents of the theory hold that these violations are irrational. The independence principle is simply an axiom dictating consistency among preferences, in that it dictates that a rational agent should hold a specified preference given another stated preference. When applied to preferences between lotteries, the independence principle can be demonstrated to be a rule that is followed only when preferences are formed in a particular way. The logic of expected utility theory is that this demonstration proves that preferences should be formed in this way. An alternative interpretation is that this demonstrates that the independence principle is not a valid general rule of consistency, but in particular, is a rule that must be followed if one is to consistently apply the decision rule "choose the lottery that has the highest expected utility." This decision rule must be justified on its own terms as a valid rule of rationality by demonstration that violation would lead to decisions that conflict with the decision maker's goals. This rule does not appear to be suitable for medical decisions because often these are one-time decisions in which expectation, a long-run property of a random variable, would not seem to be applicable. This is particularly true for those decisions involving a non-trivial risk of death.
Verhaert, Dominique V M; Bonnes, Judith L; Nas, Joris; Keuper, Wessel; van Grunsven, Pierre M; Smeets, Joep L R M; de Boer, Menko Jan; Brouwer, Marc A
2016-03-01
Of the proposed algorithms that provide guidance for in-field termination of resuscitation (TOR) decisions, the guidelines for cardiopulmonary resuscitation (CPR) refer to the basic and advanced life support (ALS)-TOR rules. To assess the potential consequences of implementation of the ALS-TOR rule, we performed a case-by-case evaluation of our in-field termination decisions and assessed the corresponding recommendations of the ALS-TOR rule. Cohort of non-traumatic out-of-hospital cardiac arrest (OHCA)-patients who were resuscitated by the ALS-practising emergency medical service (EMS) in the Nijmegen area (2008-2011). The ALS-TOR rule recommends termination in case all following criteria are met: unwitnessed arrest, no bystander CPR, no shock delivery, no return of spontaneous circulation (ROSC). Of the 598 cases reviewed, resuscitative efforts were terminated in the field in 46% and 15% survived to discharge. The ALS-TOR rule would have recommended in-field termination in only 6% of patients, due to high percentages of witnessed arrests (73%) and bystander CPR (54%). In current practice, absence of ROSC was the most important determinant of termination [aOR 35.6 (95% CI 18.3-69.3)]. Weaker associations were found for: unwitnessed and non-public arrests, non-shockable initial rhythms and longer EMS-response times. While designed to optimise hospital transportations, application of the ALS-TOR rule would almost double our hospital transportation rate to over 90% of OHCA-cases due to the favourable arrest circumstances in our region. Prior to implementation of the ALS-TOR rule, local evaluation of the potential consequences for the efficiency of triage is to be recommended and initiatives to improve field-triage for ALS-based EMS-systems are eagerly awaited. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Symbolic rule-based classification of lung cancer stages from free-text pathology reports.
Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni
2010-01-01
To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.
Surrogate decision making and intellectual virtue.
Bock, Gregory L
2014-01-01
Patients can be harmed by a religiously motivated surrogate decision maker whose decisions are contrary to the standard of care; therefore, surrogate decision making should be held to a high standard. Stewart Eskew and Christopher Meyers proposed a two-part rule for deciding which religiously based decisions to honor: (1) a secular reason condition and (2) a rationality condition. The second condition is based on a coherence theory of rationality, which they claim is accessible, generous, and culturally sensitive. In this article, I will propose strengthening the rationality condition by grounding it in a theory of intellectual virtue, which is both rigorous and culturally sensitive. Copyright 2014 The Journal of Clinical Ethics. All rights reserved.
The conscious mind and its emergent properties; an analysis based on decision theory.
Morris, James A
2011-08-01
The process of conscious and unconscious decision making is analyzed using decision theory. An essential part of an optimum decision strategy is the assessment of values and costs associated with correct and incorrect decisions. In the case of unconscious decisions this involves an automatic process akin to computation using numerical values. But for conscious decisions the conscious mind must experience the outcome of the decision as pleasure or pain. It is suggested that the rules of behavior are programmed in our genes but modified by experience of the society in which we are reared. Our unconscious then uses the rules to reward or punish our conscious mind for the decisions it makes. This is relevant to concepts of altruism and religion in society. It is consistent with the observation that we prefer beauty to utility. The decision theory equations also explain the paradox that a single index of happiness can be applied in society. The symptoms of mental illness can be due to appropriate or inappropriate action by the unconscious. The former indicates a psychological conflict between conscious and unconscious decision making. Inappropriate action indicates that a pathological process has switched on genetic networks that should be switched off. Copyright © 2011 Elsevier Ltd. All rights reserved.
van Es, Nick; Bleker, Suzanne M; Di Nisio, Marcello; Kleinjan, Ankie; Beyer-Westendorf, Jan; Camporese, Giuseppe; Kamphuisen, Pieter W; Büller, Harry R; Bossuyt, Patrick M
2016-12-01
In a management study, a diagnostic algorithm consisting of a clinical decision rule, D-dimer, and ultrasonography was shown to safely exclude upper extremity deep vein thrombosis (UEDVT). Efficiency may be lower in high-risk subgroups: those with a central venous catheter or pacemaker, inpatients, cancer, and elderly patients. Data of 406 patients with suspected UEDVT enrolled in a prospective management study were used for the present analysis. The aim was to evaluate the efficiency of the algorithm in subgroups, defined as the proportion of patients in whom imaging could be safely withheld based on the combination of a decision rule result indicating "UEDVT unlikely" and a normal D-dimer result. The strategy excluded UEDVT in 87 of 406 patients (21%); ultrasonography was withheld in these patients and none developed UEDVT during 3months of follow-up. In contrast, ultrasonography could be withheld in only 4 of 92 patients with a catheter or pacemaker (4.3%; 95% CI: 1.7% to 11%) and in 4 of 83 inpatients (4.8%; 95% CI: 1.9% to 12%). The efficiency was 11% in patients with cancer and 13% in those older than 75years. Although the combination of a decision rule and D-dimer testing is safe in excluding UEDVT in the overall population of patients with suspected UEDVT, its efficiency appears limited in some subgroups, in particular those with a central venous catheter or pacemaker, and inpatients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decision Tree Repository and Rule Set Based Mingjiang River Estuarine Wetlands Classifaction
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, X.; Xiao, W.
2018-05-01
The increasing urbanization and industrialization have led to wetland losses in estuarine area of Mingjiang River over past three decades. There has been increasing attention given to produce wetland inventories using remote sensing and GIS technology. Due to inconsistency training site and training sample, traditionally pixel-based image classification methods can't achieve a comparable result within different organizations. Meanwhile, object-oriented image classification technique shows grate potential to solve this problem and Landsat moderate resolution remote sensing images are widely used to fulfill this requirement. Firstly, the standardized atmospheric correct, spectrally high fidelity texture feature enhancement was conducted before implementing the object-oriented wetland classification method in eCognition. Secondly, we performed the multi-scale segmentation procedure, taking the scale, hue, shape, compactness and smoothness of the image into account to get the appropriate parameters, using the top and down region merge algorithm from single pixel level, the optimal texture segmentation scale for different types of features is confirmed. Then, the segmented object is used as the classification unit to calculate the spectral information such as Mean value, Maximum value, Minimum value, Brightness value and the Normalized value. The Area, length, Tightness and the Shape rule of the image object Spatial features and texture features such as Mean, Variance and Entropy of image objects are used as classification features of training samples. Based on the reference images and the sampling points of on-the-spot investigation, typical training samples are selected uniformly and randomly for each type of ground objects. The spectral, texture and spatial characteristics of each type of feature in each feature layer corresponding to the range of values are used to create the decision tree repository. Finally, with the help of high resolution reference images, the random sampling method is used to conduct the field investigation, achieve an overall accuracy of 90.31 %, and the Kappa coefficient is 0.88. The classification method based on decision tree threshold values and rule set developed by the repository, outperforms the results obtained from the traditional methodology. Our decision tree repository and rule set based object-oriented classification technique was an effective method for producing comparable and consistency wetlands data set.
From data mining rules to medical logical modules and medical advices.
Gomoi, Valentin; Vida, Mihaela; Robu, Raul; Stoicu-Tivadar, Vasile; Bernad, Elena; Lupşe, Oana
2013-01-01
Using data mining in collaboration with Clinical Decision Support Systems adds new knowledge as support for medical diagnosis. The current work presents a tool which translates data mining rules supporting generation of medical advices to Arden Syntax formalism. The developed system was tested with data related to 2326 births that took place in 2010 at the Bega Obstetrics - Gynaecology Hospital, Timişoara. Based on processing these data, 14 medical rules regarding the Apgar score were generated and then translated in Arden Syntax language.
46 CFR 201.159 - Decisions; contents and service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 8 2012-10-01 2012-10-01 false Decisions; contents and service. 201.159 Section 201.159 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION POLICY, PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Briefs, Requests for Findings, Decisions, Exceptions (Rule 16) § 201.159 Decisions; contents and service. All initial,...
Mellers, B A; Schwartz, A; Cooke, A D
1998-01-01
For many decades, research in judgment and decision making has examined behavioral violations of rational choice theory. In that framework, rationality is expressed as a single correct decision shared by experimenters and subjects that satisfies internal coherence within a set of preferences and beliefs. Outside of psychology, social scientists are now debating the need to modify rational choice theory with behavioral assumptions. Within psychology, researchers are debating assumptions about errors for many different definitions of rationality. Alternative frameworks are being proposed. These frameworks view decisions as more reasonable and adaptive that previously thought. For example, "rule following." Rule following, which occurs when a rule or norm is applied to a situation, often minimizes effort and provides satisfying solutions that are "good enough," though not necessarily the best. When rules are ambiguous, people look for reasons to guide their decisions. They may also let their emotions take charge. This chapter presents recent research on judgment and decision making from traditional and alternative frameworks.
Acute knee injuries: use of decision rules for selective radiograph ordering.
Tandeter, H B; Shvartzman, P; Stevens, Max A
1999-12-01
Family physicians often encounter patients with acute knee trauma. Radiographs of injured knees are commonly ordered, even though fractures are found in only 6 percent of such patients and emergency department physicians can usually discriminate clinically between fracture and nonfracture. Decision rules have been developed to reduce the unnecessary use of radiologic studies in patients with acute knee injury. The Ottawa knee rules and the Pittsburgh decision rules are the latest guidelines for the selective use of radiographs in knee trauma. Application of these rules may lead to a more efficient evaluation of knee injuries and a reduction in health costs without an increase in adverse outcomes.
A Non-technical User-Oriented Display Notation for XACML Conditions
NASA Astrophysics Data System (ADS)
Stepien, Bernard; Felty, Amy; Matwin, Stan
Ideally, access control to resources in complex IT systems ought to be handled by business decision makers who own a given resource (e.g., the pay and benefits section of an organization should decide and manage the access rules to the payroll system). To make this happen, the security and database communities need to develop vendor-independent access management tools, useable by decision makers, rather than technical personnel detached from a given business function. We have developed and implemented such tool, based on XACML. The XACML is an important emerging tool for managing complex access control applications. As a formal notation, based on an XML schema representing the grammar of a given application, XACML is precise and non-ambiguous. But this very property puts it out of reach of non-technical users. We propose a new notation for displaying and editing XACML rules that is independent of XML, and we develop an editor for it. Our notation combines a tree representation of logical expressions with an accessible natural language layer. Our early experience indicates that such rules can be grasped by non-technical users wishing to develop and control rules for accessing their own resources.
Collective decision making and social interaction rules in mixed-species flocks of songbirds
Farine, Damien R.; Aplin, Lucy M.; Garroway, Colin J.; Mann, Richard P.; Sheldon, Ben C.
2014-01-01
Associations in mixed-species foraging groups are common in animals, yet have rarely been explored in the context of collective behaviour. Despite many investigations into the social and ecological conditions under which individuals should form groups, we still know little about the specific behavioural rules that individuals adopt in these contexts, or whether these can be generalized to heterospecifics. Here, we studied collective behaviour in flocks in a community of five species of woodland passerine birds. We adopted an automated data collection protocol, involving visits by RFID-tagged birds to feeding stations equipped with antennae, over two winters, recording 91 576 feeding events by 1904 individuals. We demonstrated highly synchronized feeding behaviour within patches, with birds moving towards areas of the patch with the largest proportion of the flock. Using a model of collective decision making, we then explored the underlying decision rule birds may be using when foraging in mixed-species flocks. The model tested whether birds used a different decision rule for conspecifics and heterospecifics, and whether the rules used by individuals of different species varied. We found that species differed in their response to the distribution of conspecifics and heterospecifics across foraging patches. However, simulating decisions using the different rules, which reproduced our data well, suggested that the outcome of using different decision rules by each species resulted in qualitatively similar overall patterns of movement. It is possible that the decision rules each species uses may be adjusted to variation in mean species abundance in order for individuals to maintain the same overall flock-level response. This is likely to be important for maintaining coordinated behaviour across species, and to result in quick and adaptive flock responses to food resources that are patchily distributed in space and time. PMID:25214653
Utility of Decision Rules for Transcutaneous Bilirubin Measurements
Burgos, Anthony E.; Flaherman, Valerie; Chung, Esther K.; Simpson, Elizabeth A.; Goyal, Neera K.; Von Kohorn, Isabelle; Dhepyasuwan, Niramol
2016-01-01
BACKGROUND: Transcutaneous bilirubin (TcB) meters are widely used for screening newborns for jaundice, with a total serum bilirubin (TSB) measurement indicated when the TcB value is classified as “positive” by using a decision rule. The goal of our study was to assess the clinical utility of 3 recommended TcB screening decision rules. METHODS: Paired TcB/TSB measurements were collected at 34 newborn nursery sites. At 27 sites (sample 1), newborns were routinely screened with a TcB measurement. For sample 2, sites that typically screen with TSB levels also obtained a TcB measurement for the study. Three decision rules to define a positive TcB measurement were evaluated: ≥75th percentile on the Bhutani nomogram, 70% of the phototherapy level, and within 3 mg/dL of the phototherapy threshold. The primary outcome was a TSB level at/above the phototherapy threshold. The rate of false-negative TcB screens and percentage of blood draws avoided were calculated for each decision rule. RESULTS: For sample 1, data were analyzed on 911 paired TcB-TSB measurements from a total of 8316 TcB measurements. False-negative rates were <10% with all decision rules; none identified all 31 newborns with a TSB level at/above the phototherapy threshold. The percentage of blood draws avoided ranged from 79.4% to 90.7%. In sample 2, each rule correctly identified all 8 newborns with TSB levels at/above the phototherapy threshold. CONCLUSIONS: Although all of the decision rules can be used effectively to screen newborns for jaundice, each will “miss” some infants with a TSB level at/above the phototherapy threshold. PMID:27244792
Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections
NASA Astrophysics Data System (ADS)
Tseng, Hsin-yi; Tung, Ching-pin
2015-04-01
Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in historic forecasts would result unnecessary discounts of water supply, it still performs better than M5 curves during droughts.
A two-stage stochastic rule-based model to determine pre-assembly buffer content
NASA Astrophysics Data System (ADS)
Gunay, Elif Elcin; Kula, Ufuk
2018-01-01
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
Friesen, Melissa C.; Wheeler, David C.; Vermeulen, Roel; Locke, Sarah J.; Zaebst, Dennis D.; Koutros, Stella; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Malats, Nuria; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Rothman, Nathanial; Stewart, Patricia A.; Kogevinas, Manolis; Silverman, Debra T.
2016-01-01
Objectives: To efficiently and reproducibly assess occupational diesel exhaust exposure in a Spanish case-control study, we examined the utility of applying decision rules that had been extracted from expert estimates and questionnaire response patterns using classification tree (CT) models from a similar US study. Methods: First, previously extracted CT decision rules were used to obtain initial ordinal (0–3) estimates of the probability, intensity, and frequency of occupational exposure to diesel exhaust for the 10 182 jobs reported in a Spanish case-control study of bladder cancer. Second, two experts reviewed the CT estimates for 350 jobs randomly selected from strata based on each CT rule’s agreement with the expert ratings in the original study [agreement rate, from 0 (no agreement) to 1 (perfect agreement)]. Their agreement with each other and with the CT estimates was calculated using weighted kappa (κ w) and guided our choice of jobs for subsequent expert review. Third, an expert review comprised all jobs with lower confidence (low-to-moderate agreement rates or discordant assignments, n = 931) and a subset of jobs with a moderate to high CT probability rating and with moderately high agreement rates (n = 511). Logistic regression was used to examine the likelihood that an expert provided a different estimate than the CT estimate based on the CT rule agreement rates, the CT ordinal rating, and the availability of a module with diesel-related questions. Results: Agreement between estimates made by two experts and between estimates made by each of the experts and the CT estimates was very high for jobs with estimates that were determined by rules with high CT agreement rates (κ w: 0.81–0.90). For jobs with estimates based on rules with lower agreement rates, moderate agreement was observed between the two experts (κ w: 0.42–0.67) and poor-to-moderate agreement was observed between the experts and the CT estimates (κ w: 0.09–0.57). In total, the expert review of 1442 jobs changed 156 probability estimates, 128 intensity estimates, and 614 frequency estimates. The expert was more likely to provide a different estimate when the CT rule agreement rate was <0.8, when the CT ordinal ratings were low to moderate, or when a module with diesel questions was available. Conclusions: Our reliability assessment provided important insight into where to prioritize additional expert review; as a result, only 14% of the jobs underwent expert review, substantially reducing the exposure assessment burden. Overall, we found that we could efficiently, reproducibly, and reliably apply CT decision rules from one study to assess exposure in another study. PMID:26732820
Van der Pol, L M; Mairuhu, A T A; Tromeur, C; Couturaud, F; Huisman, M V; Klok, F A
2017-03-01
Because pregnant women have an increased risk of venous thromboembolism (VTE) and at the same time normal pregnancy is associated with symptoms, mimicking those present in the setting of acute pulmonary embolism (PE), the latter diagnosis is frequently suspected in this patient category. Since imaging tests expose both mother and foetus to ionizing radiation, the ability to rule out PE based on non-radiological diagnostic tests is of paramount importance. However, clinical decision rules have only been scarcely evaluated in the pregnant population with suspected PE, while D-dimer levels lose diagnostic accuracy due to a physiological increase during normal pregnancy. Consequently, clinical guidelines provide contradicting and weak recommendations on this subject and the optimal diagnostic strategy remains highly debated. With this systematic review, we aimed to summarize current evidence on the safety and efficacy of clinical decision rules and biomarkers used in the diagnostic management of suspected acute PE in pregnant patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
A Comparison of Computational Cognitive Models: Agent-Based Systems Versus Rule-Based Architectures
2003-03-01
Java™ How To Program , Prentice Hall, 1999. Friedman-Hill, E., Jess, The Expert System Shell for the Java Platform, Sandia National Laboratories, 2001...transition from the descriptive NDM theory to a computational model raises several questions: Who is an experienced decision maker? How do you model the...progression from being a novice to an experienced decision maker? How does the model account for previous experiences? Are there situations where
Myers, Catherine E; Sheynin, Jony; Balsdon, Tarryn; Luzardo, Andre; Beck, Kevin D; Hogarth, Lee; Haber, Paul; Moustafa, Ahmed A
2016-01-01
Addiction is the continuation of a habit in spite of negative consequences. A vast literature gives evidence that this poor decision-making behavior in individuals addicted to drugs also generalizes to laboratory decision making tasks, suggesting that the impairment in decision-making is not limited to decisions about taking drugs. In the current experiment, opioid-addicted individuals and matched controls with no history of illicit drug use were administered a probabilistic classification task that embeds both reward-based and punishment-based learning trials, and a computational model of decision making was applied to understand the mechanisms describing individuals' performance on the task. Although behavioral results showed that opioid-addicted individuals performed as well as controls on both reward- and punishment-based learning, the modeling results suggested subtle differences in how decisions were made between the two groups. Specifically, the opioid-addicted group showed decreased tendency to repeat prior responses, meaning that they were more likely to "chase reward" when expectancies were violated, whereas controls were more likely to stick with a previously-successful response rule, despite occasional expectancy violations. This tendency to chase short-term reward, potentially at the expense of developing rules that maximize reward over the long term, may be a contributing factor to opioid addiction. Further work is indicated to better understand whether this tendency arises as a result of brain changes in the wake of continued opioid use/abuse, or might be a pre-existing factor that may contribute to risk for addiction. Copyright © 2015 Elsevier B.V. All rights reserved.
Some Memories Are Odder than Others: Judgments of Episodic Oddity Violate Known Decision Rules
ERIC Educational Resources Information Center
O'Connor, Akira R.; Guhl, Emily N.; Cox, Justin C.; Dobbins, Ian G.
2011-01-01
Current decision models of recognition memory are based almost entirely on one paradigm, single item old/new judgments accompanied by confidence ratings. This task results in receiver operating characteristics (ROCs) that are well fit by both signal-detection and dual-process models. Here we examine an entirely new recognition task, the judgment…
Diagnostic games: from adequate formalization of clinical experience to structure discovery.
Shifrin, Michael A; Kasparova, Eva I
2008-01-01
A method of obtaining well-founded and reproducible results in clinical decision making is presented. It is based on "diagnostic games", a procedure of elicitation and formalization of experts' knowledge and experience. The use of this procedure allows formulating decision rules in the terms of an adequate language, that are both unambiguous and clinically clear.
16 CFR 3.51 - Initial decision.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Initial decision. 3.51 Section 3.51 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE RULES OF PRACTICE FOR ADJUDICATIVE PROCEEDINGS Decision § 3.51 Initial decision. (a) When filed and when effective. The Administrative Law Judge shall file an...
16 CFR 3.52 - Appeal from initial decision.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Appeal from initial decision. 3.52 Section 3.52 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE RULES OF PRACTICE FOR ADJUDICATIVE PROCEEDINGS Decision § 3.52 Appeal from initial decision. (a) Automatic review of cases in which the Commission sough...
49 CFR 1503.631 - Interlocutory appeals.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Rules of Practice in TSA Civil Penalty Actions § 1503.631 Interlocutory appeals. (a) General. Unless otherwise provided in this subpart, a party may not appeal a ruling or decision of the ALJ to the TSA decision maker until the initial decision has been entered on the record. A decision or order of the TSA...
NASA Astrophysics Data System (ADS)
Kiran Kumar, Kalla; Nagaraju, Dega; Gayathri, S.; Narayanan, S.
2017-05-01
Priority Sequencing Rules provide the guidance for the order in which the jobs are to be processed at a workstation. The application of different priority rules in job shop scheduling gives different order of scheduling. More experimentation needs to be conducted before a final choice is made to know the best priority sequencing rule. Hence, a comprehensive method of selecting the right choice is essential in managerial decision making perspective. This paper considers seven different priority sequencing rules in job shop scheduling. For evaluation and selection of the best priority sequencing rule, a set of eight criteria are considered. The aim of this work is to demonstrate the methodology of evaluating and selecting the best priority sequencing rule by using hybrid multi criteria decision making technique (MCDM), i.e., analytical hierarchy process (AHP) with technique for order preference by similarity to ideal solution (TOPSIS). The criteria weights are calculated by using AHP whereas the relative closeness values of all priority sequencing rules are computed based on TOPSIS with the help of data acquired from the shop floor of a manufacturing firm. Finally, from the findings of this work, the priority sequencing rules are ranked from most important to least important. The comprehensive methodology presented in this paper is very much essential for the management of a workstation to choose the best priority sequencing rule among the available alternatives for processing the jobs with maximum benefit.
Is there a need for a clinical decision rule in blunt wrist trauma?
van den Brand, Crispijn L; van Leerdam, Roderick H; van Ufford, Jet H M E Quarles; Rhemrev, Steven J
2013-11-01
Blunt wrist trauma is a very common injury in emergency medicine. However, in contrast to other extremity trauma, there is no clinical decision rule for radiography in patients with blunt wrist trauma. The purpose of this study is to describe current practice and to assess the need and feasibility for a clinical decision rule for radiography in patients with blunt wrist trauma. All patients with blunt wrist trauma who presented to our Emergency Department (ED) during a 6-month period were included in this study. Basic demographics were analysed and the radiography ratio was determined. The radiography results were compared for different demographic groups. Current practice and the need and feasibility for a decision rule were evaluated using Stiell's checklist for clinical decision rules. A total of 1019 patients with 1032 blunt wrist injuries presented at our ED in a period of 6 months. In 91.4% of patients, radiographs were taken. In 41.6% of those radiographed, a fracture was visible on plain radiography. Fractures were most common in the paediatric and senior age groups. However, even in the lower-risk groups we observed a fracture incidence of about 20%. There is no need for a clinical decision rule for radiography in patients with blunt wrist trauma because the fracture ratio is high. Neither does it seem feasible to develop a highly sensitive and efficient decision rule. Therefore, the authors recommend radiography in all patients with blunt wrist trauma presenting to the ED. Copyright © 2013 Elsevier Ltd. All rights reserved.
A detailed comparison of optimality and simplicity in perceptual decision-making
Shen, Shan; Ma, Wei Ji
2017-01-01
Two prominent ideas in the study of decision-making have been that organisms behave near-optimally, and that they use simple heuristic rules. These principles might be operating in different types of tasks, but this possibility cannot be fully investigated without a direct, rigorous comparison within a single task. Such a comparison was lacking in most previous studies, because a) the optimal decision rule was simple; b) no simple suboptimal rules were considered; c) it was unclear what was optimal, or d) a simple rule could closely approximate the optimal rule. Here, we used a perceptual decision-making task in which the optimal decision rule is well-defined and complex, and makes qualitatively distinct predictions from many simple suboptimal rules. We find that all simple rules tested fail to describe human behavior, that the optimal rule accounts well for the data, and that several complex suboptimal rules are indistinguishable from the optimal one. Moreover, we found evidence that the optimal model is close to the true model: first, the better the trial-to-trial predictions of a suboptimal model agree with those of the optimal model, the better that suboptimal model fits; second, our estimate of the Kullback-Leibler divergence between the optimal model and the true model is not significantly different from zero. When observers receive no feedback, the optimal model still describes behavior best, suggesting that sensory uncertainty is implicitly represented and taken into account. Beyond the task and models studied here, our results have implications for best practices of model comparison. PMID:27177259
Edwards, W; Fasolo, B
2001-01-01
This review is about decision technology-the rules and tools that help us make wiser decisions. First, we review the three rules that are at the heart of most traditional decision technology-multi-attribute utility, Bayes' theorem, and subjective expected utility maximization. Since the inception of decision research, these rules have prescribed how we should infer values and probabilities and how we should combine them to make better decisions. We suggest how to make best use of all three rules in a comprehensive 19-step model. The remainder of the review explores recently developed tools of decision technology. It examines the characteristics and problems of decision-facilitating sites on the World Wide Web. Such sites now provide anyone who can use a personal computer with access to very sophisticated decision-aiding tools structured mainly to facilitate consumer decision making. It seems likely that the Web will be the mode by means of which decision tools will be distributed to lay users. But methods for doing such apparently simple things as winnowing 3000 options down to a more reasonable number, like 10, contain traps for unwary decision technologists. The review briefly examines Bayes nets and influence diagrams-judgment and decision-making tools that are available as computer programs. It very briefly summarizes the state of the art of eliciting probabilities from experts. It concludes that decision tools will be as important in the 21st century as spreadsheets were in the 20th.
Schroeder, Julie; Guin, Cecile C; Pogue, Rene; Bordelon, Danna
2006-10-01
Providing an effective defense for individuals charged with capital crimes requires a diligent, thorough investigation by a mitigation specialist. However, research suggests that mitigation often plays a small role in the decision for life. Jurors often make sentencing decisions prematurely, basing those decisions on their personal reactions to the defendant (for example, fear, anger), their confusion about the rules of law, and their lack of understanding regarding their role and responsibilities. This article proposes an evidence-based conceptual model of the complicating problems surrounding mitigation practice and a focused discussion about how traditional social work mitigation strategies might be evolved to a set of best practices that more effectively ensure jurors' careful consideration of mitigation evidence.
NASA Astrophysics Data System (ADS)
Xu, Yan; Dong, Zhao Yang; Zhang, Rui; Wong, Kit Po
2014-02-01
Maintaining transient stability is a basic requirement for secure power system operations. Preventive control deals with modifying the system operating point to withstand probable contingencies. In this article, a decision tree (DT)-based on-line preventive control strategy is proposed for transient instability prevention of power systems. Given a stability database, a distance-based feature estimation algorithm is first applied to identify the critical generators, which are then used as features to develop a DT. By interpreting the splitting rules of DT, preventive control is realised by formulating the rules in a standard optimal power flow model and solving it. The proposed method is transparent in control mechanism, on-line computation compatible and convenient to deal with multi-contingency. The effectiveness and efficiency of the method has been verified on New England 10-machine 39-bus test system.
Forest fire autonomous decision system based on fuzzy logic
NASA Astrophysics Data System (ADS)
Lei, Z.; Lu, Jianhua
2010-11-01
The proposed system integrates GPS / pseudolite / IMU and thermal camera in order to autonomously process the graphs by identification, extraction, tracking of forest fire or hot spots. The airborne detection platform, the graph-based algorithms and the signal processing frame are analyzed detailed; especially the rules of the decision function are expressed in terms of fuzzy logic, which is an appropriate method to express imprecise knowledge. The membership function and weights of the rules are fixed through a supervised learning process. The perception system in this paper is based on a network of sensorial stations and central stations. The sensorial stations collect data including infrared and visual images and meteorological information. The central stations exchange data to perform distributed analysis. The experiment results show that working procedure of detection system is reasonable and can accurately output the detection alarm and the computation of infrared oscillations.
Wright, Adam; Sittig, Dean F
2015-01-01
Objective Clinical decision support (CDS) is essential for delivery of high-quality, cost-effective, and safe healthcare. The authors sought to evaluate the CDS capabilities across electronic health record (EHR) systems. Methods We evaluated the CDS implementation capabilities of 8 Office of the National Coordinator for Health Information Technology Authorized Certification Body (ONC-ACB)-certified EHRs. Within each EHR, the authors attempted to implement 3 user-defined rules that utilized the various data and logic elements expected of typical EHRs and that represented clinically important evidenced-based care. The rules were: 1) if a patient has amiodarone on his or her active medication list and does not have a thyroid-stimulating hormone (TSH) result recorded in the last 12 months, suggest ordering a TSH; 2) if a patient has a hemoglobin A1c result >7% and does not have diabetes on his or her problem list, suggest adding diabetes to the problem list; and 3) if a patient has coronary artery disease on his or her problem list and does not have aspirin on the active medication list, suggest ordering aspirin. Results Most evaluated EHRs lacked some CDS capabilities; 5 EHRs were able to implement all 3 rules, and the remaining 3 EHRs were unable to implement any of the rules. One of these did not allow users to customize CDS rules at all. The most frequently found shortcomings included the inability to use laboratory test results in rules, limit rules by time, use advanced Boolean logic, perform actions from the alert interface, and adequately test rules. Conclusion Significant improvements in the EHR certification and implementation procedures are necessary. PMID:26104739
Robot decisions: on the importance of virtuous judgment in clinical decision making.
Gelhaus, Petra
2011-10-01
The aim of this article is to argue for the necessity of emotional professional virtues in the understanding of good clinical practice. This understanding is required for a proper balance of capacities in medical education and further education of physicians. For this reason an ideal physician, incarnating the required virtues, skills and knowledge is compared with a non-emotional robot that is bound to moral rules. This fictive confrontation is meant to clarify why certain demands on the personality of the physician are justified, in addition to a rule- and principle-based moral orientation and biomedical knowledge and skills. Philosophical analysis of thought experiments inspired by science fiction literature by Isaac Asimov. Although prima facie a rule-oriented robot seems more reliable and trustworthy, the complexity of clinical judgment is not met by an encompassing and never contradictory set of rules from which one could logically derive decisions. There are different ways how the robot could still work, but at the cost of the predictability of its behaviour and its moral orientation. In comparison, a virtuous human doctor who is also bound to these rules, although less strictly, will more reliably keep at moral objectives, be understandable, be more flexible in case the rules come to their limits, and will be more predictable in these critical situations. Apart from these advantages of the virtuous human doctor referring to her own person, the most problematic deficit of the robot is its lacking deeper understanding of the inner mental events of patients which makes good contact, good communication and good influence impossible. Although an infallibly rule-oriented robot seems more reliable at first view, in situations that require complex decisions like clinical practice the agency of a moral human person is more trustworthy. Furthermore, the understanding of the patient's emotions must remain insufficient for a non-emotional, non-human being. Because these are crucial preconditions for good clinical practice, enough attention should be given to develop these virtues and emotional skills, in addition to the usual attention on knowledge, technical skills and the obedience to moral rules and principles. © 2011 Blackwell Publishing Ltd.
Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C.; Thi Ngoc Diep, Doan; Hirayama, Kenji
2012-01-01
Background and Purpose Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. Methods A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Results Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85–90%. Conclusions No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule. PMID:23209715
Huy, Nguyen Tien; Thao, Nguyen Thanh Hong; Tuan, Nguyen Anh; Khiem, Nguyen Tuan; Moore, Christopher C; Thi Ngoc Diep, Doan; Hirayama, Kenji
2012-01-01
Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC) using the method of DeLong and McNemar test for specificity comparison. Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. No clinical decision rules provided an acceptable specificity (>50%) with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.
A CLIPS-based expert system for the evaluation and selection of robots
NASA Technical Reports Server (NTRS)
Nour, Mohamed A.; Offodile, Felix O.; Madey, Gregory R.
1994-01-01
This paper describes the development of a prototype expert system for intelligent selection of robots for manufacturing operations. The paper first develops a comprehensive, three-stage process to model the robot selection problem. The decisions involved in this model easily lend themselves to an expert system application. A rule-based system, based on the selection model, is developed using the CLIPS expert system shell. Data about actual robots is used to test the performance of the prototype system. Further extensions to the rule-based system for data handling and interfacing capabilities are suggested.
Nikolov, Nikolai G; Dybdahl, Marianne; Jónsdóttir, Svava Ó; Wedebye, Eva B
2014-11-01
Ionization is a key factor in hERG K(+) channel blocking, and acids and zwitterions are known to be less probable hERG blockers than bases and neutral compounds. However, a considerable number of acidic compounds block hERG, and the physico-chemical attributes which discriminate acidic blockers from acidic non-blockers have not been fully elucidated. We propose a rule for prediction of hERG blocking by acids and zwitterionic ampholytes based on thresholds for only three descriptors related to acidity, size and reactivity. The training set of 153 acids and zwitterionic ampholytes was predicted with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flexible Early Warning Systems with Workflows and Decision Tables
NASA Astrophysics Data System (ADS)
Riedel, F.; Chaves, F.; Zeiner, H.
2012-04-01
An essential part of early warning systems and systems for crisis management are decision support systems that facilitate communication and collaboration. Often official policies specify how different organizations collaborate and what information is communicated to whom. For early warning systems it is crucial that information is exchanged dynamically in a timely manner and all participants get exactly the information they need to fulfil their role in the crisis management process. Information technology obviously lends itself to automate parts of the process. We have experienced however that in current operational systems the information logistics processes are hard-coded, even though they are subject to change. In addition, systems are tailored to the policies and requirements of a certain organization and changes can require major software refactoring. We seek to develop a system that can be deployed and adapted to multiple organizations with different dynamic runtime policies. A major requirement for such a system is that changes can be applied locally without affecting larger parts of the system. In addition to the flexibility regarding changes in policies and processes, the system needs to be able to evolve; when new information sources become available, it should be possible to integrate and use these in the decision process. In general, this kind of flexibility comes with a significant increase in complexity. This implies that only IT professionals can maintain a system that can be reconfigured and adapted; end-users are unable to utilise the provided flexibility. In the business world similar problems arise and previous work suggested using business process management systems (BPMS) or workflow management systems (WfMS) to guide and automate early warning processes or crisis management plans. However, the usability and flexibility of current WfMS are limited, because current notations and user interfaces are still not suitable for end-users, and workflows are usually only suited for rigid processes. We show how improvements can be achieved by using decision tables and rule-based adaptive workflows. Decision tables have been shown to be an intuitive tool that can be used by domain experts to express rule sets that can be interpreted automatically at runtime. Adaptive workflows use a rule-based approach to increase the flexibility of workflows by providing mechanisms to adapt workflows based on context changes, human intervention and availability of services. The combination of workflows, decision tables and rule-based adaption creates a framework that opens up new possibilities for flexible and adaptable workflows, especially, for use in early warning and crisis management systems.
Concurrent approach for evolving compact decision rule sets
NASA Astrophysics Data System (ADS)
Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.
1999-02-01
The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.
The cost-effectiveness of diagnostic management strategies for adults with minor head injury.
Holmes, M W; Goodacre, S; Stevenson, M D; Pandor, A; Pickering, A
2012-09-01
To estimate the cost-effectiveness of diagnostic management strategies for adults with minor head injury. A mathematical model was constructed to evaluate the incremental costs and effectiveness (Quality Adjusted Life years Gained, QALYs) of ten diagnostic management strategies for adults with minor head injuries. Secondary analyses were undertaken to determine the cost-effectiveness of hospital admission compared to discharge home and to explore the cost-effectiveness of strategies when no responsible adult was available to observe the patient after discharge. The apparent optimal strategy was based on the high and medium risk Canadian CT Head Rule (CCHRhm), although the costs and outcomes associated with each strategy were broadly similar. Hospital admission for patients with non-neurosurgical injury on CT dominated discharge home, whilst hospital admission for clinically normal patients with a normal CT was not cost-effective compared to discharge home with or without a responsible adult at £39 and £2.5 million per QALY, respectively. A selective CT strategy with discharge home if the CT scan was normal remained optimal compared to not investigating or CT scanning all patients when there was no responsible adult available to observe them after discharge. Our economic analysis confirms that the recent extension of access to CT scanning for minor head injury is appropriate. Liberal use of CT scanning based on a high sensitivity decision rule is not only effective but also cost-saving. The cost of CT scanning is very small compared to the estimated cost of caring for patients with brain injury worsened by delayed treatment. It is recommended therefore that all hospitals receiving patients with minor head injury should have unrestricted access to CT scanning for use in conjunction with evidence based guidelines. Provisionally the CCHRhm decision rule appears to be the best strategy although there is considerable uncertainty around the optimal decision rule. However, the CCHRhm rule appears to be the most widely validated and it therefore seems appropriate to conclude that the CCHRhm rule has the best evidence to support its use. Copyright © 2011 Elsevier Ltd. All rights reserved.
A rule-based smart automated fertilization and irrigation systems
NASA Astrophysics Data System (ADS)
Yousif, Musab El-Rashid; Ghafar, Khairuddin; Zahari, Rahimi; Lim, Tiong Hoo
2018-04-01
Smart automation in industries has become very important as it can improve the reliability and efficiency of the systems. The use of smart technologies in agriculture have increased over the year to ensure and control the production of crop and address food security. However, it is important to use proper irrigation systems avoid water wastage and overfeeding of the plant. In this paper, a Smart Rule-based Automated Fertilization and Irrigation System is proposed and evaluated. We propose a rule based decision making algorithm to monitor and control the food supply to the plant and the soil quality. A build-in alert system is also used to update the farmer using a text message. The system is developed and evaluated using a real hardware.
Using electronic data to predict the probability of true bacteremia from positive blood cultures.
Wang, S J; Kuperman, G J; Ohno-Machado, L; Onderdonk, A; Sandige, H; Bates, D W
2000-01-01
As part of a project to help physicians make more appropriate treatment decisions, we implemented a clinical prediction rule that computes the probability of true bacteremia for positive blood cultures and displays this information when culture results are viewed online. Prior to implementing the rule, we performed a revalidation study to verify the accuracy of the previously published logistic regression model. We randomly selected 114 cases of positive blood cultures from a recent one-year period and performed a paper chart review with the help of infectious disease experts to determine whether the cultures were true positives or contaminants. Based on the results of this revalidation study, we updated the probabilities reported by the model and made additional enhancements to improve the accuracy of the rule. Next, we implemented the rule into our hospital's laboratory computer system so that the probability information was displayed with all positive blood culture results. We displayed the prediction rule information on approximately half of the 2184 positive blood cultures at our hospital that were randomly selected during a 6-month period. During the study, we surveyed 54 housestaff to obtain their opinions about the usefulness of this intervention. Fifty percent (27/54) indicated that the information had influenced their belief of the probability of bacteremia in their patients, and in 28% (15/54) of cases it changed their treatment decision. Almost all (98% (53/54)) indicated that they wanted to continue receiving this information. We conclude that the probability information provided by this clinical prediction rule is considered useful to physicians when making treatment decisions.
A rule-based automatic sleep staging method.
Liang, Sheng-Fu; Kuo, Chin-En; Hu, Yu-Han; Cheng, Yu-Shian
2012-03-30
In this paper, a rule-based automatic sleep staging method was proposed. Twelve features including temporal and spectrum analyses of the EEG, EOG, and EMG signals were utilized. Normalization was applied to each feature to eliminating individual differences. A hierarchical decision tree with fourteen rules was constructed for sleep stage classification. Finally, a smoothing process considering the temporal contextual information was applied for the continuity. The overall agreement and kappa coefficient of the proposed method applied to the all night polysomnography (PSG) of seventeen healthy subjects compared with the manual scorings by R&K rules can reach 86.68% and 0.79, respectively. This method can integrate with portable PSG system for sleep evaluation at-home in the near future. Copyright © 2012 Elsevier B.V. All rights reserved.
COMPUTERIZED RISK AND BIOACCUMULATION SYSTEM (VERSION 1.0)
CRABS is a combination of a rule-based expert system and more traditional procedural programming techniques. ule-based expert systems attempt to emulate the decision making process of human experts within a clearly defined subject area. xpert systems consist of an "inference engi...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27 Decision...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27 Decision...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27 Decision...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27 Decision...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27 Decision...
NASA Astrophysics Data System (ADS)
ShiouWei, L.
2014-12-01
Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan. Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating. Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.
14 CFR 16.227 - Standard of proof.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...
14 CFR 16.227 - Standard of proof.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...
14 CFR 16.227 - Standard of proof.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...
14 CFR 16.227 - Standard of proof.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Standard of proof. 16.227 Section 16.227 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES OF... hearing officer shall issue an initial decision or shall rule in a party's favor only if the decision or...
A simple threshold rule is sufficient to explain sophisticated collective decision-making.
Robinson, Elva J H; Franks, Nigel R; Ellis, Samuel; Okuda, Saki; Marshall, James A R
2011-01-01
Decision-making animals can use slow-but-accurate strategies, such as making multiple comparisons, or opt for simpler, faster strategies to find a 'good enough' option. Social animals make collective decisions about many group behaviours including foraging and migration. The key to the collective choice lies with individual behaviour. We present a case study of a collective decision-making process (house-hunting ants, Temnothorax albipennis), in which a previously proposed decision strategy involved both quality-dependent hesitancy and direct comparisons of nests by scouts. An alternative possible decision strategy is that scouting ants use a very simple quality-dependent threshold rule to decide whether to recruit nest-mates to a new site or search for alternatives. We use analytical and simulation modelling to demonstrate that this simple rule is sufficient to explain empirical patterns from three studies of collective decision-making in ants, and can account parsimoniously for apparent comparison by individuals and apparent hesitancy (recruitment latency) effects, when available nests differ strongly in quality. This highlights the need to carefully design experiments to detect individual comparison. We present empirical data strongly suggesting that best-of-n comparison is not used by individual ants, although individual sequential comparisons are not ruled out. However, by using a simple threshold rule, decision-making groups are able to effectively compare options, without relying on any form of direct comparison of alternatives by individuals. This parsimonious mechanism could promote collective rationality in group decision-making.
[Cognitive errors in diagnostic decision making].
Gäbler, Martin
2017-10-01
Approximately 10-15% of our diagnostic decisions are faulty and may lead to unfavorable and dangerous outcomes, which could be avoided. These diagnostic errors are mainly caused by cognitive biases in the diagnostic reasoning process.Our medical diagnostic decision-making is based on intuitive "System 1" and analytical "System 2" diagnostic decision-making and can be deviated by unconscious cognitive biases.These deviations can be positively influenced on a systemic and an individual level. For the individual, metacognition (internal withdrawal from the decision-making process) and debiasing strategies, such as verification, falsification and rule out worst-case scenarios, can lead to improved diagnostic decisions making.
Zhou, Shang-Ming; Lyons, Ronan A.; Brophy, Sinead; Gravenor, Mike B.
2012-01-01
The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data. PMID:23272108
Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B
2012-01-01
The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.
Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography
NASA Astrophysics Data System (ADS)
Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.
2014-12-01
Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.
A diagnosis-based clinical decision rule for spinal pain part 2: review of the literature
Murphy, Donald R; Hurwitz, Eric L; Nelson, Craig F
2008-01-01
Background Spinal pain is a common and often disabling problem. The research on various treatments for spinal pain has, for the most part, suggested that while several interventions have demonstrated mild to moderate short-term benefit, no single treatment has a major impact on either pain or disability. There is great need for more accurate diagnosis in patients with spinal pain. In a previous paper, the theoretical model of a diagnosis-based clinical decision rule was presented. The approach is designed to provide the clinician with a strategy for arriving at a specific working diagnosis from which treatment decisions can be made. It is based on three questions of diagnosis. In the current paper, the literature on the reliability and validity of the assessment procedures that are included in the diagnosis-based clinical decision rule is presented. Methods The databases of Medline, Cinahl, Embase and MANTIS were searched for studies that evaluated the reliability and validity of clinic-based diagnostic procedures for patients with spinal pain that have relevance for questions 2 (which investigates characteristics of the pain source) and 3 (which investigates perpetuating factors of the pain experience). In addition, the reference list of identified papers and authors' libraries were searched. Results A total of 1769 articles were retrieved, of which 138 were deemed relevant. Fifty-one studies related to reliability and 76 related to validity. One study evaluated both reliability and validity. Conclusion Regarding some aspects of the DBCDR, there are a number of studies that allow the clinician to have a reasonable degree of confidence in his or her findings. This is particularly true for centralization signs, neurodynamic signs and psychological perpetuating factors. There are other aspects of the DBCDR in which a lesser degree of confidence is warranted, and in which further research is needed. PMID:18694490
14 CFR 302.607 - Decision by administrative law judge.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to... judge shall issue a decision recommending a disposition of a complaint or request for determination...
14 CFR 302.607 - Decision by administrative law judge.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to... judge shall issue a decision recommending a disposition of a complaint or request for determination...
14 CFR 302.607 - Decision by administrative law judge.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to... judge shall issue a decision recommending a disposition of a complaint or request for determination...
14 CFR 302.607 - Decision by administrative law judge.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to... judge shall issue a decision recommending a disposition of a complaint or request for determination...
14 CFR 302.607 - Decision by administrative law judge.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS RULES OF PRACTICE IN PROCEEDINGS Rules Applicable to... judge shall issue a decision recommending a disposition of a complaint or request for determination...
NASA Astrophysics Data System (ADS)
Zhu, Wei; Timmermans, Harry
2011-06-01
Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.
Comparison of Computer-based Clinical Decision Support Systems and Content for Diabetes Mellitus.
Kantor, M; Wright, A; Burton, M; Fraser, G; Krall, M; Maviglia, S; Mohammed-Rajput, N; Simonaitis, L; Sonnenberg, F; Middleton, B
2011-01-01
Computer-based clinical decision support (CDS) systems have been shown to improve quality of care and workflow efficiency, and health care reform legislation relies on electronic health records and CDS systems to improve the cost and quality of health care in the United States; however, the heterogeneity of CDS content and infrastructure of CDS systems across sites is not well known. We aimed to determine the scope of CDS content in diabetes care at six sites, assess the capabilities of CDS in use at these sites, characterize the scope of CDS infrastructure at these sites, and determine how the sites use CDS beyond individual patient care in order to identify characteristics of CDS systems and content that have been successfully implemented in diabetes care. We compared CDS systems in six collaborating sites of the Clinical Decision Support Consortium. We gathered CDS content on care for patients with diabetes mellitus and surveyed institutions on characteristics of their site, the infrastructure of CDS at these sites, and the capabilities of CDS at these sites. The approach to CDS and the characteristics of CDS content varied among sites. Some commonalities included providing customizability by role or user, applying sophisticated exclusion criteria, and using CDS automatically at the time of decision-making. Many messages were actionable recommendations. Most sites had monitoring rules (e.g. assessing hemoglobin A1c), but few had rules to diagnose diabetes or suggest specific treatments. All sites had numerous prevention rules including reminders for providing eye examinations, influenza vaccines, lipid screenings, nephropathy screenings, and pneumococcal vaccines. Computer-based CDS systems vary widely across sites in content and scope, but both institution-created and purchased systems had many similar features and functionality, such as integration of alerts and reminders into the decision-making workflow of the provider and providing messages that are actionable recommendations.
Route choice in mountain navigation, Naismith's rule, and the equivalence of distance and climb.
Scarf, Philip
2007-04-01
In this paper, I consider decision making about routes in mountain navigation. In particular, I discuss Naismith's rule, a method of calculating journey times in mountainous terrain, and its use for route choice. The rule is essentially concerned with the equivalence, in terms of time duration, between climb or ascent and distance travelled. Naismith himself described a rule that is purported to be based on trigonometry and simple assumptions about rate of ascent; his rule with regard to hill-walking implies that 1 m of ascent is equivalent to 7.92 m of horizontal travel (1:7.92). The analysis of data on fell running records presented here supports Naismith's rule and it is recommended that male runners and walkers use a 1:8 equivalence ratio and females a 1:10 ratio. The present findings are contrasted with those based on the analysis of data relating to treadmill running experiments (1:3.3), and with those based on the analysis of times for a mountain road-relay (1:4.4). Analysis of cycling data suggests a similar rule (1:8.2) for cycling on mountainous roads and tracks.
Identified research directions for using manufacturing knowledge earlier in the product lifecycle
Hedberg, Thomas D.; Hartman, Nathan W.; Rosche, Phil; Fischer, Kevin
2016-01-01
Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle. PMID:27990027
Identified research directions for using manufacturing knowledge earlier in the product lifecycle.
Hedberg, Thomas D; Hartman, Nathan W; Rosche, Phil; Fischer, Kevin
2017-01-01
Design for Manufacturing (DFM), especially the use of manufacturing knowledge to support design decisions, has received attention in the academic domain. However, industry practice has not been studied enough to provide solutions that are mature for industry. The current state of the art for DFM is often rule-based functionality within Computer-Aided Design (CAD) systems that enforce specific design requirements. That rule-based functionality may or may not dynamically affect geometry definition. And, if rule-based functionality exists in the CAD system, it is typically a customization on a case-by-case basis. Manufacturing knowledge is a phrase with vast meanings, which may include knowledge on the effects of material properties decisions, machine and process capabilities, or understanding the unintended consequences of design decisions on manufacturing. One of the DFM questions to answer is how can manufacturing knowledge, depending on its definition, be used earlier in the product lifecycle to enable a more collaborative development environment? This paper will discuss the results of a workshop on manufacturing knowledge that highlights several research questions needing more study. This paper proposes recommendations for investigating the relationship of manufacturing knowledge with shape, behavior, and context characteristics of product to produce a better understanding of what knowledge is most important. In addition, the proposal includes recommendations for investigating the system-level barriers to reusing manufacturing knowledge and how model-based manufacturing may ease the burden of knowledge sharing. Lastly, the proposal addresses the direction of future research for holistic solutions of using manufacturing knowledge earlier in the product lifecycle.
Oxytocin conditions trait-based rule adherence
De Dreu, Carsten K.W.
2017-01-01
Abstract Rules, whether in the form of norms, taboos or laws, regulate and coordinate human life. Some rules, however, are arbitrary and adhering to them can be personally costly. Rigidly sticking to such rules can be considered maladaptive. Here, we test whether, at the neurobiological level, (mal)adaptive rule adherence is reduced by oxytocin—a hypothalamic neuropeptide that biases the biobehavioural approach-avoidance system. Participants (N = 139) self-administered oxytocin or placebo intranasally, and reported their need for structure and approach-avoidance sensitivity. Next, participants made binary decisions and were given an arbitrary rule that demanded to forgo financial benefits. Under oxytocin, participants violated the rule more often, especially when they had high need for structure and high approach sensitivity. Possibly, oxytocin dampens the need for a highly structured environment and enables individuals to flexibly trade-off internal desires against external restrictions. Implications for the treatment of clinical disorders marked by maladaptive rule adherence are discussed. PMID:27664999
ERIC Educational Resources Information Center
Shockley-Zalabak, Pamela
A study of decision making processes and communication rules, in a corporate setting undergoing change as a result of organizational ineffectiveness, examined whether (1) decisions about formal communication reporting systems were linked to management assumptions about technical creativity/effectiveness, (2) assumptions about…
38 CFR 20.1401 - Rule 1401. Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Rule 1401. Definitions... Unmistakable Error § 20.1401 Rule 1401. Definitions. (a) Issue. Unless otherwise specified, the term “issue” in this subpart means a matter upon which the Board made a final decision (other than a decision under...
38 CFR 20.1401 - Rule 1401. Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Rule 1401. Definitions... Unmistakable Error § 20.1401 Rule 1401. Definitions. (a) Issue. Unless otherwise specified, the term “issue” in this subpart means a matter upon which the Board made a final decision (other than a decision under...
38 CFR 20.1401 - Rule 1401. Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Rule 1401. Definitions... Unmistakable Error § 20.1401 Rule 1401. Definitions. (a) Issue. Unless otherwise specified, the term “issue” in this subpart means a matter upon which the Board made a final decision (other than a decision under...
Enhancing the role of science in the decision-making of the European Union.
Allio, Lorenzo; Ballantine, Bruce; Meads, Richard
2006-02-01
Used well, science provides effective ways of identifying potential risks, protecting citizens, and using resources wisely. It enables government decisions to be based on evidence and provides a foundation for a rule-based framework that supports global trade. To ensure that the best available science becomes a key input in the decisions made by EU institutions, this abridged version of a working paper produced for the European Policy Centre, a leading, independent think tank, considers how science is currently used in the policy and decision-making processes of the EU, what the limitations of scientific evidence are, and how a risk assessment process based on scientific 'good practices' can be advantageous. Finally, the paper makes recommendations on how to improve the use of science by EU institutions.
Rebuilding the NAVSEA Early Stage Ship Design Environment
2010-04-01
rules -of- thumb to base these crucial decisions upon. With High Performance Computing (HPC) as an enabler, the vision is to explore all downstream...the results of the analysis back into LEAPS. Another software development worthy of discussion here is Intelligent Ship Arrangements ( ISA ), which...constraints and rules set by the users ahead of time. When used in a systematic and stochastic way, and when integrated using LEAPS, having this
Laso, Jara; Margallo, María; Fullana, Pére; Bala, Alba; Gazulla, Cristina; Irabien, Ángel; Aldaco, Rubén
2017-01-01
To be able to fulfil high market expectations for a number of practical applications, Environmental Product Declarations (EPDs) have to meet and comply with specific and strict methodological prerequisites. These expectations include the possibility to add up Life Cycle Assessment (LCA)-based information in the supply chain and to compare different EPDs. To achieve this goal, common and harmonized calculation rules have to be established, the so-called Product Category Rules (PCRs), which set the overall LCA calculation rules to create EPDs. This document provides PCRs for the assessment of the environmental performance of canned anchovies in Cantabria Region based on an Environmental Sustainability Assessment (ESA) method. This method uses two main variables: the natural resources sustainability (NRS) and the environmental burdens sustainability (EBS). To reduce the complexity of ESA and facilitate the decision-making process, all variables are normalized and weighted to obtain two global dimensionless indexes: resource consumption (X 1 ) and environmental burdens (X 2 ). •This paper sets the PCRs adapted to the Cantabrian canned anchovies.•ESA method facilitates the product comparison and the decision-making process.•This paper stablishes all the steps that an EPD should include within the PCRs of Cantabrian canned anchovies.
NASA Technical Reports Server (NTRS)
Hadipriono, Fabian C.; Diaz, Carlos F.; Merritt, Earl S.
1989-01-01
The research project results in a powerful yet user friendly CROPCAST expert system for use by a client to determine the crop yield production of a certain crop field. The study is based on the facts that heuristic assessment and decision making in agriculture are significant and dominate much of agribusiness. Transfer of the expert knowledge concerning remote sensing based crop yield production into a specific expert system is the key program in this study. A knowledge base consisting of a root frame, CROP-YIELD-FORECAST, and four subframes, namely, SATELLITE, PLANT-PHYSIOLOGY, GROUND, and MODEL were developed to accommodate the production rules obtained from the domain expert. The expert system shell Personal Consultant Plus version 4.0. was used for this purpose. An external geographic program was integrated to the system. This project is the first part of a completely built expert system. The study reveals that much effort was given to the development of the rules. Such effort is inevitable if workable, efficient, and accurate rules are desired. Furthermore, abundant help statements and graphics were included. Internal and external display routines add to the visual capability of the system. The work results in a useful tool for the client for making decisions on crop yield production.
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.
The Use of Economic Evidence to Inform Drug Pricing Decisions in Jordan.
Hammad, Eman A
2016-01-01
Drug pricing is an example of a priority setting in a developing country with official requirements for the use of cost-effectiveness (CE) evidence. To describe the role of economic evidence in drug pricing decisions in Jordan. A prospective review of all applications submitted between November 2013 and May 2015 to the Jordan Food and Drug Association's drug pricing committee was carried out. All applications that involved requests for CE evidence were reviewed. Details on the type of study, the extent, and whether the evidence submitted was part of the formal deliberations were extracted and summarized. The committee reviewed a total of 1608 drug pricing applications over the period of the study. CE evidence was requested in only 11 applications. The submitted evidence was of limited use to the committee due to concerns about quality, relevance of studies, and lack of pharmacoeconomic expertise. There were also no clear rules describing how CE would inform pricing decisions. Limited local data and health economic experience were the main barriers to the use of economic evidence in drug pricing decisions in Jordan. In addition, there are no official rules describing the elements and process by which the CE evidence would inform drug pricing decisions. This study summarized accumulated observations for the current use of economic evaluations and evidence-based decision making in Jordan. Recommendations have been proposed to applicants and key decision makers to enhance the role of economic evidence in influencing health policies and evidence-based decision making across priority settings. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Development of the Expert System Domain Advisor and Analysis Tool
1991-09-01
analysis. Typical of the current methods in use at this time is the " tarot metric". This method defines a decision rule whose output is whether to go...B - TAROT METRIC B. ::TTRODUCTION The system chart of ESEM, Figure 1, shows the following three risk-based decision points: i. At prolect initiation...34 decisions. B-I 201 PRELIMINARY T" B-I. Evaluais Factan for ES Deyelopsineg FACTORS POSSIBLE VALUE RATINGS TAROT metric (overall suitability) Poor, Fair
Leidl, R; Jacobi, E; Knab, J; Schweikert, B
2006-04-01
Economic assessment of an additional psychological intervention in the rehabilitation of patients with chronic low-back pain and evaluation of results by decision makers. Piggy-back cost-utility analysis of a randomised clinical trial, including a bootstrap analysis. Costs were measured by using the cost accounting systems of the rehabilitation clinics and by surveying patients. Health-related quality of life was measured using the EQ-5D. Implications of different representations of the decision problem and corresponding decision rules concerning the cost-effectiveness plane are discussed. As compared with the 126 patients of the control arm, the 98 patients in the intervention arm gained 3.5 days in perfect health on average as well as 1219 euro cost saving. However, because of the uncertainty involved, the results of a bootstrap analysis cover all quadrants of the cost-effectiveness plane. Using maximum willingness-to-pay per effect unit gained, decision rules can be defined for parts of the cost-effectiveness plane. These have to be aggregated in a further valuation step. Study results show that decisions on stochastic economic evaluation results may require an additional valuation step aggregating the various parts of the cost-effectiveness plane.
Assessing an AI knowledge-base for asymptomatic liver diseases.
Babic, A; Mathiesen, U; Hedin, K; Bodemar, G; Wigertz, O
1998-01-01
Discovering not yet seen knowledge from clinical data is of importance in the field of asymptomatic liver diseases. Avoidance of liver biopsy which is used as the ultimate confirmation of diagnosis by making the decision based on relevant laboratory findings only, would be considered an essential support. The system based on Quinlan's ID3 algorithm was simple and efficient in extracting the sought knowledge. Basic principles of applying the AI systems are therefore described and complemented with medical evaluation. Some of the diagnostic rules were found to be useful as decision algorithms i.e. they could be directly applied in clinical work and made a part of the knowledge-base of the Liver Guide, an automated decision support system.
Implementation of clinical decision rules in the emergency department.
Stiell, Ian G; Bennett, Carol
2007-11-01
Clinical decision rules (CDRs) are tools designed to help clinicians make bedside diagnostic and therapeutic decisions. The development of a CDR involves three stages: derivation, validation, and implementation. Several criteria need to be considered when designing and evaluating the results of an implementation trial. In this article, the authors review the results of implementation studies evaluating the effect of four CDRs: the Ottawa Ankle Rules, the Ottawa Knee Rule, the Canadian C-Spine Rule, and the Canadian CT Head Rule. Four implementation studies demonstrated that the implementation of CDRs in the emergency department (ED) safely reduced the use of radiography for ankle, knee, and cervical spine injuries. However, a recent trial failed to demonstrate an impact on computed tomography imaging rates. Well-developed and validated CDRs can be successfully implemented into practice, efficiently standardizing ED care. However, further research is needed to identify barriers to implementation in order to achieve improved uptake in the ED.
Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda
2012-01-01
Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Hammer, J. M.; Mitchell, C. M.; Morris, N. M.; Lewis, C. M.; Yoon, W. C.
1985-01-01
Progress was made in the three following areas. In the rule-based modeling area, two papers related to identification and significane testing of rule-based models were presented. In the area of operator aiding, research focused on aiding operators in novel failure situations; a discrete control modeling approach to aiding PLANT operators was developed; and a set of guidelines were developed for implementing automation. In the area of flight simulator hardware and software, the hardware will be completed within two months and initial simulation software will then be integrated and tested.
Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)
2010-01-01
On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.
Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers.
Liu, Peide; Chen, Shyi-Ming
2017-09-01
Archimedean t -conorm and t -norm provide the general operational rules for intuitionistic fuzzy numbers (IFNs). The aggregation operators based on them can generalize most of the existing aggregation operators. At the same time, the Heronian mean (HM) has a significant advantage of considering interrelationships between the attributes. Therefore, it is very necessary to extend the HM based on IFNs and to construct intuitionistic fuzzy HM operators based on the Archimedean t -conorm and t -norm. In this paper, we first discuss intuitionistic fuzzy operational rules based on the Archimedean t -conorm and t -norm. Then, we propose the intuitionistic fuzzy Archimedean Heronian aggregation (IFAHA) operator and the intuitionistic fuzzy weight Archimedean Heronian aggregation (IFWAHA) operator. We also further discuss some properties and some special cases of these new operators. Moreover, we also propose a new multiple attribute group decision making (MAGDM) method based on the proposed IFAHA operator and the proposed IFWAHA operator. Finally, we use an illustrative example to show the MAGDM processes and to illustrate the effectiveness of the developed method.
Code of Federal Regulations, 2011 CFR
2011-04-01
... tax liability; a liability arising from a past or present employment relationship, a past or present business relationship with a supplier, customer, or competitor of the loss corporation, a tort, a breach of... the investment decision of each member is based upon the investment decision of one or more other...
18 CFR 385.2201 - Rules governing off-the-record communications (Rule 2201).
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Relevant to the merits means capable of affecting the outcome of a proceeding, or of influencing a decision, or providing an opportunity to influence a decision, on any issue in the proceeding, but does not... Commission in a manner that permits fully informed decision making by the Commission while ensuring the...
18 CFR 385.704 - Rights of participants before initial decision (Rule 704).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Rights of participants... PROCEDURE Decisions § 385.704 Rights of participants before initial decision (Rule 704). After testimony is... good cause, deny opportunity for reply or limit the issues which may be addressed in any reply. ...
17 CFR 201.410 - Appeal of initial decisions by hearing officers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... COMMISSION RULES OF PRACTICE Rules of Practice Appeal to the Commission and Commission Review § 201.410 Appeal of initial decisions by hearing officers. (a) Petition for review; when available. In any... would have been entitled to judicial review of the decision entered therein if the Commission itself had...
Artemenko, M V
2008-01-01
Two approaches to calculation of the qualitative measures for assessing the functional state level of human body are considered. These approaches are based on image and fuzzy set recognition theories and are used to construct diagnostic decision rules. The first approach uses the data on deviation of detected parameters from those for healthy persons; the second approach analyzes the degree of deviation of detected parameters from the approximants characterizing the correlation differences between the parameters. A method for synthesis of decision rules and the results of blood count-based research for a number of diseases (hemophilia, thrombocytopathy, hypertension, arrhythmia, hepatic cirrhosis, trichophytia) are considered. An effect of a change in the functional link between the cholesterol content in blood and the relative rate of variation of AST and ALT enzymes in blood from direct proportional (healthy state) to inverse proportional (hepatic cirrhosis) is discussed. It is shown that analysis of correlation changes in detected parameters of the human body state during diagnostic process is more effective for application in decision support systems than the state space analysis.
Supreme Court rules on disability discrimination.
Elliott, R
2000-01-01
On 3 May 2000, the Supreme Court of Canada released a unanimous decision involving the interpretation of the term "handicap" in Québec's anti-discrimination legislation in three complaints filed with the province's human rights commission. While none of the cases involved HIV-related discrimination, the Court's strong decision is of definite benefit in protecting and promoting the rights of people with HIV/AIDS, particularly for those living in Québec. The decision recognizes that people are protected against discrimination based on disability even if their condition does not give rise to any functional limitation and the discrimination is based on the perception that they are disabled.
Evolving rule-based systems in two medical domains using genetic programming.
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf
2004-11-01
To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.
Evolutionary Data Mining Approach to Creating Digital Logic
2010-01-01
To deal with this problem a genetic program (GP) based data mining ( DM ) procedure has been invented (Smith 2005). A genetic program is an algorithm...that can operate on the variables. When a GP was used as a DM function in the past to automatically create fuzzy decision trees, the Report...rules represents an approach to the determining the effect of linguistic imprecision, i.e., the inability of experts to provide crisp rules. The
Automating the design of scientific computing software
NASA Technical Reports Server (NTRS)
Kant, Elaine
1992-01-01
SINAPSE is a domain-specific software design system that generates code from specifications of equations and algorithm methods. This paper describes the system's design techniques (planning in a space of knowledge-based refinement and optimization rules), user interaction style (user has option to control decision making), and representation of knowledge (rules and objects). It also summarizes how the system knowledge has evolved over time and suggests some issues in building software design systems to facilitate reuse.
Golden Section Relations in Interpersonal Judgment
ERIC Educational Resources Information Center
Benjafield, John; Green, T. R. G.
1978-01-01
A model of the organization of interpersonal judgments, based on the hypothesis that people tend to organize their judgments in Golden Section ratios, was presented. A theory of the process of interpersonal judgment, based on the notion that people judge acquaintances using a Fibonacci-like decision rule, was then developed. A computer simulation…
Quality of service policy control in virtual private networks
NASA Astrophysics Data System (ADS)
Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru
2004-04-01
This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.
Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat
2012-03-01
Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of 38 U.S.C. 6104 and 6105, issues involved in a survivor's claim for death benefits will be decided... death benefits by survivor-prior unfavorable decisions during veteran's lifetime. 20.1106 Section 20... VETERANS' APPEALS: RULES OF PRACTICE Finality § 20.1106 Rule 1106. Claim for death benefits by survivor...
48 CFR 6101.26 - Reconsideration; amendment of decisions; new hearings [Rule 26].
Code of Federal Regulations, 2012 CFR
2012-10-01
... in 6101.27(a) (Rule 27(a)) and the reasons established by the rules of common law or equity... for granting a new hearing. Upon granting a motion for a new hearing, the Board will take additional testimony and, if a decision has been issued, either amend its findings of fact and conclusions or law or...
The Space Environmental Impact System
NASA Astrophysics Data System (ADS)
Kihn, E. A.
2009-12-01
The Space Environmental Impact System (SEIS) is an operational tool for incorporating environmental data sets into DoD Modeling and Simulation (M&S) which allows for enhanced decision making regarding acquisitions, testing, operations and planning. The SEIS system creates, from the environmental archives and developed rule-base, a tool for describing the effects of the space environment on particular military systems, both historically and in real-time. The system uses data available over the web, and in particular data provided by NASA’s virtual observatory network, as well as modeled data generated specifically for this purpose. The rule base system developed to support SEIS is an open XML based model which can be extended to events from any environmental domain. This presentation will show how the SEIS tool allows users to easily and accurately evaluate the effect of space weather in terms that are meaningful to them as well as discuss the relevant standards used in its construction and go over lessons learned from fielding an operational environmental decision tool.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-25
... provide input to decision-making for updating the Waste Confidence Decision and Rule and would not involve... Commission's tentative planning and decision-making schedule; g. Identify any cooperating agencies and, as... #0;notices is to give interested persons an opportunity to participate in #0;the rule making prior to...
Order of Verdict Consideration and Decision Rule Effects on Mock Jury Decision Making.
ERIC Educational Resources Information Center
Olaye, Imafidon M.
A study investigated the effects of order verdict consideration and decision rule on jury verdicts. After reading the summary of an actual trial, 240 mock jurors drawn from undergraduate communications classes were randomly assigned to six-member juries. Jury assignments were made under two verdict orders (ascending and descending order of…
ERIC Educational Resources Information Center
Fific, Mario; Little, Daniel R.; Nosofsky, Robert M.
2010-01-01
We formalize and provide tests of a set of logical-rule models for predicting perceptual classification response times (RTs) and choice probabilities. The models are developed by synthesizing mental-architecture, random-walk, and decision-bound approaches. According to the models, people make independent decisions about the locations of stimuli…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... Reconsideration (MO&O) denies or dismisses petitions seeking reconsideration of certain decisions made by the Commission in the 700 MHz Second Report and Order, relating to the 698-806 MHz Band, including decisions..., public safety narrowband relocation procedures, and the decisions not to impose wholesale requirements...
A novel methodology for building robust design rules by using design based metrology (DBM)
NASA Astrophysics Data System (ADS)
Lee, Myeongdong; Choi, Seiryung; Choi, Jinwoo; Kim, Jeahyun; Sung, Hyunju; Yeo, Hyunyoung; Shim, Myoungseob; Jin, Gyoyoung; Chung, Eunseung; Roh, Yonghan
2013-03-01
This paper addresses a methodology for building robust design rules by using design based metrology (DBM). Conventional method for building design rules has been using a simulation tool and a simple pattern spider mask. At the early stage of the device, the estimation of simulation tool is poor. And the evaluation of the simple pattern spider mask is rather subjective because it depends on the experiential judgment of an engineer. In this work, we designed a huge number of pattern situations including various 1D and 2D design structures. In order to overcome the difficulties of inspecting many types of patterns, we introduced Design Based Metrology (DBM) of Nano Geometry Research, Inc. And those mass patterns could be inspected at a fast speed with DBM. We also carried out quantitative analysis on PWQ silicon data to estimate process variability. Our methodology demonstrates high speed and accuracy for building design rules. All of test patterns were inspected within a few hours. Mass silicon data were handled with not personal decision but statistical processing. From the results, robust design rules are successfully verified and extracted. Finally we found out that our methodology is appropriate for building robust design rules.
2014-01-01
Background Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to improve general practitioner (GP) adherence to ACOVE quality indicators and a protocol for investigating impact on GPs’ adherence to the rules. Design We propose two randomized controlled trials among a group of Dutch GP teams on adherence to ACOVE quality indicators. In both trials a clinical decision support system provides un-intrusive feedback appearing as a color-coded, dynamically updated, list of items needing attention. The first trial pertains to real-time automatically verifiable rules. The second trial concerns non-automatically verifiable rules (adherence cannot be established by the clinical decision support system itself, but the GPs report whether they will adhere to the rules). In both trials we will randomize teams of GPs caring for the same patients into two groups, A and B. For the automatically verifiable rules, group A GPs receive support only for a specific inter-related subset of rules, and group B GPs receive support only for the remainder of the rules. For non-automatically verifiable rules, group A GPs receive feedback framed as actions with positive consequences, and group B GPs receive feedback framed as inaction with negative consequences. GPs indicate whether they adhere to non-automatically verifiable rules. In both trials, the main outcome measure is mean adherence, automatically derived or self-reported, to the rules. Discussion We relied on active end-user involvement in selecting the rules to support, and on a model for providing feedback displayed as color-coded real-time messages concerning the patient visiting the GP at that time, without interrupting the GP’s workflow with pop-ups. While these aspects are believed to increase clinical decision support system acceptance and its impact on adherence to the selected clinical rules, systems with these properties have not yet been evaluated. Trial registration Controlled Trials NTR3566 PMID:24642339
Stochastic Dynamics Underlying Cognitive Stability and Flexibility
Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.
2015-01-01
Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences. PMID:26068119
Stratification of the severity of critically ill patients with classification trees
2009-01-01
Background Development of three classification trees (CT) based on the CART (Classification and Regression Trees), CHAID (Chi-Square Automatic Interaction Detection) and C4.5 methodologies for the calculation of probability of hospital mortality; the comparison of the results with the APACHE II, SAPS II and MPM II-24 scores, and with a model based on multiple logistic regression (LR). Methods Retrospective study of 2864 patients. Random partition (70:30) into a Development Set (DS) n = 1808 and Validation Set (VS) n = 808. Their properties of discrimination are compared with the ROC curve (AUC CI 95%), Percent of correct classification (PCC CI 95%); and the calibration with the Calibration Curve and the Standardized Mortality Ratio (SMR CI 95%). Results CTs are produced with a different selection of variables and decision rules: CART (5 variables and 8 decision rules), CHAID (7 variables and 15 rules) and C4.5 (6 variables and 10 rules). The common variables were: inotropic therapy, Glasgow, age, (A-a)O2 gradient and antecedent of chronic illness. In VS: all the models achieved acceptable discrimination with AUC above 0.7. CT: CART (0.75(0.71-0.81)), CHAID (0.76(0.72-0.79)) and C4.5 (0.76(0.73-0.80)). PCC: CART (72(69-75)), CHAID (72(69-75)) and C4.5 (76(73-79)). Calibration (SMR) better in the CT: CART (1.04(0.95-1.31)), CHAID (1.06(0.97-1.15) and C4.5 (1.08(0.98-1.16)). Conclusion With different methodologies of CTs, trees are generated with different selection of variables and decision rules. The CTs are easy to interpret, and they stratify the risk of hospital mortality. The CTs should be taken into account for the classification of the prognosis of critically ill patients. PMID:20003229
Reducing the costs of meeting regional water demand through risk-based transfer agreements.
Palmer, Reed N; Characklis, Gregory W
2009-04-01
Transfers of treated water among inter-connected utilities is becoming more common as the cost of developing new supplies grows, and transfer agreements require well developed rules describing when and how much water will be transferred. The nature of the decision rules governing an agreement must also be coordinated with respect to the treatment and conveyance capacity required to execute the transfers. This study explores different combinations of infrastructure and agreement type that define three different transfer programs, describing the frequency and volume of transfers associated with each, as well as their costs. The agreements are described in terms of the type of decision rule employed: Take-or-Pay, where the timing and quantity of transfers is fixed; Days of Supply Remaining (DSR), which uses a static hydrologic indicator to trigger transfers; and Risk-of-Failure, a probability-based decision rule that involves consideration of both supply and demand. This analysis is conducted within the context of the Research Triangle area of North Carolina (USA), a rapidly growing area that is beginning to approach the practical limits of water resource development. The Risk-of-Failure agreement is shown to reduce the average volume of transfers by over 80% compared to a Take-or-Pay agreement and by roughly half relative to the DSR agreement, leading to significant cost reductions. A utility's willingness to accept something less than guaranteed access to a specified quantity of water (i.e. an interruption) also has a significant impact on cost. Interruptions do not necessarily lead to lower reliability, but rather to the purchasing utility acquiring more water during off-peak periods when the seller has excess treatment capacity available. The lowest cost guaranteed agreement is 40-50% more expensive than the lowest cost interruptible contract.
Health data and data governance.
Hovenga, Evelyn J S; Grain, Heather
2013-01-01
Health is a knowledge industry, based on data collected to support care, service planning, financing and knowledge advancement. Increasingly there is a need to collect, retrieve and use health record information in an electronic format to provide greater flexibility, as this enables retrieval and display of data in multiple locations and formats irrespective of where the data were collected. Electronically maintained records require greater structure and consistency to achieve this. The use of data held in records generated in real time in clinical systems also has the potential to reduce the time it takes to gain knowledge, as there is less need to collect research specific information, this is only possible if data governance principles are applied. Connected devices and information systems are now generating huge amounts of data, as never before seen. An ability to analyse and mine very large amounts of data, "Big Data", provides policy and decision makers with new insights into varied aspects of work and information flow and operational business patterns and trends, and drives greater efficiencies, and safer and more effective health care. This enables decision makers to apply rules and guidance that have been developed based upon knowledge from many individual patient records through recognition of triggers based upon that knowledge. In clinical decision support systems information about the individual is compared to rules based upon knowledge gained from accumulated information of many to provide guidance at appropriate times in the clinical process. To achieve this the data in the individual system, and the knowledge rules must be represented in a compatible and consistent manner. This chapter describes data attributes; explains the difference between data and information; outlines the requirements for quality data; shows the relevance of health data standards; and describes how data governance impacts representation of content in systems and the use of that information.
Deduction of reservoir operating rules for application in global hydrological models
NASA Astrophysics Data System (ADS)
Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.
2018-01-01
A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.
School Funding in Ohio: From "DeRolph" to the Evidence-Based Model (EBM) and beyond
ERIC Educational Resources Information Center
Pittner, Nicholas A.; Carleton, Melissa M.; Casto, Cassandra
2010-01-01
Beginning in 1997, a series of Ohio Supreme Court decisions ruled that Ohio's school foundation-based funding system was unconstitutional. Despite judicially mandated reform directives, little change was made until recently when Ohio adopted a modified Evidence-Based Model (EBM) into its statutory funding scheme. Ohio's EBM is intended to remedy…
McCoy, Allison B; Wright, Adam; Sittig, Dean F
2015-09-01
Clinical decision support (CDS) is essential for delivery of high-quality, cost-effective, and safe healthcare. The authors sought to evaluate the CDS capabilities across electronic health record (EHR) systems. We evaluated the CDS implementation capabilities of 8 Office of the National Coordinator for Health Information Technology Authorized Certification Body (ONC-ACB)-certified EHRs. Within each EHR, the authors attempted to implement 3 user-defined rules that utilized the various data and logic elements expected of typical EHRs and that represented clinically important evidenced-based care. The rules were: 1) if a patient has amiodarone on his or her active medication list and does not have a thyroid-stimulating hormone (TSH) result recorded in the last 12 months, suggest ordering a TSH; 2) if a patient has a hemoglobin A1c result >7% and does not have diabetes on his or her problem list, suggest adding diabetes to the problem list; and 3) if a patient has coronary artery disease on his or her problem list and does not have aspirin on the active medication list, suggest ordering aspirin. Most evaluated EHRs lacked some CDS capabilities; 5 EHRs were able to implement all 3 rules, and the remaining 3 EHRs were unable to implement any of the rules. One of these did not allow users to customize CDS rules at all. The most frequently found shortcomings included the inability to use laboratory test results in rules, limit rules by time, use advanced Boolean logic, perform actions from the alert interface, and adequately test rules. Significant improvements in the EHR certification and implementation procedures are necessary. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System
NASA Astrophysics Data System (ADS)
Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.
2017-01-01
Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.
Fast Reduction Method in Dominance-Based Information Systems
NASA Astrophysics Data System (ADS)
Li, Yan; Zhou, Qinghua; Wen, Yongchuan
2018-01-01
In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.
Rejecting the Baby Doe rules and defending a "negative" analysis of the Best Interests Standard.
Kopelman, Loretta M
2005-08-01
Two incompatible policies exist for guiding medical decisions for extremely premature, sick, or terminally ill infants, the Best Interests Standard and the newer, 20-year old "Baby Doe" Rules. The background, including why there were two sets of Baby Doe Rules, and their differences with the Best Interests Standard, are illustrated. Two defenses of the Baby Doe Rules are considered and rejected. The first, held by Reagan, Koop, and others, is a "right-to-life" defense. The second, held by some leaders of the American Academy of Pediatrics, is that the Baby Doe Rules are benign and misunderstood. The Baby Doe Rules should be rejected since they can thwart compassionate and individualized decision-making, undercut duties to minimize unnecessary suffering, and single out one group for treatment adults would not want for themselves. In these ways, they are inferior to the older Best Interests Standard. A "negative" analysis of the Best Interests Standard is articulated and defended for decision-making for all incompetent individuals.
Schiebener, Johannes; Brand, Matthias
2017-06-01
Previous literature has explained older individuals' disadvantageous decision-making under ambiguity in the Iowa Gambling Task (IGT) by reduced emotional warning signals preceding decisions. We argue that age-related reductions in IGT performance may also be explained by reductions in certain cognitive abilities (reasoning, executive functions). In 210 participants (18-86 years), we found that the age-related variance on IGT performance occurred only in the last 60 trials. The effect was mediated by cognitive abilities and their relation with decision-making performance under risk with explicit rules (Game of Dice Task). Thus, reductions in cognitive functions in older age may be associated with both a reduced ability to gain explicit insight into the rules of the ambiguous decision situation and with failure to choose the less risky options consequently after the rules have been understood explicitly. Previous literature may have underestimated the relevance of cognitive functions for age-related decline in decision-making performance under ambiguity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Where are the rules concerning the effect of the Department not issuing a decision in my appeal within the statutory time frame? 290.107 Section... PROCEDURES Minerals Revenue Management Appeal Procedures § 290.107 Where are the rules concerning the effect...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... package to OMB for its review and approval because the changes in this rule making do not affect the...: Final rule. SUMMARY: The United States Court of Appeals for the Federal Circuit issued a decision in Agilent Technologies, Inc. v. Affymetrix, Inc., 567 F.3d 1366 (Fed. Cir. 2009). That decision impacted the...
Development of an Autodiagnostic Adaptive Precision Trainer for Decision Making (ADAPT-DM)
2010-06-01
limitation of behavioral measures is that they are limited in their ability to discriminate performance within the ‘‘good’’ or ‘‘ bad ’’ performance... Berka et al. 2007; Klein and Hoffman 1992). In rule-based control mode, rules are consciously retrieved from memory and applied to gathered...because studies have shown a trend for decreasing EEG engagement with increasing task proficiency ( Berka et al. 2007; Stevens, Galloway, and Berka 2007). N
Oxytocin conditions trait-based rule adherence.
Gross, Jörg; De Dreu, Carsten K W
2017-03-01
Rules, whether in the form of norms, taboos or laws, regulate and coordinate human life. Some rules, however, are arbitrary and adhering to them can be personally costly. Rigidly sticking to such rules can be considered maladaptive. Here, we test whether, at the neurobiological level, (mal)adaptive rule adherence is reduced by oxytocin-a hypothalamic neuropeptide that biases the biobehavioural approach-avoidance system. Participants (N = 139) self-administered oxytocin or placebo intranasally, and reported their need for structure and approach-avoidance sensitivity. Next, participants made binary decisions and were given an arbitrary rule that demanded to forgo financial benefits. Under oxytocin, participants violated the rule more often, especially when they had high need for structure and high approach sensitivity. Possibly, oxytocin dampens the need for a highly structured environment and enables individuals to flexibly trade-off internal desires against external restrictions. Implications for the treatment of clinical disorders marked by maladaptive rule adherence are discussed. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Self-Associations Influence Task-Performance through Bayesian Inference
Bengtsson, Sara L.; Penny, Will D.
2013-01-01
The way we think about ourselves impacts greatly on our behavior. This paper describes a behavioral study and a computational model that shed new light on this important area. Participants were primed “clever” and “stupid” using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being “stupid” led to a gradual decrease in performance, whereas associations to being “clever” did not. Second, we observed that the activated self-concepts selectively modified attention toward one’s performance. There was an early to late double dissociation in RTs in that primed “clever” resulted in RT increase following error responses, whereas primed “stupid” resulted in RT increase following correct responses. We propose a computational model of subjects’ behavior based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behavior. PMID:23966937
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
... which is delegated the authority to review disciplinary decisions on behalf of the Exchange Board of... organization. Under the rule, the decision of a majority of the Hearing Panel is the decision of the Hearing..., may request a determination of guilt by default, and may recommend a penalty to be imposed. If the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... that a refusal by a member to take action necessary to effectuate a final decision of a FINRA officer... necessary to effectuate a final decision of a FINRA officer or the UPC Committee under the UPC Code (FINRA Rule 11000 Series) or other FINRA rules that permit review of FINRA decisions by the UPC Committee...
48 CFR 6101.26 - Reconsideration; amendment of decisions; new hearings [Rule 26].
Code of Federal Regulations, 2010 CFR
2010-10-01
... amend a decision or order for any reason that would justify such action on motion of a party. (d) Effect... for granting a new hearing. Upon granting a motion for a new hearing, the Board will take additional... issue a new decision. (b) Procedure. Any motion under 6101.26 (Rule 26) shall comply with the provisions...
48 CFR 6101.26 - Reconsideration; amendment of decisions; new hearings [Rule 26].
Code of Federal Regulations, 2011 CFR
2011-10-01
... amend a decision or order for any reason that would justify such action on motion of a party. (d) Effect... for granting a new hearing. Upon granting a motion for a new hearing, the Board will take additional... issue a new decision. (b) Procedure. Any motion under 6101.26 (Rule 26) shall comply with the provisions...
NASA Astrophysics Data System (ADS)
Hu, Y.; Quinn, C.; Cai, X.
2015-12-01
One major challenge of agent-based modeling is to derive agents' behavioral rules due to behavioral uncertainty and data scarcity. This study proposes a new approach to combine a data-driven modeling based on the directed information (i.e., machine intelligence) with expert domain knowledge (i.e., human intelligence) to derive the behavioral rules of agents considering behavioral uncertainty. A directed information graph algorithm is applied to identifying the causal relationships between agents' decisions (i.e., groundwater irrigation depth) and time-series of environmental, socio-economical and institutional factors. A case study is conducted for the High Plains aquifer hydrological observatory (HO) area, U.S. Preliminary results show that four factors, corn price (CP), underlying groundwater level (GWL), monthly mean temperature (T) and precipitation (P) have causal influences on agents' decisions on groundwater irrigation depth (GWID) to various extents. Based on the similarity of the directed information graph for each agent, five clusters of graphs are further identified to represent all the agents' behaviors in the study area as shown in Figure 1. Using these five representative graphs, agents' monthly optimal groundwater pumping rates are derived through the probabilistic inference. Such data-driven relationships and probabilistic quantifications are then coupled with a physically-based groundwater model to investigate the interactions between agents' pumping behaviors and the underlying groundwater system in the context of coupled human and natural systems.
Real-time data for estimating a forward-looking interest rate rule of the ECB.
Bletzinger, Tilman; Wieland, Volker
2017-12-01
The purpose of the data presented in this article is to use it in ex post estimations of interest rate decisions by the European Central Bank (ECB), as it is done by Bletzinger and Wieland (2017) [1]. The data is of quarterly frequency from 1999 Q1 until 2013 Q2 and consists of the ECB's policy rate, inflation rate, real output growth and potential output growth in the euro area. To account for forward-looking decision making in the interest rate rule, the data consists of expectations about future inflation and output dynamics. While potential output is constructed based on data from the European Commission's annual macro-economic database, inflation and real output growth are taken from two different sources both provided by the ECB: the Survey of Professional Forecasters and projections made by ECB staff. Careful attention was given to the publication date of the collected data to ensure a real-time dataset only consisting of information which was available to the decision makers at the time of the decision.
How mechanisms of perceptual decision-making affect the psychometric function
Gold, Joshua I.; Ding, Long
2012-01-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the “neurometric” sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. PMID:22609483
A decision method based on uncertainty reasoning of linguistic truth-valued concept lattice
NASA Astrophysics Data System (ADS)
Yang, Li; Xu, Yang
2010-04-01
Decision making with linguistic information is a research hotspot now. This paper begins by establishing the theory basis for linguistic information processing and constructs the linguistic truth-valued concept lattice for a decision information system, and further utilises uncertainty reasoning to make the decision. That is, we first utilise the linguistic truth-valued lattice implication algebra to unify the different kinds of linguistic expressions; second, we construct the linguistic truth-valued concept lattice and decision concept lattice according to the concrete decision information system and third, we establish the internal and external uncertainty reasoning methods and talk about the rationality of them. We apply these uncertainty reasoning methods into decision making and present some generation methods of decision rules. In the end, we give an application of this decision method by an example.
Realization of planning design of mechanical manufacturing system by Petri net simulation model
NASA Astrophysics Data System (ADS)
Wu, Yanfang; Wan, Xin; Shi, Weixiang
1991-09-01
Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.
78 FR 36434 - Revisions to Rules of Practice
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-18
... federal holidays, make grammatical corrections, and remove the reference to part-day holidays. Rule 3001... section, the following categories of persons are designated ``decision-making personnel'': (i) The.... The following categories of person are designated ``non-decision-making personnel'': (i) All...
Influence in Action in "Catch Me if You Can"
ERIC Educational Resources Information Center
Meyer, Gary; Roberto, Anthony J.
2005-01-01
For decades, scholars have worked to understand the precise manner in which messages affect attitudes and ultimately behaviors. The dominant paradigm suggests that there are two methods or routes to attitude change, one based on careful consideration of the messages and the other based on simple decision rules, often referred to as heuristics…
Machine Learning Based Evaluation of Reading and Writing Difficulties.
Iwabuchi, Mamoru; Hirabayashi, Rumi; Nakamura, Kenryu; Dim, Nem Khan
2017-01-01
The possibility of auto evaluation of reading and writing difficulties was investigated using non-parametric machine learning (ML) regression technique for URAWSS (Understanding Reading and Writing Skills of Schoolchildren) [1] test data of 168 children of grade 1 - 9. The result showed that the ML had better prediction than the ordinary rule-based decision.
ERIC Educational Resources Information Center
Keane, Terence M.; And Others
1984-01-01
Developed empirically based criteria for use of the Minnesota Multiphasic Personality Inventory (MMPI) to aid in the assessment and diagnosis of Posttraumatic Stress Disorder (PTSD) in patients (N=200). Analysis based on an empircally derived decision rule correctly classified 74 percent of the patients in each group. (LLL)
Kinetic theory of situated agents applied to pedestrian flow in a corridor
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
Form and Objective of the Decision Rule in Absolute Identification
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1997-01-01
In several conditions of a line length identification experiment, the subjects' decision making strategies were systematically biased against the responses on the edges of the stimulus range. When the range and number of the stimuli were small, the bias caused the percentage of correct responses to be highest in the center and lowest on the extremes of the range. Two general classes of decision rules that would explain these results are considered. The first class assumes that subjects intend to adopt an optimal decision rule, but systematically misrepresent one or more parameters of the decision making context. The second class assumes that subjects use a different measure of performance than the one assumed by the experimenter: instead of maximizing the chances of a correct response, the subject attempts to minimize the expected size of the response error (a "fidelity criterion"). In a second experiment, extended experience and feedback did not diminish the bias effect, but explicitly penalizing all response errors equally, regardless of their size, did reduce or eliminate it in some subjects. Both results favor the fidelity criterion over the optimal rule.
Clinical Decision Support for a Multicenter Trial of Pediatric Head Trauma
Swietlik, Marguerite; Deakyne, Sara; Hoffman, Jeffrey M.; Grundmeier, Robert W.; Paterno, Marilyn D.; Rocha, Beatriz H.; Schaeffer, Molly H; Pabbathi, Deepika; Alessandrini, Evaline; Ballard, Dustin; Goldberg, Howard S.; Kuppermann, Nathan; Dayan, Peter S.
2016-01-01
Summary Introduction For children who present to emergency departments (EDs) due to blunt head trauma, ED clinicians must decide who requires computed tomography (CT) scanning to evaluate for traumatic brain injury (TBI). The Pediatric Emergency Care Applied Research Network (PECARN) derived and validated two age-based prediction rules to identify children at very low risk of clinically-important traumatic brain injuries (ciTBIs) who do not typically require CT scans. In this case report, we describe the strategy used to implement the PECARN TBI prediction rules via electronic health record (EHR) clinical decision support (CDS) as the intervention in a multicenter clinical trial. Methods Thirteen EDs participated in this trial. The 10 sites receiving the CDS intervention used the Epic® EHR. All sites implementing EHR-based CDS built the rules by using the vendor’s CDS engine. Based on a sociotechnical analysis, we designed the CDS so that recommendations could be displayed immediately after any provider entered prediction rule data. One central site developed and tested the intervention package to be exported to other sites. The intervention package included a clinical trial alert, an electronic data collection form, the CDS rules and the format for recommendations. Results The original PECARN head trauma prediction rules were derived from physician documentation while this pragmatic trial led each site to customize their workflows and allow multiple different providers to complete the head trauma assessments. These differences in workflows led to varying completion rates across sites as well as differences in the types of providers completing the electronic data form. Site variation in internal change management processes made it challenging to maintain the same rigor across all sites. This led to downstream effects when data reports were developed. Conclusions The process of a centralized build and export of a CDS system in one commercial EHR system successfully supported a multicenter clinical trial. PMID:27437059
2010-01-01
Background Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs. The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. Methods A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). Results The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. Conclusions The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline. PMID:20082700
Ongenae, Femke; De Backere, Femke; Steurbaut, Kristof; Colpaert, Kirsten; Kerckhove, Wannes; Decruyenaere, Johan; De Turck, Filip
2010-01-18
Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.
NASA Astrophysics Data System (ADS)
Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.
2011-06-01
In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.
2012-01-01
Background Efficient rule authoring tools are critical to allow clinical Knowledge Engineers (KEs), Software Engineers (SEs), and Subject Matter Experts (SMEs) to convert medical knowledge into machine executable clinical decision support rules. The goal of this analysis was to identify the critical success factors and challenges of a fully functioning Rule Authoring Environment (RAE) in order to define requirements for a scalable, comprehensive tool to manage enterprise level rules. Methods The authors evaluated RAEs in active use across Partners Healthcare, including enterprise wide, ambulatory only, and system specific tools, with a focus on rule editors for reminder and medication rules. We conducted meetings with users of these RAEs to discuss their general experience and perceived advantages and limitations of these tools. Results While the overall rule authoring process is similar across the 10 separate RAEs, the system capabilities and architecture vary widely. Most current RAEs limit the ability of the clinical decision support (CDS) interventions to be standardized, sharable, interoperable, and extensible. No existing system meets all requirements defined by knowledge management users. Conclusions A successful, scalable, integrated rule authoring environment will need to support a number of key requirements and functions in the areas of knowledge representation, metadata, terminology, authoring collaboration, user interface, integration with electronic health record (EHR) systems, testing, and reporting. PMID:23145874
System for selecting relevant information for decision support.
Kalina, Jan; Seidl, Libor; Zvára, Karel; Grünfeldová, Hana; Slovák, Dalibor; Zvárová, Jana
2013-01-01
We implemented a prototype of a decision support system called SIR which has a form of a web-based classification service for diagnostic decision support. The system has the ability to select the most relevant variables and to learn a classification rule, which is guaranteed to be suitable also for high-dimensional measurements. The classification system can be useful for clinicians in primary care to support their decision-making tasks with relevant information extracted from any available clinical study. The implemented prototype was tested on a sample of patients in a cardiological study and performs an information extraction from a high-dimensional set containing both clinical and gene expression data.
Decision Tree Approach for Soil Liquefaction Assessment
Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.
2013-01-01
In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498
Decision tree approach for soil liquefaction assessment.
Gandomi, Amir H; Fridline, Mark M; Roke, David A
2013-01-01
In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.
NASA Astrophysics Data System (ADS)
Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.
2017-11-01
For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.
2015-12-30
This final rule establishes a prior authorization program for certain durable medical equipment, prosthetics, orthotics, and supplies (DMEPOS) items that are frequently subject to unnecessary utilization. This rule defines unnecessary utilization and creates a new requirement that claims for certain DMEPOS items must have an associated provisional affirmed prior authorization decision as a condition of payment. This rule also adds the review contractor's decision regarding prior authorization of coverage of DMEPOS items to the list of actions that are not initial determinations and therefore not appealable.
Monahan, M; Ensor, J; Moore, D; Fitzmaurice, D; Jowett, S
2017-08-01
Essentials Correct duration of treatment after a first unprovoked venous thromboembolism (VTE) is unknown. We assessed when restarting anticoagulation was worthwhile based on patient risk of recurrent VTE. When the risk over a one-year period is 17.5%, restarting is cost-effective. However, sensitivity analyses indicate large uncertainty in the estimates. Background Following at least 3 months of anticoagulation therapy after a first unprovoked venous thromboembolism (VTE), there is uncertainty about the duration of therapy. Further anticoagulation therapy reduces the risk of having a potentially fatal recurrent VTE but at the expense of a higher risk of bleeding, which can also be fatal. Objective An economic evaluation sought to estimate the long-term cost-effectiveness of using a decision rule for restarting anticoagulation therapy vs. no extension of therapy in patients based on their risk of a further unprovoked VTE. Methods A Markov patient-level simulation model was developed, which adopted a lifetime time horizon with monthly time cycles and was from a UK National Health Service (NHS)/Personal Social Services (PSS) perspective. Results Base-case model results suggest that treating patients with a predicted 1 year VTE risk of 17.5% or higher may be cost-effective if decision makers are willing to pay up to £20 000 per quality adjusted life year (QALY) gained. However, probabilistic sensitivity analysis shows that the model was highly sensitive to overall parameter uncertainty and caution is warranted in selecting the optimal decision rule on cost-effectiveness grounds. Univariate sensitivity analyses indicate variables such as anticoagulation therapy disutility and mortality risks were very influential in driving model results. Conclusion This represents the first economic model to consider the use of a decision rule for restarting therapy for unprovoked VTE patients. Better data are required to predict long-term bleeding risks during therapy in this patient group. © 2017 International Society on Thrombosis and Haemostasis.
Administrative review process for adjudicating initial disability claims. Final rule.
2006-03-31
The Social Security Administration is committed to providing the high quality of service the American people expect and deserve. In light of the significant growth in the number of disability claims and the increased complexity of those claims, the need to make substantial changes in our disability determination process has become urgent. We are publishing a final rule that amends our administrative review process for applications for benefits that are based on whether you are disabled under title II of the Social Security Act (the Act), or applications for supplemental security income (SSI) payments that are based on whether you are disabled or blind under title XVI of the Act. We expect that this final rule will improve the accuracy, consistency, and timeliness of decision-making throughout the disability determination process.
Knowledge discovery with classification rules in a cardiovascular dataset.
Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan
2005-12-01
In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.
Drescher, Michael J; Fried, Jeremy; Brass, Ryan; Medoro, Amanda; Murphy, Timothy; Delgado, João
2017-10-01
Computerized decision support decreases the number of computed tomography pulmonary angiograms (CTPA) for pulmonary embolism (PE) ordered in emergency departments, but it is not always well accepted by emergency physicians. We studied a department-endorsed, evidence-based clinical protocol that included the PE rule-out criteria (PERC) rule, multi-modal education using principles of knowledge translation (KT), and clinical decision support embedded in our order entry system, to decrease the number of unnecessary CTPA ordered. We performed a historically controlled observational before-after study for one year pre- and post-implementation of a departmentally-endorsed protocol. We included patients > 18 in whom providers suspected PE and who did not have a contraindication to CTPA. Providers entered clinical information into a diagnostic pathway via computerized order entry. Prior to protocol implementation, we provided education to ordering providers. The primary outcome measure was the number of CTPA ordered per 1,000 visits one year before vs. after implementation. CTPA declined from 1,033 scans for 98,028 annual visits (10.53 per 1,000 patient visits (95% CI [9.9-11.2]) to 892 scans for 101,172 annual visits (8.81 per 1,000 patient visits (95% CI [8.3-9.4]) p<0.001. The absolute reduction in PACT ordered was 1.72 per 1,000 visits (a 16% reduction). Patient characteristics were similar for both periods. Knowledge translation clinical decision support using the PERC rule significantly reduced the number of CTPA ordered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkati, N.; Buller, B.J.; Azadeh, M.A.
1995-04-01
The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and amore » mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.« less
NASA Astrophysics Data System (ADS)
Gvillo, D.; Ragheb, M.; Parker, M.; Swartz, S.
1987-05-01
A Production-Rule Analysis System is developed for Nuclear Plant Monitoring. The signals generated by the Zion-1 Plant are considered. A Situation-Assessment and Decision-Aid capability is provided for monitoring the integrity of the Plant Radiation, the Reactor Coolant, the Fuel Clad, and the Containment Systems. A total of 41 signals are currently fed as facts to an Inference Engine functioning in the backward-chaining mode and built along the same structure as the E-Mycin system. The Goal-Tree constituting the Knowledge Base was generated using a representation in the form of Fault Trees deduced from plant procedures information. The system is constructed in support of the Data Analysis and Emergency Preparedness tasks at the Illinois Radiological Emergency Assessment Center (REAC).
Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe
2014-02-26
Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
Data Mining for Financial Applications
NASA Astrophysics Data System (ADS)
Kovalerchuk, Boris; Vityaev, Evgenii
This chapter describes Data Mining in finance by discussing financial tasks, specifics of methodologies and techniques in this Data Mining area. It includes time dependence, data selection, forecast horizon, measures of success, quality of patterns, hypothesis evaluation, problem ID, method profile, attribute-based and relational methodologies. The second part of the chapter discusses Data Mining models and practice in finance. It covers use of neural networks in portfolio management, design of interpretable trading rules and discovering money laundering schemes using decision rules and relational Data Mining methodology.
Egg discrimination along a gradient of natural variation in eggshell coloration.
Hanley, Daniel; Grim, Tomáš; Igic, Branislav; Samaš, Peter; López, Analía V; Shawkey, Matthew D; Hauber, Mark E
2017-02-08
Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes. © 2017 The Authors.
Egg discrimination along a gradient of natural variation in eggshell coloration
Grim, Tomáš; Igic, Branislav; Samaš, Peter; López, Analía V.; Shawkey, Matthew D.; Hauber, Mark E.
2017-01-01
Accurate recognition of salient cues is critical for adaptive responses, but the underlying sensory and cognitive processes are often poorly understood. For example, hosts of avian brood parasites have long been assumed to reject foreign eggs from their nests based on the total degree of dissimilarity in colour to their own eggs, regardless of the foreign eggs' colours. We tested hosts' responses to gradients of natural (blue-green to brown) and artificial (green to purple) egg colours, and demonstrate that hosts base rejection decisions on both the direction and degree of colour dissimilarity along the natural, but not artificial, gradient of egg colours. Hosts rejected brown eggs and accepted blue-green eggs along the natural egg colour gradient, irrespective of the total perceived dissimilarity from their own egg's colour. By contrast, their responses did not vary along the artificial colour gradient. Our results demonstrate that egg recognition is specifically tuned to the natural gradient of avian eggshell colour and suggest a novel decision rule. These results highlight the importance of considering sensory reception and decision rules when studying perception, and illustrate that our understanding of recognition processes benefits from examining natural variation in phenotypes. PMID:28179521
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.
Non-ad-hoc decision rule for the Dempster-Shafer method of evidential reasoning
NASA Astrophysics Data System (ADS)
Cheaito, Ali; Lecours, Michael; Bosse, Eloi
1998-03-01
This paper is concerned with the fusion of identity information through the use of statistical analysis rooted in Dempster-Shafer theory of evidence to provide automatic identification aboard a platform. An identity information process for a baseline Multi-Source Data Fusion (MSDF) system is defined. The MSDF system is applied to information sources which include a number of radars, IFF systems, an ESM system, and a remote track source. We use a comprehensive Platform Data Base (PDB) containing all the possible identity values that the potential target may take, and we use the fuzzy logic strategies which enable the fusion of subjective attribute information from sensor and the PDB to make the derivation of target identity more quickly, more precisely, and with statistically quantifiable measures of confidence. The conventional Dempster-Shafer lacks a formal basis upon which decision can be made in the face of ambiguity. We define a non-ad hoc decision rule based on the expected utility interval for pruning the `unessential' propositions which would otherwise overload the real-time data fusion systems. An example has been selected to demonstrate the implementation of our modified Dempster-Shafer method of evidential reasoning.
Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree
Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad
2015-01-01
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272
Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte
2018-01-01
The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.
19 CFR 177.13 - Inconsistent customs decisions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Inconsistent customs decisions. 177.13 Section 177.13 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) ADMINISTRATIVE RULINGS General Ruling Procedure § 177.13 Inconsistent customs...
19 CFR 177.13 - Inconsistent customs decisions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Inconsistent customs decisions. 177.13 Section 177.13 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) ADMINISTRATIVE RULINGS General Ruling Procedure § 177.13 Inconsistent customs...
19 CFR 177.13 - Inconsistent customs decisions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Inconsistent customs decisions. 177.13 Section 177.13 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) ADMINISTRATIVE RULINGS General Ruling Procedure § 177.13 Inconsistent customs...
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
NASA Astrophysics Data System (ADS)
Seoud, Ahmed; Kim, Juhwan; Ma, Yuansheng; Jayaram, Srividya; Hong, Le; Chae, Gyu-Yeol; Lee, Jeong-Woo; Park, Dae-Jin; Yune, Hyoung-Soon; Oh, Se-Young; Park, Chan-Ha
2018-03-01
Sub-resolution assist feature (SRAF) insertion techniques have been effectively used for a long time now to increase process latitude in the lithography patterning process. Rule-based SRAF and model-based SRAF are complementary solutions, and each has its own benefits, depending on the objectives of applications and the criticality of the impact on manufacturing yield, efficiency, and productivity. Rule-based SRAF provides superior geometric output consistency and faster runtime performance, but the associated recipe development time can be of concern. Model-based SRAF provides better coverage for more complicated pattern structures in terms of shapes and sizes, with considerably less time required for recipe development, although consistency and performance may be impacted. In this paper, we introduce a new model-assisted template extraction (MATE) SRAF solution, which employs decision tree learning in a model-based solution to provide the benefits of both rule-based and model-based SRAF insertion approaches. The MATE solution is designed to automate the creation of rules/templates for SRAF insertion, and is based on the SRAF placement predicted by model-based solutions. The MATE SRAF recipe provides optimum lithographic quality in relation to various manufacturing aspects in a very short time, compared to traditional methods of rule optimization. Experiments were done using memory device pattern layouts to compare the MATE solution to existing model-based SRAF and pixelated SRAF approaches, based on lithographic process window quality, runtime performance, and geometric output consistency.
The Cape Town Clinical Decision Rule for Streptococcal Pharyngitis in Children
Engel, Mark Emmanuel; Cohen, Karen; Gounden, Ronald; Kengne, Andre P.; Barth, Dylan Dominic; Whitelaw, Andrew C; Francis, Veronica; Badri, Motasim; Stewart, Annemie; Dale, James B.; Mayosi, Bongani M.; Maartens, Gary
2016-01-01
Background Existing clinical decision rules (CDR) to diagnose group A streptococcal (GAS) pharyngitis have not been validated in sub-Saharan Africa. We developed a locally applicable CDR while evaluating existing CDRs for diagnosing GAS pharyngitis in South African children. Methods We conducted a prospective cohort study and enrolled 997 children aged 3-15 years presenting to primary care clinics with a complaint of sore throat, and whose parents provided consent. Main outcome measures were signs and symptoms of pharyngitis, and a positive GAS culture from a throat swab. Bivariate and multivariate analyses were used to develop the clinical decision rule. In addition, the diagnostic effectiveness of six existing rules for predicting a positive culture in our cohort was assessed. Results 206 of 982 children (21%) had a positive GAS culture. Tonsillar swelling, tonsillar exudates, tender or enlarged anterior cervical lymph nodes, absence of cough and absence of rhinorrhea were associated with positive cultures in bivariate and multivariate analyses. Four variables (tonsillar swelling and one of tonsillar exudate, no rhinorrhea, no cough), when used in a cumulative score, showed 83.7% sensitivity and 32.2% specificity for GAS pharyngitis. Of existing rules tested, the McIsaac rule had the highest positive predictive value (28%), but missed 49% of the culture-positive children who should have been treated. Conclusion The new four-variable clinical decision rule for GAS pharyngitis (i.e., tonsillar swelling and one of tonsillar exudate, no rhinorrhea, no cough) outperformed existing rules for GAS pharyngitis diagnosis in children with symptomatic sore throat in Cape Town. PMID:27870815
Irwin, R John; Irwin, Timothy C
2011-06-01
Making clinical decisions on the basis of diagnostic tests is an essential feature of medical practice and the choice of the decision threshold is therefore crucial. A test's optimal diagnostic threshold is the threshold that maximizes expected utility. It is given by the product of the prior odds of a disease and a measure of the importance of the diagnostic test's sensitivity relative to its specificity. Choosing this threshold is the same as choosing the point on the Receiver Operating Characteristic (ROC) curve whose slope equals this product. We contend that a test's likelihood ratio is the canonical decision variable and contrast diagnostic thresholds based on likelihood ratio with two popular rules of thumb for choosing a threshold. The two rules are appealing because they have clear graphical interpretations, but they yield optimal thresholds only in special cases. The optimal rule can be given similar appeal by presenting indifference curves, each of which shows a set of equally good combinations of sensitivity and specificity. The indifference curve is tangent to the ROC curve at the optimal threshold. Whereas ROC curves show what is feasible, indifference curves show what is desirable. Together they show what should be chosen. Copyright © 2010 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Body, Richard; Burrows, Gillian; Carley, Simon; Lewis, Philip S
2015-10-01
The Manchester Acute Coronary Syndromes (MACS) decision rule may enable acute coronary syndromes to be immediately 'ruled in' or 'ruled out' in the emergency department. The rule incorporates heart-type fatty acid binding protein (h-FABP) and high sensitivity troponin T levels. The rule was previously validated using a semiautomated h-FABP assay that was not practical for clinical implementation. We aimed to validate the rule with an automated h-FABP assay that could be used clinically. In this prospective diagnostic cohort study we included patients presenting to the emergency department with suspected cardiac chest pain. Serum drawn on arrival was tested for h-FABP using an automated immunoturbidimetric assay (Randox) and high sensitivity troponin T (Roche). The primary outcome, a diagnosis of acute myocardial infarction (AMI), was adjudicated based on 12 h troponin testing. A secondary outcome, major adverse cardiac events (MACE; death, AMI, revascularisation or new coronary stenosis), was determined at 30 days. Of the 456 patients included, 78 (17.1%) had AMI and 97 (21.3%) developed MACE. Using the automated h-FABP assay, the MACS rule had the same C-statistic for MACE as the original rule (0.91; 95% CI 0.88 to 0.92). 18.9% of patients were identified as 'very low risk' and thus eligible for immediate discharge with no missed AMIs and a 2.3% incidence of MACE (n=2, both coronary stenoses). 11.1% of patients were classed as 'high-risk' and had a 92.0% incidence of MACE. Our findings validate the performance of a refined MACS rule incorporating an automated h-FABP assay, facilitating use in clinical settings. The effectiveness of this refined rule should be verified in an interventional trial prior to implementation. UK CRN 8376. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Validation of the Ottawa Knee Rules.
Emparanza, J I; Aginaga, J R
2001-10-01
We sought to validate the Ottawa Knee Rules for determining the need for radiography in patients with acute knee injury. A prospective cohort study was performed in emergency departments of 11 hospitals of the Osakidetza-Basque Country Health Service. The patient population was composed of a convenience sample of 1,522 eligible adults of 2,315 patients with acute knee injuries. The attending emergency physicians assessed each patient for standardized clinical variables and determined the need for radiography according to the decision rule. Radiography was performed in each patient, irrespective of the determination of the rule, after clinical evaluation findings were recorded. The rule was assessed for the ability to correctly identify fracture of the knee. The decision rule had a sensitivity of 1.0 (95% confidence interval [CI] 0.96 to 1.0), identifying 89 patients with clinically important fractures. The potential reduction in use of radiography was estimated to be 49%. The probability of fracture, if the decision rules were negative, is estimated to be 0% (95% CI 0% to 0.5%). Prospective validation has shown the Ottawa Knee Rules to be 100% sensitive for identifying fractures of the knee and to have the potential to allow physicians to reduce the use of radiography in patients with acute knee injuries.
Phillips, Robert S; Lehrnbecher, Thomas; Alexander, Sarah; Sung, Lillian
2012-01-01
Febrile neutropenia is a common and potentially life-threatening complication of treatment for childhood cancer, which has increasingly been subject to targeted treatment based on clinical risk stratification. Our previous meta-analysis demonstrated 16 rules had been described and 2 of them subject to validation in more than one study. We aimed to advance our knowledge of evidence on the discriminatory ability and predictive accuracy of such risk stratification clinical decision rules (CDR) for children and young people with cancer by updating our systematic review. The review was conducted in accordance with Centre for Reviews and Dissemination methods, searching multiple electronic databases, using two independent reviewers, formal critical appraisal with QUADAS and meta-analysis with random effects models where appropriate. It was registered with PROSPERO: CRD42011001685. We found 9 new publications describing a further 7 new CDR, and validations of 7 rules. Six CDR have now been subject to testing across more than two data sets. Most validations demonstrated the rule to be less efficient than when initially proposed; geographical differences appeared to be one explanation for this. The use of clinical decision rules will require local validation before widespread use. Considerable uncertainty remains over the most effective rule to use in each population, and an ongoing individual-patient-data meta-analysis should develop and test a more reliable CDR to improve stratification and optimise therapy. Despite current challenges, we believe it will be possible to define an internationally effective CDR to harmonise the treatment of children with febrile neutropenia.
Phillips, Robert S.; Lehrnbecher, Thomas; Alexander, Sarah; Sung, Lillian
2012-01-01
Introduction Febrile neutropenia is a common and potentially life-threatening complication of treatment for childhood cancer, which has increasingly been subject to targeted treatment based on clinical risk stratification. Our previous meta-analysis demonstrated 16 rules had been described and 2 of them subject to validation in more than one study. We aimed to advance our knowledge of evidence on the discriminatory ability and predictive accuracy of such risk stratification clinical decision rules (CDR) for children and young people with cancer by updating our systematic review. Methods The review was conducted in accordance with Centre for Reviews and Dissemination methods, searching multiple electronic databases, using two independent reviewers, formal critical appraisal with QUADAS and meta-analysis with random effects models where appropriate. It was registered with PROSPERO: CRD42011001685. Results We found 9 new publications describing a further 7 new CDR, and validations of 7 rules. Six CDR have now been subject to testing across more than two data sets. Most validations demonstrated the rule to be less efficient than when initially proposed; geographical differences appeared to be one explanation for this. Conclusion The use of clinical decision rules will require local validation before widespread use. Considerable uncertainty remains over the most effective rule to use in each population, and an ongoing individual-patient-data meta-analysis should develop and test a more reliable CDR to improve stratification and optimise therapy. Despite current challenges, we believe it will be possible to define an internationally effective CDR to harmonise the treatment of children with febrile neutropenia. PMID:22693615
Students' Refinement of Knowledge during the Development of Knowledge Bases for Expert Systems.
ERIC Educational Resources Information Center
Lippert, Renate; Finley, Fred
The refinement of the cognitive knowledge base was studied through exploration of the transition from novice to expert and the use of an instructional strategy called novice knowledge engineering. Six college freshmen, who were enrolled in an honors physics course, used an expert system to create questions, decisions, rules, and explanations…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Association decisions in disciplinary, membership denial, registration, and member responsibility actions... and disciplinary actions. The Commission estimates the burden of this collection of information as... Renew Collection: Rules Relating To Review of National Futures Association Decisions in Disciplinary...
19 CFR 177.1 - General ruling practice and definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... in applicable Treasury Decisions, rulings, opinions, or court decisions published in the Customs... in response to a written request therefor and set forth in a letter addressed to the person making... more than call attention to a well-established interpretation or principle of Customs law, without...
Shankar, Swetha; Kayser, Andrew S
2017-06-01
To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. Copyright © 2017 the American Physiological Society.
Kayser, Andrew S.
2017-01-01
To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects’ decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when decision information varies in multiple domains at different levels of abstraction. Behavioral and modeling results suggest that categorical (more abstract) information is weighted more strongly than perceptual (more concrete) information but that perceptual and categorical domains interact to influence decisions. Frontoparietal brain activity during categorization flexibly represents decision-relevant features and highlights significant dissociations in frontal and parietal activity during decision making. PMID:28250149
Goal-Directed Decision Making with Spiking Neurons.
Friedrich, Johannes; Lengyel, Máté
2016-02-03
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. Copyright © 2016 the authors 0270-6474/16/361529-18$15.00/0.
Goal-Directed Decision Making with Spiking Neurons
Lengyel, Máté
2016-01-01
Behavioral and neuroscientific data on reward-based decision making point to a fundamental distinction between habitual and goal-directed action selection. The formation of habits, which requires simple updating of cached values, has been studied in great detail, and the reward prediction error theory of dopamine function has enjoyed prominent success in accounting for its neural bases. In contrast, the neural circuit mechanisms of goal-directed decision making, requiring extended iterative computations to estimate values online, are still unknown. Here we present a spiking neural network that provably solves the difficult online value estimation problem underlying goal-directed decision making in a near-optimal way and reproduces behavioral as well as neurophysiological experimental data on tasks ranging from simple binary choice to sequential decision making. Our model uses local plasticity rules to learn the synaptic weights of a simple neural network to achieve optimal performance and solves one-step decision-making tasks, commonly considered in neuroeconomics, as well as more challenging sequential decision-making tasks within 1 s. These decision times, and their parametric dependence on task parameters, as well as the final choice probabilities match behavioral data, whereas the evolution of neural activities in the network closely mimics neural responses recorded in frontal cortices during the execution of such tasks. Our theory provides a principled framework to understand the neural underpinning of goal-directed decision making and makes novel predictions for sequential decision-making tasks with multiple rewards. SIGNIFICANCE STATEMENT Goal-directed actions requiring prospective planning pervade decision making, but their circuit-level mechanisms remain elusive. We show how a model circuit of biologically realistic spiking neurons can solve this computationally challenging problem in a novel way. The synaptic weights of our network can be learned using local plasticity rules such that its dynamics devise a near-optimal plan of action. By systematically comparing our model results to experimental data, we show that it reproduces behavioral decision times and choice probabilities as well as neural responses in a rich set of tasks. Our results thus offer the first biologically realistic account for complex goal-directed decision making at a computational, algorithmic, and implementational level. PMID:26843636
Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
Jiménez, Fernando; Sánchez, Gracia; Juárez, José M
2014-03-01
This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.
Heuristics in Managing Complex Clinical Decision Tasks in Experts’ Decision Making
Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme
2016-01-01
Background Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. Objective The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. Method After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. Results We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Conclusion Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Application Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design. PMID:27275019
Heuristics in Managing Complex Clinical Decision Tasks in Experts' Decision Making.
Islam, Roosan; Weir, Charlene; Del Fiol, Guilherme
2014-09-01
Clinical decision support is a tool to help experts make optimal and efficient decisions. However, little is known about the high level of abstractions in the thinking process for the experts. The objective of the study is to understand how clinicians manage complexity while dealing with complex clinical decision tasks. After approval from the Institutional Review Board (IRB), three clinical experts were interviewed the transcripts from these interviews were analyzed. We found five broad categories of strategies by experts for managing complex clinical decision tasks: decision conflict, mental projection, decision trade-offs, managing uncertainty and generating rule of thumb. Complexity is created by decision conflicts, mental projection, limited options and treatment uncertainty. Experts cope with complexity in a variety of ways, including using efficient and fast decision strategies to simplify complex decision tasks, mentally simulating outcomes and focusing on only the most relevant information. Understanding complex decision making processes can help design allocation based on the complexity of task for clinical decision support design.
NASA Astrophysics Data System (ADS)
Neuville, R.; Pouliot, J.; Poux, F.; Hallot, P.; De Rudder, L.; Billen, R.
2017-10-01
This paper deals with the establishment of a comprehensive methodological framework that defines 3D visualisation rules and its application in a decision support tool. Whilst the use of 3D models grows in many application fields, their visualisation remains challenging from the point of view of mapping and rendering aspects to be applied to suitability support the decision making process. Indeed, there exists a great number of 3D visualisation techniques but as far as we know, a decision support tool that facilitates the production of an efficient 3D visualisation is still missing. This is why a comprehensive methodological framework is proposed in order to build decision tables for specific data, tasks and contexts. Based on the second-order logic formalism, we define a set of functions and propositions among and between two collections of entities: on one hand static retinal variables (hue, size, shape…) and 3D environment parameters (directional lighting, shadow, haze…) and on the other hand their effect(s) regarding specific visual tasks. It enables to define 3D visualisation rules according to four categories: consequence, compatibility, potential incompatibility and incompatibility. In this paper, the application of the methodological framework is demonstrated for an urban visualisation at high density considering a specific set of entities. On the basis of our analysis and the results of many studies conducted in the 3D semiotics, which refers to the study of symbols and how they relay information, the truth values of propositions are determined. 3D visualisation rules are then extracted for the considered context and set of entities and are presented into a decision table with a colour coding. Finally, the decision table is implemented into a plugin developed with three.js, a cross-browser JavaScript library. The plugin consists of a sidebar and warning windows that help the designer in the use of a set of static retinal variables and 3D environment parameters.
Autonomous Flight Safety System - Phase III
NASA Technical Reports Server (NTRS)
2008-01-01
The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.
de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Leitich, Harald; Rappelsberger, Andrea
2018-01-01
Evidence-based clinical guidelines have a major positive effect on the physician's decision-making process. Computer-executable clinical guidelines allow for automated guideline marshalling during a clinical diagnostic process, thus improving the decision-making process. Implementation of a digital clinical guideline for the prevention of mother-to-child transmission of hepatitis B as a computerized workflow, thereby separating business logic from medical knowledge and decision-making. We used the Business Process Model and Notation language system Activiti for business logic and workflow modeling. Medical decision-making was performed by an Arden-Syntax-based medical rule engine, which is part of the ARDENSUITE software. We succeeded in creating an electronic clinical workflow for the prevention of mother-to-child transmission of hepatitis B, where institution-specific medical decision-making processes could be adapted without modifying the workflow business logic. Separation of business logic and medical decision-making results in more easily reusable electronic clinical workflows.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
Guidance for Product Category Rule Development, Version 1.0
Environmental claims based on life cycle assessment (LCA) can provide quantitative, full life cycle information on products in a format that can permit comparisons and thereby inform purchasing decisions. In recent years, a number of standards and guides have emerged for making b...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... sensor network and provide extended sensor network and components to fill critical situational awareness... different agencies), and share resources. The IOCs will improve tactical decision-making, situational awareness, operations monitoring/ interoperability, rules-based processing, and joint planning in a...
Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space
NASA Astrophysics Data System (ADS)
Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.
2014-10-01
Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
Modified Dempster-Shafer approach using an expected utility interval decision rule
NASA Astrophysics Data System (ADS)
Cheaito, Ali; Lecours, Michael; Bosse, Eloi
1999-03-01
The combination operation of the conventional Dempster- Shafer algorithm has a tendency to increase exponentially the number of propositions involved in bodies of evidence by creating new ones. The aim of this paper is to explore a 'modified Dempster-Shafer' approach of fusing identity declarations emanating form different sources which include a number of radars, IFF and ESM systems in order to limit the explosion of the number of propositions. We use a non-ad hoc decision rule based on the expected utility interval to select the most probable object in a comprehensive Platform Data Base containing all the possible identity values that a potential target may take. We study the effect of the redistribution of the confidence levels of the eliminated propositions which otherwise overload the real-time data fusion system; these eliminated confidence levels can in particular be assigned to ignorance, or uniformly added to the remaining propositions and to ignorance. A scenario has been selected to demonstrate the performance of our modified Dempster-Shafer method of evidential reasoning.
Examining change detection approaches for tropical mangrove monitoring
Myint, Soe W.; Franklin, Janet; Buenemann, Michaela; Kim, Won; Giri, Chandra
2014-01-01
This study evaluated the effectiveness of different band combinations and classifiers (unsupervised, supervised, object-oriented nearest neighbor, and object-oriented decision rule) for quantifying mangrove forest change using multitemporal Landsat data. A discriminant analysis using spectra of different vegetation types determined that bands 2 (0.52 to 0.6 μm), 5 (1.55 to 1.75 μm), and 7 (2.08 to 2.35 μm) were the most effective bands for differentiating mangrove forests from surrounding land cover types. A ranking of thirty-six change maps, produced by comparing the classification accuracy of twelve change detection approaches, was used. The object-based Nearest Neighbor classifier produced the highest mean overall accuracy (84 percent) regardless of band combinations. The automated decision rule-based approach (mean overall accuracy of 88 percent) as well as a composite of bands 2, 5, and 7 used with the unsupervised classifier and the same composite or all band difference with the object-oriented Nearest Neighbor classifier were the most effective approaches.
The impact of the Rasouli decision: a Survey of Canadian intensivists.
Cape, David; Fox-Robichaud, Alison; Turgeon, Alexis F; Seely, Andrew; Hall, Richard; Burns, Karen; Singal, Rohit K; Dodek, Peter; Bagshaw, Sean; Sibbald, Robert; Downar, James
2016-03-01
In a landmark 2013 decision, the Supreme Court of Canada (SCC) ruled that the withdrawal of life support in certain circumstances is a treatment requiring patient or substitute decision maker (SDM) consent. How intensive care unit (ICU) physicians perceive this ruling is unknown. To determine physician knowledge of and attitudes towards the SCC decision, as well as the self-reported changes in practice attributed to the decision. We surveyed intensivists at university hospitals across Canada. We used a knowledge test and Likert-scale questions to measure respondent knowledge of and attitudes towards the ruling. We used vignettes to assess decision making in cases of intractable physician-SDM conflict over the management of patients with very poor prognoses. We compared management choices pre-SCC decision versus post-SCC decision versus the subjective, respondent-defined most appropriate choice. Responses were compared across predefined subgroups. We performed qualitative analysis on free-text responses. We received 82 responses (response rate=42%). Respondents reported providing high levels of self-defined inappropriate treatment. Although most respondents reported no change in practice, there was a significant overall shift towards higher intensity and less subjectively appropriate management after the SCC decision. Attitudes to the SCC decision and approaches to disputes over end-of-life (EoL) care in the ICU were highly variable. There were no significant differences among predefined subgroups. Many Canadian ICU physicians report providing a higher intensity of treatment, and less subjectively appropriate treatment, in situations of dispute over EoL care after the Supreme Court of Canada's ruling in Cuthbertson versus Rasouli. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mock jury trials in Taiwan--paving the ground for introducing lay participation.
Huang, Kuo-Chang; Lin, Chang-Ching
2014-08-01
The first mock jury study in Taiwan, in which 279 community members watched a videotaped trial, investigated how jurors' estimates of the relative undesirability of wrongful conviction versus wrongful acquittal predicted individual decisions and how decision rules affected outcomes. The percentage of jurors who viewed wrongful conviction as more undesirable increased from 50.9% to 60.9% after deliberation and jurors' postdeliberation acquittal rate (71.7%) was higher than predeliberation acquittal rate (58.8%). Jurors' estimates of the undesirability of wrongful conviction were not correlated with their predeliberation votes but became positively correlated with their postdeliberation decisions. The unanimous rule facilitated jurors' change of vote, predominantly from conviction to acquittal, than the simple majority rule. Jurors reaching a verdict under the unanimous rule viewed deliberation and the verdict more positively. This study indicates that deliberation can ameliorate the problem of most Taiwanese citizens not viewing wrongful conviction as more undesirable than wrongful acquittal. It also suggests that Taiwan should adopt a unanimous rule for its proposed lay participation system.
A decision-support system for the analysis of clinical practice patterns.
Balas, E A; Li, Z R; Mitchell, J A; Spencer, D C; Brent, E; Ewigman, B G
1994-01-01
Several studies documented substantial variation in medical practice patterns, but physicians often do not have adequate information on the cumulative clinical and financial effects of their decisions. The purpose of developing an expert system for the analysis of clinical practice patterns was to assist providers in analyzing and improving the process and outcome of patient care. The developed QFES (Quality Feedback Expert System) helps users in the definition and evaluation of measurable quality improvement objectives. Based on objectives and actual clinical data, several measures can be calculated (utilization of procedures, annualized cost effect of using a particular procedure, and expected utilization based on peer-comparison and case-mix adjustment). The quality management rules help to detect important discrepancies among members of the selected provider group and compare performance with objectives. The system incorporates a variety of data and knowledge bases: (i) clinical data on actual practice patterns, (ii) frames of quality parameters derived from clinical practice guidelines, and (iii) rules of quality management for data analysis. An analysis of practice patterns of 12 family physicians in the management of urinary tract infections illustrates the use of the system.
12 CFR 263.38 - Recommended decision and filing of record.
Code of Federal Regulations, 2010 CFR
2010-01-01
... FEDERAL RESERVE SYSTEM RULES OF PRACTICE FOR HEARINGS Uniform Rules of Practice and Procedure § 263.38... expiration of the time allowed for filing reply briefs under § 263.37(b), the administrative law judge shall... the administrative law judge's recommended decision, recommended findings of fact, recommended...
49 CFR 1115.1 - Scope of rule.
Code of Federal Regulations, 2010 CFR
2010-10-01
... other than initial decisions. For each category, this rule describes the types of appeal permitted, the requirements to be observed in filing an appeal, provisions for stay of the action, and the status of the action in the absence of a stay. (c) Appeals from the decisions of employees acting under authority...
12 CFR 622.12 - Proposed findings and conclusions; recommended decision.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Proposed findings and conclusions; recommended decision. 622.12 Section 622.12 Banks and Banking FARM CREDIT ADMINISTRATION FARM CREDIT SYSTEM RULES OF PRACTICE AND PROCEDURE Rules Applicable to Formal Hearings § 622.12 Proposed findings and conclusions...
Code of Federal Regulations, 2010 CFR
2010-01-01
... provisions of the Atomic Energy Act and to all applicable rules, regulations, decisions and orders of the... conditions when required by amendments of the Atomic Energy Act or other applicable law, or by other rules, regulations, decisions or orders issued in accordance with the terms of the Atomic Energy Act or other...
19 CFR 177.2 - Submission of ruling requests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Headquarters Office will prepare final decisions under § 177.11 (Requests for Advice by Field Officers), or § 174.23 (Further Review of Protests), § 177.10 (Change of Practice), decisions under part 175 of this... Carrier rulings should be addressed to the Commissioner of Customs and Border Protection, Attention...
17 CFR 201.411 - Commission consideration of initial decisions by hearing officers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Commission consideration of initial decisions by hearing officers. 201.411 Section 201.411 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION RULES OF PRACTICE Rules of Practice Appeal to the Commission and...
76 FR 37274 - Outer Continental Shelf Air Regulations Consistency Update for Alaska
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... and prevents EPA from making substantive changes to the requirements it incorporates. As a result, EPA... narrative discussing how EPA made the decision to include or exclude rules. The Alaska Eskimo Whaling Commission expressed specific concern with EPA's decision to exclude administrative and procedural rules and...
An Analysis of Categorical and Quantitative Methods for Planning Under Uncertainty
Langlotz, Curtis P.; Shortliffe, Edward H.
1988-01-01
Decision theory and logical reasoning are both methods for representing and solving medical decision problems. We analyze the usefulness of these two approaches to medical therapy planning by establishing a simple correspondence between decision theory and non-monotonic logic, a formalization of categorical logical reasoning. The analysis indicates that categorical approaches to planning can be viewed as comprising two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of desirability of planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of categorical (nonmonotonic) reasoning: (1) Decision theory and artificial intelligence techniques are intended to solve different components of the planning problem. (2) When considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical logical reasoning for planning under certainty. (3) Because certain nonmonotonic programming paradigms (e.g., frame-based inheritance, rule-based planning, protocol-based reminders) are inherently problem-specific, they may be inappropriate to employ in the solution of certain types of planning problems. We discuss how these conclusions affect several current medical informatics research issues, including the construction of “very large” medical knowledge bases.
Instance-based categorization: automatic versus intentional forms of retrieval.
Neal, A; Hesketh, B; Andrews, S
1995-03-01
Two experiments are reported which attempt to disentangle the relative contribution of intentional and automatic forms of retrieval to instance-based categorization. A financial decision-making task was used in which subjects had to decide whether a bank would approve loans for a series of applicants. Experiment 1 found that categorization was sensitive to instance-specific knowledge, even when subjects had practiced using a simple rule. L. L. Jacoby's (1991) process-dissociation procedure was adapted for use in Experiment 2 to infer the relative contribution of intentional and automatic retrieval processes to categorization decisions. The results provided (1) strong evidence that intentional retrieval processes influence categorization, and (2) some preliminary evidence suggesting that automatic retrieval processes may also contribute to categorization decisions.
An automated approach to the design of decision tree classifiers
NASA Technical Reports Server (NTRS)
Argentiero, P.; Chin, R.; Beaudet, P.
1982-01-01
An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.
Hierarchy-associated semantic-rule inference framework for classifying indoor scenes
NASA Astrophysics Data System (ADS)
Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei
2016-03-01
Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.
Granular Flow Graph, Adaptive Rule Generation and Tracking.
Pal, Sankar Kumar; Chakraborty, Debarati Bhunia
2017-12-01
A new method of adaptive rule generation in granular computing framework is described based on rough rule base and granular flow graph, and applied for video tracking. In the process, several new concepts and operations are introduced, and methodologies formulated with superior performance. The flow graph enables in defining an intelligent technique for rule base adaptation where its characteristics in mapping the relevance of attributes and rules in decision-making system are exploited. Two new features, namely, expected flow graph and mutual dependency between flow graphs are defined to make the flow graph applicable in the tasks of both training and validation. All these techniques are performed in neighborhood granular level. A way of forming spatio-temporal 3-D granules of arbitrary shape and size is introduced. The rough flow graph-based adaptive granular rule-based system, thus produced for unsupervised video tracking, is capable of handling the uncertainties and incompleteness in frames, able to overcome the incompleteness in information that arises without initial manual interactions and in providing superior performance and gaining in computation time. The cases of partial overlapping and detecting the unpredictable changes are handled efficiently. It is shown that the neighborhood granulation provides a balanced tradeoff between speed and accuracy as compared to pixel level computation. The quantitative indices used for evaluating the performance of tracking do not require any information on ground truth as in the other methods. Superiority of the algorithm to nonadaptive and other recent ones is demonstrated extensively.
18 CFR 385.702 - Definitions (Rule 702).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Definitions (Rule 702). 385.702 Section 385.702 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY PROCEDURAL RULES RULES OF PRACTICE AND PROCEDURE Decisions § 385.702 Definitions (Rule...
Decision making in recurrent neuronal circuits.
Wang, Xiao-Jing
2008-10-23
Decision making has recently emerged as a central theme in neurophysiological studies of cognition, and experimental and computational work has led to the proposal of a cortical circuit mechanism of elemental decision computations. This mechanism depends on slow recurrent synaptic excitation balanced by fast feedback inhibition, which not only instantiates attractor states for forming categorical choices but also long transients for gradually accumulating evidence in favor of or against alternative options. Such a circuit endowed with reward-dependent synaptic plasticity is able to produce adaptive choice behavior. While decision threshold is a core concept for reaction time tasks, it can be dissociated from a general decision rule. Moreover, perceptual decisions and value-based economic choices are described within a unified framework in which probabilistic choices result from irregular neuronal activity as well as iterative interactions of a decision maker with an uncertain environment or other unpredictable decision makers in a social group.
Expert system training and control based on the fuzzy relation matrix
NASA Technical Reports Server (NTRS)
Ren, Jie; Sheridan, T. B.
1991-01-01
Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.
Dynamics of Sequential Decision Making
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Huerta, Ramón; Afraimovich, Valentin
2006-11-01
We suggest a new paradigm for intelligent decision-making suitable for dynamical sequential activity of animals or artificial autonomous devices that depends on the characteristics of the internal and external world. To do it we introduce a new class of dynamical models that are described by ordinary differential equations with a finite number of possibilities at the decision points, and also include rules solving this uncertainty. Our approach is based on the competition between possible cognitive states using their stable transient dynamics. The model controls the order of choosing successive steps of a sequential activity according to the environment and decision-making criteria. Two strategies (high-risk and risk-aversion conditions) that move the system out of an erratic environment are analyzed.
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst
2017-11-01
Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.
Learning of Rule Ensembles for Multiple Attribute Ranking Problems
NASA Astrophysics Data System (ADS)
Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin
In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.
Automated control of hierarchical systems using value-driven methods
NASA Technical Reports Server (NTRS)
Pugh, George E.; Burke, Thomas E.
1990-01-01
An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.
How mechanisms of perceptual decision-making affect the psychometric function.
Gold, Joshua I; Ding, Long
2013-04-01
Psychometric functions are often interpreted in the context of Signal Detection Theory, which emphasizes a distinction between sensory processing and non-sensory decision rules in the brain. This framework has helped to relate perceptual sensitivity to the "neurometric" sensitivity of sensory-driven neural activity. However, perceptual sensitivity, as interpreted via Signal Detection Theory, is based on not just how the brain represents relevant sensory information, but also how that information is read out to form the decision variable to which the decision rule is applied. Here we discuss recent advances in our understanding of this readout process and describe its effects on the psychometric function. In particular, we show that particular aspects of the readout process can have specific, identifiable effects on the threshold, slope, upper asymptote, time dependence, and choice dependence of psychometric functions. To illustrate these points, we emphasize studies of perceptual learning that have identified changes in the readout process that can lead to changes in these aspects of the psychometric function. We also discuss methods that have been used to distinguish contributions of the sensory representation versus its readout to psychophysical performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
Ertefaie, Ashkan; Shortreed, Susan; Chakraborty, Bibhas
2016-06-15
Q-learning is a regression-based approach that uses longitudinal data to construct dynamic treatment regimes, which are sequences of decision rules that use patient information to inform future treatment decisions. An optimal dynamic treatment regime is composed of a sequence of decision rules that indicate how to optimally individualize treatment using the patients' baseline and time-varying characteristics to optimize the final outcome. Constructing optimal dynamic regimes using Q-learning depends heavily on the assumption that regression models at each decision point are correctly specified; yet model checking in the context of Q-learning has been largely overlooked in the current literature. In this article, we show that residual plots obtained from standard Q-learning models may fail to adequately check the quality of the model fit. We present a modified Q-learning procedure that accommodates residual analyses using standard tools. We present simulation studies showing the advantage of the proposed modification over standard Q-learning. We illustrate this new Q-learning approach using data collected from a sequential multiple assignment randomized trial of patients with schizophrenia. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Cooperation and Defection in Ghetto
NASA Astrophysics Data System (ADS)
Kułakowski, Krzysztof
We consider ghetto as a community of people ruled against their will by an external power. Members of the community feel that their laws are broken. However, attempts to leave ghetto makes their situation worse. We discuss the relation of the ghetto inhabitants to the ruling power in context of their needs, organized according to the Maslow hierarchy. Decisions how to satisfy successive needs are undertaken in cooperation with or defection the ruling power. This issue allows to construct the tree of decisions and to adopt the pruning technique from the game theory. Dynamics of decisions can be described within the formalism of fundamental equations. The result is that the strategy of defection is stabilized by the estimated payoff.
76 FR 44650 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-26
... its decision to exempt nineteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' [(49 CFR 391.41(b)(3))]. FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 9867 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... its decision to exempt fifteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 5873 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... its decision to exempt fifteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 17116 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... its decision to exempt nineteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 79759 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... its decision to exempt eighteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 536 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... its decision to exempt eighteen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 13685 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... its decision to exempt twenty individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 5243 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... its decision to exempt seventeen individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
75 FR 71704 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... for decisions, and follow-up), recordkeeping, and annual audits. The Rule requires that IDSMs... not include any sensitive personal information, such as any individual's Social Security number, date..., staff has adjusted its previous estimates based on the following two factors. First, the annual audits...
Multiple symbol partially coherent detection of MPSK
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
1992-01-01
It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.
Decision-making in pigeon flocks: a democratic view of leadership.
Jorge, Paulo E; Marques, Paulo A M
2012-07-15
When travelling in groups, animals frequently have to make decisions on the direction of travel. These decisions can be based on consensus, when all individuals take part in the decision (i.e. democratic decision; social information), or leadership, when one member or a minority of members make the decision (i.e. despotic decision; personal information). Here we investigated whether decision-making on the navigation of small flocks is based on democratic or despotic decisions. Using individual and flock releases as the experimental approach, we compared the homing performances of homing pigeons that fly singly and in groups of three. Our findings show that although small groups were either governed (i.e. when individuals in the flock had age differences) or not (i.e. when individuals in the flock had the same age) by leaders, with concern to decision-making they were all ruled by democratic decisions. Moreover, the individual homing performances were not associated with leadership. Because true leaders did not assume right away the front position in the flock, we suggest that as in human groups, starting from a central position is more effective as it allows leaders to not only transmit their own information but also to average the tendencies of the other group members. Together, the results highlight the importance of democratic decisions in group decision-making.
Simulation of California's Major Reservoirs Outflow Using Data Mining Technique
NASA Astrophysics Data System (ADS)
Yang, T.; Gao, X.; Sorooshian, S.
2014-12-01
The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.
Bond, G R; Pièche, S; Sonicki, Z; Gamaluddin, H; El Guindi, M; Sakr, M; El Seddawy, A; Abouzaid, M; Youssef, A
2008-03-01
Unintended hydrocarbon ingestion is a common reason for pediatric hospitalization in the developing world. To derive a clinical decision rule, to identify patients likely to require a higher level facility (resource-requiring cases), that can be used at primary health care facilities with limited diagnostic and therapeutic resources. A prospective study of children 2 to 59 months old presenting to a poison treatment facility within 2 hours of oral hydrocarbon exposure. History and objective signs were recorded at admission and at 6, 12, 24 and, if present, 48 hours. Inclusion in the resource-requiring outcome group required: oxygen saturation <94%; any CNS depression; any treatment with (salbutamol); any care in the ICU; or death. 256 met the inclusion criteria and completed the study. Of these, 170 had a course requiring resources unavailable at most primary health care facilities, and 86 did not. The presence of wheezing, any alteration in consciousness (lethargy or any restlessness), or a rapid respiratory rate for age (RR >or= 50/min if age < 12 mo, >or= 40/min if age >or= 12 mo) at presentation identified 167 of 170 of these patients (sensitivity 0.98). Thirty-six of 86 patients classified as non-resource requiring were correctly identified (specificity 0.42). No combination of clinical symptoms provided better discrimination while preserving sensitivity. This study suggests a triage decision rule based on the presence of wheezing, altered consciousness, or a rapid respiratory rate within 2 hours of hydrocarbon exposure. Such a rule requires validation in other settings.
ERIC Educational Resources Information Center
Gutierrez, Kathrine J.; Green, Preston C., III
2004-01-01
The Supreme Court of the USA explains when universities may use race-based admissions policies without violating the Equal Protection Clause of the US Constitution. These rulings raise important ethical issues for universities that are presently using race as a consideration in their admissions decisions. This paper discusses some of the ethical…
Robb, Gillian; Reid, Duncan; Arroll, Bruce; Jackson, Rod T; Goodyear-Smith, Felicity
2007-02-16
To summarise evidence and key recommendations for general practitioner diagnosis and management of acute soft-tissue knee injuries, based on the New Zealand guideline. A multidisciplinary team developed the guideline by critically appraising and grading retrieved literature using the Graphic Appraisal Tools for Epidemiology, Clinical decision rules and the Scottish Intercollegiate Guideline Network. Recommendations were derived from resulting evidence tables. For both diagnosis and management there is a paucity of good evidence to support diagnosis and treatment of internal derangements of the knee, hence some aspects of the guideline are guideline team consensus. Good evidence supports the use of the Ottawa Knee rules to guide decisions about the use of X-ray, and the Lachman test in diagnosing anterior cruciate ligament (ACL) tears. Evidence supports inclusion of proprioceptive training in rehabilitation programmes following ACL reconstruction and in people with ACL-deficient knees. There is good evidence that ultrasound is of little benefit, and there is no evidence that physiotherapy be routinely advocated following meniscectomy. This guideline provides an evidence-based framework for diagnosis and management of internal derangements of the knee following acute injury. Moreover, its development highlights significant gaps in the evidence base and identifies priorities for new research.
Fulton, Lawrence; Kerr, Bernie; Inglis, James M; Brooks, Matthew; Bastian, Nathaniel D
2015-07-01
In this study, we re-evaluate air ambulance requirements (rules of allocation) and planning considerations based on an Army-approved, Theater Army Analysis scenario. A previous study using workload only estimated a requirement of 0.4 to 0.6 aircraft per admission, a significant bolus over existence-based rules. In this updated study, we estimate requirements for Phase III (major combat operations) using a simulation grounded in previously published work and Phase IV (stability operations) based on four rules of allocation: unit existence rules, workload factors, theater structure (geography), and manual input. This study improves upon previous work by including the new air ambulance mission requirements of Department of Defense 51001.1, Roles and Functions of the Services, by expanding the analysis over two phases, and by considering unit rotation requirements known as Army Force Generation based on Department of Defense policy. The recommendations of this study are intended to inform future planning factors and already provided decision support to the Army Aviation Branch in determining force structure requirements. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Evaluation of EMERGE, a Medical Decision Making Aid for Analysis of Chest Pain
Hudson, Donna L.; Cohen, Moses E.; Deedwania, Prakash C.; Watson, Patricia E.
1983-01-01
EMERGE, a rule-based medical decision making aid for analysis of chest pain in the emergency room, was evaluated using retrospective patient data. The analysis consisted of two phases. In the initial phase, patient cases were run in order to make minor modifications and adjustments in the criteria used for determination of admission. In the second phase, patient cases were analyzed to determine the effectiveness of the EMERGE system in arriving at the proper conclusion.
4 CFR 22.4 - Appeal File [Rule 4].
Code of Federal Regulations, 2010 CFR
2010-01-01
... contracting officer relied in making the decision, and any correspondence relating thereto; (v) Transcripts of... 4 Accounts 1 2010-01-01 2010-01-01 false Appeal File [Rule 4]. 22.4 Section 22.4 Accounts... consisting of all documents pertinent to the appeal, including: (i) The decision from which the appeal is...
29 CFR 18.103 - Rulings on evidence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... is more probably true than not true that the error did not materially contribute to the decision or... if explicitly not relied upon by the judge in support of the decision or order. (b) Record of offer... making of an offer in question and answer form. (c) Plain error. Nothing in this rule precludes taking...
34 CFR 31.8 - Rules of decision.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Rules of decision. 31.8 Section 31.8 Education Office of the Secretary, Department of Education SALARY OFFSET FOR FEDERAL EMPLOYEES WHO ARE INDEBTED TO THE.... (3) The act or omission of an institution of higher education at which the employee was enrolled does...
Student Expression: The Uncertain Future
ERIC Educational Resources Information Center
Bathon, Justin M.; McCarthy, Martha M.
2008-01-01
On June 25, 2007, the United States Supreme Court rendered its decision in "Morse v. Frederick", a long-awaited ruling regarding student speech in public schools. For nearly twenty years, the Supreme Court had been silent on the issue while lower courts attempted to apply the rules announced in previous Supreme Court decisions. It is…
The Multifold Relationship Between Memory and Decision Making: An Individual-differences Study
Del Missier, Fabio; Mäntylä, Timo; Hansson, Patrik; Bruine de Bruin, Wändi; Parker, Andrew M.; Nilsson, Lars-Göran
2014-01-01
Several judgment and decision-making tasks are assumed to involve memory functions, but significant knowledge gaps on the memory processes underlying these tasks remain. In a study on 568 adults between 25 to 80 years, hypotheses were tested on the specific relationships between individual differences in working memory, episodic memory, and semantic memory, respectively, and six main components of decision-making competence. In line with the hypotheses, working memory was positively related with the more cognitively-demanding tasks (Resistance to Framing, Applying Decision Rules, and Under/Overconfidence), whereas episodic memory was positively associated with a more experience-based judgment task (Recognizing Social Norms). Furthermore, semantic memory was positively related with two more knowledge-based decision-making tasks (Consistency in Risk Perception and Resistance to Sunk Costs). Finally, the age-related decline observed in some of the decision-making tasks was (partially or totally) mediated by the age-related decline in working memory or episodic memory. These findings are discussed in relation to the functional roles fulfilled by different memory processes in judgment and decision-making tasks. PMID:23565790
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Patient or physician preferences for decision analysis: the prenatal genetic testing decision.
Heckerling, P S; Verp, M S; Albert, N
1999-01-01
The choice between amniocentesis and chorionic villus sampling for prenatal genetic testing involves tradeoffs of the benefits and risks of the tests. Decision analysis is a method of explicitly weighing such tradeoffs. The authors examined the relationship between prenatal test choices made by patients and the choices prescribed by decision-analytic models based on their preferences, and separate models based on the preferences of their physicians. Preferences were assessed using written scenarios describing prenatal testing outcomes, and were recorded on linear rating scales. After adjustment for sociodemographic and obstetric confounders, test choice was significantly associated with the choice of decision models based on patient preferences (odds ratio 4.44; Cl, 2.53 to 7.78), but not with the choice of models based on the preferences of the physicians (odds ratio 1.60; Cl, 0.79 to 3.26). Agreement between decision analyses based on patient preferences and on physician preferences was little better than chance (kappa = 0.085+/-0.063). These results were robust both to changes in the decision-analytic probabilities and to changes in the model structure itself to simulate non-expected utility decision rules. The authors conclude that patient but not physician preferences, incorporated in decision models, correspond to the choice of amniocentesis or chorionic villus sampling made by the patient. Nevertheless, because patient preferences were assessed after referral for genetic testing, prospective preference-assessment studies will be necessary to confirm this association.
Gubhaju, Bina; De Jong, Gordon F
2009-03-01
This research tests the thesis that the neoclassical micro-economic and the new household economic theoretical assumptions on migration decision-making rules are segmented by gender, marital status, and time frame of intention to migrate. Comparative tests of both theories within the same study design are relatively rare. Utilizing data from the Causes of Migration in South Africa national migration survey, we analyze how individually held "own-future" versus alternative "household well-being" migration decision rules effect the intentions to migrate of male and female adults in South Africa. Results from the gender and marital status specific logistic regressions models show consistent support for the different gender-marital status decision rule thesis. Specifically, the "maximizing one's own future" neoclassical microeconomic theory proposition is more applicable for never married men and women, the "maximizing household income" proposition for married men with short-term migration intentions, and the "reduce household risk" proposition for longer time horizon migration intentions of married men and women. Results provide new evidence on the way household strategies and individual goals jointly affect intentions to move or stay.
The WHI offers an opportunity to evaluate ovarian cancer markers and screening decision rules developed and validated in EDRN CVC Studies 2 and 3 in women who were not being screened. It is particularly well suited to validation of risk markers, since many serum samples were drawn well before clinical diagnosis of cancer in the WHI cohorts. A strategy is needed to identify from among the general population of women over the age of 50 those at high-risk for a diagnosis of ovarian/fallopian tube cancer so that they can be referred for appropriate surveillance, imaging or surgical consult. Tools to identify high-risk women will be investigated including serum markers CA125, HE4, MSLN, and MMP7 and epidemiologic risk factors. We will optimize decision rules using stored serum samples from the WHI OS and conduct a simulated prospective validation using stored serum samples from the WHI CT. Decision rules to select women for ovarian cancer screening will be investigated as well as decision rules for use in ovarian cancer screening.
Ventral striatum and the evaluation of memory retrieval strategies.
Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M; Scimeca, Jason M
2014-09-01
Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant's subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.
Alpha-beta coordination method for collective search
Goldsmith, Steven Y.
2002-01-01
The present invention comprises a decentralized coordination strategy called alpha-beta coordination. The alpha-beta coordination strategy is a family of collective search methods that allow teams of communicating agents to implicitly coordinate their search activities through a division of labor based on self-selected roles and self-determined status. An agent can play one of two complementary roles. An agent in the alpha role is motivated to improve its status by exploring new regions of the search space. An agent in the beta role is also motivated to improve its status, but is conservative and tends to remain aggregated with other agents until alpha agents have clearly identified and communicated better regions of the search space. An agent can select its role dynamically based on its current status value relative to the status values of neighboring team members. Status can be determined by a function of the agent's sensor readings, and can generally be a measurement of source intensity at the agent's current location. An agent's decision cycle can comprise three sequential decision rules: (1) selection of a current role based on the evaluation of the current status data, (2) selection of a specific subset of the current data, and (3) determination of the next heading using the selected data. Variations of the decision rules produce different versions of alpha and beta behaviors that lead to different collective behavior properties.
Hoover, Kevin M.; Bubak, Andrew N.; Law, Isaac J.; Yaeger, Jazmine D. W.; Renner, Kenneth J.; Swallow, John G.; Greene, Michael J.
2016-01-01
Abstract Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant’s brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and aggression. In this article, we develop and explore an agent-based model that conceptualizes how individual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based decision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions. PMID:29491915
Context-rich semantic framework for effective data-to-decisions in coalition networks
NASA Astrophysics Data System (ADS)
Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien
2013-05-01
In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.
Hoover, Kevin M; Bubak, Andrew N; Law, Isaac J; Yaeger, Jazmine D W; Renner, Kenneth J; Swallow, John G; Greene, Michael J
2016-06-01
Ant colonies self-organize to solve complex problems despite the simplicity of an individual ant's brain. Pavement ant Tetramorium caespitum colonies must solve the problem of defending the territory that they patrol in search of energetically rich forage. When members of 2 colonies randomly interact at the territory boundary a decision to fight occurs when: 1) there is a mismatch in nestmate recognition cues and 2) each ant has a recent history of high interaction rates with nestmate ants. Instead of fighting, some ants will decide to recruit more workers from the nest to the fighting location, and in this way a positive feedback mediates the development of colony wide wars. In ants, the monoamines serotonin (5-HT) and octopamine (OA) modulate many behaviors associated with colony organization and in particular behaviors associated with nestmate recognition and aggression. In this article, we develop and explore an agent-based model that conceptualizes how individual changes in brain concentrations of 5-HT and OA, paired with a simple threshold-based decision rule, can lead to the development of colony wide warfare. Model simulations do lead to the development of warfare with 91% of ants fighting at the end of 1 h. When conducting a sensitivity analysis, we determined that uncertainty in monoamine concentration signal decay influences the behavior of the model more than uncertainty in the decision-making rule or density. We conclude that pavement ant behavior is consistent with the detection of interaction rate through a single timed interval rather than integration of multiple interactions.
Keogh, Claire; Wallace, Emma; O’Brien, Kirsty K.; Galvin, Rose; Smith, Susan M.; Lewis, Cliona; Cummins, Anthony; Cousins, Grainne; Dimitrov, Borislav D.; Fahey, Tom
2014-01-01
PURPOSE We describe the methodology used to create a register of clinical prediction rules relevant to primary care. We also summarize the rules included in the register according to various characteristics. METHODS To identify relevant articles, we searched the MEDLINE database (PubMed) for the years 1980 to 2009 and supplemented the results with searches of secondary sources (books on clinical prediction rules) and personal resources (eg, experts in the field). The rules described in relevant articles were classified according to their clinical domain, the stage of development, and the clinical setting in which they were studied. RESULTS Our search identified clinical prediction rules reported between 1965 and 2009. The largest share of rules (37.2%) were retrieved from PubMed. The number of published rules increased substantially over the study decades. We included 745 articles in the register; many contained more than 1 clinical prediction rule study (eg, both a derivation study and a validation study), resulting in 989 individual studies. In all, 434 unique rules had gone through derivation; however, only 54.8% had been validated and merely 2.8% had undergone analysis of their impact on either the process or outcome of clinical care. The rules most commonly pertained to cardiovascular disease, respiratory, and musculoskeletal conditions. They had most often been studied in the primary care or emergency department settings. CONCLUSIONS Many clinical prediction rules have been derived, but only about half have been validated and few have been assessed for clinical impact. This lack of thorough evaluation for many rules makes it difficult to retrieve and identify those that are ready for use at the point of patient care. We plan to develop an international web-based register of clinical prediction rules and computer-based clinical decision support systems. PMID:25024245
Klaczynski, Paul A
2011-05-01
To examine age trends in precedent-setting decisions and the effects of these decisions on perceptions of authorities, preadolescents and adolescents were presented with deontic rule infractions that occurred in the absence or presence of mitigating circumstances. In Study 1, in the absence of mitigating circumstances, adolescents recommended punishing rule violations more than preadolescents; when mitigating circumstances were present, adolescents recommended punishing infractions less than preadolescents. In Study 2, before and after receiving information that authorities had punished or permitted rule violations, participants indicated their beliefs in authority legitimacy, rule strength, and rule deterrence value. In the absence of mitigating circumstances, beliefs strengthened when infractions were punished and beliefs weakened when infractions were permitted. When mitigating circumstances were present and authorities punished violations, preadolescents' legitimacy and deterrence beliefs strengthened. Adolescents' deterrence beliefs strengthened, but their beliefs in authority legitimacy weakened. When justifiable infractions were permitted, preadolescents' legitimacy and deterrence beliefs weakened, whereas adolescents' beliefs strengthened. Discussion focuses on age differences in legitimacy beliefs and understanding the consequences of setting precedents and on the relevance of the findings to theories of deontic reasoning, moral judgments, and epistemological development. Copyright © 2010 Elsevier Inc. All rights reserved.
Empirical Analysis and Refinement of Expert System Knowledge Bases
1990-03-31
the number of hidden units and the error rates is listed in Figure 6. 3.3. Cancer Data A data qet for eva!ukting th.- Frognosis of breast cancer ...Alternative Rule Induction Methods A data set for evaluating the prognosis of breast cancer recurrence was analyzed by Michalski’s AQI5 rule induction program...AQ15 7 2 32% PVM 2 1 23% Figure 6-3: Comparative Summa-y for AQI5 and PVM on Breast Cancer Data 6.2.2. Alternative Decision Tree Induction Methods
Wallace, Lorraine Silver; Ballard, Joyce E.; Holiday, David; Turner, Lori W.; Keenum, Amy J.; Pearman, Cynthia M.
2004-01-01
OBJECTIVE: While African-American women tend to have greater bone mineral density (BMD) than caucasian women, they are still at risk of developing osteoporosis later in life. Clinical decision rules (i.e., algorithms) have been developed to assist clinicians identify women at greatest risk of low BMD. However, such tools have only been validated in caucasian and Asian populations. Accordingly, the objective of this study was to compare the performance of five clinical decision rules in identifying postmenopausal African-American women at greatest risk for low femoral BMD. METHODOLOGY: One hundred-seventy-four (n=174) postmenopausal African-American women completed a valid and reliable oral questionnaire to assess lifestyle characteristics, and completed height and weight measures. BMD at the femoral neck was measured via dual energy x-ray absorptiometry (DXA). We calculated sensitivity, specificity, positive predictive value, and negative predictive value for identifying African-American women with low BMD (T-Score < or = -2.0 SD) using five clinical decision rules: Age, Body Size, No Estrogen (ABONE), Osteoporosis Risk Assessment Instrument (ORAI), Osteoporosis Self-Assessment Tool (OST), Simple Calculated Osteoporosis Risk Estimation (SCORE), and body weight less than 70 kg. RESULTS: Approximately 30% of African-American women had low BMD, half of whom had osteoporosis (BMD T-Score < or = -2.5 SD). Sensitivity for identifying women with a low BMD (T-Score < or = -2.0 SD) ranged from 65.57-83.61%, while specificity ranged from 53.85-78.85%. Positive predictive values ranged from 80.95-87.91%, while negative predictive values ranged from 48.44-58.33%. CONCLUSION: Our data suggest that the clinical decision rules analyzed in this study have some usefulness for identifying postmenopausal African-American women with low BMD. However, there is a need to establish cut-points for these clinical decision rules in a larger, more diverse sample of African-American women. PMID:15040510
The impact of sleep deprivation on decision making: a review.
Harrison, Y; Horne, J A
2000-09-01
Few sleep deprivation (SD) studies involve realism or high-level decision making, factors relevant to managers, military commanders, and so forth, who are undergoing prolonged work during crises. Instead, research has favored simple tasks sensitive to SD mostly because of their dull monotony. In contrast, complex rule-based, convergent, and logical tasks are unaffected by short-term SD, seemingly because of heightened participant interest and compensatory effort. However, recent findings show that despite this effort, SD still impairs decision making involving the unexpected, innovation, revising plans, competing distraction, and effective communication. Decision-making models developed outside SD provide useful perspectives on these latter effects, as does a neuropsychological explanation of sleep function. SD presents particular difficulties for sleep-deprived decision makers who require these latter skills during emergency situations.
Heuristics: foundations for a novel approach to medical decision making.
Bodemer, Nicolai; Hanoch, Yaniv; Katsikopoulos, Konstantinos V
2015-03-01
Medical decision-making is a complex process that often takes place during uncertainty, that is, when knowledge, time, and resources are limited. How can we ensure good decisions? We present research on heuristics-simple rules of thumb-and discuss how medical decision-making can benefit from these tools. We challenge the common view that heuristics are only second-best solutions by showing that they can be more accurate, faster, and easier to apply in comparison to more complex strategies. Using the example of fast-and-frugal decision trees, we illustrate how heuristics can be studied and implemented in the medical context. Finally, we suggest how a heuristic-friendly culture supports the study and application of heuristics as complementary strategies to existing decision rules.
Kameda, Tatsuya; Tsukasaki, Takafumi; Hastie, Reid; Berg, Nathan
2011-01-01
We introduce a game theory model of individual decisions to cooperate by contributing personal resources to group decisions versus by free riding on the contributions of other members. In contrast to most public-goods games that assume group returns are linear in individual contributions, the present model assumes decreasing marginal group production as a function of aggregate individual contributions. This diminishing marginal returns assumption is more realistic and generates starkly different predictions compared to the linear model. One important implication is that, under most conditions, there exist equilibria where some, but not all, members of a group contribute, even with completely self-interested motives. An agent-based simulation confirmed the individual and group advantages of the equilibria in which behavioral asymmetry emerges from a game structure that is a priori perfectly symmetric for all agents (all agents have the same payoff function and action space but take different actions in equilibria). A behavioral experiment demonstrated that cooperators and free riders coexist in a stable manner in groups performing with the nonlinear production function. A collateral result demonstrated that, compared to a dictatorial decision scheme guided by the best member in a group, the majority/plurality decision rules can pool information effectively and produce greater individual net welfare at equilibrium, even if free riding is not sanctioned. This is an original proof that cooperation in ad hoc decision-making groups can be understood in terms of self-interested motivations and that, despite the free-rider problem, majority/plurality decision rules can function robustly as simple, efficient social decision heuristics.
Hess, Erik P; Wells, George A; Jaffe, Allan; Stiell, Ian G
2008-01-01
Background Chest pain is the second most common chief complaint in North American emergency departments. Data from the U.S. suggest that 2.1% of patients with acute myocardial infarction and 2.3% of patients with unstable angina are misdiagnosed, with slightly higher rates reported in a recent Canadian study (4.6% and 6.4%, respectively). Information obtained from the history, 12-lead ECG, and a single set of cardiac enzymes is unable to identify patients who are safe for early discharge with sufficient sensitivity. The 2007 ACC/AHA guidelines for UA/NSTEMI do not identify patients at low risk for adverse cardiac events who can be safely discharged without provocative testing. As a result large numbers of low risk patients are triaged to chest pain observation units and undergo provocative testing, at significant cost to the healthcare system. Clinical decision rules use clinical findings (history, physical exam, test results) to suggest a diagnostic or therapeutic course of action. Currently no methodologically robust clinical decision rule identifies patients safe for early discharge. Methods/design The goal of this study is to derive a clinical decision rule which will allow emergency physicians to accurately identify patients with chest pain who are safe for early discharge. The study will utilize a prospective cohort design. Standardized clinical variables will be collected on all patients at least 25 years of age complaining of chest pain prior to provocative testing. Variables strongly associated with the composite outcome acute myocardial infarction, revascularization, or death will be further analyzed with multivariable analysis to derive the clinical rule. Specific aims are to: i) apply standardized clinical assessments to patients with chest pain, incorporating results of early cardiac testing; ii) determine the inter-observer reliability of the clinical information; iii) determine the statistical association between the clinical findings and the composite outcome; and iv) use multivariable analysis to derive a highly sensitive clinical decision rule to guide triage decisions. Discussion The study will derive a highly sensitive clinical decision rule to identify low risk patients safe for early discharge. This will improve patient care, lower healthcare costs, and enhance flow in our busy and overcrowded emergency departments. PMID:18254973
Leroy, Sandrine; Bouissou, François; Fernandez-Lopez, Anna; Gurgoze, Metin K.; Karavanaki, Kyriaki; Ulinski, Tim; Bressan, Silvia; Vaos, Geogios; Leblond, Pierre; Coulais, Yvon; Cubells, Carlos Luaces; Aygun, A. Denizmen; Stefanidis, Constantinos J.; Bensman, Albert; DaDalt, Liviana; Gardikis, Stefanos; Bigot, Sandra; Gendrel, Dominique; Bréart, Gérard; Chalumeau, Martin
2011-01-01
Background Predicting vesico-ureteral reflux (VUR) ≥3 at the time of the first urinary tract infection (UTI) would make it possible to restrict cystography to high-risk children. We previously derived the following clinical decision rule for that purpose: cystography should be performed in cases with ureteral dilation and a serum procalcitonin level ≥0.17 ng/mL, or without ureteral dilatation when the serum procalcitonin level ≥0.63 ng/mL. The rule yielded a 86% sensitivity with a 46% specificity. We aimed to test its reproducibility. Study Design A secondary analysis of prospective series of children with a first UTI. The rule was applied, and predictive ability was calculated. Results The study included 413 patients (157 boys, VUR ≥3 in 11%) from eight centers in five countries. The rule offered a 46% specificity (95% CI, 41–52), not different from the one in the derivation study. However, the sensitivity significantly decreased to 64% (95%CI, 50–76), leading to a difference of 20% (95%CI, 17–36). In all, 16 (34%) patients among the 47 with VUR ≥3 were misdiagnosed by the rule. This lack of reproducibility might result primarily from a difference between derivation and validation populations regarding inflammatory parameters (CRP, PCT); the validation set samples may have been collected earlier than for the derivation one. Conclusions The rule built to predict VUR ≥3 had a stable specificity (ie. 46%), but a decreased sensitivity (ie. 64%) because of the time variability of PCT measurement. Some refinement may be warranted. PMID:22216314
76 FR 22940 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... its decision to exempt twenty-one individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 61655 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-10
... its decision to exempt 17 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 53707 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... its decision to exempt twenty-two individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
78 FR 19798 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... its decision to exempt 19 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 70529 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... its decision to exempt 18 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 59450 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-27
... its decision to exempt 19 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 69795 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... its decision to exempt twenty-two individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 27841 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... its decision to exempt 19 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
76 FR 32015 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... its decision to exempt twenty-three individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
77 FR 33264 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... its decision to exempt 22 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
75 FR 70077 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... its decision to exempt thirty-two individuals from its rule prohibiting persons with insulin-treated... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
78 FR 5559 - Qualification of Drivers; Exemption Applications; Diabetes Mellitus
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... its decision to exempt 26 individuals from its rule prohibiting persons with insulin-treated diabetes... insulin for control'' (49 CFR 391.41(b)(3)). FMCSA established its diabetes exemption program, based on... Qualify Individuals with Insulin-Treated Diabetes Mellitus to Operate in Interstate Commerce as Directed...
42 CFR 423.2000 - Hearing before an ALJ: general rule.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES (CONTINUED) MEDICARE PROGRAM VOLUNTARY MEDICARE PRESCRIPTION DRUG BENEFIT Reopening, ALJ Hearings... subject to the restrictions in § 423.2018, examine the evidence used in making the determination under... conducts a de novo review and issues a decision based on the hearing record. (e) If an enrollee waives his...
Does the cost function matter in Bayes decision rule?
Schlü ter, Ralf; Nussbaum-Thom, Markus; Ney, Hermann
2012-02-01
In many tasks in pattern recognition, such as automatic speech recognition (ASR), optical character recognition (OCR), part-of-speech (POS) tagging, and other string recognition tasks, we are faced with a well-known inconsistency: The Bayes decision rule is usually used to minimize string (symbol sequence) error, whereas, in practice, we want to minimize symbol (word, character, tag, etc.) error. When comparing different recognition systems, we do indeed use symbol error rate as an evaluation measure. The topic of this work is to analyze the relation between string (i.e., 0-1) and symbol error (i.e., metric, integer valued) cost functions in the Bayes decision rule, for which fundamental analytic results are derived. Simple conditions are derived for which the Bayes decision rule with integer-valued metric cost function and with 0-1 cost gives the same decisions or leads to classes with limited cost. The corresponding conditions can be tested with complexity linear in the number of classes. The results obtained do not make any assumption w.r.t. the structure of the underlying distributions or the classification problem. Nevertheless, the general analytic results are analyzed via simulations of string recognition problems with Levenshtein (edit) distance cost function. The results support earlier findings that considerable improvements are to be expected when initial error rates are high.
Magid, Steven K; Pancoast, Paul E; Fields, Theodore; Bradley, Diane G; Williams, Robert B
2007-01-01
Clinical decision support can be employed to increase patient safety and improve workflow efficiencies for physicians and other healthcare providers. Physician input into the design and deployment of clinical decision support systems can increase the utility of the alerts and reduce the likelihood of "alert fatigue." The Hospital for Special Surgery is a 146-bed orthopedic facility that performs approximately 18,000 surgeries a year Efficient work processes are a necessity. The facility began implementing a new electronic health record system in June 2005 and plan to go live in summer 2007. This article reports on some of the clinical decision support rules and alerts being incorporated into the facility's system in the following categories--high-risk, high-frequency scenarios, rules that provide efficiencies and value from the presciber perspective, and rules that relate to patient safety.
Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L
2013-12-01
Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goranitis, Ilias; Coast, Joanna; Day, Ed; Copello, Alex; Freemantle, Nick; Frew, Emma
2017-07-01
Conventional practice within the United Kingdom and beyond is to conduct economic evaluations with "health" as evaluative space and "health maximization" as the decision-making rule. However, there is increasing recognition that this evaluative framework may not always be appropriate, and this is particularly the case within public health and social care contexts. This article presents a methodological case study designed to explore the impact of changing the evaluative space within an economic evaluation from health to capability well-being and the decision-making rule from health maximization to the maximization of sufficient capability. Capability well-being is an evaluative space grounded on Amartya Sen's capability approach and assesses well-being based on individuals' ability to do and be the things they value in life. Sufficient capability is an egalitarian approach to decision making that aims to ensure everyone in society achieves a normatively sufficient level of capability well-being. The case study is treatment for drug addiction, and the cost-effectiveness of 2 psychological interventions relative to usual care is assessed using data from a pilot trial. Analyses are undertaken from a health care and a government perspective. For the purpose of the study, quality-adjusted life years (measured using the EQ-5D-5L) and years of full capability equivalent and years of sufficient capability equivalent (both measured using the ICECAP-A [ICEpop CAPability measure for Adults]) are estimated. The study concludes that different evaluative spaces and decision-making rules have the potential to offer opposing treatment recommendations. The implications for policy makers are discussed.
Assessing experience in the deliberate practice of running using a fuzzy decision-support system
Roveri, Maria Isabel; Manoel, Edison de Jesus; Onodera, Andrea Naomi; Ortega, Neli R. S.; Tessutti, Vitor Daniel; Vilela, Emerson; Evêncio, Nelson
2017-01-01
The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches’ knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p<0.001) and also with five other expert running coaches (r>0.86, p<0.001). From the expert’s knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency) and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings. PMID:28817655
A model-driven privacy compliance decision support for medical data sharing in Europe.
Boussi Rahmouni, H; Solomonides, T; Casassa Mont, M; Shiu, S; Rahmouni, M
2011-01-01
Clinical practitioners and medical researchers often have to share health data with other colleagues across Europe. Privacy compliance in this context is very important but challenging. Automated privacy guidelines are a practical way of increasing users' awareness of privacy obligations and help eliminating unintentional breaches of privacy. In this paper we present an ontology-plus-rules based approach to privacy decision support for the sharing of patient data across European platforms. We use ontologies to model the required domain and context information about data sharing and privacy requirements. In addition, we use a set of Semantic Web Rule Language rules to reason about legal privacy requirements that are applicable to a specific context of data disclosure. We make the complete set invocable through the use of a semantic web application acting as an interactive privacy guideline system can then invoke the full model in order to provide decision support. When asked, the system will generate privacy reports applicable to a specific case of data disclosure described by the user. Also reports showing guidelines per Member State may be obtained. The advantage of this approach lies in the expressiveness and extensibility of the modelling and inference languages adopted and the ability they confer to reason with complex requirements interpreted from high level regulations. However, the system cannot at this stage fully simulate the role of an ethics committee or review board.
Comparative study of multimodal biometric recognition by fusion of iris and fingerprint.
Benaliouche, Houda; Touahria, Mohamed
2014-01-01
This research investigates the comparative performance from three different approaches for multimodal recognition of combined iris and fingerprints: classical sum rule, weighted sum rule, and fuzzy logic method. The scores from the different biometric traits of iris and fingerprint are fused at the matching score and the decision levels. The scores combination approach is used after normalization of both scores using the min-max rule. Our experimental results suggest that the fuzzy logic method for the matching scores combinations at the decision level is the best followed by the classical weighted sum rule and the classical sum rule in order. The performance evaluation of each method is reported in terms of matching time, error rates, and accuracy after doing exhaustive tests on the public CASIA-Iris databases V1 and V2 and the FVC 2004 fingerprint database. Experimental results prior to fusion and after fusion are presented followed by their comparison with related works in the current literature. The fusion by fuzzy logic decision mimics the human reasoning in a soft and simple way and gives enhanced results.
Comparative Study of Multimodal Biometric Recognition by Fusion of Iris and Fingerprint
Benaliouche, Houda; Touahria, Mohamed
2014-01-01
This research investigates the comparative performance from three different approaches for multimodal recognition of combined iris and fingerprints: classical sum rule, weighted sum rule, and fuzzy logic method. The scores from the different biometric traits of iris and fingerprint are fused at the matching score and the decision levels. The scores combination approach is used after normalization of both scores using the min-max rule. Our experimental results suggest that the fuzzy logic method for the matching scores combinations at the decision level is the best followed by the classical weighted sum rule and the classical sum rule in order. The performance evaluation of each method is reported in terms of matching time, error rates, and accuracy after doing exhaustive tests on the public CASIA-Iris databases V1 and V2 and the FVC 2004 fingerprint database. Experimental results prior to fusion and after fusion are presented followed by their comparison with related works in the current literature. The fusion by fuzzy logic decision mimics the human reasoning in a soft and simple way and gives enhanced results. PMID:24605065
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-20
... regarding EPA's Zinc Fertilizer Rule in a separate final rule (following the proposed rule) as it... the Zinc Fertilizer Rule. Today's action responds to that comment but does not agree with it and, thus, finalizes the Agency's decision to authorize Rhode Island for EPA's Zinc Fertilizer Rule. In addition, the...
ERIC Educational Resources Information Center
Torres, Mario S., Jr.
2012-01-01
This study examined federal and state court decisions related to student Fourth Amendment rights following the "New Jersey v. T.L.O." ruling in 1985. There has been minimal research in judicial treatment of students' Fourth Amendment rights across regions of the country and less to what extent regional rulings implicitly or explicitly…
Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task
ERIC Educational Resources Information Center
Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.
2010-01-01
Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…
We will collaborate with investigators from University College London to test a screening decision rule in preclinical serial samples from the U.K. Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) to learn if the panel can do better than CA125 alone. The UKCTOCS is an ideal setting for retrospective validation of an early detection marker panel and decision rule because it offers serial samples collected annually and use of imaging in women with rising CA125. Multi-modal strategies using serum markers HE4, MSLN, MMP7, and CA125 will be compared to strategies relying exclusively on CA125 and transvaginal sonography (TVS).
Decision rules for unbiased inventory estimates
NASA Technical Reports Server (NTRS)
Argentiero, P. D.; Koch, D.
1979-01-01
An efficient and accurate procedure for estimating inventories from remote sensing scenes is presented. In place of the conventional and expensive full dimensional Bayes decision rule, a one-dimensional feature extraction and classification technique was employed. It is shown that this efficient decision rule can be used to develop unbiased inventory estimates and that for large sample sizes typical of satellite derived remote sensing scenes, resulting accuracies are comparable or superior to more expensive alternative procedures. Mathematical details of the procedure are provided in the body of the report and in the appendix. Results of a numerical simulation of the technique using statistics obtained from an observed LANDSAT scene are included. The simulation demonstrates the effectiveness of the technique in computing accurate inventory estimates.
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
NASA Astrophysics Data System (ADS)
Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.
2018-06-01
The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.
Health-Mining: a Disease Management Support Service based on Data Mining and Rule Extraction.
Bei, Andrea; De Luca, Stefano; Ruscitti, Giancarlo; Salamon, Diego
2005-01-01
The disease management is the collection of the processes aimed to control the health care and improving the quality at same time reducing the overall cost of the procedures. Our system, Health-Mining, is a Decision Support System with the objective of controlling the adequacy of hospitalization and therapies, determining the effective use of standard guidelines and eventually identifying better ones emerged from the medical practice (Evidence Based Medicine). In realizing the system, we have the aim of creation of a path to admissions- appropriateness criteria construction, valid at an international level. A main goal of the project is rule extraction and the identification of the rules adequate in term of efficacy, quality and cost reduction, especially in the view of fast changing technologies and medicines. We tested Health-Mining in a real test case for an Italian Region, Regione Veneto, on the installation of pacemaker and ICD.
The normalization heuristic: an untested hypothesis that may misguide medical decisions.
Aberegg, Scott K; O'Brien, James M
2009-06-01
Medical practice is increasingly informed by the evidence from randomized controlled trials. When such evidence is not available, clinical hypotheses based on pathophysiological reasoning and common sense guide clinical decision making. One commonly utilized general clinical hypothesis is the assumption that normalizing abnormal laboratory values and physiological parameters will lead to improved patient outcomes. We refer to the general use of this clinical hypothesis to guide medical therapeutics as the "normalization heuristic". In this paper, we operationally define this heuristic and discuss its limitations as a rule of thumb for clinical decision making. We review historical and contemporaneous examples of normalization practices as empirical evidence for the normalization heuristic and to highlight its frailty as a guide for clinical decision making.
Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study
NASA Astrophysics Data System (ADS)
Sarang, Nita; Sanglikar, Mukund A.
Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.
Automatic information extraction from unstructured mammography reports using distributed semantics.
Gupta, Anupama; Banerjee, Imon; Rubin, Daniel L
2018-02-01
To date, the methods developed for automated extraction of information from radiology reports are mainly rule-based or dictionary-based, and, therefore, require substantial manual effort to build these systems. Recent efforts to develop automated systems for entity detection have been undertaken, but little work has been done to automatically extract relations and their associated named entities in narrative radiology reports that have comparable accuracy to rule-based methods. Our goal is to extract relations in a unsupervised way from radiology reports without specifying prior domain knowledge. We propose a hybrid approach for information extraction that combines dependency-based parse tree with distributed semantics for generating structured information frames about particular findings/abnormalities from the free-text mammography reports. The proposed IE system obtains a F 1 -score of 0.94 in terms of completeness of the content in the information frames, which outperforms a state-of-the-art rule-based system in this domain by a significant margin. The proposed system can be leveraged in a variety of applications, such as decision support and information retrieval, and may also easily scale to other radiology domains, since there is no need to tune the system with hand-crafted information extraction rules. Copyright © 2018 Elsevier Inc. All rights reserved.
Assessing the chances of success: naïve statistics versus kind experience.
Hogarth, Robin M; Mukherjee, Kanchan; Soyer, Emre
2013-01-01
Additive integration of information is ubiquitous in judgment and has been shown to be effective even when multiplicative rules of probability theory are prescribed. We explore the generality of these findings in the context of estimating probabilities of success in contests. We first define a normative model of these probabilities that takes account of relative skill levels in contests where only a limited number of entrants can win. We then report 4 experiments using a scenario about a competition. Experiments 1 and 2 both elicited judgments of probabilities, and, although participants' responses demonstrated considerable variability, their mean judgments provide a good fit to a simple linear model. Experiment 3 explored choices. Most participants entered most contests and showed little awareness of appropriate probabilities. Experiment 4 investigated effects of providing aids to calculate probabilities, specifically, access to expert advice and 2 simulation tools. With these aids, estimates were accurate and decisions varied appropriately with economic consequences. We discuss implications by considering when additive decision rules are dysfunctional, the interpretation of overconfidence based on contest-entry behavior, and the use of aids to help people make better decisions.