Sample records for decision support infrastructure

  1. Decision Tools for Transportation Infrastructure Reinvestment: User Guidelines for Microcomputer Decision Support System (DSS)

    DOT National Transportation Integrated Search

    1988-07-01

    This report is intended to improve the quality of decisions about reinvestments, : and modest new investments, in highway transportation infrastructure. Decisions : of this type comprise the majority of planning actions taken in the field of : public...

  2. A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine.

    PubMed

    Kawamoto, Kensaku; Lobach, David F; Willard, Huntington F; Ginsburg, Geoffrey S

    2009-03-23

    In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs. Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the Roadmap for National Action on Clinical Decision Support commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government. A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.

  3. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    PubMed

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.

  4. NASA Remote Sensing Observations for Water Resource and Infrastructure Management

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Armstrong, L.; Farr, T.; Geller, G.; Heath, E.; Hyon, J.; Lavoie, S.; McDonald, K.; Realmuto, V.; Stough, T.; Szana, K.

    2008-12-01

    Decision support tools employed by water resource and infrastructure managers often utilize data products obtained from local sources or national/regional databases of historic surveys and observations. Incorporation of data from these sources can be laborious and time consuming as new products must be identified, cleaned and archived for each new study site. Adding remote sensing observations to the list of sources holds promise for a timely, consistent, global product to aid decision support at regional and global scales by providing global observations of geophysical parameters including soil moisture, precipitation, atmospheric temperature, derived evapotranspiration, and snow extent needed for hydrologic models and decision support tools. However, issues such as spatial and temporal resolution arise when attempting to integrate remote sensing observations into existing decision support tools. We are working to overcome these and other challenges through partnerships with water resource managers, tool developers and other stakeholders. We are developing a new data processing framework, enabled by a core GIS server, to seamlessly pull together observations from disparate sources for synthesis into information products and visualizations useful to the water resources community. A case study approach is being taken to develop the system by working closely with water infrastructure and resource managers to integrate remote observations into infrastructure, hydrologic and water resource decision tools. We present the results of a case study utilizing observations from the PALS aircraft instrument as a proxy for NASA's upcoming Soil Moisture Active Passive (SMAP) mission and an existing commercial decision support tool.

  5. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  6. Soak Up the Rain New England Webinar Series: National ...

    EPA Pesticide Factsheets

    Presenters will provide an introduction to the most recent EPA green infrastructure tools to R1 stakeholders; and their use in making decisions about implementing green infrastructure. We will discuss structuring your green infrastructure decision, finding appropriate information and tools, evaluating options and selecting the right Best Management Practices mix for your needs.WMOST (Watershed Management Optimization Support Tool)- for screening a wide range of practices for cost-effectiveness in achieving watershed or water utilities management goals.GIWiz (Green Infrastructure Wizard)- a web application connecting communities to EPA Green Infrastructure tools and resources.Opti-Tool-designed to assist in developing technically sound and optimized cost-effective Stormwater management plans. National Stormwater Calculator- a desktop application for estimating the impact of land cover change and green infrastructure controls on stormwater runoff. DASEES-GI (Decision Analysis for a Sustainable Environment, Economy, and Society) – a framework for linking objectives and measures with green infrastructure methods. Presenters will provide an introduction to the most recent EPA green infrastructure tools to R1 stakeholders; and their use in making decisions about implementing green infrastructure. We will discuss structuring your green infrastructure decision, finding appropriate information and tools, evaluating options and selecting the right Best Management Pr

  7. A Decision Support Tool for Sustainable Land Use, Transportation, Buildings/Infrastructure, and Materials Management

    EPA Science Inventory

    One issue for community groups, local and regional planners, and politicians, is that they require relevant information to develop programs and initiatives for incorporating sustainability principles into their physical infrastructure, operations, and decision-making processes. T...

  8. Women's health nursing in the context of the National Health Information Infrastructure.

    PubMed

    Jenkins, Melinda L; Hewitt, Caroline; Bakken, Suzanne

    2006-01-01

    Nurses must be prepared to participate in the evolving National Health Information Infrastructure and the changes that will consequently occur in health care practice and documentation. Informatics technologies will be used to develop electronic health records with integrated decision support features that will likely lead to enhanced health care quality and safety. This paper provides a summary of the National Health Information Infrastructure and highlights electronic health records and decision support systems within the context of evidence-based practice. Activities at the Columbia University School of Nursing designed to prepare nurses with the necessary informatics competencies to practice in a National Health Information Infrastructure-enabled health care system are described. Data are presented from electronic (personal digital assistant) encounter logs used in our Women's Health Nurse Practitioner program to support evidence-based advanced practice nursing care. Implications for nursing practice, education, and research in the evolving National Health Information Infrastructure are discussed.

  9. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  10. Next generation terminology infrastructure to support interprofessional care planning.

    PubMed

    Collins, Sarah; Klinkenberg-Ramirez, Stephanie; Tsivkin, Kira; Mar, Perry L; Iskhakova, Dina; Nandigam, Hari; Samal, Lipika; Rocha, Roberto A

    2017-11-01

    Develop a prototype of an interprofessional terminology and information model infrastructure that can enable care planning applications to facilitate patient-centered care, learn care plan linkages and associations, provide decision support, and enable automated, prospective analytics. The study steps included a 3 step approach: (1) Process model and clinical scenario development, and (2) Requirements analysis, and (3) Development and validation of information and terminology models. Components of the terminology model include: Health Concerns, Goals, Decisions, Interventions, Assessments, and Evaluations. A terminology infrastructure should: (A) Include discrete care plan concepts; (B) Include sets of profession-specific concerns, decisions, and interventions; (C) Communicate rationales, anticipatory guidance, and guidelines that inform decisions among the care team; (D) Define semantic linkages across clinical events and professions; (E) Define sets of shared patient goals and sub-goals, including patient stated goals; (F) Capture evaluation toward achievement of goals. These requirements were mapped to AHRQ Care Coordination Measures Framework. This study used a constrained set of clinician-validated clinical scenarios. Terminology models for goals and decisions are unavailable in SNOMED CT, limiting the ability to evaluate these aspects of the proposed infrastructure. Defining and linking subsets of care planning concepts appears to be feasible, but also essential to model interprofessional care planning for common co-occurring conditions and chronic diseases. We recommend the creation of goal dynamics and decision concepts in SNOMED CT to further enable the necessary models. Systems with flexible terminology management infrastructure may enable intelligent decision support to identify conflicting and aligned concerns, goals, decisions, and interventions in shared care plans, ultimately decreasing documentation effort and cognitive burden for clinicians and patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A knowledge infrastructure for occupational safety and health.

    PubMed

    van Dijk, Frank J H; Verbeek, Jos H; Hoving, Jan L; Hulshof, Carel T J

    2010-12-01

    Occupational Safety and Health (OSH) professionals should use scientific evidence to support their decisions in policy and practice. Although examples from practice show that progress has been made in evidence-based decision making, there is a challenge to improve and extend the facilities that support knowledge translation in practice. A knowledge infrastructure that supports OSH practice should include scientific research, systematic reviews, practice guidelines, and other tools for professionals such as well accessible virtual libraries and databases providing knowledge, quality tools, and good learning materials. A good infrastructure connects facilities with each other and with practice. Training and education is needed for OSH professionals in the use of evidence to improve effectiveness and efficiency. New initiatives show that occupational health can profit from intensified international collaboration to establish a good functioning knowledge infrastructure.

  12. Surface transportation weather decision support requirements : advanced-integrated decision support using weather information for surface transportation decisions makers : draft (truncated*) version 1.0

    DOT National Transportation Integrated Search

    1997-09-19

    This report gives an overview of the National Intelligent Transportation Infrastructure Initiative (NITI). NITI refers to the integrated electronics, communications, and hardware and software elements that are available to support Intelligent Transpo...

  13. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  15. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  16. Experimenting with C2 Applications and Federated Infrastructures for Integrated Full-Spectrum Operational Environments in Support of Collaborative Planning and Interoperable Execution

    DTIC Science & Technology

    2004-06-01

    Situation Understanding) Common Operational Pictures Planning & Decision Support Capabilities Message & Order Processing Common Operational...Pictures Planning & Decision Support Capabilities Message & Order Processing Common Languages & Data Models Modeling & Simulation Domain

  17. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that delivers map data products including deformation modeling results (slope change and strain magnitude) and aftershock forecasts, with remote sensing change detection results under development. These products are event triggered (from the USGS earthquake feed) and will be posted to event feeds on the E-DECIDER webpage and accessible via the mobile interface and UICDS. E-DECIDER also features a KML service that provides infrastructure information from the FEMA HAZUS database through UICDS and the mobile interface. The back-end GIS service architecture and front-end gateway components form a decision support system that is designed for ease-of-use and extensibility for end-users.

  18. Green Infrastructure Barriers and Opportunities in the Macatawa Watershed, Michigan

    EPA Pesticide Factsheets

    The project supports MACC outreach and implementation efforts of the watershed management plan by facilitating communication with local municipal staff and educating local decision makers about green infrastructure.

  19. Cooperative Drought Adaptation: Integrating Infrastructure Development, Conservation, and Water Transfers into Adaptive Policy Pathways

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.; Reed, P. M.; Herman, J. D.

    2015-12-01

    Water supply policies that integrate portfolios of short-term management decisions with long-term infrastructure development enable utilities to adapt to a range of future scenarios. An effective mix of short-term management actions can augment existing infrastructure, potentially forestalling new development. Likewise, coordinated expansion of infrastructure such as regional interconnections and shared treatment capacity can increase the effectiveness of some management actions like water transfers. Highly adaptable decision pathways that mix long-term infrastructure options and short-term management actions require decision triggers capable of incorporating the impact of these time-evolving decisions on growing water supply needs. Here, we adapt risk-based triggers to sequence a set of potential infrastructure options in combination with utility-specific conservation actions and inter-utility water transfers. Individual infrastructure pathways can be augmented with conservation or water transfers to reduce the cost of meeting utility objectives, but they can also include cooperatively developed, shared infrastructure that expands regional capacity to transfer water. This analysis explores the role of cooperation among four water utilities in the 'Research Triangle' region of North Carolina by formulating three distinct categories of adaptive policy pathways: independent action (utility-specific conservation and supply infrastructure only), weak cooperation (utility-specific conservation and infrastructure development with regional transfers), and strong cooperation (utility specific conservation and jointly developed of regional infrastructure that supports transfers). Results suggest that strong cooperation aids the utilities in meeting their individual objections at substantially lower costs and with fewer irreversible infrastructure options.

  20. Disaster Response and Decision Support in Partnership with the California Earthquake Clearinghouse

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Rosinski, A.; Vaughan, D.; Morentz, J.

    2014-12-01

    Getting the right information to the right people at the right time is critical during a natural disaster. E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) is a NASA decision support system designed to produce remote sensing and geophysical modeling data products that are relevant to the emergency preparedness and response communities and serve as a gateway to enable the delivery of NASA decision support products to these communities. The E-DECIDER decision support system has several tools, services, and products that have been used to support end-user exercises in partnership with the California Earthquake Clearinghouse since 2012, including near real-time deformation modeling results and on-demand maps of critical infrastructure that may have been potentially exposed to damage by a disaster. E-DECIDER's underlying service architecture allows the system to facilitate delivery of NASA decision support products to the Clearinghouse through XchangeCore Web Service Data Orchestration that allows trusted information exchange among partner agencies. This in turn allows Clearinghouse partners to visualize data products produced by E-DECIDER and other NASA projects through incident command software such as SpotOnResponse or ArcGIS Online.

  1. Design and evaluation of an imaging informatics system for analytics-based decision support in radiation therapy

    NASA Astrophysics Data System (ADS)

    Deshpande, Ruchi; DeMarco, John; Liu, Brent J.

    2015-03-01

    We have developed a comprehensive DICOM RT specific database of retrospective treatment planning data for radiation therapy of head and neck cancer. Further, we have designed and built an imaging informatics module that utilizes this database to perform data mining. The end-goal of this data mining system is to provide radiation therapy decision support for incoming head and neck cancer patients, by identifying best practices from previous patients who had the most similar tumor geometries. Since the performance of such systems often depends on the size and quality of the retrospective database, we have also placed an emphasis on developing infrastructure and strategies to encourage data sharing and participation from multiple institutions. The infrastructure and decision support algorithm have both been tested and evaluated with 51 sets of retrospective treatment planning data of head and neck cancer patients. We will present the overall design and architecture of our system, an overview of our decision support mechanism as well as the results of our evaluation.

  2. Home monitoring and decision support for international liver transplant children.

    PubMed

    Song, Bianying; Schulze, Mareike; Goldschmidt, Imeke; Haux, Reinhold; Baumann, Ulrich; Marschollek, Michael

    2013-01-01

    Complications may occur after a liver transplantation, therefore proper monitoring and care in the post-operation phase plays a very important role. Sometimes, monitoring and care for patients from abroad is difficult due to a variety of reasons, e.g., different care facilities. The objective of our research for this paper is to design, implement and evaluate a home monitoring and decision support infrastructure for international children who underwent liver transplant operation. A point-of-care device and the PedsQL questionnaire were used in patients' home environment for measuring the blood parameters and assessing quality of life. By using a tablet PC and a specially developed software, the measured results were able to be transmitted to the health care providers via internet. So far, the developed infrastructure has been evaluated with four international patients/families transferring 38 records of blood test. The evaluation showed that the home monitoring and decision support infrastructure is technically feasible and is able to give timely alarm in case of abnormal situation as well as may increase parent's feeling of safety for their children.

  3. Green Infrastructure Models and Tools

    EPA Science Inventory

    The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...

  4. A decision support tool for vehicle infrastructure integration : understanding information effects and advancing data fusion algorithms for traffic management applications.

    DOT National Transportation Integrated Search

    2009-10-15

    This research seeks to explore vehicle-to-vehicle information networks to understand the interplay : between the information communicated and traffic conditions on the network. A longer-term goal is to : develop a decision support tool for processing...

  5. Critical Infrastructure: The National Asset Database

    DTIC Science & Technology

    2006-09-14

    NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION...that, in its current form, it is being used inappropriately as the basis upon which federal resources, including infrastructure protection grants , are...National Asset Database has been used to support federal grant -making decisions, according to a DHS official, it does not drive those decisions. In July

  6. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    EPA Science Inventory

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity, the m...

  7. Towards public health decision support: a systematic review of bidirectional communication approaches.

    PubMed

    Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J

    2013-05-01

    To summarize the literature describing computer-based interventions aimed at improving bidirectional communication between clinical and public health. A systematic review of English articles using MEDLINE and Google Scholar. Search terms included public health, epidemiology, electronic health records, decision support, expert systems, and decision-making. Only articles that described the communication of information regarding emerging health threats from public health agencies to clinicians or provider organizations were included. Each article was independently reviewed by two authors. Ten peer-reviewed articles highlight a nascent but promising area of research and practice related to alerting clinicians about emerging threats. Current literature suggests that additional research and development in bidirectional communication infrastructure should focus on defining a coherent architecture, improving interoperability, establishing clear governance, and creating usable systems that will effectively deliver targeted, specific information to clinicians in support of patient and population decision-making. Increasingly available clinical information systems make it possible to deliver timely, relevant knowledge to frontline clinicians in support of population health. Future work should focus on developing a flexible, interoperable infrastructure for bidirectional communications capable of integrating public health knowledge into clinical systems and workflows.

  8. Multi-Sector Sustainability Browser (MSSB) User Manual: A Decision Support Tool (DST) for Supporting Sustainability Efforts in Four Areas - Land Use, Transportation, Buildings and Infrastructure, and Materials Management

    EPA Science Inventory

    EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecti...

  9. A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City

    DOE PAGES

    Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.; ...

    2017-11-24

    Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less

  10. A high resolution agent-based model to support walk-bicycle infrastructure investment decisions: A case study with New York City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Park, Byung H.; Morton, April M.

    Active transportation modes--walk and bicycle--are central for low carbon transport, healthy living, and complete streets initiative. Building a community with amenable walk and bicycle facilities asks for smart planning and investments. It is critical to investigate the impact of infrastructure building or expansion on the overall walk and bicycle mode usage prior to making investment choices utilizing public tax money. This research developed an agent-based model to support investment decisions that allows to assess the impact of changes in walk-bike infrastructures at a high spatial resolution (e.g., block group level). The agent-based model (ABM) utilizes data from a synthetic populationmore » simulator generating agents with corresponding socio-demographic characteristics, and integrates facility attributes regarding walking and bicycling (e.g., sidewalk width, bike lane length) into the mode choice decision making process. Moreover, the ABM accounts for the effect of social interactions among agents who live and work at the same geographic locations. Finally, GIS-based maps are developed at block group resolution that allows exploring the effect of walk-bike infrastructure related investments. The results from New York City case study indicate that infrastructure investments such as widening sidewalk and increasing bike lane network can positively influence the active transportation mode choices. In addition, the level of impact varies with geographic locations--different boroughs of New York City will have different impacts. Lastly, social promotions resulting in higher social interaction among agents can reinforce the impacts of infrastructure changes.« less

  11. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems.

    PubMed

    DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.

  12. Investing in soils as an infrastructure to maintain and enhance food water and carbon services

    NASA Astrophysics Data System (ADS)

    Davies, Jessica

    2017-04-01

    Soils are a life support system for global society and our planet. In addition to providing the vast majority of our food; soils regulate water quality and quantity reducing the risk of floods, droughts and pollution; and as the largest store of carbon in the earth system they are critical to climate change. By providing these multiple essential services, soils act a natural form of infrastructure that is critical to supporting both rural and urban communities and economies. Can natural infrastructure and natural capital concepts be used to motivate and enable investment and regulation of soils for purposes such as soil carbon sequestration? What scientific knowledge and tools would we need to support soil infrastructure decision making - in policy arenas and elsewhere? This poster will present progress from a new research project supported by the UK research council (EP/N030532/1) that addresses these questions.

  13. Towards public health decision support: a systematic review of bidirectional communication approaches

    PubMed Central

    Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J

    2013-01-01

    Objective To summarize the literature describing computer-based interventions aimed at improving bidirectional communication between clinical and public health. Materials and Methods A systematic review of English articles using MEDLINE and Google Scholar. Search terms included public health, epidemiology, electronic health records, decision support, expert systems, and decision-making. Only articles that described the communication of information regarding emerging health threats from public health agencies to clinicians or provider organizations were included. Each article was independently reviewed by two authors. Results Ten peer-reviewed articles highlight a nascent but promising area of research and practice related to alerting clinicians about emerging threats. Current literature suggests that additional research and development in bidirectional communication infrastructure should focus on defining a coherent architecture, improving interoperability, establishing clear governance, and creating usable systems that will effectively deliver targeted, specific information to clinicians in support of patient and population decision-making. Conclusions Increasingly available clinical information systems make it possible to deliver timely, relevant knowledge to frontline clinicians in support of population health. Future work should focus on developing a flexible, interoperable infrastructure for bidirectional communications capable of integrating public health knowledge into clinical systems and workflows. PMID:23467470

  14. Toward patient-centered, personalized and personal decision support and knowledge management: a survey.

    PubMed

    Leong, T-Y

    2012-01-01

    This paper summarizes the recent trends and highlights the challenges and opportunities in decision support and knowledge management for patient-centered, personalized, and personal health care. The discussions are based on a broad survey of related references, focusing on the most recent publications. Major advances are examined in the areas of i) shared decision making paradigms, ii) continuity of care infrastructures and architectures, iii) human factors and system design approaches, iv) knowledge management innovations, and v) practical deployment and change considerations. Many important initiatives, projects, and plans with promising results have been identified. The common themes focus on supporting the individual patients who are playing an increasing central role in their own care decision processes. New collaborative decision making paradigms and information infrastructures are required to ensure effective continuity of care. Human factors and usability are crucial for the successful development and deployment of the relevant systems, tools, and aids. Advances in personalized medicine can be achieved through integrating genomic, phenotypic and other biological, individual, and population level information, and gaining useful insights from building and analyzing biological and other models at multiple levels of abstraction. Therefore, new Information and Communication Technologies and evaluation approaches are needed to effectively manage the scale and complexity of biomedical and health information, and adapt to the changing nature of clinical decision support. Recent research in decision support and knowledge management combines heterogeneous information and personal data to provide cost-effective, calibrated, personalized support in shared decision making at the point of care. Current and emerging efforts concentrate on developing or extending conventional paradigms, techniques, systems, and architectures for the new predictive, preemptive, and participatory health care model for patient-centered, personalized medicine. There is also an increasing emphasis on managing complexity with changing care models, processes, and settings.

  15. An innovative approach to addressing childhood obesity: a knowledge-based infrastructure for supporting multi-stakeholder partnership decision-making in Quebec, Canada.

    PubMed

    Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L; Dubé, Laurette

    2015-01-23

    Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a "portrait", which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity.

  16. An Innovative Approach to Addressing Childhood Obesity: A Knowledge-Based Infrastructure for Supporting Multi-Stakeholder Partnership Decision-Making in Quebec, Canada

    PubMed Central

    Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L.; Dubé, Laurette

    2015-01-01

    Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a “portrait”, which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity. PMID:25625409

  17. ISTIMES Integrated System for Transport Infrastructures Surveillance and Monitoring by Electromagnetic Sensing

    NASA Astrophysics Data System (ADS)

    Argenti, M.; Giannini, V.; Averty, R.; Bigagli, L.; Dumoulin, J.

    2012-04-01

    The EC FP7 ISTIMES project has the goal of realizing an ICT-based system exploiting distributed and local sensors for non destructive electromagnetic monitoring in order to make critical transport infrastructures more reliable and safe. Higher situation awareness thanks to real time and detailed information and images of the controlled infrastructure status allows improving decision capabilities for emergency management stakeholders. Web-enabled sensors and a service-oriented approach are used as core of the architecture providing a sys-tem that adopts open standards (e.g. OGC SWE, OGC CSW etc.) and makes efforts to achieve full interoperability with other GMES and European Spatial Data Infrastructure initiatives as well as compliance with INSPIRE. The system exploits an open easily scalable network architecture to accommodate a wide range of sensors integrated with a set of tools for handling, analyzing and processing large data volumes from different organizations with different data models. Situation Awareness tools are also integrated in the system. Definition of sensor observations and services follows a metadata model based on the ISO 19115 Core set of metadata elements and the O&M model of OGC SWE. The ISTIMES infrastructure is based on an e-Infrastructure for geospatial data sharing, with a Data Cata-log that implements the discovery services for sensor data retrieval, acting as a broker through static connections based on standard SOS and WNS interfaces; a Decision Support component which helps decision makers providing support for data fusion and inference and generation of situation indexes; a Presentation component which implements system-users interaction services for information publication and rendering, by means of a WEB Portal using SOA design principles; A security framework using Shibboleth open source middleware based on the Security Assertion Markup Language supporting Single Sign On (SSO). ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663

  18. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  19. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  20. Decision-Support Tools and Databases to Inform Regional Stormwater Utility Development in New England

    EPA Science Inventory

    Development of stormwater utilities requires information on existing stormwater infrastructure and impervious cover as well as costs and benefits of stormwater management options. US EPA has developed a suite of databases and tools that can inform decision-making by regional sto...

  1. Co-evolution of transportation and land use : modeling historical dependencies in land use and transportation decision making.

    DOT National Transportation Integrated Search

    2009-11-01

    The interaction between land use and transportation has long been the central issue in urban and regional planning. Models of such : interactions provide vital information to support many public policy decisions, such as land supply, infrastructure p...

  2. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  3. Applying a multi-replication framework to support dynamic situation assessment and predictive capabilities

    NASA Astrophysics Data System (ADS)

    Lammers, Craig; McGraw, Robert M.; Steinman, Jeffrey S.

    2005-05-01

    Technological advances and emerging threats reduce the time between target detection and action to an order of a few minutes. To effectively assist with the decision-making process, C4I decision support tools must quickly and dynamically predict and assess alternative Courses Of Action (COAs) to assist Commanders in anticipating potential outcomes. These capabilities can be provided through the faster-than-real-time predictive simulation of plans that are continuously re-calibrating with the real-time picture. This capability allows decision-makers to assess the effects of re-tasking opportunities, providing the decision-maker with tremendous freedom to make time-critical, mid-course decisions. This paper presents an overview and demonstrates the use of a software infrastructure that supports DSAP capabilities. These DSAP capabilities are demonstrated through the use of a Multi-Replication Framework that supports (1) predictivie simulations using JSAF (Joint Semi-Automated Forces); (2) real-time simulation, also using JSAF, as a state estimation mechanism; and, (3) real-time C4I data updates through TBMCS (Theater Battle Management Core Systems). This infrastructure allows multiple replications of a simulation to be executed simultaneously over a grid faster-than-real-time, calibrated with live data feeds. A cost evaluator mechanism analyzes potential outcomes and prunes simulations that diverge from the real-time picture. In particular, this paper primarily serves to walk a user through the process for using the Multi-Replication Framework providing an enhanced decision aid.

  4. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems

    PubMed Central

    DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846

  5. A framework to support human factors of automation in railway intelligent infrastructure.

    PubMed

    Dadashi, Nastaran; Wilson, John R; Golightly, David; Sharples, Sarah

    2014-01-01

    Technological and organisational advances have increased the potential for remote access and proactive monitoring of the infrastructure in various domains and sectors - water and sewage, oil and gas and transport. Intelligent Infrastructure (II) is an architecture that potentially enables the generation of timely and relevant information about the state of any type of infrastructure asset, providing a basis for reliable decision-making. This paper reports an exploratory study to understand the concepts and human factors associated with II in the railway, largely drawing from structured interviews with key industry decision-makers and attachment to pilot projects. Outputs from the study include a data-processing framework defining the key human factors at different levels of the data structure within a railway II system and a system-level representation. The framework and other study findings will form a basis for human factors contributions to systems design elements such as information interfaces and role specifications.

  6. The Use of Spatial Data Infrastructure in Environmental Management:an Example from the Spatial Planning Practice in Poland.

    PubMed

    Zwirowicz-Rutkowska, Agnieszka; Michalik, Anna

    2016-10-01

    Today's technology plays a crucial role in the effective use of environmental information. This includes geographic information systems and infrastructures. The purpose of this research is to identify the way in which the Polish spatial data infrastructure (PSDI) supports policies and activities that may have an impact on the environment in relation to one group of users, namely urban planners, and their tasks concerning environmental management. The study is based on a survey conducted in July and August, 2014. Moreover, the authors' expert knowledge gained through urban development practice and the analysis of the environmental conservation regulations and spatial planning in Poland has been used to define the scope of environmental management in both spatial planning studies and spatial data sources. The research included assessment of data availability, infrastructure usability, and its impact on decision-making process. The results showed that the PSDI is valuable because it allows for the acquisition of data on environmental monitoring, agricultural and aquaculture facilities. It also has a positive impact on decision-making processes and improves numerous planners' activities concerning both the inclusion of environmental indicators in spatial plans and the support of nature conservation and environmental management in the process of working on future land use. However, even though the infrastructure solves certain problems with data accessibility, further improvements might be proposed. The importance of the SDI in environmental management is noticeable and could be considered from many standpoints: Data, communities engaged in policy or decision-making concerning environmental issues, and data providers.

  7. What supports do health system organizations have in place to facilitate evidence-informed decision-making? a qualitative study

    PubMed Central

    2013-01-01

    Background Decisions regarding health systems are sometimes made without the input of timely and reliable evidence, leading to less than optimal health outcomes. Healthcare organizations can implement tools and infrastructures to support the use of research evidence to inform decision-making. Objectives The purpose of this study was to profile the supports and instruments (i.e., programs, interventions, instruments or tools) that healthcare organizations currently have in place and which ones were perceived to facilitate evidence-informed decision-making. Methods In-depth semi-structured telephone interviews were conducted with individuals in three different types of positions (i.e., a senior management team member, a library manager, and a ‘knowledge broker’) in three types of healthcare organizations (i.e., regional health authorities, hospitals and primary care practices) in two Canadian provinces (i.e., Ontario and Quebec). The interviews were taped, transcribed, and then analyzed thematically using NVivo 9 qualitative data analysis software. Results A total of 57 interviews were conducted in 25 organizations in Ontario and Quebec. The main findings suggest that, for the healthcare organizations that participated in this study, the following supports facilitate evidence-informed decision-making: facilitating roles that actively promote research use within the organization; establishing ties to researchers and opinion leaders outside the organization; a technical infrastructure that provides access to research evidence, such as databases; and provision and participation in training programs to enhance staff’s capacity building. Conclusions This study identified the need for having a receptive climate, which laid the foundation for the implementation of other tangible initiatives and supported the use of research in decision-making. This study adds to the literature on organizational efforts that can increase the use of research evidence in decision-making. Some of the identified supports may increase the use of research evidence by decision-makers, which may then lead to more informed decisions, and hopefully to a strengthened health system and improved health. PMID:23915278

  8. What supports do health system organizations have in place to facilitate evidence-informed decision-making? A qualitative study.

    PubMed

    Ellen, Moriah E; Léon, Gregory; Bouchard, Gisèle; Lavis, John N; Ouimet, Mathieu; Grimshaw, Jeremy M

    2013-08-06

    Decisions regarding health systems are sometimes made without the input of timely and reliable evidence, leading to less than optimal health outcomes. Healthcare organizations can implement tools and infrastructures to support the use of research evidence to inform decision-making. The purpose of this study was to profile the supports and instruments (i.e., programs, interventions, instruments or tools) that healthcare organizations currently have in place and which ones were perceived to facilitate evidence-informed decision-making. In-depth semi-structured telephone interviews were conducted with individuals in three different types of positions (i.e., a senior management team member, a library manager, and a 'knowledge broker') in three types of healthcare organizations (i.e., regional health authorities, hospitals and primary care practices) in two Canadian provinces (i.e., Ontario and Quebec). The interviews were taped, transcribed, and then analyzed thematically using NVivo 9 qualitative data analysis software. A total of 57 interviews were conducted in 25 organizations in Ontario and Quebec. The main findings suggest that, for the healthcare organizations that participated in this study, the following supports facilitate evidence-informed decision-making: facilitating roles that actively promote research use within the organization; establishing ties to researchers and opinion leaders outside the organization; a technical infrastructure that provides access to research evidence, such as databases; and provision and participation in training programs to enhance staff's capacity building. This study identified the need for having a receptive climate, which laid the foundation for the implementation of other tangible initiatives and supported the use of research in decision-making. This study adds to the literature on organizational efforts that can increase the use of research evidence in decision-making. Some of the identified supports may increase the use of research evidence by decision-makers, which may then lead to more informed decisions, and hopefully to a strengthened health system and improved health.

  9. Institutional Transformation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-19

    Reducing the energy consumption of large institutions with dozens to hundreds of existing buildings while maintaining and improving existing infrastructure is a critical economic and environmental challenge. SNL's Institutional Transformation (IX) work integrates facilities and infrastructure sustainability technology capabilities and collaborative decision support modeling approaches to help facilities managers at Sandia National Laboratories (SNL) simulate different future energy reduction strategies and meet long term energy conservation goals.

  10. How to deal with climate change uncertainty in the planning of engineering systems

    NASA Astrophysics Data System (ADS)

    Spackova, Olga; Dittes, Beatrice; Straub, Daniel

    2016-04-01

    The effect of extreme events such as floods on the infrastructure and built environment is associated with significant uncertainties: These include the uncertain effect of climate change, uncertainty on extreme event frequency estimation due to limited historic data and imperfect models, and, not least, uncertainty on future socio-economic developments, which determine the damage potential. One option for dealing with these uncertainties is the use of adaptable (flexible) infrastructure that can easily be adjusted in the future without excessive costs. The challenge is in quantifying the value of adaptability and in finding the optimal sequence of decision. Is it worth to build a (potentially more expensive) adaptable system that can be adjusted in the future depending on the future conditions? Or is it more cost-effective to make a conservative design without counting with the possible future changes to the system? What is the optimal timing of the decision to build/adjust the system? We develop a quantitative decision-support framework for evaluation of alternative infrastructure designs under uncertainties, which: • probabilistically models the uncertain future (trough a Bayesian approach) • includes the adaptability of the systems (the costs of future changes) • takes into account the fact that future decisions will be made under uncertainty as well (using pre-posterior decision analysis) • allows to identify the optimal capacity and optimal timing to build/adjust the infrastructure. Application of the decision framework will be demonstrated on an example of flood mitigation planning in Bavaria.

  11. Cross-sectoral optimization and visualization of transformation processes in urban water infrastructures in rural areas.

    PubMed

    Baron, S; Kaufmann Alves, I; Schmitt, T G; Schöffel, S; Schwank, J

    2015-01-01

    Predicted demographic, climatic and socio-economic changes will require adaptations of existing water supply and wastewater disposal systems. Especially in rural areas, these new challenges will affect the functionality of the present systems. This paper presents a joint interdisciplinary research project with the objective of developing an innovative software-based optimization and decision support system for the implementation of long-term transformations of existing infrastructures of water supply, wastewater and energy. The concept of the decision support and optimization tool is described and visualization methods for the presentation of results are illustrated. The model is tested in a rural case study region in the Southwest of Germany. A transformation strategy for a decentralized wastewater treatment concept and its visualization are presented for a model village.

  12. Modular Architecture for Integrated Model-Based Decision Support.

    PubMed

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, M.A.; Craig, J.I.

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implementmore » the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.« less

  14. Use of agents to implement an integrated computing environment

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application to both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. Agents are used to implement the overall infrastructure on the computer. Successful agent utilization requires that they be made of three components: the resource, the model, and the wrap. Current work is focused on the development of generalized agent schemes and associated demonstration projects. When in place, the technology independent computing infrastructure will aid the designer in systematically generating knowledge used to facilitate decision-making.

  15. Decision support system for the optimal location of electrical and electronic waste treatment plants: a case study in greece.

    PubMed

    Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, Nu; Banias, G

    2010-05-01

    Environmentally sound end-of-life management of Electrical and Electronic Equipment has been realised as a top priority issue internationally, both due to the waste stream's continuously increasing quantities, as well as its content in valuable and also hazardous materials. In an effort to manage Waste Electrical and Electronic Equipment (WEEE), adequate infrastructure in treatment and recycling facilities is considered a prerequisite. A critical number of such plants are mandatory to be installed in order: (i) to accommodate legislative needs, (ii) decrease transportation cost, and (iii) expand reverse logistics network and cover more areas. However, WEEE recycling infrastructures require high expenditures and therefore the decision maker need to be most precautious. In this context, special care should be given on the viability of infrastructure which is heavily dependent on facilities' location. To this end, a methodology aiming towards optimal location of Units of Treatment and Recycling is developed, taking into consideration economical together with social criteria, in an effort to interlace local acceptance and financial viability. For the decision support system's needs, ELECTRE III is adopted as a multicriteria analysis technique. The methodology's applicability is demonstrated with a real-world case study in Greece. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Public awareness of and support for infrastructure changes designed to increase walking and biking in Los Angeles County.

    PubMed

    Gase, Lauren N; Barragan, Noel C; Simon, Paul A; Jackson, Richard J; Kuo, Tony

    2015-03-01

    Policies to promote active transportation are emerging as a best practice to increase physical activity, yet relatively little is known about public opinion on utilizing transportation funds for such investments. This study sought to assess public awareness of and support for investments in walking and biking infrastructure in Los Angeles County. In the fall of 2013, the Los Angeles County Department of Public Health conducted a telephone survey with a random sample of registered voters in the region. The survey asked respondents to report on the presence and importance of walking and biking infrastructure in their community, travel behaviors and preferences, and demographics. One thousand and five interviews were completed (response rate 20%, cooperation rate 54%). The majority of participants reported walking, biking, and bus/rail transportation investments as being important. In addition, participants reported a high level of support for redirecting transportation funds to active transportation investment - the population average was 3.28 (between 'strongly' and 'somewhat' support) on a 4 point Likert scale. Voters see active transportation infrastructure as being very important and support redirecting funding to improve the infrastructure. These findings can inform policy-decisions and planning efforts in the jurisdiction. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness.

    PubMed

    Herasevich, Vitaly; Pickering, Brian W; Dong, Yue; Peters, Steve G; Gajic, Ognjen

    2010-03-01

    To develop and validate an informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness. Using open-schema data feeds imported from electronic medical records (EMRs), we developed a near-real-time relational database (Multidisciplinary Epidemiology and Translational Research in Intensive Care Data Mart). Imported data domains included physiologic monitoring, medication orders, laboratory and radiologic investigations, and physician and nursing notes. Open database connectivity supported the use of Boolean combinations of data that allowed authorized users to develop syndrome surveillance, decision support, and reporting (data "sniffers") routines. Random samples of database entries in each category were validated against corresponding independent manual reviews. The Multidisciplinary Epidemiology and Translational Research in Intensive Care Data Mart accommodates, on average, 15,000 admissions to the intensive care unit (ICU) per year and 200,000 vital records per day. Agreement between database entries and manual EMR audits was high for sex, mortality, and use of mechanical ventilation (kappa, 1.0 for all) and for age and laboratory and monitored data (Bland-Altman mean difference +/- SD, 1(0) for all). Agreement was lower for interpreted or calculated variables, such as specific syndrome diagnoses (kappa, 0.5 for acute lung injury), duration of ICU stay (mean difference +/- SD, 0.43+/-0.2), or duration of mechanical ventilation (mean difference +/- SD, 0.2+/-0.9). Extraction of essential ICU data from a hospital EMR into an open, integrative database facilitates process control, reporting, syndrome surveillance, decision support, and outcome research in the ICU.

  18. Visual Decision Support Tool for Supporting Asset Management Performance, Risk, and Cost Analysis (WERF Report INFR5R12)

    EPA Science Inventory

    Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and m...

  19. 75 FR 52733 - Record of Decision (ROD) for Fort Bliss Army Growth and Force Structure Realignment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... alternative consists of actions in three different categories (stationing/training, land use changes, and... (Stationing Action Alternative 4); land use changes that allow fixed site bivouac areas, mission support... supports Army expansion, future stationing actions, and land use changes and training infrastructure...

  20. Implementing pharmacogenomics decision support across seven European countries: The Ubiquitous Pharmacogenomics (U-PGx) project.

    PubMed

    Blagec, Kathrin; Koopmann, Rudolf; Crommentuijn-van Rhenen, Mandy; Holsappel, Inge; van der Wouden, Cathelijne H; Konta, Lidija; Xu, Hong; Steinberger, Daniela; Just, Enrico; Swen, Jesse J; Guchelaar, Henk-Jan; Samwald, Matthias

    2018-02-09

    Clinical pharmacogenomics (PGx) has the potential to make pharmacotherapy safer and more effective by utilizing genetic patient data for drug dosing and selection. However, widespread adoption of PGx depends on its successful integration into routine clinical care through clinical decision support tools, which is often hampered by insufficient or fragmented infrastructures. This paper describes the setup and implementation of a unique multimodal, multilingual clinical decision support intervention consisting of digital, paper-, and mobile-based tools that are deployed across implementation sites in seven European countries participating in the Ubiquitous PGx (U-PGx) project. © The Author(s) 2018. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  1. Selection of interest and inflation rates for infrastructure investment analyses.

    DOT National Transportation Integrated Search

    2014-12-01

    The South Dakota Department of Transportation (SDDOT) uses engineering economic analyses (EEA) to : support planning, design, and construction decision-making such as project programming and planning, : pavement type selection, and the occasional val...

  2. Unmanned aircraft systems for transportation decision support.

    DOT National Transportation Integrated Search

    2016-11-30

    Our nation relies on accurate geospatial information to map, measure, and monitor transportation infrastructure and the surrounding landscapes. This project focused on the application of Unmanned Aircraft systems (UAS) as a novel tool for improving e...

  3. Career pathways in research: support and management.

    PubMed

    Kenkre, J E; Foxcroft, D R

    This article, the third in the series on career pathways, highlights support and management careers open to nurses working in the NHS and research and development, or people working for funding bodies or charitable organisations. These roles involve ensuring that the right infrastructure is in place to support research projects, and the correct decisions are made about which research projects should be supported and commissioned.

  4. The Role of Social Media in the Civic Co-Management of Urban Infrastructure Resilience

    NASA Astrophysics Data System (ADS)

    Turpin, E.; Holderness, T.; Wickramasuriya, R.

    2014-12-01

    As cities evolve to become increasingly complex systems of people and interconnected infrastructure the impacts of extreme events and long term climatological change are significantly heightened (Walsh et al. 2011). Understanding the resilience of urban systems and the impacts of infrastructure failure is therefore key to understanding the adaptability of cities to climate change (Rosenzweig 2011). Such information is particularly critical in developing nations which are predicted to bear the brunt of climate change (Douglas et al., 2008), but often lack the resources and data required to make informed decisions regarding infrastructure and societal resilience (e.g. Paar & Rekittke 2011). We propose that mobile social media in a people-as-sensors paradigm provides a means of monitoring the response of a city to cascading infrastructure failures induced by extreme weather events. Such an approach is welcomed in developing nations where crowd-sourced data are increasingly being used as an alternative to missing or incomplete formal data sources to help solve infrastructure challenges (Holderness 2014). In this paper we present PetaJakarta.org as a case study that harnesses the power of social media to gather, sort and display information about flooding for residents of Jakarta, Indonesia in real time, recuperating the failures of infrastructure and monitoring systems through a web of social media connections. Our GeoSocial Intelligence Framework enables the capture and comprehension of significant time-critical information to support decision-making, and as a means of transparent communication, while maintaining user privacy, to enable civic co-management processes to aid city-scale climate adaptation and resilience. PetaJakarta empowers community residents to collect and disseminate situational information about flooding, via the social media network Twitter, to provide city-scale decision support for Jakarta's Emergency Management Team, and a neighbourhood-scale public information service for individuals and communities to alert them of nearby flood events. Douglas I., et al. 2008 ENVIRONMENT & URBANIZATION Holderness T. 2014 IEEE TECHNOLOGY & SOCIETY MAGAZINE Paar P. & Rekittke J. 2011 FUTURE INTERNET Rosenzweig C. 2011 SCIENTIFIC AMERICAN Walsh C. L., et al. 2011 URBAN DESIGN & PLANNING

  5. Comparison of Computer-based Clinical Decision Support Systems and Content for Diabetes Mellitus.

    PubMed

    Kantor, M; Wright, A; Burton, M; Fraser, G; Krall, M; Maviglia, S; Mohammed-Rajput, N; Simonaitis, L; Sonnenberg, F; Middleton, B

    2011-01-01

    Computer-based clinical decision support (CDS) systems have been shown to improve quality of care and workflow efficiency, and health care reform legislation relies on electronic health records and CDS systems to improve the cost and quality of health care in the United States; however, the heterogeneity of CDS content and infrastructure of CDS systems across sites is not well known. We aimed to determine the scope of CDS content in diabetes care at six sites, assess the capabilities of CDS in use at these sites, characterize the scope of CDS infrastructure at these sites, and determine how the sites use CDS beyond individual patient care in order to identify characteristics of CDS systems and content that have been successfully implemented in diabetes care. We compared CDS systems in six collaborating sites of the Clinical Decision Support Consortium. We gathered CDS content on care for patients with diabetes mellitus and surveyed institutions on characteristics of their site, the infrastructure of CDS at these sites, and the capabilities of CDS at these sites. The approach to CDS and the characteristics of CDS content varied among sites. Some commonalities included providing customizability by role or user, applying sophisticated exclusion criteria, and using CDS automatically at the time of decision-making. Many messages were actionable recommendations. Most sites had monitoring rules (e.g. assessing hemoglobin A1c), but few had rules to diagnose diabetes or suggest specific treatments. All sites had numerous prevention rules including reminders for providing eye examinations, influenza vaccines, lipid screenings, nephropathy screenings, and pneumococcal vaccines. Computer-based CDS systems vary widely across sites in content and scope, but both institution-created and purchased systems had many similar features and functionality, such as integration of alerts and reminders into the decision-making workflow of the provider and providing messages that are actionable recommendations.

  6. Barriers, facilitators and views about next steps to implementing supports for evidence-informed decision-making in health systems: a qualitative study.

    PubMed

    Ellen, Moriah E; Léon, Grégory; Bouchard, Gisèle; Ouimet, Mathieu; Grimshaw, Jeremy M; Lavis, John N

    2014-12-05

    Mobilizing research evidence for daily decision-making is challenging for health system decision-makers. In a previous qualitative paper, we showed the current mix of supports that Canadian health-care organizations have in place and the ones that are perceived to be helpful to facilitate the use of research evidence in health system decision-making. Factors influencing the implementation of such supports remain poorly described in the literature. Identifying the barriers to and facilitators of different interventions is essential for implementation of effective, context-specific, supports for evidence-informed decision-making (EIDM) in health systems. The purpose of this study was to identify (a) barriers and facilitators to implementing supports for EIDM in Canadian health-care organizations, (b) views about emerging development of supports for EIDM, and (c) views about the priorities to bridge the gaps in the current mix of supports that these organizations have in place. This qualitative study was conducted in three types of health-care organizations (regional health authorities, hospitals, and primary care practices) in two Canadian provinces (Ontario and Quebec). Fifty-seven in-depth semi-structured telephone interviews were conducted with senior managers, library managers, and knowledge brokers from health-care organizations that have already undertaken strategic initiatives in knowledge translation. The interviews were taped, transcribed, and then analyzed thematically using NVivo 9 qualitative data analysis software. Limited resources (i.e., money or staff), time constraints, and negative attitudes (or resistance) toward change were the most frequently identified barriers to implementing supports for EIDM. Genuine interest from health system decision-makers, notably their willingness to invest money and resources and to create a knowledge translation culture over time in health-care organizations, was the most frequently identified facilitator to implementing supports for EIDM. The most frequently cited views about emerging development of supports for EIDM were implementing accessible and efficient systems to support the use of research in decision-making (e.g., documentation and reporting tools, communication tools, and decision support tools) and developing and implementing an infrastructure or position where the accountability for encouraging knowledge use lies. The most frequently stated priorities for bridging the gaps in the current mix of supports that these organizations have in place were implementing technical infrastructures to support research use and to ensure access to research evidence and establishing formal or informal ties to researchers and knowledge brokers outside the organization who can assist in EIDM. These results provide insights on the type of practical implementation imperatives involved in supporting EIDM.

  7. AERIS : Eco-Vehicle Speed Control at Signalized Intersections Using I2V Communication

    DOT National Transportation Integrated Search

    2012-06-01

    This report concentrates on a velocity advisory tool, or decision support system, for vehicles approaching an intersection using communication capabilities between the infrastructure and vehicles. The system uses available signal change information, ...

  8. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  9. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  10. School Mapping and Geospatial Analysis of the Schools in Jasra Development Block of India

    NASA Astrophysics Data System (ADS)

    Agrawal, S.; Gupta, R. D.

    2016-06-01

    GIS is a collection of tools and techniques that works on the geospatial data and is used in the analysis and decision making. Education is an inherent part of any civil society. Proper educational facilities generate the high quality human resource for any nation. Therefore, government needs an efficient system that can help in analysing the current state of education and its progress. Government also needs a system that can support in decision making and policy framing. GIS can serve the mentioned requirements not only for government but also for the general public. In order to meet the standards of human development, it is necessary for the government and decision makers to have a close watch on the existing education policy and its implementation condition. School mapping plays an important role in this aspect. School mapping consists of building the geospatial database of schools that supports in the infrastructure development, policy analysis and decision making. The present research work is an attempt for supporting Right to Education (RTE) and Sarv Sikha Abhiyaan (SSA) programmes run by Government of India through the use of GIS. School mapping of the study area is performed which is followed by the geospatial analysis. This research work will help in assessing the present status of educational infrastructure in Jasra block of Allahabad district, India.

  11. Ten Years, Forty Decision Aids, And Thousands Of Patient Uses: Shared Decision Making At Massachusetts General Hospital.

    PubMed

    Sepucha, Karen R; Simmons, Leigh H; Barry, Michael J; Edgman-Levitan, Susan; Licurse, Adam M; Chaguturu, Sreekanth K

    2016-04-01

    Shared decision making is a core component of population health strategies aimed at improving patient engagement. Massachusetts General Hospital's integration of shared decision making into practice has focused on the following three elements: developing a culture receptive to, and health care providers skilled in, shared decision making conversations; using patient decision aids to help inform and engage patients; and providing infrastructure and resources to support the implementation of shared decision making in practice. In the period 2005-15, more than 900 clinicians and other staff members were trained in shared decision making, and more than 28,000 orders for one of about forty patient decision aids were placed to support informed patient-centered decisions. We profile two different implementation initiatives that increased the use of patient decision aids at the hospital's eighteen adult primary care practices, and we summarize key elements of the shared decision making program. Project HOPE—The People-to-People Health Foundation, Inc.

  12. Application of management tools to integrate ecological principles with the design of marine infrastructure.

    PubMed

    Dafforn, Katherine A; Mayer-Pinto, Mariana; Morris, Rebecca L; Waltham, Nathan J

    2015-08-01

    Globally the coastal zone is suffering the collateral damage from continuing urban development and construction, expanding resource sectors, increasing population, regulation to river flow, and on-going land change and degradation. While protection of natural coastal habitat is recommended, balancing conservation with human services is now the challenge for managers. Marine infrastructure such as seawalls, marinas and offshore platforms is increasingly used to support and provide services, but has primarily been designed for engineering purposes without consideration of the ecological consequences. Increasingly developments are seeking alternatives to hard engineering and a range of ecological solutions has begun to replace or be incorporated into marine and coastal infrastructure. But too often, hard engineering remains the primary strategy because the tools for managers to implement ecological solutions are either lacking or not supported by policy and stakeholders. Here we outline critical research needs for marine urban development and emerging strategies that seek to mitigate the impacts of marine infrastructure. We present case studies to highlight the strategic direction necessary to support management decisions internationally. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DECISION-SUPPORT TOOLS FOR MANAGING WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. As these systems become older, more preventative maintenance and renewal are required. For municipalities to cost-effectively plan, organize, and implement this effort, they require improved inf...

  14. Developing infrastructure for interconnecting transportation network and electric grid.

    DOT National Transportation Integrated Search

    2011-09-01

    This report is primarily focused on the development of mathematical models that can be used to : support decisions regarding a charging station location and installation problem. The major parts : of developing the models included identification of t...

  15. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  16. A Decision Support System for Optimum Use of Fertilizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; J. R. Hess; R. K. Fink

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend inmore » the agricultural decision-making process.« less

  17. Integration of RAMS in LCC analysis for linear transport infrastructures. A case study for railways.

    NASA Astrophysics Data System (ADS)

    Calle-Cordón, Álvaro; Jiménez-Redondo, Noemi; Morales-Gámiz, F. J.; García-Villena, F. A.; Garmabaki, Amir H. S.; Odelius, Johan

    2017-09-01

    Life-cycle cost (LCC) analysis is an economic technique used to assess the total costs associated with the lifetime of a system in order to support decision making in long term strategic planning. For complex systems, such as railway and road infrastructures, the cost of maintenance plays an important role in the LCC analysis. Costs associated with maintenance interventions can be more reliably estimated by integrating the probabilistic nature of the failures associated to these interventions in the LCC models. Reliability, Maintainability, Availability and Safety (RAMS) parameters describe the maintenance needs of an asset in a quantitative way by using probabilistic information extracted from registered maintenance activities. Therefore, the integration of RAMS in the LCC analysis allows obtaining reliable predictions of system maintenance costs and the dependencies of these costs with specific cost drivers through sensitivity analyses. This paper presents an innovative approach for a combined RAMS & LCC methodology for railway and road transport infrastructures being developed under the on-going H2020 project INFRALERT. Such RAMS & LCC analysis provides relevant probabilistic information to be used for condition and risk-based planning of maintenance activities as well as for decision support in long term strategic investment planning.

  18. E-DECIDER Disaster Response and Decision Support Cyberinfrastructure: Technology and Challenges

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    Timely delivery of critical information to decision makers during a disaster is essential to response and damage assessment. Key issues to an efficient emergency response after a natural disaster include rapidly processing and delivering this critical information to emergency responders and reducing human intervention as much as possible. Essential elements of information necessary to achieve situational awareness are often generated by a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. A key challenge is the current state of practice does not easily support information sharing and technology interoperability. NASA E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) has worked with the California Earthquake Clearinghouse and its partners to address these issues and challenges by adopting the XChangeCore Web Service Data Orchestration technology and participating in several earthquake response exercises. The E-DECIDER decision support system provides rapid delivery of advanced situational awareness data products to operations centers and emergency responders in the field. Remote sensing and hazard data, model-based map products, information from simulations, damage detection, and crowdsourcing is integrated into a single geospatial view and delivered through a service oriented architecture for improved decision-making and then directly to mobile devices of responders. By adopting a Service Oriented Architecture based on Open Geospatial Consortium standards, the system provides an extensible, comprehensive framework for geospatial data processing and distribution on Cloud platforms and other distributed environments. While the Clearinghouse and its partners are not first responders, they do support the emergency response community by providing information about the damaging effects earthquakes. It is critical for decision makers to maintain a situational awareness that is knowledgeable of potential and current conditions, possible impacts on populations and infrastructure, and other key information. E-DECIDER and the Clearinghouse have worked together to address many of these issues and challenges to deliver interoperable, authoritative decision support products.

  19. e-Infrastructures for e-Sciences 2013 A CHAIN-REDS Workshop organised under the aegis of the European Commission

    NASA Astrophysics Data System (ADS)

    The CHAIN-REDS Project is organising a workshop on "e-Infrastructures for e-Sciences" focusing on Cloud Computing and Data Repositories under the aegis of the European Commission and in co-location with the International Conference on e-Science 2013 (IEEE2013) that will be held in Beijing, P.R. of China on October 17-22, 2013. The core objective of the CHAIN-REDS project is to promote, coordinate and support the effort of a critical mass of non-European e-Infrastructures for Research and Education to collaborate with Europe addressing interoperability and interoperation of Grids and other Distributed Computing Infrastructures (DCI). From this perspective, CHAIN-REDS will optimise the interoperation of European infrastructures with those present in 6 other regions of the world, both from a development and use point of view, and catering to different communities. Overall, CHAIN-REDS will provide input for future strategies and decision-making regarding collaboration with other regions on e-Infrastructure deployment and availability of related data; it will raise the visibility of e-Infrastructures towards intercontinental audiences, covering most of the world and will provide support to establish globally connected and interoperable infrastructures, in particular between the EU and the developing regions. Organised by IHEP, INFN and Sigma Orionis with the support of all project partners, this workshop will aim at: - Presenting the state of the art of Cloud computing in Europe and in China and discussing the opportunities offered by having interoperable and federated e-Infrastructures; - Exploring the existing initiatives of Data Infrastructures in Europe and China, and highlighting the Data Repositories of interest for the Virtual Research Communities in several domains such as Health, Agriculture, Climate, etc.

  20. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  1. On the Development of a Computing Infrastructure that Facilitates IPPD from a Decision-Based Design Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application of both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. Georgia Tech has proposed the development of an Integrated Design Engineering Simulator that will merge Integrated Product and Process Development with interdisciplinary analysis techniques and state-of-the-art computational technologies. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. The current status of development is given and future directions are outlined.

  2. Lessons learned from implementing a national infrastructure in Sweden for storage and analysis of next-generation sequencing data

    PubMed Central

    2013-01-01

    Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms. UPPNEX comprises resources for high-performance computing, large-scale and high-availability storage, an extensive bioinformatics software suite, up-to-date reference genomes and annotations, a support function with system and application experts as well as a web portal and support ticket system. UPPNEX applications are numerous and diverse, and include whole genome-, de novo- and exome sequencing, targeted resequencing, SNP discovery, RNASeq, and methylation analysis. There are over 300 projects that utilize UPPNEX and include large undertakings such as the sequencing of the flycatcher and Norwegian spruce. We describe the strategic decisions made when investing in hardware, setting up maintenance and support, allocating resources, and illustrate major challenges such as managing data growth. We conclude with summarizing our experiences and observations with UPPNEX to date, providing insights into the successful and less successful decisions made. PMID:23800020

  3. DECISION-SUPPORT TOOLS FOR MANAGING WASTEWATER PIPELINE PERFORMANCE IMPROVEMENTS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the US approximately 150 million people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately owned service ...

  4. DECISION SUPPORT TOOLS FOR MANAGING WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the US approximately 150M people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately owned service lateria...

  5. DECISION SUPPORT TOOLS FOR MANAGING WASTEWATER PIPELINE PERFORMANCE IMPROVEMENTS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the US approximately 150 million people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately owned service ...

  6. A decision support system for transportation infrastructure and supply chain system planning.

    DOT National Transportation Integrated Search

    2013-07-01

    This project makes the results (models and methodology) of the research and development efforts on freight movement modeling (FMM) and supply chain design carried out by faculty at OSU and OU available to transportation and logistics professionals. A...

  7. Structuring Disaster Recovery Infrastructure Decisions: Lessons from Boulder County's 2013 Flood Recovery

    NASA Astrophysics Data System (ADS)

    Clavin, C.; Petropoulos, Z.

    2017-12-01

    Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.

  8. Characterizing uncertain sea-level rise projections to support investment decisions.

    PubMed

    Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.

  9. Characterizing uncertain sea-level rise projections to support investment decisions

    PubMed Central

    Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. PMID:29414978

  10. Defense Technology Plan

    DTIC Science & Technology

    1994-09-01

    implementation of the services necessary to support transparent "information pull " operation of decision support systems. This infrastructure will be implemented...technology. Some aspects of this area such as user- pull , mobile and highly distributed operation, bandwidth needs and degree of securihy are Dol)-driven...by a variety of statutory requirements. R&D will provide enhanced mission effectiveness and maintenance of fragile ecosystems. The goalis to develop

  11. Combining Interactive Infrastructure Modeling and Evolutionary Algorithm Optimization for Sustainable Water Resources Design

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2013-12-01

    Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.

  12. Knowledge base and sensor bus messaging service architecture for critical tsunami warning and decision-support

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Wächter, J.; Middleton, S. E.; Zlatev, Z.; Häner, R.; Hammitzsch, M.; Loewe, P.

    2012-04-01

    The intelligent management of large volumes of environmental monitoring data for early tsunami warning requires the deployment of robust and scalable service oriented infrastructure that is supported by an agile knowledge-base for critical decision-support In the TRIDEC project (TRIDEC 2010-2013), a sensor observation service bus of the TRIDEC system is being developed for the advancement of complex tsunami event processing and management. Further, a dedicated TRIDEC system knowledge-base is being implemented to enable on-demand access to semantically rich OGC SWE compliant hydrodynamic observations and operationally oriented meta-information to multiple subscribers. TRIDEC decision support requires a scalable and agile real-time processing architecture which enables fast response to evolving subscribers requirements as the tsunami crisis develops. This is also achieved with the support of intelligent processing services which specialise in multi-level fusion methods with relevance feedback and deep learning. The TRIDEC knowledge base development work coupled with that of the generic sensor bus platform shall be presented to demonstrate advanced decision-support with situation awareness in context of tsunami early warning and crisis management.

  13. Decision support tools for proton therapy ePR: intelligent treatment planning navigator and radiation toxicity tool for evaluating of prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Le, Anh H.; Deshpande, Ruchi; Liu, Brent J.

    2010-03-01

    The electronic patient record (ePR) has been developed for prostate cancer patients treated with proton therapy. The ePR has functionality to accept digital input from patient data, perform outcome analysis and patient and physician profiling, provide clinical decision support and suggest courses of treatment, and distribute information across different platforms and health information systems. In previous years, we have presented the infrastructure of a medical imaging informatics based ePR for PT with functionality to accept digital patient information and distribute this information across geographical location using Internet protocol. In this paper, we present the ePR decision support tools which utilize the imaging processing tools and data collected in the ePR. The two decision support tools including the treatment plan navigator and radiation toxicity tool are presented to evaluate prostate cancer treatment to improve proton therapy operation and improve treatment outcomes analysis.

  14. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  15. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  16. Framework for Incorporating Green Infrastructure into Urban Watershed Management

    EPA Science Inventory

    Efforts have been under way by the U.S. Environmental Protection Agency (EPA) since 2003 to develop a decision-support system for placement of best management practices (BMPs) at strategic locations in urban watersheds. This system is called the System for Urban Stormwater Treatm...

  17. DECISION-SUPPORT TOOLS FOR PREDICTING THE PERFORMANCE OF WATER DISTRIBUTION AND WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Water and wastewater infrastructure systems represent a major capital investment; utilities must ensure they are getting the highest yield possible on their investment, both in terms of dollars and water quality. Accurate information related to equipment, pipe characteristics, l...

  18. DECISION-SUPPORT TOOLS FOR PREDICTING THE PERFORMANCE OF WATER DISTRIBUTION AND WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Water and wastewater infrastructure systems represent a major capital investment; utilities must ensure they are getting the highest yield possible on their investment, both in terms of dollars and water quality. Accurate information related to equipment, pipe characteristics, lo...

  19. Creating Business Intelligence from Course Management Systems

    ERIC Educational Resources Information Center

    van Dyk, Liezl; Conradie, Pieter

    2007-01-01

    Purpose: This article seeks to address the interface between individual learning facilitators that use course management systems (CMS) data to support decision-making and course design and institutional infrastructure providers that are responsible for institutional business intelligence. Design/methodology/approach: The design of a data warehouse…

  20. Improving linear transport infrastructure efficiency by automated learning and optimised predictive maintenance techniques (INFRALERT)

    NASA Astrophysics Data System (ADS)

    Jiménez-Redondo, Noemi; Calle-Cordón, Alvaro; Kandler, Ute; Simroth, Axel; Morales, Francisco J.; Reyes, Antonio; Odelius, Johan; Thaduri, Aditya; Morgado, Joao; Duarte, Emmanuele

    2017-09-01

    The on-going H2020 project INFRALERT aims to increase rail and road infrastructure capacity in the current framework of increased transportation demand by developing and deploying solutions to optimise maintenance interventions planning. It includes two real pilots for road and railways infrastructure. INFRALERT develops an ICT platform (the expert-based Infrastructure Management System, eIMS) which follows a modular approach including several expert-based toolkits. This paper presents the methodologies and preliminary results of the toolkits for i) nowcasting and forecasting of asset condition, ii) alert generation, iii) RAMS & LCC analysis and iv) decision support. The results of these toolkits in a meshed road network in Portugal under the jurisdiction of Infraestruturas de Portugal (IP) are presented showing the capabilities of the approaches.

  1. Analysis of Stakeholder-Defined Needs in Northeast U.S. Coastal Communities to Determine Gaps in Research Informing Coastal Resilience Planning

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Kenney, M. A.; Sutton-Grier, A.; Penn, K.

    2017-12-01

    The impacts of climate change on our coastlines are increasing pressure on communities, ecosystems, infrastructure, and state-to-local economies in the northeastern United States (U.S.). As a result of current or imminent risk of acute and chronic hazards, local, state and regional entities have taken steps to identify and address vulnerabilities to climate change. Decisions to increase coastal infrastructure resilience and grey, green, and cultural infrastructure solutions requires physical, natural, and social science that is useful for decision-making and effective science translation mechanisms. Despite the desire to conduct or fund science that meets the needs of communities, there has been no comprehensive analysis to determine stakeholder-defined research needs. To address this gap, this study conducts a stakeholder needs analysis in northeast U.S. coastal communities to determine gaps in information and translation processes supporting coastal resilience planning. Documents were sourced from local, state, and regional organizations in both the public and private sectors, using the northeast region defined by the third National Climate Assessment. Modeled after Dilling et al. (2015), a deductive coding schema was developed that categorized documents using specific search terms such as "Location and condition of infrastructure" and "Proactive planning". A qualitative document analysis was then executed using NVivo to formally identify patterns and themes present in stakeholder surveys, workshop proceedings, and reports. Initial stakeholder priorities centered around incorporation of climate science into planning and decision making regarding vulnerabilities of infrastructure, enhanced emergency planning and response, and communication of key information.

  2. Generic Sensor Data Fusion Services for Web-enabled Environmental Risk Management and Decision-Support Systems

    NASA Astrophysics Data System (ADS)

    Sabeur, Zoheir; Middleton, Stuart; Veres, Galina; Zlatev, Zlatko; Salvo, Nicola

    2010-05-01

    The advancement of smart sensor technology in the last few years has led to an increase in the deployment of affordable sensors for monitoring the environment around Europe. This is generating large amounts of sensor observation information and inevitably leading to problems about how to manage large volumes of data as well as making sense out the data for decision-making. In addition, the various European Directives (Water Framework Diectives, Bathing Water Directives, Habitat Directives, etc.. ) which regulate human activities in the environment and the INSPIRE Directive on spatial information management regulations have implicitely led the designated European Member States environment agencies and authorities to put in place new sensor monitoring infrastructure and share information about environmental regions under their statutory responsibilities. They will need to work cross border and collectively reach environmental quality standards. They will also need to regularly report to the EC on the quality of the environments of which they are responsible and make such information accessible to the members of the public. In recent years, early pioneering work on the design of service oriented architecture using sensor networks has been achieved. Information web-services infrastructure using existing data catalogues and web-GIS map services can now be enriched with the deployment of new sensor observation and data fusion and modelling services using OGC standards. The deployment of the new services which describe sensor observations and intelligent data-processing using data fusion techniques can now be implemented and provide added value information with spatial-temporal uncertainties to the next generation of decision support service systems. The new decision support service systems have become key to implement across Europe in order to comply with EU environmental regulations and INSPIRE. In this paper, data fusion services using OGC standards with sensor observation data streams are described in context of a geo-distributed service infrastructure specialising in multiple environmental risk management and decision-support. The sensor data fusion services are deployed and validated in two use cases. These are respectively concerned with: 1) Microbial risks forecast in bathing waters; and 2) Geohazards in urban zones during underground tunneling activities. This research was initiated in the SANY Integrated Project(www.sany-ip.org) and funded by the European Commission under the 6th Framework Programme.

  3. Reducing construction waste: A study of urban infrastructure projects.

    PubMed

    de Magalhães, Ruane Fernandes; Danilevicz, Ângela de Moura Ferreira; Saurin, Tarcisio Abreu

    2017-09-01

    The construction industry is well-known for producing waste detrimental to the environment, and its impacts have increased with the development process of cities. Although there are several studies focused on the environmental impact of residential and commercial buildings, less knowledge is available regarding decreasing construction waste (CW) generation in urban infrastructure projects. This study presents best practices to reduce waste in the said projects, stressing the role of decision-making in the design stage and the effective management of construction processes in public sector. The best practices were identified from literature review, document analysis in 14 projects of urban infrastructure, and both qualitative and quantitative survey with 18 experts (architects and engineers) playing different roles on those projects. The contributions of these research are: (i) the identification of the main building techniques related to the urban design typologies analyzed; (ii) the identification of cause-effect relationships between the design choices and the CW generation diagnosis; (iii) the proposal of a checklist to support the decision-making process, that can be used as a control and evaluation instrument when developing urban infrastructure designs, focused on the construction waste minimization (CWM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bush School Capstone course support : the regional impact of climate change on transportation infrastructure and decision making.

    DOT National Transportation Integrated Search

    2009-09-01

    The Master of Public Service and Administration program at Texas A&Ms Bush School of Government : and Public Service requires that all second year graduate students participate in a two semester Capstone : course. These courses represent the pract...

  5. EnviroAtlas: Two Use Cases in the EnviroAtlas

    EPA Science Inventory

    EnviroAtlas is an online spatial decision support tool for viewing and analyzing the supply, demand, and drivers of change related to natural and built infrastructure at multiple scales for the nation. To maximize usefulness to a broad range of users, EnviroAtlas contains trainin...

  6. EnviroAtlas: Incorporation of Community-Scale Data for Additional Communities

    EPA Science Inventory

    EnviroAtlas is ORD’s online spatial decision support tool for viewing and analyzing the supply, demand, and drivers of change related to natural and built infrastructure at multiple scales for the nation. Maps and text identify known relationships between the goods and services ...

  7. Development and Exploration of a Regional Stormwater BMP Performance Database to Parameterize an Integrated Decision Support Tool (i-DST)

    NASA Astrophysics Data System (ADS)

    Bell, C.; Li, Y.; Lopez, E.; Hogue, T. S.

    2017-12-01

    Decision support tools that quantitatively estimate the cost and performance of infrastructure alternatives are valuable for urban planners. Such a tool is needed to aid in planning stormwater projects to meet diverse goals such as the regulation of stormwater runoff and its pollutants, minimization of economic costs, and maximization of environmental and social benefits in the communities served by the infrastructure. This work gives a brief overview of an integrated decision support tool, called i-DST, that is currently being developed to serve this need. This presentation focuses on the development of a default database for the i-DST that parameterizes water quality treatment efficiency of stormwater best management practices (BMPs) by region. Parameterizing the i-DST by region will allow the tool to perform accurate simulations in all parts of the United States. A national dataset of BMP performance is analyzed to determine which of a series of candidate regionalizations explains the most variance in the national dataset. The data used in the regionalization analysis comes from the International Stormwater BMP Database and data gleaned from an ongoing systematic review of peer-reviewed and gray literature. In addition to identifying a regionalization scheme for water quality performance parameters in the i-DST, our review process will also provide example methods and protocols for systematic reviews in the field of Earth Science.

  8. E-DECIDER: Using Earth Science Data and Modeling Tools to Develop Decision Support for Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, Margaret T.; Wang, Jun; Pierce, Marlon E.; Yoder, Mark R.; Parker, Jay W.; Burl, Michael C.; Stough, Timothy M.; Granat, Robert A.; Donnellan, Andrea; Rundle, John B.; Ma, Yu; Bawden, Gerald W.; Yuen, Karen

    2015-08-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing new capabilities for decision making utilizing remote sensing data and modeling software to provide decision support for earthquake disaster management and response. E-DECIDER incorporates the earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools allows us to provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). This in turn is delivered through standards-compliant web services for desktop and hand-held devices.

  9. Soak Up the Rain New England Webinar Series: National Stormwater Calculator

    EPA Science Inventory

    Presenters will provide an introduction to the most recent EPA green infrastructure tools to R1 stakeholders; and their use in making decisions about implementing green infrastructure. We will discuss structuring your green infrastructure decision, finding appropriate information...

  10. Infrastructure for Reaching Disadvantaged Consumers

    PubMed Central

    Hovenga, Evelyn J. S.; Hovel, Joe; Klotz, Jeanette; Robins, Patricia

    1998-01-01

    Both consumers and health service providers need access to up-to-date information, including patient and practice guidelines, that allows them to make decisions in partnership about individual and public health in line with the primary health care model of health service delivery. Only then is it possible for patient preferences to be considered while the health of the general population is improved. The Commonwealth Government of Australia has allocated $250 million over five years, starting July 1, 1997, to support activities and projects designed to meet a range of telecommunication needs in regional, rural, and remote Australia. This paper defines rural and remote communities, then reviews rural and remote health services, information, and telecommunication technology infrastructures and their use in Australia to establish the current state of access to information tools by rural and remote communities and rural health workers in Australia today. It is argued that a suitable telecommunication infrastructure is needed to reach disadvantaged persons in extremely remote areas and that intersectoral support is essential to build this infrastructure. In addition, education will make its utilization possible. PMID:9609497

  11. Risk and Infrastructure Science Center - Global Security Sciences

    Science.gov Websites

    delivers scientific tools and methodologies to inform decision making regarding the most challenging Sciences ASD Accelerator Systems AES APS Engineering Support XSD X-ray Science Physical Sciences and Leadership Strategic Alliance for Global Energy Solutions Overview Leadership Systems Science Center Overview

  12. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT - Paper

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, one key area of research pursued, in collaboration with wastewater and water utilities, was a study of the current approaches available for making rehabilitation versus replac...

  13. Optimal condition sampling for a network of infrastructure facilities.

    DOT National Transportation Integrated Search

    2011-12-31

    In response to the developments in inspection technologies, infrastructure decision-making methods evolved whereby the optimum combination of inspection decisions on the one hand and maintenance and rehabilitation decisions on the other are determine...

  14. Effective Team Support: From Modeling to Software Agents

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie; Sycara, Katia

    2003-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and engineers and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in modeling infrastructure and task infrastructure. Work is continuing under a different contract to complete empirical data collection, cognitive modeling, and the building of software agents to support the teams task.

  15. FEMA's Earthquake Incident Journal: A Web-Based Data Integration and Decision Support Tool for Emergency Management

    NASA Astrophysics Data System (ADS)

    Jones, M.; Pitts, R.

    2017-12-01

    For emergency managers, government officials, and others who must respond to rapidly changing natural disasters, timely access to detailed information related to affected terrain, population and infrastructure is critical for planning, response and recovery operations. Accessing, analyzing and disseminating such disparate information in near real-time are critical decision support components. However, finding a way to handle a variety of informative yet complex datasets poses a challenge when preparing for and responding to disasters. Here, we discuss the implementation of a web-based data integration and decision support tool for earthquakes developed by the Federal Emergency Management Agency (FEMA) as a solution to some of these challenges. While earthquakes are among the most well- monitored and measured of natural hazards, the spatially broad impacts of shaking, ground deformation, landslides, liquefaction, and even tsunamis, are extremely difficult to quantify without accelerated access to data, modeling, and analytics. This web-based application, deemed the "Earthquake Incident Journal", provides real-time access to authoritative and event-specific data from external (e.g. US Geological Survey, NASA, state and local governments, etc.) and internal (FEMA) data sources. The journal includes a GIS-based model for exposure analytics, allowing FEMA to assess the severity of an event, estimate impacts to structures and population in near real-time, and then apply planning factors to exposure estimates to answer questions such as: What geographic areas are impacted? Will federal support be needed? What resources are needed to support survivors? And which infrastructure elements or essential facilities are threatened? This presentation reviews the development of the Earthquake Incident Journal, detailing the data integration solutions, the methodology behind the GIS-based automated exposure model, and the planning factors as well as other analytical advances that provide near real-time decision support to the federal government.

  16. Integrated Forecast-Decision Systems For River Basin Planning and Management

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.

    2005-12-01

    A central application of climatology, meteorology, and hydrology is the generation of reliable forecasts for water resources management. In principle, effective use of forecasts could improve water resources management by providing extra protection against floods, mitigating the adverse effects of droughts, generating more hydropower, facilitating recreational activities, and minimizing the impacts of extreme events on the environment and the ecosystems. In practice, however, realization of these benefits depends on three requisite elements. First is the skill and reliability of forecasts. Second is the existence of decision support methods/systems with the ability to properly utilize forecast information. And third is the capacity of the institutional infrastructure to incorporate the information provided by the decision support systems into the decision making processes. This presentation discusses several decision support systems (DSS) using ensemble forecasting that have been developed by the Georgia Water Resources Institute for river basin management. These DSS are currently operational in Africa, Europe, and the US and address integrated water resources and energy planning and management in river basins with multiple water uses, multiple relevant temporal and spatial scales, and multiple decision makers. The article discusses the methods used and advocates that the design, development, and implementation of effective forecast-decision support systems must bring together disciplines, people, and institutions necessary to address today's complex water resources challenges.

  17. Communicating and Visualizing Erosion-associated Risks to Infrastructure

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Simpson, Carolyn; Wainwright, John

    2016-04-01

    Soil erosion is a major problem worldwide, affecting agriculture, the natural environment and urban areas through its impact on flood risk, water quality, loss of nutrient-rich upper soil layers, eutrophication of water bodies, sedimentation of waterways and sediment-related damage to roads, buildings and infrastructure such as water, gas and electricity supply networks. This study focuses on risks to infrastructure associated with erosion and the interventions needed to reduce those risks. Deciding on what interventions to make means understanding better which parts of the landscape are most susceptible to erosion and which measures are most effective in reducing it. Effective ways of communicating mitigation strategies to stakeholders such as farmers, land managers and policy-makers are then essential if interventions are to be implemented. Drawing on the Decision-Support Matrix (DSM) approach which combines a set of hydrological principles with Participatory Action Research (PAR), a decision-support tool for Communicating and Visualizing Erosion-Associated Risks to Infrastructure (CAVERTI) was developed. The participatory component was developed with the Wear Rivers Trust, focusing on a case-study area in the North East of England. The CAVERTI tool brings together process understanding gained from modelling with knowledge and experience of a variety of stakeholders to address directly the problem of sediment transport. Development of the tool was a collaborative venture, ensuring that the problems and solutions presented are easily recognised by practitioners and decision-makers. This recognition, and ease of access via a web-based interface, in turn help to ensure that the tools get used. The web-based tool developed helps to assess, manage and improve understanding of risk from a multi-stakeholder perspective and proposes solutions to problems. We argue that visualization and communication tools co-developed by researchers and stakeholders are the best means of ensuring that mitigation measures are undertaken across the landscape to reduce soil erosion. The CAVERTI tool has proven to be an effective means of encouraging farmers and land owners to act to reduce erosion, providing multiple benefits from protecting local infrastructure to reducing pollution of waterways.

  18. Lessons learned from implementing service-oriented clinical decision support at four sites: A qualitative study.

    PubMed

    Wright, Adam; Sittig, Dean F; Ash, Joan S; Erickson, Jessica L; Hickman, Trang T; Paterno, Marilyn; Gebhardt, Eric; McMullen, Carmit; Tsurikova, Ruslana; Dixon, Brian E; Fraser, Greg; Simonaitis, Linas; Sonnenberg, Frank A; Middleton, Blackford

    2015-11-01

    To identify challenges, lessons learned and best practices for service-oriented clinical decision support, based on the results of the Clinical Decision Support Consortium, a multi-site study which developed, implemented and evaluated clinical decision support services in a diverse range of electronic health records. Ethnographic investigation using the rapid assessment process, a procedure for agile qualitative data collection and analysis, including clinical observation, system demonstrations and analysis and 91 interviews. We identified challenges and lessons learned in eight dimensions: (1) hardware and software computing infrastructure, (2) clinical content, (3) human-computer interface, (4) people, (5) workflow and communication, (6) internal organizational policies, procedures, environment and culture, (7) external rules, regulations, and pressures and (8) system measurement and monitoring. Key challenges included performance issues (particularly related to data retrieval), differences in terminologies used across sites, workflow variability and the need for a legal framework. Based on the challenges and lessons learned, we identified eight best practices for developers and implementers of service-oriented clinical decision support: (1) optimize performance, or make asynchronous calls, (2) be liberal in what you accept (particularly for terminology), (3) foster clinical transparency, (4) develop a legal framework, (5) support a flexible front-end, (6) dedicate human resources, (7) support peer-to-peer communication, (8) improve standards. The Clinical Decision Support Consortium successfully developed a clinical decision support service and implemented it in four different electronic health records and four diverse clinical sites; however, the process was arduous. The lessons identified by the Consortium may be useful for other developers and implementers of clinical decision support services. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A GIS Inventory of Critical Coastal Infrastructure Land Use in Caribbean Island Small Island Developing States: Classification and Criteria Methodology

    NASA Astrophysics Data System (ADS)

    D'aversa, N.; Becker, A.; Bove, G.

    2017-12-01

    Caribbean Small Island Developing States (SIDS) face significant natural hazard risks, as demonstrated by recent Hurricanes Jose, Irma, and Maria. Scientists project storms to become more intense and sea level rise to increase over the next century. As a result, the Inter-American Development Bank projections suggest that Caribbean nations could face climate-related losses in excess of $22 billion annually by 2050. Critical infrastructure that supports island economies, such as airports, seaports, cruise ports, and energy facilities, are typically located in the coastal zone with high exposure to natural hazards. Despite the increasing danger from climate driven natural hazards in coastal zones in the region, there is very little data available to identify how much land and associated infrastructure is at risk. This work focuses on the criteria and data standards developed for this new region-wide GIS database, which will then be used to formulate a risk assessment. Results will be integrated into a single, comprehensive source for data of lands identified as critical coastal infrastructure and used to address such questions as: How much of the Caribbean SIDS infrastructure lands are at risk from sea level rise? How might demand for such lands change in the future, based on historical trends? Answers to these questions will help decision makers understand how to prioritize resilience investment decisions in the coming decades.

  20. Simultaneous Visualization of Different Utility Networks for Disaster Management

    NASA Astrophysics Data System (ADS)

    Semm, S.; Becker, T.; Kolbe, T. H.

    2012-07-01

    Cartographic visualizations of crises are used to create a Common Operational Picture (COP) and enforce Situational Awareness by presenting and representing relevant information. As nearly all crises affect geospatial entities, geo-data representations have to support location-specific decision-making throughout the crises. Since, Operator's attention span and their working memory are limiting factors for the process of getting and interpreting information; the cartographic presentation has to support individuals in coordinating their activities and with handling highly dynamic situations. The Situational Awareness of operators in conjunction with a COP are key aspects of the decision making process and essential for coming to appropriate decisions. Utility networks are one of the most complex and most needed systems within a city. The visualization of utility infrastructure in crisis situations is addressed in this paper. The paper will provide a conceptual approach on how to simplify, aggregate, and visualize multiple utility networks and their components to meet the requirements of the decision-making process and to support Situational Awareness.

  1. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact-probability matrix in terms of socio-economic dimension.

  2. Empowering genomic medicine by establishing critical sequencing result data flows: the eMERGE example.

    PubMed

    Aronson, Samuel; Babb, Lawrence; Ames, Darren; Gibbs, Richard A; Venner, Eric; Connelly, John J; Marsolo, Keith; Weng, Chunhua; Williams, Marc S; Hartzler, Andrea L; Liang, Wayne H; Ralston, James D; Devine, Emily Beth; Murphy, Shawn; Chute, Christopher G; Caraballo, Pedro J; Kullo, Iftikhar J; Freimuth, Robert R; Rasmussen, Luke V; Wehbe, Firas H; Peterson, Josh F; Robinson, Jamie R; Wiley, Ken; Overby Taylor, Casey

    2018-05-31

    The eMERGE Network is establishing methods for electronic transmittal of patient genetic test results from laboratories to healthcare providers across organizational boundaries. We surveyed the capabilities and needs of different network participants, established a common transfer format, and implemented transfer mechanisms based on this format. The interfaces we created are examples of the connectivity that must be instantiated before electronic genetic and genomic clinical decision support can be effectively built at the point of care. This work serves as a case example for both standards bodies and other organizations working to build the infrastructure required to provide better electronic clinical decision support for clinicians.

  3. Looking at CER from Medicare's perspective.

    PubMed

    Mohr, Penny

    2012-05-01

    Comparative effectiveness research (CER) is rapidly adding to the amount of data available to health care coverage and payment decision makers. Medicare's decisions have a large effect on coverage and reimbursement policies throughout the health insurance industry and will likely influence the entire U.S. health care system; thus, examining its role in integrating CER into policy is crucial. To describe the potential benefits of CER to support payment and coverage decisions in the Medicare program, limitations on its use,the role of the Centers for Medicare & Medicaid Services (CMS) in improving the infrastructure for CER, and to discuss challenges that must be addressed to integrate CER into CMS's decision-making process. A defining feature of CER is that it provides the type of evidence that will help decision makers, such as patients, clinicians, and payers,make more informed treatment and policy decisions. Because CMS is responsible for more than 47 million elderly and disabled beneficiaries, the way that Medicare uses CER has the potential to have a large impact on public and individual health. Currently many critical payment and coverage decisions within the Medicare program are made on the basis of poor quality evidence, and CER has the potential to greatly improve the quality of decision making. Despite common misconceptions, CMS is not prohibited by law from using CER apart from some reasonable limitations. CMS is,however, required to support the development of the CER infrastructure by making their data more readily available to researchers. While CER has substantial potential to improve the quality of the agency's policy decisions,challenges remain to integrate CER into Medicare's processes. These challenges include statutory ambiguities, lack of sufficient staff and internal resources to take advantage of CER, and the lack of an active voice in setting priorities for CER and study design. Although challenges exist, CER has the potential to greatly enhance CMS's ability to make decisions regarding coverage and payment that will benefit both the agency and their patient population.

  4. U.S. infrastructure : funding trends and opportunities to improve investment decisions

    DOT National Transportation Integrated Search

    2000-02-01

    Given the profound economic and social importance of the public infrastructure, it is crucial that federal, state, and local governments make prudent decisions on how to invest limited available resources. In making these decisions, governments will ...

  5. Role playing games: a methodology to acquire knowledge for integrated wastewater infrastructures management in a river basin scale.

    PubMed

    Prat, P; Aulinas, M; Turon, C; Comas, J; Poch, M

    2009-01-01

    Current management of sanitation infrastructures (sewer systems, wastewater treatment plant, receiving water, bypasses, deposits, etc) is not fulfilling the objectives of up to date legislation, to achieve a good ecological and chemical status of water bodies through integrated management. These made it necessary to develop new methodologies that help decision makers to improve the management in order to achieve that status. Decision Support Systems (DSS) based on Multi-Agent System (MAS) paradigm are promising tools to improve the integrated management. When all the different agents involved interact, new important knowledge emerges. This knowledge can be used to build better DSS and improve wastewater infrastructures management achieving the objectives planned by legislation. The paper describes a methodology to acquire this knowledge through a Role Playing Game (RPG). First of all there is an introduction about the wastewater problems, a definition of RPG, and the relation between RPG and MAS. Then it is explained how the RPG was built with two examples of game sessions and results. The paper finishes with a discussion about the uses of this methodology and future work.

  6. Building and Strengthening Policy Research Capacity: Key Issues in Canadian Higher Education

    ERIC Educational Resources Information Center

    Jones, Glen A.

    2014-01-01

    Given the importance of higher education in social and economic development, governments need to build a strong higher education data and policy research infrastructure to support informed decision-making, provide policy advice, and offer a critical assessment of key trends and issues. The author discusses the decline of higher education policy…

  7. Physician Interaction with Electronic Medical Records: A Qualitative Study

    ERIC Educational Resources Information Center

    Noteboom, Cherie Bakker

    2010-01-01

    The integration of EHR (Electronic Health Records) in IT infrastructures supporting organizations enable improved access to and recording of patient data, enhanced ability to make better and more-timely decisions, and improved quality and reduced errors. Despite these benefits, there are mixed results as to the use of EHR. The literature suggests…

  8. Strengthening and Expanding Prekindergarten in the Children First Reorganization

    ERIC Educational Resources Information Center

    Boressoff, Todd

    2012-01-01

    This policy brief examines the infrastructure needed to support early education at the Department of Education in the coming years. The Department's newly announced reform agenda will reshape how prekindergarten is managed. It's goal is to help inform the decisions the City must make to integrate an expanding prekindergarten program into Children…

  9. Establishing the infrastructure to conduct comparative effectiveness research toward the elimination of disparities: a community-based participatory research framework.

    PubMed

    Wilson, Danyell S; Dapic, Virna; Sultan, Dawood H; August, Euna M; Green, B Lee; Roetzheim, Richard; Rivers, Brian

    2013-11-01

    In Tampa, Florida, researchers have partnered with community- and faith-based organizations to create the Comparative Effectiveness Research for Eliminating Disparities (CERED) infrastructure. Grounded in community-based participatory research, CERED acts on multiple levels of society to enhance informed decision making (IDM) of prostate cancer screening among Black men. CERED investigators combined both comparative effectiveness research and community-based participatory research to design a trial examining the effectiveness of community health workers and a digitally enhanced patient decision aid to support IDM in community settings as compared with "usual care" for prostate cancer screening. In addition, CERED researchers synthesized evidence through the development of systematic literature reviews analyzing the effectiveness of community health workers in changing knowledge, attitudes and behaviors of African American adults toward cancer prevention and education. An additional systematic review analyzed chemoprevention agents for prostate cancer as an emerging technique. Both of these reviews, and the comparative effectiveness trial supporting the IDM process, add to CERED's goal of providing evidence to eliminate cancer health disparities.

  10. Establishing the Infrastructure to Conduct Comparative Effectiveness Research Toward the Elimination of Disparities: A Community-Based Participatory Research Framework

    PubMed Central

    Wilson, Danyell S.; Dapic, Virna; Sultan, Dawood H.; August, Euna M.; Green, B. Lee; Roetzheim, Richard; Rivers, Brian

    2014-01-01

    In Tampa, Florida, researchers have partnered with community- and faith-based organizations to create the Comparative Effectiveness Research for Eliminating Disparities (CERED) infrastructure. Grounded in community-based participatory research, CERED acts on multiple levels of society to enhance informed decision making (IDM) of prostate cancer screening among Black men. CERED investigators combined both comparative effectiveness research and community-based participatory research to design a trial examining the effectiveness of community health workers and a digitally enhanced patient decision aid to support IDM in community settings as compared with “usual care” for prostate cancer screening. In addition, CERED researchers synthesized evidence through the development of systematic literature reviews analyzing the effectiveness of community health workers in changing knowledge, attitudes and behaviors of African American adults toward cancer prevention and education. An additional systematic review analyzed chemoprevention agents for prostate cancer as an emerging technique. Both of these reviews, and the comparative effectiveness trial supporting the IDM process, add to CERED’s goal of providing evidence to eliminate cancer health disparities. PMID:23431128

  11. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  12. Earth Observations to Assess Impact of Hurricane Katrina on John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Graham, William D.; Ross, Kenton W.

    2007-01-01

    The peril from hurricanes to Space Operations Centers is real and is forecast to continue; Katrina, Rita, and Wilma of 2005 and Charley, Frances, Ivan, and Jeanne of 2004 are sufficient motivation for NASA to develop a multi-Center plan for preparedness and response. As was demonstrated at SSC (Stennis Space Center) in response to Hurricane Katrina, NASA Centers are efficiently activated as local command centers, playing host to Federal and State agencies and first responders to coordinate and provide evacuation, relocation, response, and recovery activities. Remote sensing decision support provides critical insight for managing NASA infrastructure and for assisting Center decision makers. Managers require geospatial information to manage the federal city. Immediately following Katrina, SSC s power and network connections were disabled, hardware was inoperative, technical staff was displaced and/or out of contact, and graphical decision support tools were non-existent or less than fully effective. Despite this circumstance, SSC EOC (Emergency Operations Center) implemented response operations to assess damage and to activate recovery plans. To assist Center Managers, the NASA ASP (Applied Sciences Program) made its archive of high-resolution data over the site available. In the weeks and months after the immediate crisis, NASA supplemented this data with high-resolution, post-Katrina imagery over SSC and much of the affected coastal areas. Much of the high-resolution imagery was made available through the Department of Defense Clear View contract and was distributed through U.S. Geological Survey Center for Earth Resources Observation and Science "Hurricane Katrina Disaster Response" Web site. By integrating multiple image data types with other information sources, ASP applied an all-source solutions approach to develop decision support tools that enabled managers to respond to critical issues, such as expedient access to infrastructure and deployment of resources, provision of temporary shelter, logistical control of critical supplies, and the mobilization and coordination of assets from ground crews to aircraft/airspace management. Furthermore, ASP developed information products that illustrate risks to SSC's infrastructure from surge, inundation, and flood. Current plans include developing wind-risk prototype products for refinement and adoption into EOC plans.

  13. A Decision Support System for Concrete Bridge Maintenance

    NASA Astrophysics Data System (ADS)

    Rashidi, Maria; Lemass, Brett; Gibson, Peter

    2010-05-01

    The maintenance of bridges as a key element in transportation infrastructure has become a major concern for asset managers and society due to increasing traffic volumes, deterioration of existing bridges and well-publicised bridge failures. A pivotal responsibility for asset managers in charge of bridge remediation is to identify the risks and assess the consequences of remediation programs to ensure that the decisions are transparent and lead to the lowest predicted losses in recognized constraint areas. The ranking of bridge remediation treatments can be quantitatively assessed using a weighted constraint approach to structure the otherwise ill-structured phases of problem definition, conceptualization and embodiment [1]. This Decision Support System helps asset managers in making the best decision with regards to financial limitations and other dominant constraints imposed upon the problem at hand. The risk management framework in this paper deals with the development of a quantitative intelligent decision support system for bridge maintenance which has the ability to provide a source for consistent decisions through selecting appropriate remediation treatments based upon cost, service life, product durability/sustainability, client preferences, legal and environmental constraints. Model verification and validation through industry case studies is ongoing.

  14. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Raghavan, Sesha; Rames, Clement

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networksmore » to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.« less

  15. Assured communications and combat resiliency: the relationship between effective national communications and combat efficiency

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay

    2009-05-01

    Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.

  16. Personalized health care and health information technology policy: an exploratory analysis.

    PubMed

    Wald, Jonathan S; Shapiro, Michael

    2013-01-01

    Personalized healthcare (PHC) is envisioned to enhance clinical practice decision-making using new genome-driven knowledge that tailors diagnosis, treatment, and prevention to the individual patient. In 2012, we conducted a focused environmental scan and informal interviews with fifteen experts to anticipate how PHC might impact health Information Technology (IT) policy in the United States. Findings indicatedthat PHC has a variable impact on current clinical practice, creates complex questions for providers, patients, and policy-makers, and will require a robust health IT infrastructure with advanced data architecture, clinical decision support, provider workflow tools, and re-use of clinical data for research. A number of health IT challenge areas were identified, along with five policy areas including: interoperable clinical decision support, standards for patient values and preferences, patient engagement, data transparency, and robust privacy and security.

  17. EPA’s EnviroAtlas: Identifying Nature’s benefits, deficits, and opportunities for equitable distribution to support public health

    EPA Science Inventory

    Cities, towns, and Tribes rely on clean air, water and other natural resources for public health and well-being. Yet natural infrastructure and its benefits are not always fully understood or considered in local decisions. EnviroAtlas is a free, online, easy-to-use mapping tool...

  18. Advanced Decentralized Water/Energy Network Design for Sustainable Infrastructure presentation at the 2012 National Association of Home Builders (NAHB) International Builders'Show

    EPA Science Inventory

    A university/industry panel will report on the progress and findings of a fivesteve-year project funded by the US Environmental Protection Agency. The project's end product will be a Web-based, 3D computer-simulated residential environment with a decision support system to assist...

  19. Information Technology and Community Restoration Studies/Task 1: Information Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upton, Jaki F.; Lesperance, Ann M.; Stein, Steven L.

    2009-11-19

    Executive Summary The Interagency Biological Restoration Demonstration—a program jointly funded by the Department of Defense's Defense Threat Reduction Agency and the Department of Homeland Security's (DHS's) Science and Technology Directorate—is developing policies, methods, plans, and applied technologies to restore large urban areas, critical infrastructures, and Department of Defense installations following the intentional release of a biological agent (anthrax) by terrorists. There is a perception that there should be a common system that can share information both vertically and horizontally amongst participating organizations as well as support analyses. A key question is: "How far away from this are we?" As partmore » of this program, Pacific Northwest National Laboratory conducted research to identify the current information technology tools that would be used by organizations in the greater Seattle urban area in such a scenario, to define criteria for use in evaluating information technology tools, and to identify current gaps. Researchers interviewed 28 individuals representing 25 agencies in civilian and military organizations to identify the tools they currently use to capture data needed to support operations and decision making. The organizations can be grouped into five broad categories: defense (Department of Defense), environmental/ecological (Environmental Protection Agency/Ecology), public health and medical services, emergency management, and critical infrastructure. The types of information that would be communicated in a biological terrorism incident include critical infrastructure and resource status, safety and protection information, laboratory test results, and general emergency information. The most commonly used tools are WebEOC (web-enabled crisis information management systems with real-time information sharing), mass notification software, resource tracking software, and NW WARN (web-based information to protect critical infrastructure systems). It appears that the current information management tools are used primarily for information gathering and sharing—not decision making. Respondents identified the following criteria for a future software system. It is easy to learn, updates information in real time, works with all agencies, is secure, uses a visualization or geographic information system feature, enables varying permission levels, flows information from one stage to another, works with other databases, feeds decision support tools, is compliant with appropriate standards, and is reasonably priced. Current tools have security issues, lack visual/mapping functions and critical infrastructure status, and do not integrate with other tools. It is clear that there is a need for an integrated, common operating system. The system would need to be accessible by all the organizations that would have a role in managing an anthrax incident to enable regional decision making. The most useful tool would feature a GIS visualization that would allow for a common operating picture that is updated in real time. To capitalize on information gained from the interviews, the following activities are recommended: • Rate emergency management decision tools against the criteria specified by the interviewees. • Identify and analyze other current activities focused on information sharing in the greater Seattle urban area. • Identify and analyze information sharing systems/tools used in other regions.« less

  20. Generalized Cartographic and Simultaneous Representation of Utility Networks for Decision-Support Systems and Crisis Management in Urban Environments

    NASA Astrophysics Data System (ADS)

    Becker, T.; König, G.

    2015-10-01

    Cartographic visualizations of crises are used to create a Common Operational Picture (COP) and enforce Situational Awareness by presenting relevant information to the involved actors. As nearly all crises affect geospatial entities, geo-data representations have to support location-specific analysis throughout the decision-making process. Meaningful cartographic presentation is needed for coordinating the activities of crisis manager in a highly dynamic situation, since operators' attention span and their spatial memories are limiting factors during the perception and interpretation process. Situational Awareness of operators in conjunction with a COP are key aspects in decision-making process and essential for making well thought-out and appropriate decisions. Considering utility networks as one of the most complex and particularly frequent required systems in urban environment, meaningful cartographic presentation of multiple utility networks with respect to disaster management do not exist. Therefore, an optimized visualization of utility infrastructure for emergency response procedures is proposed. The article will describe a conceptual approach on how to simplify, aggregate, and visualize multiple utility networks and their components to meet the requirements of the decision-making process and to support Situational Awareness.

  1. [Attitudes and opinions of Palestinian decision-makers about premarital examination law].

    PubMed

    El Sharif, Nuha; Rifai, Ayshea; Assi, Sana'a; Al Hmidat, Amjad

    2006-11-01

    We explored the attitudes and opinions of 90 Palestinian decision-makers about the draft law on premarital examination. The findings revealed that decision-makers were aware of the spread of genetic diseases but not infectious diseases. The majority agreed on the draft law; however, they differed on the mode of its application. Half believed that the law is not ready yet for application due to insufficient financial support to establish the needed infrastructure. The most significant recommendations made by the decision-makers were to: enhance community awareness of the law, ensure proper coordination among the concerned ministries and institutions, and establish a national organization to work on endorsement of the tests and issuance of the appropriate application strategies and regulations.

  2. Evaluation of a Potential for Enhancing the Decision Support System of the Interagency Modeling and Atmospheric Assessment Center with NASA Earth Science Research Results

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Berglund, Judith; Spruce, Joseph P.; McKellip, Rodney; Jasinski, Michael; Borak, Jordan; Lundquist, Julie

    2007-01-01

    NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).

  3. Cooperative drought adaptation: Integrating infrastructure development, conservation, and water transfers into adaptive policy pathways

    NASA Astrophysics Data System (ADS)

    Zeff, Harrison B.; Herman, Jonathan D.; Reed, Patrick M.; Characklis, Gregory W.

    2016-09-01

    A considerable fraction of urban water supply capacity serves primarily as a hedge against drought. Water utilities can reduce their dependence on firm capacity and forestall the development of new supplies using short-term drought management actions, such as conservation and transfers. Nevertheless, new supplies will often be needed, especially as demands rise due to population growth and economic development. Planning decisions regarding when and how to integrate new supply projects are fundamentally shaped by the way in which short-term adaptive drought management strategies are employed. To date, the challenges posed by long-term infrastructure sequencing and adaptive short-term drought management are treated independently, neglecting important feedbacks between planning and management actions. This work contributes a risk-based framework that uses continuously updating risk-of-failure (ROF) triggers to capture the feedbacks between short-term drought management actions (e.g., conservation and water transfers) and the selection and sequencing of a set of regional supply infrastructure options over the long term. Probabilistic regional water supply pathways are discovered for four water utilities in the "Research Triangle" region of North Carolina. Furthermore, this study distinguishes the status-quo planning path of independent action (encompassing utility-specific conservation and new supply infrastructure only) from two cooperative formulations: "weak" cooperation, which combines utility-specific conservation and infrastructure development with regional transfers, and "strong" cooperation, which also includes jointly developed regional infrastructure to support transfers. Results suggest that strong cooperation aids utilities in meeting their individual objectives at substantially lower costs and with less overall development. These benefits demonstrate how an adaptive, rule-based decision framework can coordinate integrated solutions that would not be identified using more traditional optimization methods.

  4. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Aaron T; Movva, Sunil; Karthik, Rajasekar

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which ismore » an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.« less

  5. Building Fire Behavior Analyst (FBAN) capability and capacity: Lessons learned From Victoria, Australia's Bushfire Behavior Predictive Services Strategy

    Treesearch

    K. E. Gibos; A. Slijepcevic; T. Wells; L. Fogarty

    2015-01-01

    Wildland fire managers must frequently make meaning from chaos in order to protect communities and infrastructure from the negative impacts of fire. Fire management personnel are increasingly turning to science to support their experience-based decision-making processes and to provide clear, confident leadership for communities frequently exposed to risk from wildfire...

  6. A Grant Project to Initiate School Counselors' Development of a Multi-Tiered System of Supports Based on Social-Emotional Data

    ERIC Educational Resources Information Center

    Harrington, Karen; Griffith, Catherine; Gray, Katharine; Greenspan, Scott

    2016-01-01

    This article provides an overview of a grant project designed to create a district-wide elementary school counseling program with a strong data-based decision-making process. Project goals included building data literacy skills among school counselors and developing the infrastructure to efficiently collect important social-emotional indicators…

  7. Designing software for operational decision support through coloured Petri nets

    NASA Astrophysics Data System (ADS)

    Maggi, F. M.; Westergaard, M.

    2017-05-01

    Operational support provides, during the execution of a business process, replies to questions such as 'how do I end the execution of the process in the cheapest way?' and 'is my execution compliant with some expected behaviour?' These questions may be asked several times during a single execution and, to answer them, dedicated software components (the so-called operational support providers) need to be invoked. Therefore, an infrastructure is needed to handle multiple providers, maintain data between queries about the same execution and discard information when it is no longer needed. In this paper, we use coloured Petri nets (CPNs) to model and analyse software implementing such an infrastructure. This analysis is needed to clarify the requirements before implementation and to guarantee that the resulting software is correct. To this aim, we present techniques to represent and analyse state spaces with 250 million states on a normal PC. We show how the specified requirements have been implemented as a plug-in of the process mining tool ProM and how the operational support in ProM can be used in combination with an existing operational support provider.

  8. An organizational intervention to influence evidence-informed decision making in home health nursing.

    PubMed

    Gifford, Wendy; Lefebre, Nancy; Davies, Barbara

    2014-01-01

    The aims of this study were to field test and evaluate a series of organizational strategies to promote evidence-informed decision making (EIDM) by nurse managers and clinical leaders in home healthcare. EIDM is central to delivering high-quality and effective healthcare. Barriers exist and organizational strategies are needed to support EIDM. Management and clinical leaders from 4 units participated in a 20-week organization-focused intervention. Preintervention (n = 32) and postintervention (n = 17) surveys and semistructured interviews (n = 15) were completed. Statistically significant increases were found on 4 of 31 survey items reflecting an increased organizational capacity for participants to acquire and apply research evidence in decision making. Support from designated facilitators with advanced skills in finding, appraising, and applying research was the highest rated intervention strategy. Results are useful to inform the development of organizational infrastructures to increase EIDM capacity in community-based healthcare organizations.

  9. SUPPORT Tools for evidence-informed health Policymaking (STP) 3: Setting priorities for supporting evidence-informed policymaking

    PubMed Central

    2009-01-01

    This article is part of a series written for people responsible for making decisions about health policies and programmes and for those who support these decision makers. Policymakers have limited resources for developing – or supporting the development of – evidence-informed policies and programmes. These required resources include staff time, staff infrastructural needs (such as access to a librarian or journal article purchasing), and ongoing professional development. They may therefore prefer instead to contract out such work to independent units with more suitably skilled staff and appropriate infrastructure. However, policymakers may only have limited financial resources to do so. Regardless of whether the support for evidence-informed policymaking is provided in-house or contracted out, or whether it is centralised or decentralised, resources always need to be used wisely in order to maximise their impact. Examples of undesirable practices in a priority-setting approach include timelines to support evidence-informed policymaking being negotiated on a case-by-case basis (instead of having clear norms about the level of support that can be provided for each timeline), implicit (rather than explicit) criteria for setting priorities, ad hoc (rather than systematic and explicit) priority-setting process, and the absence of both a communications plan and a monitoring and evaluation plan. In this article, we suggest questions that can guide those setting priorities for finding and using research evidence to support evidence-informed policymaking. These are: 1. Does the approach to prioritisation make clear the timelines that have been set for addressing high-priority issues in different ways? 2. Does the approach incorporate explicit criteria for determining priorities? 3. Does the approach incorporate an explicit process for determining priorities? 4. Does the approach incorporate a communications strategy and a monitoring and evaluation plan? PMID:20018110

  10. SUPPORT Tools for evidence-informed health Policymaking (STP) 3: Setting priorities for supporting evidence-informed policymaking.

    PubMed

    Lavis, John N; Oxman, Andrew D; Lewin, Simon; Fretheim, Atle

    2009-12-16

    This article is part of a series written for people responsible for making decisions about health policies and programmes and for those who support these decision makers. Policymakers have limited resources for developing--or supporting the development of--evidence-informed policies and programmes. These required resources include staff time, staff infrastructural needs (such as access to a librarian or journal article purchasing), and ongoing professional development. They may therefore prefer instead to contract out such work to independent units with more suitably skilled staff and appropriate infrastructure. However, policymakers may only have limited financial resources to do so. Regardless of whether the support for evidence-informed policymaking is provided in-house or contracted out, or whether it is centralised or decentralised, resources always need to be used wisely in order to maximise their impact. Examples of undesirable practices in a priority-setting approach include timelines to support evidence-informed policymaking being negotiated on a case-by-case basis (instead of having clear norms about the level of support that can be provided for each timeline), implicit (rather than explicit) criteria for setting priorities, ad hoc (rather than systematic and explicit) priority-setting process, and the absence of both a communications plan and a monitoring and evaluation plan. In this article, we suggest questions that can guide those setting priorities for finding and using research evidence to support evidence-informed policymaking. These are: 1. Does the approach to prioritisation make clear the timelines that have been set for addressing high-priority issues in different ways? 2. Does the approach incorporate explicit criteria for determining priorities? 3. Does the approach incorporate an explicit process for determining priorities? 4. Does the approach incorporate a communications strategy and a monitoring and evaluation plan?

  11. Multi-Sector Sustainability Browser (MSSB) User Manual: A ...

    EPA Pesticide Factsheets

    EPA’s Sustainable and Healthy Communities (SHC) Research Program is developing methodologies, resources, and tools to assist community members and local decision makers in implementing policy choices that facilitate sustainable approaches in managing their resources affecting the built environment, natural environment, and human health. In order to assist communities and decision makers in implementing sustainable practices, EPA is developing computer-based systems including models, databases, web tools, and web browsers to help communities decide upon approaches that support their desired outcomes. Communities need access to resources that will allow them to achieve their sustainability objectives through intelligent decisions in four key sustainability areas: • Land Use • Buildings and Infrastructure • Transportation • Materials Management (i.e., Municipal Solid Waste [MSW] processing and disposal) The Multi-Sector Sustainability Browser (MSSB) is designed to support sustainable decision-making for communities, local and regional planners, and policy and decision makers. Document is an EPA Technical Report, which is the user manual for the Multi-Sector Sustainability Browser (MSSB) tool. The purpose of the document is to provide basic guidance on use of the tool for users

  12. Building an Intelligent Water Information System - American River Prototype

    NASA Astrophysics Data System (ADS)

    Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    With better management, California's existing water supplies could go further to meeting the needs of the state's urban and agricultural uses. For example, California's water reservoirs are currently controlled and regulated using forecasts based upon more than 75 years of historical data. In the face of global climate change, these forecasts are becoming increasingly inadequate to precisely manage water resources. We propose implementing Leveraging the newest frontiers of information technology, we are developing a basin-scale real-time intelligent water infrastructure system that enables more information-intensive decision support. The complete system is made up of four key components. First, a strategically deployed ground-observation system will complement satellite measurements and provide continuous and accurate estimates of snowpack, soil moisture, vegetation state and energy balance across watersheds. Using our recently developed but mature technologies, we deliver measurements of hydrologic variables over a multi- tiered network of wireless sensor arrays, with a granularity of time and space previously unheard of. Second, satellite and aircraft remote sensing provide the only practical means of spatially continuous basin-wide measurement and monitoring of snow properties, vegetation characteristics and other watershed conditions. The ground-based system is designed to blend with remote sensing data on Sierra Nevada snow properties, and provide value-added products of unprecedented spatial detail and accuracy that are useable on a watershed level. Third, together the satellite and ground-based data make possible the updating of forecast tools, and routine use of physically based hydrologic models. The decision-support framework will provide tools to extract and visualize information of interest from the measured and modeled data, to assess uncertainties, and to optimize operations. Fourth, the advanced cyber infrastructure blends and transforms the numbers recorded by sensors into information in the form that is useful for decision-making. In a sense it 'monetizes' the data. It is the cyber infrastructure that links measurements, data processing, models and users. System software must provide flexibility for multiple types of access from user queries to automated and direct links with analysis tools and decision-support systems. We are currently installing a basin-scale ground-based sensor network focusing on measurements of snowpack, solar radiation, temperature, rH and soil moisture across the American River basin. Although this is a research network, it also provides core elements of a full ground-based operational system.

  13. Automated integration of wireless biosignal collection devices for patient-centred decision-making in point-of-care systems

    PubMed Central

    Menychtas, Andreas; Tsanakas, Panayiotis

    2016-01-01

    The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging. PMID:27222731

  14. Automated integration of wireless biosignal collection devices for patient-centred decision-making in point-of-care systems.

    PubMed

    Menychtas, Andreas; Tsanakas, Panayiotis; Maglogiannis, Ilias

    2016-03-01

    The proper acquisition of biosignals data from various biosensor devices and their remote accessibility are still issues that prevent the wide adoption of point-of-care systems in the routine of monitoring chronic patients. This Letter presents an advanced framework for enabling patient monitoring that utilises a cloud computing infrastructure for data management and analysis. The framework introduces also a local mechanism for uniform biosignals collection from wearables and biosignal sensors, and decision support modules, in order to enable prompt and essential decisions. A prototype smartphone application and the related cloud modules have been implemented for demonstrating the value of the proposed framework. Initial results regarding the performance of the system and the effectiveness in data management and decision-making have been quite encouraging.

  15. Developing translational research infrastructure and capabilities associated with cancer clinical trials.

    PubMed

    Hall, Jacqueline A; Brown, Robert

    2013-09-27

    The integration of molecular information in clinical decision making is becoming a reality. These changes are shaping the way clinical research is conducted, and as reality sets in, the challenges in conducting, managing and organising multi-disciplinary research become apparent. Clinical trials provide a platform to conduct translational research (TR) within the context of high quality clinical data accrual. Integrating TR objectives in trials allows the execution of pivotal studies that provide clinical evidence for biomarker-driven treatment strategies, targeting early drug development trials to a homogeneous and well defined patient population, supports the development of companion diagnostics and provides an opportunity for deepening our understanding of cancer biology and mechanisms of drug action. To achieve these goals within a clinical trial, developing translational research infrastructure and capabilities (TRIC) plays a critical catalytic role for translating preclinical data into successful clinical research and development. TRIC represents a technical platform, dedicated resources and access to expertise promoting high quality standards, logistical and operational support and unified streamlined procedures under an appropriate governance framework. TRIC promotes integration of multiple disciplines including biobanking, laboratory analysis, molecular data, informatics, statistical analysis and dissemination of results which are all required for successful TR projects and scientific progress. Such a supporting infrastructure is absolutely essential in order to promote high quality robust research, avoid duplication and coordinate resources. Lack of such infrastructure, we would argue, is one reason for the limited effect of TR in clinical practice beyond clinical trials.

  16. The novel use of climate information in water utility planning

    NASA Astrophysics Data System (ADS)

    Yates, D. N.

    2016-12-01

    Municipal water utilities have a long history of planning and yet their traditional use of climate information has been rather static in nature, using approaches such as 'safe-yield' to design their water infrastructure. New planning paradigms, such as triple-bottom-line approaches that integerate environemntal, social, and financial aspects of the water enterprise have led water utilies to use climate information in a much more rich and informative way. This presentation will describe examples of how climate climate information, hydrologic modeling, and water systems decision support tools are uniquely bleneded to help water utilties make informed decisions.

  17. Visual Decision Support Tool for Supporting Asset ...

    EPA Pesticide Factsheets

    Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and management. In summary, the objective of an integrated approach to infrastructure asset management is to assist utilities answer the following questions:•Who are we at present?•What service do we deliver?•What do we own?•Where do we want to be in the long-term?•How do we get there?The AWARE-P approach (www.aware-p.org) offers a coherent methodological framework and a valuable portfolio of software tools. It is designed to assist water supply and wastewater utility decision-makers in their analyses and planning processes. It is based on a Plan-Do-Check-Act process and is in accordance with the key principles of the International Standards Organization (ISO) 55000 standards on asset management. It is compatible with, and complementary to WERF’s SIMPLE framework. The software assists in strategic, tactical, and operational planning, through a non-intrusive, web-based, collaborative environment where objectives and metrics drive IAM planning. It is aimed at industry professionals and managers, as well as at the consultants and technical experts that support them. It is easy to use and maximizes the value of information from multiple existing data sources, both in da

  18. Search for supporting methodologies - Or how to support SEI for 35 years

    NASA Technical Reports Server (NTRS)

    Handley, Thomas H., Jr.; Masline, Richard C.

    1991-01-01

    Concepts relevant to the development of an evolvable information management system are examined in terms of support for the Space Exploration Initiative. The issues of interoperability within NASA and industry initiatives are studied including the Open Systems Interconnection standard and the operating system of the Open Software Foundation. The requirements of partitioning functionality into separate areas are determined with attention given to the infrastructure required to ensure system-wide compliance. The need for a decision-making context is a key to the distributed implementation of the program, and this environment is concluded to be next step in developing an evolvable, interoperable, and securable support network.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okhravi, Hamed; Sheldon, Frederick T.; Haines, Joshua

    Data diodes provide protection of critical cyber assets by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to understand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we study data diodes, their functionalities and limitations. We then propose two critical infrastructure systems that can benefit from the additional protection offered by data diodes: process control networks and net-centric cyber decision support systems. We review the security requirements of these systems, describe the architectures,more » and study the trade-offs. Finally, the architectures are evaluated against different attack patterns.« less

  20. Optimising reverse logistics network to support policy-making in the case of Electrical and Electronic Equipment.

    PubMed

    Achillas, Ch; Vlachokostas, Ch; Aidonis, D; Moussiopoulos, N; Iakovou, E; Banias, G

    2010-12-01

    Due to the rapid growth of Waste Electrical and Electronic Equipment (WEEE) volumes, as well as the hazardousness of obsolete electr(on)ic goods, this type of waste is now recognised as a priority stream in the developed countries. Policy-making related to the development of the necessary infrastructure and the coordination of all relevant stakeholders is crucial for the efficient management and viability of individually collected waste. This paper presents a decision support tool for policy-makers and regulators to optimise electr(on)ic products' reverse logistics network. To that effect, a Mixed Integer Linear Programming mathematical model is formulated taking into account existing infrastructure of collection points and recycling facilities. The applicability of the developed model is demonstrated employing a real-world case study for the Region of Central Macedonia, Greece. The paper concludes with presenting relevant obtained managerial insights. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Achievable steps toward building a National Health Information infrastructure in the United States.

    PubMed

    Stead, William W; Kelly, Brian J; Kolodner, Robert M

    2005-01-01

    Consensus is growing that a health care information and communication infrastructure is one key to fixing the crisis in the United States in health care quality, cost, and access. The National Health Information Infrastructure (NHII) is an initiative of the Department of Health and Human Services receiving bipartisan support. There are many possible courses toward its objective. Decision makers need to reflect carefully on which approaches are likely to work on a large enough scale to have the intended beneficial national impacts and which are better left to smaller projects within the boundaries of health care organizations. This report provides a primer for use by informatics professionals as they explain aspects of that dividing line to policy makers and to health care leaders and front-line providers. It then identifies short-term, intermediate, and long-term steps that might be taken by the NHII initiative.

  2. Achievable Steps Toward Building a National Health Information Infrastructure in the United States

    PubMed Central

    Stead, William W.; Kelly, Brian J.; Kolodner, Robert M.

    2005-01-01

    Consensus is growing that a health care information and communication infrastructure is one key to fixing the crisis in the United States in health care quality, cost, and access. The National Health Information Infrastructure (NHII) is an initiative of the Department of Health and Human Services receiving bipartisan support. There are many possible courses toward its objective. Decision makers need to reflect carefully on which approaches are likely to work on a large enough scale to have the intended beneficial national impacts and which are better left to smaller projects within the boundaries of health care organizations. This report provides a primer for use by informatics professionals as they explain aspects of that dividing line to policy makers and to health care leaders and front-line providers. It then identifies short-term, intermediate, and long-term steps that might be taken by the NHII initiative. PMID:15561783

  3. Use of Google Earth to strengthen public health capacity and facilitate management of vector-borne diseases in resource-poor environments.

    PubMed

    Lozano-Fuentes, Saul; Elizondo-Quiroga, Darwin; Farfan-Ale, Jose Arturo; Loroño-Pino, Maria Alba; Garcia-Rejon, Julian; Gomez-Carro, Salvador; Lira-Zumbardo, Victor; Najera-Vazquez, Rosario; Fernandez-Salas, Ildefonso; Calderon-Martinez, Joaquin; Dominguez-Galera, Marco; Mis-Avila, Pedro; Morris, Natashia; Coleman, Michael; Moore, Chester G; Beaty, Barry J; Eisen, Lars

    2008-09-01

    Novel, inexpensive solutions are needed for improved management of vector-borne and other diseases in resource-poor environments. Emerging free software providing access to satellite imagery and simple editing tools (e.g. Google Earth) complement existing geographic information system (GIS) software and provide new opportunities for: (i) strengthening overall public health capacity through development of information for city infrastructures; and (ii) display of public health data directly on an image of the physical environment. We used freely accessible satellite imagery and a set of feature-making tools included in the software (allowing for production of polygons, lines and points) to generate information for city infrastructure and to display disease data in a dengue decision support system (DDSS) framework. Two cities in Mexico (Chetumal and Merida) were used to demonstrate that a basic representation of city infrastructure useful as a spatial backbone in a DDSS can be rapidly developed at minimal cost. Data layers generated included labelled polygons representing city blocks, lines representing streets, and points showing the locations of schools and health clinics. City blocks were colour-coded to show presence of dengue cases. The data layers were successfully imported in a format known as shapefile into a GIS software. The combination of Google Earth and free GIS software (e.g. HealthMapper, developed by WHO, and SIGEpi, developed by PAHO) has tremendous potential to strengthen overall public health capacity and facilitate decision support system approaches to prevention and control of vector-borne diseases in resource-poor environments.

  4. [Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model : Are your clinical imaging processes ready for the digital era?

    PubMed

    Studzinski, J

    2017-06-01

    The Digital Imaging Adoption Model (DIAM) has been jointly developed by HIMSS Analytics and the European Society of Radiology (ESR). It helps evaluate the maturity of IT-supported processes in medical imaging, particularly in radiology. This eight-stage maturity model drives your organisational, strategic and tactical alignment towards imaging-IT planning. The key audience for the model comprises hospitals with imaging centers, as well as external imaging centers that collaborate with hospitals. The assessment focuses on different dimensions relevant to digital imaging, such as software infrastructure and usage, workflow security, clinical documentation and decision support, data exchange and analytical capabilities. With its standardised approach, it enables regional, national and international benchmarking. All DIAM participants receive a structured report that can be used as a basis for presenting, e.g. budget planning and investment decisions at management level.

  5. Development of an intelligent hydroinformatic system for real-time monitoring and assessment of civil infrastructure

    NASA Astrophysics Data System (ADS)

    Cahill, Paul; Michalis, Panagiotis; Solman, Hrvoje; Kerin, Igor; Bekic, Damir; Pakrashi, Vikram; McKeogh, Eamon

    2017-04-01

    With the effects of climate change becoming more apparent, extreme weather events are now occurring with greater frequency throughout the world. Such extreme events have resulted in increased high intensity flood events which are having devastating consequences on hydro-structures, especially on bridge infrastructure. The remote and often inaccessible nature of such bridges makes inspections problematic, a major concern if safety assessments are required during and after extreme flood events. A solution to this is the introduction of smart, low cost sensing solutions at locations susceptible to hydro-hazards. Such solutions can provide real-time information on the health of the bridge and its environments, with such information aiding in the mitigation of the risks associated with extreme weather events. This study presents the development of an intelligent system for remote, real-time monitoring of hydro-hazards to bridge infrastructure. The solution consists of two types of remote monitoring stations which have the capacity to monitor environmental conditions and provide real-time information to a centralized, big data database solution, from which an intelligent decision support system will accommodate the results to control and manage bridge, river and catchment assets. The first device developed as part of the system is the Weather Information Logging Device (WILD), which monitors rainfall, temperature and air and soil moisture content. The ability of the WILD to monitor rainfall in real time enables flood early warning alerts and predictive river flow conditions, thereby enabling decision makers the ability to make timely and effective decisions about critical infrastructures in advance of extreme flood events. The WILD is complemented by a second monitoring device, the Bridge Information Recording Device (BIRD), which monitors water levels at a given location in real-time. The monitoring of water levels of a river allows for, among other applications, hydraulic modelling to assess the likely impact that severe flood events will have on a bridges foundation, particularly due to scour. The process of reading and validating data from the WILD and BIRD buffer servers is outlined, as is the transmission protocol used for the sending of recorded data to a centralized repository for further use and analysis. Finally, the development of a centralized repository for the collection of data from the WILD and BIRD devices is presented. Eventually the big data solution would be used to receive, store and send the monitored data to the hydrological models, whether existing or developed, and the results would be transmitted to the intelligent decision support system based on a web-based platform, for managing, planning and executing data, processes and procedures for bridge assets. The development of intelligent hydroinformatic system is an important tool for the protection of key infrastructure assets from the increasingly common effects of climate change. Acknowledgement The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.

  6. The role of public communication in decision making for waste management infrastructure.

    PubMed

    Kirkman, Richard; Voulvoulis, Nikolaos

    2017-12-01

    Modern waste management provision seeks to meet challenging objectives and strategies while reflecting community aspirations and ensuring cost-effective compliance with statutory obligations. Its social acceptability, which affects both what systems (infrastructure) can be put in place and to what extent their implementation will be successful, is a multi-dimensional phenomenon, often not well understood. In light of the growing evidence that decisions to build new infrastructure are often contested by the public, there is a clear need to understand the role of scientific evidence in public perception, particularly as environmental infrastructure delivery is often objected to by the public on environmental grounds. In this paper the need for waste management infrastructure is reviewed, and the way its delivery in the UK has evolved is used as an example of the role of public perception in the planning and delivery of waste facilities. Findings demonstrate the vital role of public communication in waste management infrastructure delivery. Public perception must be taken into account early in the decision making process, with the public informed and engaged from the start. There is a pressing need for people not simply to accept but to understand and appreciate the need for infrastructure, the nature of infrastructure investments and development, the costs and the benefits involved, and the technological aspects. Scientific evidence and literacy have a critical role to play, facilitating public engagement in a process that empowers people, allowing them to define and handle challenges and influence decisions that will impact their lives. Problem ownership, and an increased probability of any solutions proposed being selected and implemented successfully are potential benefits of such approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Integration of research infrastructures and ecosystem models toward development of predictive ecology

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.

    2017-12-01

    The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.

  8. A web-based multicriteria evaluation of spatial trade-offs between environmental and economic implications from hydraulic fracturing in a shale gas region in Ohio.

    PubMed

    Liu, X; Gorsevski, P V; Yacobucci, M M; Onasch, C M

    2016-06-01

    Planning of shale gas infrastructure and drilling sites for hydraulic fracturing has important spatial implications. The evaluation of conflicting and competing objectives requires an explicit consideration of multiple criteria as they have important environmental and economic implications. This study presents a web-based multicriteria spatial decision support system (SDSS) prototype with a flexible and user-friendly interface that could provide educational or decision-making capabilities with respect to hydraulic fracturing site selection in eastern Ohio. One of the main features of this SDSS is to emphasize potential trade-offs between important factors of environmental and economic ramifications from hydraulic fracturing activities using a weighted linear combination (WLC) method. In the prototype, the GIS-enabled analytical components allow spontaneous visualization of available alternatives on maps which provide value-added features for decision support processes and derivation of final decision maps. The SDSS prototype also facilitates nonexpert participation capabilities using a mapping module, decision-making tool, group decision module, and social media sharing tools. The logical flow of successively presented forms and standardized criteria maps is used to generate visualization of trade-off scenarios and alternative solutions tailored to individual user's preferences that are graphed for subsequent decision-making.

  9. Optimal infrastructure maintenance scheduling problem under budget uncertainty.

    DOT National Transportation Integrated Search

    2010-05-01

    This research addresses a general class of infrastructure asset management problems. Infrastructure : agencies usually face budget uncertainties that will eventually lead to suboptimal planning if : maintenance decisions are made without taking the u...

  10. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE PAGES

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.; ...

    2017-10-03

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  11. A model for simulating adaptive, dynamic flows on networks: Application to petroleum infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Thomas F.; Beyeler, Walt; Wilson, Michael L.

    Simulation models can greatly improve decisions meant to control the consequences of disruptions to critical infrastructures. We describe a dynamic flow model on networks purposed to inform analyses by those concerned about consequences of disruptions to infrastructures and to help policy makers design robust mitigations. We conceptualize the adaptive responses of infrastructure networks to perturbations as market transactions and business decisions of operators. We approximate commodity flows in these networks by a diffusion equation, with nonlinearities introduced to model capacity limits. To illustrate the behavior and scalability of the model, we show its application first on two simple networks, thenmore » on petroleum infrastructure in the United States, where we analyze the effects of a hypothesized earthquake.« less

  12. 78 FR 53436 - Improving Performance of Federal Permitting and Review of Infrastructure Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... an efficient decision-making process within each agency; to the extent possible, unifying and... IIP Process, the developer is encouraged to inform DOE in writing as soon as possible of its decision... to improve the performance of Federal siting, permitting, and review processes for infrastructure...

  13. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    NASA Astrophysics Data System (ADS)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three watersheds shape the optimal plan for stormwater management.

  14. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  15. NMCI to NGEN: Managing the Transition of Navy Information Technology Infrastructure

    DTIC Science & Technology

    2013-03-01

    Decision Review xvi FOC GAO Full Operational Capability Government Accountability Office GFE GIG Government Furnished Equipment Global...global information grid ( GIG ) in accordance with overarching DoD directives. 8 The requirement for adequate workforce began as a phased approach in...certification of personnel conducting IA functions within the DoD workforce supporting the DoD GIG in accordance with overarching DoD directives. 22 The

  16. Public Key Infrastructure Increment 2 (PKI Inc 2)

    DTIC Science & Technology

    2016-03-01

    DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...experienced due to a delay in achieving the FDD . The Critical Change Report was provided to Congress on July 11, 2014. Firm, Fixed-Price Feasibility...to a delay in achieving the FDD . To support the Critical Change Report, the NSA Cost Estimating organization prepared a cost estimate that was

  17. Base Information Transport Infrastructure Wired (BITI Wired)

    DTIC Science & Technology

    2016-03-01

    Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Estimate has been accomplished this period leading to an approved Air Force Service Cost Position in support of the program’s December 2014 FDD milestone...validated to ensure alignment with the business case. This certification is based on my review of the December 2014 Service Cost Position and FDD

  18. An Open Computing Infrastructure that Facilitates Integrated Product and Process Development from a Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.

    1996-01-01

    Computer applications for design have evolved rapidly over the past several decades, and significant payoffs are being achieved by organizations through reductions in design cycle times. These applications are overwhelmed by the requirements imposed during complex, open engineering systems design. Organizations are faced with a number of different methodologies, numerous legacy disciplinary tools, and a very large amount of data. Yet they are also faced with few interdisciplinary tools for design collaboration or methods for achieving the revolutionary product designs required to maintain a competitive advantage in the future. These organizations are looking for a software infrastructure that integrates current corporate design practices with newer simulation and solution techniques. Such an infrastructure must be robust to changes in both corporate needs and enabling technologies. In addition, this infrastructure must be user-friendly, modular and scalable. This need is the motivation for the research described in this dissertation. The research is focused on the development of an open computing infrastructure that facilitates product and process design. In addition, this research explicitly deals with human interactions during design through a model that focuses on the role of a designer as that of decision-maker. The research perspective here is taken from that of design as a discipline with a focus on Decision-Based Design, Theory of Languages, Information Science, and Integration Technology. Given this background, a Model of IPPD is developed and implemented along the lines of a traditional experimental procedure: with the steps of establishing context, formalizing a theory, building an apparatus, conducting an experiment, reviewing results, and providing recommendations. Based on this Model, Design Processes and Specification can be explored in a structured and implementable architecture. An architecture for exploring design called DREAMS (Developing Robust Engineering Analysis Models and Specifications) has been developed which supports the activities of both meta-design and actual design execution. This is accomplished through a systematic process which is comprised of the stages of Formulation, Translation, and Evaluation. During this process, elements from a Design Specification are integrated into Design Processes. In addition, a software infrastructure was developed and is called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment). This represents a virtual apparatus in the Design Experiment conducted in this research. IMAGE is an innovative architecture because it explicitly supports design-related activities. This is accomplished through a GUI driven and Agent-based implementation of DREAMS. A HSCT design has been adopted from the Framework for Interdisciplinary Design Optimization (FIDO) and is implemented in IMAGE. This problem shows how Design Processes and Specification interact in a design system. In addition, the problem utilizes two different solution models concurrently: optimal and satisfying. The satisfying model allows for more design flexibility and allows a designer to maintain design freedom. As a result of following this experimental procedure, this infrastructure is an open system that it is robust to changes in both corporate needs and computer technologies. The development of this infrastructure leads to a number of significant intellectual contributions: 1) A new approach to implementing IPPD with the aid of a computer; 2) A formal Design Experiment; 3) A combined Process and Specification architecture that is language-based; 4) An infrastructure for exploring design; 5) An integration strategy for implementing computer resources; and 6) A seamless modeling language. The need for these contributions is emphasized by the demand by industry and government agencies for the development of these technologies.

  19. Green Infrastructure Modeling Toolkit

    EPA Pesticide Factsheets

    EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.

  20. Web-GIS platform for green infrastructure in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Sercaianu, Mihai; Petrescu, Florian; Aldea, Mihaela; Oana, Luca; Rotaru, George

    2015-06-01

    In the last decade, reducing urban pollution and improving quality of public spaces became a more and more important issue for public administration authorities in Romania. The paper describes the development of a web-GIS solution dedicated to monitoring of the green infrastructure in Bucharest, Romania. Thus, the system allows the urban residents (citizens) to collect themselves and directly report relevant information regarding the current status of the green infrastructure of the city. Consequently, the citizens become an active component of the decision-support process within the public administration. Besides the usual technical characteristics of such geo-information processing systems, due to the complex legal and organizational problems that arise in collecting information directly from the citizens, additional analysis was required concerning, for example, local government involvement, environmental protection agencies regulations or public entities requirements. Designing and implementing the whole information exchange process, based on the active interaction between the citizens and public administration bodies, required the use of the "citizen-sensor" concept deployed with GIS tools. The information collected and reported from the field is related to a lot of factors, which are not always limited to the city level, providing the possibility to consider the green infrastructure as a whole. The "citizen-request" web-GIS for green infrastructure monitoring solution is characterized by a very diverse urban information, due to the fact that the green infrastructure itself is conditioned by a lot of urban elements, such as urban infrastructures, urban infrastructure works and construction density.

  1. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  2. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities

    PubMed Central

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7–30.6), 0.6 (0.3–0.9), and 4.7 (2.1–7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches. PMID:26504832

  3. Health Impacts of Increased Physical Activity from Changes in Transportation Infrastructure: Quantitative Estimates for Three Communities.

    PubMed

    Mansfield, Theodore J; MacDonald Gibson, Jacqueline

    2015-01-01

    Recently, two quantitative tools have emerged for predicting the health impacts of projects that change population physical activity: the Health Economic Assessment Tool (HEAT) and Dynamic Modeling for Health Impact Assessment (DYNAMO-HIA). HEAT has been used to support health impact assessments of transportation infrastructure projects, but DYNAMO-HIA has not been previously employed for this purpose nor have the two tools been compared. To demonstrate the use of DYNAMO-HIA for supporting health impact assessments of transportation infrastructure projects, we employed the model in three communities (urban, suburban, and rural) in North Carolina. We also compared DYNAMO-HIA and HEAT predictions in the urban community. Using DYNAMO-HIA, we estimated benefit-cost ratios of 20.2 (95% C.I.: 8.7-30.6), 0.6 (0.3-0.9), and 4.7 (2.1-7.1) for the urban, suburban, and rural projects, respectively. For a 40-year time period, the HEAT predictions of deaths avoided by the urban infrastructure project were three times as high as DYNAMO-HIA's predictions due to HEAT's inability to account for changing population health characteristics over time. Quantitative health impact assessment coupled with economic valuation is a powerful tool for integrating health considerations into transportation decision-making. However, to avoid overestimating benefits, such quantitative HIAs should use dynamic, rather than static, approaches.

  4. Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach

    NASA Astrophysics Data System (ADS)

    Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John

    2017-04-01

    Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix (DSM) approach is introduced as a way to engage stakeholders at all scales, helping to inform decision making and motivate intervention. Two existing visualization and communication tools produced using the DSM approach are discussed: The FARM (Floods and Agriculture Risk Matrix) and CAVERTI (Communication And Visualizing Erosion-associated Risks to Infrastructure). Such tools can play a central role in encouraging a more holistic engineering approach to managing catchment system function that combines food production with a reversal of land degradation, providing a 'win-win' situation for all.

  5. An analysis of application of health informatics in Traditional Medicine: A review of four Traditional Medicine Systems.

    PubMed

    Raja Ikram, Raja Rina; Abd Ghani, Mohd Khanapi; Abdullah, Noraswaliza

    2015-11-01

    This paper shall first investigate the informatics areas and applications of the four Traditional Medicine systems - Traditional Chinese Medicine (TCM), Ayurveda, Traditional Arabic and Islamic Medicine and Traditional Malay Medicine. Then, this paper shall examine the national informatics infrastructure initiatives in the four respective countries that support the Traditional Medicine systems. Challenges of implementing informatics in Traditional Medicine Systems shall also be discussed. The literature was sourced from four databases: Ebsco Host, IEEE Explore, Proquest and Google scholar. The search term used was "Traditional Medicine", "informatics", "informatics infrastructure", "traditional Chinese medicine", "Ayurveda", "traditional Arabic and Islamic medicine", and "traditional malay medicine". A combination of the search terms above was also executed to enhance the searching process. A search was also conducted in Google to identify miscellaneous books, publications, and organization websites using the same terms. Amongst major advancements in TCM and Ayurveda are bioinformatics, development of Traditional Medicine databases for decision system support, data mining and image processing. Traditional Chinese Medicine differentiates itself from other Traditional Medicine systems with documented ISO Standards to support the standardization of TCM. Informatics applications in Traditional Arabic and Islamic Medicine are mostly ehealth applications that focus more on spiritual healing, Islamic obligations and prophetic traditions. Literature regarding development of health informatics to support Traditional Malay Medicine is still insufficient. Major informatics infrastructure that is common in China and India are automated insurance payment systems for Traditional Medicine treatment. National informatics infrastructure in Middle East and Malaysia mainly cater for modern medicine. Other infrastructure such as telemedicine and hospital information systems focus its implementation in modern medicine or are not implemented and strategized at a national level to support Traditional Medicine. Informatics may not be able to address all the emerging areas of Traditional Medicine because the concepts in Traditional Medicine system of medicine are different from modern system, though the aim may be same, i.e., to give relief to the patient. Thus, there is a need to synthesize Traditional Medicine systems and informatics with involvements from modern system of medicine. Future research works may include filling the gaps of informatics areas and integrate national informatics infrastructure with established Traditional Medicine systems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Building climate adaptation capabilities through technology and community

    NASA Astrophysics Data System (ADS)

    Murray, D.; McWhirter, J.; Intsiful, J. D.; Cozzini, S.

    2011-12-01

    To effectively plan for adaptation to changes in climate, decision makers require infrastructure and tools that will provide them with timely access to current and future climate information. For example, climate scientists and operational forecasters need to access global and regional model projections and current climate information that they can use to prepare monitoring products and reports and then publish these for the decision makers. Through the UNDP African Adaption Programme, an infrastructure is being built across Africa that will provide multi-tiered access to such information. Web accessible servers running RAMADDA, an open source content management system for geoscience information, will provide access to the information at many levels: from the raw and processed climate model output to real-time climate conditions and predictions to documents and presentation for government officials. Output from regional climate models (e.g. RegCM4) and downscaled global climate models will be accessible through RAMADDA. The Integrated Data Viewer (IDV) is being used by scientists to create visualizations that assist the understanding of climate processes and projections, using the data on these as well as external servers. Since RAMADDA is more than a data server, it is also being used as a publishing platform for the generated material that will be available and searchable by the decision makers. Users can wade through the enormous volumes of information and extract subsets for their region or project of interest. Participants from 20 countries attended workshops at ICTP during 2011. They received training on setting up and installing the servers and necessary software and are now working on deploying the systems in their respective countries. This is the first time an integrated and comprehensive approach to climate change adaptation has been widely applied in Africa. It is expected that this infrastructure will enhance North-South collaboration and improve the delivery of technical support and services. This improved infrastructure will enhance the capacity of countries to provide a wide range of robust products and services in a timely manner.

  7. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    PubMed

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  8. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.

  9. Climate Risk Assessment: Technical Guidance Manual for DoD Installations and Built Environment

    DTIC Science & Technology

    2016-09-06

    climate change risks to DoD installations and the built environment. The approach, which we call “decision-scaling,” reveals the core sensitivity of...DoD installations to climate change . It is designed to illuminate the sensitivity of installations and their supporting infrastructure systems...including water and energy, to climate changes and other uncertainties without dependence on climate change projections. In this way the analysis and

  10. Mixed Methodology to Predict Social Meaning for Decision Support

    DTIC Science & Technology

    2013-09-01

    regular usage of Standard American English (SAE) that also ranges in use of stylistic features that identify users as members of certain street gangs...membership based solely on their use of language. While aspects of gang language, such as the stylistic tendencies of the language of graffiti (Adams and... stylistics of gang language online, as a mode of code switching that reflects the infrastructure of the larger gang community, has been little studied

  11. Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis

    NASA Astrophysics Data System (ADS)

    Karlsson, Caroline S. J.; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W.

    2017-11-01

    Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.

  12. Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis.

    PubMed

    Karlsson, Caroline S J; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W

    2017-11-01

    Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.

  13. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  14. Perspectives on whistleblowing: faculty member viewpoints and suggestions for organizational change.

    PubMed

    Mecca, Jensen T; Giorgini, Vincent; Medeiros, Kelsey; Gibson, Carter; Devenport, Lynn; Connelly, Shane; Mumford, Michael

    2014-01-01

    Given the prevalence of unethical behavior in research, whistleblowing may serve an important policing function. Despite this potential value of whistleblowing to organizations, engaging in this type of activity often has negative ramifications for those who choose to blow the whistle. Organizations may fail to provide adequate support for these individuals. In order to help inform best practices for organizations in terms of whistleblowing support infrastructure, the present effort content analyzed interviews with university faculty members regarding ethical decision making in which whistleblowing was a topic. Relevant themes in these interviews are discussed.

  15. Building sustainable multi-functional prospective electronic clinical data systems.

    PubMed

    Randhawa, Gurvaneet S; Slutsky, Jean R

    2012-07-01

    A better alignment in the goals of the biomedical research enterprise and the health care delivery system can help fill the large gaps in our knowledge of the impact of clinical interventions on patient outcomes in the real world. There are several initiatives underway to align the research priorities of patients, providers, researchers, and policy makers. These include Agency for Healthcare Research and Quality (AHRQ)-supported projects to build flexible prospective clinical electronic data infrastructure that meet the needs of these diverse users. AHRQ has previously supported the creation of 2 distributed research networks as a new approach to conduct comparative effectiveness research (CER) while protecting a patient's confidential information and the proprietary needs of a clinical organization. It has applied its experience in building these networks in directing the American Recovery and Reinvestment Act funds for CER to support new clinical electronic infrastructure projects that can be used for several purposes including CER, quality improvement, clinical decision support, and disease surveillance. In addition, AHRQ has funded a new Electronic Data Methods forum to advance the methods in clinical informatics, research analytics, and governance by actively engaging investigators from the American Recovery and Reinvestment Act-funded projects and external stakeholders.

  16. Infrastructure for collaborative science and societal applications in the Columbia River estuary

    NASA Astrophysics Data System (ADS)

    Baptista, António M.; Seaton, Charles; Wilkin, Michael P.; Riseman, Sarah F.; Needoba, Joseph A.; Maier, David; Turner, Paul J.; Kärnä, Tuomas; Lopez, Jesse E.; Herfort, Lydie; Megler, V. M.; McNeil, Craig; Crump, Byron C.; Peterson, Tawnya D.; Spitz, Yvette H.; Simon, Holly M.

    2015-12-01

    To meet societal needs, modern estuarine science needs to be interdisciplinary and collaborative, combine discovery with hypotheses testing, and be responsive to issues facing both regional and global stakeholders. Such an approach is best conducted with the benefit of data-rich environments, where information from sensors and models is openly accessible within convenient timeframes. Here, we introduce the operational infrastructure of one such data-rich environment, a collaboratory created to support (a) interdisciplinary research in the Columbia River estuary by the multi-institutional team of investigators of the Science and Technology Center for Coastal Margin Observation & Prediction and (b) the integration of scientific knowledge into regional decision making. Core components of the operational infrastructure are an observation network, a modeling system and a cyber-infrastructure, each of which is described. The observation network is anchored on an extensive array of long-term stations, many of them interdisciplinary, and is complemented by on-demand deployment of temporary stations and mobile platforms, often in coordinated field campaigns. The modeling system is based on finiteelement unstructured-grid codes and includes operational and process-oriented simulations of circulation, sediments and ecosystem processes. The flow of information is managed through a dedicated cyber-infrastructure, conversant with regional and national observing systems.

  17. Exploratory of society

    NASA Astrophysics Data System (ADS)

    Cederman, L.-E.; Conte, R.; Helbing, D.; Nowak, A.; Schweitzer, F.; Vespignani, A.

    2012-11-01

    A huge flow of quantitative social, demographic and behavioral data is becoming available that traces the activities and interactions of individuals, social patterns, transportation infrastructures and travel fluxes. This has caused, together with innovative computational techniques and methods for modeling social actions in hybrid (natural and artificial) societies, a qualitative change in the ways we model socio-technical systems. For the first time, society can be studied in a comprehensive fashion that addresses social and behavioral complexity. In other words we are in the position to envision the development of large data and computational cyber infrastructure defining an exploratory of society that provides quantitative anticipatory, explanatory and scenario analysis capabilities ranging from emerging infectious disease to conflict and crime surges. The goal of the exploratory of society is to provide the basic infrastructure embedding the framework of tools and knowledge needed for the design of forecast/anticipatory/crisis management approaches to socio technical systems, supporting future decision making procedures by accelerating the scientific cycle that goes from data generation to predictions.

  18. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, G; Abhayaratne, P; Bale, J

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CImore » facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that determine whether a terrorist organization will attack critical infrastructure. In other words, this research investigates: (1) why terrorists choose to attack critical infrastructure rather than other targets; (2) how groups make such decisions; (3) what, if any, types of groups are most inclined to attack critical infrastructure targets; and (4) which types of critical infrastructure terrorists prefer to attack and why. In an effort to address the above questions as comprehensively as possible, the project team employed four discrete investigative approaches in its research design. These include: (1) a review of existing terrorism and threat assessment literature to glean expert consensus regarding terrorist target selection, as well as to identify theoretical approaches that might be valuable to analysts and decision-makers who are seeking to understand such terrorist group decision-making processes; (2) the preparation of several concise case studies to help identify internal group factors and contextual influences that have played significant roles in leading some terrorist groups to attack critical infrastructure; (3) the creation of a new database--the Critical Infrastructure Terrorist Incident Catalog (CrITC)--to capture a large sample of empirical CI attack data that might be used to illuminate the nature of such attacks to date; and (4) the development of a new analytical framework--the Determinants Effecting Critical Infrastructure Decisions (DECIDe) Framework--designed to make the factors and dynamics identified by the study more ''usable'' in any future efforts to assess terrorist intentions to target critical infrastructure. Although each is addressed separately in the following chapters, none of the four aspects of this study were developed in isolation. Rather, all the constituent elements of the project informed--and were informed by--the others. For example, the review of the available literature on terrorist target selection made possible the identification of several target selection factors that were both important in the development of the analytical framework and subsequently validated by the case studies. Similarly, statistical analysis of the CrITIC data yielded measurable evidence that supported hypotheses derived from the framework, the case studies, and the writings of various experts. Besides providing an important mechanism of self-reinforcement and validation, the project's multifaceted nature made it possible to discern aspects of CI attack motivations that would likely have been missed if any single approach had been adopted.« less

  19. Understanding the relationships between household decisions and infrastructure investment in disaster recovery : cases from Superstorm Sandy : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Hurricanes, storms and floods damage roads, bridges, transit lines and other elements of our : transportation infrastructure. Restoring the transportation infrastructure is widely recognized as an : important element of short-term recovery as the rec...

  20. EIA application in China's expressway infrastructure: clarifying the decision-making hierarchy.

    PubMed

    Zhou, Kai-Yi; Sheate, William R

    2011-06-01

    China's EIA Law came into effect in 2003 and formally requires road transport infrastructure development actions to be subject to Environmental Impact Assessment (EIA). EIAs (including project EIA and plan EIA, or strategic environmental impact assessment, SEA) have been being widely applied in the expressway infrastructure planning field. Among those applications, SEA is applied to provincial level expressway network (PLEI) plans, and project EIA is applied to expressway infrastructure development 'projects' under PLEI plans. Three case studies (one expressway project EIA and two PLEI plan SEAs) were examined to understand currently how EIAs are applied to expressway infrastructure development planning. Through the studies, a number of problems that significantly influence the quality of EIA application in the field were identified. The reasons causing those problems are analyzed and possible solutions are suggested aimed at enhancing EIA practice, helping deliver better decision-making and ultimately improving the environmental performance of expressway infrastructure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Geriatric infrastructure, BRAC, and ecosystem service markets? End-of-life decisions for dams, roads, and offshore platforms (Invited)

    NASA Astrophysics Data System (ADS)

    Doyle, M. W.

    2010-12-01

    US infrastructure expanded dramatically in the mid-20th century, and now includes more than 79,000 dams, 15,000 miles of levees, 3.7 million miles of roads, 600,000 miles of sewer pipe, 500,000 onshore oil wells, and over 4,000 offshore oil platforms. Many structures have been in place for 50 years or more, and an increasing portion of national infrastructure is approaching or exceeding its originally intended design life. Bringing national infrastructure to acceptable levels would cost nearly 10% of the US annual GDP. Decommissioning infrastructure can decrease public spending and increase public safety while facilitating economic expansion and ecological restoration. While most infrastructure remains critical to the national economy, a substantial amount is obsolete or declining in importance. Over 11,000 dams are abandoned, and of nearly 400,000 miles of road on its lands, the U.S. Forest Service considers one-fourth non-essential and often non-functional. Removing obsolete infrastructure allows greater focus and funding on maintaining or improving infrastructure most critical to society. Moreover, a concerted program of infrastructure decommissioning promises significant long-term cost savings, and is a necessary step before more substantial, systematic changes are possible, like those needed to address the new energy sources and shifting climate. One key challenge for infrastructure reform is how to prioritize and implement such a widespread and politically-charged series of decisions. Two approaches are proposed for different scales. For small, private infrastructure, emerging state and federal ecosystem service markets can provide an economic impetus to push infrastructure removal. Ecosystem market mechanisms may also be most effective at identifying those projects with the greatest ecological bang for the buck. Examples where this approach has proved successful include dam removal for stream mitigation under the Clean Water Act, and levee decommissioning on the Missouri and Iowa Rivers for wildlife conservation areas. Programs that link offshore oil platform decommissioning to marine conservation areas are also notable examples of creative linkages between infrastructure and conservation efforts. For federal infrastructure, the forthcoming Water Resources Development Act (WRDA) should include a BRAC-like program. Faced with a number of aging military bases, the Department of Defense (DOD) began identifying installations it would rather close than maintain or modernize. Overcoming political hurdles was accomplished via the Base Realignment and Closure Commission (BRAC), a bi-partisan commission that buffered politicians by creating a slate of closures for Congress and the President to approve or scuttle in toto. From 1988-2005, BRACs closed > 125 military installations, saving > $50 billion. DOD advocated BRAC because it increased efficiency by focusing funding on those bases central to DODs mission, and removed base funding decisions from political influence. Regardless of the approach, society must develop approaches from which to base difficult end-of-life decisions for infrastructure. In most cases, removing obsolete infrastructure can allow focus on infrastructure that remains critical to society.

  2. A framework for considering externalities in urban water asset management.

    PubMed

    Marlow, David; Pearson, Leonie; Macdonald, Darla Hatton; Whitten, Stuart; Burn, Stewart

    2011-01-01

    Urban communities rely on a complex network of infrastructure assets to connect them to water resources. There is considerable capital investment required to maintain, upgrade and extend this infrastructure. As the remit of a water utility is broader than just financial considerations, infrastructure investment decisions must be made in light of environmental and societal issues. One way of facilitating this is to integrate consideration of externalities into decision making processes. This paper considers the concept of externalities from an asset management perspective. A case study is provided to show the practical implications to a water utility and asset managers. A framework for the inclusion of externalities in asset management decision making is also presented. The potential for application of the framework is highlighted through a brief consideration of its key elements.

  3. Global Combat Support System-Marine Corps Proof-of-Concept for Dashboard Analytics

    DTIC Science & Technology

    2014-12-01

    The core is modern, commercial-off-the-shelf enterprise resource planning ( ERP ) software (Oracle 11i e-Business Suite). GCSS-MCs design is focused...factor in the decision to implement this new software . GCSS-MC is the technology centerpiece of the Logistics Modernization (LogMod) Program...GCSS-MC is based on the implementation of Oracle e-Business Suite 11i as the core software package. This is the same infrastructure that Oracle

  4. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  5. Tuberculosis diagnosis support analysis for precarious health information systems.

    PubMed

    Orjuela-Cañón, Alvaro David; Camargo Mendoza, Jorge Eliécer; Awad García, Carlos Enrique; Vergara Vela, Erika Paola

    2018-04-01

    Pulmonary tuberculosis is a world emergency for the World Health Organization. Techniques and new diagnosis tools are important to battle this bacterial infection. There have been many advances in all those fields, but in developing countries such as Colombia, where the resources and infrastructure are limited, new fast and less expensive strategies are increasingly needed. Artificial neural networks are computational intelligence techniques that can be used in this kind of problems and offer additional support in the tuberculosis diagnosis process, providing a tool to medical staff to make decisions about management of subjects under suspicious of tuberculosis. A database extracted from 105 subjects with precarious information of people under suspect of pulmonary tuberculosis was used in this study. Data extracted from sex, age, diabetes, homeless, AIDS status and a variable with clinical knowledge from the medical personnel were used. Models based on artificial neural networks were used, exploring supervised learning to detect the disease. Unsupervised learning was used to create three risk groups based on available information. Obtained results are comparable with traditional techniques for detection of tuberculosis, showing advantages such as fast and low implementation costs. Sensitivity of 97% and specificity of 71% where achieved. Used techniques allowed to obtain valuable information that can be useful for physicians who treat the disease in decision making processes, especially under limited infrastructure and data. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A megaregion-scale approach for assessing the impacts of climate change and strategic management decisions in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Vorosmarty, C. J.; Stewart, R. J.; Miara, A.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Wollheim, W. M.; Melillo, J. M.; Fekete, B. M.; Dilekli, N.; Duchin, F.; Gross, B.; Bhatt, V.

    2014-12-01

    'Megaregions' have been identified as an important new scale of geography for policy decision-making in the United States. These regions extend beyond local boundaries (ie. cities, states) to incorporate areas with linked economies, infrastructure and land-use patterns and shared climate and environmental systems, such as watersheds. The corridor of densely connected metropolitan areas and surrounding hinterlands along the U.S. east coast from Maine to Virginia is the archetype of this type of unit: The Northeast Megaregion. The Northeast faces a unique set of policy challenges including: projections of a wetter, more extreme climate, aging and underfunded infrastructure and economically distressed rural areas. Megaregion-scale policy efforts such as the Regional Greenhouse Gas Initiative (RGGI) and support for a regional food system have been recognized as strategic tools for climate change mitigation and adaptation, but decision-makers have limited information on the potential consequences of these strategies on the complex natural-human system of the Northeast, under various scenarios of global climate change. We have developed a Northeast Regional Earth System Model (NE-RESM) as a framework to provide this type of information. We integrate terrestrial ecosystem, hydrologic, energy system and economic models to investigate scenarios of paired regional socioeconomic pathways and global climate projections. Our initial results suggest that megaregion-scale strategic decisions in the Northeast may have important consequences for both local water management and global climate change mitigation.

  7. Using Predictive Analytics to Predict Power Outages from Severe Weather

    NASA Astrophysics Data System (ADS)

    Wanik, D. W.; Anagnostou, E. N.; Hartman, B.; Frediani, M. E.; Astitha, M.

    2015-12-01

    The distribution of reliable power is essential to businesses, public services, and our daily lives. With the growing abundance of data being collected and created by industry (i.e. outage data), government agencies (i.e. land cover), and academia (i.e. weather forecasts), we can begin to tackle problems that previously seemed too complex to solve. In this session, we will present newly developed tools to aid decision-support challenges at electric distribution utilities that must mitigate, prepare for, respond to and recover from severe weather. We will show a performance evaluation of outage predictive models built for Eversource Energy (formerly Connecticut Light & Power) for storms of all types (i.e. blizzards, thunderstorms and hurricanes) and magnitudes (from 20 to >15,000 outages). High resolution weather simulations (simulated with the Weather and Research Forecast Model) were joined with utility outage data to calibrate four types of models: a decision tree (DT), random forest (RF), boosted gradient tree (BT) and an ensemble (ENS) decision tree regression that combined predictions from DT, RF and BT. The study shows that the ENS model forced with weather, infrastructure and land cover data was superior to the other models we evaluated, especially in terms of predicting the spatial distribution of outages. This research has the potential to be used for other critical infrastructure systems (such as telecommunications, drinking water and gas distribution networks), and can be readily expanded to the entire New England region to facilitate better planning and coordination among decision-makers when severe weather strikes.

  8. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  9. VISIR: technological infrastructure of an operational service for safe and efficient navigation in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Mannarini, Gianandrea; Turrisi, Giuseppe; D'Anca, Alessandro; Scalas, Mario; Pinardi, Nadia; Coppini, Giovanni; Palermo, Francesco; Carluccio, Ivano; Scuro, Matteo; Cretì, Sergio; Lecci, Rita; Nassisi, Paola; Tedesco, Luca

    2016-08-01

    VISIR (discoVerIng Safe and effIcient Routes) is an operational decision support system (DSS) for optimal ship routing designed and implemented in the frame of the TESSA (TEchnology for Situational Sea Awareness) project. The system is aimed to increase safety and efficiency of navigation through the use of forecast environmental fields and route optimization. VISIR can be accessed through a web interface (www.visir-nav.com) and mobile applications for both iOS and Android devices. This paper focuses on the technological infrastructure developed for operating VISIR as a DSS. Its main components are described, the performance of the operational system is assessed through experimental measurements, and a few case studies are presented.

  10. Distributed hydrological models to quantify ecosystem services and inform land use decisions in Europe

    NASA Astrophysics Data System (ADS)

    Wilebore, Beccy; Willis, Kathy

    2016-04-01

    Landcover conversion is one of the largest anthropogenic threats to ecological services globally; in the EU around 1500 ha of biodiverse land are lost every day to changes in infrastructure and urbanisation. This land conversion directly affects key ecosystem services that support natural infrastructure, including water flow regulation and the mitigation of flood risks. We assess the sensitivity of runoff production to landcover in the UK at a high spatial resolution, using a distributed hydrologic model in the regional land-surface model JULES (Joint UK Land Environment Simulator). This work, as part of the wider initiative 'NaturEtrade', will create a novel suite of easy-to-use tools and mechanisms to allow EU landowners to quickly map and assess the value of their land in providing key ecosystem services.

  11. Development by Design in Colombia: Making Mitigation Decisions Consistent with Conservation Outcomes

    PubMed Central

    Saenz, Shirley; Walschburger, Tomas; González, Juan Carlos; León, Jorge; McKenney, Bruce; Kiesecker, Joseph

    2013-01-01

    Mitigation policy and regulatory frameworks are consistent in their strong support for the mitigation hierarchy of: (1) avoiding impacts, (2) minimizing impacts, and then (3) offsetting/compensating for residual impacts. While mitigation frameworks require developers to avoid, minimize and restore biodiversity on-site before considering an offset for residual impacts, there is a lack of quantitative guidance for this decision-making process. What are the criteria for requiring impacts be avoided altogether? Here we examine how conservation planning can guide the application of the mitigation hierarchy to address this issue. In support of the Colombian government's aim to improve siting and mitigation practices for planned development, we examined five pilot projects in landscapes expected to experience significant increases in mining, petroleum and/or infrastructure development. By blending landscape-level conservation planning with application of the mitigation hierarchy, we can proactively identify where proposed development and conservation priorities would be in conflict and where impacts should be avoided. The approach we outline here has been adopted by the Colombian Ministry of Environment and Sustainable Development to guide licensing decisions, avoid piecemeal licensing, and promote mitigation decisions that maintain landscape condition. PMID:24339972

  12. Development by design in Colombia: making mitigation decisions consistent with conservation outcomes.

    PubMed

    Saenz, Shirley; Walschburger, Tomas; González, Juan Carlos; León, Jorge; McKenney, Bruce; Kiesecker, Joseph

    2013-01-01

    Mitigation policy and regulatory frameworks are consistent in their strong support for the mitigation hierarchy of: (1) avoiding impacts, (2) minimizing impacts, and then (3) offsetting/compensating for residual impacts. While mitigation frameworks require developers to avoid, minimize and restore biodiversity on-site before considering an offset for residual impacts, there is a lack of quantitative guidance for this decision-making process. What are the criteria for requiring impacts be avoided altogether? Here we examine how conservation planning can guide the application of the mitigation hierarchy to address this issue. In support of the Colombian government's aim to improve siting and mitigation practices for planned development, we examined five pilot projects in landscapes expected to experience significant increases in mining, petroleum and/or infrastructure development. By blending landscape-level conservation planning with application of the mitigation hierarchy, we can proactively identify where proposed development and conservation priorities would be in conflict and where impacts should be avoided. The approach we outline here has been adopted by the Colombian Ministry of Environment and Sustainable Development to guide licensing decisions, avoid piecemeal licensing, and promote mitigation decisions that maintain landscape condition.

  13. Collaborative Decision Model on Stockpile Material of a Traditional Market Infrastructure using Value-Based HBU

    NASA Astrophysics Data System (ADS)

    Utomo, C.; Rahmawati, Y.; Pararta, D. L.; Ariesta, A.

    2017-11-01

    Readiness of infrastructure establishment is needed in the early phase of real estate development. To meet the needs of retail property in the form of traditional markets, the Government prepares to build a new 1300 units. Traditional market development requires infrastructure development. One of it is the preparation of sand material embankment as much as ± 200,000 m3. With a distance of 30 km, sand material can be delivered to the project site by dump trucks that can only be operated by 2 trip per day. The material is managed by using stockpile method. Decision of stockpile location requires multi person and multi criteria in a collaborative environment. The highest and the best use (HBU) criteria was used to construct a value-based decision hierarchy. Decision makers from five stakeholders analyzed the best of three locations by giving their own preference of development cost and HBU function. Analytical Hierarchy Process (AHP) based on satisfying options and cooperative game was applied for agreement options and coalition formation on collaborative decision. The result indicates that not all solutions become a possible location for the stockpile material. It shows the ‘best fit’ options process for all decision makers.

  14. [No exchange of information without technology : modern infrastructure in radiology].

    PubMed

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  15. Transitioning to digital radiography.

    PubMed

    Drost, Wm Tod

    2011-04-01

    To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.

  16. Can the University Escape from the Labyrinth of Technology? Part 1: Rethinking the Intellectual and Professional Division of Labor and Its Knowledge Infrastructure

    ERIC Educational Resources Information Center

    Vanderburg, Willem H.

    2006-01-01

    The role tradition played in preindustrial societies has been supplanted by the decisions of countless specialists organized by means of an intellectual and professional division of labor shaping a knowledge infrastructure that sustains these decisions. Three limitations of this knowledge system are discussed: (a) on the macrolevel, it imposes an…

  17. Current Directions in Adding Value to Earth Observation Products for Decision Support

    NASA Astrophysics Data System (ADS)

    Ryker, S. J.

    2015-12-01

    Natural resource managers and infrastructure planners face increasingly complex challenges, given competing demands for resources and changing conditions due to climate and land use change. These pressures create demand for high-quality, timely data; for both one-time decision support and long-term monitoring; and for techniques to articulate the value of resources in monetary and nonmonetary terms. To meet the need for data, the U.S. government invests several billion dollars per year in Earth observations collected from satellite, airborne, terrestrial, and ocean-based systems. Earth observation-based decision support is coming of age; user surveys show that these data are used in an increasing variety of analyses. For example, since the U.S. Department of the Interior/U.S. Geological Survey's (USGS) 2008 free and open data policy for the Landsat satellites, downloads from the USGS archive have increased from 20,000 Landsat scenes per year to 10 million per year and climbing, with strong growth in both research and decision support fields. However, Earth observation-based decision support still poses users a number of challenges. Many of those Landsat downloads support a specialized community of remote sensing scientists, though new technologies promise to increase the usability of remotely sensed data for the larger GIS community supporting planning and resource management. Serving this larger community also requires supporting the development of increasingly interpretive products, and of new approaches to host and update products. For example, automating updates will add value to new essential climate variable products such as surface water extent and wildfire burned area extent. Projections of future urbanization in the southeastern U.S. are most useful when long-term land cover trends are integrated with street-level community data and planning tools. The USGS assessment of biological carbon sequestration in vegetation and shallow soils required a significant research investment in satellite and in situ measurements and biogeochemical and climate modeling, and is already providing decision support at a variety of scales; once operationalized, it will be a tool for adaptive management from field-scale soil and wetland conservation projects to national-scale policy.

  18. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.

  19. Development of a support tool for complex decision-making in the provision of rural maternity care.

    PubMed

    Hearns, Glen; Klein, Michael C; Trousdale, William; Ulrich, Catherine; Butcher, David; Miewald, Christiana; Lindstrom, Ronald; Eftekhary, Sahba; Rosinski, Jessica; Gómez-Ramírez, Oralia; Procyk, Andrea

    2010-02-01

    Decisions in the organization of safe and effective rural maternity care are complex, difficult, value laden and fraught with uncertainty, and must often be based on imperfect information. Decision analysis offers tools for addressing these complexities in order to help decision-makers determine the best use of resources and to appreciate the downstream effects of their decisions. To develop a maternity care decision-making tool for the British Columbia Northern Health Authority (NH) for use in low birth volume settings. Based on interviews with community members, providers, recipients and decision-makers, and employing a formal decision analysis approach, we sought to clarify the influences affecting rural maternity care and develop a process to generate a set of value-focused objectives for use in designing and evaluating rural maternity care alternatives. Four low-volume communities with variable resources (with and without on-site births, with or without caesarean section capability) were chosen. Physicians (20), nurses (18), midwives and maternity support service providers (4), local business leaders, economic development officials and elected officials (12), First Nations (women [pregnant and non-pregnant], chiefs and band members) (40), social workers (3), pregnant women (2) and NH decision-makers/administrators (17). We developed a Decision Support Manual to assist with assessing community needs and values, context for decision-making, capacity of the health authority or healthcare providers, identification of key objectives for decision-making, developing alternatives for care, and a process for making trade-offs and balancing multiple objectives. The manual was deemed an effective tool for the purpose by the client, NH. Beyond assisting the decision-making process itself, the methodology provides a transparent communication tool to assist in making difficult decisions. While the manual was specifically intended to deal with rural maternity issues, the NH decision-makers feel the method can be easily adapted to assist decision-making in other contexts in medicine where there are conflicting objectives, values and opinions. Decisions on the location of new facilities or infrastructure, or enhancing or altering services such as surgical or palliative care, would be examples of complex decisions that might benefit from this methodology.

  20. Development of a Support Tool for Complex Decision-Making in the Provision of Rural Maternity Care

    PubMed Central

    Hearns, Glen; Klein, Michael C.; Trousdale, William; Ulrich, Catherine; Butcher, David; Miewald, Christiana; Lindstrom, Ronald; Eftekhary, Sahba; Rosinski, Jessica; Gómez-Ramírez, Oralia; Procyk, Andrea

    2010-01-01

    Context: Decisions in the organization of safe and effective rural maternity care are complex, difficult, value laden and fraught with uncertainty, and must often be based on imperfect information. Decision analysis offers tools for addressing these complexities in order to help decision-makers determine the best use of resources and to appreciate the downstream effects of their decisions. Objective: To develop a maternity care decision-making tool for the British Columbia Northern Health Authority (NH) for use in low birth volume settings. Design: Based on interviews with community members, providers, recipients and decision-makers, and employing a formal decision analysis approach, we sought to clarify the influences affecting rural maternity care and develop a process to generate a set of value-focused objectives for use in designing and evaluating rural maternity care alternatives. Setting: Four low-volume communities with variable resources (with and without on-site births, with or without caesarean section capability) were chosen. Participants: Physicians (20), nurses (18), midwives and maternity support service providers (4), local business leaders, economic development officials and elected officials (12), First Nations (women [pregnant and non-pregnant], chiefs and band members) (40), social workers (3), pregnant women (2) and NH decision-makers/administrators (17). Results: We developed a Decision Support Manual to assist with assessing community needs and values, context for decision-making, capacity of the health authority or healthcare providers, identification of key objectives for decision-making, developing alternatives for care, and a process for making trade-offs and balancing multiple objectives. The manual was deemed an effective tool for the purpose by the client, NH. Conclusions: Beyond assisting the decision-making process itself, the methodology provides a transparent communication tool to assist in making difficult decisions. While the manual was specifically intended to deal with rural maternity issues, the NH decision-makers feel the method can be easily adapted to assist decision-making in other contexts in medicine where there are conflicting objectives, values and opinions. Decisions on the location of new facilities or infrastructure, or enhancing or altering services such as surgical or palliative care, would be examples of complex decisions that might benefit from this methodology. PMID:21286270

  1. IDESSA: An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Authmann, Christian; Dreber, Niels; Hess, Bastian; Kellner, Klaus; Morgenthal, Theunis; Nauss, Thomas; Seeger, Bernhard; Tsvuura, Zivanai; Wiegand, Kerstin

    2017-04-01

    Bush encroachment is a syndrome of land degradation that occurs in many savannas including those of southern Africa. The increase in density, cover or biomass of woody vegetation often has negative effects on a range of ecosystem functions and services, which are hardly reversible. However, despite its importance, neither the causes of bush encroachment, nor the consequences of different resource management strategies to combat or mitigate related shifts in savanna states are fully understood. The project "IDESSA" (An Integrative Decision Support System for Sustainable Rangeland Management in Southern African Savannas) aims to improve the understanding of the complex interplays between land use, climate patterns and vegetation dynamics and to implement an integrative monitoring and decision-support system for the sustainable management of different savanna types. For this purpose, IDESSA follows an innovative approach that integrates local knowledge, botanical surveys, remote-sensing and machine-learning based time-series of atmospheric and land-cover dynamics, spatially explicit simulation modeling and analytical database management. The integration of the heterogeneous data will be implemented in a user oriented database infrastructure and scientific workflow system. Accessible via web-based interfaces, this database and analysis system will allow scientists to manage and analyze monitoring data and scenario computations, as well as allow stakeholders (e. g. land users, policy makers) to retrieve current ecosystem information and seasonal outlooks. We present the concept of the project and show preliminary results of the realization steps towards the integrative savanna management and decision-support system.

  2. Coupling Adaptation Tipping Points and Engineering Options: New Insights for Resilient Water Infrastructure Replacement Planning

    NASA Astrophysics Data System (ADS)

    Smet, K.; de Neufville, R.; van der Vlist, M.

    2017-12-01

    This work presents an innovative approach for replacement planning for aging water infrastructure given uncertain future conditions. We draw upon two existing methodologies to develop an integrated long-term replacement planning framework. We first expand the concept of Adaptation Tipping Points to generate long-term planning timelines that incorporate drivers of investment related to both internal structural processes as well as changes in external operating conditions. Then, we use Engineering Options to explore different actions taken at key moments in this timeline. Contrasting to the traditionally more static approach to infrastructure design, designing the next generation of infrastructure so it can be changed incrementally is a promising method to safeguard current investments given future uncertainty. This up-front inclusion of structural options in the system actively facilitates future adaptation, transforming uncertainty management in infrastructure planning from reactive to more proactive. A two-part model underpins this approach. A simulation model generates diverse future conditions, allowing development of timelines of intervention moments in the structure's life. This feeds into an economic model, evaluating the lifetime performance of different replacement strategies, making explicit the value of different designs and their flexibility. A proof of concept study demonstrates this approach for a pumping station. The strategic planning timelines for this structure demonstrate that moments when capital interventions become necessary due to reduced functionality from structural degradation or changed operating conditions are widely spread over the structure's life. The disparate timing of these necessary interventions supports an incremental, adaptive mindset when considering end-of-life and replacement decisions. The analysis then explores different replacement decisions, varying the size and specific options included in the proposed new structure. Results show that incremental adaptive designs and incorporating options can improve economic performance, as compared to traditional, "build it once & build it big" designs. The benefit from incorporating flexibility varies with structural functionality, future conditions and the specific options examined.

  3. Online catalog access and distribution of remotely sensed information

    NASA Astrophysics Data System (ADS)

    Lutton, Stephen M.

    1997-09-01

    Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.

  4. Towards global environmental information and data management

    NASA Astrophysics Data System (ADS)

    Gurney, Robert; Allison, Lee; Cesar, Roberto; Cossu, Roberto; Dietz, Volkmar; Gemeinholzer, Birgit; Koike, Toshio; Mokrane, Mustapha; Peters, Dale; Thaller-Honold, Svetlana; Treloar, Andrew; Vilotte, Jean-Pierre; Waldmann, Christoph

    2014-05-01

    The Belmont Forum, a coalition of national science agencies from 13 countries, is supporting an 18-month effort to implement a 'Knowledge Hub' community-building and strategy development program as a first step to coordinate and streamline international efforts on community governance, interoperability and system architectures so that environmental data and information can be exchanged internationally and across subject domains easily and efficiently. This initiative represents a first step to build collaboratively an international capacity and e-infrastructure framework to address societally relevant global environmental change challenges. The project will deliver a community-owned strategy and implementation plan, which will prioritize international funding opportunities for Belmont Forum members to build pilots and exemplars in order to accelerate delivery of end-to end global change decision support systems. In 2012, the Belmont Forum held a series of public town hall meetings, and a two-day scoping meeting of scientists and program officers, which concluded that transformative approaches and innovative technologies are needed for heterogeneous data/information to be integrated and made interoperable for researchers in disparate fields and for myriad uses across international, institutional, disciplinary, spatial and temporal boundaries. Pooling Belmont Forum members' resources to bring communities together for further integration, cooperation, and leveraging of existing initiatives and resources has the potential to develop the e-infrastructure framework necessary to solve pressing environmental problems, and to support the aims of many international data sharing initiatives. The plan is expected to serve as the foundation of future Belmont Forum calls for proposals for e-Infrastructures and Data Management. The Belmont Forum is uniquely able to align resources of major national funders to support global environmental change research on specific technical and governance challenges, and the development of focused pilot systems that could be complementary to other initiatives such as GEOSS, ICSU World Data System, and Global Framework for Climate Services (GFCS). The development of this Belmont Forum Knowledge Hub represents an extraordinary effort to bring together international leaders in interoperability, governance and other fields pertinent to decision-support systems in global environmental change research. It is also addressing related issues such as ensuring a cohort of environmental scientists who can use up-to-date computing techniques for data and information management, and investigating which legal issues need common international attention.

  5. Building Cyberinfrastructures for Earth and Space Sciences so that they will come: lessons learnt from Australia

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Woodcock, R.

    2013-12-01

    One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data environments and workflows. The eResearch Infrastructure Stack is designed to support 12 individual domain-specific capabilities. Four are relevant to the Earth and Space Sciences: (1) AuScope (a national Earth Science Infrastructure Program), (2) the Integrated Marine Observing System (IMOS), (3) the Terrestrial Ecosystems Research Network (TERN) and (4) the Australian Urban Research Infrastructure Network (AURIN). The two main research integration infrastructures, ANDS and NeCTAR, are seen as pivotal to the success of the Australian eResearch Infrastructure. Without them, there was a risk that that the investments in new computers and data storage would provide physical infrastructure, but few would come to use it as the skills barriers to entry were too high. ANDS focused on transforming Australia's research data environment. Its flagship is Research Data Australia, an Internet-based discovery service designed to provide rich connections between data, projects, researchers and institutions, and promote visibility of Australian research data collections in search engines. NeCTAR focused on building eResearch infrastructure in four areas: virtual laboratories, tools, a federated research cloud and a hosting service. Combined, ANDS and NeCTAR are ensuring that people ARE coming and ARE using the physical infrastructures that were built.

  6. Multi-Agent Many-Objective Robust Decision Making: Supporting Cooperative Regional Water Portfolio Planning in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Zeff, H. B.; Reed, P. M.; Characklis, G. W.

    2013-12-01

    In the Eastern United States, water infrastructure and institutional frameworks have evolved in a historically water-rich environment. However, large regional droughts over the past decade combined with continuing population growth have marked a transition to a state of water scarcity, for which current planning paradigms are ill-suited. Significant opportunities exist to improve the efficiency of water infrastructure via regional coordination, namely, regional 'portfolios' of water-related assets such as reservoirs, conveyance, conservation measures, and transfer agreements. Regional coordination offers the potential to improve reliability, cost, and environmental impact in the expected future state of the world, and, with informed planning, to improve robustness to future uncertainty. In support of this challenge, this study advances a multi-agent many-objective robust decision making (multi-agent MORDM) framework that blends novel computational search and uncertainty analysis tools to discover flexible, robust regional portfolios. Our multi-agent MORDM framework is demonstrated for four water utilities in the Research Triangle region of North Carolina, USA. The utilities supply nearly two million customers and have the ability to interact with one another via transfer agreements and shared infrastructure. We show that strategies for this region which are Pareto-optimal in the expected future state of the world remain vulnerable to performance degradation under alternative scenarios of deeply uncertain hydrologic and economic factors. We then apply the Patient Rule Induction Method (PRIM) to identify which of these uncertain factors drives the individual and collective vulnerabilities for the four cooperating utilities. Our results indicate that clear multi-agent tradeoffs emerge for attaining robustness across the utilities. Furthermore, the key factor identified for improving the robustness of the region's water supply is cooperative demand reduction. This type of approach is critically important given the risks and challenges posed by rising supply development costs, limits on new infrastructure, growing water demands and the underlying uncertainties associated with climate change. The proposed framework serves as a planning template for other historically water-rich regions which must now confront the reality of impending water scarcity.

  7. Clinical decision support systems in child and adolescent psychiatry: a systematic review.

    PubMed

    Koposov, Roman; Fossum, Sturla; Frodl, Thomas; Nytrø, Øystein; Leventhal, Bennett; Sourander, Andre; Quaglini, Silvana; Molteni, Massimo; de la Iglesia Vayá, María; Prokosch, Hans-Ulrich; Barbarini, Nicola; Milham, Michael Peter; Castellanos, Francisco Xavier; Skokauskas, Norbert

    2017-11-01

    Psychiatric disorders are amongst the most prevalent and impairing conditions in childhood and adolescence. Unfortunately, it is well known that general practitioners (GPs) and other frontline health providers (i.e., child protection workers, public health nurses, and pediatricians) are not adequately trained to address these ubiquitous problems (Braddick et al. Child and Adolescent mental health in Europe: infrastructures, policy and programmes, European Communities, 2009; Levav et al. Eur Child Adolesc Psychiatry 13:395-401, 2004). Advances in technology may offer a solution to this problem with clinical decision support systems (CDSS) that are designed to help professionals make sound clinical decisions in real time. This paper offers a systematic review of currently available CDSS for child and adolescent mental health disorders prepared according to the PRISMA-Protocols (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols). Applying strict eligibility criteria, the identified studies (n = 5048) were screened. Ten studies, describing eight original clinical decision support systems for child and adolescent psychiatric disorders, fulfilled inclusion criteria. Based on this systematic review, there appears to be a need for a new, readily available CDSS for child neuropsychiatric disorder which promotes evidence-based, best practices, while enabling consideration of national variation in practices by leveraging data-reuse to generate predictions regarding treatment outcome, addressing a broader cluster of clinical disorders, and targeting frontline practice environments.

  8. Public Key Infrastructure (PKI) Increment 2 Root Cause Analysis (RCA) for Performance Assessments and Root Cause Analyses (PARCA)

    DTIC Science & Technology

    2015-05-01

    for issuing this critical change:  Inability to achieve PKI Increment 2 Full Deployment Decision ( FDD ) within five years of program initiation...March 1, 2014 deadline), and  Delay of over one year in the original FDD estimate provided to the Congress (1 March 2014 deadline). The proximate...to support a 1 March 2014 FDD .” The Director, Performance Assessments and Root Cause Analyses (PARCA), asked the Institute for Defense Analyses

  9. Space Exploration Supply Chain Modeling, Simulation and Analysis Using the SCOR Model

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Callinan, Mike; Fayez, Sam

    2006-01-01

    sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructure both to explore and to support decisions about the destinations for human exploration; and promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests

  10. Clinical engineering and risk management in healthcare technological process using architecture framework.

    PubMed

    Signori, Marcos R; Garcia, Renato

    2010-01-01

    This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.

  11. Remote access to medical specialists: home care interactive patient management system

    NASA Astrophysics Data System (ADS)

    Martin, Peter J.; Draghic, Nicole; Wiesmann, William P.

    1999-07-01

    Diabetes management involves constant care and rigorous compliance. Glucose control is often difficult to maintain and onset of complications further compound health care needs. Status can be further hampered by geographic isolation from immediate medical infrastructures. The Home Care Interactive Patient Management System is an experimental telemedicine program that could improve chronic illness management through Internet-based applications. The goal of the system is to provide a customized, integrated approach to diabetes management to supplement and coordinate physician protocol while supporting routine patient activity, by supplying a set of customized automated services including health data collection, transmission, analysis and decision support.

  12. Geovisualization applications to examine and explore high-density and hierarchical critical infrastructure data

    NASA Astrophysics Data System (ADS)

    Edsall, Robert; Hembree, Harvey

    2018-05-01

    The geospatial research and development team in the National and Homeland Security Division at Idaho National Laboratory was tasked with providing tools to derive insight from the substantial amount of data currently available - and continuously being produced - associated with the critical infrastructure of the US. This effort is in support of the Department of Homeland Security, whose mission includes the protection of this infrastructure and the enhancement of its resilience to hazards, both natural and human. We present geovisual-analytics-based approaches for analysis of vulnerabilities and resilience of critical infrastructure, designed so that decision makers, analysts, and infrastructure owners and managers can manage risk, prepare for hazards, and direct resources before and after an incident that might result in an interruption in service. Our designs are based on iterative discussions with DHS leadership and analysts, who in turn will use these tools to explore and communicate data in partnership with utility providers, law enforcement, and emergency response and recovery organizations, among others. In most cases these partners desire summaries of large amounts of data, but increasingly, our users seek the additional capability of focusing on, for example, a specific infrastructure sector, a particular geographic region, or time period, or of examining data in a variety of generalization or aggregation levels. These needs align well with tenets of in-formation-visualization design; in this paper, selected applications among those that we have designed are described and positioned within geovisualization, geovisual analytical, and information visualization frameworks.

  13. Optimal design of green and grey stormwater infrastructure for small urban catchment based on life-cycle cost-effectiveness analysis

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Chui, T. F. M.

    2016-12-01

    Green infrastructure (GI) is identified as sustainable and environmentally friendly alternatives to the conventional grey stormwater infrastructure. Commonly used GI (e.g. green roof, bioretention, porous pavement) can provide multifunctional benefits, e.g. mitigation of urban heat island effects, improvements in air quality. Therefore, to optimize the design of GI and grey drainage infrastructure, it is essential to account for their benefits together with the costs. In this study, a comprehensive simulation-optimization modelling framework that considers the economic and hydro-environmental aspects of GI and grey infrastructure for small urban catchment applications is developed. Several modelling tools (i.e., EPA SWMM model, the WERF BMP and LID Whole Life Cycle Cost Modelling Tools) and optimization solvers are coupled together to assess the life-cycle cost-effectiveness of GI and grey infrastructure, and to further develop optimal stormwater drainage solutions. A typical residential lot in New York City is examined as a case study. The life-cycle cost-effectiveness of various GI and grey infrastructure are first examined at different investment levels. The results together with the catchment parameters are then provided to the optimization solvers, to derive the optimal investment and contributing area of each type of the stormwater controls. The relationship between the investment and optimized environmental benefit is found to be nonlinear. The optimized drainage solutions demonstrate that grey infrastructure is preferred at low total investments while more GI should be adopted at high investments. The sensitivity of the optimized solutions to the prices the stormwater controls is evaluated and is found to be highly associated with their utilizations in the base optimization case. The overall simulation-optimization framework can be easily applied to other sites world-wide, and to be further developed into powerful decision support systems.

  14. Toward Knowledge Systems for Sustainability Science

    NASA Astrophysics Data System (ADS)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated space; and 3) a domain that includes decision support tools and systems tailored toward frame particular trade-offs, which may focus on inputs or outputs and may range in scale from local to global. An information infrastructure for sustainability science is best built be built and maintained as a modular, open source, open standard, open access, open content platform. We have defined the scope of this challenge, managing choices within agroecosystems, recognizing that any decision on a landscape involves multidimensional tradeoffs. An effort to address this challenge will need a cohesive, coherent and targeted approach toward an integrated knowledge management infrastructure for sustainability science applied to land management is essential to move more rapidly toward sustainable, productive, and resilient landscapes.

  15. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  16. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. New Map Symbol System for Disaster Management

    NASA Astrophysics Data System (ADS)

    Marinova, Silvia T.

    2018-05-01

    In the last 10 years Bulgaria was frequently affected by natural and man-made disasters that caused considerable losses. According to the Bulgarian Disaster Management Act (2006) disaster management should be planned at local, regional and national level. Disaster protection is based on plans that include maps such as hazard maps, maps for protection, maps for evacuation planning, etc. Decision-making and cooperation between two or more neighboring municipalities or regions in crisis situation are still rendered difficult because the maps included in the plans differ in scale, colors, map symbols and cartographic design. To improve decision-making process in case of emergency and to reduce the number of human loss and property damages disaster management plans at local and regional level should be supported by detailed thematic maps created in accordance with uniform contents, map symbol system and design. The paper proposes a new symbol system for disaster management that includes a four level hierarchical classification of objects and phenomena according to their type and origin. All objects and phenomena of this classification are divided into five categories: disasters; infrastructure; protection services and infrastructure for protection; affected people and affected infrastructure; operational sites and activities. The symbols of these categories are shown with different background colors and shapes so that they are identifiable. All the symbols have simple but associative design. The new symbol system is used in the design of a series of maps for disaster management at local and regional level.

  18. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  19. Interactive Model-Centric Systems Engineering (IMCSE) Phase 1

    DTIC Science & Technology

    2014-09-30

    and supporting infrastructure ...testing. 4. Supporting MPTs. During Phase 1, the opportunity to develop several MPTs to support IMCSE arose, including supporting infrastructure ...Analysis will be completed and tested with a case application, along with preliminary supporting infrastructure , which will then be used to inform the

  20. Incorporating equity considerations in transport infrastructure evaluation: Current practice and a proposed methodology.

    PubMed

    Thomopoulos, N; Grant-Muller, S; Tight, M R

    2009-11-01

    Interest has re-emerged on the issue of how to incorporate equity considerations in the appraisal of transport projects and large road infrastructure projects in particular. This paper offers a way forward in addressing some of the theoretical and practical concerns that have presented difficulties to date in incorporating equity concerns in the appraisal of such projects. Initially an overview of current practice within transport regarding the appraisal of equity considerations in Europe is offered based on an extensive literature review. Acknowledging the value of a framework approach, research towards introducing a theoretical framework is then presented. The proposed framework is based on the well established MCA Analytic Hierarchy Process and is also contrasted with the use of a CBA based approach. The framework outlined here offers an additional support tool to decision makers who will be able to differentiate choices based on their views on specific equity principles and equity types. It also holds the potential to become a valuable tool for evaluators as a result of the option to assess predefined equity perspectives of decision makers against both the project objectives and the estimated project impacts. This framework may also be of further value to evaluators outside transport.

  1. A new approach to implementing decentralized wastewater treatment concepts.

    PubMed

    van Afferden, Manfred; Cardona, Jaime A; Lee, Mi-Yong; Subah, Ali; Müller, Roland A

    2015-01-01

    Planners and decision-makers in the wastewater sector are often confronted with the problem of identifying adequate development strategies and most suitable finance schemes for decentralized wastewater infrastructure. This paper research has focused on providing an approach in support of such decision-making. It is based on basic principles that stand for an integrated perspective towards sustainable wastewater management. We operationalize these principles by means of a geographic information system (GIS)-based approach 'Assessment of Local Lowest-Cost Wastewater Solutions'--ALLOWS. The main product of ALLOWS is the identification of cost-effective local wastewater management solutions for any given demographic and physical context. By using universally available input data the tool allows decision-makers to compare different wastewater solutions for any given wastewater situation. This paper introduces the ALLOWS-GIS tool. Its application and functionality are illustrated by assessing different wastewater solutions for two neighboring communities in rural Jordan.

  2. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.

    2011-12-01

    A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.

  3. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    USGS Publications Warehouse

    Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L.

    2011-01-01

    The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water-quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water-quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow-weighted concentration, or load of constituents in water under various land-use condition, change, or resource management scenarios. A web-based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  4. Elements of an integrated health monitoring framework

    NASA Astrophysics Data System (ADS)

    Fraser, Michael; Elgamal, Ahmed; Conte, Joel P.; Masri, Sami; Fountain, Tony; Gupta, Amarnath; Trivedi, Mohan; El Zarki, Magda

    2003-07-01

    Internet technologies are increasingly facilitating real-time monitoring of Bridges and Highways. The advances in wireless communications for instance, are allowing practical deployments for large extended systems. Sensor data, including video signals, can be used for long-term condition assessment, traffic-load regulation, emergency response, and seismic safety applications. Computer-based automated signal-analysis algorithms routinely process the incoming data and determine anomalies based on pre-defined response thresholds and more involved signal analysis techniques. Upon authentication, appropriate action may be authorized for maintenance, early warning, and/or emergency response. In such a strategy, data from thousands of sensors can be analyzed with near real-time and long-term assessment and decision-making implications. Addressing the above, a flexible and scalable (e.g., for an entire Highway system, or portfolio of Networked Civil Infrastructure) software architecture/framework is being developed and implemented. This framework will network and integrate real-time heterogeneous sensor data, database and archiving systems, computer vision, data analysis and interpretation, physics-based numerical simulation of complex structural systems, visualization, reliability & risk analysis, and rational statistical decision-making procedures. Thus, within this framework, data is converted into information, information into knowledge, and knowledge into decision at the end of the pipeline. Such a decision-support system contributes to the vitality of our economy, as rehabilitation, renewal, replacement, and/or maintenance of this infrastructure are estimated to require expenditures in the Trillion-dollar range nationwide, including issues of Homeland security and natural disaster mitigation. A pilot website (http://bridge.ucsd.edu/compositedeck.html) currently depicts some basic elements of the envisioned integrated health monitoring analysis framework.

  5. Risk and Reliability of Infrastructure Asset Management Workshop

    DTIC Science & Technology

    2006-08-01

    of assets within the portfolio for use in Risk and Reliability analysis ... US Army Corps of Engineers assesses its Civil Works infrastructure and applies risk and reliability in the management of that infrastructure. The ... the Corps must complete assessments across its portfolio of major assets before risk management can be used in decision making. Effective risk

  6. The Invasive Species Forecasting System: A Space-Based Decision Support Infrastructure for Managing Biological Invasions

    NASA Astrophysics Data System (ADS)

    Most, N. N.; Kendig, D.; Wichman, K.; Pollack, N.; Ilagan, A.; Morisette, J. T.; Pedelty, J. A.; Tilmes, C.; Smith, J. A.; Pfister, R.; Schnase, J. L.; Stohgren, T. J.; Crosier, C.; Graham, J.; Newman, G.; Kalkhan, M. A.; Reich, R.

    2004-12-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being addressed by NASA's Science Mission Directorate through a national application partnership with the US Geological Survey. NASA and USGS are working together to develop a National Invasive Species Forecasting System (ISFS) for the management and control of invasive species on Department of Interior and adjacent lands. As part of this effort, we are using NASA's EOS Clearing House (ECHO) framework to create an Invasive Species Data Service (ISDS). The ISDS will be a networked service that integrates a suite of NASA remote sensing data providers with the ecological field data resources of the National Biological Information Infrastructure (NBII). Aggregated ISDS data will feed directly into ISFS analysis routines to produce landscape-scale predictive maps of species distributions. ISDS and the ECHO framework thus provide an efficient interface between existing NASA data systems and decision support systems that are the province of federal agencies and other national organizations. The effort significantly broadens the use of NASA data in managing the Nation's invasive species threat. In this talk, we will describe the NASA/USGS invasive species partnership, provide an overview of the Invasive Species Forecasting System, and show how we are using ECHO technologies as the middle-ware framework for a comprehensive Invasive Species Data Service.

  7. 75 FR 60093 - Record of Decision for the United States Marine Corps Basewide Utilities Infrastructure Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... construction, operation, and maintenance of utility infrastructure upgrades, expansions, and improvements... and wastewater facilities and road improvements to Range 130. All practical means to avoid or minimize...

  8. Using crowdsourcing to prioritize bicycle network improvements : final report.

    DOT National Transportation Integrated Search

    2016-04-01

    Effort to improve the bicycle route network using crowdsourced data is a powerful means : of incorporating citizens in infrastructure improvement decisions, which will improve : livability by maximizing the benefit of the bicycle infrastructure fundi...

  9. Imaginable Technologies for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2007-01-01

    The thesis of the present discussion is that the simultaneous cost and inherent safety issues of human on-site exploration of Mars will require advanced-to-revolutionary technologies. The major crew safety issues as currently identified include reduced gravity, radiation, potentially extremely toxic dust and the requisite reliability for years-long missions. Additionally, this discussion examines various technological areas which could significantly impact Human-Mars cost and safety. Cost reductions for space access is a major metric, including approaches to significantly reduce the overall up-mass. Besides fuel, propulsion and power systems, the up-mass consists of the infrastructure and supplies required to keep humans healthy and the equipment for executing exploration mission tasks. Hence, the major technological areas of interest for potential cost reductions include propulsion, in-space and on-planet power, life support systems, materials and overall architecture, systems, and systems-of-systems approaches. This discussion is specifically offered in response to and as a contribution to goal 3 of the Presidential Exploration Vision: "Develop the Innovative Technologies Knowledge and Infrastructures both to explore and to support decisions about the destinations for human exploration".

  10. Developing INFOMAR's Seabed Mapping Data to Support a Sustainable Marine Economy

    NASA Astrophysics Data System (ADS)

    Judge, M. T.; Guinan, J.

    2016-02-01

    As Ireland's national seabed mapping programme, INFOMAR1 (INtegrated mapping FOr the sustainable development of Ireland's MARine resource) enters its eleventh year it continues to provide pivotal seabed mapping data products, e.g. databases, charts and physical habitat maps to support Ireland's Integrated Marine Plan. The programme, jointly coordinated by the Geological Survey of Ireland and the Marine Institute, has gained a world class reputation for developing seabed mapping technologies, infrastructure and expertise. In the government's current Integrated Marine Plan, the programme's critical role in marine spatial planning enabling infrastructural development, research and education has been cited2. INFOMAR's free data policy supports a thriving maritime economy by promoting easy access to seabed mapping datasets that underpin; maritime safety, security and surveillance, governance, business development, research and technology innovation and infrastructure. The first hydrographic surveys of the national marine mapping programme mapped the extent of Ireland's deepest offshore area, whilst in recent years the focus has been to map the coastal and shallow areas. Targeted coastal areas include 26 bays and 3 priority areas for which specialised equipment, techniques and vessels are required. This talk will discuss how the INFOMAR programme has evolved to address the scientific and technological challenges of seabed mapping across a range of water depths; particularly the challenges associated with addressing inshore data gaps. It will describe how the data converts to bathymetric and geological maps detailing seabed characteristics and habitats. We will expand on how maps are: incorporated into collaborative marine projects such as EMODnet, commercialised to identify marine resources and used as marine decision support tools that drive policy and promote protection of the vastly under discovered marine area.

  11. Disaster Management with a Next Generation Disaster Decision Support System

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    As populations become increasingly concentrated in large cities, the world is experiencing an inevitably growing trend towards the urbanisation of disasters. Scientists have contributed significant advances in understanding the geophysical causes of natural hazards and have developed sophisticated tools to predict their effects; while, much less attention has been devoted to tools that increase situational awareness, facilitate leadership, provide effective communication channels and data flow and enhance the cognitive abilities of decision makers and first responders. In this paper, we envisioned the capabilities of a next generation disaster decision support system and hence proposed a state-of-the-art system architecture design to facilitate the decision making process in natural catastrophes such as flood and bushfire by utilising a combination of technologies for multi-channel data aggregation, disaster modelling, visualisation and optimisation. Moreover, we put our thoughts into action by implementing an Intelligent Disaster Decision Support System (IDDSS). The developed system can easily plug in to external disaster models and aggregate large amount of heterogeneous data from government agencies, sensor networks, and crowd sourcing platforms in real-time to enhance the situational awareness of decision makers and offer them a comprehensive understanding of disaster impacts from diverse perspectives such as environment, infrastructure and economy, etc. Sponsored by the Australian Government and the Victorian Department of Justice (Australia), the system was built upon a series of open-source frameworks (see attached figure) with four key components: data management layer, model application layer, processing service layer and presentation layer. It has the potential to be adopted by a range of agencies across Australian jurisdictions to assist stakeholders in accessing, sharing and utilising available information in their management of disaster events.

  12. Lafayette, Colorado: Using Energy Data for Electric Vehicle Infrastructure Planning (City Energy: From Data to Decisions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    This fact sheet "Lafayette, Colorado: Using Energy Data for Electric Vehicle Infrastructure Planning" explains how the City of Lafayette used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  13. Transformative Use of an Improved All-Payer Hospital Discharge Data Infrastructure for Community-Based Participatory Research: A Sustainability Pathway

    PubMed Central

    Salemi, Jason L; Salinas-Miranda, Abraham A; Wilson, Roneé E; Salihu, Hamisu M

    2015-01-01

    Objective To describe the use of a clinically enhanced maternal and child health (MCH) database to strengthen community-engaged research activities, and to support the sustainability of data infrastructure initiatives. Data Sources/Study Setting Population-based, longitudinal database covering over 2.3 million mother–infant dyads during a 12-year period (1998–2009) in Florida. Setting: A community-based participatory research (CBPR) project in a socioeconomically disadvantaged community in central Tampa, Florida. Study Design Case study of the use of an enhanced state database for supporting CBPR activities. Principal Findings A federal data infrastructure award resulted in the creation of an MCH database in which over 92 percent of all birth certificate records for infants born between 1998 and 2009 were linked to maternal and infant hospital encounter-level data. The population-based, longitudinal database was used to supplement data collected from focus groups and community surveys with epidemiological and health care cost data on important MCH disparity issues in the target community. Data were used to facilitate a community-driven, decision-making process in which the most important priorities for intervention were identified. Conclusions Integrating statewide all-payer, hospital-based databases into CBPR can empower underserved communities with a reliable source of health data, and it can promote the sustainability of newly developed data systems. PMID:25879276

  14. Regional Interdependence in Adaptation to Sea Level Rise and Coastal Flooding

    NASA Astrophysics Data System (ADS)

    Stacey, M. T.; Lubell, M.; Hummel, M.; Wang, R. Q.; Barnard, P.; Erikson, L. H.; Herdman, L.; Pozdnukhov, A.; Sheehan, M.

    2017-12-01

    Projections of sea level rise may differ in the pace of change, but there is clear consensus that coastal communities will be facing more frequent and severe flooding events in the coming century. As communities adapt to future conditions, infrastructure systems will be developed, modified and abandoned, with important consequences for services and resilience. Whether action or inaction is pursued, the decisions made by an individual community regarding a single infrastructure system have implications that extend spatially and temporally due to geographic and infrastructure system interactions. At the same time, there are a number of barriers to collective or coordinated action that inhibit regional solutions. This interplay between local actions and regional responses is one of the great challenges facing decision-makers grappling with both local and regional climate-change adaptation. In this talk, I present case studies of the San Francisco Bay Area that examine how shoreline infrastructure, transporation sytems and decision-making networks interact to define the regional response to local actions and the local response to regional actions. I will characterize the barriers that exist to regional solutions, and characterize three types of interdependence that may motivate decision-makers to overcome those barriers. Using these examples, I will discuss the importance of interdisciplinary analyses that integrate the natural sciences, engineering and the social science to climate change adaptation more generally.

  15. Predicting Fire Severity and Hydrogeomorphic Effects for Wildland Fire Decision Support

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Woods, S. W.; Calkin, D.; Ryan, K.; Keane, R.

    2007-12-01

    The Wildland Fire Decision Support System (WFDSS) uses the Fire Spread Probability (FSPro) model to predict the spatial extent of fire, and to assess values-at-risk within probable spread zones. This information is used to support Appropriate Management Response (AMR), which involves decision making regarding fire-fighter deployment, fire suppression requirements, and identification of areas where fire may be safely permitted to take its course. Current WFDSS assessments are generally limited to a binary prediction of whether or not a fire will reach a given location and an assessment of the infrastructure which may be damaged or destroyed by fire. However, an emerging challenge is to expand the capabilities of WFDSS so that it also estimates the probable fire severity, and hence the effect on soil, vegetation and on hydrologic and geomorphic processes such as runoff and soil erosion. We present a conceptual framework within which derivatives of predictive fire modelling are used to predict impacts upon vegetation and soil, from which fire severity and probable post-fire watershed response can be inferred, before a fire actually occurs. Fire severity predictions are validated using Burned Area Reflectance Classification imagery. Recent tests indicate that satellite derived BARC images are a simple and effective means to predict post-fire erosion response based on relative vegetation disturbance. A fire severity prediction which reasonably approximates a BARC image may therefore be used to assess post-fire erosion and flood potential before fire reaches an area. This information may provide a new avenue of reliable support for fire management decisions.

  16. Hazards and accessibility: combining and visualizing threat and open infrastructure data for disaster management

    NASA Astrophysics Data System (ADS)

    Tost, Jordi; Ehmel, Fabian; Heidmann, Frank; Olen, Stephanie M.; Bookhagen, Bodo

    2018-05-01

    The assessment of natural hazards and risk has traditionally been built upon the estimation of threat maps, which are used to depict potential danger posed by a particular hazard throughout a given area. But when a hazard event strikes, infrastructure is a significant factor that can determine if the situation becomes a disaster. The vulnerability of the population in a region does not only depend on the area's local threat, but also on the geographical accessibility of the area. This makes threat maps by themselves insufficient for supporting real-time decision-making, especially for those tasks that involve the use of the road network, such as management of relief operations, aid distribution, or planning of evacuation routes, among others. To overcome this problem, this paper proposes a multidisciplinary approach divided in two parts. First, data fusion of satellite-based threat data and open infrastructure data from OpenStreetMap, introducing a threat-based routing service. Second, the visualization of this data through cartographic generalization and schematization. This emphasizes critical areas along roads in a simple way and allows users to visually evaluate the impact natural hazards may have on infrastructure. We develop and illustrate this methodology with a case study of landslide threat for an area in Colombia.

  17. Using multiobjective tradeoff sets and Multivariate Regression Trees to identify critical and robust decisions for long term water utility planning

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Balaji, R.

    2017-12-01

    In light of deeply uncertain factors like future climate change and population shifts, responsible resource management will require new types of information and strategies. For water utilities, this entails potential expansion and efficient management of water supply infrastructure systems for changes in overall supply; changes in frequency and severity of climate extremes such as droughts and floods; and variable demands, all while accounting for conflicting long and short term performance objectives. Multiobjective Evolutionary Algorithms (MOEAs) are emerging decision support tools that have been used by researchers and, more recently, water utilities to efficiently generate and evaluate thousands of planning portfolios. The tradeoffs between conflicting objectives are explored in an automated way to produce (often large) suites of portfolios that strike different balances of performance. Once generated, the sets of optimized portfolios are used to support relatively subjective assertions of priorities and human reasoning, leading to adoption of a plan. These large tradeoff sets contain information about complex relationships between decisions and between groups of decisions and performance that, until now, has not been quantitatively described. We present a novel use of Multivariate Regression Trees (MRTs) to analyze tradeoff sets to reveal these relationships and critical decisions. Additionally, when MRTs are applied to tradeoff sets developed for different realizations of an uncertain future, they can identify decisions that are robust across a wide range of conditions and produce fundamental insights about the system being optimized.

  18. Infrastructure for the Geospatial Web

    NASA Astrophysics Data System (ADS)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  19. Integrating Data Distribution and Data Assimilation Between the OOI CI and the NOAA DIF

    NASA Astrophysics Data System (ADS)

    Meisinger, M.; Arrott, M.; Clemesha, A.; Farcas, C.; Farcas, E.; Im, T.; Schofield, O.; Krueger, I.; Klacansky, I.; Orcutt, J.; Peach, C.; Chave, A.; Raymer, D.; Vernon, F.

    2008-12-01

    The Ocean Observatories Initiative (OOI) is an NSF funded program to establish the ocean observing infrastructure of the 21st century benefiting research and education. It is currently approaching final design and promises to deliver cyber and physical observatory infrastructure components as well as substantial core instrumentation to study environmental processes of the ocean at various scales, from coastal shelf-slope exchange processes to the deep ocean. The OOI's data distribution network lies at the heart of its cyber- infrastructure, which enables a multitude of science and education applications, ranging from data analysis, to processing, visualization and ontology supported query and mediation. In addition, it fundamentally supports a class of applications exploiting the knowledge gained from analyzing observational data for objective-driven ocean observing applications, such as automatically triggered response to episodic environmental events and interactive instrument tasking and control. The U.S. Department of Commerce through NOAA operates the Integrated Ocean Observing System (IOOS) providing continuous data in various formats, rates and scales on open oceans and coastal waters to scientists, managers, businesses, governments, and the public to support research and inform decision-making. The NOAA IOOS program initiated development of the Data Integration Framework (DIF) to improve management and delivery of an initial subset of ocean observations with the expectation of achieving improvements in a select set of NOAA's decision-support tools. Both OOI and NOAA through DIF collaborate on an effort to integrate the data distribution, access and analysis needs of both programs. We present details and early findings from this collaboration; one part of it is the development of a demonstrator combining web-based user access to oceanographic data through ERDDAP, efficient science data distribution, and scalable, self-healing deployment in a cloud computing environment. ERDDAP is a web-based front-end application integrating oceanographic data sources of various formats, for instance CDF data files as aggregated through NcML or presented using a THREDDS server. The OOI-designed data distribution network provides global traffic management and computational load balancing for observatory resources; it makes use of the OpenDAP Data Access Protocol (DAP) for efficient canonical science data distribution over the network. A cloud computing strategy is the basis for scalable, self-healing organization of an observatory's computing and storage resources, independent of the physical location and technical implementation of these resources.

  20. Implementing CER: what will it take?

    PubMed

    Biskupiak, Joseph E; Dunn, Jeffrey D; Holtorf, Anke-Peggy

    2012-06-01

    Comparative effectiveness research (CER) is undeniably changing how drugs are developed, launched, priced, and reimbursed in the United States. But most organizations are still evaluating what CER can do for them and how and when they can utilize the data. A roundtable of stakeholders, including formulary decision makers, evaluated CER's possible effects on managed care organizations (MCOs) and what it may take to fully integrate CER into decision making. To examine the role of CER in current formulary decision making, compare CER to modeling, discuss ways CER may be used in the future, and describe CER funding sources. While decision makers from different types of organizations, such as pharmacy benefit management (PBM) companies and MCOs, may have varying definitions and expectations of CER, most thought leaders from a roundtable of stakeholders, including formulary decision makers, see value in CER's ability to enhance their formulary decision making. Formulary decision makers may be able to use CER to better inform their coverage decisions in areas such as benefit design, contracting, conditional reimbursement, pay for performance, and other alternative pricing arrangements. Real-world CER will require improvement in the health information technology infrastructure to better capture value-related information. The federal government is viewed as a key driver and funding source behind CER, especially for infrastructure and methods development, while industry will adapt the clinical development and create increasing CER evidence. CER then needs to be applied to determining value (or cost efficacy). It is expected that CER will continue to grow as a valuable component of formulary decision making. Future integration of CER into formulary decision making will require federal government and academic leadership, improvements in the health information technology infrastructure, ongoing funding, and improved and more consistent methodologies.

  1. Mobile Support For Logistics

    DTIC Science & Technology

    2016-03-01

    Infrastructure to Support Mobile Devices (Takai, 2012, p. 2). The objectives needed in order to meet this goal are to: evolve spectrum management, expand... infrastructure to support wireless capabilities, and establish a mobile device security architecture (Takai, 2012, p. 2). By expanding infrastructure to...often used on Mobile Ad-Hoc Networks (MANETs). MANETS are infrastructure -less networks that include, but are not limited to, mobile devices. These

  2. Integrated Workforce Planning Model: A Proof of Concept

    NASA Technical Reports Server (NTRS)

    Guruvadoo, Eranna K.

    2001-01-01

    Recently, the Workforce and Diversity Management Office at KSC have launched a major initiative to develop and implement a competency/skill approach to Human Resource management. As the competency/skill dictionary is being elaborated, the need for a competency-based workforce-planning model is recognized. A proof of concept for such a model is presented using a multidimensional data model that can provide the data infrastructure necessary to drive intelligent decision support systems for workforce planing. The components of competency-driven workforce planning model are explained. The data model is presented and several schemes that would support the workforce-planning model are presented. Some directions and recommendations for future work are given.

  3. Management of complex knowledge in planning for sustainable development: The use of multi-criteria decision aids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kain, Jaan-Henrik; Soederberg, Henriette

    2008-01-15

    The vision of sustainable development entails new and complex planning situations, confronting local policy makers with changing political conditions, different content in decision making and planning and new working methods. Moreover, the call for sustainable development has been a major driving force towards an increasingly multi-stakeholder planning system. This situation requires competence in working in, and managing, groups of actors, including not only experts and project owners but also other categories of stakeholders. Among other qualities, such competence requires a working strategy aimed at integrating various, and sometimes incommensurable, forms of knowledge to construct a relevant and valid knowledge basemore » prior to decision making. Consequently, there lies great potential in methods that facilitate the evaluation of strategies for infrastructural development across multiple knowledge areas, so-called multi-criteria decision aids (MCDAs). In the present article, observations from six case studies are discussed, where the common denominators are infrastructural planning, multi-stakeholder participation and the use of MCDAs as interactive decision support. Three MCDAs are discussed - NAIADE, SCA and STRAD - with an emphasis on how they function in their procedural context. Accordingly, this is not an analysis of MCDA algorithms, of software programming aspects or of MCDAs as context-independent 'decision machines'-the focus is on MCDAs as actor systems, not as expert systems. The analysis is carried out across four main themes: (a) symmetrical management of different forms of knowledge; (b) management of heterogeneity, pluralism and conflict; (c) functionality and ease of use; and (d) transparency and trust. It shows that STRAD, by far, seems to be the most useful MCDA in interactive settings. NAIADE and SCA are roughly equivalent but have their strengths and weaknesses in different areas. Moreover, it was found that some MCDA issues require further attention, i.e., regarding transparency and understandability; qualitative/quantitative knowledge input; switching between different modes of weighting; software flexibility; as well as graphic and user interfaces.« less

  4. Bridging the Gap Between Policy and Research Infrastructure: Risk and Vulnerability Case Study

    NASA Astrophysics Data System (ADS)

    Hugo, Wim; Rogers, Annabelle

    2017-04-01

    Linking sound scientific data and conclusions to decision and policy support is not a trivial task, and the difficulty in achieving this has been highlighted more than a decade ago (Reid, 2004). There are several reasons why this is the case, inter alia: 1. The language, (vocabularies, framework, and heuristics) adopted by the research community in a specific discipline may not translate into meaningful implementation language (Preston et al., 2015); 2. The researchers may not be in a position of influence (which includes aspects such as writing policy briefs, undertaking personal initiatives, and building up public or industry concern and interest) (Fox and Sitkin, 2015); 3. The frequency, timing, and/or certainty associated with research output is at odds with decision and policy-making cycles. Research typically progresses until there is a defensible level of certainty in statistical assessment of a result, while policy decisions are often made within a regular cycle; 4. Scientists are not trained for, or measured by, the typical work required for decision and policy support: synthesis of scenarios and cost-benefits of such scenarios given sometimes significant uncertainty in the input data, and cross-disciplinary concerns that need to be balanced. There is a significant expectation that research output, being increasingly open, standardised, and managed in formal research data infrastructure, will be useful to policy and decision makers without much additional intervention and modification. We believe that this is unlikely to be feasible in the majority of cases. For most instances, it will be necessary to provide a framework for the translation of scientific output into decision and policy support metrics or indicators at a frequency, with spatial and temporal resolution, and thematic coverage that suits the decision to be made. Such frameworks exist, since the need has been identified - sometimes formally - such as the very detailed framework developed by IPCC for translating climate science into policy - (IPCC, 2007), or less formally - such as the move to develop Essential Biodiversity Variables, loosely designed to support Aichi Targets (Pereira et al., 2013) or the UN Sustainable Development Goals (UN, 2016). In the paper, we examine a number of these frameworks, map them onto a generic framework for the translation of research output into policy and decision support, and discuss an example from the South African Risk and Vulnerability Atlas in detail. References Craig R. Fox & Sim B. Sitkin (2015). Bridging the divide between behavioral science & policy, Behavioral Science & Policy, Spring 2015, https://behavioralpolicy.org/wp-content/uploads/2016/1-1/Bridging-the-divide-between-behavioral-science-and-policy.pdf IPCC (2007). Conceptual framework for the identification and assessment of key vulnerabilities, https://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch19s19-1-2.html Pereira et al. (2013). Essential Biodiversity Variables, Science 18 Jan 2013: Vol. 339, Issue 6117, pp. 277-278 DOI: 10.1126/science.1229931 Preston, B.L., Mustelin, J. & Maloney, M.C. Mitig Adapt Strateg Glob Change (2015) 20: 467. doi:10.1007/s11027-013-9503-x Reid WV (2004) Bridging the Science-Policy Divide. PLoS Biol 2(2): e27. doi:10.1371/journal.pbio.0020027 UN (2016). Sustainable Development Goals, http://www.un.org/sustainabledevelopment/sustainable-development-goals/

  5. Beyond Control Centers

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2017-01-01

    For NASA's Resource Prospector (RP) Lunar Rover Mission, we are moving away from a control center concept, to a fully distributed operation utilizing control nodes, with decision support from anywhere via mobile devices. This operations concept will utilize distributed information systems, notifications, mobile data access, and optimized mobile data display for off-console decision support. We see this concept of operations as a step in the evolution of mission operations from a central control center concept to a mission operations anywhere concept. The RP example is part of a trend, in which mission expertise for design, development and operations is distributed across countries and across the globe. Future spacecraft operations will be most cost efficient and flexible by following this distributed expertise, enabling operations from anywhere. For the RP mission we arrived at the decision to utilize a fully distributed operations team, where everyone operates from their home institution, based on evaluating the following factors: the requirement for physical proximity for near-real time command and control decisions; the cost of distributed control nodes vs. a centralized control center; the impact on training and mission preparation of flying the team to a central location. Physical proximity for operational decisions is seldom required, though certain categories of decisions, such as launch abort, or close coordination for mission or safety-critical near-real-time command and control decisions may benefit from co-location. The cost of facilities and operational infrastructure has not been found to be a driving factor for location in our studies. Mission training and preparation benefit from having all operators train and operate from home institutions.

  6. Namibia Dashboard Enhancements

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Handy, Matthew

    2014-01-01

    The purpose of this presentation is for a Technical Interchange Meeting with the Namibia Hydrological Services (NHS) in Namibia. The meeting serves as a capacity building exercise. This presentation goes over existing software functionality developed in collaboration with NHS over the past five years called the Namibia Flood Dashboard. Furthermore, it outlines new functionality developed over the past year and future functionality that will be developed. The main purpose of the Dashboard is to assist in decision support for flood warning. The Namibia Flood Dashboard already exists online in a cloud environment and has been used in prototype mode for the past few years.Functionality in the Dashboard includes river gauge hydrographs, TRMM estimate rainfall, EO-1 flood maps, infrastructure maps and other related functions. Future functionality includes attempting to integrate interoperability standards and crowd-sourcing capability. To this end, we are adding OpenStreetMap compatibility and an Applications Program Interface (API) called a GeoSocial API to enable discovery and sharing of data products useful for decision support via social media.

  7. An mHealth Monitoring System for Traditional Birth Attendant-led Antenatal Risk Assessment in Rural Guatemala

    PubMed Central

    Stroux, Lisa; Martinez, Boris; Ixen, Enma Coyote; King, Nora; Hall-Clifford, Rachel; Rohloff, Peter; Clifford, Gari D.

    2016-01-01

    Limited funding for medical technology, low levels of education and poor infrastructure for delivering and maintaining technology severely limit medical decision support in low- and middle-income countries. Perinatal and maternal mortality is of particular concern with millions dying every year from potentially treatable conditions. Guatemala has one of the worst maternal mortality ratios, the highest incidence of intrauterine growth restriction (IUGR), and one of the lowest gross national incomes per capita within Latin America. To address the lack of decision support in rural Guatemala, a smartphone-based system is proposed including peripheral sensors, such as a handheld Doppler for the identification of fetal compromise. Designed for use by illiterate birth attendants, the system uses pictograms, audio guidance, local and cloud processing, SMS alerts and voice calling. The initial prototype was evaluated on 22 women in highland Guatemala. Results were fed back into the refinement of the system, currently undergoing RCT evaluation. PMID:27696915

  8. An mHealth monitoring system for traditional birth attendant-led antenatal risk assessment in rural Guatemala.

    PubMed

    Stroux, Lisa; Martinez, Boris; Coyote Ixen, Enma; King, Nora; Hall-Clifford, Rachel; Rohloff, Peter; Clifford, Gari D

    Limited funding for medical technology, low levels of education and poor infrastructure for delivering and maintaining technology severely limit medical decision support in low- and middle-income countries. Perinatal and maternal mortality is of particular concern with millions dying every year from potentially treatable conditions. Guatemala has one of the worst maternal mortality ratios, the highest incidence of intra-uterine growth restriction (IUGR), and one of the lowest gross national incomes per capita within Latin America. To address the lack of decision support in rural Guatemala, a smartphone-based system is proposed including peripheral sensors, such as a handheld Doppler for the identification of foetal compromise. Designed for use by illiterate birth attendants, the system uses pictograms, audio guidance, local and cloud processing, SMS alerts and voice calling. The initial prototype was evaluated on 22 women in highland Guatemala. Results were fed back into the refinement of the system, currently undergoing RCT evaluation.

  9. Intercity passenger rail : Congress faces critical decisions in developing a national policy

    DOT National Transportation Integrated Search

    2002-04-11

    This document is the statement of JayEtta Z. Hecker, Director, Physical Infrastructure. Testimony before the Subcommittee on Railroads, Committee on Transportation and Infrastructure, House of Representatives on the future of intercity passenger rail...

  10. Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop

    EPA Science Inventory

    Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

  11. Vulnerability assessment of the transportation infrastructure relying on global positioning system

    DOT National Transportation Integrated Search

    2001-08-29

    This report responds to Presidential Decision Directive 63 concerning assessing the risks to the transportation infrastructure resulting from the degradation or loss of the Global Positioning System (GPS) signal. This study includes analysis of civil...

  12. A Note on Interfacing Object Warehouses and Mass Storage Systems for Data Mining Applications

    NASA Technical Reports Server (NTRS)

    Grossman, Robert L.; Northcutt, Dave

    1996-01-01

    Data mining is the automatic discovery of patterns, associations, and anomalies in data sets. Data mining requires numerically and statistically intensive queries. Our assumption is that data mining requires a specialized data management infrastructure to support the aforementioned intensive queries, but because of the sizes of data involved, this infrastructure is layered over a hierarchical storage system. In this paper, we discuss the architecture of a system which is layered for modularity, but exploits specialized lightweight services to maintain efficiency. Rather than use a full functioned database for example, we use light weight object services specialized for data mining. We propose using information repositories between layers so that components on either side of the layer can access information in the repositories to assist in making decisions about data layout, the caching and migration of data, the scheduling of queries, and related matters.

  13. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  14. Security Policy and Infrastructure in the Context of a Multi-Centeric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in their early age. The diagnosis of ASD relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology and ophthalmology. In order to support clinicians, researchers and public health decision makers, we designed an information system dedicated to ASD, called TEDIS. TEDIS was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured Internet connections. In this paper, we present the security policy and security infrastructure we developed to protect ASD' patients' clinical data and patients' privacy. We tested our system on 359 ASD patient records in a local secured intranet environment and showed that the security system is functional, with a consistent, transparent and safe encrypting-decrypting behavior. It is ready for deployment in the nine ASD expert assessment centers in the Ile de France district.

  15. Methane Yield Database: Online infrastructure and bioresource for methane yield data and related metadata.

    PubMed

    Murovec, Boštjan; Kolbl, Sabina; Stres, Blaž

    2015-01-01

    The aim of this study was to develop and validate a community supported online infrastructure and bioresource for methane yield data and accompanying metadata collected from published literature. In total, 1164 entries described by 15,749 data points were assembled. Analysis of data collection showed little congruence in reporting of methodological approaches. The largest identifiable source of variation in reported methane yields was represented by authorship (i.e. substrate batches within particular substrate class) within which experimental scales (volumes (0.02-5l), incubation temperature (34-40 °C) and % VS of substrate played an important role (p < 0.05, npermutations = 999) as well. The largest fraction of variability, however, remained unaccounted for and thus unexplained (> 63%). This calls for reconsideration of accepted approaches to reporting data in currently published literature to increase capacity to service industrial decision making to a greater extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cyberinfrastructure for Aircraft Mission Support

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  17. A Clinician-Centered Evaluation of the Usability of AHLTA and Automated Clinical Practice Guidelines at TAMC

    DTIC Science & Technology

    2011-03-31

    evidence based medicine into clinical practice. It will decrease costs and enable multiple stakeholders to work in an open content/source environment to exchange clinical content, develop and test technology and explore processes in applied CDS. Design: Comparative study between the KMR infrastructure and capabilities developed as an open source, vendor agnostic solution for aCPG execution within AHLTA and the current DoD/MHS standard evaluating: H1: An open source, open standard KMR and Clinical Decision Support Engine can enable organizations to share domain

  18. An aircraft Earth station for general aviation

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Boughton, J.; Lyons, R.; Spenler, S.; Rigley, J.

    1990-01-01

    While the focus has been international commercial air traffic, an opportunity exists to provide satellite communications to smaller aircraft. For these users equipment cost and weight critically impact the decision to install satellite communications equipment. Less apparent to the operator is the need for a system infrastructure that will be supported both regionally and internationally and that is compatible with the ground segment being installed for commercial aeronautical satellite communications. A system concept is described as well as a low cost terminal that are intended to satisfy the small aircraft market.

  19. Case study: technology initiative led to advanced lead optimization screening processes at Bristol-Myers Squibb, 2004-2009.

    PubMed

    Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G

    2012-07-01

    In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Linking knowledge with action in the pursuit of sustainable water-resources management

    PubMed Central

    Jacobs, Katharine; Lebel, Louis; Buizer, James; Addams, Lee; Matson, Pamela; McCullough, Ellen; Garden, Po; Saliba, George; Finan, Timothy

    2016-01-01

    Managing water for sustainable use and economic development is both a technical and a governance challenge in which knowledge production and sharing play a central role. This article evaluates and compares the role of participatory governance and scientific information in decision-making in four basins in Brazil, Mexico, Thailand, and the United States. Water management institutions in each of the basins have evolved during the last 10–20 years from a relatively centralized water-management structure at the state or national level to a decision structure that involves engaging water users within the basins and the development of participatory processes. This change is consistent with global trends in which states increasingly are expected to gain public acceptance for larger water projects and policy changes. In each case, expanded citizen engagement in identifying options and in decision-making processes has resulted in more complexity but also has expanded the culture of integrated learning. International funding for water infrastructure has been linked to requirements for participatory management processes, but, ironically, this study finds that participatory processes appear to work better in the context of decisions that are short-term and easily adjusted, such as water-allocation decisions, and do not work so well for longer-term, high-stakes decisions regarding infrastructure. A second important observation is that the costs of capacity building to allow meaningful stakeholder engagement in water-management decision processes are not widely recognized. Failure to appreciate the associated costs and complexities may contribute to the lack of successful engagement of citizens in decisions regarding infrastructure. PMID:20080611

  1. mHealth for Clinical Decision-Making in Sub-Saharan Africa: A Scoping Review

    PubMed Central

    Albersen, Bregje Joanna Antonia; De Brouwere, Vincent; van Roosmalen, Jos; Zweekhorst, Marjolein

    2017-01-01

    Background In a bid to deliver quality health services in resource-poor settings, mobile health (mHealth) is increasingly being adopted. The role of mHealth in facilitating evidence-based clinical decision-making through data collection, decision algorithms, and evidence-based guidelines, for example, is established in resource-rich settings. However, the extent to which mobile clinical decision support systems (mCDSS) have been adopted specifically in resource-poor settings such as Africa and the lessons learned about their use in such settings are yet to be established. Objective The aim of this study was to synthesize evidence on the use of mHealth for point-of-care decision support and improved quality of care by health care workers in Africa. Methods A scoping review of 4 peer-reviewed and 1 grey literature databases was conducted. No date limits were applied, but only articles in English language were selected. Using pre-established criteria, 2 reviewers screened articles and extracted data. Articles were analyzed using Microsoft Excel and MAXQDA. Results We retained 22 articles representing 11 different studies in 7 sub-Saharan African countries. Interventions were mainly in the domain of maternal health and ranged from simple text messaging (short message service, SMS) to complex multicomponent interventions. Although health workers are generally supportive of mCDSS and perceive them as useful, concerns about increased workload and altered workflow hinder sustainability. Facilitators and barriers to use of mCDSS include technical and infrastructural support, ownership, health system challenges, and training. Conclusions The use of mCDSS in sub-Saharan Africa is an indication of progress in mHealth, although their effect on quality of service delivery is yet to be fully explored. Lessons learned are useful for informing future research, policy, and practice for technologically supported health care delivery, especially in resource-poor settings. PMID:28336504

  2. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-12-01

    Long-term projections for key drivers needed in urban water infrastructure planning such as climate change, population growth, and socio-economic changes are deeply uncertain. Traditional planning approaches heavily rely on these projections, which, if a projection stays unfulfilled, can lead to problematic infrastructure decisions causing high operational costs and/or lock-in effects. New approaches based on exploratory modelling take a fundamentally different view. Aim of these is, to identify an adaptation strategy that performs well under many future scenarios, instead of optimising a strategy for a handful. However, a modelling tool to support strategic planning to test the implication of adaptation strategies under deeply uncertain conditions for urban water management does not exist yet. This paper presents a first step towards a new generation of such strategic planning tools, by combing innovative modelling tools, which coevolve the urban environment and urban water infrastructure under many different future scenarios, with robust decision making. The developed approach is applied to the city of Innsbruck, Austria, which is spatially explicitly evolved 20 years into the future under 1000 scenarios to test the robustness of different adaptation strategies. Key findings of this paper show that: (1) Such an approach can be used to successfully identify parameter ranges of key drivers in which a desired performance criterion is not fulfilled, which is an important indicator for the robustness of an adaptation strategy; and (2) Analysis of the rich dataset gives new insights into the adaptive responses of agents to key drivers in the urban system by modifying a strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Infrastructure for Big Data in the Intensive Care Unit.

    PubMed

    Zelechower, Javier; Astudillo, José; Traversaro, Francisco; Redelico, Francisco; Luna, Daniel; Quiros, Fernan; San Roman, Eduardo; Risk, Marcelo

    2017-01-01

    The Big Data paradigm can be applied in intensive care unit, in order to improve the treatment of the patients, with the aim of customized decisions. This poster is about the infrastructure necessary to built a Big Data system for the ICU. Together with the infrastructure, the conformation of a multidisciplinary team is essential to develop Big Data to use in critical care medicine.

  4. Innovative Decentralized Decision-Making Enabling Capability on Mobile Edge Devices

    DTIC Science & Technology

    2015-09-01

    feasibility of adapting mobile device infrastructure into a future tactical cloud ecosystem. F. SCOPE The scope of this research is focused on the...critical to mobility : wireless infrastructure , the mobile device itself, and mobile applications” (Office of the Department of Defense Chief Information... Infrastructure to a Cost Effective and Platform Agnostic Environment; 3) Collaborate with DOD and Industry Partners to Develop a Classified Mobile Device

  5. Mapping the Human Planet: Integrating Settlement, Infrastructure, and Population Data to Support Sustainable Development, Climate, and Disaster Data Needs

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; de Sherbinin, A. M.; Yetman, G.; Downs, R. R.

    2017-12-01

    A central issue in international efforts to address climate change, large-scale disaster risk, and overall sustainable development is the exposure of human settlements and population to changing climate patterns and a range of geological, climatological, technological, and other hazards. The present and future location of human activities is also important in mitigation and adaptation to climate change, and to ensuring that we "leave no one behind" in achieving the Sustainable Development Goals adopted by the international community in September 2015. The extent and quality of built infrastructure are key factors in the mortality, morbidity, and economic impacts of disasters, and are simultaneously essential to sustainable development. Earth observations have great potential to improve the coverage, consistency, timeliness, and richness of data on settlements, infrastructure, and population, in ways that complement existing and emerging forms of socioeconomic data collection such as censuses, surveys, and cell phone and Internet traffic. Night-time lights from the Suomi-NPP satellite may be able to provide near real-time data on occupance and economic activity. New "big data" capabilities make it possible to rapidly process high-resolution (50-cm) imagery to detect structures and changes in structures, especially in rural areas where other data are limited. A key challenge is to ensure that these types of data can be translated into forms useful in a range of applications and for diverse user communities, including national statistical offices, local government planners, development and humanitarian organizations, community groups, and the private sector. We report here on efforts, in coordination with the GEO Human Planet Initiative, to develop new data on settlements, infrastructure, and population, together with open data services and tools, to support disaster risk assessment, climate vulnerability analysis, and sustainable development decision making.

  6. Harmonizing Settlement, Infrastructure, and Population Data to Support Sustainable Development

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; de Sherbinin, A. M.; Yetman, G.

    2016-12-01

    The geospatial data community has been developing global-scale georeferenced population, human settlements, and infrastructure data for more than two decades, pushing available technologies to process ever growing amounts of data and increase the resolution of the outputs. These population, settlement, and infrastructure data products have seen wide use in varied aspects of sustainable development, including agriculture, energy, water, health, land use, transportation, risk management, and climate impact assessment. However, in most cases, data development has been driven by the availability of specific data sources (e.g., census data, night-time lights, radar data, or moderate- to high-resolution imagery), rather than by an integrated view of how best to characterize human settlement patterns over time and space on multiple dimensions using diverse data sources. Such an integrated view would enhance our ability to observe, model, and predict where on the planet people live and work—in the past, present, and future—and under what conditions, i.e., in relationship not only to environmental systems, resources, extremes, and changes, but also to the human settlements and built infrastructure that mediate impacts on both people and the environment. We report here on a new international effort to improve understanding of the strengths and weaknesses of existing and planned georeferenced data products, and to create a collaborative community across the natural, social, health, engineering, and data sciences and the public and private sectors supporting data integration and coordination to meet sustainable development data needs. Opportunities exist to share data and expertise, coordinate activities, pool computing resources, reduce duplication, improve data quality and harmonization, and facilitate effective data use for sustainable development monitoring and decision making, especially with respect to the 17 Sustainable Development Goals adopted by the international community in September 2015.

  7. EPA's Ongoing Green Infrastructure Research

    EPA Science Inventory

    Green Infrastructure is a concept originating in the United States in the mid-1990's that highlights the importance of the natural environment in decisions about land use planning. In particular there is an emphasis on the “life support” functions provided by the natural environm...

  8. Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes

    EPA Science Inventory

    Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...

  9. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.

    PubMed

    Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A

    Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.

  10. Web Tools Streamline Climate Preparedness and Resilience Planning and Implementation for Water Resources Infrastructure

    NASA Astrophysics Data System (ADS)

    White, K. D.; Friedman, D.; Schechter, J.; Foley, P.; Mueller, C.; Baker, B.; Huber, M.; Veatch, W.

    2016-12-01

    Observed and projected impacts of climate change are pronounced on the hydrologic cycle because of the sensitivity of hydroclimatic variables to changes in temperature. Well-documented climate change impacts to the hydrologic cycle include increases in extreme heat conditions, coastal flooding, heavy precipitation, and drought frequency and magnitude, all of which can combine in surprising ways to pose regionally varying threats to public health and safety, ecosystem functions, and the economy. Climate preparedness and resilience activities are therefore necessary for water infrastructure which provides flood risk reduction, navigation, water supply, ecosystem restoration, and hydropower services. Because this water infrastructure entails long lifetimes, up to or beyond 100 years, and significant public investment, accurate and timely information about climate impacts over both the near-and far-term is required to plan and implement climate preparedness and resilience measures. Engineers are natural translators of science into actionable information to support this type of decision-making, because they understand both the important physical processes and the processes, laws, standards, and criteria required for the planning and design of public infrastructure. Though engineers are capable of the data management activities needed to ingest, transform, and prepare climate information for use in these decisions, the US Army Corps of Engineers (USACE) has chosen to emphasize analysis of information over data management. In doing so, the USACE is developing and using web tools with visualization capabilities to streamline climate preparedness and resilience planning and implementation while ensuring repeatable analytical results nationally. Examples discussed here include calculation of sea level change, including a comparison of mean sea level and other tidal statistics against scenarios of change; detection of abrupt and slowly varying nonstationarities in observed hydrologic data; and evaluations of projected flow frequency and duration that help to characterize future conditions and facilitate comparisons to observed conditions.

  11. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  12. Evaluation of decision making and negotiation processes under uncertainties regarding the water management of Peiros-Parapeiros Dam, in Achaia Region (Greece).

    NASA Astrophysics Data System (ADS)

    Podimata, Marianthi V.; Yannopoulos, Panayotis C.

    2015-04-01

    Water managers, decision-makers, water practitioners and others involved in Integrated Water Resources Management often encounter the problem of finding a joint agreement among stakeholders concerning the management of a common water body. Handling conflict situations/disputes over water issues and finding an acceptable joint solution remain a thorny issue in water negotiation processes, since finding a formula for wise, fair and sustainable management of a water resource is a complex process that includes environmental, economic, technical, socio-political criteria and their uncertainties. Decision Support Systems and Adaptive Management are increasingly used in that direction. To assist decision makers in handling water disputes and execute negotiations, a conceptual tool is required. The Graph Model for Conflict Resolution is a Decision Support flexible tool for negotiation support regarding water conflicts. It includes efficient algorithms for estimating strategic moves of water stakeholders, even though there is a lack of detail concerning their real motives and prospects. It calculates the stability of their states and encourages what-if analyses. This paper presents a case study of water decision makers' evaluations concerning the management of up-coming technical infrastructure Peiros-Parapeiros Dam, in Achaia Region (Greece). The continuous consultations between institutions and representatives revealed that the formation of a joint agreement between stakeholders is not easy, due to arising conflicts and contradictions regarding the jurisdiction and legal status of the dam operator and the cost undertaking of the dam operation. This paper analyzes the positions of the parties involved in the consultation process and examines possible conflict resolution states, using GMCR II. This methodology tries to minimize uncertainty to a certain extent concerning the possible moves/decisions of involved parties regarding the operation and management of the dam by developing and simulating potential strategic interactions and multilateral negotiations and finding confidence-building cooperation schemes (cooperative arrangements) over water use and management.

  13. Hydropower licensing and evolving climate: climate knowledge to support risk assessment for long-term infrastructure decisions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Walker, S. H.; Trainor, S. F.; Cherry, J. E.

    2014-12-01

    This presentation focuses on linking climate knowledge to the complicated decision process for hydropower dam licensing, and the affected parties involved in that process. The U.S. Federal Energy Regulatory Commission issues of licenses for nonfederal hydroelectric operations, typically 30-50 year licenses, and longer infrastructure lifespan, a similar time frame as the anticipated risks of changing climate and hydrology. Resources managed by other federal and state agencies such as the NOAA National Marine Fisheries Service may be affected by new or re-licensed projects. The federal Integrated Licensing Process gives the opportunity for affected parties to recommend issues for consultative investigation and possible mitigation, such as impacts to downstream fisheries. New or re-licensed projects have the potential to "pre-adapt" by considering and incorporating risks of climate change into their planned operations as license terms and conditions. Hundreds of hydropower facilities will be up for relicensing in the coming years (over 100 in the western Sierra Nevada alone, and large-scale water projects such as the proposed Lake Powell Pipeline), as well as proposed new dams such as the Susitna project in Alaska. Therefore, there is a need for comprehensive guidance on delivering climate analysis to support understanding of risks of hydropower projects to other affected resources, and decisions on licensing. While each project will have a specific context, many of the questions will be similar. We also will discuss best practices for the use of climate science in water project planning and management, and how creating the best and most appropriate science is also still a developing art. We will discuss the potential reliability of that science for consideration in long term planning, licensing, and mitigation planning for those projects. For science to be "actionable," that science must be understood and accepted by the potential users. This process is a negotiation, with climate scientists needing to understand the concerns of users and respond, and users developing a better understanding of the state of climate science in order to make an informed choice. We will also discuss what is needed to streamline providing that analysis for the many re-licensing decisions expected in the upcoming years.

  14. A systematic review of clinical decision support systems for antimicrobial management: are we failing to investigate these interventions appropriately?

    PubMed

    Rawson, T M; Moore, L S P; Hernandez, B; Charani, E; Castro-Sanchez, E; Herrero, P; Hayhoe, B; Hope, W; Georgiou, P; Holmes, A H

    2017-08-01

    Clinical decision support systems (CDSS) for antimicrobial management can support clinicians to optimize antimicrobial therapy. We reviewed all original literature (qualitative and quantitative) to understand the current scope of CDSS for antimicrobial management and analyse existing methods used to evaluate and report such systems. PRISMA guidelines were followed. Medline, EMBASE, HMIC Health and Management and Global Health databases were searched from 1 January 1980 to 31 October 2015. All primary research studies describing CDSS for antimicrobial management in adults in primary or secondary care were included. For qualitative studies, thematic synthesis was performed. Quality was assessed using Integrated quality Criteria for the Review Of Multiple Study designs (ICROMS) criteria. CDSS reporting was assessed against a reporting framework for behaviour change intervention implementation. Fifty-eight original articles were included describing 38 independent CDSS. The majority of systems target antimicrobial prescribing (29/38;76%), are platforms integrated with electronic medical records (28/38;74%), and have a rules-based infrastructure providing decision support (29/38;76%). On evaluation against the intervention reporting framework, CDSS studies fail to report consideration of the non-expert, end-user workflow. They have narrow focus, such as antimicrobial selection, and use proxy outcome measures. Engagement with CDSS by clinicians was poor. Greater consideration of the factors that drive non-expert decision making must be considered when designing CDSS interventions. Future work must aim to expand CDSS beyond simply selecting appropriate antimicrobials with clear and systematic reporting frameworks for CDSS interventions developed to address current gaps identified in the reporting of evidence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Development and Application of Climate Services for Water Resources Planning and Management within the Department of Interior Bureau of Reclamation

    NASA Astrophysics Data System (ADS)

    Raff, D. A.; Morgan, A.; Brekke, L. D.

    2014-12-01

    The Bureau of Reclamation is the nation's largest wholesale water supplier and the second largest producer of hydropower. Reclamation operates 337 reservoirs with a total storage capacity of 245 million acre-feet and operates 53 hydroelectric powerplants that annually produce, on average for the past 10 years, 40 billion kilowatt-hours. Reclamation is adapting to the impacts and future challenges posed by the changing climate through the development of new climate services as well as through cooperation with Federal, state, local, tribal, academic, and non-governmental partners in the use of climate and water resource information that may be available. Reclamation is utilizing this information within a strategy that has four goals: 1) Increase Water Management Flexibility, 2) Enhance Climate Adaptation Planning, 3) Improve Infrastructure Resiliency, and 4) Expand Information Sharing. Within this presentation we will focus on the utilization of climate services within each of these key goals of Reclamation's strategy. This includes the utilization of climate information to track and potentially improve reservoir management to increase water management flexibility, the development of climate informed hydrology that supports climate adaptation planning, use of climate information to inform decisions of infrastructure resilience, and climate services use for jointly informed water management decisions through education and web based services.

  16. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service.

    PubMed

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung

    2015-04-01

    To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.

  17. Urban ecosystem services and decision making for a green Philadelphia

    USGS Publications Warehouse

    Hogan, Dianna M.; Shapiro, Carl D.; Karp, David N.; Wachter, Susan M.

    2014-01-01

    Traditional approaches to urban development often do not account for, or recognize, the role of ecosystem services and the benefits these services provide to the health and well-being of city residents. Without such accounting, urban ecosystem services are likely to be degraded over time, with negative consequences for the sustainability of cities and the well-being of their residents (Millennium Ecosystem Assessment, 2005; Hirsch, 2008). On May 23, 2013, the Spatial Integration Laboratory for Urban Systems (SILUS), a collaboration between the U.S. Geological Survey (USGS) Science and Decisions Center and the Wharton GIS Lab, convened a one-day symposium—Urban Ecosystem Services and Decision Making: A Green Philadelphia—at the University of Pennsylvania in Philadelphia, Pennsylvania, to examine the role of green infrastructure in the environmental, economic, and social well-being of cities. Cosponsored by the USGS and the Penn Institute for Urban Research (Penn IUR), the symposium brought together policymakers, practitioners, and researchers from a range of disciplines to advance a research agenda on the use of science in public decision making to inform investment in green infrastructure and ecosystem services in urban areas. The city of Philadelphia has recently implemented a program designed to sustain urban ecosystem services and advance the use of green infrastructure. In 2009, the Philadelphia Mayor’s Office of Sustainability launched its Greenworks plan, establishing a citywide sustainability strategy. Major contributions towards its goals are being implemented in coordination with the Philadelphia Water Department (PWD). The Green City, Clean Waters initiative, the city’s nationally recognized stormwater management plan, was signed into action with the U.S. Environmental Protection Agency (EPA) in April 2012. The plan outlines a 25-year strategy to use green infrastructure to protect and improve the city’s watershed. Widespread support for the plan marks a citywide effort to factor environmental quality concerns into the city’s strategic planning, choosing to replace expensive and aging grey infrastructure, with innovative and resilient green infrastructure. The symposium focused on these city of Philadelphia initiatives and also on two new Federal- local partnership programs: America’s Great Outdoors, initiated to promote conservation and recreation, and the Urban Waters Federal Partnership, a multiagency effort to reconnect urban communities to their waterways. A second goal of the symposium was to advance a research agenda on urban ecosystem services. While there has been considerable work on ecosystem services, the discussion of the benefits provided by urban ecosystems is not as developed. Benefits range from improved water and air quality to quality of life gains, including aesthetic and recreational considerations. There is also need for additional focused research toward furthering the understanding of the multiple indirect benefits provided by urban ecosystem services (Bolund and Hunhammar, 1999). Moreover, there is a need for a greater understanding of how best to inform local decision making in this area, as local decision makers in cities across the country are increasingly recognizing the importance of developing sustainability measures for their immediate and long-term planning (United States Conference of Mayors, 2005). Approaching these local and regional plans from a holistic perspective has become a guiding principle of sustainability and resiliency. Therefore, there is a need to better understand the gains that have been achieved and to advance a research agenda on ecosystem services going forward. The day’s program included presentations on greening initiatives from the Philadelphia’s Mayor’s Office of Sustainability, as well as discussion about using an urban ecosystem services framework to evaluate these initiatives. Panel sessions included discussion of the Green City, Clean Waters initiative; a dialogue about the management of urban trees and green space; and a conversation addressing the needs for future research.

  18. Controlling factors of the parental safety perception on children's travel mode choice.

    PubMed

    Nevelsteen, Kristof; Steenberghen, Thérèse; Van Rompaey, Anton; Uyttersprot, Liesbeth

    2012-03-01

    The travel mode of children changed significantly over the last 20 years, with a decrease of children travelling as pedestrians or cyclists. This study focuses on six to twelve year old children. Parents determine to a large extent the mode choice of children in this age category. Based on the analysis of an extensive survey, the research shows that traffic infrastructure has a significant impact on parental decision making concerning children's travel mode choice, by affecting both the real and the perceived traffic safety. Real traffic safety is quantified in terms of numbers of accidents and road infrastructure. For the perceived traffic safety a parental allowance probability is calculated per road type to show that infrastructure characteristics influence parental decision making on the children's mode choice. A binary logistic model shows that this allowance is determined by age, gender and traffic infrastructure near the child's home or near destinations frequently visited by children. Since both real and perceived traffic safety are influenced by infrastructure characteristics, a spatial analysis of parental perception and accident statistics can be used to indicate the locations where infrastructure improvements will be most effective to increase the number of children travelling - safely - as pedestrians or cyclists. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  20. Mental Health Collaborative Care and Its Role in Primary Care Settings

    PubMed Central

    Goodrich, David E.; Kilbourne, Amy M.; Nord, Kristina M.; Bauer, Mark S.

    2013-01-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims under healthcare reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components. PMID:23881714

  1. Mental health collaborative care and its role in primary care settings.

    PubMed

    Goodrich, David E; Kilbourne, Amy M; Nord, Kristina M; Bauer, Mark S

    2013-08-01

    Collaborative care models (CCMs) provide a pragmatic strategy to deliver integrated mental health and medical care for persons with mental health conditions served in primary care settings. CCMs are team-based intervention to enact system-level redesign by improving patient care through organizational leadership support, provider decision support, and clinical information systems, as well as engaging patients in their care through self-management support and linkages to community resources. The model is also a cost-efficient strategy for primary care practices to improve outcomes for a range of mental health conditions across populations and settings. CCMs can help achieve integrated care aims underhealth care reform yet organizational and financial issues may affect adoption into routine primary care. Notably, successful implementation of CCMs in routine care will require alignment of financial incentives to support systems redesign investments, reimbursements for mental health providers, and adaptation across different practice settings and infrastructure to offer all CCM components.

  2. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE PAGES

    Middleton, Richard Stephen; Yaw, Sean Patrick

    2018-01-11

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  3. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen; Yaw, Sean Patrick

    Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo-Bosch, Francesc, E-mail: francesc.pardo@upc.edu; Political Science Department, University of California - Berkeley; Aguado, Antonio, E-mail: antonio.aguado@upc.edu

    Infrastructure construction, one of the biggest driving forces of the economy nowadays, requires a huge analysis and clear transparency to decide what projects have to be executed with the few resources available. With the aim to provide the public administrations a tool with which they can make their decisions easier, the Sustainability Index of Infrastructure Projects (SIIP) has been defined, with a multi-criteria decision system called MIVES, in order to classify non-uniform investments. This index evaluates, in two inseparable stages, the contribution to the sustainable development of each infrastructure project, analyzing its social, environmental and economic impact. The result ofmore » the SIIP allows to decide the order with which projects will be prioritized. The case of study developed proves the adaptability and utility of this tool for the ordinary budget management.« less

  5. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  6. Epilepsy informatics and an ontology-driven infrastructure for large database research and patient care in epilepsy.

    PubMed

    Sahoo, Satya S; Zhang, Guo-Qiang; Lhatoo, Samden D

    2013-08-01

    The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a "data-driven" paradigm in epilepsy research. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  7. Epilepsy informatics and an ontology-driven infrastructure for large database research and patient care in epilepsy

    PubMed Central

    Sahoo, Satya S.; Zhang, Guo-Qiang; Lhatoo, Samden D.

    2013-01-01

    Summary The epilepsy community increasingly recognizes the need for a modern classification system that can also be easily integrated with effective informatics tools. The 2010 reports by the United States President's Council of Advisors on Science and Technology (PCAST) identified informatics as a critical resource to improve quality of patient care, drive clinical research, and reduce the cost of health services. An effective informatics infrastructure for epilepsy, which is underpinned by a formal knowledge model or ontology, can leverage an ever increasing amount of multimodal data to improve (1) clinical decision support, (2) access to information for patients and their families, (3) easier data sharing, and (4) accelerate secondary use of clinical data. Modeling the recommendations of the International League Against Epilepsy (ILAE) classification system in the form of an epilepsy domain ontology is essential for consistent use of terminology in a variety of applications, including electronic health records systems and clinical applications. In this review, we discuss the data management issues in epilepsy and explore the benefits of an ontology-driven informatics infrastructure and its role in adoption of a “data-driven” paradigm in epilepsy research. PMID:23647220

  8. Is strategic asset management applicable to small and medium utilities?

    PubMed

    Alegre, Helena

    2010-01-01

    Urban water infrastructures provide essential services to modern societies and represent a major portion of the value of municipal physical assets. Managing these assets rationally is therefore fundamental for the sustainability of the services and to the economy of societies. "Asset Management" (AM) is a modern term for an old practice--assets have always been managed. In recent years, significant evolution occurred in terms of the AM formal approaches, of the monitoring and decision support tools and of the implementation success cases. However, most tools developed are too sophisticated and data seek for small utilities. The European R&D network COST Action C18 ( E-mail: www.costc18.org) identified key research problems related to the management of urban water infrastructures, currently not covered by on-going projects of the European Framework Program. The top 1 topic is "Efficient management of small community". This paper addresses challenges and opportunities for small and medium utilities with regard to infrastructure AM (IAM). To put this into context, the first sections discuss the need for IAM, highlight key recent developments, and present IAM drivers, as well as research and development gaps, priorities and products needed.

  9. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  10. Modeling Evacuation of a Hospital without Electric Power.

    PubMed

    Vugrin, Eric D; Verzi, Stephen J; Finley, Patrick D; Turnquist, Mark A; Griffin, Anne R; Ricci, Karen A; Wyte-Lake, Tamar

    2015-06-01

    Hospital evacuations that occur during, or as a result of, infrastructure outages are complicated and demanding. Loss of infrastructure services can initiate a chain of events with corresponding management challenges. This report describes a modeling case study of the 2001 evacuation of the Memorial Hermann Hospital in Houston, Texas (USA). The study uses a model designed to track such cascading events following loss of infrastructure services and to identify the staff, resources, and operational adaptations required to sustain patient care and/or conduct an evacuation. The model is based on the assumption that a hospital's primary mission is to provide necessary medical care to all of its patients, even when critical infrastructure services to the hospital and surrounding areas are disrupted. Model logic evaluates the hospital's ability to provide an adequate level of care for all of its patients throughout a period of disruption. If hospital resources are insufficient to provide such care, the model recommends an evacuation. Model features also provide information to support evacuation and resource allocation decisions for optimizing care over the entire population of patients. This report documents the application of the model to a scenario designed to resemble the 2001 evacuation of the Memorial Hermann Hospital, demonstrating the model's ability to recreate the timeline of an actual evacuation. The model is also applied to scenarios demonstrating how its output can inform evacuation planning activities and timing.

  11. Decision-Making for Systemic Water Risks: Insights From a Participatory Risk Assessment Process in Vietnam

    NASA Astrophysics Data System (ADS)

    Wyrwoll, Paul R.; Grafton, R. Quentin; Daniell, Katherine A.; Chu, Hoang Long; Ringler, Claudia; Lien, Le Thi Ha; Khoi, Dang Kim; Do, Thang Nam; Tuan, Nguyen Do Anh

    2018-03-01

    Systemic threats to food-energy-environment-water systems require national policy responses. Yet complete control of these complex systems is impossible and attempts to mitigate systemic risks can generate unexpected feedback effects. Perverse outcomes from national policy can emerge from the diverse responses of decision-makers across different levels and scales of resource governance. Participatory risk assessment processes can help planners to understand subnational dynamics and ensure that policies do not undermine the resilience of social-ecological systems and infrastructure networks. Researchers can play an important role in participatory processes as both technical specialists and brokers of stakeholder knowledge on the feedbacks generated by systemic risks and policy decisions. Here, we evaluate the use of causal modeling and participatory risk assessment to develop national policy on systemic water risks. We present an application of the Risks and Options Assessment for Decision-Making (ROAD) process to a district of Vietnam where national agricultural water reforms are being piloted. The methods and results of this project provide general insights about how to support resilient decision-making, including the transfer of knowledge across administrative levels, identification of feedback effects, and the effective implementation of risk assessment processes.

  12. Strategic Planning for Drought Mitigation Under Climate Change

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zeng, R.; Valocchi, A. J.; Song, J.

    2012-12-01

    Droughts continue to be a major natural hazard and mounting evidence of global warming confronts society with a pressing question: Will climate change aggravate the risk of drought at local scale? It is important to explore what additional risk will be imposed by climate change and what level of strategic measures should be undertaken now to avoid vulnerable situations in the future, given that tactical measures may not avoid large damage. This study addresses the following key questions on strategic planning for drought mitigation under climate change: What combination of strategic and tactical measures will move the societal system response from a vulnerable situation to a resilient one with minimum cost? Are current infrastructures and their operation enough to mitigate the damage of future drought, or do we need in-advance infrastructure expansion for future drought preparedness? To address these questions, this study presents a decision support framework based on a coupled simulation and optimization model. A quasi-physically based watershed model is established for the Frenchman Creek Basin (FCB), part of the Republic River Basin, where groundwater based irrigation plays a significant role in agriculture production and local hydrological cycle. The physical model is used to train a statistical surrogate model, which predicts the watershed responses under future climate conditions. The statistical model replaces the complex physical model in the simulation-optimization framework, which makes the models computationally tractable. Decisions for drought preparedness include traditional short-term tactical measures (e.g. facility operation) and long-term or in-advance strategic measures, which require capital investment. A scenario based three-stage stochastic optimization model assesses the roles of strategic measures and tactical measures in drought preparedness and mitigation. Two benchmark climate prediction horizons, 2040s and 2090s, represent mid-term and long-term planning, respectively, compared to the baseline of the climate of 1980-2000. To handle uncertainty in climate change projections, outputs from three General Circulation Models (GCMs) with Regional Climate Model (RCM) for dynamic downscaling (PCM-RCM, Hadley-RCM, and CCSM-RCM) and four CO2 emission scenarios are used to represent the various possible climatic conditions in the mid-term (2040's) and long-term (2090's) time horizons. The model results show the relative roles of mid- and long-term investments and the complementary relationships between wait-and-see decisions and here-and-now decisions on infrastructure expansion. Even the best tactical measures (irrigation operation) alone are not sufficient for drought mitigation in the future. Infrastructure expansion is critical especially for environmental conversation purposes. With increasing budget, investment should be shifted from tactical measures to strategic measures for drought preparedness. Infrastructure expansion is preferred for the long term plan than the mid-term plan, i.e., larger investment is proposed in 2040s than the current, due to a larger likelihood of drought in 2090s than 2040s. Thus larger BMP expansion is proposed in 2040s for droughts preparedness in 2090s.

  13. Planning: supporting and optimizing clinical guidelines execution.

    PubMed

    Anselma, Luca; Montani, Stefania

    2008-01-01

    A crucial feature of computerized clinical guidelines (CGs) lies in the fact that they may be used not only as conventional documents (as if they were just free text) describing general procedures that users have to follow. In fact, thanks to a description of their actions and control flow in some semiformal representation language, CGs can also take advantage of Computer Science methods and Information Technology infrastructures and techniques, to become executable documents, in the sense that they may support clinical decision making and clinical procedures execution. In order to reach this goal, some advanced planning techniques, originally developed within the Artificial Intelligence (AI) community, may be (at least partially) resorted too, after a proper adaptation to the specific CG needs has been carried out.

  14. What we were asked to do

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Recommendations are made after 32 interviews, lesson identification, lesson analysis, and mission characteristics identification. The major recommendations are as follows: (1) to develop end-to-end planning and scheduling operations concepts by mission class and to ensure their consideration in system life cycle documentation; (2) to create an organizational infrastructure at the Code 500 level, supported by a Directorate level steering committee with project representation, responsible for systems engineering of end-to-end planning and scheduling systems; (3) to develop and refine mission capabilities to assess impacts of early mission design decisions on planning and scheduling; and (4) to emphasize operational flexibility in the development of the Advanced Space Network, other institutional resources, external (e.g., project) capabilities and resources, operational software and support tools.

  15. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  16. Near-Term Actions to Address Long-Term Climate Risk

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2014-12-01

    Addressing climate change requires effective long-term policy making, which occurs when reflecting on potential events decades or more in the future causes policy makers to choose near-term actions different than those they would otherwise pursue. Contrary to some expectations, policy makers do sometimes make such long-term decisions, but not as commonly and successfully as climate change may require. In recent years however, the new capabilities of analytic decision support tools, combined with improved understanding of cognitive and organizational behaviors, has significantly improved the methods available for organizations to manage longer-term climate risks. In particular, these tools allow decision makers to understand what near-term actions consistently contribute to achieving both short- and long-term societal goals, even in the face of deep uncertainty regarding the long-term future. This talk will describe applications of these approaches for infrastructure, water, and flood risk management planning, as well as studies of how near-term choices about policy architectures can affect long-term greenhouse gas emission reduction pathways.

  17. [Research applications in digital radiology. Big data and co].

    PubMed

    Müller, H; Hanbury, A

    2016-02-01

    Medical imaging produces increasingly complex images (e.g. thinner slices and higher resolution) with more protocols, so that image reading has also become much more complex. More information needs to be processed and usually the number of radiologists available for these tasks has not increased to the same extent. The objective of this article is to present current research results from projects on the use of image data for clinical decision support. An infrastructure that can allow large volumes of data to be accessed is presented. In this way the best performing tools can be identified without the medical data having to leave secure servers. The text presents the results of the VISCERAL and Khresmoi EU-funded projects, which allow the analysis of previous cases from institutional archives to support decision-making and for process automation. The results also represent a secure evaluation environment for medical image analysis. This allows the use of data extracted from past cases to solve information needs occurring when diagnosing new cases. The presented research prototypes allow direct extraction of knowledge from the visual data of the images and to use this for decision support or process automation. Real clinical use has not been tested but several subjective user tests showed the effectiveness and efficiency of the process. The future in radiology will clearly depend on better use of the important knowledge in clinical image archives to automate processes and aid decision-making via big data analysis. This can help concentrate the work of radiologists towards the most important parts of diagnostics.

  18. The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems

    ERIC Educational Resources Information Center

    Diamanti, Eirini Ilana

    2012-01-01

    Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…

  19. NOAA's National Water Model - Integration of National Water Model with Geospatial Data creating Water Intelligence

    NASA Astrophysics Data System (ADS)

    Clark, E. P.; Cosgrove, B.; Salas, F.

    2016-12-01

    As a significant step forward to transform NOAA's water prediction services, NOAA plans to implement a new National Water Model (NWM) Version 1.0 in August 2016. A continental scale water resources model, the NWM is an evolution of the WRF-Hydro architecture developed by the National Center for Atmospheric Research (NCAR). The NWM will provide analyses and forecasts of flow for the 2.7 million stream reaches nationwide in the National Hydrography Dataset Plus v2 (NHDPlusV2) jointly developed by the USGS and EPA. The NWM also produces high-resolution water budget variables of snow, soil moisture, and evapotranspiration on a 1-km grid. NOAA's stakeholders require additional decision support application to be built on these data. The Geo-intelligence division of the Office of Water Prediction is building new products and services that integrate output from the NWM with geospatial datasets such as infrastructure and demographics to better estimate the impacts dynamic water resource states on community resiliency. This presentation will detail the methods and underlying information to produce prototypes water resources intelligence that is timely, actionable and credible. Moreover, it will to explore the NWM capability to support sector-specific decision support services.

  20. Quality indicators and specifications for strategic and support processes in laboratory medicine.

    PubMed

    Ricós, Carmen; Biosca, Carme; Ibarz, Mercè; Minchinela, Joana; Llopis, Maantonia; Perich, Carmen; Alsina, Jesus; Alvarez, Virtudes; Doménech, Vicenta; Pastor, Rosa Ma; Sansalvador, Mireia; Isern, Gloria Trujillo; Navarro, Conrad Vilanova

    2008-01-01

    This work is the second part of a study regarding indicators and quality specifications for the non-analytical processes in laboratory medicine. Five primary care and five hospital laboratories agreed on the indicators for two strategic processes (quality planning and project development) and various support processes (client relationships, instrument and infrastructure maintenance, safety and risk prevention, purchases and storage, personnel training). In the majority of cases, the median values recorded over 1 year is considered to be the state-of-the-art in our setting and proposed as the quality specification for the indicators stated. Values have been stratified according to primary care and hospital laboratory for referred tests and group of personnel for training. In some cases, the specifications have been set equal to zero events, such as serious incidents in the infrastructure maintenance process and number of work accidents in the safety and risk prevention process. In light of this study, an effort is needed to optimize decisions regarding corrective actions and to move from a subjective individual criterion to systematic and comparative management. This preliminary study provides a comprehensive vision of a subject that could motivate further research and advances in the quality of laboratory services.

  1. Can workers answer their questions about occupational safety and health: challenges and solutions.

    PubMed

    Rhebergen, Martijn; Van Dijk, Frank; Hulshof, Carel

    2012-01-01

    Many workers have questions about occupational safety and health (OSH). Answers to these questions empower them to further improve their knowledge about OSH, make good decisions about OSH matters and improve OSH practice when necessary. Nevertheless, many workers fail to find the answers to their questions. This paper explores the challenges workers may face when seeking answers to their OSH questions. Findings suggest that many workers may lack the skills, experience or motivation to formulate an answerable question, seek and find information, appraise information, compose correct answers and apply information in OSH practice. Simultaneously, OSH knowledge infrastructures often insufficiently support workers in answering their OSH questions. This paper discusses several potentially attractive strategies for developing and improving OSH knowledge infrastructures: 1) providing courses that teach workers to ask answerable questions and to train them to find, appraise and apply information, 2) developing information and communication technology tools or facilities that support workers as they complete one or more stages in the process from question to answer and 3) tailoring information and implementation strategies to the workers' needs and context to ensure that the information can be applied to OSH practice more easily.

  2. Determinants of farmers' participation in collective maintenance of irrigation infrastructure in KwaZulu-Natal

    NASA Astrophysics Data System (ADS)

    Sharaunga, S.; Mudhara, M.

    2018-06-01

    The decentralization framework and the Dublin Principles on Integrated Water Resource Management (IWRM) emphasize the need for a participatory approach to irrigation water management. This study identifies the factors influencing farmers' decision to, and extent of participation in the maintenance of irrigation infrastructure in KwaZulu-Natal province, South Africa based on cross-section data collected from 320 randomly selected smallholder irrigating farmers. A two-step Heckman regression model was applied in the analysis. It was established that households whose heads were older, block committee members, with larger irrigation plots, good soil quality and experiencing severe irrigation water shortages are more likely to participate in maintenance of irrigation infrastructure. On the other hand, farmers with insecure land tenure and with no access to irrigation water were less likely to make the decision to participate. Farmers who were members of the farming cooperative as well as block committee members and those paying irrigation water costs were likely to intensively participate in maintaining irrigation infrastructure. Therefore, decentralization alone cannot lead to improved irrigation outcomes. Several factors are necessary for households to participate intensively in the maintenance of irrigation infrastructure. Governments should address these challenges before handing irrigation schemes to their beneficiaries.

  3. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  4. Public Participation Procedure in Integrated Transport and Green Infrastructure Planning

    NASA Astrophysics Data System (ADS)

    Finka, Maroš; Ondrejička, Vladimír; Jamečný, Ľubomír; Husár, Milan

    2017-10-01

    The dialogue among the decision makers and stakeholders is a crucial part of any decision-making processes, particularly in case of integrated transportation planning and planning of green infrastructure where a multitude of actors is present. Although the theory of public participation is well-developed after several decades of research, there is still a lack of practical guidelines due to the specificity of public participation challenges. The paper presents a model of public participation for integrated transport and green infrastructure planning for international project TRANSGREEN covering the area of five European countries - Slovakia, Czech Republic, Austria, Hungary and Romania. The challenge of the project is to coordinate the efforts of public actors and NGOs in international environment in oftentimes precarious projects of transport infrastructure building and developing of green infrastructure. The project aims at developing and environmentally-friendly and safe international transport network. The proposed public participation procedure consists of five main steps - spread of information (passive), collection of information (consultation), intermediate discussion, engagement and partnership (empowerment). The initial spread of information is a process of communicating with the stakeholders, informing and educating them and it is based on their willingness to be informed. The methods used in this stage are public displays, newsletters or press releases. The second step of consultation is based on transacting the opinions of stakeholders to the decision makers. Pools, surveys, public hearings or written responses are examples of the multitude of ways to achieve this objective and the main principle of openness of stakeholders. The third step is intermediate discussion where all sides of are invited to a dialogue using the tools such as public meetings, workshops or urban walks. The fourth step is an engagement based on humble negotiation, arbitration and mediation. The collaborative skill needed here is dealing with conflicts. The final step in the procedure is partnership and empowerment employing methods as multi-actor decision making, voting or referenda. The leading principle is cooperation. In this ultimate step, the stakeholders are becoming decision makers themselves and the success factor here is continuous evaluation.

  5. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.

  6. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  7. Explore with Us

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    The fundamental goal of this vision is to advance U.S. scientific, security and economic interest through a robust space exploration program. Implement a sustained and affordable human and robotic program to explore the solar system and beyond. Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations. Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration. Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  8. Military Operations Research Society Symposium (70th): Military Operations Research at the Next Frontier. Held at Fort Leavenworth, Kansas on 18-20 June 2002. Final Program and Book of Abstracts.

    DTIC Science & Technology

    2002-05-20

    this transition will have on the CSEPP communities using a risk-based simulation suite. 34 Arms Control & Proliferation WG-3 Chir To Mcian USDprmn f3tt...conjunction with the Army Office of the Surgeon General (OTSG). 166 Measures of Effectiveness WG-24 Chir MA ar . zl,UM The following abstracts are...the effects on resources and budgets that result from major force, support and infrastructure changes. 193 Decision Analysis WG-28 Chir Gwe F.Dln,J A

  9. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    NASA Astrophysics Data System (ADS)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  10. Informing Watershed Connectivity Barrier Prioritization Decisions: A Synthesis

    Treesearch

    S. K. McKay; A. R. Cooper; M. W. Diebel; D. Elkins; G. Oldford; Craig Roghair; D. Wieferich

    2016-01-01

    Water resources and transportation infrastructure such as dams and culverts provide countless socio-economic benefits; however, this infrastructure can also disconnect the movement of organisms, sediment, and water through river ecosystems. Trade-offs associated with these competing costs and benefits occur globally, with applications in barrier addition (e.g...

  11. EuroGEOSS/GENESIS ``e-Habitat'' AIP-3 Use Scenario

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Dubois, G.; Santoro, M.; Peedell, S.; de Longueville, B.; Nativi, S.; Craglia, M.

    2010-12-01

    Natural ecosystems are in rapid decline. Major habitats are disappearing at a speed never observed before. The current rate of species extinction is several orders of magnitude higher than the background rate from the fossil record. Protected Areas (PAs) and Protected Area Systems are designed to conserve natural and cultural resources, to maintain biodiversity (ecosystems, species, genes) and ecosystem services. The scientific challenge of understanding how environmental and climatological factors impact on ecosystems and habitats requires the use of information from different scientific domains. Thus, multidisciplinary interoperability is a crucial requirement for a framework aiming to support scientists. The Group on Earth Observations (or GEO) is coordinating international efforts to build a Global Earth Observation System of Systems (GEOSS). This emerging public infrastructure is interconnecting a diverse and growing array of instruments and systems for monitoring and forecasting changes in the global environment. This “system of systems” supports multidisciplinary and cross-disciplinary scientific researches. The presented GEOSS-based interoperability framework facilitates the discovery and exploitation of datasets and models from heterogeneous scientific domains and Information Technology services (data sources). The GEO Architecture and Data Committee (ADC) launched the Architecture Implementation Pilot (AIP) Initiative to develop and deploy new processes and infrastructure components for the GEOSS Common Infrastructure (GCI) and the broader GEOSS architecture. The current AIP Phase 3 (AIP-3) aims to increase GEOSS capacity to support several strategic Societal Benefit Areas (SBAs) including: Disaster Management, Health/Air Quality, Biodiversity, Energy, Health/Disease and Water. As to Biodiversity, the EC-funded EuroGEOSS (http://www.eurogeoss.eu) and GENESIS (http://www.genesis-fp7.eu) projects have developed a use scenario called “e-Habitat”. This scenario demonstrates how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. Based on the previous AIP-Phase2 experience, the EuroGEOSS and GENESIS projects enhanced the successfully experimented interoperability infrastructure with: a) a discovery broker service which underpins semantics enabled queries: the EuroGEOSS/GENESIS Discovery Augmentation Component (DAC); b) environmental modeling components (i.e. OGC WPS instances) implementing algorithms to predict evolution of PAs ecosystems; c) a workflow engine to: i) browse semantic repositories; ii) retrieve concepts of interest; iii) search for resources (i.e. datasets and models) related to such concepts; iv) execute WPS instances. This presentation introduces the enhanced infrastructure developed by the EuroGEOSS/GENESIS AIP-3 Pilot to implement the “e-Habitat” use scenario. The presented infrastructure is accessible through the GEO Portal and is going to be used for demonstrating the “e-Habitat” model at the GEO Ministerial Meeting - Beijing, November 2010.

  12. Computational biomedicine: a challenge for the twenty-first century.

    PubMed

    Coveney, Peter V; Shublaq, Nour W

    2012-01-01

    With the relentless increase of computer power and the widespread availability of digital patient-specific medical data, we are now entering an era when it is becoming possible to develop predictive models of human disease and pathology, which can be used to support and enhance clinical decision-making. The approach amounts to a grand challenge to computational science insofar as we need to be able to provide seamless yet secure access to large scale heterogeneous personal healthcare data in a facile way, typically integrated into complex workflows-some parts of which may need to be run on high performance computers-in a facile way that is integrated into clinical decision support software. In this paper, we review the state of the art in terms of case studies drawn from neurovascular pathologies and HIV/AIDS. These studies are representative of a large number of projects currently being performed within the Virtual Physiological Human initiative. They make demands of information technology at many scales, from the desktop to national and international infrastructures for data storage and processing, linked by high performance networks.

  13. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  14. Changing Medical School IT to Support Medical Education Transformation.

    PubMed

    Spickard, Anderson; Ahmed, Toufeeq; Lomis, Kimberly; Johnson, Kevin; Miller, Bonnie

    2016-01-01

    Many medical schools are modifying curricula to reflect the rapidly evolving health care environment, but schools struggle to provide the educational informatics technology (IT) support to make the necessary changes. Often a medical school's IT support for the education mission derives from isolated work units employing separate technologies that are not interoperable. We launched a redesigned, tightly integrated, and novel IT infrastructure to support a completely revamped curriculum at the Vanderbilt School of Medicine. This system uses coordinated and interoperable technologies to support new instructional methods, capture students' effort, and manage feedback, allowing the monitoring of students' progress toward specific competency goals across settings and programs. The new undergraduate medical education program at Vanderbilt, entitled Curriculum 2.0, is a competency-based curriculum in which the ultimate goal is medical student advancement based on performance outcomes and personal goals rather than a time-based sequence of courses. IT support was essential in the creation of Curriculum 2.0. In addition to typical learning and curriculum management functions, IT was needed to capture data in the learning workflow for analysis, as well as for informing individual and programmatic success. We aligned people, processes, and technology to provide the IT infrastructure for the organizational transformation. Educational IT personnel were successfully realigned to create the new IT system. The IT infrastructure enabled monitoring of student performance within each competency domain across settings and time via personal student electronic portfolios. Students use aggregated performance data, derived in real time from the portfolio, for mentor-guided performance assessment, and for creation of individual learning goals and plans. Poorly performing students were identified earlier through online communication systems that alert the appropriate instructor or coach of low quiz grades or missed learning goals. Graphical and narrative displays of a student's competency performance across courses and clinical experiences informed high-stake decisions made about student progress by the promotions committee. Similarly, graphical display of aggregate student outcomes provided education leaders with information needed to adjust and improve the curriculum. With the alignment of people, processes, and technology, educational IT can facilitate transformational steps in the training of medical students.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trott, Christian Robert; Lopez, Graham; Shipman, Galen

    This report documents the completion of milestone STPM12-2 Kokkos User Support Infrastructure. The goal of this milestone was to develop and deploy an initial Kokkos support infrastructure, which facilitates communication and growth of the user community, adds a central place for user documentation and manages access to technical experts. Multiple possible support infrastructure venues were considered and a solution was put into place by Q1 of FY 18 consisting of (1) a Wiki programming guide, (2) github issues and projects for development planning and bug tracking and (3) a “Slack” channel for low latency support communications with the Kokkos usermore » community. Furthermore, the desirability of a cloud based training infrastructure was recognized and put in place in order to support training events.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, G; Bale, J; Moran, K

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security, and way of life. One particular type of CI--that relating to chemicals--constitutes both an important element of our nation's infrastructure and a particularly attractive set of potential targets. This is primarily because of the large quantities of toxic industrial chemicals (TICs) it employs in various operations and because of the essential economic functions it serves. This study attempts to minimize some of the ambiguities that presently impede chemical infrastructure threat assessments by providing new insight into the key motivational factors that affect terrorist organizations propensity to attackmore » chemical facilities. Prepared as a companion piece to the Center for Nonproliferation Studies August 2004 study--''Assessing Terrorist Motivations for Attacking Critical Infrastructure''--it investigates three overarching research questions: (1) why do terrorists choose to attack chemical-related infrastructure over other targets; (2) what specific factors influence their target selection decisions concerning chemical facilities; and (3) which, if any, types of groups are most inclined to attack chemical infrastructure targets? The study involved a multi-pronged research design, which made use of four discrete investigative techniques to answer the above questions as comprehensively as possible. These include: (1) a review of terrorism and threat assessment literature to glean expert consensus regarding terrorist interest in targeting chemical facilities; (2) the preparation of case studies to help identify internal group factors and contextual influences that have played a significant role in leading some terrorist groups to attack chemical facilities; (3) an examination of data from the Critical Infrastructure Terrorist Incident Catalog (CrITIC) to further illuminate the nature of terrorist attacks against chemical facilities to date; and (4) the refinement of the DECIDe--the Determinants Effecting Critical Infrastructure Decisions--analytical framework to make the factors and dynamics identified by the study more ''usable'' in future efforts to assess terrorist intentions to target chemical-related infrastructure.« less

  17. Set-up of a decision support system to support sustainable development of the Laguna de Bay, Philippines.

    PubMed

    Nauta, Tjitte A; Bongco, Alicia E; Santos-Borja, Adelina C

    2003-01-01

    Over recent decades, population expansion, deforestation, land conversion, urbanisation, intense fisheries and industrialisation have produced massive changes in the Laguna de Bay catchment, Philippines. The resulting problems include rapid siltation of the lake, eutrophication, inputs of toxics, flooding problems and loss of biodiversity. Rational and systematic resolution of conflicting water use and water allocation interests is now urgently needed in order to ensure sustainable use of the water resources. With respect to the competing and conflicting pressures on the water resources, the Laguna Lake Development Authority (LLDA) needs to achieve comprehensive management and development of the area. In view of these problems and needs, the Government of the Netherlands was funding a two-year project entitled 'Sustainable Development of the Laguna de Bay Environment'.A comprehensive tool has been developed to support decision-making at catchment level. This consists of an ArcView GIS-database linked to a state-of-the-art modelling suite, including hydrological and waste load models for the catchment area and a three-dimensional hydrodynamic and water quality model (Delft3D) linked to a habitat evaluation module for the lake. In addition, MS Office based tools to support a stakeholder analysis and financial and economic assessments have been developed. The project also focused on technical studies relating to dredging, drinking water supply and infrastructure works. These aimed to produce technically and economically feasible solutions to water quantity and quality problems. The paper also presents the findings of a study on the development of polder islands in the Laguna de Bay, addressing the water quantity and quality problems and focusing on the application of the decision support system.

  18. Improving the relevance and impact of decision support research: A co-production framework and water management case study

    NASA Astrophysics Data System (ADS)

    Smith, R.; Kasprzyk, J. R.; Dilling, L.; Basdekas, L.; Kaatz, L.

    2016-12-01

    In light of the unpredictable effects of climate change and population shifts, responsible resource management will require new types of information and strategies going forward. For water utilities, this means that water supply infrastructure systems must be expanded and/or managed for changes in overall supply and increased extremes. Utilities have begun seeking innovative tools and methods to support planning and decision making, but there are limited channels through which they can gain exposure to emerging tools from the research world, and for researchers to uptake important real-world planning and decision context. A transdisciplinary team of engineers, social and climate scientists, and water managers designed this study to develop and apply a co-production framework which explores the potential of an emerging decision support tool to enhance flexibility and adaptability in water utility planning. It also demonstrates how to improve the link between research and practice in the water sector. In this study we apply the co-production framework to the use of Multiobjective Evolutionary Algorithms (MOEAs). MOEAs have shown promise in being able to generate and evaluate new planning alternatives but they have had little testing or application in water utilities. Anchored by two workshops, this study (1) elicited input from water managers from six water suppliers on the Front Range of Colorado, USA, to create a testbed MOEA application, and (2) evaluated the managers' responses to multiobjective optimization results. The testbed consists of a Front Range-relevant hypothetical water supply model, the Borg MOEA, hydrology and demand scenarios, and a set of planning decisions and performance objectives that drive the link between the algorithm and the model. In this presentation we describe researcher-manager interactions at the initial workshop that served to establish relationships and provide in-depth information to researchers about regional water management context. We also describe the development of, and experiences from, the second workshop which included activities for water managers to interact directly with MOEA testbed results. Finally, we evaluate the co-production framework itself and the potential for the feedback from managers to shape future development of decision support tools.

  19. Measuring Road Network Vulnerability with Sensitivity Analysis

    PubMed Central

    Jun-qiang, Leng; Long-hai, Yang; Liu, Wei-yi; Zhao, Lin

    2017-01-01

    This paper focuses on the development of a method for road network vulnerability analysis, from the perspective of capacity degradation, which seeks to identify the critical infrastructures in the road network and the operational performance of the whole traffic system. This research involves defining the traffic utility index and modeling vulnerability of road segment, route, OD (Origin Destination) pair and road network. Meanwhile, sensitivity analysis method is utilized to calculate the change of traffic utility index due to capacity degradation. This method, compared to traditional traffic assignment, can improve calculation efficiency and make the application of vulnerability analysis to large actual road network possible. Finally, all the above models and calculation method is applied to actual road network evaluation to verify its efficiency and utility. This approach can be used as a decision-supporting tool for evaluating the performance of road network and identifying critical infrastructures in transportation planning and management, especially in the resource allocation for mitigation and recovery. PMID:28125706

  20. Building statistical associations to forecast ethylbenzene levels in European urban-traffic environments.

    PubMed

    Vlachokostas, Ch; Michailidou, A V; Spyridi, D; Moussiopoulos, N

    2013-06-01

    Emission from road traffic has become the most important source of local air pollution in numerous European cities. Epidemiological research community has established consistent associations between traffic-related substances and various health outcomes. Nevertheless, the vast majority of urban areas are characterised by infrastructure's absence to routinely monitor chemical health stressors, such as ethylbenzene. This paper aims at developing and presenting a tractable approach to reliably - and inexpensively - predict ethylbenzene trends in EU urban environments. The establishment of empirical relationships between rarely monitored pollutants such as ethylbenzene and more frequently or usually monitored, such as benzene and CO respectively, may cover the infrastructure's absence and support decision-making. Multiple regression analysis is adopted and the resulting statistical associations are applied to EU cities with available data for validation purposes. The results demonstrate that this approach is capable of capturing ethylbenzene concentration trends and should be considered as complementary to air quality monitoring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A consensus action agenda for achieving the national health information infrastructure.

    PubMed

    Yasnoff, William A; Humphreys, Betsy L; Overhage, J Marc; Detmer, Don E; Brennan, Patricia Flatley; Morris, Richard W; Middleton, Blackford; Bates, David W; Fanning, John P

    2004-01-01

    Improving the safety, quality, and efficiency of health care will require immediate and ubiquitous access to complete patient information and decision support provided through a National Health Information Infrastructure (NHII). To help define the action steps needed to achieve an NHII, the U.S. Department of Health and Human Services sponsored a national consensus conference in July 2003. Attendees favored a public-private coordination group to guide NHII activities, provide education, share resources, and monitor relevant metrics to mark progress. They identified financial incentives, health information standards, and overcoming a few important legal obstacles as key NHII enablers. Community and regional implementation projects, including consumer access to a personal health record, were seen as necessary to demonstrate comprehensive functional systems that can serve as models for the entire nation. Finally, the participants identified the need for increased funding for research on the impact of health information technology on patient safety and quality of care. Individuals, organizations, and federal agencies are using these consensus recommendations to guide NHII efforts.

  2. Strengthening Data Confidentiality and Integrity Protection in the Context of a Multi-Centric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in early age. Diagnosis relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology, and ophthalmology. To support clinicians, researchers, and public health decision makers, we developed an information system dedicated to ASD, called TEDIS. It was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured internet connections. TEDIS will be deployed in nine ASD expert assessment centers in Ile-DeFrance district. We present security policy and infrastructure developed in context of TEDIS to protect patient privacy and clinical information. TEDIS security policy was organized around governance, ethical and organisational chart-agreement, patients consents, controlled user access, patients' privacy protection, constrained patients' data access. Security infrastructure was enriched by further technical solutions to reinforce ASD patients' privacy protection. Solutions were tested on local secured intranet environment and showed fluid functionality with consistent, transparent and safe encrypting-decrypting results.

  3. A streamlined sustainability assessment tool for improved decision making in the urban water industry.

    PubMed

    Schulz, Matthias; Short, Michael D; Peters, Gregory M

    2012-01-01

    Water supply is a key consideration in sustainable urban planning. Ideally, detailed quantitative sustainability assessments are undertaken during the planning stage to inform the decision-making process. In reality, however, the significant time and cost associated with undertaking such detailed environmental and economic assessments is often cited as a barrier to wider implementation of these key decision support tools, particularly for decisions made at the local or regional government level. In an attempt to overcome this barrier of complexity, 4 water service providers in Melbourne, Australia, funded the development of a publicly available streamlined Environmental Sustainability Assessment Tool, which is aimed at a wide range of decision makers to assist them in broadening the type and number of water servicing options that can be considered for greenfield or backlog developments. The Environmental Sustainability Assessment Tool consists of a simple user interface and draws on life cycle inventory data to allow for rapid estimation of the environmental and economic performance of different water servicing scenarios. Scenario options can then be further prioritized by means of an interactive multicriteria analysis. The intent of this article is to identify the key issues to be considered in a streamlined sustainability assessment tool for the urban water industry, and to demonstrate the feasibility of generating accurate life cycle assessments and life cycle costings, using such a tool. We use a real-life case study example consisting of 3 separate scenarios for a planned urban development to show that this kind of tool can emulate life cycle assessments and life cycle costings outcomes obtained through more detailed studies. This simplified approach is aimed at supporting "sustainability thinking" early in the decision-making process, thereby encouraging more sustainable water and sewerage infrastructure solutions. Copyright © 2011 SETAC.

  4. Gatekeepers for Pragmatic Clinical Trials

    PubMed Central

    Whicher, Danielle M.; Miller, Jennifer E.; Dunham, Kelly M.; Joffe, Steven

    2015-01-01

    To successfully implement a pragmatic clinical trial, investigators need access to numerous resources, including financial support, institutional infrastructure (e.g., clinics, facilities, staff), eligible patients, and patient data. Gatekeepers are people or entities who have the ability to allow or deny access to the resources required to support the conduct of clinical research. Based on this definition, gatekeepers relevant to the United States clinical research enterprise include research sponsors, regulatory agencies, payers, health system and other organizational leadership, research team leadership, human research protections programs, advocacy and community groups, and clinicians. This manuscript provides a framework to help guide gatekeepers’ decision-making related to the use of resources for pragmatic clinical trials. These include (1) concern for the interests of individuals, groups, and communities affected by the gatekeepers’ decisions, including protection from harm and maximization of benefits, (2) advancement of organizational mission and values, and (3) stewardship of financial, human, and other organizational resources. Separate from these ethical considerations, gatekeepers’ actions will be guided by relevant federal, state, and local regulations. This framework also suggests that to further enhance the legitimacy of their decision-making, gatekeepers should adopt transparent processes that engage relevant stakeholders when feasible and appropriate. We apply this framework to the set of gatekeepers responsible for making decisions about resources necessary for pragmatic clinical trials in the United States, describing the relevance of the criteria in different situations and pointing out where conflicts among the criteria and relevant regulations may affect decision-making. Recognition of the complex set of considerations that should inform decision-making will guide gatekeepers in making justifiable choices regarding the use of limited and valuable resources. PMID:26374683

  5. The Condition of the Infrastructure of New York Schools: Who Pays and Who Benefits?

    ERIC Educational Resources Information Center

    Crampton, Faith E.

    1991-01-01

    Insufficient resource allocation to facilities maintenance and decisions to defer maintenance are contributors to a backlog of deferred maintenance nationwide. Focuses on the infrastructure of New York schools and suggests incentives at the state level to ensure adequate attention is given to plant maintenance. (eight references) (MLF)

  6. 76 FR 19122 - Record of Decision (ROD) for Authorizing the Use of Outer Continental Shelf (OCS) Sand Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... Aeronautics and Space Administration's Wallops Flight Facility Shoreline Restoration and Infrastructure... authorize the use of OCS sand resources in National Aeronautics and Space Administration's (NASA's) Wallops... infrastructure on the WFF (such as rocket launch pads, runways, and launch control centers) valued at over $1...

  7. Incorporating intelligent transportation systems into planning analysis : summary of key findings from a 2020 case study -- improving travel time reliability with ITS

    DOT National Transportation Integrated Search

    2002-05-01

    ITS is typically considered an operational detail to be worked out after infrastructure planning is complete. This approach ignores the potential for the introduction of ITS to change the decisions made during infrastructure planning, or even the ove...

  8. Environmental screening tools for assessment of infrastructure plans based on biodiversity preservation and global warming (PEIT, Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Montero, Luis G., E-mail: luisgonzaga.garcia@upm.e; Lopez, Elena, E-mail: elopez@caminos.upm.e; Monzon, Andres, E-mail: amonzon@caminos.upm.e

    Most Strategic Environmental Assessment (SEA) research has been concerned with SEA as a procedure, and there have been relatively few developments and tests of analytical methodologies. The first stage of the SEA is the 'screening', which is the process whereby a decision is taken on whether or not SEA is required for a particular programme or plan. The effectiveness of screening and SEA procedures will depend on how well the assessment fits into the planning from the early stages of the decision-making process. However, it is difficult to prepare the environmental screening for an infrastructure plan involving a whole country.more » To be useful, such methodologies must be fast and simple. We have developed two screening tools which would make it possible to estimate promptly the overall impact an infrastructure plan might have on biodiversity and global warming for a whole country, in order to generate planning alternatives, and to determine whether or not SEA is required for a particular infrastructure plan.« less

  9. The virtual machine (VM) scaler: an infrastructure manager supporting environmental modeling on IaaS clouds

    USDA-ARS?s Scientific Manuscript database

    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...

  10. Development of a decision support tool for seasonal water supply management incorporating system uncertainties and operational constraints

    NASA Astrophysics Data System (ADS)

    Wang, H.; Asefa, T.

    2017-12-01

    A real-time decision support tool (DST) for water supply system would consider system uncertainties, e.g., uncertain streamflow and demand, as well as operational constraints and infrastructure outage (e.g., pump station shutdown, an offline reservoir due to maintenance). Such DST is often used by water managers for resource allocation and delivery for customers. Although most seasonal DST used by water managers recognize those system uncertainties and operational constraints, most use only historical information or assume deterministic outlook of water supply systems. This study presents a seasonal DST that incorporates rainfall/streamflow uncertainties, seasonal demand outlook and system operational constraints. Large scale climate-information is captured through a rainfall simulator driven by a Bayesian non-homogeneous Markov Chain Monte Carlo model that allows non-stationary transition probabilities contingent on Nino 3.4 index. An ad-hoc seasonal demand forecasting model considers weather conditions explicitly and socio-economic factors implicitly. Latin Hypercube sampling is employed to effectively sample probability density functions of flow and demand. Seasonal system operation is modelled as a mixed-integer optimization problem that aims at minimizing operational costs. It embeds the flexibility of modifying operational rules at different components, e.g., surface water treatment plants, desalination facilities, and groundwater pumping stations. The proposed framework is illustrated at a wholesale water supplier in Southeastern United States, Tampa Bay Water. The use of the tool is demonstrated in proving operational guidance in a typical drawdown and refill cycle of a regional reservoir. The DST provided: 1) probabilistic outlook of reservoir storage and chance of a successful refill by the end of rainy season; 2) operational expectations for large infrastructures (e.g., high service pumps and booster stations) throughout the season. Other potential use of such DST is also discussed.

  11. Infrastructure to Support Ultra High Throughput Biodosimetry Screening after a Radiological Event

    PubMed Central

    Garty, G.; Karam, P.A.; Brenner, D. J.

    2011-01-01

    Purpose After a large-scale radiological event, there will be a pressing need to assess, within a few days, the radiation doses received by tens or hundreds of thousands of individuals. This is for triage, to prevent treatment locations from being overwhelmed, in what is sure to be a resource limited scenario, as well as to facilitate dose-dependent treatment decisions. In addition there are psychosocial considerations, in that active reassurance of minimal exposure is a potentially effective antidote to mass panic, as well as long-term considerations, to facilitate later studies of cancer and other long-term disease risks. Materials and Methods As described elsewhere in this issue, we are developing a Rapid Automated Biodosimetry Tool (RABiT). The RABiT allows high throughput analysis of thousands of blood samples per day, providing a dose estimate that can be used to support clinical triage and treatment decisions. Results Development of the RABiT has motivated us to consider the logistics of incorporating such a system into the existing emergency response scenarios of a large metropolitan area. We present here a view of how one or more centralized biodosimetry readout devices might be incorporated into an infrastructure in which fingerstick blood samples are taken at many distributed locations within an affected city or region and transported to centralized locations. Conclusions High throughput biodosimetry systems offer the opportunity to perform biodosimetric assessments on a large number of persons. As such systems reach a high level of maturity, emergency response scenarios will need to be tweaked to make use of these powerful tools. This can be done relatively easily within the framework of current scenarios. PMID:21675819

  12. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed.

    PubMed

    Mei, Chao; Liu, Jiahong; Wang, Hao; Yang, Zhiyong; Ding, Xiangyi; Shao, Weiwei

    2018-10-15

    Green Infrastructure (GI) has become increasingly important in urban stormwater management because of the effects of climate change and urbanization. To mitigate severe urban water-related problems, China is implementing GI at the national scale under its Sponge City Program (SCP). The SCP is currently in a pilot period, however, little attention has been paid to the cost-effectiveness of GI implementation in China. In this study, an evaluation framework based on the Storm Water Management Model (SWMM) and life cycle cost analysis (LCCA) was applied to undertake integrated assessments of the development of GI for flood mitigation, to support robust decision making regarding sponge city construction in urbanized watersheds. A baseline scenario and 15 GI scenarios under six design rainfall events with recurrence intervals ranging from 2-100 years were simulated and assessed. Model simulation results confirmed the effectiveness of GI for flood mitigation. Nevertheless, even under the most beneficial scenario, the results showed the hydrological performance of GI was incapable of eliminating flooding. Analysis indicated the bioretention cell (BC) plus vegetated swale (VS) scenario was the most cost-effective GI option for unit investment under all rainfall events. However, regarding the maximum potential of the implementation areas of all GI scenarios, the porous pavement plus BC + VS strategy was considered most reasonable for the study area. Although the optimal combinations are influenced by uncertainties in both the model and the GI parameters, the main trends and key insights derived remain unaffected; therefore, the conclusions are relevant regarding sponge city construction within the study area. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Will it rise or will it fall? Managing the complex effects of urbanization on base flow

    USGS Publications Warehouse

    Bhaskar, Aditi; Beesley, Leah; Burns, Matthew J.; Fletcher, T. D.; Hamel, Perrine; Oldham, Carolyn; Roy, Allison

    2016-01-01

    Sustaining natural levels of base flow is critical to maintaining ecological function as stream catchments are urbanized. Research shows a variable response of stream base flow to urbanization, with base flow or water tables rising in some locations, falling in others, or elsewhere remaining constant. The variable baseflow response is due to the array of natural (e.g., physiographic setting and climate) and anthropogenic (e.g., urban development and infrastructure) factors that influence hydrology. Perhaps as a consequence of this complexity, few simple tools exist to assist managers to predict baseflow change in their local urban area. This paper addresses this management need by presenting a decision support tool. The tool considers the natural vulnerability of the landscape, together with aspects of urban development in predicting the likelihood and direction of baseflow change. Where the tool identifies a likely increase or decrease it guides managers toward strategies that can reduce or increase groundwater recharge, respectively. Where the tool finds an equivocal result, it suggests a detailed water balance be performed. The decision support tool is embedded within an adaptive-management framework that encourages managers to define their ecological objectives, assess the vulnerability of their ecological objectives to changes in water table height, and monitor baseflow responses to urbanization. We trial our framework using two very different case studies: Perth, Western Australia, and Baltimore, Maryland, USA. Together, these studies show how pre-development water table height, climate and geology together with aspects of urban infrastructure (e.g., stormwater practices, leaky pipes) interact such that urbanization has overall led to rising base flow (Perth) and falling base flow (Baltimore). Greater consideration of subsurface components of the water cycle will help to protect and restore the ecology of urban freshwaters.

  14. Defense Infrastructure: Challenges Increase Risks for Providing Timely Infrastructure Support for Army Installations Expecting Substantial Personnel Growth

    DTIC Science & Technology

    2007-09-01

    Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 DEFENSE INFRASTRUCTURE Challenges Increase Risks for...authority to conduct evaluations on his own initiative. It addresses (1) the challenges and associated risks the Army faces in providing for timely...but it faces several complex implementation challenges that risk late provision of needed infrastructure to adequately support incoming personnel

  15. Long-term planning in Small Islands Developing States under a changing climate

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.

    2017-12-01

    This paper presents an analytical framework and decision-making tool tailored to Small Islands Developing States (SIDS), to help them address future climate change challenges. SIDS are a diverse group of countries but all characterized by insularity, geographic remoteness, small economy and population size. SIDS are highly exposed and vulnerable to natural disasters, with average annual losses between 1 and 10% of GDP depending on the country. Vulnerability in SIDS is worsened by poor development planning and the countries' limited ability to respond and manage the risks. Infrastructure is a large share of the fixed capital stock in SIDS, most infrastructure assets are highly critical due to the lack of redundancy in networks and they are often highly vulnerable to natural hazards. Remoteness means that when infrastructure assets are damaged, reconstruction costs are larger than anywhere else, which narrows fiscal space, which in turn leads to deferred maintenance problems and raises the vulnerability to future events. In this context, and with climate change worsening the challenges SIDS face at an uncertain pace and intensity, decision-makers and international donors have to answer difficult questions. Does it make sense to spend increasing amounts of money in infrastructure given the level of debts SIDS face and the economic losses resulting from the regular disruption of infrastructure assets? How should sectors be prioritized? Should long-term plans consider "migration with dignity" as a potential option, especially for low-lying atolls? To help answer these questions, methods for decision-making under deep uncertainty, which rely on large numbers of model runs to identify the vulnerabilities of strategies, are particularly appropriate. The small population size of SIDS and simplicity of their infrastructure networks allows building system models coupled with household surveys and testing a range of different policy options, including unconventional policies like social protection or migration, under many future scenarios.

  16. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.

    PubMed

    Middleton, Richard S; Brandt, Adam R

    2013-02-05

    The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.

  17. A spatial framework for targeting urban planning for pollinators and people with local stakeholders: A route to healthy, blossoming communities?

    PubMed

    Bellamy, Chloe C; van der Jagt, Alexander P N; Barbour, Shelley; Smith, Mike; Moseley, Darren

    2017-10-01

    Pollinators such as bees and hoverflies are essential components of an urban ecosystem, supporting and contributing to the biodiversity, functioning, resilience and visual amenity of green infrastructure. Their urban habitats also deliver health and well-being benefits to society, by providing important opportunities for accessing nature nearby to the homes of a growing majority of people living in towns and cities. However, many pollinator species are in decline, and the loss, degradation and fragmentation of natural habitats are some of the key drivers of this change. Urban planners and other practitioners need evidence to carefully prioritise where they focus their resources to provide and maintain a high quality, multifunctional green infrastructure network that supports pollinators and people. We provide a modelling framework to inform green infrastructure planning as a nature based solution with social and ecological benefits. We show how habitat suitability models (HSM) incorporating remote sensed vegetation data can provide important information on the influence of urban landcover composition and spatial configuration on species distributions across cities. Using Edinburgh, Scotland, as a case study city, we demonstrate this approach for bumble bees and hoverflies, providing high resolution predictive maps that identify pollinator habitat hotspots and pinch points across the city. By combining this spatial HSM output with health deprivation data, we highlight 'win-win' opportunity areas in most need of improved green infrastructure to support pollinator habitat quality and connectivity, as well as societal health and well-being. In addition, in collaboration with municipal planners, local stakeholders, and partners from a local greenspace learning alliance, we identified opportunities for citizen engagement activities to encourage interest in wildlife gardening as part of a 'pollinator pledge'. We conclude that this quantitative, spatially explicit and transferable approach provides a useful decision-making tool for targeting nature-based solutions to improve biodiversity and increase environmental stewardship, with the aim of providing a more attractive city to live, work and invest in. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Collaboration and decision making tools for mobile groups

    NASA Astrophysics Data System (ADS)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  19. Rehabilitation, Replacement and Redesign of the Nation's Water and Wastewater Infrastructure as a Valuable Adaptation Opportunity

    EPA Science Inventory

    In support of the Agency's Sustainable Water Infrastructure Initiative, EPA's Office of Research and Develpment initiated the Aging Water Infrastructure Research Program in 2007. The program, with its core focus on the support of strategic asset management, is designed to facili...

  20. Group of Eight Infrastructure Condition Survey 2007. Aggregated Data

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2008

    2008-01-01

    The "Group of Eight Infrastructure Condition Survey 2007" represents the Go8's first effort to enhance the quality of information available about the condition of building and support infrastructure of member universities, their capital investment trends and challenges. The survey aims to support the systematic benchmarking of facilities…

  1. Multi-Sensor Distributive On-Line Processing, Visualization, and Analysis Infrastructure for an Agricultural Information System at the NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Teng, William; Berrick, Steve; Leptuokh, Gregory; Liu, Zhong; Rui, Hualan; Pham, Long; Shen, Suhung; Zhu, Tong

    2004-01-01

    The Goddard Space Flight Center Earth Sciences Data and Information Services Center (GES DISC) Distributed Active Center (DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM On-line Visualization and Analysis System precipitation and other satellite data products and services. AIS outputs will be ,integrated into existing operational decision support system for global crop monitoring, such as that of the U.N. World Food Program. The ability to use the raw data stored in the GES DAAC archives is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. To gain this understanding is a time-consuming process and not a productive investment of the user's time. This is an especially difficult challenge when users need to deal with multi-sensor data that usually are of different structures and resolutions. The AIS has taken a major step towards meeting this challenge by incorporating an underlying infrastructure, called the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni," that integrates various components to support web interfaces that ,allow users to perform interactive analysis on-line without downloading any data. Several instances of the Giovanni-based interface have been or are being created to serve users of TRMM precipitation, MODIS aerosol, and SeaWiFS ocean color data, as well as agricultural applications users. Giovanni-based interfaces are simple to use but powerful. The user selects geophysical ,parameters, area of interest, and time period; and the system generates an output ,on screen in a matter of seconds.

  2. Marching to the beat of Moore's Law

    NASA Astrophysics Data System (ADS)

    Borodovsky, Yan

    2006-03-01

    Area density scaling in integrated circuits, defined as transistor count per unit area, has followed the famous observation-cum-prediction by Gordon Moore for many generations. Known as "Moore's Law" which predicts density doubling every 18-24 month, it has provided all important synchronizing guidance and reference for tools and materials suppliers, IC manufacturers and their customers as to what minimal requirements their products and services need to meet to satisfy technical and financial expectations in support of the infrastructure required for the development and manufacturing of corresponding technology generation nodes. Multiple lithography solutions are usually under considerations for any given node. In general, three broad classes of solutions are considered: evolutionary - technology that is extension of existing technology infrastructure at similar or slightly higher cost and risk to schedule; revolutionary - technology that discards significant parts of the existing infrastructure at similar cost, higher risk to schedule but promises higher capability as compared to the evolutionary approach; and last but not least, disruptive - approach that as a rule promises similar or better capabilities, much lower cost and wholly unpredictable risk to schedule and products yields. This paper examines various lithography approaches, their respective merits against criteria of respective infrastructure availability, affordability and risk to IC manufacturer's schedules and strategy involved in developing and selecting best solution in an attempt to sort out key factors that will impact the decision on the lithography choice for large-scale manufacturing for the future technology nodes.

  3. Molecular Genetics Information System (MOLGENIS): alternatives in developing local experimental genomics databases.

    PubMed

    Swertz, Morris A; De Brock, E O; Van Hijum, Sacha A F T; De Jong, Anne; Buist, Girbe; Baerends, Richard J S; Kok, Jan; Kuipers, Oscar P; Jansen, Ritsert C

    2004-09-01

    Genomic research laboratories need adequate infrastructure to support management of their data production and research workflow. But what makes infrastructure adequate? A lack of appropriate criteria makes any decision on buying or developing a system difficult. Here, we report on the decision process for the case of a molecular genetics group establishing a microarray laboratory. Five typical requirements for experimental genomics database systems were identified: (i) evolution ability to keep up with the fast developing genomics field; (ii) a suitable data model to deal with local diversity; (iii) suitable storage of data files in the system; (iv) easy exchange with other software; and (v) low maintenance costs. The computer scientists and the researchers of the local microarray laboratory considered alternative solutions for these five requirements and chose the following options: (i) use of automatic code generation; (ii) a customized data model based on standards; (iii) storage of datasets as black boxes instead of decomposing them in database tables; (iv) loosely linking to other programs for improved flexibility; and (v) a low-maintenance web-based user interface. Our team evaluated existing microarray databases and then decided to build a new system, Molecular Genetics Information System (MOLGENIS), implemented using code generation in a period of three months. This case can provide valuable insights and lessons to both software developers and a user community embarking on large-scale genomic projects. http://www.molgenis.nl

  4. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service

    PubMed Central

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee

    2015-01-01

    Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962

  5. Communities ready for takeoffIntegrating social assets for biofuel site-selection modeling.

    PubMed

    Rijkhoff, Sanne A M; Hoard, Season A; Gaffney, Michael J; Smith, Paul M

    2017-01-01

    Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.

  6. The Roles of Science in Local Resilience Policy Development: A Case Study of Three U.S. Cities

    NASA Astrophysics Data System (ADS)

    Clavin, C.; Gupta, N.

    2015-12-01

    The development and deployment of resilience policies within communities in the United States often respond to the place-based, hazard-specific nature of disasters. Prior to the onset of a disaster, municipal and regional decision makers establish long-term development policies, such as land use planning, infrastructure investment, and economic development policies. Despite the importance of incorporating disaster risk within community decision making, resilience and disaster risk are only one consideration community decision makers weigh when choosing how and whether to establish resilience policy. Using a case study approach, we examine the governance, organizational, management, and policy making processes and the involvement of scientific advice in designing and implementing resilience policy in three U.S. communities: Los Angeles, CA; Norfolk, VA; and Flagstaff, AZ. Disaster mitigation or resilience initiatives were developed and deployed in each community with differing levels and types of scientific engagement. Engagement spanned from providing technical support with traditional risk assessment to direct engagement with community decision makers and design of community resilience outreach. Best practices observed include embedding trusted, independent scientific advisors with strong community credibility within local government agencies, use of interdisciplinary and interdepartmental expert teams with management and technical skillsets, and establishing scientifically-informed disaster and hazard scenarios to enable community outreach. Case study evidence suggest science communication and engagement within and across municipal government agencies and scientifically-informed direct engagement with community stakeholders are effective approaches and roles that disaster risk scientists can fill to support resilience policy development.

  7. Assessing Storm Vulnerabilities and Resilience Strategies: A Scenario-Method for Engaging Stakeholders of Public/Private Maritime Infrastructure

    NASA Astrophysics Data System (ADS)

    Becker, A.; Burroughs, R.

    2014-12-01

    This presentation discusses a new method to assess vulnerability and resilience strategies for stakeholders of coastal-dependent transportation infrastructure, such as seaports. Much coastal infrastructure faces increasing risk to extreme events resulting from sea level rise and tropical storms. As seen after Hurricane Sandy, natural disasters result in economic costs, damages to the environment, and negative consequences on resident's quality of life. In the coming decades, tough decisions will need to be made about investment measures to protect critical infrastructure. Coastal communities will need to weigh the costs and benefits of a new storm barrier, for example, against those of retrofitting, elevating or simply doing nothing. These decisions require understanding the priorities and concerns of stakeholders. For ports, these include shippers, insurers, tenants, and ultimate consumers of the port cargo on a local and global scale, all of whom have a stake in addressing port vulnerabilities.Decision-makers in exposed coastal areas need tools to understand stakeholders concerns and perceptions of potential resilience strategies. For ports, they need answers to: 1) How will stakeholders be affected? 2) What strategies could be implemented to build resilience? 3) How effectively would the strategies mitigate stakeholder concerns? 4) What level of time and investment would strategies require? 5) Which stakeholders could/should take responsibility? Our stakeholder-based method provides answers to questions 1-3 and forms the basis for further work to address 4 and 5.Together with an expert group, we developed a pilot study for stakeholders of Rhode Island's critical energy port, the Port of Providence. Our method uses a plausible extreme storm scenario with localized visualizations and a portfolio of potential resilience strategies. We tailor a multi-criteria decision analysis tool and, through a series of workshops, we use the storm scenario, resilience strategies, and decision tool to elicit perceptions and priorities of port stakeholders. Results provide new knowledge to assist decision-makers allocate investments of time, money, and staff resources. We intend for our method to be utilized in other port communities around Rhode Island and in other coastal states.

  8. Cost Optimization of Water Resources in Pernambuco, Brazil: Valuing Future Infrastructure and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Kumar, Ipsita; Josset, Laureline; Lall, Upmanu; Cavalcanti e Silva, Erik; Cordeiro Possas, José Marcelo; Cauás Asfora, Marcelo

    2017-04-01

    Optimal management of water resources is paramount in semi-arid regions to limit strains on the society and economy due to limited water availability. This problem is likely to become even more recurrent as droughts are projected to intensify in the coming years, causing increasing stresses to the water supply in the concerned areas. The state of Pernambuco, in the Northeast Brazil is one such case, where one of the largest reservoir, Jucazinho, has been at approximately 1% capacity throughout 2016, making infrastructural challenges in the region very real. To ease some of the infrastructural stresses and reduce vulnerabilities of the water system, a new source of water from Rio São Francisco is currently under development. Till its development, water trucks have been regularly mandated to cover water deficits, but at a much higher cost, thus endangering the financial sustainability of the region. In this paper, we propose to evaluate the sustainability of the considered water system by formulating an optimization problem and determine the optimal operations to be conducted. We start with a comparative study of the current and future infrastructures capabilities to face various climate. We show that while the Rio Sao Francisco project mitigates the problems, both implementations do not prevent failure and require the reliance on water trucks during prolonged droughts. We also study the cost associated with the provision of water to the municipalities for several streamflow forecasts. In particular, we investigate the value of climate predictions to adapt operational decisions by comparing the results with a fixed policy derived from historical data. We show that the use of climate information permits the reduction of the water deficit and reduces overall operational costs. We conclude with a discussion on the potential of the approach to evaluate future infrastructure developments. This study is funded by the Inter-American Development Bank (IADB), and in partnership with the Pernambuco State Agency for Climate and Water (Agência Pernambucana de Águas e Clima - APAC), RTI, and Arizona State University under the title "A Water Resources Decision Support System to Reduce Drought Vulnerability and Enable Adaptation to Climate Variability and Change in Pernambuco." Laureline Josset is funded by the Swiss National Science Foundation (SNSF grant P2LAP2_161876).

  9. Building a Shared Understanding of Phenology

    NASA Astrophysics Data System (ADS)

    Rosemartin, A.; Posthumus, E.; Gerst, K.

    2017-12-01

    The USA National Phenology Network (USA-NPN) seeks to advance the science of phenology and support the use of phenology information in decision-making. We envision that natural resource, human health, recreation and land-use decisions, in the context of a variable and changing climate, will be supported by USA-NPN products and tools. To achieve this vision we developed a logic model, breaking down the necessary inputs (e.g., IT infrastructure), participants, activities and the short- to long-term goals (e.g., use of phenological information in adaptive management). Here we compare the ongoing activities and outcomes of three recent collaborations to our logic model, in order to improve the model and inform future collaborations. At Midway Atoll National Wildlife Refuge, resource managers use the USA-NPN's phenology monitoring program to pinpoint the minimum number of days between initial growth and seed set in an invasive species. The data output and calendar visualizations that USA-NPN provides are sufficient to identify the appropriate treatment window. In contrast to a direct relationship with a natural resource manager using USA-NPN tools and products, some collaborations require substantive iterative work between partners. USA-NPN and National Park Service staff, along with academic researchers, assessed advancement in the timing of spring, and delivered the work in a format appropriate for park managers. Lastly, collaborations with indigenous communities reveal a requirement to reconsider the relationship between Western science and indigenous knowledge systems, as well as address ethical considerations and develop trust, before Western science can be meaningfully incorporated into decision-making. While the USA-NPN is a boundary organization, working in between federal agencies, states and universities, and is mandated to support decision-making, we still face challenges in generating usable science. We share lessons learned based on our experience with diverse and evolving partnerships.

  10. Consideration of an Applied Model of Public Health Program Infrastructure

    PubMed Central

    Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith

    2015-01-01

    Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417

  11. Decision support for redesigning wastewater treatment technologies.

    PubMed

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  12. Beyond the short term : transportation asset management for long-term sustainability, accountability and performance

    DOT National Transportation Integrated Search

    2010-01-01

    Transportation Asset Management (TAM) has long been recognized as a sound, long-term approach to managing infrastructure. It provides decision makers with a rational, long-term systematic process for making difficult and complex decisions about how t...

  13. The EPOS Legal and Governance Framework : tailoring the infrastructure to fit the needs of the EPOS services

    NASA Astrophysics Data System (ADS)

    Kohler, Elisabeth; Pedersen, Helle; Kontkanen, Pirjo; Korja, Annakaisa; Lauterjung, Jörn; Haslinger, Florian; Sangianantoni, Agata; Bartolini, Alessandro; Consortium, Epos

    2016-04-01

    One of the most important issues regarding a pan-European distributed large scale research infrastructure is the setting up of its legal and governance structure as this will shape the very operation of the undertaking, i.e. the decision-making process, the allocation of tasks and resources as well as the relationship between the different bodies. Ensuring long-term operational services requires a robust, coherent and transparent legal and governance framework across all of the EPOS TCS (Thematic Core Services) and ICS (Integrated Core Services) that is well aligned to the EPOS global architecture. The chosen model for the EPOS legal entity is the ERIC (European Research Infrastructure Consortium). While the statutory seat of EPOS-ERIC will be in Rome, Italy, most of the services will be hosted in other countries. Specific agreements between EPOS-ERIC and the legal bodies hosting EPOS services will be implemented to allow proper coordination of activities. The objective is to avoid multiple agreements and, where possible, to standardize them in order to reach a harmonized situation across all services. For the governance careful attention will be paid to the decision-making process, the type of decisions and the voting rights, the definition of responsibilities, rights and duties, the reporting mechanisms, as well as other issues like who within a TCS represents the service to the 'outside' world or who advices the TCS on which subjects. Data policy is another crucial issue as EPOS aims to provide interdisciplinary services to researchers interested in geoscience, including access to data, metadata, data products, software and IT tools. EPOS also provides access to computational resources for visualization and processing. Beyond the general principles of Open Access and Open Source the following questions have to be addressed: scope and nature of data that will be accepted; intellectual property rights in data and terms under which data will be shared; openness and availability of data; data privacy and security; publication and attribution; liability and violations or misuse of data. To support the challenges of the EPOS legal, governance, and also financial framework, EPOS will implement a sophisticated metadata catalog and associated integrated services in its ICT architecture.

  14. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  15. Handling Emergency Management in [an] Object Oriented Modeling Environment

    NASA Technical Reports Server (NTRS)

    Tokgoz, Berna Eren; Cakir, Volkan; Gheorghe, Adrian V.

    2010-01-01

    It has been understood that protection of a nation from extreme disasters is a challenging task. Impacts of extreme disasters on a nation's critical infrastructures, economy and society could be devastating. A protection plan itself would not be sufficient when a disaster strikes. Hence, there is a need for a holistic approach to establish more resilient infrastructures to withstand extreme disasters. A resilient infrastructure can be defined as a system or facility that is able to withstand damage, but if affected, can be readily and cost-effectively restored. The key issue to establish resilient infrastructures is to incorporate existing protection plans with comprehensive preparedness actions to respond, recover and restore as quickly as possible, and to minimize extreme disaster impacts. Although national organizations will respond to a disaster, extreme disasters need to be handled mostly by local emergency management departments. Since emergency management departments have to deal with complex systems, they have to have a manageable plan and efficient organizational structures to coordinate all these systems. A strong organizational structure is the key in responding fast before and during disasters, and recovering quickly after disasters. In this study, the entire emergency management is viewed as an enterprise and modelled through enterprise management approach. Managing an enterprise or a large complex system is a very challenging task. It is critical for an enterprise to respond to challenges in a timely manner with quick decision making. This study addresses the problem of handling emergency management at regional level in an object oriented modelling environment developed by use of TopEase software. Emergency Operation Plan of the City of Hampton, Virginia, has been incorporated into TopEase for analysis. The methodology used in this study has been supported by a case study on critical infrastructure resiliency in Hampton Roads.

  16. Water scarcity and urban forest management: introduction

    Treesearch

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  17. 77 FR 60687 - Record of Decision for the U.S. Marine Corps Basewide Water Infrastructure Project at Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Water Infrastructure Project at Marine Corps Base Camp Pendleton, California AGENCY: Department of the... Environmental Policy Act (NEPA) of 1969, 42 United States Code (U.S.C.) Section 4332(2)(c), the regulations of the Council on Environmental Quality for Implementing the Procedural Provisions of NEPA (40 Code of...

  18. Integrating disease management into the outpatient delivery system during and after managed care.

    PubMed

    Villagra, Victor G

    2004-01-01

    Managed care introduced disease management as a replacement strategy to utilization management. The focus changed from influencing treatment decisions to supporting self-care and compliance. Disease management rendered operational many elements of the chronic care model, but it did so outside the delivery system, thus escaping the financial limitations, cultural barriers, and inertia inherent in effecting radical change from within. Medical management "after managed care" should include the functional and structural integration of disease management with primary care clinics. Such integration would supply the infrastructure that primary care physicians need to coordinate the care of chronically ill patients more effectively.

  19. Indicators and protocols for monitoring impacts of formal and informal trails in protected areas

    USGS Publications Warehouse

    Marion, Jeffrey L.; Leung, Yu-Fai

    2011-01-01

    Trails are a common recreation infrastructure in protected areas and their conditions affect the quality of natural resources and visitor experiences. Various trail impact indicators and assessment protocols have been developed in support of monitoring programs, which are often used for management decision-making or as part of visitor capacity management frameworks. This paper reviews common indicators and assessment protocols for three types of trails, surfaced formal trails, unsurfaced formal trails, and informal (visitor-created) trails. Monitoring methods and selected data from three U.S. National Park Service units are presented to illustrate some common trail impact indicators and assessment options.

  20. Impacts of psychological science on national security agencies post-9/11.

    PubMed

    Brandon, Susan E

    2011-09-01

    Psychologists have been an integral part of national security agencies since World War I, when psychological science helped in personnel selection. A robust infrastructure supporting wider applications of psychology to military and intelligence problems developed further during World War II and the years following, primarily in the areas of testing, human factors, perception, and the decision sciences. Although the nature of the attacks on 9/11 raised the level of perceived need for increased human-based intelligence, the impacts of psychologists on the policies and practices of national security agencies in the decade since have not increased significantly. © 2011 American Psychological Association

  1. Bronx Zoo cogeneration project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivet, P.H.

    The New York Zoological Society commenced feasibility studies for a proposed cogeneration and district heating system for the Bronz Zoo in spring 1982. Early studies focused on evaluating the Zoo's energy loads, infrastructure, and energy delivery and financing systems. The Zoological Society and New York City joined in the decision to support the construction of a system which would serve not only the Bronx Zoo but also five nearby City-funded installations, including the adjacent New York Botanical Garden. Since the submission of that study, the project has been modified in scope, scaling back to a generating capacity designed to servemore » only the Bronz Zoo.« less

  2. A science and technology initiative within the office of civilian radioactive waste management

    USGS Publications Warehouse

    Budnitz, R.J.; Kiess, T.E.; Peters, M.; Duncan, D.

    2003-01-01

    In 2002, by following a national decision-making process that had been specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain (YM) was designated as the site for the nation's geologic repository for commercial spent nuclear fuel (SNF). The U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) must now obtain regulatory approval to construct and operate a repository there, and to develop transportation and infrastructure needed to support operations. The OCRWM has also recently begun a separate Science and Technology (S&T) initiative, whose purposes, beginnings, current projects, and future plans are described here.

  3. Evaluating science return in space exploration initiative architectures

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann; Spudis, Paul D.

    1993-01-01

    Science is an important aspect of the Space Exploration Initiative, a program to explore the Moon and Mars with people and machines. Different SEI mission architectures are evaluated on the basis of three variables: access (to the planet's surface), capability (including number of crew, equipment, and supporting infrastructure), and time (being the total number of man-hours available for scientific activities). This technique allows us to estimate the scientific return to be expected from different architectures and from different implementations of the same architecture. Our methodology allows us to maximize the scientific return from the initiative by illuminating the different emphases and returns that result from the alternative architectural decisions.

  4. Evaluation of uncertainty in determination of neutral axis and deformed shape of beam structures : final report.

    DOT National Transportation Integrated Search

    2016-01-01

    With aging infrastructure, it becomes crucial to make informed decisions about maintenance and : preservation actions, as well as renewal of civil structures. Structural Health Monitoring (SHM) can be : an important aid in this decision process, but ...

  5. Learning from Health Information Exchange Technical Architecture and Implementation in Seven Beacon Communities

    PubMed Central

    McCarthy, Douglas B.; Propp, Karen; Cohen, Alexander; Sabharwal, Raj; Schachter, Abigail A.; Rein, Alison L.

    2014-01-01

    As health care providers adopt and make “meaningful use” of health information technology (health IT), communities and delivery systems must set up the infrastructure to facilitate health information exchange (HIE) between providers and numerous other stakeholders who have a role in supporting health and care. By facilitating better communication and coordination between providers, HIE has the potential to improve clinical decision-making and continuity of care, while reducing unnecessary use of services. When implemented as part of a broader strategy for health care delivery system and payment reform, HIE capability also can enable the use of analytic tools needed for population health management, patient engagement in care, and continuous learning and improvement. The diverse experiences of seven communities that participated in the three-year federal Beacon Community Program offer practical insight into factors influencing the technical architecture of exchange infrastructure and its role in supporting improved care, reduced cost, and a healthier population. The case studies also document challenges faced by the communities, such as significant time and resources required to harmonize variations in the interpretation of data standards. Findings indicate that their progress developing community-based HIE strategies, while driven by local needs and objectives, is also influenced by broader legal, policy, and market conditions. PMID:25848591

  6. Learning from health information exchange technical architecture and implementation in seven beacon communities.

    PubMed

    McCarthy, Douglas B; Propp, Karen; Cohen, Alexander; Sabharwal, Raj; Schachter, Abigail A; Rein, Alison L

    2014-01-01

    As health care providers adopt and make "meaningful use" of health information technology (health IT), communities and delivery systems must set up the infrastructure to facilitate health information exchange (HIE) between providers and numerous other stakeholders who have a role in supporting health and care. By facilitating better communication and coordination between providers, HIE has the potential to improve clinical decision-making and continuity of care, while reducing unnecessary use of services. When implemented as part of a broader strategy for health care delivery system and payment reform, HIE capability also can enable the use of analytic tools needed for population health management, patient engagement in care, and continuous learning and improvement. The diverse experiences of seven communities that participated in the three-year federal Beacon Community Program offer practical insight into factors influencing the technical architecture of exchange infrastructure and its role in supporting improved care, reduced cost, and a healthier population. The case studies also document challenges faced by the communities, such as significant time and resources required to harmonize variations in the interpretation of data standards. Findings indicate that their progress developing community-based HIE strategies, while driven by local needs and objectives, is also influenced by broader legal, policy, and market conditions.

  7. Reconciling Scale Mismatch in Water Governance, Hydro-climatic Processes and Infrastructure Systems of Water Supply in Las Vegas

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Alarcon, T.; Portney, K.; Islam, S.

    2013-12-01

    Water resource systems are a classic example of a common pool resource due to the high cost of exclusion and the subtractability of the resource; for common pool resources, the performance of governance systems primarily depends on how well matched the institutional arrangements and rules are to the biophysical conditions and social norms. Changes in water governance, hydro-climatic processes and infrastructure systems occur on disparate temporal and spatial scales. A key challenge is the gap between current climate change model resolution, and the spatial and temporal scale of urban water supply decisions. This gap will lead to inappropriate management policies if not mediated through a carefully crafted decision making process. Traditional decision support and planning methods (DSPM) such as classical decision analysis are not equipped to deal with a non-static climate. While emerging methods such as decision scaling, robust decision making and real options are designed to deal with a changing climate, governance systems have evolved under the assumption of a static climate and it is not clear if these methods are well suited to the existing governance regime. In our study, these questions are contextualized by examining an urban water utility that has made significant changes in policy to adapt to changing conditions: the Southern Nevada Water Authority (SNWA) which serves metropolitan Las Vegas. Like most desert cities, Las Vegas exists because of water; the artesian springs of the Las Vegas Valley once provided an ample water supply for Native Americans, ranchers and later a small railroad city. However, population growth has increased demands far beyond local supplies. The area now depends on the Colorado River for the majority of its water supply. Natural climate variability with periodic droughts has further challenged water providers; projected climate changes and further population growth will exacerbate these challenges. Las Vegas is selected as a case study due to the combined challenges of population growth and climate change, common in the arid west, and due its cooperative institutional response to these challenges, unprecedented in the arid west. To begin to disentangle this question we have analyzed the institutional arrangements and rules which govern water decision making in the Las Vegas Valley and evaluated the existing DSPM used by the SNWA and partner utilities. Presented here are the preliminary results from an ongoing project.

  8. Framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.

    2016-06-25

    Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the security and resilience of the electric power grid. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be difficult, as the statistical basis needed to directly estimate the probabilities and consequences of their occurrence does not exist. Because risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact, low-frequency events (HILFs) ismore » essential. Insights from such a model indicate where resources are most rationally and effectively expended. A risk-informed realization of designing and maintaining a grid resilient to HILFs will demand consideration of a spectrum of hazards/threats to infrastructure integrity, an understanding of their likelihoods of occurrence, treatment of the fragilities of critical assets to the stressors induced by such events, and through modeling grid network topology, the extent of damage associated with these scenarios. The model resulting from integration of these elements will allow sensitivity assessments based on optional risk management strategies, such as alternative pooling, staging and logistic strategies, and emergency contingency planning. This study is focused on the development of an end-to-end HILF risk-assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision-makers across numerous stakeholder groups in directing resources optimally towards the management of risks to operational continuity.« less

  9. e-Infrastructures supporting research into depression, self-harm and suicide.

    PubMed

    McCafferty, S; Doherty, T; Sinnott, R O; Watt, J

    2010-08-28

    The Economic and Social Research Council (ESRC)-funded Data Management through e-Social Sciences (DAMES) project is investigating, as one of its four research themes, how research into depression, self-harm and suicide may be enhanced through the adoption of e-Science infrastructures and techniques. In this paper, we explore the challenges in supporting such research infrastructures and describe the distributed and heterogeneous datasets that need to be provisioned to support such research. We describe and demonstrate the application of an advanced user and security-driven infrastructure that has been developed specifically to meet these challenges in an on-going study into depression, self-harm and suicide.

  10. Personalized Infrastructure: Leveraging Behavioral Strategies for Future Mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duvall, Andrew L

    For decades, the transportation system has been built to position the personal automobile at the pinnacle of mobility options. This prominence is strongly reflected in individual and population behaviors, and supported by coevolved transportation policy, social norms, funding, and physical structures. Such has been the status quo for the living memory of the U.S. population. However, with the advent of emergent, technologically driven mobility options, the transportation system is in an era of rapid and disruptive change. No longer is transportation infrastructure an externality predominantly composed of physical elements; it is also now a personalized interface carried in the pocketsmore » of the majority of the population. Perceptions of personal mobility are evolving, in large part because of the proliferation of smartphone technology and the related Internet of Things (IoT), which will become increasingly essential within future transportation systems. With the emergence of personalized mobility infrastructure, many intervention approaches to influence transportation behavior do not adequately acknowledge the complexity of the social/digital environment within which transportation decisions are made. Transportation decisions are influenced by multiple facets, including costs and benefits in time and money, but also by sociocultural elements shaped by social norms and diffusion of ideas. Understanding of factors that lead to transportation behaviors can help to identify incentives and leverage points whereby alternative choices may be most accepted by individuals, and which, if well coordinated, may lead to improved transportation energy outcomes. How can change be initiated to shift away from the transportation status quo? Is it possible to use technologically delivered incentives to produce meaningful changes in transportation behavior? What types of incentives and at what perceived value is necessary to induce changes in behavior? As transportation agencies look toward an ever more complex mobility landscape, and with a quickly growing population, we look for answers to these questions as the core of developing strategies for the future of transportation. Using available data from emergent modes, and experiments conducted as part of an Advanced Research Projects Agency - Energy (ARPA-E) Traveler Response Architecture using Novel Signaling for Network Efficiency in Transportation (TRANSNET) project, we look at how the sharing economy and transportation mobility services have begun to radically alter transportation behavior, while operating in parallel with traditional transportation infrastructure. Emerging modes and practices are affecting car dependence and enabling multimodality. We weigh influences on travel behaviors, identify decision breakpoints where inelastic behavior becomes elastic, incentives, and societal leverage points.« less

  11. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    NASA Astrophysics Data System (ADS)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the implementation of the RRA methodology. The main output of the analysis are climate risk products produced with the DEcision support SYstem for COastal climate change impact assessment (DESYCO) and represented by GIS-based maps and statistics of hazard, exposure, physical and environmental vulnerability, risk and damage. These maps are useful to transfer information about climate change impacts to stakeholders and decision makers, to allow the classification and prioritization of areas that are likely to be affected by climate change impacts more severely than others in the same region, and therefore to support the identification of suitable areas for infrastructure, economic activities and human settlements toward the development of regional adaptation plans. The climate risk products and the results of North Adriatic case study will be here presented and discussed.

  12. Dynamic Collaboration Infrastructure for Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.

  13. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thwaites, D; Holloway, L; Bailey, M

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction andmore » mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions, improved treatment quality and potential practice changes. The early indications from the distributed learning and radiomics pilots strengthen this. Improved routine patient data quality should strengthen such rapid learning systems.« less

  14. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Lowery, M.; Whelchel, A.

    2013-12-01

    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban planning process by addressing some of these needs. In this paper we highlight the decision tools available today, discuss their application in selected case studies, and present a gap analysis with opportunities for innovation and future work.

  15. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and a summary of how technologies where leveraged into a significant operational system for the Earth Observation community.

  16. The Pedagogy of Complex Work Support Systems: Infrastructuring Practices and the Production of Critical Awareness in Risk Auditing

    ERIC Educational Resources Information Center

    Mathisen, Arve; Nerland, Monika

    2012-01-01

    This paper employs a socio-technical perspective to explore the role of complex work support systems in organising knowledge and providing opportunities for learning in professional work. Drawing on concepts from infrastructure studies, such systems are seen as work infrastructures which connect information, knowledge, standards and work…

  17. Designing and Evaluating Participatory Cyber-Infrastructure Systems for Multi-Scale Citizen Science

    ERIC Educational Resources Information Center

    Newman, Gregory J.

    2010-01-01

    Widespread and continuous spatial and temporal environmental data is essential for effective environmental monitoring, sustainable natural resource management, and ecologically responsible decisions. Our environmental monitoring, data management and reporting enterprise is not matched to current problems, concerns, and decision-making needs.…

  18. Smart homes and ambient assisted living applications: from data to knowledge-empowering or overwhelming older adults? Contribution of the IMIA Smart Homes and Ambiant Assisted Living Working Group.

    PubMed

    Demiris, G; Thompson, H

    2011-01-01

    As health care systems face limited resources and workforce shortages to address the complex needs of older adult populations, innovative approaches utilizing information technology can support aging. Smart Home and Ambient Assisted Living (SHAAL) systems utilize advanced and ubiquitous technologies including sensors and other devices that are integrated in the residential infrastructure or wearable, to capture data describing activities of daily living and health related events. This paper highlights how data from SHAAL systems can lead to information and knowledge that ultimately improves clinical outcomes and quality of life for older adults as well as quality of health care services. We conducted a review of personal health record applications specifically for older adults and approaches to using information to improve elder care. We present a framework that showcases how data captured from SHAAL systems can be processed to provide meaningful information that becomes part of a personal health record. Synthesis and visualization of information resulting from SHAAL systems can lead to knowledge and support education, delivery of tailored interventions and if needed, transitions in care. Such actions can involve multiple stakeholders as part of shared decision making. SHAAL systems have the potential to support aging and improve quality of life and decision making for older adults and their families. The framework presented in this paper demonstrates how emphasis needs to be placed into extracting meaningful information from new innovative systems that will support decision making. The challenge for informatics designers and researchers is to facilitate an evolution of SHAAL systems expanding beyond demonstration projects to actual interventions that will improve health care for older adults.

  19. Development and implementation of an Integrated Water Resources Management System (IWRMS)

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.; Busch, C.

    2011-04-01

    One of the innovative objectives in the EC project BRAHMATWINN was the development of a stakeholder oriented Integrated Water Resources Management System (IWRMS). The toolset integrates the findings of the project and presents it in a user friendly way for decision support in sustainable integrated water resources management (IWRM) in river basins. IWRMS is a framework, which integrates different types of basin information and which supports the development of IWRM options for climate change mitigation. It is based on the River Basin Information System (RBIS) data models and delivers a graphical user interface for stakeholders. A special interface was developed for the integration of the enhanced DANUBIA model input and the NetSyMod model with its Mulino decision support system (mulino mDss) component. The web based IWRMS contains and combines different types of data and methods to provide river basin data and information for decision support. IWRMS is based on a three tier software framework which uses (i) html/javascript at the client tier, (ii) PHP programming language to realize the application tier, and (iii) a postgresql/postgis database tier to manage and storage all data, except the DANUBIA modelling raw data, which are file based and registered in the database tier. All three tiers can reside on one or different computers and are adapted to the local hardware infrastructure. IWRMS as well as RBIS are based on Open Source Software (OSS) components and flexible and time saving access to that database is guaranteed by web-based interfaces for data visualization and retrieval. The IWRMS is accessible via the BRAHMATWINN homepage: http://www.brahmatwinn.uni-jena.de and a user manual for the RBIS is available for download as well.

  20. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  1. Monitoring Drought Conditions in the Navajo Nation Using NASA Earth Observations

    NASA Technical Reports Server (NTRS)

    Ly, Vickie; Gao, Michael; Cary, Cheryl; Turnbull-Appell, Sophie; Surunis, Anton

    2016-01-01

    The Navajo Nation, a 65,700 sq km Native American territory located in the southwestern United States, has been increasingly impacted by severe drought events and changes in climate. These events are coupled with a lack of domestic water infrastructure and economic resources, leaving approximately one-third of the population without access to potable water in their homes. Current methods of monitoring drought are dependent on state-based monthly Standardized Precipitation Index value maps calculated by the Western Regional Climate Center. However, these maps do not provide the spatial resolution needed to illustrate differences in drought severity across the vast Nation. To better understand and monitor drought events and drought regime changes in the Navajo Nation, this project created a geodatabase of historical climate information specific to the area, and a decision support tool to calculate average Standardized Precipitation Index values for user-specified areas. The tool and geodatabase use Tropical Rainfall Monitoring Mission (TRMM) and Global Precipitation Monitor (GPM) observed precipitation data and Parameter-elevation Relationships on Independent Slopes Model modeled historical precipitation data, as well as NASA's modeled Land Data Assimilation Systems deep soil moisture, evaporation, and transpiration data products. The geodatabase and decision support tool will allow resource managers in the Navajo Nation to utilize current and future NASA Earth observation data for increased decision-making capacity regarding future climate change impact on water resources.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Two online resources help fleets evaluate the economic soundness of a compressed natural gas program. The National Renewable Energy Laboratory's (NREL's) Vehicle Infrastructure and Cash-Flow Evaluation (VICE 2.0) model and the accompanying report, Building a Business Case for Compressed Natural Gas in Fleet Applications, are uniquely designed for fleet managers considering an investment in CNG and can help ensure wise investment decisions about CNG vehicles and infrastructure.

  3. Freight transportation : short sea shipping option shows importance of systematic approach to public investment decisions : report to the Senate Committee on Commerce, Science, and Transportation and the House Committee on Transportation Infrastructure

    DOT National Transportation Integrated Search

    2005-07-01

    A dramatic increase in freight moving on the nation's highways and rail lines, coupled with growing congestion and infrastructure limitations, has prompted DOT to explore new mobility-enhancing options like short sea shipping (SSS)--transporting frei...

  4. Evaluation of strategies for nature-based solutions to drought: a decision support model at the national scale

    NASA Astrophysics Data System (ADS)

    Simpson, Mike; Ives, Matthew; Hall, Jim

    2016-04-01

    There is an increasing body of evidence in support of the use of nature based solutions as a strategy to mitigate drought. Restored or constructed wetlands, grasslands and in some cases forests have been used with success in numerous case studies. Such solutions remain underused in the UK, where they are not considered as part of long-term plans for supply by water companies. An important step is the translation of knowledge on the benefits of nature based solutions at the upland/catchment scale into a model of the impact of these solutions on national water resource planning in terms of financial costs, carbon benefits and robustness to drought. Our project, 'A National Scale Model of Green Infrastructure for Water Resources', addresses this issue through development of a model that can show the costs and benefits associated with a broad roll-out of nature based solutions for water supply. We have developed generalised models of both the hydrological effects of various classes and implementations of nature-based approaches and their economic impacts in terms of construction costs, running costs, time to maturity, land use and carbon benefits. Our next step will be to compare this work with our recent evaluation of conventional water infrastructure, allowing a case to be made in financial terms and in terms of security of water supply. By demonstrating the benefits of nature based solutions under multiple possible climate and population scenarios we aim to demonstrate the potential value of using nature based solutions as a component of future long-term water resource plans. Strategies for decision making regarding the selection of nature based and conventional approaches, developed through discussion with government and industry, will be applied to the final model. Our focus is on keeping our work relevant to the requirements of decision-makers involved in conventional water planning. We propose to present the outcomes of our model for the evaluation of nature-based solutions at catchment scale and ongoing results of our national-scale model.

  5. EU-funded initiatives for real world evidence: descriptive analysis of their characteristics and relevance for regulatory decision-making.

    PubMed

    Plueschke, Kelly; McGettigan, Patricia; Pacurariu, Alexandra; Kurz, Xavier; Cave, Alison

    2018-06-14

    A review of European Union (EU)-funded initiatives linked to 'Real World Evidence' (RWE) was performed to determine whether their outputs could be used for the generation of real-world data able to support the European Medicines Agency (EMA)'s regulatory decision-making on medicines. The initiatives were identified from publicly available websites. Their topics were categorised into five areas: 'Data source', 'Methodology', 'Governance model', 'Analytical model' and 'Infrastructure'. To assess their immediate relevance for medicines evaluation, their therapeutic areas were compared with the products recommended for EU approval in 2016 and those included in the EMA pharmaceutical business pipeline. Of 171 originally identified EU-funded initiatives, 65 were selected based on their primary and secondary objectives (35 'Data source' initiatives, 15 'Methodology', 10 'Governance model', 17 'Analytical model' and 25 'Infrastructure'). These 65 initiatives received over 734 million Euros of public funding. At the time of evaluation, the published outputs of the 40 completed initiatives did not always match their original objectives. Overall, public information was limited, data access was not explicit and their sustainability was unclear. The topics matched 8 of 14 therapeutic areas of the products recommended for approval in 2016 and 8 of 15 therapeutic areas in the 2017-2019 pharmaceutical business pipeline. Haematology, gastroenterology or cardiovascular systems were poorly represented. This landscape of EU-funded initiatives linked to RWE which started before 31 December 2016 highlighted that the immediate utilisation of their outputs to support regulatory decision-making is limited, often due to insufficient available information and to discrepancies between outputs and objectives. Furthermore, the restricted sustainability of the initiatives impacts on their downstream utility. Multiple projects focussing on the same therapeutic areas increase the likelihood of duplication of both efforts and resources. These issues contribute to gaps in generating RWE for medicines and diminish returns on the public funds invested. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. The Efficacy of Blue-Green Infrastructure for Pluvial Flood Prevention under Conditions of Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Babovic, Filip; Mijic, Ana; Madani, Kaveh

    2017-04-01

    Urban areas around the world are growing in size and importance; however, cities experience elevated risks of pluvial flooding due to the prevalence of impermeable land surfaces within them. Urban planners and engineers encounter a great deal of uncertainty when planning adaptations to these flood risks, due to the interaction of multiple factors such as climate change and land use change. This leads to conditions of deep uncertainty. Blue-Green (BG) solutions utilise natural vegetation and processes to absorb and retain runoff while providing a host of other social, economic and environmental services. When utilised in conjunction with Decision Making under Deep Uncertainty (DMDU) methodologies, BG infrastructure provides a flexible and adaptable method of "no-regret" adaptation; resulting in a practical, economically efficient, and socially acceptable solution for flood risk mitigation. This work presents the methodology for analysing the impact of BG infrastructure in the context of the Adaptation Tipping Points approach to protect against pluvial flood risk in an iterative manner. An economic analysis of the adaptation pathways is also conducted in order to better inform decision-makers on the benefits and costs of the adaptation options presented. The methodology was applied to a case study in the Cranbrook Catchment in the North East of London. Our results show that BG infrastructure performs better under conditions of uncertainty than traditional grey infrastructure.

  7. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  8. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  9. Evaluation of LOINC for Representing Constitutional Cytogenetic Test Result Reports

    PubMed Central

    Heras, Yan Z.; Mitchell, Joyce A.; Williams, Marc S.; Brothman, Arthur R.; Huff, Stanley M.

    2009-01-01

    Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future. PMID:20351857

  10. Evaluation of LOINC for representing constitutional cytogenetic test result reports.

    PubMed

    Heras, Yan Z; Mitchell, Joyce A; Williams, Marc S; Brothman, Arthur R; Huff, Stanley M

    2009-11-14

    Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future.

  11. Investigations into Gravitational Wave Emission from Compact Body Inspiral Into Massive Black Holes

    NASA Technical Reports Server (NTRS)

    Hughes, Scott A.

    2004-01-01

    Much of the grant's support (and associated time) was used in developmental activity, building infrastructure for the core of the work that the grant supports. Though infrastructure development was the bulk of the activity supported this year, important progress was made in research as well. The two most important "infrastructure" items were in computing hardware and personnel. Research activities were primarily focused on improving and extending. Hughes' Teukolsky-equation-based gravitational-wave generator. Several improvements have been incorporated into this generator.

  12. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key results of an in-depth user requirements exercise, and also the conclusions from a survey of existing technologies and policies for earth science data preservation involving almost five hundred respondents across Europe and beyond will also be outlined. A key aim of the project will also be to create harmonised data preservation and access policies for earth science data in Europe, taking into account the requirements of relevant earth science data users and archive providers across Europe, liaising appropriately with other European e-infrastructure projects, and progress on this will be explained.

  13. MCSDSS: A Multi-Criteria Decision Support System for Merging Geoscience Information with Natural User Interfaces, Preference Ranking, and Interactive Data Utilities

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.; Gentle, J.

    2015-12-01

    The multi-criteria decision support system (MCSDSS) is a newly completed application for touch-enabled group decision support that uses D3 data visualization tools, a geojson conversion utility that we developed, and Paralelex to create an interactive tool. The MCSDSS is a prototype system intended to demonstrate the potential capabilities of a single page application (SPA) running atop a web and cloud based architecture utilizing open source technologies. The application is implemented on current web standards while supporting human interface design that targets both traditional mouse/keyboard interactions and modern touch/gesture enabled interactions. The technology stack for MCSDSS was selected with the goal of creating a robust and dynamic modular codebase that can be adjusted to fit many use cases and scale to support usage loads that range between simple data display to complex scientific simulation-based modelling and analytics. The application integrates current frameworks for highly performant agile development with unit testing, statistical analysis, data visualization, mapping technologies, geographic data manipulation, and cloud infrastructure while retaining support for traditional HTML5/CSS3 web standards. The software lifecylcle for MCSDSS has following best practices to develop, share, and document the codebase and application. Code is documented and shared via an online repository with the option for programmers to see, contribute, or fork the codebase. Example data files and tutorial documentation have been shared with clear descriptions and data object identifiers. And the metadata about the application has been incorporated into an OntoSoft entry to ensure that MCSDSS is searchable and clearly described. MCSDSS is a flexible platform that allows for data fusion and inclusion of large datasets in an interactive front-end application capable of connecting with other science-based applications and advanced computing resources. In addition, MCSDSS offers functionality that enables communication with non-technical users for policy, education, or engagement with groups around scientific topics with societal relevance.

  14. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  15. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  16. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  17. A transmission security framework for email-based telemedicine.

    PubMed

    Caffery, Liam J; Smith, Anthony C

    2010-01-01

    Encryption is used to convert an email message to an unreadable format thereby securing patient privacy during the transmission of the message across the Internet. Two available means of encryption are: public key infrastructure (PKI) used in conjunction with ordinary email and secure hypertext transfer protocol (HTTPS) used by secure web-mail applications. Both of these approaches have advantages and disadvantages in terms of viability, cost, usability and compliance. The aim of this study was develop an instrument to identify the most appropriate means of encrypting email communication for telemedicine. A multi-method approach was used to construct the instrument. Technical assessment and existing bodies of knowledge regarding the utility of PKI were analyzed, along with survey results from users of Queensland Health's Child and Youth Mental Health Service secure web-mail service. The resultant decision support model identified that the following conditions affect the choice of encryption technology: correspondent's risk perception, correspondent's identification to the security afforded by encryption, email-client used by correspondents, the tolerance to human error and the availability of technical resources. A decision support model is presented as a flow chart to identify the most appropriate encryption for a specific email-based telemedicine service.

  18. Space Transfer Vehicle Concepts and Requirements Study. Volume 2, Book 2: System and Program Requirements Trade Studies

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    During the 90-day study, support was provided to NASA in defining a point-of-departure space transfer vehicle (STV). The resulting STV concept was performance optimized with a two-stage LTV/LEV configuration. Appendix A reports on the effort during this period of the study. From the end of the 90-day study until the March Interim Review, effort was placed on optimizing the two-stage vehicle approach identified in the 90-day effort. After the March Interim Review, the effort was expanded to perform a full architectural trade study with the intent of developing a decision database to support STV system decisions in response to changing SEI infrastructure concepts. Several of the architecture trade studies were combined in a System Architecture Trade Study. In addition to this trade, system optimization/definition trades and analyses were completed and some special topics were addressed. Program- and system-level trade study and analyses methodologies and results are presented in this section. Trades and analyses covered in this section are: (1) a system architecture trade study; (2) evolution; (3) safety and abort considerations; (4) STV as a launch vehicle upper stage; and (5) optimum crew and cargo split.

  19. The dependence of educational infrastructure on clinical infrastructure.

    PubMed Central

    Cimino, C.

    1998-01-01

    The Albert Einstein College of Medicine needed to assess the growth of its infrastructure for educational computing as a first step to determining if student needs were being met. Included in computing infrastructure are space, equipment, software, and computing services. The infrastructure was assessed by reviewing purchasing and support logs for a six year period from 1992 to 1998. This included equipment, software, and e-mail accounts provided to students and to faculty for educational purposes. Student space has grown at a constant rate (averaging 14% increase each year respectively). Student equipment on campus has grown by a constant amount each year (average 8.3 computers each year). Student infrastructure off campus and educational support of faculty has not kept pace. It has either declined or remained level over the six year period. The availability of electronic mail clearly demonstrates this with accounts being used by 99% of students, 78% of Basic Science Course Leaders, 38% of Clerkship Directors, 18% of Clerkship Site Directors, and 8% of Clinical Elective Directors. The collection of the initial descriptive infrastructure data has revealed problems that may generalize to other medical schools. The discrepancy between infrastructure available to students and faculty on campus and students and faculty off campus creates a setting where students perceive a paradoxical declining support for computer use as they progress through medical school. While clinical infrastructure may be growing, it is at the expense of educational infrastructure at affiliate hospitals. PMID:9929262

  20. Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management.

    PubMed

    Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus

    2017-09-05

    Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.

  1. Urban-Climate Adaptation Tool: Optimizing Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Fellows, J. D.; Bhaduri, B. L.

    2016-12-01

    Cities have an opportunity to become more resilient to future climate change and green through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection and other environmental information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). The initial focus of Urban-CAT is to optimize the placement of green infrastructure (e.g., green roofs, porous pavements, retention basins, etc.) to be better control stormwater runoff and lower the ambient urban temperature. Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic and other environmental data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. This presentation will highlight the methods that drive each of the modules, demo some of the capabilities using Knoxville Tennessee as a case study, and discuss the challenges of working with communities to incorporate climate change into their planning. Next steps on Urban-CAT is to additional capabilities to create a comprehensive climate adaptation tool, including energy, transportation, health, and other key urban services.

  2. The Earth System Grid Federation (ESGF) Project

    NASA Astrophysics Data System (ADS)

    Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark

    2015-04-01

    The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.

  3. Optimizing multimodality treatment for head and neck cancer in rural India.

    PubMed

    Trivedi, N P; Trivedi, P; Trivedi, H; Trivedi, S; Trivedi, N

    2012-01-01

    Multimodality treatment of head and neck cancer in rural India is not always feasible due to lack of infrastructure and logistics. To demonstrate the feasibility of multimodality treatment for head and neck cancer in a community setting in rural India. Community cancer center, retrospective review. This article focuses on practice environment in a cancer clinic in rural India. We evaluated patient profile, treatment protocols, infrastructure availability, factors impacting treatment decisions, cost estimations, completion of treatment, and major treatment-related complications for the patient population treated in our clinic for a 2-year period. A total of 230 head and neck cancer patients were treated with curative intent. Infrastructure support included basic operating room facility (cautery machine, suction, drill system, microscope, and anesthesia machine without ventilator support), blood bank, histopathology laboratory, and computerized tomography machine. Radiation therapy (RT) facility was available in a nearby city, about 75 km away. One hundred and fifty-four (67%) patients presented at an advanced stage, with 138 (60%) receiving multimodality treatment. One hundred and eighty-four (80%) patients underwent primary surgery and 167 (73%) received radiotherapy. Two hundred and twelve (92%) patients completed the treatment, 60 (26%) were lost to follow-up at 18-month median follow-up (range 12-26 months), with 112 patients (66%) being alive, disease free. Totally 142 were major head neck surgeries with 25 free flap reconstructions and 41 regional flaps. There were 15 (6%) major post-op complications and two perioperative mortalities. Average cost of treatment for single modality treatment was approximately 40,000 INR and for multimodality treatment was 80,000 INR. This study demonstrates that it is feasible to provide basic multimodality treatment to head and neck cancer patients in the community.

  4. Electronic Risk Assessment System as an Appropriate Tool for the Prevention of Cancer: a Qualitative Study.

    PubMed

    Javan Amoli, Amir Hossein; Maserat, Elham; Safdari, Reza; Zali, Mohammad Reza

    2015-01-01

    Decision making modalities for screening for many cancer conditions and different stages have become increasingly complex. Computer-based risk assessment systems facilitate scheduling and decision making and support the delivery of cancer screening services. The aim of this article was to survey electronic risk assessment system as an appropriate tool for the prevention of cancer. A qualitative design was used involving 21 face-to-face interviews. Interviewing involved asking questions and getting answers from exclusive managers of cancer screening. Of the participants 6 were female and 15 were male, and ages ranged from 32 to 78 years. The study was based on a grounded theory approach and the tool was a semi- structured interview. Researchers studied 5 dimensions, comprising electronic guideline standards of colorectal cancer screening, work flow of clinical and genetic activities, pathways of colorectal cancer screening and functionality of computer based guidelines and barriers. Electronic guideline standards of colorectal cancer screening were described in the s3 categories of content standard, telecommunications and technical standards and nomenclature and classification standards. According to the participations' views, workflow and genetic pathways of colorectal cancer screening were identified. The study demonstrated an effective role of computer-guided consultation for screening management. Electronic based systems facilitate real-time decision making during a clinical interaction. Electronic pathways have been applied for clinical and genetic decision support, workflow management, update recommendation and resource estimates. A suitable technical and clinical infrastructure is an integral part of clinical practice guidline of screening. As a conclusion, it is recommended to consider the necessity of architecture assessment and also integration standards.

  5. Note on evaluating safety performance of road infrastructure to motivate safety competition.

    PubMed

    Han, Sangjin

    2016-01-01

    Road infrastructures are usually developed and maintained by governments or public sectors. There is no competitor in the market of their jurisdiction. This monopolic feature discourages road authorities from improving the level of safety with proactive motivation. This study suggests how to apply a principle of competition for roads, in particular by means of performance evaluation. It first discusses why road infrastructure has been slow in safety oriented development and management in respect of its business model. Then it suggests some practical ways of how to promote road safety between road authorities, particularly by evaluating safety performance of road infrastructure. These are summarized as decision of safety performance indicators, classification of spatial boundaries, data collection, evaluation, and reporting. Some consideration points are also discussed to make safety performance evaluation on road infrastructure lead to better road safety management.

  6. Breaking the barriers to commercialization of MEMS: a firm's search for competitive advantage

    NASA Astrophysics Data System (ADS)

    Walsh, Steven T.; Linton, Jonathan D.

    1999-08-01

    A model of infrastructure development for MEMS manufacturing Technologies is offered. The role of discontinuous innovation in achieving competitive advantage is briefly reviewed. This is followed by the development of a model that describes the stages in the growth of an infrastructure to support Micro-Electro-Mechanical-Systems infrastructure. We briefly describe how an infrastructure gradually grows to support a new industry, resulting from discontinuous innovation. the model indicates the evolving nature of the actions and investments that firms and governments need to make to support the growth of an immature industry. Consequently, we aim to not only offer a descriptive model, but offer guidance to firms on whether their intentions and resources fit with the state of the industry and to offer policy makers guidance on the timing of different types of support.

  7. On-Site Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Good, James E.

    2008-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. So what do we do when we get to the moon for sustainable exploration. On-site fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The on-site fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR element has worked closely with the ISRU element in the past year to assess the ability of using lunar regolith as a viable feedstock for fabrication material. Preliminary work has shown promise and the ISFR Element will continue to concentrate on this activity. Fabrication capabilities have been furthered with the process certification effort that, when completed, will allow for space-qualified hardware to be manufactured. Materials being investigated include titanium and aluminum alloys as well as lunar regolith simulants with binders. This paper addresses the latest advancements made in the fabrication of infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; infrastructures that allow sustained, affordable and highly effective operations on the Moon and beyond.

  8. Beacons for supporting lunar landing navigation

    NASA Astrophysics Data System (ADS)

    Theil, Stephan; Bora, Leonardo

    2017-03-01

    Current and future planetary exploration missions involve a landing on the target celestial body. Almost all of these landing missions are currently relying on a combination of inertial and optical sensor measurements to determine the current flight state with respect to the target body and the desired landing site. As soon as an infrastructure at the landing site exists, the requirements as well as conditions change for vehicles landing close to this existing infrastructure. This paper investigates the options for ground-based infrastructure supporting the onboard navigation system and analyzes the impact on the achievable navigation accuracy. For that purpose, the paper starts with an existing navigation architecture based on optical navigation and extends it with measurements to support navigation with ground infrastructure. A scenario of lunar landing is simulated and the provided functions of the ground infrastructure as well as the location with respect to the landing site are evaluated. The results are analyzed and discussed.

  9. Exploring the impact of walk–bike infrastructure, safety perception, and built-environment on active transportation mode choice: a random parameter model using New York City commuter data

    DOE PAGES

    Aziz, H. M. Abdul; Nagle, Nicholas N.; Morton, April M.; ...

    2017-02-06

    Here, this study finds the effects of traffic safety, walk-bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk-bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the localmore » authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Furthermore, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The findings will help to make smart investment decisions in context of building sustainable transportation systems accounting for active transportation.« less

  10. Exploring the impact of walk–bike infrastructure, safety perception, and built-environment on active transportation mode choice: a random parameter model using New York City commuter data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Nagle, Nicholas N.; Morton, April M.

    Here, this study finds the effects of traffic safety, walk-bike network facilities, and land use attributes on walk and bicycle mode choice decision in the New York City for home-to-work commute. Applying the flexible econometric structure of random parameter models, we capture the heterogeneity in the decision making process and simulate scenarios considering improvement in walk-bike infrastructure such as sidewalk width and length of bike lane. Our results indicate that increasing sidewalk width, total length of bike lane, and proportion of protected bike lane will increase the likelihood of more people taking active transportation mode This suggests that the localmore » authorities and planning agencies to invest more on building and maintaining the infrastructure for pedestrians. Furthermore, improvement in traffic safety by reducing traffic crashes involving pedestrians and bicyclists will increase the likelihood of taking active transportation modes. Our results also show positive correlation between number of non-motorized trips by the other family members and the likelihood to choose active transportation mode. The findings will help to make smart investment decisions in context of building sustainable transportation systems accounting for active transportation.« less

  11. Enriching Spatial Data Infrastructure (sdi) by User Generated Contents for Transportation

    NASA Astrophysics Data System (ADS)

    Shakeri, M.; Alimohammadi, A.; Sadeghi-Niaraki, A.; Alesheikh, A. A.

    2013-09-01

    Spatial data is one of the most critical elements underpinning decision making for many disciplines. Accessing and sharing spatial data have always been a great struggle for researchers. Spatial data infrastructure (SDI) plays a key role in spatial data sharing by building a suitable platform for collaboration and cooperation among the different data producer organizations. In recent years, SDI vision has been moved toward a user-centric platform which has led to development of a new and enriched generation of SDI (third generation). This vision is to provide an environment where users can cooperate to handle spatial data in an effective and satisfactory way. User-centric SDI concentrates on users, their requirements and preferences while in the past, SDI initiatives were mainly concentrated on technological issues such as the data harmonization, standardized metadata models, standardized web services for data discovery, visualization and download. On the other hand, new technologies such as the GPS-equipped smart phones, navigation devices and Web 2.0 technologies have enabled citizens to actively participate in production and sharing of the spatial information. This has led to emergence of the new phenomenon called the Volunteered Geographic Information (VGI). VGI describes any type of content that has a geographic element which has been voluntarily collected. However, its distinctive element is the geographic information that can be collected and produced by citizens with different formal expertise and knowledge of the spatial or geographical concepts. Therefore, ordinary citizens can cooperate in providing massive sources of information that cannot be ignored. These can be considered as the valuable spatial information sources in SDI. These sources can be used for completing, improving and updating of the existing databases. Spatial information and technologies are an important part of the transportation systems. Planning, design and operation of the transportation systems requires the exchange of large volumes of spatial data and often close cooperation among the various organizations. However, there is no technical and organizational process to get a suitable data infrastructure to address diverse needs of the transportation. Hence, development of a common standards and a simple data exchange mechanism is strongly needed in the field of transportation for decision support. Since one of the main purposes of transportation projects is to improve the quality of services provided to users, it is necessary to involve the users themselves in the decision making processes. This should be done through a public participation and involvement in all stages of the transportation projects. In other words, using public knowledge and information as another source of information is very important to make better and more efficient decisions. Public participation in transportation projects can also help organizations to enhance their public supports; because the lack of public support can lead to failure of technically valid projects. However, due to complexity of the transportation tasks, lack of appropriate environment and methods for facilitation of the public participation, collection and analysis of the public information and opinions, public participation in this field has not been well considered so far. This paper reviews the previous researches based on the enriched SDI development and its movement toward the VGI by focusing on the public participation in transportation projects. To this end, methods and models that have been used in previous researches are studied and classified initially. Then, methods of the previous researchers on VGI and transportation are conceptualized in SDI. Finally, the suggested method for transportation projects is presented. Results indicate success of the new generation of SDI in integration with public participation for transportation projects.

  12. Scalable collaborative risk management technology for complex critical systems

    NASA Technical Reports Server (NTRS)

    Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.

    2004-01-01

    We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.

  13. Information gathering, management and transferring for geospatial intelligence - A conceptual approach to create a spatial data infrastructure

    NASA Astrophysics Data System (ADS)

    Nunes, Paulo; Correia, Anacleto; Teodoro, M. Filomena

    2017-06-01

    Since long ago, information is a key factor for military organizations. In military context the success of joint and combined operations depends on the accurate information and knowledge flow concerning the operational theatre: provision of resources, environment evolution, targets' location, where and when an event will occur. Modern military operations cannot be conceive without maps and geospatial information. Staffs and forces on the field request large volume of information during the planning and execution process, horizontal and vertical geospatial information integration is critical for decision cycle. Information and knowledge management are fundamental to clarify an environment full of uncertainty. Geospatial information (GI) management rises as a branch of information and knowledge management, responsible for the conversion process from raw data collect by human or electronic sensors to knowledge. Geospatial information and intelligence systems allow us to integrate all other forms of intelligence and act as a main platform to process and display geospatial-time referenced events. Combining explicit knowledge with person know-how to generate a continuous learning cycle that supports real time decisions, mitigates the influences of fog of war and provides the knowledge supremacy. This paper presents the analysis done after applying a questionnaire and interviews about the GI and intelligence management in a military organization. The study intended to identify the stakeholder's requirements for a military spatial data infrastructure as well as the requirements for a future software system development.

  14. Design of Adaptive Policy Pathways under Deep Uncertainties

    NASA Astrophysics Data System (ADS)

    Babovic, Vladan

    2013-04-01

    The design of large-scale engineering and infrastructural systems today is growing in complexity. Designers need to consider sociotechnical uncertainties, intricacies, and processes in the long- term strategic deployment and operations of these systems. In this context, water and spatial management is increasingly challenged not only by climate-associated changes such as sea level rise and increased spatio-temporal variability of precipitation, but also by pressures due to population growth and particularly accelerating rate of urbanisation. Furthermore, high investment costs and long term-nature of water-related infrastructure projects requires long-term planning perspective, sometimes extending over many decades. Adaptation to such changes is not only determined by what is known or anticipated at present, but also by what will be experienced and learned as the future unfolds, as well as by policy responses to social and water events. As a result, a pathway emerges. Instead of responding to 'surprises' and making decisions on ad hoc basis, exploring adaptation pathways into the future provide indispensable support in water management decision-making. In this contribution, a structured approach for designing a dynamic adaptive policy based on the concepts of adaptive policy making and adaptation pathways is introduced. Such an approach provides flexibility which allows change over time in response to how the future unfolds, what is learned about the system, and changes in societal preferences. The introduced flexibility provides means for dealing with complexities of adaptation under deep uncertainties. It enables engineering systems to change in the face of uncertainty to reduce impacts from downside scenarios while capitalizing on upside opportunities. This contribution presents comprehensive framework for development and deployment of adaptive policy pathway framework, and demonstrates its performance under deep uncertainties on a case study related to urban water catchment in Singapore. Ingredients of this approach are: (a) transient scenarios (time series of various uncertain developments such as climate change, economic developments, societal changes), (b) a methodology for exploring many options and sequences of these options across different futures, and (c) a stepwise policy analysis. The strategy is applied on case of flexible deployment of novel, so-called Next Generation Infrastructure, and assessed in context of the proposed. Results of the study show that flexible design alternatives deliver much enhanced performance compared to systems optimized under deterministic forecasts of the future. The work also demonstrates that explicit incorporation of uncertainty and flexibility into decision-making process reduces capital expenditures while allowing decision makers to learn about system evolution throughout the lifetime of the project.

  15. Integrated Framework for an Urban Climate Adaptation Tool

    NASA Astrophysics Data System (ADS)

    Omitaomu, O.; Parish, E. S.; Nugent, P.; Mei, R.; Sylvester, L.; Ernst, K.; Absar, M.

    2015-12-01

    Cities have an opportunity to become more resilient to future climate change through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. In this paper, we present some of the methods that drive each of the modules and demo some of the capabilities available to-date using the City of Knoxville in Tennessee as a case study.

  16. A Consensus Action Agenda for Achieving the National Health Information Infrastructure

    PubMed Central

    Yasnoff, William A.; Humphreys, Betsy L.; Overhage, J. Marc; Detmer, Don E.; Brennan, Patricia Flatley; Morris, Richard W.; Middleton, Blackford; Bates, David W.; Fanning, John P.

    2004-01-01

    Background: Improving the safety, quality, and efficiency of health care will require immediate and ubiquitous access to complete patient information and decision support provided through a National Health Information Infrastructure (NHII). Methods: To help define the action steps needed to achieve an NHII, the U.S. Department of Health and Human Services sponsored a national consensus conference in July 2003. Results: Attendees favored a public–private coordination group to guide NHII activities, provide education, share resources, and monitor relevant metrics to mark progress. They identified financial incentives, health information standards, and overcoming a few important legal obstacles as key NHII enablers. Community and regional implementation projects, including consumer access to a personal health record, were seen as necessary to demonstrate comprehensive functional systems that can serve as models for the entire nation. Finally, the participants identified the need for increased funding for research on the impact of health information technology on patient safety and quality of care. Individuals, organizations, and federal agencies are using these consensus recommendations to guide NHII efforts. PMID:15187075

  17. Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durling, Jr., R L; Price, D E

    2005-12-16

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less

  18. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, D E; Durling, R L

    2005-10-10

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less

  19. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  20. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  1. Data Center Consolidation: A Step towards Infrastructure Clouds

    NASA Astrophysics Data System (ADS)

    Winter, Markus

    Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.

  2. Green Infrastructure

    EPA Pesticide Factsheets

    To promote the benefits of green infrastructure, help communities overcome barriers to using GI, and encourage the use of GI to create sustainable and resilient water infrastructure that improves water quality and supports and revitalizes communities.

  3. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could bemore » used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  4. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could bemore » used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  5. An extreme events laboratory to provide network centric collaborative situation assessment and decision making

    NASA Astrophysics Data System (ADS)

    Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.

    2009-05-01

    Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.

  6. International Development of e-Infrastructures and Data Management Priorities for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gurney, R. J.

    2015-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations to the Belmont Forum collaboration of national science funding agencies and others on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: adoption of data principles that promote a global, interoperable e-infrastructure establishment of information and data officers for coordination of global data management and e-infrastructure efforts promotion of effective data planning determination of best practices development of a cross-disciplinary training curriculum on data management and curation The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. The international collaborative process that went into forming these recommendations is contributing to national governments and funding agencies and international bodies working together to execute them.

  7. To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne

    2012-08-01

    A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.

  8. Using soils and land potential as a basis for land use decisions and conservation planning: A resilience-based strategy

    USDA-ARS?s Scientific Manuscript database

    Land use decisions are becoming increasingly complex and contentious as demands for food, fiber, energy and infrastructure expand. Recent definitions of “planetary boundaries” and arbitrary land use limits circumscribing the “Safe Operating Space” for humans are helpful in drawing attention to globa...

  9. The multiple resource inventory decision-making process

    Treesearch

    Victor A. Rudis

    1993-01-01

    A model of the multiple resource inventory decision-making process is presented that identifies steps in conducting inventories, describes the infrastructure, and points out knowledge gaps that are common to many interdisciplinary studies.Successful efforts to date suggest the need to bridge the gaps by sharing elements, maintain dialogue among stakeholders in multiple...

  10. Congestion based mechanism for route discovery in a V2I-V2V system applying smart devices and IoT.

    PubMed

    Parrado, Natalia; Donoso, Yezid

    2015-03-31

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra's approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle's trip with the efficiency in the use of the capacity of the vehicular network.

  11. Congestion Based Mechanism for Route Discovery in a V2I-V2V System Applying Smart Devices and IoT

    PubMed Central

    Parrado, Natalia; Donoso, Yezid

    2015-01-01

    The Internet of Things is a new paradigm in which objects in a specific context can be integrated into traditional communication networks to actively participate in solving a determined problem. The Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) technologies are specific cases of IoT and key enablers for Intelligent Transportation Systems (ITS). V2V and V2I have been widely used to solve different problems associated with transportation in cities, in which the most important is traffic congestion. A high percentage of congestion is usually presented by the inappropriate use of resources in vehicular infrastructure. In addition, the integration of traffic congestion in decision making for vehicular traffic is a challenge due to its high dynamic behavior. In this paper, an optimization model over the load balancing in the congestion percentage of the streets is formulated. Later, we explore a fully congestion-oriented route discovery mechanism and we make a proposal on the communication infrastructure that should support it based on V2I and V2V communication. The mechanism is also compared with a modified Dijkstra’s approach that reacts at congestion states. Finally, we compare the results of the efficiency of the vehicle’s trip with the efficiency in the use of the capacity of the vehicular network. PMID:25835185

  12. SERVIR's Contributions and Benefits to Belize thru Spatial Data Infrastructure (SDI) Development

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2006-01-01

    Dan Irwin, the SERVIR Project Manager is being honored with the privilege of delivering the opening remarks at Belize s second celebration of GIS Day, a weeklong event to be held at the University of Belize's campus in the nation s capital, Belmopan. The request has been extended by the GIS Day Planning Committee which operates under the auspices of Belize s Ministry of Natural Resources & the Environment, which is the focal ministry for SERVIR. In the 20-30 min. allotted for the opening remarks, the SERVIR Project Manager will expound on how SERVIR, operating under the auspices of NASA s Ecological Forecasting Program, contributes to spatial data infrastructure (SDI) development in Belize. NASA s contributions to the region - particularly work under the Mesoamerican Biological Corridor - will be highlighted. Continuing, the remarks will discuss SERVIR s role in Belize s steadily expanding SDI, particularly in the context of delivering integrated decision support products via web-based infrastructure. The remarks will close with a call to the parties assembled to work together in the application of Earth Observation Systems technologies for the benefit of Belizean society as a whole. NASA s strong presence in Belize s GIS Day celebrations will be highlighted as sustained goodwill of the American people - in partial fulfillment of goals set forth under the Global Earth Observation System of Systems (GEOSS).

  13. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    PubMed

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  14. The radiology digital dashboard: effects on report turnaround time.

    PubMed

    Morgan, Matthew B; Branstetter, Barton F; Lionetti, David M; Richardson, Jeremy S; Chang, Paul J

    2008-03-01

    As radiology departments transition to near-complete digital information management, work flows and their supporting informatics infrastructure are becoming increasingly complex. Digital dashboards can integrate separate computerized information systems and summarize key work flow metrics in real time to facilitate informed decision making. A PACS-integrated digital dashboard function designed to alert radiologists to their unsigned report queue status, coupled with an actionable link to the report signing application, resulted in a 24% reduction in the time between transcription and report finalization. The dashboard was well received by radiologists who reported high usage for signing reports. Further research is needed to identify and evaluate other potentially useful work flow metrics for inclusion in a radiology clinical dashboard.

  15. Microgrid Design Toolkit (MDT) User Guide Software v1.2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, John P.

    2017-08-01

    The Microgrid Design Toolkit (MDT) supports decision analysis for new ("greenfield") microgrid designs as well as microgrids with existing infrastructure. The current version of MDT includes two main capabilities. The first capability, the Microgrid Sizing Capability (MSC), is used to determine the size and composition of a new, grid connected microgrid in the early stages of the design process. MSC is focused on developing a microgrid that is economically viable when connected to the grid. The second capability is focused on designing a microgrid for operation in islanded mode. This second capability relies on two models: the Technology Management Optimizationmore » (TMO) model and Performance Reliability Model (PRM).« less

  16. Web Services and Handle Infrastructure - WDCC's Contributions to International Projects

    NASA Astrophysics Data System (ADS)

    Föll, G.; Weigelt, T.; Kindermann, S.; Lautenschlager, M.; Toussaint, F.

    2012-04-01

    Climate science demands on data management are growing rapidly as climate models grow in the precision with which they depict spatial structures and in the completeness with which they describe a vast range of physical processes. The ExArch project is exploring the challenges of developing a software management infrastructure which will scale to the multi-exabyte archives of climate data which are likely to be crucial to major policy decisions in by the end of the decade. The ExArch approach to future integration of exascale climate archives is based on one hand on a distributed web service architecture providing data analysis and quality control functionality across archvies. On the other hand a consistent persistent identifier infrastructure is deployed to support distributed data management and data replication. Distributed data analysis functionality is based on the CDO climate data operators' package. The CDO-Tool is used for processing of the archived data and metadata. CDO is a collection of command line Operators to manipulate and analyse Climate and forecast model Data. A range of formats is supported and over 500 operators are provided. CDO presently is designed to work in a scripting environment with local files. ExArch will extend the tool to support efficient usage in an exascale archive with distributed data and computational resources by providing flexible scheduling capabilities. Quality control will become increasingly important in an exascale computing context. Researchers will be dealing with millions of data files from multiple sources and will need to know whether the files satisfy a range of basic quality criterea. Hence ExArch will provide a flexible and extensible quality control system. The data will be held at more than 30 computing centres and data archives around the world, but for users it will appear as a single archive due to a standardized ExArch Web Processing Service. Data infrastructures such as the one built by ExArch can greatly benefit from assigning persistent identifiers (PIDs) to the main entities, such as data and metadata records. A PID should then not only consist of a globally unique identifier, but also support built-in facilities to relate PIDs to each other, to build multi-hierarchical virtual collections and to enable attaching basic metadata directly to PIDs. With such a toolset, PIDs can support crucial data management tasks. For example, data replication performed in ExArch can be supported through PIDs as they can help to establish durable links between identical copies. By linking derivative data objects together, their provenance can be traced with a level of detail and reliability currently unavailable in the Earth system modelling domain. Regarding data transfers, virtual collections of PIDs may be used to package data prior to transmission. If the PID of such a collection is used as the primary key in data transfers, safety of transfer and traceability of data objects across repositories increases. End-users can benefit from PIDs as well since they make data discovery independent from particular storage sites and enable user-friendly communication about primary research objects. A generic PID system can in fact be a fundamental building block for scientific e-infrastructures across projects and domains.

  17. STRUCTURAL AND HIDDEN BARRIERS TO A LOCAL PRIMARY HEALTH CARE INFRASTRUCTURE: AUTONOMY, DECISIONS ABOUT PRIMARY HEALTH CARE, AND THE CENTRALITY AND SIGNIFICANCE OF POWER.

    PubMed

    Freed, Christopher R; Hansberry, Shantisha T; Arrieta, Martha I

    2013-09-01

    To examine a local primary health care infrastructure and the reality of primary health care from the perspective of residents of a small, urban community in the southern United States. Data derive from 13 semi-structured focus groups, plus three semi-structured interviews, and were analyzed inductively consistent with a grounded theory approach. Structural barriers to the local primary health care infrastructure include transportation, clinic and appointment wait time, and co-payments and health insurance. Hidden barriers consist of knowledge about local health care services, non-physician gatekeepers, and fear of medical care. Community residents have used home remedies and the emergency department at the local academic medical center to manage these structural and hidden barriers. Findings might not generalize to primary health care infrastructures in other communities, respondent perspectives can be biased, and the data are subject to various interpretations and conceptual and thematic frameworks. Nevertheless, the structural and hidden barriers to the local primary health care infrastructure have considerably diminished the autonomy community residents have been able to exercise over their decisions about primary health care, ultimately suggesting that efforts concerned with increasing the access of medically underserved groups to primary health care in local communities should recognize the centrality and significance of power. This study addresses a gap in the sociological literature regarding the impact of specific barriers to primary health care among medically underserved groups.

  18. About opportunities of the sharing of city infrastructure centralized warmly - and water supply

    NASA Astrophysics Data System (ADS)

    Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.

    2017-11-01

    It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.

  19. New EVSE Analytical Tools/Models: Electric Vehicle Infrastructure Projection Tool (EVI-Pro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Rames, Clement L; Muratori, Matteo

    This presentation addresses the fundamental question of how much charging infrastructure is needed in the United States to support PEVs. It complements ongoing EVSE initiatives by providing a comprehensive analysis of national PEV charging infrastructure requirements. The result is a quantitative estimate for a U.S. network of non-residential (public and workplace) EVSE that would be needed to support broader PEV adoption. The analysis provides guidance to public and private stakeholders who are seeking to provide nationwide charging coverage, improve the EVSE business case by maximizing station utilization, and promote effective use of private/public infrastructure investments.

  20. Quality Support Infrastructure in Early Childhood: Still (Mostly) Missing

    ERIC Educational Resources Information Center

    Azzi-Lessing, Lenette

    2009-01-01

    Support for early care and education among policy makers and the public is at an unprecedented high. As investments in early care and education programs in the United States continue to rise, the issue of quality becomes increasingly critical. This article addresses the need for adequate infrastructure to support high-quality early care and…

  1. Metabolic modelling to support long term strategic decisions on water supply systems

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  2. An operational information systems architecture for assessing sustainable transportation planning: principles and design.

    PubMed

    Borzacchiello, Maria Teresa; Torrieri, Vincenzo; Nijkamp, Peter

    2009-11-01

    This paper offers the description of an integrated information system framework for the assessment of transportation planning and management. After an introductory exposition, in the first part of the paper, a broad overview of international experiences regarding information systems on transportation is given, focusing in particular on the relationship between transportation system's performance monitoring and the decision-making process, and on the importance of this connection in the evaluation and planning process, in Italian and European cases. Next, the methodological design of an information system to support efficient and sustainable transportation planning and management aiming to integrate inputs from several different data sources is presented. The resulting framework deploys modular and integrated databases which include data stemming from different national or regional data banks and which integrate information belonging to different transportation fields. For this reason, it allows public administrations to account for many strategic elements that influence their decisions regarding transportation, both from a systemic and infrastructural point of view.

  3. STUDY ON SUPPORTING FOR DRAWING UP THE BCP FOR URBAN EXPRESSWAY NETWORK USING BY TRAFFIC SIMULATION SYSTEM

    NASA Astrophysics Data System (ADS)

    Yamawaki, Masashi; Shiraki, Wataru; Inomo, Hitoshi; Yasuda, Keiichi

    The urban expressway network is an important infrastructure to execute a disaster restoration. Therefore, it is necessary to draw up the BCP (Business Continuity Plan) to enable securing of road user's safety and restoration of facilities, etc. It is important that each urban expressway manager execute decision and improvement of effective BCP countermeasures when disaster occurs by assuming various disaster situations. Then, in this study, we develop the traffic simulation system that can reproduce various disaster situations and traffic actions, and examine some methods supporting for drawing up the BCP for an urban expressway network. For disaster outside assumption such as tsunami generated by a huge earthquake, we examine some approaches securing safety of users and cars on the Hanshin Expressway Network as well as on general roads. And, we aim to propose a tsunami countermeasure not considered in the current urban expressway BCP.

  4. LC Data QUEST: A Technical Architecture for Community Federated Clinical Data Sharing.

    PubMed

    Stephens, Kari A; Lin, Ching-Ping; Baldwin, Laura-Mae; Echo-Hawk, Abigail; Keppel, Gina A; Buchwald, Dedra; Whitener, Ron J; Korngiebel, Diane M; Berg, Alfred O; Black, Robert A; Tarczy-Hornoch, Peter

    2012-01-01

    The University of Washington Institute of Translational Health Sciences is engaged in a project, LC Data QUEST, building data sharing capacity in primary care practices serving rural and tribal populations in the Washington, Wyoming, Alaska, Montana, Idaho region to build research infrastructure. We report on the iterative process of developing the technical architecture for semantically aligning electronic health data in primary care settings across our pilot sites and tools that will facilitate linkages between the research and practice communities. Our architecture emphasizes sustainable technical solutions for addressing data extraction, alignment, quality, and metadata management. The architecture provides immediate benefits to participating partners via a clinical decision support tool and data querying functionality to support local quality improvement efforts. The FInDiT tool catalogues type, quantity, and quality of the data that are available across the LC Data QUEST data sharing architecture. These tools facilitate the bi-directional process of translational research.

  5. Delivering a lifelong integrated electronic health record based on a service oriented architecture.

    PubMed

    Katehakis, Dimitrios G; Sfakianakis, Stelios G; Kavlentakis, Georgios; Anthoulakis, Dimitrios N; Tsiknakis, Manolis

    2007-11-01

    Efficient access to a citizen's Integrated Electronic Health Record (I-EHR) is considered to be the cornerstone for the support of continuity of care, the reduction of avoidable mistakes, and the provision of tools and methods to support evidence-based medicine. For the past several years, a number of applications and services (including a lifelong I-EHR) have been installed, and enterprise and regional infrastructure has been developed, in HYGEIAnet, the Regional Health Information Network (RHIN) of the island of Crete, Greece. Through this paper, the technological effort toward the delivery of a lifelong I-EHR by means of World Wide Web Consortium (W3C) technologies, on top of a service-oriented architecture that reuses already existing middleware components is presented and critical issues are discussed. Certain design and development decisions are exposed and explained, laying this way the ground for coordinated, dynamic navigation to personalized healthcare delivery.

  6. Statewide health information: a tool for improving hospital accountability.

    PubMed

    Epstein, M H; Kurtzig, B S

    1994-07-01

    By early 1994, 38 states had invested in data collection, analysis, and dissemination on the use, cost, effectiveness, and performance of hospitals. States use these data to control costs, encourage prudent purchasing, monitor effectiveness and outcomes of health care, guide health policy, and promote informed decision making. Experience in several states suggests that public release of hospital-specific data influences hospital performance. The value of state data organizations' databases to address issues of quality and accountability can be strengthened by ensuring the stability and growth of statewide health information systems, supporting research on information dissemination techniques, and promoting comparisons among hospitals. Information to measure provider performance must be placed in the public domain--to help ensure prudent and cost-effective health care purchasing and to give providers comparable information for improvement of care. State-level health databases are an essential component of the information infrastructure needed to support health reform.

  7. Regional climate response collaboratives: Multi-institutional support for climate resilience

    USGS Publications Warehouse

    Averyt, Kristen; Derner, Justin D.; Dilling, Lisa; Guerrero, Rafael; Joyce, Linda A.; McNeeley, Shannon; McNie, Elizabeth; Morisette, Jeffrey T.; Ojima, Dennis; O'Malley, Robin; Peck, Dannele; Ray, Andrea J.; Reeves, Matt; Travis, William

    2018-01-01

    Federal investments by U.S. agencies to enhance climate resilience at regional scales grew over the past decade (2010s). To maximize efficiency and effectiveness in serving multiple sectors and scales, it has become critical to leverage existing agency-specific research, infrastructure, and capacity while avoiding redundancy. We discuss lessons learned from a multi-institutional “regional climate response collaborative” that comprises three different federally-supported climate service entities in the Rocky Mountain west and northern plains region. These lessons include leveraging different strengths of each partner, creating deliberate mechanisms to increase cross-entity communication and joint ownership of projects, and placing a common priority on stakeholder-relevant research and outcomes. We share the conditions that fostered successful collaboration, which can be transferred elsewhere, and suggest mechanisms for overcoming potential barriers. Synergies are essential for producing actionable research that informs climate-related decisions for stakeholders and ultimately enhances climate resilience at regional scales.

  8. LC Data QUEST: A Technical Architecture for Community Federated Clinical Data Sharing

    PubMed Central

    Stephens, Kari A.; Lin, Ching-Ping; Baldwin, Laura-Mae; Echo-Hawk, Abigail; Keppel, Gina A.; Buchwald, Dedra; Whitener, Ron J.; Korngiebel, Diane M.; Berg, Alfred O.; Black, Robert A.; Tarczy-Hornoch, Peter

    2012-01-01

    The University of Washington Institute of Translational Health Sciences is engaged in a project, LC Data QUEST, building data sharing capacity in primary care practices serving rural and tribal populations in the Washington, Wyoming, Alaska, Montana, Idaho region to build research infrastructure. We report on the iterative process of developing the technical architecture for semantically aligning electronic health data in primary care settings across our pilot sites and tools that will facilitate linkages between the research and practice communities. Our architecture emphasizes sustainable technical solutions for addressing data extraction, alignment, quality, and metadata management. The architecture provides immediate benefits to participating partners via a clinical decision support tool and data querying functionality to support local quality improvement efforts. The FInDiT tool catalogues type, quantity, and quality of the data that are available across the LC Data QUEST data sharing architecture. These tools facilitate the bi-directional process of translational research. PMID:22779052

  9. Damage assessment of bridge infrastructure subjected to flood-related hazards

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open-source platform that can offer a more economical remote monitoring solution. The results presented in this investigation provide an important guide for a multidisciplinary approach to bridge monitoring and can be used as a benchmark for the field application of cost-effective and robust sensing methods. This will deliver key information regarding the impact of water-related hazards at bridge structures through an integrated structural health monitoring and management system. Acknowledgement: The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie action Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.

  10. Interactive Model-Centric Systems Engineering (IMCSE) Phase Two

    DTIC Science & Technology

    2015-02-28

    109 Backend Implementation...42 Figure 10. Interactive Epoch-Era Analysis leverages humans-in-the-loop analysis and supporting infrastructure ...preliminary supporting 10 infrastructure . This will inform the transition strategies, additional case application and prototype user testing. • The

  11. Infrastructure support for the UCF driving simulator

    DOT National Transportation Integrated Search

    2002-01-01

    Last year, a proposal was funded to maintain the infrastructure of the UCF Driving Simulator Lab. It was designed to guarantee the long-term presence of support staff with proper expertise to maintain the operational effectiveness of the driving simu...

  12. The relevance of large scale environmental research infrastructures from the point of view of Ethics: the case of EMSO

    NASA Astrophysics Data System (ADS)

    Favali, Paolo; Beranzoli, Laura; Best, Mairi; Franceschini, PierLuigi; Materia, Paola; Peppoloni, Silvia; Picard, John

    2014-05-01

    EMSO (European Multidisciplinary Seafloor and Water Column Observatory) is a large-scale European Research Infrastructure (RI). It is a geographically distributed infrastructure composed of several deep-seafloor and water-column observatories, which will be deployed at key sites in European waters, spanning from the Arctic, through the Atlantic and Mediterranean, to the Black Sea, with the basic scientific objective of real-time, long-term monitoring of environmental processes related to the interaction between the geosphere, biosphere and hydrosphere. EMSO is one of the environmental RIs on the ESFRI roadmap. The ESRFI Roadmap identifies new RIs of pan-European importance that correspond to the long term needs of European research communities. EMSO will be the sub-sea segment of the EU's large-scale Earth Observation program, Copernicus (previously known as GMES - Global Monitoring for Environment and Security) and will significantly enhance the observational capabilities of European member states. An open data policy compliant with the recommendations being developed within the GEOSS initiative (Global Earth Observation System of Systems) will allow for shared use of the infrastructure and the exchange of scientific information and knowledge. The processes that occur in the oceans have a direct impact on human societies, therefore it is crucial to improve our understanding of how they operate and interact. To encompass the breadth of these major processes, sustained and integrated observations are required that appreciate the interconnectedness of atmospheric, surface ocean, biological pump, deep-sea, and solid-Earth dynamics and that can address: • natural and anthropogenic change; • interactions between ecosystem services, biodiversity, biogeochemistry, physics, and climate; • impacts of exploration and extraction of energy, minerals, and living resources; • geo-hazard early warning capability for earthquakes, tsunamis, gas-hydrate release, and slope instability and failure; • connecting scientific outcomes to stakeholders and policy makers, including to government decision-makers. The development of a large research infrastructure initiatives like EMSO must continuously take into account wide-reaching environmental and socio-economic implications and objectives. For this reason, an Ethics Commitee was established early in EMSO's initial Preparatory Phase with responsibility for overseeing the key ethical and social aspects of the project. These include: • promoting inclusive science communication and data dissemination services to civil society according to Open Access principles; • guaranteeing top quality scientific information and data as results of top quality research; • promoting the increased adoption of eco-friendly, sustainable technologies through the dissemination of advanced scientific knowledge and best practices to the private sector and to policy makers; • developing Education Strategies in cooperation with academia and industry aimed at informing and sensitizing the general public on the environmental and socio-economic implications and benefits of large research infrastructure initiatives such as EMSO; • carrying out Excellent Science following strict criteria of research integrity, as expressed in the Montreal Statement (2013); • promoting Geo-ethical awareness and innovation by spurring innovative approaches in the management of environmental aspects of large research projects; • supporting technological Innovation by working closely in support of SMEs; • providing a constant, qualified and authoritative one-stop-shopping Reference Point and Advisory for politicians and decision-makers. The paper shows how Geoethics is an essential tool for guiding methodological and operational choices, and management of an European project with great impact on the environment and society.

  13. Investing in Alternative Fuel Infrastructure: Insights for California from Stakeholder Interviews: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Muratori, Matteo; McLaren, Joyce

    Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks andmore » barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.« less

  14. Contemporary (post-Wills) survey of the views of Australian medical researchers: importance of funding, infrastructure and motivators for a research career.

    PubMed

    Shewan, Louise G; Glatz, Jane A; Bennett, Christine C; Coats, Andrew J S

    To investigate the perceptions of Australian health and medical researchers 4 years after the Wills Report recommended and led to a substantial increase in health and medical research funding in Australia. A telephone poll of 501 active health and medical researchers, conducted between 28 April and 5 May, 2003. Researchers' views on the adequacy of funding, infrastructure and support, salary, community recognition, the excitement of discovery and research outcomes such as publication and patenting in research. Research funding was the most important concern: 91% of researchers (455/498) viewed funding as "very" or "extremely" important to their role, but only 10% (52/500) were "very" or "extremely" satisfied with the level of funding. Research infrastructure and support were seen as "very" or "extremely" important by 90% of researchers (449/501), while only 21% (104/501) were "very" or "extremely" satisfied. Researchers in medical research institutes were significantly more likely to be satisfied (27% [56/205] "very" or "extremely" satisfied) with the level of infrastructure and support than those working in universities (15% [41/268] "very" or "extremely" satisfied; P = 0.001). Among the factors that motivate researchers, the excitement of discovery stood out in terms of both high importance and satisfaction. Publications were viewed as more important research outcomes than patenting or commercial ventures. Funding and infrastructure support remain overwhelmingly researchers' greatest concerns. University-based researchers were less satisfied with infrastructure and support than those in independent medical research institutes.

  15. Defense Infrastructure: Actions Needed to Enhance Oversight of Construction Projects Supporting Military Contingency Operations

    DTIC Science & Technology

    2016-09-01

    unneeded to support U.S. forces in the CENTCOM area of responsibility and in future contingencies worldwide. View GAO-16-406. For more information...DEFENSE INFRASTRUCTURE Actions Needed to Enhance Oversight of Construction Projects Supporting Military Contingency ...Actions Needed to Enhance Oversight of Construction Projects Supporting Military Contingency Operations Why GAO Did This Study For about 15 years, DOD

  16. Science and Sandy: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  17. White Paper on Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The Office of Research and Development’s National Risk Management Research Laboratory has published this report in support of the Aging Water Infrastructure (AWI) Research Program, which directly supports the Office of Water’s Sustainable Water Infrastructure Initiative. Scienti...

  18. Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels

    NASA Astrophysics Data System (ADS)

    Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.

    2015-12-01

    Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.

  19. Assessing Corporate Culture and Infrastructure before Undertaking Cost-Benefit Analysis.

    ERIC Educational Resources Information Center

    Driscoll, Margaret

    1993-01-01

    One of the simplest definitions of cost-benefit analysis states "ultimately, it is nothing more than a logical attempt to weigh the pros and cons of a decision" (Gramlich 1981). This definition highlights two issues: practitioners should be clear about what decisions will be made as a result of this analysis, and they need to decide how…

  20. Visual Analytics for the Food-Water-Energy Nexus in the Phoenix Active Management Area

    NASA Astrophysics Data System (ADS)

    Maciejewski, R.; Mascaro, G.; White, D. D.; Ruddell, B. L.; Aggarwal, R.; Sarjoughian, H.

    2016-12-01

    The Phoenix Active Management Area (AMA) is an administrative region of 14,500 km2 identified by the Arizona Department of Water Resources with the aim of reaching and maintaining the safe yield (i.e. balance between annual amount of groundwater withdrawn and recharged) by 2025. The AMA includes the Phoenix metropolitan area, which has experienced a dramatic population growth over the last decades with a progressive conversion of agricultural land into residential land. As a result of these changes, the water and energy demand as well as the food production in the region have significantly evolved over the last 30 years. Given the arid climate, a crucial role to support this growth has been the creation of a complex water supply system based on renewable and non-renewable resources, including the energy-intensive Central Arizona Project. In this talk, we present a preliminary characterization of the evolution in time of the feedbacks between food, water, and energy in the Phoenix AMA by analyzing secondary data (available from water and energy providers, irrigation districts, and municipalities), as well as satellite imagery and primary data collected by the authors. A preliminary visual analytics framework is also discussed describing current design practices and ideas for exploring networked components and cascading impacts within the FEW Nexus. This analysis and framework represent the first steps towards the development of an integrated modeling, visualization, and decision support infrastructure for comprehensive FEW systems decision making at decision-relevant temporal and spatial scales.

  1. Preparing to use vehicle infrastructure integration (VII) in transportation operations : phase II.

    DOT National Transportation Integrated Search

    2009-01-01

    Vehicle infrastructure integration (VII) is an emerging approach intended to create an enabling communication capability to support vehicle-to-vehicle and vehicle-to-infrastructure communications for safety and mobility applications. The Virginia Dep...

  2. What is EPA Doing to Support Green Infrastructure?

    EPA Pesticide Factsheets

    EPA has released a series of policy memos encouraging the use of green infrastructure to meet regulatory requirements, as well as a series of Strategic Agendas describing the actions the Agency is taking to promote green infrastructure

  3. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  4. Preliminary Identification of Urban Park Infrastructure Resilience in Semarang Central Java

    NASA Astrophysics Data System (ADS)

    Muzdalifah, Aji Uhfatun; Maryono

    2018-02-01

    Park is one of the spot green infrastructure. There are two major characteristic of park, first Active parks and second passive park. Those of two open spaces have been significant on the fulfillment of urban environment. To maintenance the urban park, it is very importance to identify the characteristic of active and passive park. The identification also needs to fostering stakeholder effort to increase quality of urban park infrastructure. This study aims to explore and assess the characteristic of urban park infrastructure in Semarang City, Central Java. Data collection methods conduct by review formal document, field observation and interview with key government officer. The study founded that urban active parks infrastructure resilience could be defined by; Park Location, Garden Shape, Vegetation, Support Element, Park Function, and Expected Benefit from Park Existence. Moreover, the vegetation aspect and the supporting elements are the most importance urban park infrastructure in Semarang.

  5. Using Comprehensive Science-based Disaster Scenarios to Support Seismic Safety Policy: A Case Study in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Jones, L.

    2014-12-01

    In 2014, the USGS entered a technical assistance agreement with the City of Los Angeles to apply the results of the 2008 ShakeOut Scenario of a M7.8 earthquake on the southern San Andreas fault to develop a comprehensive plan to increase the seismic resilience of the City. The results of this project are to be submitted to the Mayor of Los Angeles at the Great ShakeOut on October 16, 2014. The ShakeOut scenario detailed how the expected cascade of failures in a big earthquake could lead to significant delays in disaster recovery that could create financial losses that greatly exceed the direct losses in the event. The goal of the seismic resilience plan is to: protect the lives of residents during earthquakes improve the capacity of the City to respond to the earthquake prepare the City to recover quickly after the earthquake so as to protect the economy of the City and all of southern California To accomplish these goals, the project addresses three areas of seismic vulnerability that were identified in the original ShakeOut Scenario: Pre-1980 buildings that present an unacceptable risk to the lives of residents, including "non-ductile reinforced concrete," and "soft-first-story" buildings Water system infrastructure (including impact on firefighting capability) Communications infrastructure The critical science needed to support policy decisions is to understand the probable consequences to the regional long-term economy caused by decisions to undertake (or not) different levels of mitigation. The arguments against mitigation are the immediate financial costs, so a better understanding of the eventual benefit is required. However, the direct savings rarely justify the mitigation costs, so the arguments in favor of mitigation are driven by the potential for cascading failures and the potential to trigger the type of long term reduction in population and economic activity that has occurred in New Orleans since Hurricane Katrina.

  6. Disaster Response Tools for Decision Support and Data Discovery - E-DECIDER and GeoGateway

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Donnellan, A.; Parker, J. W.; Granat, R. A.; Lyzenga, G. A.; Pierce, M. E.; Wang, J.; Grant Ludwig, L.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2015-12-01

    Providing actionable data for situational awareness following an earthquake or other disaster is critical to decision makers in order to improve their ability to anticipate requirements and provide appropriate resources for response. E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) is a decision support system producing remote sensing and geophysical modeling products that are relevant to the emergency preparedness and response communities and serves as a gateway to enable the delivery of actionable information to these communities. GeoGateway is a data product search and analysis gateway for scientific discovery, field use, and disaster response focused on NASA UAVSAR and GPS data that integrates with fault data, seismicity and models. Key information on the nature, magnitude and scope of damage, or Essential Elements of Information (EEI), necessary to achieve situational awareness are often generated from a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. We have worked in partnership with the California Earthquake Clearinghouse to develop actionable data products for use in their response efforts, particularly in regularly scheduled, statewide exercises like the recent May 2015 Capstone/SoCal NLE/Ardent Sentry Exercises and in the August 2014 South Napa earthquake activation. We also provided a number of products, services, and consultation to the NASA agency-wide response to the April 2015 Gorkha, Nepal earthquake. We will present perspectives on developing tools for decision support and data discovery in partnership with the Clearinghouse and for the Nepal earthquake. Products delivered included map layers as part of the common operational data plan for the Clearinghouse, delivered through XchangeCore Web Service Data Orchestration, enabling users to create merged datasets from multiple providers. For the Nepal response effort, products included models, damage and loss estimates, and aftershock forecasts that were posted to a NASA information site and delivered directly to end-users such as USAID, OFDA, World Bank, and UNICEF.

  7. Integrated Decision Support for Global Environmental Change Adaptation

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this system of systems approach could help the local governments and concerned institutions worldwide to adapt to gradually changing environmental conditions as well as manage impacts of extreme events such as droughts, floods, heat waves, wildfires, hurricanes, and storm surges.

  8. Effects of a demand-led evidence briefing service on the uptake and use of research evidence by commissioners of health services: protocol for a controlled before and after study.

    PubMed

    Wilson, Paul M; Farley, Kate; Thompson, Carl; Chambers, Duncan; Bickerdike, Liz; Watt, Ian S; Lambert, Mark; Turner, Rhiannon

    2015-01-09

    Clinical Commissioning Groups (CCGs) are mandated to use research evidence effectively to ensure optimum use of resources by the National Health Service (NHS), both in accelerating innovation and in stopping the use of less effective practices and models of service delivery. We intend to evaluate whether access to a demand-led evidence service improves uptake and use of research evidence by NHS commissioners compared with less intensive and less targeted alternatives. This is a controlled before and after study involving CCGs in the North of England. Participating CCGs will receive one of three interventions to support the use of research evidence in their decision-making: 1) consulting plus responsive push of tailored evidence; 2) consulting plus an unsolicited push of non-tailored evidence; or 3) standard service unsolicited push of non-tailored evidence. Our primary outcome will be changed at 12 months from baseline of a CCGs ability to acquire, assess, adapt and apply research evidence to support decision-making. Secondary outcomes will measure individual clinical leads and managers' intentions to use research evidence in decision making. Documentary evidence of the use of the outputs of the service will be sought. A process evaluation will evaluate the nature and success of the interactions both within the sites and between commissioners and researchers delivering the service. The proposed research will generate new knowledge of direct relevance and value to the NHS. The findings will help to clarify which elements of the service are of value in promoting the use of research evidence. Those involved in NHS commissioning will be able to use the results to inform how best to build the infrastructure they need to acquire, assess, adapt and apply research evidence to support decision-making and to fulfil their statutory duties under the Health and Social Care Act.

  9. A Data Driven Framework for Integrating Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Lansing, C.; Kleese van Dam, K.; Liu, Y.; Elsethagen, T.; Guillen, Z.; Stephan, E.; Critchlow, T.; Gorton, I.

    2012-12-01

    There are increasing needs for research addressing complex climate sensitive issues of concern to decision-makers and policy planners at a regional level. Decisions about allocating scarce water across competing municipal, agricultural, and ecosystem demands is just one of the challenges ahead, along with decisions regarding competing land use priorities such as biofuels, food, and species habitat. Being able to predict the extent of future climate change in the context of introducing alternative energy production strategies requires a new generation of modeling capabilities. We will also need more complete representations of human systems at regional scales, incorporating the influences of population centers, land use, agriculture and existing and planned electrical demand and generation infrastructure. At PNNL we are working towards creating a first-of-a-kind capability known as the Integrated Regional Earth System Model (iRESM). The fundamental goal of the iRESM initiative is the critical analyses of the tradeoffs and consequences of decision and policy making for integrated human and environmental systems. This necessarily combines different scientific processes, bridging different temporal and geographic scales and resolving the semantic differences between them. To achieve this goal, iRESM is developing a modeling framework and supporting infrastructure that enable the scientific team to evaluate different scenarios in light of specific stakeholder questions such as "How do regional changes in mean climate states and climate extremes affect water storage and energy consumption and how do such decisions influence possible mitigation and carbon management schemes?" The resulting capability will give analysts a toolset to gain insights into how regional economies can respond to climate change mitigation policies and accelerated deployment of alternative energy technologies. The iRESM framework consists of a collection of coupled models working with high resolution data that can represent the climate, geography, economy, energy supply, and demand of a region under study; an integrated data management framework that captures information about models, model couplings (workflows), observational and derived data sets, numerical experiments, and the provenance metadata connecting them; and a collaborative environment that enables scientific users to explore the datasets, register models and codes, launch workflows, retrieve provenance, and analyze results. In this presentation we address the challenges of coupling heterogeneous codes and handling large data sets. We describe our integration approach, which is based on a loosely coupled software architecture that supports experimentation and evolution of models on different datasets. We present our software prototype and show the scalability of our approach to handle a large number ( > 17,000) of model runs and a significant quantity of data in the order of terabytes. The resulting environment is now used by domain scientists and has proven useful to improve productivity in the evolving development of iRESM model coupling.

  10. A web based spatial decision supporting system for land management and soil conservation

    NASA Astrophysics Data System (ADS)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-02-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI) can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project). The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart web based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu). This may help bridge the last much important divide between scientists working on the landscape and end users.

  11. Highlights from the Future Earth Water-Energy-Food (W-E-F) Nexus Cluster Project Consultations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2017-12-01

    Future Earth launched its W-E-F Nexus project in 2015. The focus of the project was to explore how improved governance and integrated information systems could support sustainability in the W-E-F Nexus. Workshops were held in four regions of the world (North America, Europe, Eastern Asia, and Southern Africa) which facilitated a better understanding of the current role of information in decision-making within the W-E-F Nexus. In each of these workshops, needs and options for improving the provision of relevant integrated data and information to support decision-making were discussed. The workshops provided distinct perspectives on W-E-F issues for each region and each sector. Regional differences arise from climate, geomorphology, natural resources and existing infrastructure as well as the economic and social policies within each country. While the needs associated with this diversity are large, it is still possible to identify unifying themes and requirements for data and information which appeared very similar in all the regions. Important themes involve developing a common rigorous definition of the Nexus, ensuring the availability of data of all types are available in the scales, frequencies, and accuracies needed to support better decision making; and promoting the gathering, analysis and use of information to break down the silos associated with the three sectors are made. Information is also needed to monitor the effects of land ownership and land management on W-E-F issues, to maximize the efficiencies that can be realized from joint planning and increased coherence in the sectoral policy approaches to address climate and environmental issues. After commenting on these opportunities the presentation will outline possible elements of a research agenda for moving the W-E-F Nexus approach forward.

  12. Big Data Analytics for Disaster Preparedness and Response of Mobile Communication Infrastructure during Natural Hazards

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Takano, K.; Ji, Y.; Yamada, S.

    2015-12-01

    The disruption of telecommunications is one of the most critical disasters during natural hazards. As the rapid expanding of mobile communications, the mobile communication infrastructure plays a very fundamental role in the disaster response and recovery activities. For this reason, its disruption will lead to loss of life and property, due to information delays and errors. Therefore, disaster preparedness and response of mobile communication infrastructure itself is quite important. In many cases of experienced disasters, the disruption of mobile communication networks is usually caused by the network congestion and afterward long-term power outage. In order to reduce this disruption, the knowledge of communication demands during disasters is necessary. And big data analytics will provide a very promising way to predict the communication demands by analyzing the big amount of operational data of mobile users in a large-scale mobile network. Under the US-Japan collaborative project on 'Big Data and Disaster Research (BDD)' supported by the Japan Science and Technology Agency (JST) and National Science Foundation (NSF), we are going to investigate the application of big data techniques in the disaster preparedness and response of mobile communication infrastructure. Specifically, in this research, we have considered to exploit the big amount of operational information of mobile users for predicting the communications needs in different time and locations. By incorporating with other data such as shake distribution of an estimated major earthquake and the power outage map, we are able to provide the prediction information of stranded people who are difficult to confirm safety or ask for help due to network disruption. In addition, this result could further facilitate the network operators to assess the vulnerability of their infrastructure and make suitable decision for the disaster preparedness and response. In this presentation, we are going to introduce the results we obtained based on the big data analytics of mobile user statistical information and discuss the implications of these results.

  13. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  14. Sustainable water management under future uncertainty with eco-engineering decision scaling

    NASA Astrophysics Data System (ADS)

    Poff, N. Leroy; Brown, Casey M.; Grantham, Theodore E.; Matthews, John H.; Palmer, Margaret A.; Spence, Caitlin M.; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F.; Dominique, Kathleen C.; Baeza, Andres

    2016-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  15. Sustainable water management under future uncertainty with eco-engineering decision scaling

    USGS Publications Warehouse

    Poff, N LeRoy; Brown, Casey M; Grantham, Theodore E.; Matthews, John H; Palmer, Margaret A.; Spence, Caitlin M; Wilby, Robert L.; Haasnoot, Marjolijn; Mendoza, Guillermo F; Dominique, Kathleen C; Baeza, Andres

    2015-01-01

    Managing freshwater resources sustainably under future climatic and hydrological uncertainty poses novel challenges. Rehabilitation of ageing infrastructure and construction of new dams are widely viewed as solutions to diminish climate risk, but attaining the broad goal of freshwater sustainability will require expansion of the prevailing water resources management paradigm beyond narrow economic criteria to include socially valued ecosystem functions and services. We introduce a new decision framework, eco-engineering decision scaling (EEDS), that explicitly and quantitatively explores trade-offs in stakeholder-defined engineering and ecological performance metrics across a range of possible management actions under unknown future hydrological and climate states. We illustrate its potential application through a hypothetical case study of the Iowa River, USA. EEDS holds promise as a powerful framework for operationalizing freshwater sustainability under future hydrological uncertainty by fostering collaboration across historically conflicting perspectives of water resource engineering and river conservation ecology to design and operate water infrastructure for social and environmental benefits.

  16. Modeling hospitals' adaptive capacity during a loss of infrastructure services.

    PubMed

    Vugrin, Eric D; Verzi, Stephen J; Finley, Patrick D; Turnquist, Mark A; Griffin, Anne R; Ricci, Karen A; Wyte-Lake, Tamar

    2015-01-01

    Resilience in hospitals - their ability to withstand, adapt to, and rapidly recover from disruptive events - is vital to their role as part of national critical infrastructure. This paper presents a model to provide planning guidance to decision makers about how to make hospitals more resilient against possible disruption scenarios. This model represents a hospital's adaptive capacities that are leveraged to care for patients during loss of infrastructure services (power, water, etc.). The model is an optimization that reallocates and substitutes resources to keep patients in a high care state or allocates resources to allow evacuation if necessary. An illustrative example demonstrates how the model might be used in practice.

  17. Use of Climate Information for Decision-Making and Impacts Research: State of Our Understanding

    DTIC Science & Technology

    2016-03-01

    SUMMARY Much of human society and its infrastructure has been designed and built on a key assumption: that future climate conditions at any given...experienced in the past. This assumption affects infrastructure design and maintenance, emergency response management, and long-term investment and planning...our scientific understanding of the climate system in a manner that incorporates user needs into the design of scientific experiments, and that

  18. Application of stakeholder-based and modelling approaches for supporting robust adaptation decision making under future climatic uncertainty and changing urban-agricultural water demand

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David

    2016-04-01

    Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.

  19. Alternative Transportation Systems Vehicles and Supporting Infrastructure Guide : Plan Implementation Considerations for National Park Managers.

    DOT National Transportation Integrated Search

    2004-01-09

    This manual is a guide to the basic concepts involved and issues to be addressed in acquiring and maintaining vehicles, supporting infrastructure, and personnel needed for alternative transportation systems to serve visitors to national parks, recrea...

  20. Toward evaluating the effect of climate change on investments in the water resources sector: insights from the forecast and analysis of hydrological indicators in developing countries

    NASA Astrophysics Data System (ADS)

    Strzepek, Kenneth; Jacobsen, Michael; Boehlert, Brent; Neumann, James

    2013-12-01

    The World Bank has recently developed a method to evaluate the effects of climate change on six hydrological indicators across 8951 basins of the world. The indicators are designed for decision-makers and stakeholders to consider climate risk when planning water resources and related infrastructure investments. Analysis of these hydrological indicators shows that, on average, mean annual runoff will decline in southern Europe; most of Africa; and in southern North America and most of Central and South America. Mean reference crop water deficit, on the other hand, combines temperature and precipitation and is anticipated to increase in nearly all locations globally due to rising global temperatures, with the most dramatic increases projected to occur in southern Europe, southeastern Asia, and parts of South America. These results suggest overall guidance on which regions to focus water infrastructure solutions that could address future runoff flow uncertainty. Most important, we find that uncertainty in projections of mean annual runoff and high runoff events is higher in poorer countries, and increases over time. Uncertainty increases over time for all income categories, but basins in the lower and lower-middle income categories are forecast to experience dramatically higher increases in uncertainty relative to those in the upper-middle and upper income categories. The enhanced understanding of the uncertainty of climate projections for the water sector that this work provides strongly support the adoption of rigorous approaches to infrastructure design under uncertainty, as well as design that incorporates a high degree of flexibility, in response to both risk of damage and opportunity to exploit water supply ‘windfalls’ that might result, but would require smart infrastructure investments to manage to the greatest benefit.

Top