Sample records for decision support model

  1. A work-centered cognitively based architecture for decision support: the work-centered infomediary layer (WIL) model

    NASA Astrophysics Data System (ADS)

    Zachary, Wayne; Eggleston, Robert; Donmoyer, Jason; Schremmer, Serge

    2003-09-01

    Decision-making is strongly shaped and influenced by the work context in which decisions are embedded. This suggests that decision support needs to be anchored by a model (implicit or explicit) of the work process, in contrast to traditional approaches that anchor decision support to either context free decision models (e.g., utility theory) or to detailed models of the external (e.g., battlespace) environment. An architecture for cognitively-based, work centered decision support called the Work-centered Informediary Layer (WIL) is presented. WIL separates decision support into three overall processes that build and dynamically maintain an explicit context model, use the context model to identify opportunities for decision support and tailor generic decision-support strategies to the current context and offer them to the system-user/decision-maker. The generic decision support strategies include such things as activity/attention aiding, decision process structuring, work performance support (selective, contextual automation), explanation/ elaboration, infosphere data retrieval, and what if/action-projection and visualization. A WIL-based application is a work-centered decision support layer that provides active support without intent inferencing, and that is cognitively based without requiring classical cognitive task analyses. Example WIL applications are detailed and discussed.

  2. Ensemble modelling and structured decision-making to support Emergency Disease Management.

    PubMed

    Webb, Colleen T; Ferrari, Matthew; Lindström, Tom; Carpenter, Tim; Dürr, Salome; Garner, Graeme; Jewell, Chris; Stevenson, Mark; Ward, Michael P; Werkman, Marleen; Backer, Jantien; Tildesley, Michael

    2017-03-01

    Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. From guideline modeling to guideline execution: defining guideline-based decision-support services.

    PubMed Central

    Tu, S. W.; Musen, M. A.

    2000-01-01

    We describe our task-based approach to defining the guideline-based decision-support services that the EON system provides. We categorize uses of guidelines in patient-specific decision support into a set of generic tasks--making of decisions, specification of work to be performed, interpretation of data, setting of goals, and issuance of alert and reminders--that can be solved using various techniques. Our model includes constructs required for representing the knowledge used by these techniques. These constructs form a toolkit from which developers can select modeling solutions for guideline task. Based on the tasks and the guideline model, we define a guideline-execution architecture and a model of interactions between a decision-support server and clients that invoke services provided by the server. These services use generic interfaces derived from guideline tasks and their associated modeling constructs. We describe two implementations of these decision-support services and discuss how this work can be generalized. We argue that a well-defined specification of guideline-based decision-support services will facilitate sharing of tools that implement computable clinical guidelines. PMID:11080007

  4. Decision support models for solid waste management: Review and game-theoretic approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less

  5. A Successful Implementation Strategy to Support Adoption of Decision Making in Mental Health Services.

    PubMed

    MacDonald-Wilson, Kim L; Hutchison, Shari L; Karpov, Irina; Wittman, Paul; Deegan, Patricia E

    2017-04-01

    Individual involvement in treatment decisions with providers, often through the use of decision support aids, improves quality of care. This study investigates an implementation strategy to bring decision support to community mental health centers (CMHC). Fifty-two CMHCs implemented a decision support toolkit supported by a 12-month learning collaborative using the Breakthrough Series model. Participation in learning collaborative activities was high, indicating feasibility of the implementation model. Progress by staff in meeting process aims around utilization of components of the toolkit improved significantly over time (p < .0001). Survey responses by individuals in service corroborate successful implementation. Community-based providers were able to successfully implement decision support in mental health services as evidenced by improved process outcomes and sustained practices over 1 year through the structure of the learning collaborative model.

  6. Overview of EPA tools for supporting local-, state- and regional-level decision makers addressing energy and environmental issues: NYC MARKAL Energy Systems Model and Municipal Solid Waste Decision Support Tool

    EPA Science Inventory

    A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...

  7. Extending BPM Environments of Your Choice with Performance Related Decision Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter

    What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.

  8. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Treesearch

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  9. Toward the Modularization of Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Raskin, R. G.

    2009-12-01

    Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

  10. Semantic Clinical Guideline Documents

    PubMed Central

    Eriksson, Henrik; Tu, Samson W.; Musen, Mark

    2005-01-01

    Decision-support systems based on clinical practice guidelines can support physicians and other health-care personnel in the process of following best practice consistently. A knowledge-based approach to represent guidelines makes it possible to encode computer-interpretable guidelines in a formal manner, perform consistency checks, and use the guidelines directly in decision-support systems. Decision-support authors and guideline users require guidelines in human-readable formats in addition to computer-interpretable ones (e.g., for guideline review and quality assurance). We propose a new document-oriented information architecture that combines knowledge-representation models with electronic and paper documents. The approach integrates decision-support modes with standard document formats to create a combined clinical-guideline model that supports on-line viewing, printing, and decision support. PMID:16779037

  11. Reviewing model application to support animal health decision making.

    PubMed

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Decision support systems in health economics.

    PubMed

    Quaglini, S; Dazzi, L; Stefanelli, M; Barosi, G; Marchetti, M

    1999-08-01

    This article describes a system addressed to different health care professionals for building, using, and sharing decision support systems for resource allocation. The system deals with selected areas, namely the choice of diagnostic tests, the therapy planning, and the instrumentation purchase. Decision support is based on decision-analytic models, incorporating an explicit knowledge representation of both the medical domain knowledge and the economic evaluation theory. Application models are built on top of meta-models, that are used as guidelines for making explicit both the cost and effectiveness components. This approach improves the transparency and soundness of the collaborative decision-making process and facilitates the result interpretation.

  13. Models, Measurements, and Local Decisions: Assessing and ...

    EPA Pesticide Factsheets

    This presentation includes a combination of modeling and measurement results to characterize near-source air quality in Newark, New Jersey with consideration of how this information could be used to inform decision making to reduce risk of health impacts. Decisions could include either exposure or emissions reduction, and a host of stakeholders, including residents, academics, NGOs, local and federal agencies. This presentation includes results from the C-PORT modeling system, and from a citizen science project from the local area. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  14. An engineering approach to modelling, decision support and control for sustainable systems.

    PubMed

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  15. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413

  16. CorRECTreatment: a web-based decision support tool for rectal cancer treatment that uses the analytic hierarchy process and decision tree.

    PubMed

    Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C

    2015-01-01

    The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.

  17. A Decision Support Model and Tool to Assist Financial Decision-Making in Universities

    ERIC Educational Resources Information Center

    Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive

    2015-01-01

    In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…

  18. Predicting species distributions for conservation decisions

    PubMed Central

    Guisan, Antoine; Tingley, Reid; Baumgartner, John B; Naujokaitis-Lewis, Ilona; Sutcliffe, Patricia R; Tulloch, Ayesha I T; Regan, Tracey J; Brotons, Lluis; McDonald-Madden, Eve; Mantyka-Pringle, Chrystal; Martin, Tara G; Rhodes, Jonathan R; Maggini, Ramona; Setterfield, Samantha A; Elith, Jane; Schwartz, Mark W; Wintle, Brendan A; Broennimann, Olivier; Austin, Mike; Ferrier, Simon; Kearney, Michael R; Possingham, Hugh P; Buckley, Yvonne M

    2013-01-01

    Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes. PMID:24134332

  19. How to use multi-criteria decision analysis methods for reimbursement decision-making in healthcare: a step-by-step guide.

    PubMed

    Diaby, Vakaramoko; Goeree, Ron

    2014-02-01

    In recent years, the quest for more comprehensiveness, structure and transparency in reimbursement decision-making in healthcare has prompted the research into alternative decision-making frameworks. In this environment, multi-criteria decision analysis (MCDA) is arising as a valuable tool to support healthcare decision-making. In this paper, we present the main MCDA decision support methods (elementary methods, value-based measurement models, goal programming models and outranking models) using a case study approach. For each family of methods, an example of how an MCDA model would operate in a real decision-making context is presented from a critical perspective, highlighting the parameters setting, the selection of the appropriate evaluation model as well as the role of sensitivity and robustness analyses. This study aims to provide a step-by-step guide on how to use MCDA methods for reimbursement decision-making in healthcare.

  20. Modular Architecture for Integrated Model-Based Decision Support.

    PubMed

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  1. Experimenting with C2 Applications and Federated Infrastructures for Integrated Full-Spectrum Operational Environments in Support of Collaborative Planning and Interoperable Execution

    DTIC Science & Technology

    2004-06-01

    Situation Understanding) Common Operational Pictures Planning & Decision Support Capabilities Message & Order Processing Common Operational...Pictures Planning & Decision Support Capabilities Message & Order Processing Common Languages & Data Models Modeling & Simulation Domain

  2. Modeling paradigms for medical diagnostic decision support: a survey and future directions.

    PubMed

    Wagholikar, Kavishwar B; Sundararajan, Vijayraghavan; Deshpande, Ashok W

    2012-10-01

    Use of computer based decision tools to aid clinical decision making, has been a primary goal of research in biomedical informatics. Research in the last five decades has led to the development of Medical Decision Support (MDS) applications using a variety of modeling techniques, for a diverse range of medical decision problems. This paper surveys literature on modeling techniques for diagnostic decision support, with a focus on decision accuracy. Trends and shortcomings of research in this area are discussed and future directions are provided. The authors suggest that-(i) Improvement in the accuracy of MDS application may be possible by modeling of vague and temporal data, research on inference algorithms, integration of patient information from diverse sources and improvement in gene profiling algorithms; (ii) MDS research would be facilitated by public release of de-identified medical datasets, and development of opensource data-mining tool kits; (iii) Comparative evaluations of different modeling techniques are required to understand characteristics of the techniques, which can guide developers in choice of technique for a particular medical decision problem; and (iv) Evaluations of MDS applications in clinical setting are necessary to foster physicians' utilization of these decision aids.

  3. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    PubMed

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  4. Web-based decision support system to predict risk level of long term rice production

    NASA Astrophysics Data System (ADS)

    Mukhlash, Imam; Maulidiyah, Ratna; Sutikno; Setiyono, Budi

    2017-09-01

    Appropriate decision making in risk management of rice production is very important in agricultural planning, especially for Indonesia which is an agricultural country. Good decision would be obtained if the supporting data required are satisfied and using appropriate methods. This study aims to develop a Decision Support System that can be used to predict the risk level of rice production in some districts which are central of rice production in East Java. Web-based decision support system is constructed so that the information can be easily accessed and understood. Components of the system are data management, model management, and user interface. This research uses regression models of OLS and Copula. OLS model used to predict rainfall while Copula model used to predict harvested area. Experimental results show that the models used are successfully predict the harvested area of rice production in some districts which are central of rice production in East Java at any given time based on the conditions and climate of a region. Furthermore, it can predict the amount of rice production with the level of risk. System generates prediction of production risk level in the long term for some districts that can be used as a decision support for the authorities.

  5. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    ScienceCinema

    None

    2018-01-16

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  6. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-07-27

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  7. The design of patient decision support interventions: addressing the theory-practice gap.

    PubMed

    Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky

    2011-08-01

    Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards Collaboration influence standards for the design of decision support interventions. However, this analysis points to the need to undertake more work in providing theoretical foundations for these interventions. © 2010 Blackwell Publishing Ltd.

  8. Dairy cow culling strategies: making economical culling decisions.

    PubMed

    Lehenbauer, T W; Oltjen, J W

    1998-01-01

    The purpose of this report was to examine important economic elements of culling decisions, to review progress in development of culling decision support systems, and to discern some of the potentially rewarding areas for future research on culling models. Culling decisions have an important influence on the economic performance of the dairy but are often made in a nonprogrammed fashion and based partly on the intuition of the decision maker. The computer technology that is available for dairy herd management has made feasible the use of economic models to support culling decisions. Financial components--including profit, cash flow, and risk--are major economic factors affecting culling decisions. Culling strategies are further influenced by short-term fluctuations in cow numbers as well as by planned herd expansion. Changes in herd size affect the opportunity cost for postponed replacement and may alter the relevance of optimization strategies that assume a fixed herd size. Improvements in model components related to biological factors affecting future cow performance, including milk production, reproductive status, and mastitis, appear to offer the greatest economic potential for enhancing culling decision support systems. The ultimate value of any culling decision support system for developing economic culling strategies will be determined by its results under field conditions.

  9. Identifying the decision to be supported: a review of papers from environmental modelling and software

    USGS Publications Warehouse

    Sojda, Richard S.; Chen, Serena H.; El Sawah, Sondoss; Guillaume, Joseph H.A.; Jakeman, A.J.; Lautenbach, Sven; McIntosh, Brian S.; Rizzoli, A.E.; Seppelt, Ralf; Struss, Peter; Voinov, Alexey; Volk, Martin

    2012-01-01

    Two of the basic tenets of decision support system efforts are to help identify and structure the decisions to be supported, and to then provide analysis in how those decisions might be best made. One example from wetland management would be that wildlife biologists must decide when to draw down water levels to optimise aquatic invertebrates as food for breeding ducks. Once such a decision is identified, a system or tool to help them make that decision in the face of current and projected climate conditions could be developed. We examined a random sample of 100 papers published from 2001-2011 in Environmental Modelling and Software that used the phrase “decision support system” or “decision support tool”, and which are characteristic of different sectors. In our review, 41% of the systems and tools related to the water resources sector, 34% were related to agriculture, and 22% to the conservation of fish, wildlife, and protected area management. Only 60% of the papers were deemed to be reporting on DSS. This was based on the papers reviewed not having directly identified a specific decision to be supported. We also report on the techniques that were used to identify the decisions, such as formal survey, focus group, expert opinion, or sole judgment of the author(s). The primary underlying modelling system, e.g., expert system, agent based model, Bayesian belief network, geographical information system (GIS), and the like was categorised next. Finally, since decision support typically should target some aspect of unstructured decisions, we subjectively determined to what degree this was the case. In only 23% of the papers reviewed, did the system appear to tackle unstructured decisions. This knowledge should be useful in helping workers in the field develop more effective systems and tools, especially by being exposed to the approaches in different, but related, disciplines. We propose that a standard blueprint for reporting on DSS be developed for consideration by journal editors to aid them in filtering papers that use the term, “decision support”.

  10. NED-IIS: An Intelligent Information System for Forest Ecosystem Management

    Treesearch

    W.D. Potter; S. Somasekar; R. Kommineni; H.M. Rauscher

    1999-01-01

    We view Intelligent Information System (IIS) as composed of a unified knowledge base, database, and model base. The model base includes decision support models, forecasting models, and cvsualization models for example. In addition, we feel that the model base should include domain specific porblems solving modules as well as decision support models. This, then,...

  11. Fact Sheet: Environmental Pathway Models-Ground-Water Modeling in Support of Remedial Decision Making at Sites Contaminated with Radioactive Material

    EPA Pesticide Factsheets

    This fact sheet was designed to be used by technical staff responsible for identifying and implementing flow and transport models to support cleanup decisions at hazardous and radioactive waste sites.

  12. Creating Shareable Clinical Decision Support Rules for a Pharmacogenomics Clinical Guideline Using Structured Knowledge Representation.

    PubMed

    Linan, Margaret K; Sottara, Davide; Freimuth, Robert R

    2015-01-01

    Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.

  13. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  14. Shared decision-making and patient autonomy.

    PubMed

    Sandman, Lars; Munthe, Christian

    2009-01-01

    In patient-centred care, shared decision-making is advocated as the preferred form of medical decision-making. Shared decision-making is supported with reference to patient autonomy without abandoning the patient or giving up the possibility of influencing how the patient is benefited. It is, however, not transparent how shared decision-making is related to autonomy and, in effect, what support autonomy can give shared decision-making. In the article, different forms of shared decision-making are analysed in relation to five different aspects of autonomy: (1) self-realisation; (2) preference satisfaction; (3) self-direction; (4) binary autonomy of the person; (5) gradual autonomy of the person. It is argued that both individually and jointly these aspects will support the models called shared rational deliberative patient choice and joint decision as the preferred versions from an autonomy perspective. Acknowledging that both of these models may fail, the professionally driven best interest compromise model is held out as a satisfactory second-best choice.

  15. Overcoming barriers to cancer-helpline professionals providing decision support for callers: an implementation study.

    PubMed

    Stacey, Dawn; Chambers, Suzanne K; Jacobsen, Mary Jane; Dunn, Jeff

    2008-11-01

    To evaluate the effect of an intervention on healthcare professionals' perceptions of barriers influencing their provision of decision support for callers facing cancer-related decisions. A pre- and post-test study guided by the Ottawa Model of Research Use. Australian statewide cancer call center that provides public access to information and supportive cancer services. 34 nurses, psychologists, and other allied healthcare professionals at the cancer call center. Participants completed baseline measures and, subsequently, were exposed to an intervention that included a decision support tutorial, coaching protocol, and skill-building workshop. Strategies were implemented to address organizational barriers. Perceived barriers and facilitators influencing provision of decision support, decision support knowledge, quality of decision support provided to standardized callers, and call length. Postintervention participants felt more prepared, confident in providing decision support, and aware of decision support resources. They had a stronger belief that providing decision support was within their role. Participants significantly improved their knowledge and provided higher-quality decision support to standardized callers without changing call length. The implementation intervention overcame several identified barriers that influenced call center professionals when providing decision support. Nurses and other helpline professionals have the potential to provide decision support designed to help callers understand cancer information, clarify their values associated with their options, and reduce decisional conflict. However, they require targeted education and organizational interventions to reduce their perceived barriers to providing decision support.

  16. A new fit-for-purpose model testing framework: Decision Crash Tests

    NASA Astrophysics Data System (ADS)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building decisions. In one case, we show the set of model building decisions has a low probability to correctly support the upgrade decision. In the other case, we show evidence suggesting another set of model building decisions has a high probability to correctly support the decision. The proposed DCT framework focuses on what model users typically care about: the management decision in question. The DCT framework will often be very strict and will produce easy to interpret results enabling clear unsuitability determinations. In the past, hydrologic modelling progress has necessarily meant new models and model building methods. Continued progress in hydrologic modelling requires finding clear evidence to motivate researchers to disregard unproductive models and methods and the DCT framework is built to produce this kind of evidence. References: Andréassian, V., C. Perrin, L. Berthet, N. Le Moine, J. Lerat, C. Loumagne, L. Oudin, T. Mathevet, M.-H. Ramos, and A. Valéry (2009), Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences, 13, 1757-1764. Klemeš, V. (1986), Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31 (1), 13-24.

  17. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    NASA Technical Reports Server (NTRS)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  18. Constraint reasoning in deep biomedical models.

    PubMed

    Cruz, Jorge; Barahona, Pedro

    2005-05-01

    Deep biomedical models are often expressed by means of differential equations. Despite their expressive power, they are difficult to reason about and make decisions, given their non-linearity and the important effects that the uncertainty on data may cause. The objective of this work is to propose a constraint reasoning framework to support safe decisions based on deep biomedical models. The methods used in our approach include the generic constraint propagation techniques for reducing the bounds of uncertainty of the numerical variables complemented with new constraint reasoning techniques that we developed to handle differential equations. The results of our approach are illustrated in biomedical models for the diagnosis of diabetes, tuning of drug design and epidemiology where it was a valuable decision-supporting tool notwithstanding the uncertainty on data. The main conclusion that follows from the results is that, in biomedical decision support, constraint reasoning may be a worthwhile alternative to traditional simulation methods, especially when safe decisions are required.

  19. Decision Support Systems and the Conflict Model of Decision Making: A Stimulus for New Computer-Assisted Careers Guidance Systems.

    ERIC Educational Resources Information Center

    Ballantine, R. Malcolm

    Decision Support Systems (DSSs) are computer-based decision aids to use when making decisions which are partially amenable to rational decision-making procedures but contain elements where intuitive judgment is an essential component. In such situations, DSSs are used to improve the quality of decision-making. The DSS approach is based on Simon's…

  20. Bi-Level Decision Making for Supporting Energy and Water Nexus

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Vesselinov, V. V.

    2016-12-01

    The inseparable relationship between energy production and water resources has led to the emerging energy-water nexus concept, which provides a means for integrated management and decision making of these two critical resources. However, the energy-water nexus frequently involves decision makers with different and competing management objectives. Furthermore, there is a challenge that decision makers and stakeholders might be making decisions sequentially from a higher level to a lower level, instead of at the same decision level, whereby the objective of a decision maker at a higher level should be satisfied first. In this study, a bi-level decision model is advanced to handle such decision-making situations for managing the energy-water nexus. The work represents a unique contribution to developing an integrated decision-support framework/tool to quantify and analyze the tradeoffs between the two-level energy-water nexus decision makers. Here, plans for electricity generation, fuel supply, water supply, capacity expansion of the power plants and environmental impacts are optimized to provide effective decision support. The developed decision-support framework is implemented in Julia (a high-level, high-performance dynamic programming language for technical computing) and is a part of the MADS (Model Analyses & Decision Support) framework (http://mads.lanl.gov). To demonstrate the capabilities of the developed methodology, a series of analyses are performed for synthetic problems consistent with actual real-world energy-water nexus management problems.

  1. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  2. Decision Modeling Framework to Minimize Arrival Delays from Ground Delay Programs

    NASA Astrophysics Data System (ADS)

    Mohleji, Nandita

    Convective weather and other constraints create uncertainty in air transportation, leading to costly delays. A Ground Delay Program (GDP) is a strategy to mitigate these effects. Systematic decision support can increase GDP efficacy, reduce delays, and minimize direct operating costs. In this study, a decision analysis (DA) model is constructed by combining a decision tree and Bayesian belief network. Through a study of three New York region airports, the DA model demonstrates that larger GDP scopes that include more flights in the program, along with longer lead times that provide stakeholders greater notice of a pending program, trigger the fewest average arrival delays. These findings are demonstrated to result in a savings of up to $1,850 per flight. Furthermore, when convective weather is predicted, forecast weather confidences remain the same level or greater at least 70% of the time, supporting more strategic decision making. The DA model thus enables quantification of uncertainties and insights on causal relationships, providing support for future GDP decisions.

  3. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model

    PubMed Central

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies’ business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and “what-if” scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results. PMID:26871694

  4. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  5. Moving toward climate-informed agricultural decision support - can we use PRISM data for more than just monthly averages?

    USDA-ARS?s Scientific Manuscript database

    Decision support systems/models for agriculture are varied in target application and complexity, ranging from simple worksheets to near real-time forecast systems requiring significant computational and manpower resources. Until recently, most such decision support systems have been constructed with...

  6. Decision support for evidence-based integration of disease control: A proof of concept for malaria and schistosomiasis

    PubMed Central

    Graeden, Ellie; Kerr, Justin; Sorrell, Erin M.; Katz, Rebecca

    2018-01-01

    Managing infectious disease requires rapid and effective response to support decision making. The decisions are complex and require understanding of the diseases, disease intervention and control measures, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions, the complexity of current models presents a significant barrier to community-level decision makers in using the outputs of the most scientifically robust methods to support pragmatic decisions about implementing a public health response effort, even for endemic diseases with which they are already familiar. Here, we describe the development of an application available on the internet, including from mobile devices, with a simple user interface, to support on-the-ground decision-making for integrating disease control programs, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap, and which result in significant morbidity and mortality in affected regions. Working with data from countries across sub-Saharan Africa and the Middle East, we present a proof-of-principle method and corresponding prototype tool to provide guidance on how to optimize integration of vertical disease control programs. This method and tool demonstrate significant progress in effectively translating the best available scientific models to support practical decision making on the ground with the potential to significantly increase the efficacy and cost-effectiveness of disease control. Author summary Designing and implementing effective programs for infectious disease control requires complex decision-making, informed by an understanding of the diseases, the types of disease interventions and control measures available, and the disease-relevant characteristics of the local community. Though disease modeling frameworks have been developed to address these questions and support decision-making, the complexity of current models presents a significant barrier to on-the-ground end users. The picture is further complicated when considering approaches for integration of different disease control programs, where co-infection dynamics, treatment interactions, and other variables must also be taken into account. Here, we describe the development of an application available on the internet with a simple user interface, to support on-the-ground decision-making for integrating disease control, given local conditions and practical constraints. The model upon which the tool is built provides predictive analysis for the effectiveness of integration of schistosomiasis and malaria control, two diseases with extensive geographical and epidemiological overlap. This proof-of-concept method and tool demonstrate significant progress in effectively translating the best available scientific models to support pragmatic decision-making on the ground, with the potential to significantly increase the impact and cost-effectiveness of disease control. PMID:29649260

  7. Choosing a Model of Maternity Care: Decision Support Needs of Australian Women.

    PubMed

    Stevens, Gabrielle; Miller, Yvette D; Watson, Bernadette; Thompson, Rachel

    2016-06-01

    Access to information on the features and outcomes associated with the various models of maternity care available in Australia is vital for women's informed decision-making. This study sought to identify women's preferences for information access and decision-making involvement, as well as their priority information needs, for model of care decision-making. A convenience sample of adult women of childbearing age in Queensland, Australia were recruited to complete an online survey assessing their model of care decision support needs. Knowledge on models of care and socio-demographic characteristics were also assessed. Altogether, 641 women provided usable survey data. Of these women, 26.7 percent had heard of all available models of care before starting the survey. Most women wanted access to information on models of care (90.4%) and an active role in decision-making (99.0%). Nine priority information needs were identified: cost, access to choice of mode of birth and care provider, after hours provider contact, continuity of carer in labor/birth, mobility during labor, discussion of the pros/cons of medical procedures, rates of skin-to-skin contact after birth, and availability at a preferred birth location. This information encompassed the priority needs of women across age, birth history, and insurance status subgroups. This study demonstrates Australian women's unmet needs for information that supports them to effectively compare available options for model of maternity care. Findings provide clear direction on what information should be prioritized and ideal channels for information access to support quality decision-making in practice. © 2015 Wiley Periodicals, Inc.

  8. Operator models for delivering municipal solid waste management services in developing countries: Part B: Decision support.

    PubMed

    Soós, Reka; Whiteman, Andrew D; Wilson, David C; Briciu, Cosmin; Nürnberger, Sofia; Oelz, Barbara; Gunsilius, Ellen; Schwehn, Ekkehard

    2017-08-01

    This is the second of two papers reporting the results of a major study considering 'operator models' for municipal solid waste management (MSWM) in emerging and developing countries. Part A documents the evidence base, while Part B presents a four-step decision support system for selecting an appropriate operator model in a particular local situation. Step 1 focuses on understanding local problems and framework conditions; Step 2 on formulating and prioritising local objectives; and Step 3 on assessing capacities and conditions, and thus identifying strengths and weaknesses, which underpin selection of the operator model. Step 4A addresses three generic questions, including public versus private operation, inter-municipal co-operation and integration of services. For steps 1-4A, checklists have been developed as decision support tools. Step 4B helps choose locally appropriate models from an evidence-based set of 42 common operator models ( coms); decision support tools here are a detailed catalogue of the coms, setting out advantages and disadvantages of each, and a decision-making flowchart. The decision-making process is iterative, repeating steps 2-4 as required. The advantages of a more formal process include avoiding pre-selection of a particular com known to and favoured by one decision maker, and also its assistance in identifying the possible weaknesses and aspects to consider in the selection and design of operator models. To make the best of whichever operator models are selected, key issues which need to be addressed include the capacity of the public authority as 'client', management in general and financial management in particular.

  9. Informing Environmental Water Management Decisions: Using Conditional Probability Networks to Address the Information Needs of Planning and Implementation Cycles.

    PubMed

    Horne, Avril C; Szemis, Joanna M; Webb, J Angus; Kaur, Simranjit; Stewardson, Michael J; Bond, Nick; Nathan, Rory

    2018-03-01

    One important aspect of adaptive management is the clear and transparent documentation of hypotheses, together with the use of predictive models (complete with any assumptions) to test those hypotheses. Documentation of such models can improve the ability to learn from management decisions and supports dialog between stakeholders. A key challenge is how best to represent the existing scientific knowledge to support decision-making. Such challenges are currently emerging in the field of environmental water management in Australia, where managers are required to prioritize the delivery of environmental water on an annual basis, using a transparent and evidence-based decision framework. We argue that the development of models of ecological responses to environmental water use needs to support both the planning and implementation cycles of adaptive management. Here we demonstrate an approach based on the use of Conditional Probability Networks to translate existing ecological knowledge into quantitative models that include temporal dynamics to support adaptive environmental flow management. It equally extends to other applications where knowledge is incomplete, but decisions must still be made.

  10. Informing Environmental Water Management Decisions: Using Conditional Probability Networks to Address the Information Needs of Planning and Implementation Cycles

    NASA Astrophysics Data System (ADS)

    Horne, Avril C.; Szemis, Joanna M.; Webb, J. Angus; Kaur, Simranjit; Stewardson, Michael J.; Bond, Nick; Nathan, Rory

    2018-03-01

    One important aspect of adaptive management is the clear and transparent documentation of hypotheses, together with the use of predictive models (complete with any assumptions) to test those hypotheses. Documentation of such models can improve the ability to learn from management decisions and supports dialog between stakeholders. A key challenge is how best to represent the existing scientific knowledge to support decision-making. Such challenges are currently emerging in the field of environmental water management in Australia, where managers are required to prioritize the delivery of environmental water on an annual basis, using a transparent and evidence-based decision framework. We argue that the development of models of ecological responses to environmental water use needs to support both the planning and implementation cycles of adaptive management. Here we demonstrate an approach based on the use of Conditional Probability Networks to translate existing ecological knowledge into quantitative models that include temporal dynamics to support adaptive environmental flow management. It equally extends to other applications where knowledge is incomplete, but decisions must still be made.

  11. The use of the Dutch Self-Sufficiency Matrix (SSM-D) to inform allocation decisions to public mental health care for homeless people.

    PubMed

    Lauriks, Steve; de Wit, Matty A S; Buster, Marcel C A; Fassaert, Thijs J L; van Wifferen, Ron; Klazinga, Niek S

    2014-10-01

    The current study set out to develop a decision support tool based on the Self-Sufficiency Matrix (Dutch version; SSM-D) for the clinical decision to allocate homeless people to the public mental health care system at the central access point of public mental health care in Amsterdam, The Netherlands. Logistic regression and receiver operating characteristic-curve analyses were used to model professional decisions and establish four decision categories based on SSM-D scores from half of the research population (Total n = 612). The model and decision categories were found to be accurate and reliable in predicting professional decisions in the second half of the population. Results indicate that the decision support tool based on the SSM-D is useful and feasible. The method to develop the SSM-D as a decision support tool could be applied to decision-making processes in other systems and services where the SSM-D has been implemented, to further increase the utility of the instrument.

  12. Foundations for context-aware information retrieval for proactive decision support

    NASA Astrophysics Data System (ADS)

    Mittu, Ranjeev; Lin, Jessica; Li, Qingzhe; Gao, Yifeng; Rangwala, Huzefa; Shargo, Peter; Robinson, Joshua; Rose, Carolyn; Tunison, Paul; Turek, Matt; Thomas, Stephen; Hanselman, Phil

    2016-05-01

    Intelligence analysts and military decision makers are faced with an onslaught of information. From the now ubiquitous presence of intelligence, surveillance, and reconnaissance (ISR) platforms providing large volumes of sensor data, to vast amounts of open source data in the form of news reports, blog postings, or social media postings, the amount of information available to a modern decision maker is staggering. Whether tasked with leading a military campaign or providing support for a humanitarian mission, being able to make sense of all the information available is a challenge. Due to the volume and velocity of this data, automated tools are required to help support reasoned, human decisions. In this paper we describe several automated techniques that are targeted at supporting decision making. Our approaches include modeling the kinematics of moving targets as motifs; developing normalcy models and detecting anomalies in kinematic data; automatically classifying the roles of users in social media; and modeling geo-spatial regions based on the behavior that takes place in them. These techniques cover a wide-range of potential decision maker needs.

  13. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  14. Software Tools For Building Decision-support Models For Flood Emergency Situations

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.

    The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.

  15. Decision support model for assessing archaeological survey needs for bridge replacement projects in Iowa.

    DOT National Transportation Integrated Search

    2006-01-01

    The Bridges Decision Support Model is a geographic information system (GIS) that assembles existing : data on archaeological sites, surveys, and their geologic contexts to assess the risk of bridge replacement : projects encountering 13,000- to 150-y...

  16. Development of a decision support system for analysis and solutions of prolonged standing in the workplace.

    PubMed

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-06-01

    Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially.

  17. Development of a Decision Support System for Analysis and Solutions of Prolonged Standing in the Workplace

    PubMed Central

    Halim, Isa; Arep, Hambali; Kamat, Seri Rahayu; Abdullah, Rohana; Omar, Abdul Rahman; Ismail, Ahmad Rasdan

    2014-01-01

    Background Prolonged standing has been hypothesized as a vital contributor to discomfort and muscle fatigue in the workplace. The objective of this study was to develop a decision support system that could provide systematic analysis and solutions to minimize the discomfort and muscle fatigue associated with prolonged standing. Methods The integration of object-oriented programming and a Model Oriented Simultaneous Engineering System were used to design the architecture of the decision support system. Results Validation of the decision support system was carried out in two manufacturing companies. The validation process showed that the decision support system produced reliable results. Conclusion The decision support system is a reliable advisory tool for providing analysis and solutions to problems related to the discomfort and muscle fatigue associated with prolonged standing. Further testing of the decision support system is suggested before it is used commercially. PMID:25180141

  18. A study on spatial decision support systems for HIV/AIDS prevention based on COM GIS technology

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Luo, Huasong; Peng, Shungyun; Xu, Quanli

    2007-06-01

    Based on the deeply analysis of the current status and the existing problems of GIS technology applications in Epidemiology, this paper has proposed the method and process for establishing the spatial decision support systems of AIDS epidemic prevention by integrating the COM GIS, Spatial Database, GPS, Remote Sensing, and Communication technologies, as well as ASP and ActiveX software development technologies. One of the most important issues for constructing the spatial decision support systems of AIDS epidemic prevention is how to integrate the AIDS spreading models with GIS. The capabilities of GIS applications in the AIDS epidemic prevention have been described here in this paper firstly. Then some mature epidemic spreading models have also been discussed for extracting the computation parameters. Furthermore, a technical schema has been proposed for integrating the AIDS spreading models with GIS and relevant geospatial technologies, in which the GIS and model running platforms share a common spatial database and the computing results can be spatially visualized on Desktop or Web GIS clients. Finally, a complete solution for establishing the decision support systems of AIDS epidemic prevention has been offered in this paper based on the model integrating methods and ESRI COM GIS software packages. The general decision support systems are composed of data acquisition sub-systems, network communication sub-systems, model integrating sub-systems, AIDS epidemic information spatial database sub-systems, AIDS epidemic information querying and statistical analysis sub-systems, AIDS epidemic dynamic surveillance sub-systems, AIDS epidemic information spatial analysis and decision support sub-systems, as well as AIDS epidemic information publishing sub-systems based on Web GIS.

  19. Implementation of workflow engine technology to deliver basic clinical decision support functionality.

    PubMed

    Huser, Vojtech; Rasmussen, Luke V; Oberg, Ryan; Starren, Justin B

    2011-04-10

    Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform.

  20. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  1. Seismic slope-performance analysis: from hazard map to decision support system

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.; Ho, Carlton L.

    1999-01-01

    In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.

  2. A multicriteria decision making model for assessment and selection of an ERP in a logistics context

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Ferreira, Fernanda A.

    2017-07-01

    The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.

  3. Decision Support for Renewal of Wastewater Collection and Water Distribution Systems

    EPA Science Inventory

    The objective of this study was to identify the current decision support methodologies, models and approaches being used for determining how to rehabilitate or replace underground utilities; identify the critical gaps of these current models through comparison with case history d...

  4. OASIS: A GEOGRAPHICAL DECISION SUPPORT SYSTEM FOR GROUND-WATER CONTAMINANT MODELING

    EPA Science Inventory

    Three new software technologies were applied to develop an efficient and easy to use decision support system for ground-water contaminant modeling. Graphical interfaces create a more intuitive and effective form of communication with the computer compared to text-based interfaces...

  5. Cortical and Hippocampal Correlates of Deliberation during Model-Based Decisions for Rewards in Humans

    PubMed Central

    Bornstein, Aaron M.; Daw, Nathaniel D.

    2013-01-01

    How do we use our memories of the past to guide decisions we've never had to make before? Although extensive work describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is known as model-based decision making. While the learning of environmental relations that might support model-based decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is whether decisions are directly supported by the same mnemonic systems characterized for relational learning more generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for predictive associations learned by the hippocampal memory system to be recalled during choice formation. PMID:24339770

  6. [Modeling in value-based medicine].

    PubMed

    Neubauer, A S; Hirneiss, C; Kampik, A

    2010-03-01

    Modeling plays an important role in value-based medicine (VBM). It allows decision support by predicting potential clinical and economic consequences, frequently combining different sources of evidence. Based on relevant publications and examples focusing on ophthalmology the key economic modeling methods are explained and definitions are given. The most frequently applied model types are decision trees, Markov models, and discrete event simulation (DES) models. Model validation includes besides verifying internal validity comparison with other models (external validity) and ideally validation of its predictive properties. The existing uncertainty with any modeling should be clearly stated. This is true for economic modeling in VBM as well as when using disease risk models to support clinical decisions. In economic modeling uni- and multivariate sensitivity analyses are usually applied; the key concepts here are tornado plots and cost-effectiveness acceptability curves. Given the existing uncertainty, modeling helps to make better informed decisions than without this additional information.

  7. Intelligent ship traffic monitoring for oil spill prevention: risk based decision support building on AIS.

    PubMed

    Eide, Magnus S; Endresen, Oyvind; Brett, Per Olaf; Ervik, Jon Leon; Røang, Kjell

    2007-02-01

    The paper describes a model, which estimates the risk levels of individual crude oil tankers. The intended use of the model, which is ready for trial implementation at The Norwegian Coastal Administrations new Vardø VTS (Vessel Traffic Service) centre, is to facilitate the comparison of ships and to support a risk based decision on which ships to focus attention on. For a VTS operator, tasked with monitoring hundreds of ships, this is a valuable decision support tool. The model answers the question, "Which ships are likely to produce an oil spill accident, and how much is it likely to spill?".

  8. Integrating climatic and fuels information into National Fire Risk Decision Support Tools

    Treesearch

    W. Cooke; V. Anantharaj; C. Wax; J. Choi; K. Grala; M. Jolly; G.P. Dixon; J. Dyer; D.L. Evans; G.B. Goodrich

    2007-01-01

    The Wildland Fire Assessment System (WFAS) is a component of the U.S. Department of Agriculture, Forest Service Decision Support Systems (DSS) that support fire potential modeling. Fire potential models for Mississippi and for Eastern fire environments have been developed as part of a National Aeronautic and Space Agency-funded study aimed at demonstrating the utility...

  9. Simulation and Modeling Efforts to Support Decision Making in Healthcare Supply Chain Management

    PubMed Central

    Lazarova-Molnar, Sanja

    2014-01-01

    Recently, most healthcare organizations focus their attention on reducing the cost of their supply chain management (SCM) by improving the decision making pertaining processes' efficiencies. The availability of products through healthcare SCM is often a matter of life or death to the patient; therefore, trial and error approaches are not an option in this environment. Simulation and modeling (SM) has been presented as an alternative approach for supply chain managers in healthcare organizations to test solutions and to support decision making processes associated with various SCM problems. This paper presents and analyzes past SM efforts to support decision making in healthcare SCM and identifies the key challenges associated with healthcare SCM modeling. We also present and discuss emerging technologies to meet these challenges. PMID:24683333

  10. An agent architecture for an integrated forest ecosystem management decision support system

    Treesearch

    Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher

    2003-01-01

    A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...

  11. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that delivers map data products including deformation modeling results (slope change and strain magnitude) and aftershock forecasts, with remote sensing change detection results under development. These products are event triggered (from the USGS earthquake feed) and will be posted to event feeds on the E-DECIDER webpage and accessible via the mobile interface and UICDS. E-DECIDER also features a KML service that provides infrastructure information from the FEMA HAZUS database through UICDS and the mobile interface. The back-end GIS service architecture and front-end gateway components form a decision support system that is designed for ease-of-use and extensibility for end-users.

  12. Decision support systems and the healthcare strategic planning process: a case study.

    PubMed

    Lundquist, D L; Norris, R M

    1991-01-01

    The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.

  13. Parameter selection for and implementation of a web-based decision-support tool to predict extubation outcome in premature infants.

    PubMed

    Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S

    2006-03-01

    Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.

  14. Development of an evidence-based decision pathway for vestibular schwannoma treatment options.

    PubMed

    Linkov, Faina; Valappil, Benita; McAfee, Jacob; Goughnour, Sharon L; Hildrew, Douglas M; McCall, Andrew A; Linkov, Igor; Hirsch, Barry; Snyderman, Carl

    To integrate multiple sources of clinical information with patient feedback to build evidence-based decision support model to facilitate treatment selection for patients suffering from vestibular schwannomas (VS). This was a mixed methods study utilizing focus group and survey methodology to solicit feedback on factors important for making treatment decisions among patients. Two 90-minute focus groups were conducted by an experienced facilitator. Previously diagnosed VS patients were recruited by clinical investigators at the University of Pittsburgh Medical Center (UPMC). Classical content analysis was used for focus group data analysis. Providers were recruited from practices within the UPMC system and were surveyed using Delphi methods. This information can provide a basis for multi-criteria decision analysis (MCDA) framework to develop a treatment decision support system for patients with VS. Eight themes were derived from these data (focus group + surveys): doctor/health care system, side effects, effectiveness of treatment, anxiety, mortality, family/other people, quality of life, and post-operative symptoms. These data, as well as feedback from physicians were utilized in building a multi-criteria decision model. The study illustrated steps involved in the development of a decision support model that integrates evidence-based data and patient values to select treatment alternatives. Studies focusing on the actual development of the decision support technology for this group of patients are needed, as decisions are highly multifactorial. Such tools have the potential to improve decision making for complex medical problems with alternate treatment pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  16. Neural network modeling for surgical decisions on traumatic brain injury patients.

    PubMed

    Li, Y C; Liu, L; Chiu, W T; Jian, W S

    2000-01-01

    Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a better solution for complex, non-linear medical decision support systems than conventional statistical techniques such as logistic regression.

  17. Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental U.S.

    USDA-ARS?s Scientific Manuscript database

    Many applications of simulation models and related decision support tools for agriculture and natural resource management require daily meteorological data as inputs. Availability and quality of such data, however, often constrain research and decision support activities that require use of these to...

  18. OASIS: PARAMETER ESTIMATION SYSTEM FOR AQUIFER RESTORATION MODELS, USER'S MANUAL VERSION 2.0

    EPA Science Inventory

    OASIS, a decision support system for ground water contaminant modeling, has been developed for the CPA by Rice University, through the National Center for Ground Water Research. As a decision support system, OASIS was designed to provide a set of tools which will help scientists ...

  19. LANL Institutional Decision Support By Process Modeling and Analysis Group (AET-2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Steven Richard

    2016-04-04

    AET-2 has expertise in process modeling, economics, business case analysis, risk assessment, Lean/Six Sigma tools, and decision analysis to provide timely decision support to LANS leading to continuous improvement. This capability is critical during the current tight budgetary environment as LANS pushes to identify potential areas of cost savings and efficiencies. An important arena is business systems and operations, where processes can impact most or all laboratory employees. Lab-wide efforts are needed to identify and eliminate inefficiencies to accomplish Director McMillan’s charge of “doing more with less.” LANS faces many critical and potentially expensive choices that require sound decision supportmore » to ensure success. AET-2 is available to provide this analysis support to expedite the decisions at hand.« less

  20. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections.

    PubMed

    MacFadden, D R; Coburn, B; Shah, N; Robicsek, A; Savage, R; Elligsen, M; Daneman, N

    2018-04-25

    Early empiric antibiotic therapy in patients can improve clinical outcomes in Gram-negative bacteraemia. However, the widespread prevalence of antibiotic-resistant pathogens compromises our ability to provide adequate therapy while minimizing use of broad antibiotics. We sought to determine whether readily available electronic medical record data could be used to develop predictive models for decision support in Gram-negative bacteraemia. We performed a multi-centre cohort study, in Canada and the USA, of hospitalized patients with Gram-negative bloodstream infection from April 2010 to March 2015. We analysed multivariable models for prediction of antibiotic susceptibility at two empiric windows: Gram-stain-guided and pathogen-guided treatment. Decision-support models for empiric antibiotic selection were developed based on three clinical decision thresholds of acceptable adequate coverage (80%, 90% and 95%). A total of 1832 patients with Gram-negative bacteraemia were evaluated. Multivariable models showed good discrimination across countries and at both Gram-stain-guided (12 models, areas under the curve (AUCs) 0.68-0.89, optimism-corrected AUCs 0.63-0.85) and pathogen-guided (12 models, AUCs 0.75-0.98, optimism-corrected AUCs 0.64-0.95) windows. Compared to antibiogram-guided therapy, decision-support models of antibiotic selection incorporating individual patient characteristics and prior culture results have the potential to increase use of narrower-spectrum antibiotics (in up to 78% of patients) while reducing inadequate therapy. Multivariable models using readily available epidemiologic factors can be used to predict antimicrobial susceptibility in infecting pathogens with reasonable discriminatory ability. Implementation of sequential predictive models for real-time individualized empiric antibiotic decision-making has the potential to both optimize adequate coverage for patients while minimizing overuse of broad-spectrum antibiotics, and therefore requires further prospective evaluation. Readily available epidemiologic risk factors can be used to predict susceptibility of Gram-negative organisms among patients with bacteraemia, using automated decision-making models. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Bayesian Decision Support

    NASA Astrophysics Data System (ADS)

    Berliner, M.

    2017-12-01

    Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.

  2. Watershed Management Optimization Support Tool v3

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  3. The integration of quantitative information with an intelligent decision support system for residential energy retrofits

    NASA Astrophysics Data System (ADS)

    Mo, Yunjeong

    The purpose of this research is to support the development of an intelligent Decision Support System (DSS) by integrating quantitative information with expert knowledge in order to facilitate effective retrofit decision-making. To achieve this goal, the Energy Retrofit Decision Process Framework is analyzed. Expert system shell software, a retrofit measure cost database, and energy simulation software are needed for developing the DSS; Exsys Corvid, the NREM database and BEopt were chosen for implementing an integration model. This integration model demonstrates the holistic function of a residential energy retrofit system for existing homes, by providing a prioritized list of retrofit measures with cost information, energy simulation and expert advice. The users, such as homeowners and energy auditors, can acquire all of the necessary retrofit information from this unified system without having to explore several separate systems. The integration model plays the role of a prototype for the finalized intelligent decision support system. It implements all of the necessary functions for the finalized DSS, including integration of the database, energy simulation and expert knowledge.

  4. Bridging the gap: decision-making processes of women with breast cancer using complementary and alternative medicine (CAM).

    PubMed

    Balneaves, Lynda G; Truant, Tracy L O; Kelly, Mary; Verhoef, Marja J; Davison, B Joyce

    2007-08-01

    The purpose of this study was to explore the personal and social processes women with breast cancer engaged in when making decisions about complementary and alternative medicine (CAM). The overall aim was to develop a conceptual model of the treatment decision-making process specific to breast cancer care and CAM that will inform future information and decision support strategies. Grounded theory methodology explored the decisions of women with breast cancer using CAM. Semistructured interviews were conducted with 20 women diagnosed with early-stage breast cancer. Following open, axial, and selective coding, the constant comparative method was used to identify key themes in the data and develop a conceptual model of the CAM decision-making process. The final decision-making model, Bridging the Gap, was comprised of four core concepts including maximizing choices/minimizing risks, experiencing conflict, gathering and filtering information, and bridging the gap. Women with breast cancer used one of three decision-making styles to address the paradigmatic, informational, and role conflict they experienced as a result of the gap they perceived between conventional care and CAM: (1) taking it one step at a time, (2) playing it safe, and (3) bringing it all together. Women with breast cancer face conflict and anxiety when making decisions about CAM within a conventional cancer care context. Information and decision support strategies are needed to ensure women are making safe, informed treatment decisions about CAM. The model, Bridging the Gap, provides a conceptual framework for future decision support interventions.

  5. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of a free workflow technology software suite (available at http://code.google.com/p/healthflow) and its application in the domain of clinical decision support. Our implementation seamlessly supports clinical logic testing on retrospective data and offers a user-friendly knowledge representation paradigm. With the presented software implementation, we demonstrate that workflow engine technology can provide a decision support platform which evaluates well against an established clinical decision support architecture evaluation framework. Due to cross-industry usage of workflow engine technology, we can expect significant future functionality enhancements that will further improve the technology's capacity to serve as a clinical decision support platform. PMID:21477364

  6. Decision Modeling for Socio-Cultural Data

    DTIC Science & Technology

    2011-02-01

    REFERENCES [1] Malczewski, J. (1999) GIS and Multicriteria Decision Analysis . John Wiley and Sons, New York. [2] Ehrgott, M., and Gandibleux, X. (Eds...up, nonexclusive, irrevocable worldwide license to use , modify, reproduce, release, perform, display, or disclose the work by or on behalf of the...criteria decision analysis (MCDA), into a geospatial environment to support decision making for campaign management. Our development approach supports

  7. Toward patient-centered, personalized and personal decision support and knowledge management: a survey.

    PubMed

    Leong, T-Y

    2012-01-01

    This paper summarizes the recent trends and highlights the challenges and opportunities in decision support and knowledge management for patient-centered, personalized, and personal health care. The discussions are based on a broad survey of related references, focusing on the most recent publications. Major advances are examined in the areas of i) shared decision making paradigms, ii) continuity of care infrastructures and architectures, iii) human factors and system design approaches, iv) knowledge management innovations, and v) practical deployment and change considerations. Many important initiatives, projects, and plans with promising results have been identified. The common themes focus on supporting the individual patients who are playing an increasing central role in their own care decision processes. New collaborative decision making paradigms and information infrastructures are required to ensure effective continuity of care. Human factors and usability are crucial for the successful development and deployment of the relevant systems, tools, and aids. Advances in personalized medicine can be achieved through integrating genomic, phenotypic and other biological, individual, and population level information, and gaining useful insights from building and analyzing biological and other models at multiple levels of abstraction. Therefore, new Information and Communication Technologies and evaluation approaches are needed to effectively manage the scale and complexity of biomedical and health information, and adapt to the changing nature of clinical decision support. Recent research in decision support and knowledge management combines heterogeneous information and personal data to provide cost-effective, calibrated, personalized support in shared decision making at the point of care. Current and emerging efforts concentrate on developing or extending conventional paradigms, techniques, systems, and architectures for the new predictive, preemptive, and participatory health care model for patient-centered, personalized medicine. There is also an increasing emphasis on managing complexity with changing care models, processes, and settings.

  8. Watershed Management Optimization Support Tool (WMOST) v3: User Guide

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context that is, accou...

  9. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  10. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  11. "Many miles to go …": a systematic review of the implementation of patient decision support interventions into routine clinical practice.

    PubMed

    Elwyn, Glyn; Scholl, Isabelle; Tietbohl, Caroline; Mann, Mala; Edwards, Adrian G K; Clay, Catharine; Légaré, France; van der Weijden, Trudy; Lewis, Carmen L; Wexler, Richard M; Frosch, Dominick L

    2013-01-01

    Two decades of research has established the positive effect of using patient-targeted decision support interventions: patients gain knowledge, greater understanding of probabilities and increased confidence in decisions. Yet, despite their efficacy, the effectiveness of these decision support interventions in routine practice has yet to be established; widespread adoption has not occurred. The aim of this review was to search for and analyze the findings of published peer-reviewed studies that investigated the success levels of strategies or methods where attempts were made to implement patient-targeted decision support interventions into routine clinical settings. An electronic search strategy was devised and adapted for the following databases: ASSIA, CINAHL, Embase, HMIC, Medline, Medline-in-process, OpenSIGLE, PsycINFO, Scopus, Social Services Abstracts, and the Web of Science. In addition, we used snowballing techniques. Studies were included after dual independent assessment. After assessment, 5322 abstracts yielded 51 articles for consideration. After examining full-texts, 17 studies were included and subjected to data extraction. The approach used in all studies was one where clinicians and their staff used a referral model, asking eligible patients to use decision support. The results point to significant challenges to the implementation of patient decision support using this model, including indifference on the part of health care professionals. This indifference stemmed from a reported lack of confidence in the content of decision support interventions and concern about disruption to established workflows, ultimately contributing to organizational inertia regarding their adoption. It seems too early to make firm recommendations about how best to implement patient decision support into routine practice because approaches that use a 'referral model' consistently report difficulties. We sense that the underlying issues that militate against the use of patient decision support and, more generally, limit the adoption of shared decision making, are under-investigated and under-specified. Future reports from implementation studies could be improved by following guidelines, for example the SQUIRE proposals, and by adopting methods that would be able to go beyond the 'barriers' and 'facilitators' approach to understand more about the nature of professional and organizational resistance to these tools. The lack of incentives that reward the use of these interventions needs to be considered as a significant impediment.

  12. An Overview of NASA's IM&S Verification and Validation Process Plan and Specification for Space Exploration

    NASA Technical Reports Server (NTRS)

    Gravitz, Robert M.; Hale, Joseph

    2006-01-01

    NASA's Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model's fidelity, credibility, and quality. This information will allow the decision-maker to understand the risks involved in using a model's results in the decision-making process. This presentation will discuss NASA's approach for verification and validation (V&V) of its models or simulations supporting space exploration. This presentation will describe NASA's V&V process and the associated M&S verification and validation (V&V) activities required to support the decision-making process. The M&S V&V Plan and V&V Report templates for ESMD will also be illustrated.

  13. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  14. Ecological models supporting environmental decision making: a strategy for the future

    USGS Publications Warehouse

    Schmolke, Amelie; Thorbek, Pernille; DeAngelis, Donald L.; Grimm, Volker

    2010-01-01

    Ecological models are important for environmental decision support because they allow the consequences of alternative policies and management scenarios to be explored. However, current modeling practice is unsatisfactory. A literature review shows that the elements of good modeling practice have long been identified but are widely ignored. The reasons for this might include lack of involvement of decision makers, lack of incentives for modelers to follow good practice, and the use of inconsistent terminologies. As a strategy for the future, we propose a standard format for documenting models and their analyses: transparent and comprehensive ecological modeling (TRACE) documentation. This standard format will disclose all parts of the modeling process to scrutiny and make modeling itself more efficient and coherent.

  15. Framing of Uncertainty in Scientific Publications: Towards Recommendations for Decision Support

    NASA Astrophysics Data System (ADS)

    Guillaume, J. H. A.; Helgeson, C.; Elsawah, S.; Jakeman, A. J.; Kummu, M.

    2016-12-01

    Uncertainty is recognised as an essential issue in environmental decision making and decision support. As modellers, we notably use a variety of tools and techniques within an analysis, for example related to uncertainty quantification and model validation. We also address uncertainty by how we present results. For example, experienced modellers are careful to distinguish robust conclusions from those that need further work, and the precision of quantitative results is tailored to their accuracy. In doing so, the modeller frames how uncertainty should be interpreted by their audience. This is an area which extends beyond modelling to fields such as philosophy of science, semantics, discourse analysis, intercultural communication and rhetoric. We propose that framing of uncertainty deserves greater attention in the context of decision support, and that there are opportunities in this area for fundamental research, synthesis and knowledge transfer, development of teaching curricula, and significant advances in managing uncertainty in decision making. This presentation reports preliminary results of a study of framing practices. Specifically, we analyse the framing of uncertainty that is visible in the abstracts from a corpus of scientific articles. We do this through textual analysis of the content and structure of those abstracts. Each finding that appears in an abstract is classified according to the uncertainty framing approach used, using a classification scheme that was iteratively revised based on reflection and comparison amongst three coders. This analysis indicates how frequently the different framing approaches are used, and provides initial insights into relationships between frames, how the frames relate to interpretation of uncertainty, and how rhetorical devices are used by modellers to communicate uncertainty in their work. We propose initial hypotheses for how the resulting insights might influence decision support, and help advance decision making to better address uncertainty.

  16. Using ILOG OPL-CPLEX and ILOG Optimization Decision Manager (ODM) to Develop Better Models

    NASA Astrophysics Data System (ADS)

    2008-10-01

    This session will provide an in-depth overview on building state-of-the-art decision support applications and models. You will learn how to harness the full power of the ILOG OPL-CPLEX-ODM Development System (ODMS) to develop optimization models and decision support applications that solve complex problems ranging from near real-time scheduling to long-term strategic planning. We will demonstrate how to use ILOG's Open Programming Language (OPL) to quickly model problems solved by ILOG CPLEX, and how to use ILOG ODM to gain further insight about the model. By the end of the session, attendees will understand how to take advantage of the powerful combination of ILOG OPL (to describe an optimization model) and ILOG ODM (to understand the relationships between data, decision variables and constraints).

  17. A Data Analytical Framework for Improving Real-Time, Decision Support Systems in Healthcare

    ERIC Educational Resources Information Center

    Yahav, Inbal

    2010-01-01

    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to…

  18. Youth Activity Involvement, Neighborhood Adult Support, Individual Decision Making Skills, and Early Adolescent Delinquent Behaviors: Testing a Conceptual Model

    ERIC Educational Resources Information Center

    Crean, Hugh F.

    2012-01-01

    This study examines a cross-sectional structural equation model of participation in youth activities, neighborhood adult support, individual decision making skills, and delinquent behavior in urban middle school youths (n = 2611). Results indicate extracurricular activity participation had both direct and indirect associations with delinquent…

  19. The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma

    2010-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.

  20. Gaps of Decision Support Models for Pipeline Renewal and Recommendations for Improvement

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less w...

  1. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT (SLIDE)

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less wor...

  2. New approaches for real time decision support systems

    NASA Technical Reports Server (NTRS)

    Hair, D. Charles; Pickslay, Kent

    1994-01-01

    NCCOSC RDT&E Division (NRaD) is conducting research into ways of improving decision support systems (DSS) that are used in tactical Navy decision making situations. The research has focused on the incorporation of findings about naturalistic decision-making processes into the design of the DSS. As part of that research, two computer tools were developed that model the two primary naturalistic decision-making strategies used by Navy experts in tactical settings. Current work is exploring how best to incorporate the information produced by those tools into an existing simulation of current Navy decision support systems. This work has implications for any applications involving the need to make decisions under time constraints, based on incomplete or ambiguous data.

  3. A conceptual evolutionary aseismic decision support framework for hospitals

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun

    2012-12-01

    In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.

  4. Groundwater modelling in decision support: reflections on a unified conceptual framework

    NASA Astrophysics Data System (ADS)

    Doherty, John; Simmons, Craig T.

    2013-11-01

    Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.

  5. A simulation study to quantify the impacts of exposure ...

    EPA Pesticide Factsheets

    A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  6. Decision insight into stakeholder conflict for ERN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siirola, John; Tidwell, Vincent Carroll; Benz, Zachary O.

    Participatory modeling has become an important tool in facilitating resource decision making and dispute resolution. Approaches to modeling that are commonly used in this context often do not adequately account for important human factors. Current techniques provide insights into how certain human activities and variables affect resource outcomes; however, they do not directly simulate the complex variables that shape how, why, and under what conditions different human agents behave in ways that affect resources and human interactions related to them. Current approaches also do not adequately reveal how the effects of individual decisions scale up to have systemic level effectsmore » in complex resource systems. This lack of integration prevents the development of more robust models to support decision making and dispute resolution processes. Development of integrated tools is further hampered by the fact that collection of primary data for decision-making modeling is costly and time consuming. This project seeks to develop a new approach to resource modeling that incorporates both technical and behavioral modeling techniques into a single decision-making architecture. The modeling platform is enhanced by use of traditional and advanced processes and tools for expedited data capture. Specific objectives of the project are: (1) Develop a proof of concept for a new technical approach to resource modeling that combines the computational techniques of system dynamics and agent based modeling, (2) Develop an iterative, participatory modeling process supported with traditional and advance data capture techniques that may be utilized to facilitate decision making, dispute resolution, and collaborative learning processes, and (3) Examine potential applications of this technology and process. The development of this decision support architecture included both the engineering of the technology and the development of a participatory method to build and apply the technology. Stakeholder interaction with the model and associated data capture was facilitated through two very different modes of engagement, one a standard interface involving radio buttons, slider bars, graphs and plots, while the other utilized an immersive serious gaming interface. The decision support architecture developed through this project was piloted in the Middle Rio Grande Basin to examine how these tools might be utilized to promote enhanced understanding and decision-making in the context of complex water resource management issues. Potential applications of this architecture and its capacity to lead to enhanced understanding and decision-making was assessed through qualitative interviews with study participants who represented key stakeholders in the basin.« less

  7. Modelling elderly cardiac patients decision making using Cognitive Work Analysis: identifying requirements for patient decision aids.

    PubMed

    Dhukaram, Anandhi Vivekanandan; Baber, Chris

    2015-06-01

    Patients make various healthcare decisions on a daily basis. Such day-to-day decision making can have significant consequences on their own health, treatment, care, and costs. While decision aids (DAs) provide effective support in enhancing patient's decision making, to date there have been few studies examining patient's decision making process or exploring how the understanding of such decision processes can aid in extracting requirements for the design of DAs. This paper applies Cognitive Work Analysis (CWA) to analyse patient's decision making in order to inform requirements for supporting self-care decision making. This study uses focus groups to elicit information from elderly cardiovascular disease (CVD) patients concerning a range of decision situations they face on a daily basis. Specifically, the focus groups addressed issues related to the decision making of CVD in terms of medication compliance, pain, diet and exercise. The results of these focus groups are used to develop high level views using CWA. CWA framework decomposes the complex decision making problem to inform three approaches to DA design: one design based on high level requirements; one based on a normative model of decision-making for patients; and the third based on a range of heuristics that patients seem to use. CWA helps in extracting and synthesising decision making from different perspectives: decision processes, work organisation, patient competencies and strategies used in decision making. As decision making can be influenced by human behaviour like skills, rules and knowledge, it is argued that patients require support to different types of decision making. This paper also provides insights for designers in using CWA framework for the design of effective DAs to support patients in self-management. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Multicriteria decision model for retrofitting existing buildings

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, B.

    2003-04-01

    In this paper a model to decide which buildings from an urban area should be retrofitted is presented. The model has been cast into existing ones by choosing the decision rule, criterion weighting and decision support system types most suitable for the spatial problem of reducing earthquake risk in urban areas, considering existing spatial multiatributive and multiobjective decision methods and especially collaborative issues. Due to the participative character of the group decision problem "retrofitting existing buildings" the decision making model is based on interactivity. Buildings have been modeled following the criteria of spatial decision support systems. This includes identifying the corresponding spatial elements of buildings according to the information needs of actors from different sphaeres like architects, construction engineers and economists. The decision model aims to facilitate collaboration between this actors. The way of setting priorities interactivelly will be shown, by detailing the two phases: judgemental and computational, in this case site analysis, collection and evaluation of the unmodified data and converting survey data to information with computational methods using additional expert support. Buildings have been divided into spatial elements which are characteristic for the survey, present typical damages in case of an earthquake and are decisive for a better seismic behaviour in case of retrofitting. The paper describes the architectural and engineering characteristics as well as the structural damage for constuctions of different building ages on the example of building types in Bucharest, Romania in compressible and interdependent charts, based on field observation, reports from the 1977 earthquake and detailed studies made by the author together with a local engineer for the EERI Web Housing Encyclopedia. On this base criteria for setting priorities flow into the expert information contained in the system.

  9. Effect of electronic prescribing with formulary decision support on medication tier, copayments, and adherence

    PubMed Central

    2014-01-01

    Background Medication non-adherence is prevalent. We assessed the effect of electronic prescribing (e-prescribing) with formulary decision support on preferred formulary tier usage, copayment, and concomitant adherence. Methods We retrospectively analyzed 14,682 initial pharmaceutical claims for angiotensin receptor blocker and inhaled steroid medications among 14,410 patients of 2189 primary care physicians (PCPs) who were offered e-prescribing with formulary decision support, including 297 PCPs who adopted it. Formulary decision support was initially non-interruptive, such that formulary tier symbols were displayed adjacent to medication names. Subsequently, interruptive formulary decision support alerts also interrupted e-prescribing when preferred-tier alternatives were available. A difference in differences design was used to compare the pre-post differences in medication tier for each new prescription attributed to non-adopters, low user (<30% usage rate), and high user PCPs (>30% usage rate). Second, we modeled the effect of formulary tier on prescription copayment. Last, we modeled the effect of copayment on adherence (proportion of days covered) to each new medication. Results Compared with non-adopters, high users of e-prescribing were more likely to prescribe preferred-tier medications (vs. non-preferred tier) when both non-interruptive and interruptive formulary decision support were in place (OR 1.9 [95% CI 1.0-3.4], p = 0.04), but no more likely to prescribe preferred-tier when only non-interruptive formulary decision support was in place (p = 0.90). Preferred-tier claims had only slightly lower mean monthly copayments than non-preferred tier claims (angiotensin receptor blocker: $10.60 versus $11.81, inhaled steroid: $14.86 versus $16.42, p < 0.0001). Medication possession ratio was 8% lower for each $1.00 increase in monthly copayment to the one quarter power (p < 0.0001). However, we detected no significant direct association between formulary decision support usage and adherence. Conclusion Interruptive formulary decision support shifted prescribing toward preferred tiers, but these medications were only minimally less expensive in the studied patient population. In this context, formulary decision support did not significantly increase adherence. To impact cost-related non-adherence, formulary decision support will likely need to be paired with complementary drug benefit design. Formulary decision support should be studied further, with particular attention to its effect on adherence in the setting of different benefit designs. PMID:25167807

  10. Effect of electronic prescribing with formulary decision support on medication tier, copayments, and adherence.

    PubMed

    Pevnick, Joshua M; Li, Ning; Asch, Steven M; Jackevicius, Cynthia A; Bell, Douglas S

    2014-08-28

    Medication non-adherence is prevalent. We assessed the effect of electronic prescribing (e-prescribing) with formulary decision support on preferred formulary tier usage, copayment, and concomitant adherence. We retrospectively analyzed 14,682 initial pharmaceutical claims for angiotensin receptor blocker and inhaled steroid medications among 14,410 patients of 2189 primary care physicians (PCPs) who were offered e-prescribing with formulary decision support, including 297 PCPs who adopted it. Formulary decision support was initially non-interruptive, such that formulary tier symbols were displayed adjacent to medication names. Subsequently, interruptive formulary decision support alerts also interrupted e-prescribing when preferred-tier alternatives were available. A difference in differences design was used to compare the pre-post differences in medication tier for each new prescription attributed to non-adopters, low user (<30% usage rate), and high user PCPs (>30% usage rate). Second, we modeled the effect of formulary tier on prescription copayment. Last, we modeled the effect of copayment on adherence (proportion of days covered) to each new medication. Compared with non-adopters, high users of e-prescribing were more likely to prescribe preferred-tier medications (vs. non-preferred tier) when both non-interruptive and interruptive formulary decision support were in place (OR 1.9 [95% CI 1.0-3.4], p = 0.04), but no more likely to prescribe preferred-tier when only non-interruptive formulary decision support was in place (p = 0.90). Preferred-tier claims had only slightly lower mean monthly copayments than non-preferred tier claims (angiotensin receptor blocker: $10.60 versus $11.81, inhaled steroid: $14.86 versus $16.42, p < 0.0001). Medication possession ratio was 8% lower for each $1.00 increase in monthly copayment to the one quarter power (p < 0.0001). However, we detected no significant direct association between formulary decision support usage and adherence. Interruptive formulary decision support shifted prescribing toward preferred tiers, but these medications were only minimally less expensive in the studied patient population. In this context, formulary decision support did not significantly increase adherence. To impact cost-related non-adherence, formulary decision support will likely need to be paired with complementary drug benefit design. Formulary decision support should be studied further, with particular attention to its effect on adherence in the setting of different benefit designs.

  11. Decision support systems for plant disease and insect management in commercial nurseries in the Midwest: A perspective review

    USDA-ARS?s Scientific Manuscript database

    Decision-support systems (DDSs) are techniques that help decision makers utilize models to solve problems under complex and uncertain conditions. Predicting conditions that warrant intervention is a key tenet of the concept of integrated pest management (IPM) with the use of expert systems and pest ...

  12. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  13. Getting the Balance Right: Conceptual Considerations Concerning Legal Capacity and Supported Decision-Making.

    PubMed

    Parker, Malcolm

    2016-09-01

    The United Nations Convention on the Rights of Persons with Disabilities urges and requires changes to how signatories discharge their duties to people with intellectual disabilities, in the direction of their greater recognition as legal persons with expanded decision-making rights. Australian jurisdictions are currently undertaking inquiries and pilot projects that explore how these imperatives should be implemented. One of the important changes advocated is to move from guardianship models to supported or assisted models of decision-making. A driving force behind these developments is a strong allegiance to the social model of disability, in the formulation of the Convention, in inquiries and pilot projects, in implementation and in the related academic literature. Many of these instances suffer from confusing and misleading statements and conceptual misinterpretations of certain elements such as legal capacity, decision-making capacity, and support for decision-making. This paper analyses some of these confusions and their possible negative implications for supported decision-making instruments and those whose interests these instruments would serve, and advises a more incremental development of existing guardianship regimes. This provides a more realistic balance between neglecting the real limits of those with mental disabilities and thereby ignoring their identity and particularity, and continuing to bring them equally and fully into society.

  14. Providing guidance for genomics-based cancer treatment decisions: insights from stakeholder engagement for post-prostatectomy radiation therapy.

    PubMed

    Abe, James; Lobo, Jennifer M; Trifiletti, Daniel M; Showalter, Timothy N

    2017-08-24

    Despite the emergence of genomics-based risk prediction tools in oncology, there is not yet an established framework for communication of test results to cancer patients to support shared decision-making. We report findings from a stakeholder engagement program that aimed to develop a framework for using Markov models with individualized model inputs, including genomics-based estimates of cancer recurrence probability, to generate personalized decision aids for prostate cancer patients faced with radiation therapy treatment decisions after prostatectomy. We engaged a total of 22 stakeholders, including: prostate cancer patients, urological surgeons, radiation oncologists, genomic testing industry representatives, and biomedical informatics faculty. Slides were at each meeting to provide background information regarding the analytical framework. Participants were invited to provide feedback during the meeting, including revising the overall project aims. Stakeholder meeting content was reviewed and summarized by stakeholder group and by theme. The majority of stakeholder suggestions focused on aspects of decision aid design and formatting. Stakeholders were enthusiastic about the potential value of using decision analysis modeling with personalized model inputs for cancer recurrence risk, as well as competing risks from age and comorbidities, to generate a patient-centered tool to assist decision-making. Stakeholders did not view privacy considerations as a major barrier to the proposed decision aid program. A common theme was that decision aids should be portable across multiple platforms (electronic and paper), should allow for interaction by the user to adjust model inputs iteratively, and available to patients both before and during consult appointments. Emphasis was placed on the challenge of explaining the model's composite result of quality-adjusted life years. A range of stakeholders provided valuable insights regarding the design of a personalized decision aid program, based upon Markov modeling with individualized model inputs, to provide a patient-centered framework to support for genomic-based treatment decisions for cancer patients. The guidance provided by our stakeholders may be broadly applicable to the communication of genomic test results to patients in a patient-centered fashion that supports effective shared decision-making that represents a spectrum of personal factors such as age, medical comorbidities, and individual priorities and values.

  15. Next generation terminology infrastructure to support interprofessional care planning.

    PubMed

    Collins, Sarah; Klinkenberg-Ramirez, Stephanie; Tsivkin, Kira; Mar, Perry L; Iskhakova, Dina; Nandigam, Hari; Samal, Lipika; Rocha, Roberto A

    2017-11-01

    Develop a prototype of an interprofessional terminology and information model infrastructure that can enable care planning applications to facilitate patient-centered care, learn care plan linkages and associations, provide decision support, and enable automated, prospective analytics. The study steps included a 3 step approach: (1) Process model and clinical scenario development, and (2) Requirements analysis, and (3) Development and validation of information and terminology models. Components of the terminology model include: Health Concerns, Goals, Decisions, Interventions, Assessments, and Evaluations. A terminology infrastructure should: (A) Include discrete care plan concepts; (B) Include sets of profession-specific concerns, decisions, and interventions; (C) Communicate rationales, anticipatory guidance, and guidelines that inform decisions among the care team; (D) Define semantic linkages across clinical events and professions; (E) Define sets of shared patient goals and sub-goals, including patient stated goals; (F) Capture evaluation toward achievement of goals. These requirements were mapped to AHRQ Care Coordination Measures Framework. This study used a constrained set of clinician-validated clinical scenarios. Terminology models for goals and decisions are unavailable in SNOMED CT, limiting the ability to evaluate these aspects of the proposed infrastructure. Defining and linking subsets of care planning concepts appears to be feasible, but also essential to model interprofessional care planning for common co-occurring conditions and chronic diseases. We recommend the creation of goal dynamics and decision concepts in SNOMED CT to further enable the necessary models. Systems with flexible terminology management infrastructure may enable intelligent decision support to identify conflicting and aligned concerns, goals, decisions, and interventions in shared care plans, ultimately decreasing documentation effort and cognitive burden for clinicians and patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Towards decision support for waiting lists: an operations management view.

    PubMed

    Vissers, J M; Van Der Bij, J D; Kusters, R J

    2001-06-01

    This paper considers the phenomenon of waiting lists in a healthcare setting, which is characterised by limitations on the national expenditure, to explore the potentials of an operations management perspective. A reference framework for waiting list management is described, distinguishing different levels of planning in healthcare--national, regional, hospital and process--that each contributes to the existence of waiting lists through managerial decision making. In addition, different underlying mechanisms in demand and supply are distinguished, which together explain the development of waiting lists. It is our contention that within this framework a series of situation specific models should be designed to support communication and decision making. This is illustrated by the modelling of the demand for cataract treatment in a regional setting in the south-eastern part of the Netherlands. An input-output model was developed to support decisions regarding waiting lists. The model projects the demand for treatment at a regional level and makes it possible to evaluate waiting list impacts for different scenarios to meet this demand.

  17. Decision science: a scientific approach to enhance public health budgeting.

    PubMed

    Honoré, Peggy A; Fos, Peter J; Smith, Torney; Riley, Michael; Kramarz, Kim

    2010-01-01

    The allocation of resources for public health programming is a complicated and daunting responsibility. Financial decision-making processes within public health agencies are especially difficult when not supported with techniques for prioritizing and ranking alternatives. This article presents a case study of a decision analysis software model that was applied to the process of identifying funding priorities for public health services in the Spokane Regional Health District. Results on the use of this decision support system provide insights into how decision science models, which have been used for decades in business and industry, can be successfully applied to public health budgeting as a means of strengthening agency financial management processes.

  18. Personalized Clinical Diagnosis in Data Bases for Treatment Support in Phthisiology.

    PubMed

    Lugovkina, T K; Skornyakov, S N; Golubev, D N; Egorov, E A; Medvinsky, I D

    2016-01-01

    The decision-making is a key event in the clinical practice. The program products with clinical decision support models in electronic data-base as well as with fixed decision moments of the real clinical practice and treatment results are very actual instruments for improving phthisiological practice and may be useful in the severe cases caused by the resistant strains of Mycobacterium tuberculosis. The methodology for gathering and structuring of useful information (critical clinical signals for decisions) is described. Additional coding of clinical diagnosis characteristics was implemented for numeric reflection of the personal situations. The created methodology for systematization and coding Clinical Events allowed to improve the clinical decision models for better clinical results.

  19. A decision-supported outpatient practice system.

    PubMed Central

    Barrows, R. C.; Allen, B. A.; Smith, K. C.; Arni, V. V.; Sherman, E.

    1996-01-01

    We describe a Decision-supported Outpatient Practice (DOP) system developed and now in use at the Columbia-Presbyterian Medical Center. DOP is an automated ambulatory medical record system that integrates in-patient and ambulatory care data, and incorporates active and passive decision support mechanisms with a view towards improving the quality of primary care. Active decision support occurs in the form of event-driven reminders created within a remote clinical information system with its central data repository and decision support system (DSS). Novel features of DOP include patient specific health maintenance task lists calculated by the remote DSS. uses of a semantically structured controlled medical vocabulary to support clinical results review and provider data entry, and exploitation of an underlying ambulatory data model that provides for an explicit record of evolution of insight regarding patient management. Benefits, challenges, and plans are discussed. PMID:8947774

  20. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    NASA Astrophysics Data System (ADS)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river basins. While InVEST is a spatially explicit tool, used to model and map a suite of ecosystem services caused by land cover changes or climate change impacts. Moreover, results obtained from low-flow hydrological simulation and ecosystem services models serves as useful tools to develop decision support system based on DPSIR framework by integrating models. Bayesian Networks is used as a knowledge integration and visualization tool to summarize the outcomes of hydrological and ecosystem services models at the "Response" stage of DPSIR. Bayesian Networks provide a framework for modelling the logical relationship between catchment variables and decision objectives by quantifying the strength of these relationships using conditional probabilities. Participatory nature of this framework can provide better communication of water research, particularly in the context of a perceived lack of future awareness-raising with the public that helps to develop more sustainable water management strategies. Acknowledgements The present study was financially supported by Spanish Ministry of Economy and Competitiveness for its financial support through the project SCARCE (Consolider-Ingenio 2010 CSD2009-00065). R. F. Bangash also received PhD fellowship from AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities and Enterprise of the "Generalitat de Catalunya" and the European Social Fund).

  1. Disaster Response and Decision Support in Partnership with the California Earthquake Clearinghouse

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Rosinski, A.; Vaughan, D.; Morentz, J.

    2014-12-01

    Getting the right information to the right people at the right time is critical during a natural disaster. E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) is a NASA decision support system designed to produce remote sensing and geophysical modeling data products that are relevant to the emergency preparedness and response communities and serve as a gateway to enable the delivery of NASA decision support products to these communities. The E-DECIDER decision support system has several tools, services, and products that have been used to support end-user exercises in partnership with the California Earthquake Clearinghouse since 2012, including near real-time deformation modeling results and on-demand maps of critical infrastructure that may have been potentially exposed to damage by a disaster. E-DECIDER's underlying service architecture allows the system to facilitate delivery of NASA decision support products to the Clearinghouse through XchangeCore Web Service Data Orchestration that allows trusted information exchange among partner agencies. This in turn allows Clearinghouse partners to visualize data products produced by E-DECIDER and other NASA projects through incident command software such as SpotOnResponse or ArcGIS Online.

  2. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  3. Evaluating the State of Water Management in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina

    2017-04-01

    Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.

  4. Efficient GIS-based model-driven method for flood risk management and its application in central China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, J.; Song, L.; Zou, Q.; Guo, J.; Wang, Y.

    2014-02-01

    In recent years, an important development in flood management has been the focal shift from flood protection towards flood risk management. This change greatly promoted the progress of flood control research in a multidisciplinary way. Moreover, given the growing complexity and uncertainty in many decision situations of flood risk management, traditional methods, e.g., tight-coupling integration of one or more quantitative models, are not enough to provide decision support for managers. Within this context, this paper presents a beneficial methodological framework to enhance the effectiveness of decision support systems, through the dynamic adaptation of support regarding the needs of the decision-maker. In addition, we illustrate a loose-coupling technical prototype for integrating heterogeneous elements, such as multi-source data, multidisciplinary models, GIS tools and existing systems. The main innovation is the application of model-driven concepts, which put the system in a state of continuous iterative optimization. We define the new system as a model-driven decision support system (MDSS ). Two characteristics that differentiate the MDSS are as follows: (1) it is made accessible to non-technical specialists; and (2) it has a higher level of adaptability and compatibility. Furthermore, the MDSS was employed to manage the flood risk in the Jingjiang flood diversion area, located in central China near the Yangtze River. Compared with traditional solutions, we believe that this model-driven method is efficient, adaptable and flexible, and thus has bright prospects of application for comprehensive flood risk management.

  5. Advancements in Risk-Informed Performance-Based Asset Management for Commercial Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liming, James K.; Ravindra, Mayasandra K.

    2006-07-01

    Over the past several years, ABSG Consulting Inc. (ABS Consulting) and the South Texas Project Nuclear Operating Company (STPNOC) have developed a decision support process and associated software for risk-informed, performance-based asset management (RIPBAM) of nuclear power plant facilities. RIPBAM applies probabilistic risk assessment (PRA) tools and techniques in the realm of plant physical and financial asset management. The RIPBAM process applies a tiered set of models and supporting performance measures (or metrics) that can ultimately be applied to support decisions affecting the allocation and management of plant resources (e.g., funding, staffing, scheduling, etc.). In general, the ultimate goal ofmore » the RIPBAM process is to continually support decision-making to maximize a facility's net present value (NPV) and long-term profitability for its owners. While the initial applications of RIPBAM have been for nuclear power stations, the methodology can easily be adapted to other types of power station or complex facility decision-making support. RIPBAM can also be designed to focus on performance metrics other than NPV and profitability (e.g., mission reliability, operational availability, probability of mission success per dollar invested, etc.). Recent advancements in the RIPBAM process focus on expanding the scope of previous RIPBAM applications to include not only operations, maintenance, and safety issues, but also broader risk perception components affecting plant owner (stockholder), operator, and regulator biases. Conceptually, RIPBAM is a comprehensive risk-informed cash flow model for decision support. It originated as a tool to help manage plant refueling outage scheduling, and was later expanded to include the full spectrum of operations and maintenance decision support. However, it differs from conventional business modeling tools in that it employs a systems engineering approach with broadly based probabilistic analysis of organizational 'value streams'. The scope of value stream inclusion in the process can be established by the user, but in its broadest applications, RIPBAM can be used to address how risk perceptions of plant owners and regulators are impacted by plant performance. Plant staffs can expand and refine RIPBAM models scope via a phased program of activities over time. This paper shows how the multi-metric uncertainty analysis feature of RIPBAM can apply a wide spectrum of decision-influencing factors to support decisions designed to maximize the probability of achieving, maintaining, and improving upon plant goals and objectives. In this paper, the authors show how this approach can be extremely valuable to plant owners and operators in supporting plant value-impacting decision-making processes. (authors)« less

  6. Factors Predicting Oncology Care Providers' Behavioral Intention to Adopt Clinical Decision Support Systems

    ERIC Educational Resources Information Center

    Wolfenden, Andrew

    2012-01-01

    The purpose of this quantitative correlation study was to examine the predictors of user behavioral intention on the decision of oncology care providers to adopt or reject the clinical decision support system. The Unified Theory of Acceptance and Use of Technology (UTAUT) formed the foundation of the research model and survey instrument. The…

  7. Two-Stage Fracturing Wastewater Management in Shale Gas Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaodong; Sun, Alexander Y.; Duncan, Ian J.

    Here, management of shale gas wastewater treatment, disposal, and reuse has become a significant environmental challenge, driven by an ongoing boom in development of U.S. shale gas reservoirs. Systems-analysis based decision support is helpful for effective management of wastewater, and provision of cost-effective decision alternatives from a whole-system perspective. Uncertainties are inherent in many modeling parameters, affecting the generated decisions. In order to effectively deal with the recourse issue in decision making, in this work a two-stage stochastic fracturing wastewater management model, named TSWM, is developed to provide decision support for wastewater management planning in shale plays. Using the TSWMmore » model, probabilistic and nonprobabilistic uncertainties are effectively handled. The TSWM model provides flexibility in generating shale gas wastewater management strategies, in which the first-stage decision predefined by decision makers before uncertainties are unfolded is corrected in the second stage to achieve the whole-system’s optimality. Application of the TSWM model to a comprehensive synthetic example demonstrates its practical applicability and feasibility. Optimal results are generated for allowable wastewater quantities, excess wastewater, and capacity expansions of hazardous wastewater treatment plants to achieve the minimized total system cost. The obtained interval solutions encompass both optimistic and conservative decisions. Trade-offs between economic and environmental objectives are made depending on decision makers’ knowledge and judgment, as well as site-specific information. In conclusion, the proposed model is helpful in forming informed decisions for wastewater management associated with shale gas development.« less

  8. Two-Stage Fracturing Wastewater Management in Shale Gas Development

    DOE PAGES

    Zhang, Xiaodong; Sun, Alexander Y.; Duncan, Ian J.; ...

    2017-01-19

    Here, management of shale gas wastewater treatment, disposal, and reuse has become a significant environmental challenge, driven by an ongoing boom in development of U.S. shale gas reservoirs. Systems-analysis based decision support is helpful for effective management of wastewater, and provision of cost-effective decision alternatives from a whole-system perspective. Uncertainties are inherent in many modeling parameters, affecting the generated decisions. In order to effectively deal with the recourse issue in decision making, in this work a two-stage stochastic fracturing wastewater management model, named TSWM, is developed to provide decision support for wastewater management planning in shale plays. Using the TSWMmore » model, probabilistic and nonprobabilistic uncertainties are effectively handled. The TSWM model provides flexibility in generating shale gas wastewater management strategies, in which the first-stage decision predefined by decision makers before uncertainties are unfolded is corrected in the second stage to achieve the whole-system’s optimality. Application of the TSWM model to a comprehensive synthetic example demonstrates its practical applicability and feasibility. Optimal results are generated for allowable wastewater quantities, excess wastewater, and capacity expansions of hazardous wastewater treatment plants to achieve the minimized total system cost. The obtained interval solutions encompass both optimistic and conservative decisions. Trade-offs between economic and environmental objectives are made depending on decision makers’ knowledge and judgment, as well as site-specific information. In conclusion, the proposed model is helpful in forming informed decisions for wastewater management associated with shale gas development.« less

  9. Modelling Situation Awareness Information for Naval Decision Support Design

    DTIC Science & Technology

    2003-10-01

    Modelling Situation Awareness Information for Naval Decision Support Design Dr.-Ing. Bernhard Doering, Dipl.-Ing. Gert Doerfel, Dipl.-Ing... knowledge -based user interfaces. For developing such interfaces information of the three different SA levels which operators need in performing their...large scale on situation awareness of operators which is defined as the state of operator knowledge about the external environment resulting from

  10. Integrated Modeling and Simulation Verification, Validation, and Accreditation Strategy for Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    2006-01-01

    Models and simulations (M&S) are critical resources in the exploration of space. They support program management, systems engineering, integration, analysis, test, and operations and provide critical information and data supporting key analyses and decisions (technical, cost and schedule). Consequently, there is a clear need to establish a solid understanding of M&S strengths and weaknesses, and the bounds within which they can credibly support decision-making. Their usage requires the implementation of a rigorous approach to verification, validation and accreditation (W&A) and establishment of formal process and practices associated with their application. To ensure decision-making is suitably supported by information (data, models, test beds) from activities (studies, exercises) from M&S applications that are understood and characterized, ESMD is establishing formal, tailored W&A processes and practices. In addition, to ensure the successful application of M&S within ESMD, a formal process for the certification of analysts that use M&S is being implemented. This presentation will highlight NASA's Exploration Systems Mission Directorate (ESMD) management approach for M&S W&A to ensure decision-makers receive timely information on the model's fidelity, credibility, and quality.

  11. Questioning the Relevance of Model-Based Probability Statements on Extreme Weather and Future Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2007-12-01

    We question the relevance of climate-model based Bayesian (or other) probability statements for decision support and impact assessment on spatial scales less than continental and temporal averages less than seasonal. Scientific assessment of higher resolution space and time scale information is urgently needed, given the commercial availability of "products" at high spatiotemporal resolution, their provision by nationally funded agencies for use both in industry decision making and governmental policy support, and their presentation to the public as matters of fact. Specifically we seek to establish necessary conditions for probability forecasts (projections conditioned on a model structure and a forcing scenario) to be taken seriously as reflecting the probability of future real-world events. We illustrate how risk management can profitably employ imperfect models of complicated chaotic systems, following NASA's study of near-Earth PHOs (Potentially Hazardous Objects). Our climate models will never be perfect, nevertheless the space and time scales on which they provide decision- support relevant information is expected to improve with the models themselves. Our aim is to establish a set of baselines of internal consistency; these are merely necessary conditions (not sufficient conditions) that physics based state-of-the-art models are expected to pass if their output is to be judged decision support relevant. Probabilistic Similarity is proposed as one goal which can be obtained even when our models are not empirically adequate. In short, probabilistic similarity requires that, given inputs similar to today's empirical observations and observational uncertainties, we expect future models to produce similar forecast distributions. Expert opinion on the space and time scales on which we might reasonably expect probabilistic similarity may prove of much greater utility than expert elicitation of uncertainty in parameter values in a model that is not empirically adequate; this may help to explain the reluctance of experts to provide information on "parameter uncertainty." Probability statements about the real world are always conditioned on some information set; they may well be conditioned on "False" making them of little value to a rational decision maker. In other instances, they may be conditioned on physical assumptions not held by any of the modellers whose model output is being cast as a probability distribution. Our models will improve a great deal in the next decades, and our insight into the likely climate fifty years hence will improve: maintaining the credibility of the science and the coherence of science based decision support, as our models improve, require a clear statement of our current limitations. What evidence do we have that today's state-of-the-art models provide decision-relevant probability forecasts? What space and time scales do we currently have quantitative, decision-relevant information on for 2050? 2080?

  12. GIS-based spatial decision support system for grain logistics management

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    Grain logistics is the important component of the social logistics, which can be attributed to frequent circulation and the great quantity. At present time, there is no modern grain logistics distribution management system, and the logistics cost is the high. Geographic Information Systems (GIS) have been widely used for spatial data manipulation and model operations and provide effective decision support through its spatial database management capabilities and cartographic visualization. In the present paper, a spatial decision support system (SDSS) is proposed to support policy makers and to reduce the cost of grain logistics. The system is composed of two major components: grain logistics goods tracking model and vehicle routing problem optimization model and also allows incorporation of data coming from external sources. The proposed system is an effective tool to manage grain logistics in order to increase the speed of grain logistics and reduce the grain circulation cost.

  13. Using an ecosystem service decision support tool to support ridge to reef management: An example of sediment reduction in west Maui, Hawaii

    NASA Astrophysics Data System (ADS)

    Falinski, K. A.; Oleson, K.; Htun, H.; Kappel, C.; Lecky, J.; Rowe, C.; Selkoe, K.; White, C.

    2016-12-01

    Faced with anthropogenic stressors and declining coral reef states, managers concerned with restoration and resilience of coral reefs are increasingly recognizing the need to take a ridge-to-reef, ecosystem-based approach. An ecosystem services framing can help managers move towards these goals, helping to illustrate trade-offs and opportunities of management actions in terms of their impacts on society. We describe a research program building a spatial ecosystem services-based decision-support tool, and being applied to guide ridge-to-reef management in a NOAA priority site in West Maui. We use multiple modeling methods to link biophysical processes to ecosystem services and their spatial flows and social values in an integrating platform. Modeled services include water availability, sediment retention, nutrient retention and carbon sequestration on land. A coral reef ecosystem service model is under development to capture the linkages between terrestrial and coastal ecosystem services. Valuation studies are underway to quantify the implications for human well-being. The tool integrates techniques from decision science to facilitate decision making. We use the sediment retention model to illustrate the types of analyses the tool can support. The case study explores the tradeoffs between road rehabilitation costs and sediment export avoided. We couple the sediment and cost models with trade-off analysis to identify optimal distributed solutions that are most cost-effective in reducing erosion, and then use those models to estimate sediment exposure to coral reefs. We find that cooperation between land owners reveals opportunities for maximizing the benefits of fixing roads and minimizes costs. This research forms the building blocks of an ecosystem service decision support tool that we intend to continue to test and apply in other Pacific Island settings.

  14. E-DECIDER: Using Earth Science Data and Modeling Tools to Develop Decision Support for Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, Margaret T.; Wang, Jun; Pierce, Marlon E.; Yoder, Mark R.; Parker, Jay W.; Burl, Michael C.; Stough, Timothy M.; Granat, Robert A.; Donnellan, Andrea; Rundle, John B.; Ma, Yu; Bawden, Gerald W.; Yuen, Karen

    2015-08-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing new capabilities for decision making utilizing remote sensing data and modeling software to provide decision support for earthquake disaster management and response. E-DECIDER incorporates the earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools allows us to provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). This in turn is delivered through standards-compliant web services for desktop and hand-held devices.

  15. A prototype knowledge-based decision support system for industrial waste management. Part 1: The decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-12-31

    Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less

  16. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  17. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making.

    PubMed

    Tan, Yu-Mei; Worley, Rachel R; Leonard, Jeremy A; Fisher, Jeffrey W

    2018-04-01

    The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has thus far occurred for only a few environmental chemicals. In order to encourage decision-makers to embrace the critical role of PBPK modeling in risk assessment, several important challenges require immediate attention from the modeling community. The objective of this contemporary review is to highlight 3 of these challenges, including: (1) difficulties in recruiting peer reviewers with appropriate modeling expertise and experience; (2) lack of confidence in PBPK models for which no tissue/plasma concentration data exist for model evaluation; and (3) lack of transferability across modeling platforms. Several recommendations for addressing these 3 issues are provided to initiate dialog among members of the PBPK modeling community, as these issues must be overcome for the field of PBPK modeling to advance and for PBPK models to be more routinely applied in support of public health decision-making.

  18. Diverting the tourists: a spatial decision-support system for tourism planning on a developing island

    NASA Astrophysics Data System (ADS)

    Beedasy, Jaishree; Whyatt, Duncan

    Mauritius is a small island (1865 km 2) in the Indian Ocean. Tourism is the third largest economic sector of the country, after manufacturing and agriculture. A limitation of space and the island's vulnerable ecosystem warrants a rational approach to tourism development. The main problems so far have been to manipulate and integrate all the factors affecting tourism planning and to match spatial data with their relevant attributes. A Spatial Decision Support System (SDSS) for sustainable tourism planning is therefore proposed. The proposed SDSS design would include a GIS as its core component. A first GIS model has already been constructed with available data. Supporting decision-making in a spatial context is implicit in the use of GIS. However the analytical capability of the GIS has to be enhanced to solve semi-structured problems, where subjective judgements come into play. The second part of the paper deals with the choice, implementation and customisation of a relevant model to develop a specialised SDSS. Different types of models and techniques are discussed, in particular a comparison of compensatory and non-compensatory approaches to multicriteria evaluation (MCE). It is concluded that compensatory multicriteria evaluation techniques increase the scope of the present GIS model as a decision-support tool. This approach gives the user or decision-maker the flexibility to change the importance of each criterion depending on relevant objectives.

  19. Multi Criteria Evaluation Module for RiskChanges Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; van Westen, Cees; Bakker, Wim

    2015-04-01

    Multi-Criteria Evaluation (MCE) module is one of the five modules of RiskChanges spatial decision support system. RiskChanges web-based platform aims to analyze changes in hydro-meteorological risk and provides tools for selecting the best risk reduction alternative. It is developed under CHANGES framework (changes-itn.eu) and INCREO project (increo-fp7.eu). MCE tool helps decision makers and spatial planners to evaluate, sort and rank the decision alternatives. The users can choose among different indicators that are defined within the system using Risk and Cost Benefit analysis results besides they can add their own indicators. Subsequently the system standardizes and prioritizes them. Finally, the best decision alternative is selected by using the weighted sum model (WSM). The Application of this work is to facilitate the effect of MCE for analyzing changing risk over the time under different scenarios and future years by adopting a group decision making into practice and comparing the results by numeric and graphical view within the system. We believe that this study helps decision-makers to achieve the best solution by expressing their preferences for strategies under future scenarios. Keywords: Multi-Criteria Evaluation, Spatial Decision Support System, Weighted Sum Model, Natural Hazard Risk Management

  20. Affective decision-making and externalizing behaviors: the role of autonomic activity.

    PubMed

    Bubier, Jennifer L; Drabick, Deborah A G

    2008-08-01

    We tested a conceptual model involving the inter-relations among affective decision-making (indexed by a gambling task), autonomic nervous system (ANS) activity, and attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) symptoms in a largely impoverished, inner city sample of first through third grade children (N=63, 54% male). The present study hypothesized that impaired affective decision-making and decreased sympathetic and parasympathetic activation would be associated with higher levels of ADHD and ODD symptoms, and that low sympathetic and parasympathetic activation during an emotion-inducing task would mediate the relation between affective decision-making and child externalizing symptoms. In support of our model, disadvantageous decision-making on a gambling task was associated with ADHD hyperactivity/impulsivity symptoms among boys, and attenuated sympathetic activation during an emotion-inducing task mediated this relation. Support for the model was not found among girls.

  1. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  2. Leavers, Movers, and Stayers: The Role of Workplace Conditions in Teacher Mobility Decisions

    ERIC Educational Resources Information Center

    Kukla-Acevedo, Sharon

    2009-01-01

    The author explored whether 3 workplace conditions were related to teacher mobility decisions. The modeling strategy incorporated a series of binomial and multinomial logistic models to estimate the effects of administrative support, classroom control, and behavioral climate on teachers' decisions to quit teaching or switch schools. The results…

  3. A quantitative risk model for early lifecycle decision making

    NASA Technical Reports Server (NTRS)

    Feather, M. S.; Cornford, S. L.; Dunphy, J.; Hicks, K.

    2002-01-01

    Decisions made in the earliest phases of system development have the most leverage to influence the success of the entire development effort, and yet must be made when information is incomplete and uncertain. We have developed a scalable cost-benefit model to support this critical phase of early-lifecycle decision-making.

  4. Modeling as a Decision-Making Process

    ERIC Educational Resources Information Center

    Bleiler-Baxter, Sarah K.; Stephens, D. Christopher; Baxter, Wesley A.; Barlow, Angela T.

    2017-01-01

    The goal in this article is to support teachers in better understanding what it means to model with mathematics by focusing on three key decision-making processes: Simplification, Relationship Mapping, and Situation Analysis. The authors use the Theme Park task to help teachers develop a vision of how students engage in these three decision-making…

  5. Community College Presidents' Decision-Making Processes during a Potential Crisis

    ERIC Educational Resources Information Center

    Berry, Judith Kaye

    2013-01-01

    This case study addressed how community college presidents make decisions under conditions that can escalate to full-scale crises. The purpose of this study was to gather data to support the development of alternative models or refinement of existing models for crisis decision making on community college campuses, using an abbreviated…

  6. A decision-based perspective for the design of methods for systems design

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.

    1989-01-01

    Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.

  7. Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)

    NASA Astrophysics Data System (ADS)

    White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.

    2013-12-01

    Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.

  8. A web platform for integrated surface water - groundwater modeling and data management

    NASA Astrophysics Data System (ADS)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  9. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  10. Quantitative Systems Pharmacology: A Case for Disease Models

    PubMed Central

    Ramanujan, S; Schmidt, BJ; Ghobrial, OG; Lu, J; Heatherington, AC

    2016-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model‐informed drug discovery and development, supporting program decisions from exploratory research through late‐stage clinical trials. In this commentary, we discuss the unique value of disease‐scale “platform” QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. PMID:27709613

  11. An Organizational Informatics Analysis of Colorectal, Breast, and Cervical Cancer Screening Clinical Decision Support and Information Systems within Community Health Centers

    ERIC Educational Resources Information Center

    Carney, Timothy Jay

    2012-01-01

    A study design has been developed that employs a dual modeling approach to identify factors associated with facility-level cancer screening improvement and how this is mediated by the use of clinical decision support. This dual modeling approach combines principles of (1) Health Informatics, (2) Cancer Prevention and Control, (3) Health Services…

  12. Technosocial Predictive Analytics in Support of Naturalistic Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.; Cowell, Andrew J.; Malone, Elizabeth L.

    2009-06-23

    A main challenge we face in fostering sustainable growth is to anticipate outcomes through predictive and proactive across domains as diverse as energy, security, the environment, health and finance in order to maximize opportunities, influence outcomes and counter adversities. The goal of this paper is to present new methods for anticipatory analytical thinking which address this challenge through the development of a multi-perspective approach to predictive modeling as a core to a creative decision making process. This approach is uniquely multidisciplinary in that it strives to create decision advantage through the integration of human and physical models, and leverages knowledgemore » management and visual analytics to support creative thinking by facilitating the achievement of interoperable knowledge inputs and enhancing the user’s cognitive access. We describe a prototype system which implements this approach and exemplify its functionality with reference to a use case in which predictive modeling is paired with analytic gaming to support collaborative decision-making in the domain of agricultural land management.« less

  13. HARMONIZING HEALTH TECHNOLOGY ASSESSMENT PRACTICES IN UNIVERSITY HOSPITALS: TO WHAT EXTENT IS THE MINI-HTA MODEL SUITABLE IN THE FRENCH CONTEXT?

    PubMed

    Martelli, Nicolas; Devaux, Capucine; van den Brink, Hélène; Billaux, Mathilde; Pineau, Judith; Prognon, Patrice; Borget, Isabelle

    2017-01-01

    The number of new medical devices for individual use that are launched annually exceeds the assessment capacity of the French national health technology assessment (HTA) agency. This has resulted in hospitals, and particularly university hospitals (UHs), developing hospital-based HTA initiatives to support their decisions for purchasing innovative devices. However, the methodologies used in such hospitals have no common basis. The aim of this study was to assess a mini-HTA model as a potential solution to harmonize HTA methodology in French UHs. A systematic review was conducted on Medline, Embase, Health Technology Assessment database, and Google Scholar to identify published articles reporting the use of mini-HTA tools and decision support-like models. A survey was also carried out in eighteen French UHs to identify in-house decision support tools. Finally, topics evaluated in the Danish mini-HTA model and in French UHs were compared using Jaccard similarity coefficients. Our findings showed differences between topics evaluated in French UHs and those assessed in decision support models from the literature. Only five topics among the thirteen most evaluated in French UHs were similar to those assessed in the Danish mini-HTA model. The organizational and ethical/social impacts were rarely explored among the surveyed models used in French UHs when introducing new medical devices. Before its widespread and harmonized use in French UHs, the mini-HTA model would first require adaptations to the French context.

  14. Leadership of risk decision making in a complex, technology organization: The deliberative decision making model

    NASA Astrophysics Data System (ADS)

    Flaming, Susan C.

    2007-12-01

    The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into the co-variation of decision methods with uncertainty suggests that perceived risk severity may serve as a robust indicator for choices about decision practices. The Deliberative Decision processes incorporate multiple organizational and cultural controls as cross-checks to mitigate potential parochial bias of individuals, stakeholder groups, or leaders. Overall the Deliberative Decision framework describes how expert leadership practices, supportive organizational systems along with aligned cultural values and behavioral norms help leaders drive high stakes risk decisions to closure in this complex, advanced-technology setting.

  15. Single-process versus multiple-strategy models of decision making: evidence from an information intrusion paradigm.

    PubMed

    Söllner, Anke; Bröder, Arndt; Glöckner, Andreas; Betsch, Tilmann

    2014-02-01

    When decision makers are confronted with different problems and situations, do they use a uniform mechanism as assumed by single-process models (SPMs) or do they choose adaptively from a set of available decision strategies as multiple-strategy models (MSMs) imply? Both frameworks of decision making have gathered a lot of support, but only rarely have they been contrasted with each other. Employing an information intrusion paradigm for multi-attribute decisions from givens, SPM and MSM predictions on information search, decision outcomes, attention, and confidence judgments were derived and tested against each other in two experiments. The results consistently support the SPM view: Participants seemingly using a "take-the-best" (TTB) strategy do not ignore TTB-irrelevant information as MSMs would predict, but adapt the amount of information searched, choose alternative choice options, and show varying confidence judgments contingent on the quality of the "irrelevant" information. The uniformity of these findings underlines the adequacy of the novel information intrusion paradigm and comprehensively promotes the notion of a uniform decision making mechanism as assumed by single-process models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Web-services-based spatial decision support system to facilitate nuclear waste siting

    NASA Astrophysics Data System (ADS)

    Huang, L. Xinglai; Sheng, Grant

    2006-10-01

    The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.

  17. Clarity versus complexity: land-use modeling as a practical tool for decision-makers

    USGS Publications Warehouse

    Sohl, Terry L.; Claggett, Peter

    2013-01-01

    The last decade has seen a remarkable increase in the number of modeling tools available to examine future land-use and land-cover (LULC) change. Integrated modeling frameworks, agent-based models, cellular automata approaches, and other modeling techniques have substantially improved the representation of complex LULC systems, with each method using a different strategy to address complexity. However, despite the development of new and better modeling tools, the use of these tools is limited for actual planning, decision-making, or policy-making purposes. LULC modelers have become very adept at creating tools for modeling LULC change, but complicated models and lack of transparency limit their utility for decision-makers. The complicated nature of many LULC models also makes it impractical or even impossible to perform a rigorous analysis of modeling uncertainty. This paper provides a review of land-cover modeling approaches and the issues causes by the complicated nature of models, and provides suggestions to facilitate the increased use of LULC models by decision-makers and other stakeholders. The utility of LULC models themselves can be improved by 1) providing model code and documentation, 2) through the use of scenario frameworks to frame overall uncertainties, 3) improving methods for generalizing key LULC processes most important to stakeholders, and 4) adopting more rigorous standards for validating models and quantifying uncertainty. Communication with decision-makers and other stakeholders can be improved by increasing stakeholder participation in all stages of the modeling process, increasing the transparency of model structure and uncertainties, and developing user-friendly decision-support systems to bridge the link between LULC science and policy. By considering these options, LULC science will be better positioned to support decision-makers and increase real-world application of LULC modeling results.

  18. A decision support model to understand route choice decisions and siting of facilities in emergency evacuation.

    DOT National Transportation Integrated Search

    2013-10-01

    In this research, we present the results of a behavior model to capture different routing strategies executed by evacuees : during hurricane evacuation by using a randomparameter logitbased modeling approach. To the best of our knowledge, : thi...

  19. Challenges Associated With Applying Physiologically Based Pharmacokinetic Modeling for Public Health Decision-Making

    EPA Science Inventory

    The development and application of physiologically based pharmacokinetic (PBPK) models in chemical toxicology have grown steadily since their emergence in the 1980s. However, critical evaluation of PBPK models to support public health decision-making across federal agencies has t...

  20. Clinical, information and business process modeling to promote development of safe and flexible software.

    PubMed

    Liaw, Siaw-Teng; Deveny, Elizabeth; Morrison, Iain; Lewis, Bryn

    2006-09-01

    Using a factorial vignette survey and modeling methodology, we developed clinical and information models - incorporating evidence base, key concepts, relevant terms, decision-making and workflow needed to practice safely and effectively - to guide the development of an integrated rule-based knowledge module to support prescribing decisions in asthma. We identified workflows, decision-making factors, factor use, and clinician information requirements. The Unified Modeling Language (UML) and public domain software and knowledge engineering tools (e.g. Protégé) were used, with the Australian GP Data Model as the starting point for expressing information needs. A Web Services service-oriented architecture approach was adopted within which to express functional needs, and clinical processes and workflows were expressed in the Business Process Execution Language (BPEL). This formal analysis and modeling methodology to define and capture the process and logic of prescribing best practice in a reference implementation is fundamental to tackling deficiencies in prescribing decision support software.

  1. PRELIM: Predictive Relevance Estimation from Linked Models

    DTIC Science & Technology

    2014-10-14

    code ) 14-10-2014 Final Report 11-07-2014 to 14-10-2014 PRELIM: Predictive Relevance Estimation from Linked Models N00014-14-P-1185 10257H. Van Dyke...Parunak, Ph.D. Soar Technology, Inc. 1 Executive  Summary   PRELIM (Predictive Relevance Estimation from Linked Models) draws on semantic models...The central challenge in proactive decision support is to anticipate the decision and information needs of decision-makers, in the light of likely

  2. The impact of social and organizational factors on workers' coping with musculoskeletal symptoms.

    PubMed

    Torp, S; Riise, T; Moen, B E

    2001-07-01

    Workers with musculoskeletal symptoms are often advised to cope with their symptoms by changing their working technique and by using lifting equipment. The main objective of this study was to test the hypothesis that negative social and organizational factors where people are employed may prevent workers from implementing these coping strategies. A total of 1,567 automobile garage workers (72%) returned a questionnaire concerning coping with musculoskeletal symptoms and social and organizational factors. When job demands, decision authority, social support, and management support related to health, environment, and safety (HES) were used as predictor variables in a multiple regression model, coping as the outcome variable was correlated with decision authority, social support, and HES-related management support (standardized beta=.079,.12, and.13, respectively). When an index for health-related support and control was added to the model, it correlated with coping (standardized beta=.36), whereas the other relationships disappeared. Decision authority and social support entail health-related support and control that, in turn, influences coping.

  3. The Air Quality Model Evaluation International Initiative ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through AQMEII with a particular focus on past and future analyses of deposition. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  4. Linking Data Access to Data Models to Applications: The Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to support decision-making. To facilita...

  5. Advanced Decision-Support for Coastal Beach Health: Virtual Beach 3.0

    EPA Science Inventory

    Virtual Beach is a free decision-support system designed to help beach managers and researchers construct, evaluate, and operate site-specific statistical models that can predict levels of fecal indicator bacteria (FIB) based on environmental conditions that are more readily mea...

  6. What perceptions do patients have of decision making (DM)? Toward an integrative patient-centered care model. A qualitative study using focus-group interviews.

    PubMed

    Moreau, Alain; Carol, Laurent; Dedianne, Marie Cécile; Dupraz, Christian; Perdrix, Corinne; Lainé, Xavier; Souweine, Gilbert

    2012-05-01

    To understand patients' perceptions of decision making and identify relationships among decision-making models. This qualitative study was made up of four focus group interviews (elderly persons, users of health support groups, students, and rural inhabitants). Participants were asked to report their perceptions of decision making in three written clinical scenarios (hypertension, breast cancer, prostate cancer). The analysis was based on the principles of grounded theory. Most patients perceived decision making as shared decision making, a deliberative question-response interaction with the physician that allowed patients to be experts in obtaining clearer information, participating in the care process, and negotiating compromises with physician preferences. Requesting second opinions allowed patients to maintain control, even within the paternalistic model preferred by elderly persons. Facilitating factors (trust, qualitative non-verbal communication, time to think) and obstacles (serious/emergency situations, perceived inadequate scientific competence, problems making requests, fear of knowing) were also part of shared decision making. In the global concept of patient-centered care, shared decision making can be flexible and can integrate paternalistic and informative models. Physicians' expertise should be associated with biomedical and relational skills through listening to, informing, and advising patients, and by supporting patients' choices. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Adverse consequences of article 12 of the UN Convention on the Rights of Persons with Disabilities for persons with mental disabilities and an alternative way forward

    PubMed Central

    Gather, Jakov

    2018-01-01

    It is widely accepted among medical ethicists that competence is a necessary condition for informed consent. In this view, if a patient is incompetent to make a particular treatment decision, the decision must be based on an advance directive or made by a substitute decision-maker on behalf of the patient. We call this the competence model. According to a recent report of the United Nations (UN) High Commissioner for Human Rights, article 12 of the UN Convention on the Rights of Persons with Disabilities (CRPD) presents a wholesale rejection of the competence model. The High Commissioner here adopts the interpretation of article 12 proposed by the Committee on the Rights of Persons with Disabilities. On this interpretation, CRPD article 12 renders it impermissible to deny persons with mental disabilities the right to make treatment decisions on the basis of impaired decision-making capacity and demands the replacement of all regimes of substitute decision-making by supported decision-making. In this paper, we explicate six adverse consequences of CRPD article 12 for persons with mental disabilities and propose an alternative way forward. The proposed model combines the strengths of the competence model and supported decision-making. PMID:29070707

  8. [Clinical everyday ethics-support in handling moral distress? : Evaluation of an ethical decision-making model for interprofessional clinical teams].

    PubMed

    Tanner, S; Albisser Schleger, H; Meyer-Zehnder, B; Schnurrer, V; Reiter-Theil, S; Pargger, H

    2014-06-01

    High-tech medicine and cost rationing provoke moral distress up to burnout syndromes. The consequences are severe, not only for those directly involved but also for the quality of patient care and the institutions. The multimodal model METAP (Modular, Ethical, Treatment, Allocation, Process) was developed as clinical everyday ethics to support the interprofessional ethical decision-making process. The distinctive feature of the model lays in education concerning ethics competence in dealing with difficult treatment decisions. METAP has been evaluated for quality testing. The research question of interest was whether METAP supports the handling of moral distress. The evaluation included 3 intensive care units and 3 geriatric units. In all, 33 single and 9 group interviews were held with 24 physicians, 44 nurses, and 9 persons from other disciplines. An additional questionnaire was completed by 122 persons (return rate 57%). Two-thirds of the interview answers and 55% of the questionnaire findings show that clinical everyday ethics supports the handling of moral distress, especially for interdisciplinary communication and collaboration and for the explanation and evaluation of treatment goals. METAP does not provide support for persons who are rarely confronted with ethical problems or have not applied the model long enough yet. To a certain degree, moral distress is unavoidable and must be addressed as an interprofessional problem. Herein, clinical everyday ethics may provide targeted support for ethical decision-making competence.

  9. A sequential decision framework for increasing college students' support for organ donation and organ donor registration.

    PubMed

    Peltier, James W; D'Alessandro, Anthony M; Dahl, Andrew J; Feeley, Thomas Hugh

    2012-09-01

    Despite the fact that college students support social causes, this age group has underparticipated in organ donor registration. Little research attention has been given to understanding deeper, higher-order relationships between the antecedent attitudes toward and perceptions of organ donation and registration behavior. To test a process model useful for understanding the sequential ordering of information necessary for moving college students along a hierarchical decision-making continuum from awareness to support to organ donor registration. The University of Wisconsin organ procurement organization collaborated with the Collegiate American Marketing Association on a 2-year grant funded by the US Health Resources and Services Administration. A total of 981 association members responded to an online questionnaire. The 5 antecedent measures were awareness of organ donation, need acknowledgment, benefits of organ donation, social support, and concerns about organ donation. The 2 consequence variables were support for organ donation and organ donation registration. Structural equation modeling indicated that 5 of 10 direct antecedent pathways led significantly into organ donation support and registration. The impact of the nonsignificant variables was captured via indirect effects through other decision variables. Model fit statistics were good: the goodness of fit index was .998, the adjusted goodness of fit index was .992, and the root mean square error of approximation was .001. This sequential decision-making model provides insight into the need to enhance the acceptance of organ donation and organ donor registration through a series of communications to move people from awareness to behavior.

  10. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education.

    PubMed

    Hervatis, Vasilis; Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-10-06

    Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators' decision making. A deductive case study approach was applied to develop the conceptual model. The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach.

  11. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education

    PubMed Central

    Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-01-01

    Background Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. Objective The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. Methods A deductive case study approach was applied to develop the conceptual model. Results The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. Conclusions The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach. PMID:27731840

  12. XWeB: The XML Warehouse Benchmark

    NASA Astrophysics Data System (ADS)

    Mahboubi, Hadj; Darmont, Jérôme

    With the emergence of XML as a standard for representing business data, new decision support applications are being developed. These XML data warehouses aim at supporting On-Line Analytical Processing (OLAP) operations that manipulate irregular XML data. To ensure feasibility of these new tools, important performance issues must be addressed. Performance is customarily assessed with the help of benchmarks. However, decision support benchmarks do not currently support XML features. In this paper, we introduce the XML Warehouse Benchmark (XWeB), which aims at filling this gap. XWeB derives from the relational decision support benchmark TPC-H. It is mainly composed of a test data warehouse that is based on a unified reference model for XML warehouses and that features XML-specific structures, and its associate XQuery decision support workload. XWeB's usage is illustrated by experiments on several XML database management systems.

  13. “Many miles to go …”: a systematic review of the implementation of patient decision support interventions into routine clinical practice

    PubMed Central

    2013-01-01

    Background Two decades of research has established the positive effect of using patient-targeted decision support interventions: patients gain knowledge, greater understanding of probabilities and increased confidence in decisions. Yet, despite their efficacy, the effectiveness of these decision support interventions in routine practice has yet to be established; widespread adoption has not occurred. The aim of this review was to search for and analyze the findings of published peer-reviewed studies that investigated the success levels of strategies or methods where attempts were made to implement patient-targeted decision support interventions into routine clinical settings. Methods An electronic search strategy was devised and adapted for the following databases: ASSIA, CINAHL, Embase, HMIC, Medline, Medline-in-process, OpenSIGLE, PsycINFO, Scopus, Social Services Abstracts, and the Web of Science. In addition, we used snowballing techniques. Studies were included after dual independent assessment. Results After assessment, 5322 abstracts yielded 51 articles for consideration. After examining full-texts, 17 studies were included and subjected to data extraction. The approach used in all studies was one where clinicians and their staff used a referral model, asking eligible patients to use decision support. The results point to significant challenges to the implementation of patient decision support using this model, including indifference on the part of health care professionals. This indifference stemmed from a reported lack of confidence in the content of decision support interventions and concern about disruption to established workflows, ultimately contributing to organizational inertia regarding their adoption. Conclusions It seems too early to make firm recommendations about how best to implement patient decision support into routine practice because approaches that use a ‘referral model’ consistently report difficulties. We sense that the underlying issues that militate against the use of patient decision support and, more generally, limit the adoption of shared decision making, are under-investigated and under-specified. Future reports from implementation studies could be improved by following guidelines, for example the SQUIRE proposals, and by adopting methods that would be able to go beyond the ‘barriers’ and ‘facilitators’ approach to understand more about the nature of professional and organizational resistance to these tools. The lack of incentives that reward the use of these interventions needs to be considered as a significant impediment. PMID:24625083

  14. Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling.

    PubMed

    Nakas, Christos T; Schütz, Narayan; Werners, Marcus; Leichtle, Alexander B

    2016-01-01

    Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the "big data" era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.

  15. Quantitative Systems Pharmacology: A Case for Disease Models.

    PubMed

    Musante, C J; Ramanujan, S; Schmidt, B J; Ghobrial, O G; Lu, J; Heatherington, A C

    2017-01-01

    Quantitative systems pharmacology (QSP) has emerged as an innovative approach in model-informed drug discovery and development, supporting program decisions from exploratory research through late-stage clinical trials. In this commentary, we discuss the unique value of disease-scale "platform" QSP models that are amenable to reuse and repurposing to support diverse clinical decisions in ways distinct from other pharmacometrics strategies. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of The American Society for Clinical Pharmacology and Therapeutics.

  16. Driving with roadmaps and dashboards: using information resources to structure the decision models in service organizations.

    PubMed

    Chorpita, Bruce F; Bernstein, Adam; Daleiden, Eric L

    2008-03-01

    This paper illustrates the application of design principles for tools that structure clinical decision-making. If the effort to implement evidence-based practices in community services organizations is to be effective, attention must be paid to the decision-making context in which such treatments are delivered. Clinical research trials commonly occur in an environment characterized by structured decision making and expert supports. Technology has great potential to serve mental health organizations by supporting these potentially important contextual features of the research environment, through organization and reporting of clinical data into interpretable information to support decisions and anchor decision-making procedures. This article describes one example of a behavioral health reporting system designed to facilitate clinical and administrative use of evidence-based practices. The design processes underlying this system-mapping of decision points and distillation of performance information at the individual, caseload, and organizational levels-can be implemented to support clinical practice in a wide variety of settings.

  17. Gila San Francisco Decision Support Tool - 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Amy Cha-Tien; Tidwell, Vincent C.; Klisa, Geoff

    2014-12-01

    The Gila-San Francisco Decision Support Tool analyzes the water demand and supply for the Gila San Francisco region spanning four counties in southwestern New Mexico (Catron, Hidalgo, Luna and Grant). Catalyzed by the 2004 Arizona Water Settlement Act and prompted by a keen awareness for the unique ecology in the region, the model was developed by Sandia with a collaborative modeling team from federal, state, local, and public stakeholders

  18. Class Evolution Tree: A Graphical Tool to Support Decisions on the Number of Classes in Exploratory Categorical Latent Variable Modeling for Rehabilitation Research

    ERIC Educational Resources Information Center

    Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa

    2011-01-01

    The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…

  19. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  20. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    EPA Science Inventory

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteo...

  1. A Bridging Opportunities Work-frame to develop mobile applications for clinical decision making

    PubMed Central

    van Rooij, Tibor; Rix, Serena; Moore, James B; Marsh, Sharon

    2015-01-01

    Background: Mobile applications (apps) providing clinical decision support (CDS) may show the greatest promise when created by and for frontline clinicians. Our aim was to create a generic model enabling healthcare providers to direct the development of CDS apps. Methods: We combined Change Management with a three-tier information technology architecture to stimulate CDS app development. Results: A Bridging Opportunities Work-frame model was developed. A test case was used to successfully develop an app. Conclusion: Healthcare providers can re-use this globally applicable model to actively create and manage regional decision support applications to translate evidence-based medicine in the use of emerging medication or novel treatment regimens. PMID:28031883

  2. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  3. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  4. Integrating HL7 RIM and ontology for unified knowledge and data representation in clinical decision support systems.

    PubMed

    Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song

    2016-01-01

    The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Patient-oriented Computerized Clinical Guidelines for Mobile Decision Support in Gestational Diabetes.

    PubMed

    García-Sáez, Gema; Rigla, Mercedes; Martínez-Sarriegui, Iñaki; Shalom, Erez; Peleg, Mor; Broens, Tom; Pons, Belén; Caballero-Ruíz, Estefanía; Gómez, Enrique J; Hernando, M Elena

    2014-03-01

    The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients' self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient's access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients' personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients' acceptance of the whole system. © 2014 Diabetes Technology Society.

  6. Habitat modeling for biodiversity conservation.

    Treesearch

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  7. Triple Value System Dynamics Modeling to Help Stakeholders Engage with Food-Energy-Water Problems

    EPA Science Inventory

    Triple Value (3V) Community scoping projects and Triple Value Simulation (3VS) models help decision makers and stakeholders apply systems-analysis methodology to complex problems related to food production, water quality, and energy use. 3VS models are decision support tools that...

  8. Research on Bidding Decision-making of International Public-Private Partnership Projects

    NASA Astrophysics Data System (ADS)

    Hu, Zhen Yu; Zhang, Shui Bo; Liu, Xin Yan

    2018-06-01

    In order to select the optimal quasi-bidding project for an investment enterprise, a bidding decision-making model for international PPP projects was established in this paper. Firstly, the literature frequency statistics method was adopted to screen out the bidding decision-making indexes, and accordingly the bidding decision-making index system for international PPP projects was constructed. Then, the group decision-making characteristic root method, the entropy weight method, and the optimization model based on least square method were used to set the decision-making index weights. The optimal quasi-bidding project was thus determined by calculating the consistent effect measure of each decision-making index value and the comprehensive effect measure of each quasi-bidding project. Finally, the bidding decision-making model for international PPP projects was further illustrated by a hypothetical case. This model can effectively serve as a theoretical foundation and technical support for the bidding decision-making of international PPP projects.

  9. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  10. Decision framework for corridor planning within the roadside right-of-way.

    DOT National Transportation Integrated Search

    2013-08-01

    A decision framework was developed for context-sensitive planning within the roadside ROW in : Michigan. This framework provides a roadside suitability assessment model that may be used to : support integrated decision-making and policy level conside...

  11. A decision support system for rainfed agricultural areas of Mexico

    USDA-ARS?s Scientific Manuscript database

    Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...

  12. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non-profit entities, enabled cross-sector collaboration with mining-indigenous stakeholders, and produced an interactive application for group decision support. ENCOMPASS leverages advances in computational tools to deliver data and models for group decision support applied to sustainability science problems.

  13. Data access and decision tools for coastal water resources management

    EPA Science Inventory

    US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...

  14. Impacts of Lateral Boundary Conditions on US Ozone ...

    EPA Pesticide Factsheets

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, we perform annual simulations over North America with chemical boundary conditions prepared from two global models (GEOS-CHEM and Hemispheric CMAQ). Results indicate that the impacts of different boundary conditions on ozone can be significant throughout the year. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  15. Development and application of air quality models at the US ...

    EPA Pesticide Factsheets

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Research Laboratory (NERL). This presentation will provide a simple overview of air quality model development and application geared toward a non-technical student audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  16. Rationality Validation of a Layered Decision Model for Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Huaqiang; Alves-Foss, James; Zhang, Du

    2007-08-31

    We propose a cost-effective network defense strategy built on three key: three decision layers: security policies, defense strategies, and real-time defense tactics for countering immediate threats. A layered decision model (LDM) can be used to capture this decision process. The LDM helps decision-makers gain insight into the hierarchical relationships among inter-connected entities and decision types, and supports the selection of cost-effective defense mechanisms to safeguard computer networks. To be effective as a business tool, it is first necessary to validate the rationality of model before applying it to real-world business cases. This paper describes our efforts in validating the LDMmore » rationality through simulation.« less

  17. The anatomy of decision support during inpatient care provider order entry (CPOE): Empirical observations from a decade of CPOE experience at Vanderbilt

    PubMed Central

    Miller, Randolph A.; Waitman, Lemuel R.; Chen, Sutin; Rosenbloom, S. Trent

    2006-01-01

    The authors describe a pragmatic approach to the introduction of clinical decision support at the point of care, based on a decade of experience in developing and evolving Vanderbilt’s inpatient “WizOrder” care provider order entry (CPOE) system. The inpatient care setting provides a unique opportunity to interject CPOE-based decision support features that restructure clinical workflows, deliver focused relevant educational materials, and influence how care is delivered to patients. From their empirical observations, the authors have developed a generic model for decision support within inpatient CPOE systems. They believe that the model’s utility extends beyond Vanderbilt, because it is based on characteristics of end-user workflows and on decision support considerations that are common to a variety of inpatient settings and CPOE systems. The specific approach to implementing a given clinical decision support feature within a CPOE system should involve evaluation along three axes: what type of intervention to create (for which the authors describe 4 general categories); when to introduce the intervention into the user’s workflow (for which the authors present 7 categories), and how disruptive, during use of the system, the intervention might be to end-users’ workflows (for which the authors describe 6 categories). Framing decision support in this manner may help both developers and clinical end-users plan future alterations to their systems when needs for new decision support features arise. PMID:16290243

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel; Vesselinov, Velimir V.

    MADSpython (Model analysis and decision support tools in Python) is a code in Python that streamlines the process of using data and models for analysis and decision support using the code MADS. MADS is open-source code developed at LANL and written in C/C++ (MADS; http://mads.lanl.gov; LA-CC-11-035). MADS can work with external models of arbitrary complexity as well as built-in models of flow and transport in porous media. The Python scripts in MADSpython facilitate the generation of input and output file needed by MADS as wells as the external simulators which include FEHM and PFLOTRAN. MADSpython enables a number of data-more » and model-based analyses including model calibration, sensitivity analysis, uncertainty quantification, and decision analysis. MADSpython will be released under GPL V3 license. MADSpython will be distributed as a Git repo at gitlab.com and github.com. MADSpython manual and documentation will be posted at http://madspy.lanl.gov.« less

  19. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  20. Understanding surgery choices for breast cancer: how might the Theory of Planned Behaviour and the Common Sense Model contribute to decision support interventions?

    PubMed Central

    Sivell, Stephanie; Edwards, Adrian; Elwyn, Glyn; Manstead, Antony S. R.

    2010-01-01

    Abstract Objective  To describe the evidence about factors influencing breast cancer patients’ surgery choices and the implications for designing decision support in reference to an extended Theory of Planned Behaviour (TPB) and the Common Sense Model of Illness Representations (CSM). Background  A wide range of factors are known to influence the surgery choices of women diagnosed with early breast cancer facing the choice of mastectomy or breast conservation surgery with radiotherapy. However, research does not always reflect the complexities of decision making and is often atheoretical. A theoretical approach, as provided by the CSM and the TPB, could help to identify and tailor support by focusing on patients’ representations of their breast cancer and predicting surgery choices. Design  Literature search and narrative synthesis of data. Synthesis  Twenty‐six studies reported women’s surgery choices to be influenced by perceived clinical outcomes of surgery, appearance and body image, treatment concerns, involvement in decision making and preferences of clinicians. These factors can be mapped onto the key constructs of both the TPB and CSM and used to inform the design and development of decision support interventions to ensure accurate information is provided in areas most important to patients. Conclusions  The TPB and CSM have the potential to inform the design of decision support for breast cancer patients, with accurate and clear information that avoids leading patients to make decisions they may come to regret. Further research is needed examining how the components of the extended TPB and CSM account for patients’ surgery choices. PMID:20579123

  1. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  2. The professional medical ethics model of decision making under conditions of clinical uncertainty.

    PubMed

    McCullough, Laurence B

    2013-02-01

    The professional medical ethics model of decision making may be applied to decisions clinicians and patients make under the conditions of clinical uncertainty that exist when evidence is low or very low. This model uses the ethical concepts of medicine as a profession, the professional virtues of integrity and candor and the patient's virtue of prudence, the moral management of medical uncertainty, and trial of intervention. These features combine to justifiably constrain clinicians' and patients' autonomy with the goal of preventing nondeliberative decisions of patients and clinicians. To prevent biased recommendations by the clinician that promote such nondeliberative decisions, medically reasonable alternatives supported by low or very low evidence should be offered but not recommended. The professional medical ethics model of decision making aims to improve the quality of decisions by reducing the unacceptable variation that can result from nondeliberative decision making by patients and clinicians when evidence is low or very low.

  3. Performance measurement integrated information framework in e-Manufacturing

    NASA Astrophysics Data System (ADS)

    Teran, Hilaida; Hernandez, Juan Carlos; Vizán, Antonio; Ríos, José

    2014-11-01

    The implementation of Internet technologies has led to e-Manufacturing technologies becoming more widely used and to the development of tools for compiling, transforming and synchronising manufacturing data through the Web. In this context, a potential area for development is the extension of virtual manufacturing to performance measurement (PM) processes, a critical area for decision making and implementing improvement actions in manufacturing. This paper proposes a PM information framework to integrate decision support systems in e-Manufacturing. Specifically, the proposed framework offers a homogeneous PM information exchange model that can be applied through decision support in e-Manufacturing environment. Its application improves the necessary interoperability in decision-making data processing tasks. It comprises three sub-systems: a data model, a PM information platform and PM-Web services architecture. A practical example of data exchange for measurement processes in the area of equipment maintenance is shown to demonstrate the utility of the model.

  4. A Knowledge-Modeling Approach to Integrate Multiple Clinical Practice Guidelines to Provide Evidence-Based Clinical Decision Support for Managing Comorbid Conditions.

    PubMed

    Abidi, Samina

    2017-10-26

    Clinical management of comorbidities is a challenge, especially in a clinical decision support setting, as it requires the safe and efficient reconciliation of multiple disease-specific clinical procedures to formulate a comorbid therapeutic plan that is both effective and safe for the patient. In this paper we pursue the integration of multiple disease-specific Clinical Practice Guidelines (CPG) in order to manage co-morbidities within a computerized Clinical Decision Support System (CDSS). We present a CPG integration framework-termed as COMET (Comorbidity Ontological Modeling & ExecuTion) that manifests a knowledge management approach to model, computerize and integrate multiple CPG to yield a comorbid CPG knowledge model that upon execution can provide evidence-based recommendations for handling comorbid patients. COMET exploits semantic web technologies to achieve (a) CPG knowledge synthesis to translate a paper-based CPG to disease-specific clinical pathways (CP) that include specialized co-morbidity management procedures based on input from domain experts; (b) CPG knowledge modeling to computerize the disease-specific CP using a Comorbidity CPG ontology; (c) CPG knowledge integration by aligning multiple ontologically-modeled CP to develop a unified comorbid CPG knowledge model; and (e) CPG knowledge execution using reasoning engines to derive CPG-mediated recommendations for managing patients with comorbidities. We present a web-accessible COMET CDSS that provides family physicians with CPG-mediated comorbidity decision support to manage Atrial Fibrillation and Chronic Heart Failure. We present our qualitative and quantitative analysis of the knowledge content and usability of COMET CDSS.

  5. Decision-analytic modeling studies: An overview for clinicians using multiple myeloma as an example.

    PubMed

    Rochau, U; Jahn, B; Qerimi, V; Burger, E A; Kurzthaler, C; Kluibenschaedl, M; Willenbacher, E; Gastl, G; Willenbacher, W; Siebert, U

    2015-05-01

    The purpose of this study was to provide a clinician-friendly overview of decision-analytic models evaluating different treatment strategies for multiple myeloma (MM). We performed a systematic literature search to identify studies evaluating MM treatment strategies using mathematical decision-analytic models. We included studies that were published as full-text articles in English, and assessed relevant clinical endpoints, and summarized methodological characteristics (e.g., modeling approaches, simulation techniques, health outcomes, perspectives). Eleven decision-analytic modeling studies met our inclusion criteria. Five different modeling approaches were adopted: decision-tree modeling, Markov state-transition modeling, discrete event simulation, partitioned-survival analysis and area-under-the-curve modeling. Health outcomes included survival, number-needed-to-treat, life expectancy, and quality-adjusted life years. Evaluated treatment strategies included novel agent-based combination therapies, stem cell transplantation and supportive measures. Overall, our review provides a comprehensive summary of modeling studies assessing treatment of MM and highlights decision-analytic modeling as an important tool for health policy decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Using Computational Modeling to Assess the Impact of Clinical Decision Support on Cancer Screening within Community Health Centers

    PubMed Central

    Carney, Timothy Jay; Morgan, Geoffrey P.; Jones, Josette; McDaniel, Anna M.; Weaver, Michael; Weiner, Bryan; Haggstrom, David A.

    2014-01-01

    Our conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability. PMID:24953241

  7. Investigating the Heart Pump Implant Decision Process: Opportunities for Decision Support Tools to Help

    PubMed Central

    Yang, Qian; Zimmerman, John; Steinfeld, Aaron; Carey, Lisa; Antaki, James F.

    2016-01-01

    Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients’ healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations. PMID:27833397

  8. Pieces of the Puzzle: Tracking the Chemical Component of the ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the risk assessment conducted at the U.S. EPA, as well as some research examples related to the exposome concept. This presentation also provides the recommendation of using two organizational and predictive frameworks for tracking chemical components in the exposome. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  9. Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning

    PubMed Central

    Maurer, Max; Lienert, Judit

    2017-01-01

    We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881

  10. [A model for shared decision-making with frail older patients: consensus reached using Delphi technique].

    PubMed

    van de Pol, M H J; Fluit, C R M G; Lagro, J; Lagro-Janssen, A L M; Olde Rikkert, M G M

    2017-01-01

    To develop a model for shared decision-making with frail older patients. Online Delphi forum. We used a three-round Delphi technique to reach consensus on the structure of a model for shared decision-making with older patients. The expert panel consisted of 16 patients (round 1), and 59 professionals (rounds 1-3). In round 1, the panel of experts was asked about important steps in the process of shared decision-making and the draft model was introduced. Rounds 2 and 3 were used to adapt the model and test it for 'importance' and 'feasibility'. Consensus for the dynamic shared decision-making model as a whole was achieved for both importance (91% panel agreement) and feasibility (76% panel agreement). Shared decision-making with older patients is a dynamic process. It requires a continuous supportive dialogue between health care professional and patient.

  11. Decision support for sustainable forestry: enhancing the basic rational model.

    Treesearch

    H.R. Ekbia; K.M. Reynolds

    2007-01-01

    Decision-support systems (DSS) have been extensively used in the management of natural resources for nearly two decades. However, practical difficulties with the application of DSS in real-world situations have become increasingly apparent. Complexities of decisionmaking, encountered in the context of ecosystem management, are equally present in sustainable forestry....

  12. Climate modeling with decision makers in mind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew; Calvin, Katherine; Lamarque, Jean -Francois

    The need for regional- and local-scale climate information is increasing rapidly as decision makers seek to anticipate and manage a variety of context-specific climate risks over the next several decades. Furthermore, global climate models are not developed with these user needs in mind, and they typically operate at resolutions that are too coarse to provide information that could be used to support regional and local decisions.

  13. Climate modeling with decision makers in mind

    DOE PAGES

    Jones, Andrew; Calvin, Katherine; Lamarque, Jean -Francois

    2016-04-27

    The need for regional- and local-scale climate information is increasing rapidly as decision makers seek to anticipate and manage a variety of context-specific climate risks over the next several decades. Furthermore, global climate models are not developed with these user needs in mind, and they typically operate at resolutions that are too coarse to provide information that could be used to support regional and local decisions.

  14. Decision Support for the Capacity Management of Bronchoscopy Devices: Optimizing the Cost-Efficient Mix of Reusable and Single-Use Devices Through Mathematical Modeling.

    PubMed

    Edenharter, Günther M; Gartner, Daniel; Pförringer, Dominik

    2017-06-01

    Increasing costs of material resources challenge hospitals to stay profitable. Particularly in anesthesia departments and intensive care units, bronchoscopes are used for various indications. Inefficient management of single- and multiple-use systems can influence the hospitals' material costs substantially. Using mathematical modeling, we developed a strategic decision support tool to determine the optimum mix of disposable and reusable bronchoscopy devices in the setting of an intensive care unit. A mathematical model with the objective to minimize costs in relation to demand constraints for bronchoscopy devices was formulated. The stochastic model decides whether single-use, multi-use, or a strategically chosen mix of both device types should be used. A decision support tool was developed in which parameters for uncertain demand such as mean, standard deviation, and a reliability parameter can be inserted. Furthermore, reprocessing costs per procedure, procurement, and maintenance costs for devices can be parameterized. Our experiments show for which demand pattern and reliability measure, it is efficient to only use reusable or disposable devices and under which circumstances the combination of both device types is beneficial. To determine the optimum mix of single-use and reusable bronchoscopy devices effectively and efficiently, managers can enter their hospital-specific parameters such as demand and prices into the decision support tool.The software can be downloaded at: https://github.com/drdanielgartner/bronchomix/.

  15. Distributed collaborative environments for predictive battlespace awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.

  16. From complex questionnaire and interviewing data to intelligent Bayesian Network models for medical decision support

    PubMed Central

    Constantinou, Anthony Costa; Fenton, Norman; Marsh, William; Radlinski, Lukasz

    2016-01-01

    Objectives 1) To develop a rigorous and repeatable method for building effective Bayesian network (BN) models for medical decision support from complex, unstructured and incomplete patient questionnaires and interviews that inevitably contain examples of repetitive, redundant and contradictory responses; 2) To exploit expert knowledge in the BN development since further data acquisition is usually not possible; 3) To ensure the BN model can be used for interventional analysis; 4) To demonstrate why using data alone to learn the model structure and parameters is often unsatisfactory even when extensive data is available. Method The method is based on applying a range of recent BN developments targeted at helping experts build BNs given limited data. While most of the components of the method are based on established work, its novelty is that it provides a rigorous consolidated and generalised framework that addresses the whole life-cycle of BN model development. The method is based on two original and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P. Results When employed with the same datasets, the DSVM-MSS demonstrated competitive to superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). More importantly, the resulting models go beyond improving predictive accuracy and into usefulness for risk management purposes through intervention, and enhanced decision support in terms of answering complex clinical questions that are based on unobserved evidence. Conclusions This development process is applicable to any application domain which involves large-scale decision analysis based on such complex information, rather than based on data with hard facts, and in conjunction with the incorporation of expert knowledge for decision support via intervention. The novelty extends to challenging the decision scientists to reason about building models based on what information is really required for inference, rather than based on what data is available and hence, forces decision scientists to use available data in a much smarter way. PMID:26830286

  17. From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support.

    PubMed

    Constantinou, Anthony Costa; Fenton, Norman; Marsh, William; Radlinski, Lukasz

    2016-02-01

    (1) To develop a rigorous and repeatable method for building effective Bayesian network (BN) models for medical decision support from complex, unstructured and incomplete patient questionnaires and interviews that inevitably contain examples of repetitive, redundant and contradictory responses; (2) To exploit expert knowledge in the BN development since further data acquisition is usually not possible; (3) To ensure the BN model can be used for interventional analysis; (4) To demonstrate why using data alone to learn the model structure and parameters is often unsatisfactory even when extensive data is available. The method is based on applying a range of recent BN developments targeted at helping experts build BNs given limited data. While most of the components of the method are based on established work, its novelty is that it provides a rigorous consolidated and generalised framework that addresses the whole life-cycle of BN model development. The method is based on two original and recent validated BN models in forensic psychiatry, known as DSVM-MSS and DSVM-P. When employed with the same datasets, the DSVM-MSS demonstrated competitive to superior predictive performance (AUC scores 0.708 and 0.797) against the state-of-the-art (AUC scores ranging from 0.527 to 0.705), and the DSVM-P demonstrated superior predictive performance (cross-validated AUC score of 0.78) against the state-of-the-art (AUC scores ranging from 0.665 to 0.717). More importantly, the resulting models go beyond improving predictive accuracy and into usefulness for risk management purposes through intervention, and enhanced decision support in terms of answering complex clinical questions that are based on unobserved evidence. This development process is applicable to any application domain which involves large-scale decision analysis based on such complex information, rather than based on data with hard facts, and in conjunction with the incorporation of expert knowledge for decision support via intervention. The novelty extends to challenging the decision scientists to reason about building models based on what information is really required for inference, rather than based on what data is available and hence, forces decision scientists to use available data in a much smarter way. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  19. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  20. A Decision Making Methodology in Support of the Business Rules Lifecycle

    NASA Technical Reports Server (NTRS)

    Wild, Christopher; Rosca, Daniela

    1998-01-01

    The business rules that underlie an enterprise emerge as a new category of system requirements that represent decisions about how to run the business, and which are characterized by their business-orientation and their propensity for change. In this report, we introduce a decision making methodology which addresses several aspects of the business rules lifecycle: acquisition, deployment and evolution. We describe a meta-model for representing business rules in terms of an enterprise model, and also a decision support submodel for reasoning about and deriving the rules. The possibility for lifecycle automated assistance is demonstrated in terms of the automatic extraction of business rules from the decision structure. A system based on the metamodel has been implemented, including the extraction algorithm. This is the final report for Daniela Rosca's PhD fellowship. It describes the work we have done over the past year, current research and the list of publications associated with her thesis topic.

  1. A public health decision support system model using reasoning methods.

    PubMed

    Mera, Maritza; González, Carolina; Blobel, Bernd

    2015-01-01

    Public health programs must be based on the real health needs of the population. However, the design of efficient and effective public health programs is subject to availability of information that can allow users to identify, at the right time, the health issues that require special attention. The objective of this paper is to propose a case-based reasoning model for the support of decision-making in public health. The model integrates a decision-making process and case-based reasoning, reusing past experiences for promptly identifying new population health priorities. A prototype implementation of the model was performed, deploying the case-based reasoning framework jColibri. The proposed model contributes to solve problems found today when designing public health programs in Colombia. Current programs are developed under uncertain environments, as the underlying analyses are carried out on the basis of outdated and unreliable data.

  2. Distributed collaborative decision support environments for predictive awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.; Stilman, Boris; Yakhnis, Vlad

    2005-05-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, rapidly assess the enemy"s course of action (eCOA) or possible actions and promulgate their own course of action (COA) - a need for predictive awareness. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Revolutionary new approaches to strategy generation and assessment such as Linguistic Geometry (LG) permit the rapid development of COA vs. enemy COA (eCOA). LG tools automatically generate and permit the operators to take advantage of winning strategies and tactics for mission planning and execution in near real-time. LG is predictive and employs deep "look-ahead" from the current state and provides a realistic, reactive model of adversary reasoning and behavior. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing research efforts in applying distributed collaborative environments to decision support for predictive mission awareness.

  3. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Co-evolution of transportation and land use : modeling historical dependencies in land use and transportation decision making.

    DOT National Transportation Integrated Search

    2009-11-01

    The interaction between land use and transportation has long been the central issue in urban and regional planning. Models of such : interactions provide vital information to support many public policy decisions, such as land supply, infrastructure p...

  5. E-Health towards ecumenical framework for personalized medicine via Decision Support System.

    PubMed

    Kouris, Ioannis; Tsirmpas, Charalampos; Mougiakakou, Stavroula G; Iliopoulou, Dimitra; Koutsouris, Dimitris

    2010-01-01

    The purpose of the present manuscript is to present the advances performed in medicine using a Personalized Decision Support System (PDSS). The models used in Decision Support Systems (DSS) are examined in combination with Genome Information and Biomarkers to produce personalized result for each individual. The concept of personalize medicine is described in depth and application of PDSS for Cardiovascular Diseases (CVD) and Type-1 Diabetes Mellitus (T1DM) are analyzed. Parameters extracted from genes, biomarkers, nutrition habits, lifestyle and biological measurements feed DSSs, incorporating Artificial Intelligence Modules (AIM), to provide personalized advice, medication and treatment.

  6. Automating hypertext for decision support

    NASA Technical Reports Server (NTRS)

    Bieber, Michael

    1990-01-01

    A decision support system (DSS) shell is being constructed that can support applications in a variety of fields, e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for 'navigating' among DSS application models, data, and reports. The traditional notion of hypertext had to be enhanced. Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext connections to be built 'on the fly'. The role of hypertext is discussed in augmenting DSS applications and the decision making process. Also discussed is how hypertext nodes, links, and link markers tailored to an arbitrary DSS application were automatically generated.

  7. Making Insulation Decisions through Mathematical Modeling

    ERIC Educational Resources Information Center

    Yanik, H. Bahadir; Memis, Yasin

    2014-01-01

    Engaging students in studies about conservation and sustainability can support their understanding of making environmental conscious decisions to conserve Earth. This article aims to contribute these efforts and direct students' attention to how they can use mathematics to make environmental decisions. Contributors to iSTEM: Integrating…

  8. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  9. WRF/CMAQ AQMEII3 Simulations of US Regional-Scale ...

    EPA Pesticide Factsheets

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary conditions prepared from four different global models. Results indicate that the impacts of different boundary conditions are significant for ozone throughout the year and most pronounced outside the summer season. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  10. Social support plays a role in the attitude that people have towards taking an active role in medical decision-making.

    PubMed

    Brabers, Anne E M; de Jong, Judith D; Groenewegen, Peter P; van Dijk, Liset

    2016-09-21

    There is a growing emphasis towards including patients in medical decision-making. However, not all patients are actively involved in such decisions. Research has so far focused mainly on the influence of patient characteristics on preferences for active involvement. However, it can be argued that a patient's social context has to be taken into account as well, because social norms and resources affect behaviour. This study aims to examine the role of social resources, in the form of the availability of informational and emotional support, on the attitude towards taking an active role in medical decision-making. A questionnaire was sent to members of the Dutch Health Care Consumer Panel (response 70 %; n = 1300) in June 2013. A regression model was then used to estimate the relation between medical and lay informational support and emotional support and the attitude towards taking an active role in medical decision-making. Availability of emotional support is positively related to the attitude towards taking an active role in medical decision-making only in people with a low level of education, not in persons with a middle and high level of education. The latter have a more positive attitude towards taking an active role in medical decision-making, irrespective of the level of emotional support available. People with better access to medical informational support have a more positive attitude towards taking an active role in medical decision-making; but no significant association was found for lay informational support. This study shows that social resources are associated with the attitude towards taking an active role in medical decision-making. Strategies aimed at increasing patient involvement have to address this.

  11. Development of a decision analytic model to support decision making and risk communication about thrombolytic treatment.

    PubMed

    McMeekin, Peter; Flynn, Darren; Ford, Gary A; Rodgers, Helen; Gray, Jo; Thomson, Richard G

    2015-11-11

    Individualised prediction of outcomes can support clinical and shared decision making. This paper describes the building of such a model to predict outcomes with and without intravenous thrombolysis treatment following ischaemic stroke. A decision analytic model (DAM) was constructed to establish the likely balance of benefits and risks of treating acute ischaemic stroke with thrombolysis. Probability of independence, (modified Rankin score mRS ≤ 2), dependence (mRS 3 to 5) and death at three months post-stroke was based on a calibrated version of the Stroke-Thrombolytic Predictive Instrument using data from routinely treated stroke patients in the Safe Implementation of Treatments in Stroke (SITS-UK) registry. Predictions in untreated patients were validated using data from the Virtual International Stroke Trials Archive (VISTA). The probability of symptomatic intracerebral haemorrhage in treated patients was incorporated using a scoring model from Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST) data. The model predicts probabilities of haemorrhage, death, independence and dependence at 3-months, with and without thrombolysis, as a function of 13 patient characteristics. Calibration (and inclusion of additional predictors) of the Stroke-Thrombolytic Predictive Instrument (S-TPI) addressed issues of under and over prediction. Validation with VISTA data confirmed that assumptions about treatment effect were just. The C-statistics for independence and death in treated patients in the DAM were 0.793 and 0.771 respectively, and 0.776 for independence in untreated patients from VISTA. We have produced a DAM that provides an estimation of the likely benefits and risks of thrombolysis for individual patients, which has subsequently been embedded in a computerised decision aid to support better decision-making and informed consent.

  12. Decision-making and outcomes of hearing help-seekers: A self-determination theory perspective.

    PubMed

    Ridgway, Jason; Hickson, Louise; Lind, Christopher

    2016-07-01

    To explore the explanatory power of a self-determination theory (SDT) model of health behaviour change for hearing aid adoption decisions and fitting outcomes. A quantitative approach was taken for this longitudinal cohort study. Participants completed questionnaires adapted from SDT that measured autonomous motivation, autonomy support, and perceived competence for hearing aids. Hearing aid fitting outcomes were obtained with the international outcomes inventory for hearing aids (IOI-HA). Sociodemographic and audiometric information was collected. Participants were 216 adult first-time hearing help-seekers (125 hearing aid adopters, 91 non-adopters). Regression models assessed the impact of autonomous motivation and autonomy support on hearing aid adoption and hearing aid fitting outcomes. Sociodemographic and audiometric factors were also taken into account. Autonomous motivation, but not autonomy support, was associated with increased hearing aid adoption. Autonomy support was associated with increased perceived competence for hearing aids, reduced activity limitation and increased hearing aid satisfaction. Autonomous motivation was positively associated with hearing aid satisfaction. The SDT model is potentially useful in understanding how hearing aid adoption decisions are made, and how hearing health behaviour is internalized and maintained over time. Autonomy supportive practitioners may improve outcomes by helping hearing aid adopters maintain internalized change.

  13. Extensions to regret-based decision curve analysis: an application to hospice referral for terminal patients.

    PubMed

    Tsalatsanis, Athanasios; Barnes, Laura E; Hozo, Iztok; Djulbegovic, Benjamin

    2011-12-23

    Despite the well documented advantages of hospice care, most terminally ill patients do not reap the maximum benefit from hospice services, with the majority of them receiving hospice care either prematurely or delayed. Decision systems to improve the hospice referral process are sorely needed. We present a novel theoretical framework that is based on well-established methodologies of prognostication and decision analysis to assist with the hospice referral process for terminally ill patients. We linked the SUPPORT statistical model, widely regarded as one of the most accurate models for prognostication of terminally ill patients, with the recently developed regret based decision curve analysis (regret DCA). We extend the regret DCA methodology to consider harms associated with the prognostication test as well as harms and effects of the management strategies. In order to enable patients and physicians in making these complex decisions in real-time, we developed an easily accessible web-based decision support system available at the point of care. The web-based decision support system facilitates the hospice referral process in three steps. First, the patient or surrogate is interviewed to elicit his/her personal preferences regarding the continuation of life-sustaining treatment vs. palliative care. Then, regret DCA is employed to identify the best strategy for the particular patient in terms of threshold probability at which he/she is indifferent between continuation of treatment and of hospice referral. Finally, if necessary, the probabilities of survival and death for the particular patient are computed based on the SUPPORT prognostication model and contrasted with the patient's threshold probability. The web-based design of the CDSS enables patients, physicians, and family members to participate in the decision process from anywhere internet access is available. We present a theoretical framework to facilitate the hospice referral process. Further rigorous clinical evaluation including testing in a prospective randomized controlled trial is required and planned.

  14. Extensions to Regret-based Decision Curve Analysis: An application to hospice referral for terminal patients

    PubMed Central

    2011-01-01

    Background Despite the well documented advantages of hospice care, most terminally ill patients do not reap the maximum benefit from hospice services, with the majority of them receiving hospice care either prematurely or delayed. Decision systems to improve the hospice referral process are sorely needed. Methods We present a novel theoretical framework that is based on well-established methodologies of prognostication and decision analysis to assist with the hospice referral process for terminally ill patients. We linked the SUPPORT statistical model, widely regarded as one of the most accurate models for prognostication of terminally ill patients, with the recently developed regret based decision curve analysis (regret DCA). We extend the regret DCA methodology to consider harms associated with the prognostication test as well as harms and effects of the management strategies. In order to enable patients and physicians in making these complex decisions in real-time, we developed an easily accessible web-based decision support system available at the point of care. Results The web-based decision support system facilitates the hospice referral process in three steps. First, the patient or surrogate is interviewed to elicit his/her personal preferences regarding the continuation of life-sustaining treatment vs. palliative care. Then, regret DCA is employed to identify the best strategy for the particular patient in terms of threshold probability at which he/she is indifferent between continuation of treatment and of hospice referral. Finally, if necessary, the probabilities of survival and death for the particular patient are computed based on the SUPPORT prognostication model and contrasted with the patient's threshold probability. The web-based design of the CDSS enables patients, physicians, and family members to participate in the decision process from anywhere internet access is available. Conclusions We present a theoretical framework to facilitate the hospice referral process. Further rigorous clinical evaluation including testing in a prospective randomized controlled trial is required and planned. PMID:22196308

  15. Nursing in general practice: organizational possibilities for decision latitude, created skill, social support and identity derived from role.

    PubMed

    Merrick, Eamon; Duffield, Christine; Baldwin, Richard; Fry, Margaret

    2012-03-01

    This article is a report of a study to describe the factors that support organizational opportunities for practice nurse decision-making and skill development for nurses employed in general practice in New South Wales, Australia. Corresponding to the availability of subsidies from the Australian universal health insurer (Medicare), there has been an increase in the number of nurses employed in general practice. Currently, there is no Australian evidence as to the organizational possibilities for these practice nurses to make decisions, develop their own skills and abilities, derive identity from their role or how their role is influenced by social support. Over a 8-month period in 2008 practice, nurses employed in general practice in the State of New South Wales were invited to complete a 26-item self-administered online questionnaire utilizing constructs from Karaseks (1998) Job Content Questionnaire (valid n = 160). Confirmatory Factor Analysis indicated that all scales demonstrated acceptable levels of internal consistency. Sequential regression models revealed that social support exerts a weak influence on decision latitude (R(2) = 0·07); the addition of self-identity through work significantly improved the predictive ability of the model (R(2) = 0·16). Social support and self-identity through work exerted a negative influence on created skill (R(2) = 0·347), whereas social support was effective in predicting self-identity through work (R(2) = 0·148).   Collegial and supervisory support in the work environment predicts organizational possibilities for practice nurse decision-making. © 2011 Blackwell Publishing Ltd.

  16. Surrogate Motherhood and Abortion for Fetal Abnormality.

    PubMed

    Walker, Ruth; van Zyl, Liezl

    2015-10-01

    A diagnosis of fetal abnormality presents parents with a difficult - even tragic - moral dilemma. Where this diagnosis is made in the context of surrogate motherhood there is an added difficulty, namely that it is not obvious who should be involved in making decisions about abortion, for the person who would normally have the right to decide - the pregnant woman - does not intend to raise the child. This raises the question: To what extent, if at all, should the intended parents be involved in decision-making? In commercial surrogacy it is thought that as part of the contractual agreement the intended parents acquire the right to make this decision. By contrast, in altruistic surrogacy the pregnant woman retains the right to make these decisions, but the intended parents are free to decide not to adopt the child. We argue that both these strategies are morally unsound, and that the problems encountered serve to highlight more fundamental defects within the commercial and altruistic models, as well as in the legal and institutional frameworks that support them. We argue in favour of the professional model, which acknowledges the rights and responsibilities of both parties and provides a legal and institutional framework that supports good decision-making. In particular, the professional model acknowledges the surrogate's right to decide whether to undergo an abortion, and the intended parents' obligation to accept legal custody of the child. While not solving all the problems that arise in surrogacy, the model provides a framework that supports good decision-making. © 2015 John Wiley & Sons Ltd.

  17. Decision Support Model for Introduction of Gamification Solution Using AHP

    PubMed Central

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform. PMID:24892075

  18. Decision support model for introduction of gamification solution using AHP.

    PubMed

    Kim, Sangkyun

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform.

  19. Integrated permanent plot and aerial monitoring for the spruce budworm decision support system

    Treesearch

    David A. MacLean

    2000-01-01

    Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause severe mortality and growth loss of spruce and fir forest over ranch of eastern North America. The Spruce Budworm Decision Support System (DSS) links prediction and interpretation models to the ARC/1NFO GIS, under an ArcView graphical user interface. It helps forest managers predict...

  20. Improving Emergency Department Triage Classification with Computerized Clinical Decision Support at a Pediatric Hospital

    ERIC Educational Resources Information Center

    Kunisch, Joseph Martin

    2012-01-01

    Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…

  1. A task-based support architecture for developing point-of-care clinical decision support systems for the emergency department.

    PubMed

    Wilk, S; Michalowski, W; O'Sullivan, D; Farion, K; Sayyad-Shirabad, J; Kuziemsky, C; Kukawka, B

    2013-01-01

    The purpose of this study was to create a task-based support architecture for developing clinical decision support systems (CDSSs) that assist physicians in making decisions at the point-of-care in the emergency department (ED). The backbone of the proposed architecture was established by a task-based emergency workflow model for a patient-physician encounter. The architecture was designed according to an agent-oriented paradigm. Specifically, we used the O-MaSE (Organization-based Multi-agent System Engineering) method that allows for iterative translation of functional requirements into architectural components (e.g., agents). The agent-oriented paradigm was extended with ontology-driven design to implement ontological models representing knowledge required by specific agents to operate. The task-based architecture allows for the creation of a CDSS that is aligned with the task-based emergency workflow model. It facilitates decoupling of executable components (agents) from embedded domain knowledge (ontological models), thus supporting their interoperability, sharing, and reuse. The generic architecture was implemented as a pilot system, MET3-AE--a CDSS to help with the management of pediatric asthma exacerbation in the ED. The system was evaluated in a hospital ED. The architecture allows for the creation of a CDSS that integrates support for all tasks from the task-based emergency workflow model, and interacts with hospital information systems. Proposed architecture also allows for reusing and sharing system components and knowledge across disease-specific CDSSs.

  2. Load index model: An advanced tool to support decision making during mass-casualty incidents.

    PubMed

    Adini, Bruria; Aharonson-Daniel, Limor; Israeli, Avi

    2015-03-01

    In mass-casualty events, accessing information concerning hospital congestion levels is crucial to improving patient distribution and optimizing care. The study aimed to develop a decision support tool for distributing casualties to hospitals in an emergency scenario involving multiple casualties. A comprehensive literature review and structured interviews with 20 content experts produced a shortlist of relevant criteria for inclusion in the model. A "load index model" was prepared, incorporating results of a modified Delphi survey of 100 emergency response experts. The model was tested in three simulation exercises in which an emergency scenario was presented to six groups of senior emergency managers. Information was provided regarding capacities of 11 simulated admitting hospitals in the region, and evacuation destinations were requested for 600 simulated casualties. Of the three simulation rounds, two were performed without the model and one after its presentation. Following simulation experiments and implementation during a real-life security threat, the efficacy of the model was assessed. Variability between experts concerning casualties' evacuation destinations decreased significantly following the model's introduction. Most responders (92%) supported the need for standardized data, and 85% found that the model improved policy setting regarding casualty evacuation in an emergency situation. These findings were reaffirmed in a real-life emergency scenario. The proposed model improved capacity to ensure evacuation of patients to less congested medical facilities in emergency situations, thereby enhancing lifesaving medical services. The model supported decision-making processes in both simulation exercises and an actual emergency situation.

  3. Factors Influencing the Performance of Dynamic Decision Network for INQPRO

    ERIC Educational Resources Information Center

    Ting, Choo-Yee; Phon-Amnuaisuk, Somnuk

    2009-01-01

    There has been an increasing interest in employing decision-theoretic framework for learner modeling and provision of pedagogical support in Intelligent Tutoring Systems (ITSs). Much of the existing learner modeling research work focuses on identifying appropriate learner properties. Little attention, however, has been given to leverage Dynamic…

  4. A Participants' DSS for a Management Game with a DSS Generator.

    ERIC Educational Resources Information Center

    Yeo, Gee Kin; Nah, Fui Hoon

    1992-01-01

    Describes the design of a decision support system (DSS) for a management game called MAGNUS (Management Game for National University of Singapore). Built-in models for performance analysis and decision making are explained; database query and model building are described; and future work is discussed. (11 references) (LRW)

  5. SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING AND RISK ASSESSMENT (SLIDE PRESENTATION)

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  6. MEETING IN CHICAGO: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND ENVIRONMENTAL RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  7. MEETING IN CZECH REPUBLIC: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND RISK ASSESSMENT

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  8. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.

  9. Empirical evaluation of decision support systems: Needs, definitions, potential methods, and an example pertaining to waterfowl management

    USGS Publications Warehouse

    Sojda, R.S.

    2007-01-01

    Decision support systems are often not empirically evaluated, especially the underlying modelling components. This can be attributed to such systems necessarily being designed to handle complex and poorly structured problems and decision making. Nonetheless, evaluation is critical and should be focused on empirical testing whenever possible. Verification and validation, in combination, comprise such evaluation. Verification is ensuring that the system is internally complete, coherent, and logical from a modelling and programming perspective. Validation is examining whether the system is realistic and useful to the user or decision maker, and should answer the question: “Was the system successful at addressing its intended purpose?” A rich literature exists on verification and validation of expert systems and other artificial intelligence methods; however, no single evaluation methodology has emerged as preeminent. At least five approaches to validation are feasible. First, under some conditions, decision support system performance can be tested against a preselected gold standard. Second, real-time and historic data sets can be used for comparison with simulated output. Third, panels of experts can be judiciously used, but often are not an option in some ecological domains. Fourth, sensitivity analysis of system outputs in relation to inputs can be informative. Fifth, when validation of a complete system is impossible, examining major components can be substituted, recognizing the potential pitfalls. I provide an example of evaluation of a decision support system for trumpeter swan (Cygnus buccinator) management that I developed using interacting intelligent agents, expert systems, and a queuing system. Predicted swan distributions over a 13-year period were assessed against observed numbers. Population survey numbers and banding (ringing) studies may provide long term data useful in empirical evaluation of decision support.

  10. A three-talk model for shared decision making: multistage consultation process

    PubMed Central

    Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy

    2017-01-01

    Objectives To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design Multistage consultation process. Setting Key informant group, communities of interest, and survey of clinical specialties. Participants 19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on “team talk,” “option talk,” and “decision talk,” to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. PMID:29109079

  11. Evolution and Evaluation of ECG Interpretation Systems-An Illustration of the Validation of Decision Support Systems

    PubMed Central

    van Bemmel, Jan H.; Kors, Jan A.; Willems, Jos L.; van Herpen, Gerard

    1990-01-01

    The last decade has shown a growing interest in medical decision making, strongly stimulated by the advent of artificial intelligence. This wave of interest is not the first one; it was preceded by other models and approaches to medical decision support. However, not all developments have resulted in equally successful decision support systems. Positive exceptions are the interpretation systems for ECGs that evolved all the way from very primitive attempts to well-accepted and highly-computerized clinical systems for which a major evaluation study (CSE, Common Standards for Quantitative Electrocardiography) is finalized in 1990. The evolution and the evaluation of the systems that took part in this study, is the subject of this paper.

  12. Linking Theoretical Decision-making Mechanisms in the Simon Task with Electrophysiological Data: A Model-based Neuroscience Study in Humans.

    PubMed

    Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís

    2016-10-01

    A current challenge for decision-making research is in extending models of simple decisions to more complex and ecological choice situations. Conflict tasks (e.g., Simon, Stroop, Eriksen flanker) have been the focus of much interest, because they provide a decision-making context representative of everyday life experiences. Modeling efforts have led to an elaborated drift diffusion model for conflict tasks (DMC), which implements a superimposition of automatic and controlled decision activations. The DMC has proven to capture the diversity of behavioral conflict effects across various task contexts. This study combined DMC predictions with EEG and EMG measurements to test a set of linking propositions that specify the relationship between theoretical decision-making mechanisms involved in the Simon task and brain activity. Our results are consistent with a representation of the superimposed decision variable in the primary motor cortices. The decision variable was also observed in the EMG activity of response agonist muscles. These findings provide new insight into the neurophysiology of human decision-making. In return, they provide support for the DMC model framework.

  13. Adverse consequences of article 12 of the UN Convention on the Rights of Persons with Disabilities for persons with mental disabilities and an alternative way forward.

    PubMed

    Scholten, Matthé; Gather, Jakov

    2018-04-01

    It is widely accepted among medical ethicists that competence is a necessary condition for informed consent. In this view, if a patient is incompetent to make a particular treatment decision, the decision must be based on an advance directive or made by a substitute decision-maker on behalf of the patient. We call this the competence model. According to a recent report of the United Nations (UN) High Commissioner for Human Rights, article 12 of the UN Convention on the Rights of Persons with Disabilities (CRPD) presents a wholesale rejection of the competence model. The High Commissioner here adopts the interpretation of article 12 proposed by the Committee on the Rights of Persons with Disabilities. On this interpretation, CRPD article 12 renders it impermissible to deny persons with mental disabilities the right to make treatment decisions on the basis of impaired decision-making capacity and demands the replacement of all regimes of substitute decision-making by supported decision-making. In this paper, we explicate six adverse consequences of CRPD article 12 for persons with mental disabilities and propose an alternative way forward. The proposed model combines the strengths of the competence model and supported decision-making. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Evaluating child welfare policies with decision-analytic simulation models.

    PubMed

    Goldhaber-Fiebert, Jeremy D; Bailey, Stephanie L; Hurlburt, Michael S; Zhang, Jinjin; Snowden, Lonnie R; Wulczyn, Fred; Landsverk, John; Horwitz, Sarah M

    2012-11-01

    The objective was to demonstrate decision-analytic modeling in support of Child Welfare policymakers considering implementing evidence-based interventions. Outcomes included permanency (e.g., adoptions) and stability (e.g., foster placement changes). Analyses of a randomized trial of KEEP-a foster parenting intervention-and NSCAW-1 estimated placement change rates and KEEP's effects. A microsimulation model generalized these findings to other Child Welfare systems. The model projected that KEEP could increase permanency and stability, identifying strategies targeting higher-risk children and geographical regions that achieve benefits efficiently. Decision-analytic models enable planners to gauge the value of potential implementations.

  15. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  16. Operational seasonal forecasting of crop performance.

    PubMed

    Stone, Roger C; Meinke, Holger

    2005-11-29

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.

  17. Operational seasonal forecasting of crop performance

    PubMed Central

    Stone, Roger C; Meinke, Holger

    2005-01-01

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097

  18. Building a computer program to support children, parents, and distraction during healthcare procedures.

    PubMed

    Hanrahan, Kirsten; McCarthy, Ann Marie; Kleiber, Charmaine; Ataman, Kaan; Street, W Nick; Zimmerman, M Bridget; Ersig, Anne L

    2012-10-01

    This secondary data analysis used data mining methods to develop predictive models of child risk for distress during a healthcare procedure. Data used came from a study that predicted factors associated with children's responses to an intravenous catheter insertion while parents provided distraction coaching. From the 255 items used in the primary study, 44 predictive items were identified through automatic feature selection and used to build support vector machine regression models. Models were validated using multiple cross-validation tests and by comparing variables identified as explanatory in the traditional versus support vector machine regression. Rule-based approaches were applied to the model outputs to identify overall risk for distress. A decision tree was then applied to evidence-based instructions for tailoring distraction to characteristics and preferences of the parent and child. The resulting decision support computer application, titled Children, Parents and Distraction, is being used in research. Future use will support practitioners in deciding the level and type of distraction intervention needed by a child undergoing a healthcare procedure.

  19. Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making.

    PubMed

    Valdes, Gilmer; Simone, Charles B; Chen, Josephine; Lin, Alexander; Yom, Sue S; Pattison, Adam J; Carpenter, Colin M; Solberg, Timothy D

    2017-12-01

    Clinical decision support systems are a growing class of tools with the potential to impact healthcare. This study investigates the construction of a decision support system through which clinicians can efficiently identify which previously approved historical treatment plans are achievable for a new patient to aid in selection of therapy. Treatment data were collected for early-stage lung and postoperative oropharyngeal cancers treated using photon (lung and head and neck) and proton (head and neck) radiotherapy. Machine-learning classifiers were constructed using patient-specific feature-sets and a library of historical plans. Model accuracy was analyzed using learning curves, and historical treatment plan matching was investigated. Learning curves demonstrate that for these datasets, approximately 45, 60, and 30 patients are needed for a sufficiently accurate classification model for radiotherapy for early-stage lung, postoperative oropharyngeal photon, and postoperative oropharyngeal proton, respectively. The resulting classification model provides a database of previously approved treatment plans that are achievable for a new patient. An exemplary case, highlighting tradeoffs between the heart and chest wall dose while holding target dose constant in two historical plans is provided. We report on the first artificial-intelligence based clinical decision support system that connects patients to past discrete treatment plans in radiation oncology and demonstrate for the first time how this tool can enable clinicians to use past decisions to help inform current assessments. Clinicians can be informed of dose tradeoffs between critical structures early in the treatment process, enabling more time spent on finding the optimal course of treatment for individual patients. Copyright © 2017. Published by Elsevier B.V.

  20. Effects of a decision support intervention on decisional conflict associated with microsatellite instability testing.

    PubMed

    Hall, Michael J; Manne, Sharon L; Winkel, Gary; Chung, Daniel S; Weinberg, David S; Meropol, Neal J

    2011-02-01

    Decision support to facilitate informed consent is increasingly important for complicated medical tests. Here, we test a theoretical model of factors influencing decisional conflict in a study examining the effects of a decision support aid that was designed to assist patients at high risk for hereditary nonpolyposis colorectal cancer (CRC) deciding whether to pursue the microsatellite instability (MSI) test. Participants were 239 CRC patients at high familial risk for a genetic mutation who completed surveys before and after exposure to the intervention. Half of the sample was assigned to the CD-ROM aid and half received a brief description of the test. Structural equation modeling was employed to examine associations among the intervention, knowledge, pros and cons to having MSI testing, self-efficacy, preparedness, and decisional conflict. The goodness of fit for the model was acceptable [FIML, full information maximum likelihood, χ(2) (df = 280) = 392.24; P = 0.00]. As expected, the paths to decisional conflict were significant for postintervention pros of MSI testing (t = -2.43; P < 0.05), cons of MSI testing (t = 2.78; P < 0.05), and preparedness (t = -7.27; P < 0.01). The intervention impacted decisional conflict by increasing knowledge about the MSI test and knowledge exerted its effects on decisional conflict by increasing preparedness to make a decision about the test and by increases in perceived benefits of having the test. Increasing knowledge, preparedness, and perceived benefits of undergoing the MSI test facilitate informed decision making for this test. Understanding mechanisms underlying health decisions is critical for improving decisional support. Individuals with Lynch syndrome have an elevated lifetime risk of CRC. Risk of Lynch syndrome may be assessed with a tumor-based screening test (MSI testing or immunohistochemical tissue staining). ©2011 AACR.

  1. Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...

  2. Assessing electronic health record systems in emergency departments: Using a decision analytic Bayesian model.

    PubMed

    Ben-Assuli, Ofir; Leshno, Moshe

    2016-09-01

    In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments. © The Author(s) 2015.

  3. Simulating traffic for incident management and ITS investment decisions

    DOT National Transportation Integrated Search

    1998-08-01

    UTPS-type models were designed to adequately support planning activities typical of the 1960s and 1970s. However, these packages were not designed to model intelligent transportation systems (ITS) and support incident management planning. To ov...

  4. Decision Making: New Paradigm for Education.

    ERIC Educational Resources Information Center

    Wales, Charles E.; And Others

    1986-01-01

    Defines education's new paradigm as schooling based on decision making, the critical thinking skills serving it, and the knowledge base supporting it. Outlines a model decision-making process using a hypothetical breakfast problem; a late riser chooses goals, generates ideas, develops an action plan, and implements and evaluates it. (4 references)…

  5. Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors

    USDA-ARS?s Scientific Manuscript database

    Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...

  6. Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making.

    PubMed

    Hawkins, Guy E; Forstmann, Birte U; Wagenmakers, Eric-Jan; Ratcliff, Roger; Brown, Scott D

    2015-02-11

    For nearly 50 years, the dominant account of decision-making holds that noisy information is accumulated until a fixed threshold is crossed. This account has been tested extensively against behavioral and neurophysiological data for decisions about consumer goods, perceptual stimuli, eyewitness testimony, memories, and dozens of other paradigms, with no systematic misfit between model and data. Recently, the standard model has been challenged by alternative accounts that assume that less evidence is required to trigger a decision as time passes. Such "collapsing boundaries" or "urgency signals" have gained popularity in some theoretical accounts of neurophysiology. Nevertheless, evidence in favor of these models is mixed, with support coming from only a narrow range of decision paradigms compared with a long history of support from dozens of paradigms for the standard theory. We conducted the first large-scale analysis of data from humans and nonhuman primates across three distinct paradigms using powerful model-selection methods to compare evidence for fixed versus collapsing bounds. Overall, we identified evidence in favor of the standard model with fixed decision boundaries. We further found that evidence for static or dynamic response boundaries may depend on specific paradigms or procedures, such as the extent of task practice. We conclude that the difficulty of selecting between collapsing and fixed bounds models has received insufficient attention in previous research, calling into question some previous results. Copyright © 2015 the authors 0270-6474/15/352476-09$15.00/0.

  7. The Effects of Evidence Bounds on Decision-Making: Theoretical and Empirical Developments

    PubMed Central

    Zhang, Jiaxiang

    2012-01-01

    Converging findings from behavioral, neurophysiological, and neuroimaging studies suggest an integration-to-boundary mechanism governing decision formation and choice selection. This mechanism is supported by sequential sampling models of choice decisions, which can implement statistically optimal decision strategies for selecting between multiple alternative options on the basis of sensory evidence. This review focuses on recent developments in understanding the evidence boundary, an important component of decision-making raised by experimental findings and models. The article starts by reviewing the neurobiology of perceptual decisions and several influential sequential sampling models, in particular the drift-diffusion model, the Ornstein–Uhlenbeck model and the leaky-competing-accumulator model. In the second part, the article examines how the boundary may affect a model’s dynamics and performance and to what extent it may improve a model’s fits to experimental data. In the third part, the article examines recent findings that support the presence and site of boundaries in the brain. The article considers two questions: (1) whether the boundary is a spontaneous property of neural integrators, or is controlled by dedicated neural circuits; (2) if the boundary is variable, what could be the driving factors behind boundary changes? The review brings together studies using different experimental methods in seeking answers to these questions, highlights psychological and physiological factors that may be associated with the boundary and its changes, and further considers the evidence boundary as a generic mechanism to guide complex behavior. PMID:22870070

  8. Simulation-optimization model for production planning in the blood supply chain.

    PubMed

    Osorio, Andres F; Brailsford, Sally C; Smith, Honora K; Forero-Matiz, Sonia P; Camacho-Rodríguez, Bernardo A

    2017-12-01

    Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.

  9. A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis.

    PubMed

    Tervonen, Tommi; van Valkenhoef, Gert; Buskens, Erik; Hillege, Hans L; Postmus, Douwe

    2011-05-30

    Drug benefit-risk (BR) analysis is based on firm clinical evidence regarding various safety and efficacy outcomes. In this paper, we propose a new and more formal approach for constructing a supporting multi-criteria model that fully takes into account the evidence on efficacy and adverse drug reactions. Our approach is based on the stochastic multi-criteria acceptability analysis methodology, which allows us to compute the typical value judgments that support a decision, to quantify decision uncertainty, and to compute a comprehensive BR profile. We construct a multi-criteria model for the therapeutic group of second-generation antidepressants. We assess fluoxetine and venlafaxine together with placebo according to incidence of treatment response and three common adverse drug reactions by using data from a published study. Our model shows that there are clear trade-offs among the treatment alternatives. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Scaling the Pyramid Model across Complex Systems Providing Early Care for Preschoolers: Exploring How Models for Decision Making May Enhance Implementation Science

    ERIC Educational Resources Information Center

    Johnson, LeAnne D.

    2017-01-01

    Bringing effective practices to scale across large systems requires attending to how information and belief systems come together in decisions to adopt, implement, and sustain those practices. Statewide scaling of the Pyramid Model, a framework for positive behavior intervention and support, across different types of early childhood programs…

  11. Modeling Opponents in Adversarial Risk Analysis.

    PubMed

    Rios Insua, David; Banks, David; Rios, Jesus

    2016-04-01

    Adversarial risk analysis has been introduced as a framework to deal with risks derived from intentional actions of adversaries. The analysis supports one of the decisionmakers, who must forecast the actions of the other agents. Typically, this forecast must take account of random consequences resulting from the set of selected actions. The solution requires one to model the behavior of the opponents, which entails strategic thinking. The supported agent may face different kinds of opponents, who may use different rationality paradigms, for example, the opponent may behave randomly, or seek a Nash equilibrium, or perform level-k thinking, or use mirroring, or employ prospect theory, among many other possibilities. We describe the appropriate analysis for these situations, and also show how to model the uncertainty about the rationality paradigm used by the opponent through a Bayesian model averaging approach, enabling a fully decision-theoretic solution. We also show how as we observe an opponent's decision behavior, this approach allows learning about the validity of each of the rationality models used to predict his decision by computing the models' (posterior) probabilities, which can be understood as a measure of their validity. We focus on simultaneous decision making by two agents. © 2015 Society for Risk Analysis.

  12. IBM's Health Analytics and Clinical Decision Support.

    PubMed

    Kohn, M S; Sun, J; Knoop, S; Shabo, A; Carmeli, B; Sow, D; Syed-Mahmood, T; Rapp, W

    2014-08-15

    This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation.

  13. A Review of Consequences of Poverty on Economic Decision-Making: A Hypothesized Model of a Cognitive Mechanism.

    PubMed

    Adamkovič, Matúš; Martončik, Marcel

    2017-01-01

    This review focuses on the issue of poverty affecting economic decision-making. By critically evaluating existing studies, the authors propose a structural model detailing the cognitive mechanism involved in how poverty negatively impacts economic decision-making, and explores evidence supporting the basis for the formation of this model. The suggested mechanism consists of a relationship between poverty and four other factors: (1) cognitive load (e.g., experiencing negative affect and stress); (2) executive functions (e.g., attention, working memory, and self-control); (3) intuition/deliberation in decision-making; and (4) economic decision-making (e.g., time-discounting and risk preference), with a final addition of financial literacy as a covariate. This paper focuses on shortfalls in published research, and delves further into the proposed model.

  14. Processing Technology Selection for Municipal Sewage Treatment Based on a Multi-Objective Decision Model under Uncertainty.

    PubMed

    Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning

    2018-03-05

    This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.

  15. Description and status update on GELLO: a proposed standardized object-oriented expression language for clinical decision support.

    PubMed

    Sordo, Margarita; Boxwala, Aziz A; Ogunyemi, Omolola; Greenes, Robert A

    2004-01-01

    A major obstacle to sharing computable clinical knowledge is the lack of a common language for specifying expressions and criteria. Such a language could be used to specify decision criteria, formulae, and constraints on data and action. Al-though the Arden Syntax addresses this problem for clinical rules, its generalization to HL7's object-oriented data model is limited. The GELLO Expression language is an object-oriented language used for expressing logical conditions and computations in the GLIF3 (GuideLine Interchange Format, v. 3) guideline modeling language. It has been further developed under the auspices of the HL7 Clinical Decision Support Technical Committee, as a proposed HL7 standard., GELLO is based on the Object Constraint Language (OCL), because it is vendor-independent, object-oriented, and side-effect-free. GELLO expects an object-oriented data model. Although choice of model is arbitrary, standardization is facilitated by ensuring that the data model is compatible with the HL7 Reference Information Model (RIM).

  16. Social Support, Self-Efficacy for Decision Making, and Follow-up Care Use in Long-term Cancer Survivors

    PubMed Central

    Forsythe, Laura P.; Alfano, Catherine M.; Kent, Erin E.; Weaver, Kathryn E.; Bellizzi, Keith; Arora, Neeraj; Aziz, Noreen; Keel, Gretchen; Rowland, Julia H.

    2014-01-01

    Objective Cancer survivors play an important role in coordinating their follow-up care and making treatment-related decisions. Little is known about how modifiable factors like social support are associated with active participation in follow-up care. This study tests associations between social support, cancer-related follow-up care use, and self-efficacy for participation in decision making related to follow-up care (SEDM). We also identified sociodemographic and clinical factors associated with social support among long-term survivors. Methods The FOllow-up Care Use among Survivors (FOCUS) study is a cross-sectional, population based survey of breast, prostate, colon, and gynecologic cancer survivors (n=1522) 4 to 14 years post-diagnosis. Multivariable regression models were used to test associations between perceived social support (tangible and emotional/informational support modeled separately), follow-up care use (past two years), and SEDM, as well as to identify factors associated with perceived support. Results Neither support type was associated with follow-up care use (all p>0.05), although marital status was uniquely, positively associated with follow-up care use (p<0.05). Both tangible support (B for a standard deviation increase (SE)=9.75(3.15), p<0.05) and emotional/informational support (B(SE)=12.61(3.05), p<0.001) were modestly associated with SEDM. Being married, having adequate financial resources, history of recurrence, and better perceived health status were associated with higher perceived tangible and emotional support (all p<0.05). Conclusions While perceived social support may facilitate survivor efficacy for participation in decision making during cancer follow-up care, other factors, including marital satisfaction, appear to influence follow-up care use. Marital status and social support may be important factors to consider in survivorship care planning. PMID:24481884

  17. Social support, self-efficacy for decision-making, and follow-up care use in long-term cancer survivors.

    PubMed

    Forsythe, Laura P; Alfano, Catherine M; Kent, Erin E; Weaver, Kathryn E; Bellizzi, Keith; Arora, Neeraj; Aziz, Noreen; Keel, Gretchen; Rowland, Julia H

    2014-07-01

    Cancer survivors play an important role in coordinating their follow-up care and making treatment-related decisions. Little is known about how modifiable factors such as social support are associated with active participation in follow-up care. This study tests associations between social support, cancer-related follow-up care use, and self-efficacy for participation in decision-making related to follow-up care (SEDM). We also identified sociodemographic and clinical factors associated with social support among long-term survivors. The FOllow-up Care Use among Survivors study is a cross-sectional, population-based survey of breast, prostate, colon, and gynecologic cancer survivors (n=1522) 4-14 years post-diagnosis. Multivariable regression models were used to test associations between perceived social support (tangible and emotional/informational support modeled separately), follow-up care use (past 2 years), and SEDM, as well as to identify factors associated with perceived support. Neither support type was associated with follow-up care use (all p>0.05), although marital status was uniquely, positively associated with follow-up care use (p<0.05). Both tangible support (B for a standard deviation increase (SE)=9.75(3.15), p<0.05) and emotional/informational support (B(SE)=12.61(3.05), p<0.001) were modestly associated with SEDM. Being married, having adequate financial resources, history of recurrence, and better perceived health status were associated with higher perceived tangible and emotional support (all p<0.05). While perceived social support may facilitate survivor efficacy for participation in decision-making during cancer follow-up care, other factors, including marital satisfaction, appear to influence follow-up care use. Marital status and social support may be important factors to consider in survivorship care planning. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Model-based choices involve prospective neural activity

    PubMed Central

    Doll, Bradley B.; Duncan, Katherine D.; Simon, Dylan A.; Shohamy, Daphna; Daw, Nathaniel D.

    2015-01-01

    Decisions may arise via “model-free” repetition of previously reinforced actions, or by “model-based” evaluation, which is widely thought to follow from prospective anticipation of action consequences using a learned map or model. While choices and neural correlates of decision variables sometimes reflect knowledge of their consequences, it remains unclear whether this actually arises from prospective evaluation. Using functional MRI and a sequential reward-learning task in which paths contained decodable object categories, we found that humans’ model-based choices were associated with neural signatures of future paths observed at decision time, suggesting a prospective mechanism for choice. Prospection also covaried with the degree of model-based influences on neural correlates of decision variables, and was inversely related to prediction error signals thought to underlie model-free learning. These results dissociate separate mechanisms underlying model-based and model-free evaluation and support the hypothesis that model-based influences on choices and neural decision variables result from prospection. PMID:25799041

  19. Why older adults make more immediate treatment decisions about cancer than younger adults.

    PubMed

    Meyer, Bonnie J F; Talbot, Andrew P; Ranalli, Carlee

    2007-09-01

    Literature relevant to medical decision making was reviewed, and a model was outlined for testing. Two studies examined whether older adults make more immediate decisions than younger adults about treatments for prostate or breast cancer in authentic scenarios. Findings clearly showed that older adults were more likely to make immediate decisions than younger adults. The research is important because it not only demonstrates the consistency of this age-related effect across disease domains, gender, ethnic groups, and prevalent education levels but begins to investigate a model to explain the effect. Major reasons for the effect focus on treatment knowledge, interest and engagement, and cognitive resources. Treatment knowledge, general cancer knowledge, interest, and cognitive resources relate to different ways of processing treatment information and preferences for immediate versus delayed decision making. Adults with high knowledge of treatments on a reliable test tended to make immediate treatment decisions, which supports the knowledge explanation. Adults with more cognitive resources and more interest tended to delay their treatment decisions. Little support was found for a cohort explanation for the relationship between age and preference for immediate medical decision making. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  20. The moderating role of decision authority and coworker- and supervisor support on the impact of job demands in nursing homes: a cross-sectional study.

    PubMed

    Willemse, Bernadette M; de Jonge, Jan; Smit, Dieneke; Depla, Marja F I A; Pot, Anne Margriet

    2012-07-01

    Healthcare workers in nursing homes are faced with high job demands that can have a detrimental impact on job-related outcomes, such as job satisfaction. Job resources may have a buffering role on this relationship. The Demand-Control-Support (DCS) Model offers a theoretical framework to study how specific job resources can buffer the adverse effects of high demands, and can even activate positive consequences of high demands. The present study tests the moderating (i.e. buffering and activating) effects of decision authority and coworker- and supervisor support that are assumed by the hypotheses of the DCS Model. A national cross-sectional survey was conducted with an anonymous questionnaire. One hundred and thirty six living arrangements that provide nursing home care for people with dementia in the Netherlands. Fifteen healthcare workers per living arrangement. In total, 1147 people filled out the questionnaires (59% response rate). Hierarchical multilevel regression analyses were conducted to test the assumption that the effect of job demands on the dependent variables is buffered or activated the most when both decision authority and social support are high. This moderation is statistically represented by three-way interactions (i.e. demands×authority×support), while lower-order effects are taken into account (i.e. two-way interactions). The hypotheses are supported when three-way interaction effects are found in the expected direction. The dependent variables studied are job satisfaction, emotional exhaustion, and personal accomplishment. The proposed buffering and activation hypotheses of the DCS Model were not supported in our study. Three-way interaction effects were found for emotional exhaustion and personal accomplishment, though not in the expected direction. In addition, two-way interaction effects were found for job satisfaction and emotional exhaustion. Decision authority was found to buffer the adverse effect of job demands and to activate healthcare staff. Supervisor support was found to buffer the adverse effect of job demands on emotional exhaustion in situations with low decision authority. Finally, coworker support was found to have an adverse effect on personal accomplishment in high strain situations. Findings reveal that decision authority in particular makes healthcare workers in nursing homes less vulnerable to adverse effects of high job demands, and promotes positive consequences of work. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  2. Decision Support Model for Mosque Renovation and Rehabilitation (Case Study: Ten Mosques in Jakarta Barat, Indonesia)

    NASA Astrophysics Data System (ADS)

    Utama, D. N.; Triana, Y. S.; Iqbal, M. M.; Iksal, M.; Fikri, I.; Dharmawan, T.

    2018-03-01

    Mosque, for Muslim, is not only a place for daily worshipping, however as a center of culture as well. It is an important and valuable building to be well managed. For a responsible department or institution (such as Religion or Plan Department in Indonesia), to practically manage a lot of mosques is not simple task to handle. The challenge is in relation to data number and characteristic problems tackled. Specifically for renovating and rehabilitating the damaged mosques, a decision to determine the first damaged mosque priority to be renovated and rehabilitated is problematic. Through two types of optimization method, simulated-annealing and hill-climbing, a decision support model for mosque renovation and rehabilitation was systematically constructed. The method fuzzy-logic was also operated to establish the priority of eleven selected parameters. The constructed model is able to simulate an efficiency comparison between two optimization methods used and suggest the most objective decision coming from 196 generated alternatives.

  3. Patterns of out-of-home placement decision-making in child welfare.

    PubMed

    Chor, Ka Ho Brian; McClelland, Gary M; Weiner, Dana A; Jordan, Neil; Lyons, John S

    2013-10-01

    Out-of-home placement decision-making in child welfare is founded on the best interest of the child in the least restrictive setting. After a child is removed from home, however, little is known about the mechanism of placement decision-making. This study aims to systematically examine the patterns of out-of-home placement decisions made in a state's child welfare system by comparing two models of placement decision-making: a multidisciplinary team decision-making model and a clinically based decision support algorithm. Based on records of 7816 placement decisions representing 6096 children over a 4-year period, hierarchical log-linear modeling characterized concordance or agreement, and discordance or disagreement when comparing the two models and accounting for age-appropriate placement options. Children aged below 16 had an overall concordance rate of 55.7%, most apparent in the least restrictive (20.4%) and the most restrictive placement (18.4%). Older youth showed greater discordant distributions (62.9%). Log-linear analysis confirmed the overall robustness of concordance (odd ratios [ORs] range: 2.9-442.0), though discordance was most evident from small deviations from the decision support algorithm, such as one-level under-placement in group home (OR=5.3) and one-level over-placement in residential treatment center (OR=4.8). Concordance should be further explored using child-level clinical and placement stability outcomes. Discordance might be explained by dynamic factors such as availability of placements, caregiver preferences, or policy changes and could be justified by positive child-level outcomes. Empirical placement decision-making is critical to a child's journey in child welfare and should be continuously improved to effect positive child welfare outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. How Socio-Emotional Support Affects Post-Compulsory Education Decisions in Rural China

    ERIC Educational Resources Information Center

    Yao, Haogen

    2017-01-01

    This study develops a sequential mixed model of Delphi-Propensity Score Matching to discuss how an NGO's socio-emotional support affects the decisions of dropout, work, and two types of upper secondary schooling in rural China. Data were collected from 6,298 students in 2012 after a subgroup of them were treated. The analysis shows that…

  5. Integrating forest stand projections with wildlife occupancy models to develop a decision support tool

    Treesearch

    Michelle F. Tacconelli; Edward F. Loewenstein

    2012-01-01

    Natural resource managers must often balance multiple objectives on a single property. When these objectives are seemingly conflicting, the manager’s job can be extremely difficult and complex. This paper presents a decision support tool, designed to aid land managers in optimizing wildlife habitat needs while accomplishing additional objectives such as ecosystem...

  6. A method for integrating multiple components in a decision support system

    Treesearch

    Donald Nute; Walter D. Potter; Zhiyuan Cheng; Mayukh Dass; Astrid Glende; Frederick Maierv; Cy Routh; Hajime Uchiyama; Jin Wang; Sarah Witzig; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher

    2005-01-01

    We present a flexible, extensible method for integrating multiple tools into a single large decision support system (DSS) using a forest ecosystem management DSS (NED-2) as an example. In our approach, a rich ontology for the target domain is developed and implemented in the internal data model for the DSS. Semi-autonomous agents control external components and...

  7. Modeling uncertainty in requirements engineering decision support

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  8. A proposal for a computer-based framework of support for public health in the management of biological incidents: the Czech Republic experience.

    PubMed

    Bures, Vladimír; Otcenásková, Tereza; Cech, Pavel; Antos, Karel

    2012-11-01

    Biological incidents jeopardising public health require decision-making that consists of one dominant feature: complexity. Therefore, public health decision-makers necessitate appropriate support. Based on the analogy with business intelligence (BI) principles, the contextual analysis of the environment and available data resources, and conceptual modelling within systems and knowledge engineering, this paper proposes a general framework for computer-based decision support in the case of a biological incident. At the outset, the analysis of potential inputs to the framework is conducted and several resources such as demographic information, strategic documents, environmental characteristics, agent descriptors and surveillance systems are considered. Consequently, three prototypes were developed, tested and evaluated by a group of experts. Their selection was based on the overall framework scheme. Subsequently, an ontology prototype linked with an inference engine, multi-agent-based model focusing on the simulation of an environment, and expert-system prototypes were created. All prototypes proved to be utilisable support tools for decision-making in the field of public health. Nevertheless, the research revealed further issues and challenges that might be investigated by both public health focused researchers and practitioners.

  9. Education and parental involvement in decision-making about newborn screening: understanding goals to clarify content.

    PubMed

    Potter, Beth K; Etchegary, Holly; Nicholls, Stuart G; Wilson, Brenda J; Craigie, Samantha M; Araia, Makda H

    2015-06-01

    A challenge in designing effective education for parents about newborn screening (NBS) has been uncertainty about appropriate content. Arguing that the goals of education may be usefully tied to parental decision-making, we sought to: (1) explore how different ways of implementing NBS differ in their approaches to parental engagement in decision-making; (2) map the potential goals of education onto these "implementation models"; and (3) consider the content that may be needed to support these goals. The resulting conceptual framework supports the availability of comprehensive information about NBS for parents, irrespective of the model of implementation. This is largely because we argue that meeting parental expectations and preferences for communication is an important goal regardless of whether or notparents are actively involved in making a decision. Our analysis supports a flexible approach, in which some educational messages are emphasized as important for all parents to understand while others are made available depending on parents' preferences. We have begun to define the content of NBS education for parents needed to support specific goals. Further research and discussion is important to determine the most appropriate strategies for delivering the tailored approach to education that emerged from our analysis.

  10. Invasive Species Forecasting System: A Decision Support Tool for the U.S. Geological Survey: FY 2005 Benchmarking Report v.1.6

    NASA Technical Reports Server (NTRS)

    Stohlgren, Tom; Schnase, John; Morisette, Jeffrey; Most, Neal; Sheffner, Ed; Hutchinson, Charles; Drake, Sam; Van Leeuwen, Willem; Kaupp, Verne

    2005-01-01

    The National Institute of Invasive Species Science (NIISS), through collaboration with NASA's Goddard Space Flight Center (GSFC), recently began incorporating NASA observations and predictive modeling tools to fulfill its mission. These enhancements, labeled collectively as the Invasive Species Forecasting System (ISFS), are now in place in the NIISS in their initial state (V1.0). The ISFS is the primary decision support tool of the NIISS for the management and control of invasive species on Department of Interior and adjacent lands. The ISFS is the backbone for a unique information services line-of-business for the NIISS, and it provides the means for delivering advanced decision support capabilities to a wide range of management applications. This report describes the operational characteristics of the ISFS, a decision support tool of the United States Geological Survey (USGS). Recent enhancements to the performance of the ISFS, attained through the integration of observations, models, and systems engineering from the NASA are benchmarked; i.e., described quantitatively and evaluated in relation to the performance of the USGS system before incorporation of the NASA enhancements. This report benchmarks Version 1.0 of the ISFS.

  11. FlooDSuM - a decision support methodology for assisting local authorities in flood situations

    NASA Astrophysics Data System (ADS)

    Schwanbeck, Jan; Weingartner, Rolf

    2014-05-01

    Decision making in flood situations is a difficult task, especially in small to medium-sized mountain catchments (30 - 500 km2) which are usually characterized by complex topography, high drainage density and quick runoff response to rainfall events. Operating hydrological models driven by numerical weather prediction systems, which have a lead-time of several hours up to few even days, would be beneficial in this case as time for prevention could be gained. However, the spatial and quantitative accuracy of such meteorological forecasts usually decrease with increasing lead-time. In addition, the sensitivity of rainfall-runoff models to inaccuracies in estimations of areal rainfall increases with decreasing catchment size. Accordingly, decisions on flood alerts should ideally be based on areal rainfall from high resolution and short-term numerical weather prediction, nowcasts or even real-time measurements, which is transformed into runoff by a hydrological model. In order to benefit from the best possible rainfall data while retaining enough time for alerting and for prevention, the hydrological model should be fast and easily applicable by decision makers within local authorities themselves. The proposed decision support methodology FlooDSuM (Flood Decision Support Methodology) aims to meet those requirements. Applying FlooDSuM, a few successive binary decisions of increasing complexity have to be processed following a flow-chart-like structure. Prepared data and straightforwardly applicable tools are provided for each of these decisions. Maps showing the current flood disposition are used for the first step. While danger of flooding cannot be excluded more and more complex and time consuming methods will be applied. For the final decision, a set of scatter-plots relating areal precipitation to peak flow is provided. These plots take also further decisive parameters into account such as storm duration, distribution of rainfall intensity in time as well as the catchment's antecedent moisture conditions. The proposed approach is currently tested in two catchments in the Swiss Pre-Alps and Alps. We will show the general setup and selected results. The findings of those case studies will lead to further improvements of the proposed approach.

  12. Multidisciplinary Modelling of Symptoms and Signs with Archetypes and SNOMED-CT for Clinical Decision Support.

    PubMed

    Marco-Ruiz, Luis; Maldonado, J Alberto; Karlsen, Randi; Bellika, Johan G

    2015-01-01

    Clinical Decision Support Systems (CDSS) help to improve health care and reduce costs. However, the lack of knowledge management and modelling hampers their maintenance and reuse. Current EHR standards and terminologies can allow the semantic representation of the data and knowledge of CDSS systems boosting their interoperability, reuse and maintenance. This paper presents the modelling process of respiratory conditions' symptoms and signs by a multidisciplinary team of clinicians and information architects with the help of openEHR, SNOMED and clinical information modelling tools for a CDSS. The information model of the CDSS was defined by means of an archetype and the knowledge model was implemented by means of an SNOMED-CT based ontology.

  13. SAMPLING PROTOCOLS TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...

  14. Cogenerating a Competency-based HRM Degree: A Model and Some Lessons from Experience.

    ERIC Educational Resources Information Center

    Wooten, Kevin C.; Elden, Max

    2001-01-01

    A competency-based degree program in human resource management was co-generated by six groups of stakeholders who synthesized competency models using group decision support software. The program focuses on core human resource processes, general business management, strategic decision making and problem solving, change management, and personal…

  15. An Integrated Decision Support System for Planning and Measuring Institutional Efficiency. AIR 1992 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Minnaar, Phil C.

    This paper presents a model for obtaining and organizing managment information for decision making in university planning, developed by the Bureau for Management Information of the University of South Africa. The model identifies the fundamental entities of the university as environment, finance, physical facilities, assets, personnel, and…

  16. RDT&E Laboratory Capacity Utilization and Productivity Measurement Methods for Financial Decision-Making within DON.

    DTIC Science & Technology

    1998-06-01

    process or plant can complete using a 24-hour, seven-day operation with zero waste , i.e., the maximum output capability, allowing no adjustment for...models: • Resource Effectiveness Model: > Analyzes economic impact of capacity management decisions > Assumes that " zero waste " is the goal > Supports

  17. Automatic Generation of Customized, Model Based Information Systems for Operations Management.

    DTIC Science & Technology

    The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)

  18. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies

    NASA Astrophysics Data System (ADS)

    Chalabi, Zaid; Milojevic, Ai; Doherty, Ruth M.; Stevenson, David S.; MacKenzie, Ian A.; Milner, James; Vieno, Massimo; Williams, Martin; Wilkinson, Paul

    2017-10-01

    A decision support system for evaluating UK air quality policies is presented. It combines the output from a chemistry transport model, a health impact model and other impact models within a multi-criteria decision analysis (MCDA) framework. As a proof-of-concept, the MCDA framework is used to evaluate and compare idealized emission reduction policies in four sectors (combustion in energy and transformation industries, non-industrial combustion plants, road transport and agriculture) and across six outcomes or criteria (mortality, health inequality, greenhouse gas emissions, biodiversity, crop yield and air quality legal compliance). To illustrate a realistic use of the MCDA framework, the relative importance of the criteria were elicited from a number of stakeholders acting as proxy policy makers. In the prototype decision problem, we show that reducing emissions from industrial combustion (followed very closely by road transport and agriculture) is more advantageous than equivalent reductions from the other sectors when all the criteria are taken into account. Extensions of the MCDA framework to support policy makers in practice are discussed.

  19. Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making.

    PubMed

    Capalbo, Susan M; Antle, John M; Seavert, Clark

    2017-07-01

    Research on next generation agricultural systems models shows that the most important current limitation is data, both for on-farm decision support and for research investment and policy decision making. One of the greatest data challenges is to obtain reliable data on farm management decision making, both for current conditions and under scenarios of changed bio-physical and socio-economic conditions. This paper presents a framework for the use of farm-level and landscape-scale models and data to provide analysis that could be used in NextGen knowledge products, such as mobile applications or personal computer data analysis and visualization software. We describe two analytical tools - AgBiz Logic and TOA-MD - that demonstrate the current capability of farmlevel and landscape-scale models. The use of these tools is explored with a case study of an oilseed crop, Camelina sativa , which could be used to produce jet aviation fuel. We conclude with a discussion of innovations needed to facilitate the use of farm and policy-level models to generate data and analysis for improved knowledge products.

  20. An Overview of R in Health Decision Sciences.

    PubMed

    Jalal, Hawre; Pechlivanoglou, Petros; Krijkamp, Eline; Alarid-Escudero, Fernando; Enns, Eva; Hunink, M G Myriam

    2017-10-01

    As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.

  1. A new security model for collaborative environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah; Lorch, Markus; Thompson, Mary

    Prevalent authentication and authorization models for distributed systems provide for the protection of computer systems and resources from unauthorized use. The rules and policies that drive the access decisions in such systems are typically configured up front and require trust establishment before the systems can be used. This approach does not work well for computer software that moderates human-to-human interaction. This work proposes a new model for trust establishment and management in computer systems supporting collaborative work. The model supports the dynamic addition of new users to a collaboration with very little initial trust placed into their identity and supportsmore » the incremental building of trust relationships through endorsements from established collaborators. It also recognizes the strength of a users authentication when making trust decisions. By mimicking the way humans build trust naturally the model can support a wide variety of usage scenarios. Its particular strength lies in the support for ad-hoc and dynamic collaborations and the ubiquitous access to a Computer Supported Collaboration Workspace (CSCW) system from locations with varying levels of trust and security.« less

  2. Development of a model-based flood emergency management system in Yujiang River Basin, South China

    NASA Astrophysics Data System (ADS)

    Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu

    2014-06-01

    Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.

  3. Distributed Cognition in Cancer Treatment Decision Making: An Application of the DECIDE Decision-Making Styles Typology.

    PubMed

    Krieger, Janice L; Krok-Schoen, Jessica L; Dailey, Phokeng M; Palmer-Wackerly, Angela L; Schoenberg, Nancy; Paskett, Electra D; Dignan, Mark

    2017-07-01

    Distributed cognition occurs when cognitive and affective schemas are shared between two or more people during interpersonal discussion. Although extant research focuses on distributed cognition in decision making between health care providers and patients, studies show that caregivers are also highly influential in the treatment decisions of patients. However, there are little empirical data describing how and when families exert influence. The current article addresses this gap by examining decisional support in the context of cancer randomized clinical trial (RCT) decision making. Data are drawn from in-depth interviews with rural, Appalachian cancer patients ( N = 46). Analysis of transcript data yielded empirical support for four distinct models of health decision making. The implications of these findings for developing interventions to improve the quality of treatment decision making and overall well-being are discussed.

  4. The use of predictive models to optimize risk of decisions.

    PubMed

    Baranyi, József; Buss da Silva, Nathália

    2017-01-02

    The purpose of this paper is to set up a mathematical framework that risk assessors and regulators could use to quantify the "riskiness" of a particular recommendation (choice/decision). The mathematical theory introduced here can be used for decision support systems. We point out that efficient use of predictive models in decision making for food microbiology needs to consider three major points: (1) the uncertainty and variability of the used information based on which the decision is to be made; (2) the validity of the predictive models aiding the assessor; and (3) the cost generated by the difference between the a-priory choice and the a-posteriori outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Customer Decision Making in Web Services with an Integrated P6 Model

    NASA Astrophysics Data System (ADS)

    Sun, Zhaohao; Sun, Junqing; Meredith, Grant

    Customer decision making (CDM) is an indispensable factor for web services. This article examines CDM in web services with a novel P6 model, which consists of the 6 Ps: privacy, perception, propensity, preference, personalization and promised experience. This model integrates the existing 6 P elements of marketing mix as the system environment of CDM in web services. The new integrated P6 model deals with the inner world of the customer and incorporates what the customer think during the DM process. The proposed approach will facilitate the research and development of web services and decision support systems.

  6. Development of an integrated medical supply information system

    NASA Astrophysics Data System (ADS)

    Xu, Eric; Wermus, Marek; Blythe Bauman, Deborah

    2011-08-01

    The integrated medical supply inventory control system introduced in this study is a hybrid system that is shaped by the nature of medical supply, usage and storage capacity limitations of health care facilities. The system links demand, service provided at the clinic, health care service provider's information, inventory storage data and decision support tools into an integrated information system. ABC analysis method, economic order quantity model, two-bin method and safety stock concept are applied as decision support models to tackle inventory management issues at health care facilities. In the decision support module, each medical item and storage location has been scrutinised to determine the best-fit inventory control policy. The pilot case study demonstrates that the integrated medical supply information system holds several advantages for inventory managers, since it entails benefits of deploying enterprise information systems to manage medical supply and better patient services.

  7. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: methods of a decision-maker-researcher partnership systematic review.

    PubMed

    Haynes, R Brian; Wilczynski, Nancy L

    2010-02-05

    Computerized clinical decision support systems are information technology-based systems designed to improve clinical decision-making. As with any healthcare intervention with claims to improve process of care or patient outcomes, decision support systems should be rigorously evaluated before widespread dissemination into clinical practice. Engaging healthcare providers and managers in the review process may facilitate knowledge translation and uptake. The objective of this research was to form a partnership of healthcare providers, managers, and researchers to review randomized controlled trials assessing the effects of computerized decision support for six clinical application areas: primary preventive care, therapeutic drug monitoring and dosing, drug prescribing, chronic disease management, diagnostic test ordering and interpretation, and acute care management; and to identify study characteristics that predict benefit. The review was undertaken by the Health Information Research Unit, McMaster University, in partnership with Hamilton Health Sciences, the Hamilton, Niagara, Haldimand, and Brant Local Health Integration Network, and pertinent healthcare service teams. Following agreement on information needs and interests with decision-makers, our earlier systematic review was updated by searching Medline, EMBASE, EBM Review databases, and Inspec, and reviewing reference lists through 6 January 2010. Data extraction items were expanded according to input from decision-makers. Authors of primary studies were contacted to confirm data and to provide additional information. Eligible trials were organized according to clinical area of application. We included randomized controlled trials that evaluated the effect on practitioner performance or patient outcomes of patient care provided with a computerized clinical decision support system compared with patient care without such a system. Data will be summarized using descriptive summary measures, including proportions for categorical variables and means for continuous variables. Univariable and multivariable logistic regression models will be used to investigate associations between outcomes of interest and study specific covariates. When reporting results from individual studies, we will cite the measures of association and p-values reported in the studies. If appropriate for groups of studies with similar features, we will conduct meta-analyses. A decision-maker-researcher partnership provides a model for systematic reviews that may foster knowledge translation and uptake.

  8. Computerised decision support in physical activity interventions: A systematic literature review.

    PubMed

    Triantafyllidis, Andreas; Filos, Dimitris; Claes, Jomme; Buys, Roselien; Cornelissen, Véronique; Kouidi, Evangelia; Chouvarda, Ioanna; Maglaveras, Nicos

    2018-03-01

    The benefits of regular physical activity for health and quality of life are unarguable. New information, sensing and communication technologies have the potential to play a critical role in computerised decision support and coaching for physical activity. We provide a literature review of recent research in the development of physical activity interventions employing computerised decision support, their feasibility and effectiveness in healthy and diseased individuals, and map out challenges and future research directions. We searched the bibliographic databases of PubMed and Scopus to identify physical activity interventions with computerised decision support utilised in a real-life context. Studies were synthesized according to the target user group, the technological format (e.g., web-based or mobile-based) and decision-support features of the intervention, the theoretical model for decision support in health behaviour change, the study design, the primary outcome, the number of participants and their engagement with the intervention, as well as the total follow-up duration. From the 24 studies included in the review, the highest percentage (n = 7, 29%) targeted sedentary healthy individuals followed by patients with prediabetes/diabetes (n = 4, 17%) or overweight individuals (n = 4, 17%). Most randomized controlled trials reported significantly positive effects of the interventions, i.e., increase in physical activity (n = 7, 100%) for 7 studies assessing physical activity measures, weight loss (n = 3, 75%) for 4 studies assessing diet, and reductions in glycosylated hemoglobin (n = 2, 66%) for 3 studies assessing glycose concentration. Accelerometers/pedometers were used in almost half of the studies (n = 11, 46%). Most adopted decision support features included personalised goal-setting (n = 16, 67%) and motivational feedback sent to the users (n = 15, 63%). Fewer adopted features were integration with electronic health records (n = 3, 13%) and alerts sent to caregivers (n = 4, 17%). Theoretical models of decision support in health behaviour to drive the development of the intervention were not reported in most studies (n = 14, 58%). Interventions employing computerised decision support have the potential to promote physical activity and result in health benefits for both diseased and healthy individuals, and help healthcare providers to monitor patients more closely. Objectively measured activity through sensing devices, integration with clinical systems used by healthcare providers and theoretical frameworks for health behaviour change need to be employed in a larger scale in future studies in order to realise the development of evidence-based computerised systems for physical activity monitoring and coaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  10. Thinking Together: Modeling Clinical Decision-Support as a Sociotechnical System

    PubMed Central

    Hussain, Mustafa I.; Reynolds, Tera L.; Mousavi, Fatemeh E.; Chen, Yunan; Zheng, Kai

    2017-01-01

    Computerized clinical decision-support systems are members of larger sociotechnical systems, composed of human and automated actors, who send, receive, and manipulate artifacts. Sociotechnical consideration is rare in the literature. This makes it difficult to comparatively evaluate the success of CDS implementations, and it may also indicate that sociotechnical context receives inadequate consideration in practice. To facilitate sociotechnical consideration, we developed the Thinking Together model, a flexible diagrammatical means of representing CDS systems as sociotechnical systems. To develop this model, we examined the literature with the lens of Distributed Cognition (DCog) theory. We then present two case studies of vastly different CDSSs, one almost fully automated and the other with minimal automation, to illustrate the flexibility of the Thinking Together model. We show that this model, informed by DCog and the CDS literature, are capable of supporting both research, by enabling comparative evaluation, and practice, by facilitating explicit sociotechnical planning and communication. PMID:29854164

  11. Discriminating evidence accumulation from urgency signals in speeded decision making.

    PubMed

    Hawkins, Guy E; Wagenmakers, Eric-Jan; Ratcliff, Roger; Brown, Scott D

    2015-07-01

    The dominant theoretical paradigm in explaining decision making throughout both neuroscience and cognitive science is known as “evidence accumulation”--The core idea being that decisions are reached by a gradual accumulation of noisy information. Although this notion has been supported by hundreds of experiments over decades of study, a recent theory proposes that the fundamental assumption of evidence accumulation requires revision. The "urgency gating" model assumes decisions are made without accumulating evidence, using only moment-by-moment information. Under this assumption, the successful history of evidence accumulation models is explained by asserting that the two models are mathematically identical in standard experimental procedures. We demonstrate that this proof of equivalence is incorrect, and that the models are not identical, even when both models are augmented with realistic extra assumptions. We also demonstrate that the two models can be perfectly distinguished in realistic simulated experimental designs, and in two real data sets; the evidence accumulation model provided the best account for one data set, and the urgency gating model for the other. A positive outcome is that the opposing modeling approaches can be fruitfully investigated without wholesale change to the standard experimental paradigms. We conclude that future research must establish whether the urgency gating model enjoys the same empirical support in the standard experimental paradigms that evidence accumulation models have gathered over decades of study. Copyright © 2015 the American Physiological Society.

  12. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    PubMed

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A three-talk model for shared decision making: multistage consultation process.

    PubMed

    Elwyn, Glyn; Durand, Marie Anne; Song, Julia; Aarts, Johanna; Barr, Paul J; Berger, Zackary; Cochran, Nan; Frosch, Dominick; Galasiński, Dariusz; Gulbrandsen, Pål; Han, Paul K J; Härter, Martin; Kinnersley, Paul; Lloyd, Amy; Mishra, Manish; Perestelo-Perez, Lilisbeth; Scholl, Isabelle; Tomori, Kounosuke; Trevena, Lyndal; Witteman, Holly O; Van der Weijden, Trudy

    2017-11-06

    Objectives  To revise an existing three-talk model for learning how to achieve shared decision making, and to consult with relevant stakeholders to update and obtain wider engagement. Design  Multistage consultation process. Setting  Key informant group, communities of interest, and survey of clinical specialties. Participants  19 key informants, 153 member responses from multiple communities of interest, and 316 responses to an online survey from medically qualified clinicians from six specialties. Results  After extended consultation over three iterations, we revised the three-talk model by making changes to one talk category, adding the need to elicit patient goals, providing a clear set of tasks for each talk category, and adding suggested scripts to illustrate each step. A new three-talk model of shared decision making is proposed, based on "team talk," "option talk," and "decision talk," to depict a process of collaboration and deliberation. Team talk places emphasis on the need to provide support to patients when they are made aware of choices, and to elicit their goals as a means of guiding decision making processes. Option talk refers to the task of comparing alternatives, using risk communication principles. Decision talk refers to the task of arriving at decisions that reflect the informed preferences of patients, guided by the experience and expertise of health professionals. Conclusions  The revised three-talk model of shared decision making depicts conversational steps, initiated by providing support when introducing options, followed by strategies to compare and discuss trade-offs, before deliberation based on informed preferences. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Fuzzy compromise: An effective way to solve hierarchical design problems

    NASA Technical Reports Server (NTRS)

    Allen, J. K.; Krishnamachari, R. S.; Masetta, J.; Pearce, D.; Rigby, D.; Mistree, F.

    1990-01-01

    In this paper, we present a method for modeling design problems using a compromise decision support problem (DSP) incorporating the principles embodied in fuzzy set theory. Specifically, the fuzzy compromise decision support problem is used to study hierarchical design problems. This approach has the advantage that although the system modeled has an element of uncertainty associated with it, the solution obtained is crisp and precise. The efficacy of incorporating fuzzy sets into the solution process is discussed in the context of results obtained for a portal frame.

  15. A dashboard-based system for supporting diabetes care.

    PubMed

    Dagliati, Arianna; Sacchi, Lucia; Tibollo, Valentina; Cogni, Giulia; Teliti, Marsida; Martinez-Millana, Antonio; Traver, Vicente; Segagni, Daniele; Posada, Jorge; Ottaviano, Manuel; Fico, Giuseppe; Arredondo, Maria Teresa; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-05-01

    To describe the development, as part of the European Union MOSAIC (Models and Simulation Techniques for Discovering Diabetes Influence Factors) project, of a dashboard-based system for the management of type 2 diabetes and assess its impact on clinical practice. The MOSAIC dashboard system is based on predictive modeling, longitudinal data analytics, and the reuse and integration of data from hospitals and public health repositories. Data are merged into an i2b2 data warehouse, which feeds a set of advanced temporal analytic models, including temporal abstractions, care-flow mining, drug exposure pattern detection, and risk-prediction models for type 2 diabetes complications. The dashboard has 2 components, designed for (1) clinical decision support during follow-up consultations and (2) outcome assessment on populations of interest. To assess the impact of the clinical decision support component, a pre-post study was conducted considering visit duration, number of screening examinations, and lifestyle interventions. A pilot sample of 700 Italian patients was investigated. Judgments on the outcome assessment component were obtained via focus groups with clinicians and health care managers. The use of the decision support component in clinical activities produced a reduction in visit duration (P ≪ .01) and an increase in the number of screening exams for complications (P < .01). We also observed a relevant, although nonstatistically significant, increase in the proportion of patients receiving lifestyle interventions (from 69% to 77%). Regarding the outcome assessment component, focus groups highlighted the system's capability of identifying and understanding the characteristics of patient subgroups treated at the center. Our study demonstrates that decision support tools based on the integration of multiple-source data and visual and predictive analytics do improve the management of a chronic disease such as type 2 diabetes by enacting a successful implementation of the learning health care system cycle.

  16. Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej

    2010-11-01

    The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.

  17. Modelling and Decision Support of Clinical Pathways

    NASA Astrophysics Data System (ADS)

    Gabriel, Roland; Lux, Thomas

    The German health care market is under a rapid rate of change, forcing especially hospitals to provide high-quality services at low costs. Appropriate measures for more effective and efficient service provision are process orientation and decision support by information technology of clinical pathway of a patient. The essential requirements are adequate modelling of clinical pathways as well as usage of adequate systems, which are capable of assisting the complete path of a patient within a hospital, and preferably also outside of it, in a digital way. To fulfil these specifications the authors present a suitable concept, which meets the challenges of well-structured clinical pathways as well as rather poorly structured diagnostic and therapeutic decisions, by interplay of process-oriented and knowledge-based hospital information systems.

  18. EPA MODELING TOOLS FOR CAPTURE ZONE DELINEATION

    EPA Science Inventory

    The EPA Office of Research and Development supports a step-wise modeling approach for design of wellhead protection areas for water supply wells. A web-based WellHEDSS (wellhead decision support system) is under development for determining when simple capture zones (e.g., centri...

  19. A pattern-based analysis of clinical computer-interpretable guideline modeling languages.

    PubMed

    Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor

    2007-01-01

    Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.

  20. A Review of Consequences of Poverty on Economic Decision-Making: A Hypothesized Model of a Cognitive Mechanism

    PubMed Central

    Adamkovič, Matúš; Martončik, Marcel

    2017-01-01

    This review focuses on the issue of poverty affecting economic decision-making. By critically evaluating existing studies, the authors propose a structural model detailing the cognitive mechanism involved in how poverty negatively impacts economic decision-making, and explores evidence supporting the basis for the formation of this model. The suggested mechanism consists of a relationship between poverty and four other factors: (1) cognitive load (e.g., experiencing negative affect and stress); (2) executive functions (e.g., attention, working memory, and self-control); (3) intuition/deliberation in decision-making; and (4) economic decision-making (e.g., time-discounting and risk preference), with a final addition of financial literacy as a covariate. This paper focuses on shortfalls in published research, and delves further into the proposed model. PMID:29075221

  1. Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations.

    PubMed

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.

  2. Buffelgrass-Integrated modeling of an invasive plant

    USGS Publications Warehouse

    Holcombe, Tracy R.

    2011-01-01

    Buffelgrass (Pennisetum ciliare) poses a problem in the deserts of the United States, growing in dense stands and introducing a wildfire risk in an ecosystem not adapted to fire. The Invasive Species Science Branch of the Fort Collins Science Center has worked with many partners to develop a decision support model and a data management system to address the problem. The decision support model evaluates potential strategies for resource use and allocation. The data management system is a portal where users can submit, view, and download buffelgrass data. These tools provide a case study showcasing how the FORT is working to address the urgent issue of invasive species in the United States.

  3. Use of decision support systems as a drought management tool

    USGS Publications Warehouse

    Frevert, D.; Lins, H.; ,

    2005-01-01

    Droughts present a unique challenge to water managers throughout the world and the current drought in the western United States is taxing facilities to the limit. Coping with this severe drought requires state of the art decision support systems including efficient and accurate hydrologic process models, detailed hydrologic data bases and effective river systems management modeling frameworks. This paper will outline a system of models developed by the Bureau of Reclamation, the US Geological Survey, the University of Colorado and a number of other governmental and university partners. The application of the technology to drought management in several key western river basins will be discussed.

  4. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  5. Technology Infusion Challenges from a Decision Support Perspective

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2009-01-01

    In a restricted science budget environment and increasingly numerous required technology developments, the technology investment decisions within NASA are objectively more and more difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Under these conditions it is rationally desirable to build an investment portfolio, which has the highest possible technology infusion rate. Arguably the path to infusion is subject to many influencing factors, but here only the challenges associated with the very initial stages are addressed: defining the needs and the subsequent investment decision-support process. It is conceivable that decision consistency and possibly its quality suffer when the decision-making process has limited or no traceability. This paper presents a structured decision-support framework aiming to provide traceable, auditable, infusion- driven recommendations towards a selection process in which these recommendations are used as reference points in further discussions among stakeholders. In this framework addressing well-defined requirements, different measures of success can be defined based on traceability to specific selection criteria. As a direct result, even by using simplified decision models the likelihood of infusion can be probed and consequently improved.

  6. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    NASA Astrophysics Data System (ADS)

    Booth, N. L.; Everman, E.; Kuo, I.; Sprague, L.; Murphy, L.

    2011-12-01

    A new web-based decision support system has been developed as part of the U.S. Geological Survey (USGS) National Water Quality Assessment Program's (NAWQA) effort to provide ready access to Spatially Referenced Regressions On Watershed attributes (SPARROW) results of stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via an intuitive graphical user interface with a map-based display. The SPARROW Decision Support System (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions, distribution of nutrient sources, nutrient delivery to downstream waterbodies, and simulations of altered nutrient inputs including atmospheric and agricultural sources. The DSS offers other features for analysis including various background map layers, model output exports, and the ability to save and share prediction scenarios. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. The underlying modeling framework and server infrastructure illustrate innovations in the information technology and geosciences fields for delivering SPARROW model predictions over the web by performing intensive model computations and map visualizations of the predicted conditions within the stream network.

  7. The Climate-Agriculture-Modeling and Decision Tool (CAMDT) for Climate Risk Management in Agriculture

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Han, E.; Baethgen, W.

    2017-12-01

    Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT

  8. New Decision Support for Landslide and Other Disaster Events

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Keiser, K.; Wu, Y.; Kaulfus, A.; Srinivasan, K.; Anderson, E. R.; McEniry, M.

    2013-12-01

    An Event-Driven Data delivery (ED3) framework has been created that provides reusable services and configurations to support better data preparedness for decision support of disasters and other events by rapidly providing pre-planned access to data, special processing, modeling and other capabilities, all executed in response to criteria-based events. ED3 facilitates decision makers to plan in advance of disasters and other types of events for the data necessary for decisions and response activities. A layer of services provided in the ED3 framework allows systems to support user definition of subscriptions for data plans that will be triggered when events matching specified criteria occur. Pre-planning for data in response to events lessens the burden on decision makers in the aftermath of an event and allows planners to think through the desired processing for specialized data products. Additionally the ED3 framework provides support for listening for event alerts and support for multiple workflow managers that provide data and processing functionality in response to events. Landslides are often costly and, at times, deadly disaster events. Whereas intense and/or sustained rainfall is often the primary trigger for landslides, soil type and slope are also important factors in determining the location and timing of slope failure. Accounting for the substantial spatial variability of these factors is one of the major difficulties when predicting the timing and location of slope failures. A wireless sensor network (WSN), developed by NASA SERVIR and USRA, with peer-to-peer communication capability and low power consumption, is ideal for high spatial in situ monitoring in remote locations. In collaboration with the University of Huntsville at Alabama, WSN equipped with accelerometer, rainfall and soil moisture sensors is being integrated into an end-to-end landslide warning system. The WSN is being tested to ascertain communication capabilities and the density of nodes required depending upon the nature of terrain and land cover. The performance of a water table model, to be utilized in the end-to-end system, is being evaluated by comparing against landslides that occurred during the 6th and 7th of May, 2003 and 20th and 21st of April, 2011. The model provides a deterministic assessment of slope stability by evaluating horizontal and vertical transport of underground water and associated weight bearing capacity. In the proposed end-to-end system, the model will be coupled to the WSN, and the in situ data collected will be used to drive the model. The output from the model could be communicated back to the WSN providing the capability of generating warning of possible events to the ED3 framework to trigger additional data retrieval or the processing of additional models based on decision maker's ED3 preparedness plans. NASA's Applied Science Program has funded a feasibility study of the ED3 technology and as a result the capability is on track be integrated into existing decision support systems, with an initial reference implementation hosted at the Global Hydrology Resource Center, a NASA distributed active archive center (DAAC).

  9. ProVac Global Initiative: a vision shaped by ten years of supporting evidence-based policy decisions.

    PubMed

    Jauregui, Barbara; Janusz, Cara Bess; Clark, Andrew D; Sinha, Anushua; Garcia, Ana Gabriela Felix; Resch, Stephen; Toscano, Cristiana M; Sanderson, Colin; Andrus, Jon Kim

    2015-05-07

    The Pan American Health Organization (PAHO) created the ProVac Initiative in 2004 with the goal of strengthening national technical capacity to make evidence-based decisions on new vaccine introduction, focusing on economic evaluations. In view of the 10th anniversary of the ProVac Initiative, this article describes its progress and reflects on lessons learned to guide the next phase. We quantified the output of the Initiative's capacity-building efforts and critically assess its progress toward achieving the milestones originally proposed in 2004. Additionally, we reviewed how country studies supported by ProVac have directly informed and strengthened the deliberations around new vaccine introduction. Since 2004, ProVac has conducted four regional workshops and supported 24 health economic analyses in 15 Latin American and Caribbean countries. Five Regional Centers of Excellence were funded, resulting in six operational research projects and nine publications. Twenty four decisions on new vaccine introductions were supported with ProVac studies. Enduring products include the TRIVAC and CERVIVAC cost-effectiveness models, the COSTVAC program costing model, methodological guides, workshop training materials and the OLIVES on-line data repository. Ten NITAGs were strengthened through ProVac activities. The evidence accumulated suggests that initiatives with emphasis on sustainable training and direct support for countries to generate evidence themselves, can help accelerate the introduction of the most valuable new vaccines. International and Regional Networks of Collaborators are necessary to provide technical support and tools to national teams conducting analyses. Timeliness, integration, quality and country ownership of the process are four necessary guiding principles for national economic evaluations to have an impact on policymaking. It would be an asset to have a model that offers different levels of complexity to choose from depending on the vaccine being evaluated, the availability of data, and the time frame of the decision. Decision support for new vaccine introduction in low- and middle-income countries is critical to maximizing the efficiency and impact of vaccination programs. Global technical cooperation will be required. In the future, PAHO and WHO have an opportunity to expand the reach of the ProVac philosophy, models, and methods to additional regions and countries requiring real-time support. The ProVac Global Initiative is proposed as an effective mechanism to do so. Copyright © 2015. Published by Elsevier Ltd.

  10. Conceptual and Empirical Approaches to Financial Decision-making by Older Adults: Results from a Financial Decision-making Rating Scale.

    PubMed

    Lichtenberg, Peter A; Ocepek-Welikson, Katja; Ficker, Lisa J; Gross, Evan; Rahman-Filipiak, Analise; Teresi, Jeanne A

    2018-01-01

    The objectives of this study were threefold: (1) to empirically test the conceptual model proposed by the Lichtenberg Financial Decision-making Rating Scale (LFDRS); (2) to examine the psychometric properties of the LFDRS contextual factors in financial decision-making by investigating both the reliability and convergent validity of the subscales and total scale, and (3) extending previous work on the scale through the collection of normative data on financial decision-making. A convenience sample of 200 independent function and community dwelling older adults underwent cognitive and financial management testing and were interviewed using the LFDRS. Confirmatory factor analysis, internal consistency measures, and hierarchical regression were used in a sample of 200 community-dwelling older adults, all of whom were making or had recently made a significant financial decision. Results confirmed the scale's reliability and supported the conceptual model. Convergent validity analyses indicate that as hypothesized, cognition is a significant predictor of risk scores. Financial management scores, however, were not predictive of decision-making risk scores. The psychometric properties of the LFDRS support the scale's use as it was proposed. The LFDRS instructions and scale are provided for clinicians to use in financial capacity assessments.

  11. Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety.

    PubMed

    Seshia, Shashi S; Bryan Young, G; Makhinson, Michael; Smith, Preston A; Stobart, Kent; Croskerry, Pat

    2018-02-01

    Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care-related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive-affective biases plus cascade could advance the understanding of cognitive-affective processes that underlie decisions and organizational cultures across the continuum of care. Thematic analysis, qualitative information from several sources being used to support argumentation. Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive-affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive-affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive-affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error-provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error-provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive-affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. © 2017 The Authors. Journal of Evaluation in Clinical Practice published by John Wiley & Sons, Ltd.

  12. Gating the holes in the Swiss cheese (part I): Expanding professor Reason's model for patient safety

    PubMed Central

    Bryan Young, G.; Makhinson, Michael; Smith, Preston A.; Stobart, Kent; Croskerry, Pat

    2017-01-01

    Abstract Introduction Although patient safety has improved steadily, harm remains a substantial global challenge. Additionally, safety needs to be ensured not only in hospitals but also across the continuum of care. Better understanding of the complex cognitive factors influencing health care–related decisions and organizational cultures could lead to more rational approaches, and thereby to further improvement. Hypothesis A model integrating the concepts underlying Reason's Swiss cheese theory and the cognitive‐affective biases plus cascade could advance the understanding of cognitive‐affective processes that underlie decisions and organizational cultures across the continuum of care. Methods Thematic analysis, qualitative information from several sources being used to support argumentation. Discussion Complex covert cognitive phenomena underlie decisions influencing health care. In the integrated model, the Swiss cheese slices represent dynamic cognitive‐affective (mental) gates: Reason's successive layers of defence. Like firewalls and antivirus programs, cognitive‐affective gates normally allow the passage of rational decisions but block or counter unsounds ones. Gates can be breached (ie, holes created) at one or more levels of organizations, teams, and individuals, by (1) any element of cognitive‐affective biases plus (conflicts of interest and cognitive biases being the best studied) and (2) other potential error‐provoking factors. Conversely, flawed decisions can be blocked and consequences minimized; for example, by addressing cognitive biases plus and error‐provoking factors, and being constantly mindful. Informed shared decision making is a neglected but critical layer of defence (cognitive‐affective gate). The integrated model can be custom tailored to specific situations, and the underlying principles applied to all methods for improving safety. The model may also provide a framework for developing and evaluating strategies to optimize organizational cultures and decisions. Limitations The concept is abstract, the model is virtual, and the best supportive evidence is qualitative and indirect. Conclusions The proposed model may help enhance rational decision making across the continuum of care, thereby improving patient safety globally. PMID:29168290

  13. Developing CCUS system models to handle the complexity of multiple sources and sinks: An update on Tasks 5.3 and 5.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen

    2017-05-22

    This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.

  14. a Novel Approach to Support Majority Voting in Spatial Group Mcdm Using Density Induced Owa Operator for Seismic Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Delavar, M. R.; Moshiri, B.; Khamespanah, F.

    2014-10-01

    Being one of the most frightening disasters, earthquakes frequently cause huge damages to buildings, facilities and human beings. Although the prediction of characteristics of an earthquake seems to be impossible, its loss and damage is predictable in advance. Seismic loss estimation models tend to evaluate the extent to which the urban areas are vulnerable to earthquakes. Many factors contribute to the vulnerability of urban areas against earthquakes including age and height of buildings, the quality of the materials, the density of population and the location of flammable facilities. Therefore, seismic vulnerability assessment is a multi-criteria problem. A number of multi criteria decision making models have been proposed based on a single expert. The main objective of this paper is to propose a model which facilitates group multi criteria decision making based on the concept of majority voting. The main idea of majority voting is providing a computational tool to measure the degree to which different experts support each other's opinions and make a decision regarding this measure. The applicability of this model is examined in Tehran metropolitan area which is located in a seismically active region. The results indicate that neglecting the experts which get lower degrees of support from others enables the decision makers to avoid the extreme strategies. Moreover, a computational method is proposed to calculate the degree of optimism in the experts' opinions.

  15. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less

  16. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  17. Optimal decision making modeling for copper-matte Peirce-Smith converting process by means of data mining

    NASA Astrophysics Data System (ADS)

    Song, Yanpo; Peng, Xiaoqi; Tang, Ying; Hu, Zhikun

    2013-07-01

    To improve the operation level of copper converter, the approach to optimal decision making modeling for coppermatte converting process based on data mining is studied: in view of the characteristics of the process data, such as containing noise, small sample size and so on, a new robust improved ANN (artificial neural network) modeling method is proposed; taking into account the application purpose of decision making model, three new evaluation indexes named support, confidence and relative confidence are proposed; using real production data and the methods mentioned above, optimal decision making model for blowing time of S1 period (the 1st slag producing period) are developed. Simulation results show that this model can significantly improve the converting quality of S1 period, increase the optimal probability from about 70% to about 85%.

  18. IBM’s Health Analytics and Clinical Decision Support

    PubMed Central

    Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W.

    2014-01-01

    Summary Objectives This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Methods Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. Results There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Conclusion Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation. PMID:25123736

  19. An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii

    NASA Astrophysics Data System (ADS)

    Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.

    2014-12-01

    Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.

  20. Interactive modelling with stakeholders in two cases in flood management

    NASA Astrophysics Data System (ADS)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various integral measures. Second, when measures became more concrete, the model played a minor role, as stakeholders were still bounded to goals, responsibilities and budgets of their own organization. Model results in this phase are mainly used in a political way to maximize the goals of particular organizations.

  1. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these features enable a degree of decentralization and distributed ownership that have helped other types of scientific information services succeed in recent years.

  2. Environmental Modeling 101: Training Module

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) uses a variety of models to inform decisions that support its missions, this module provides an introduction to environmental modeling with examples of various models and life-cycles.

  3. Benefit cost models to support pavement management decisions.

    DOT National Transportation Integrated Search

    2012-06-01

    A critical role of pavement management is to provide decision makers with estimates of the required budget level to achieve specific steady-state network conditions, and to recommend the best allocation of available budget among competing needs for m...

  4. Virtual Beach 3: User's Guide

    EPA Science Inventory

    Virtual Beach version 3 (VB3) is a decision support tool that constructs site-specific statistical models to predict fecal indicator bacteria (FIB) concentrations at recreational beaches. VB3 is primarily designed for beach managers responsible for making decisions regarding beac...

  5. Benefit cost models to support pavement management decisions : executive summary report.

    DOT National Transportation Integrated Search

    2012-01-01

    A critical role of pavement management is to : provide decision makers with estimates of the : required budget level to achieve specific steadystate : network conditions, and to recommend the : best allocation of available budget among : competing ne...

  6. Decision support system in an international-voice-services business company

    NASA Astrophysics Data System (ADS)

    Hadianti, R.; Uttunggadewa, S.; Syamsuddin, M.; Soewono, E.

    2017-01-01

    We consider a problem facing by an international telecommunication services company in maximizing its profit. From voice services by controlling cost and business partnership. The competitiveness in this industry is very high, so that any efficiency from controlling cost and business partnership can help the company to survive in the very high competitiveness situation. The company trades voice traffic with a large number of business partners. There are four trading schemes that can be chosen by this company, namely, flat rate, class tiering, volume commitment, and revenue capped. Each scheme has a specific characteristic on the rate and volume deal, where the last three schemes are regarded as strategic schemes to be offered to business partner to ensure incoming traffic volume for both parties. This company and each business partner need to choose an optimal agreement in a certain period of time that can maximize the company’s profit. In this agreement, both parties agree to use a certain trading scheme, rate and rate/volume/revenue deal. A decision support system is then needed in order to give a comprehensive information to the sales officers to deal with the business partners. This paper discusses the mathematical model of the optimal decision for incoming traffic volume control, which is a part of the analysis needed to build the decision support system. The mathematical model is built by first performing data analysis to see how elastic the incoming traffic volume is. As the level of elasticity is obtained, we then derive a mathematical modelling that can simulate the impact of any decision on trading to the revenue of the company. The optimal decision can be obtained from these simulations results. To evaluate the performance of the proposed method we implement our decision model to the historical data. A software tool incorporating our methodology is currently in construction.

  7. An innovative approach to addressing childhood obesity: a knowledge-based infrastructure for supporting multi-stakeholder partnership decision-making in Quebec, Canada.

    PubMed

    Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L; Dubé, Laurette

    2015-01-23

    Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a "portrait", which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity.

  8. An Innovative Approach to Addressing Childhood Obesity: A Knowledge-Based Infrastructure for Supporting Multi-Stakeholder Partnership Decision-Making in Quebec, Canada

    PubMed Central

    Addy, Nii Antiaye; Shaban-Nejad, Arash; Buckeridge, David L.; Dubé, Laurette

    2015-01-01

    Multi-stakeholder partnerships (MSPs) have become a widespread means for deploying policies in a whole of society strategy to address the complex problem of childhood obesity. However, decision-making in MSPs is fraught with challenges, as decision-makers are faced with complexity, and have to reconcile disparate conceptualizations of knowledge across multiple sectors with diverse sets of indicators and data. These challenges can be addressed by supporting MSPs with innovative tools for obtaining, organizing and using data to inform decision-making. The purpose of this paper is to describe and analyze the development of a knowledge-based infrastructure to support MSP decision-making processes. The paper emerged from a study to define specifications for a knowledge-based infrastructure to provide decision support for community-level MSPs in the Canadian province of Quebec. As part of the study, a process assessment was conducted to understand the needs of communities as they collect, organize, and analyze data to make decisions about their priorities. The result of this process is a “portrait”, which is an epidemiological profile of health and nutrition in their community. Portraits inform strategic planning and development of interventions, and are used to assess the impact of interventions. Our key findings indicate ambiguities and disagreement among MSP decision-makers regarding causal relationships between actions and outcomes, and the relevant data needed for making decisions. MSP decision-makers expressed a desire for easy-to-use tools that facilitate the collection, organization, synthesis, and analysis of data, to enable decision-making in a timely manner. Findings inform conceptual modeling and ontological analysis to capture the domain knowledge and specify relationships between actions and outcomes. This modeling and analysis provide the foundation for an ontology, encoded using OWL 2 Web Ontology Language. The ontology is developed to provide semantic support for the MSP process, defining objectives, strategies, actions, indicators, and data sources. In the future, software interacting with the ontology can facilitate interactive browsing by decision-makers in the MSP in the form of concepts, instances, relationships, and axioms. Our ontology also facilitates the integration and interpretation of community data, and can help in managing semantic interoperability between different knowledge sources. Future work will focus on defining specifications for the development of a database of indicators and an information system to help decision-makers to view, analyze and organize indicators for their community. This work should improve MSP decision-making in the development of interventions to address childhood obesity. PMID:25625409

  9. The development and application of a decision support system for land management in the Lake Tahoe Basin—The Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson; Crescenti, Neil

    2013-01-01

    This report describes and applies the Land Use Simulation Model (LUSM), the final modeling product for the long-term decision support project funded by the Southern Nevada Public Land Management Act and developed by the U.S. Geological Survey’s Western Geographic Science Center for the Lake Tahoe Basin. Within the context of the natural-resource management and anthropogenic issues of the basin and in an effort to advance land-use and land-cover change science, this report addresses the problem of developing the LUSM as a decision support system. It includes consideration of land-use modeling theory, fire modeling and disturbance in the wildland-urban interface, historical land-use change and its relation to active land management, hydrologic modeling and the impact of urbanization as related to the Lahontan Regional Water Quality Control Board’s recently developed Total Maximum Daily Load report for the basin, and biodiversity in urbanizing areas. The LUSM strives to inform land-management decisions in a complex regulatory environment by simulating parcel-based, land-use transitions with a stochastic, spatially constrained, agent-based model. The tool is intended to be useful for multiple purposes, including the multiagency Pathway 2007 regional planning effort, the Tahoe Regional Planning Agency (TRPA) Regional Plan Update, and complementary research endeavors and natural-resource-management efforts. The LUSM is an Internet-based, scenario-generation decision support tool for allocating retired and developed parcels over the next 20 years. Because USGS staff worked closely with TRPA staff and their “Code of Ordinances” and analyzed datasets of historical management and land-use practices, this report accomplishes the task of providing reasonable default values for a baseline scenario that can be used in the LUSM. One result from the baseline scenario for the model suggests that all vacant parcels could be allocated within 12 years. Results also include: assessment of model functionality, brief descriptions of the 7 basic output tables, assessment of the rate of change in land-use allocation pools over time, locations and amounts of the spatially explicit probabilities of land-use transitions by real estate commodity, and analysis of the state change from today’s existing land cover to potential land uses in the future. Assumptions and limitations of the model are presented. This report concludes with suggested next steps to support the continued utility of the LUSM and additional research avenues.

  10. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin in Texas. The overall design focuses on assigning spatial information to decision support elements and on efficiently using Web 2.0 technologies to relay scientific information to the nonscientific community. We conclude that (i) social networking, if appropriately used, has great potential for mitigating difficulty associated with multigroup decision making; (ii) all potential stakeholder groups should be involved in creating a useful decision support system; and (iii) environmental decision support systems should be considered a must-have, instead of an optional component of TMDL decision support projects. Acknowledgment: This project was supported by NASA grant NNX09AR63G.

  11. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  12. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  13. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  14. Knowledge bases, clinical decision support systems, and rapid learning in oncology.

    PubMed

    Yu, Peter Paul

    2015-03-01

    One of the most important benefits of health information technology is to assist the cognitive process of the human mind in the face of vast amounts of health data, limited time for decision making, and the complexity of the patient with cancer. Clinical decision support tools are frequently cited as a technologic solution to this problem, but to date useful clinical decision support systems (CDSS) have been limited in utility and implementation. This article describes three unique sources of health data that underlie fundamentally different types of knowledge bases which feed into CDSS. CDSS themselves comprise a variety of models which are discussed. The relationship of knowledge bases and CDSS to rapid learning health systems design is critical as CDSS are essential drivers of rapid learning in clinical care. Copyright © 2015 by American Society of Clinical Oncology.

  15. Building a Computer Program to Support Children, Parents, and Distraction during Healthcare Procedures

    PubMed Central

    McCarthy, Ann Marie; Kleiber, Charmaine; Ataman, Kaan; Street, W. Nick; Zimmerman, M. Bridget; Ersig, Anne L.

    2012-01-01

    This secondary data analysis used data mining methods to develop predictive models of child risk for distress during a healthcare procedure. Data used came from a study that predicted factors associated with children’s responses to an intravenous catheter insertion while parents provided distraction coaching. From the 255 items used in the primary study, 44 predictive items were identified through automatic feature selection and used to build support vector machine regression models. Models were validated using multiple cross-validation tests and by comparing variables identified as explanatory in the traditional versus support vector machine regression. Rule-based approaches were applied to the model outputs to identify overall risk for distress. A decision tree was then applied to evidence-based instructions for tailoring distraction to characteristics and preferences of the parent and child. The resulting decision support computer application, the Children, Parents and Distraction (CPaD), is being used in research. Future use will support practitioners in deciding the level and type of distraction intervention needed by a child undergoing a healthcare procedure. PMID:22805121

  16. Registered nurses' decision-making regarding documentation in patients' progress notes.

    PubMed

    Tower, Marion; Chaboyer, Wendy; Green, Quentine; Dyer, Kirsten; Wallis, Marianne

    2012-10-01

    To examine registered nurses' decision-making when documenting care in patients' progress notes. What constitutes effective nursing documentation is supported by available guidelines. However, ineffective documentation continues to be cited as a major cause of adverse events for patients. Decision-making in clinical practice is a complex process. To make an effective decision, the decision-maker must be situationally aware. The concept of situation awareness and its implications for making safe decisions has been examined extensively in air safety and more recently is being applied to health. The study was situated in a naturalistic paradigm. Purposive sampling was used to recruit 17 registered nurses who used think-aloud research methods when making decisions about documenting information in patients' progress notes. Follow-up interviews were conducted to validate interpretations. Data were analysed systematically for evidence of cues that demonstrated situation awareness as nurses made decisions about documentation. Three distinct decision-making scenarios were illuminated from the analysis: the newly admitted patient, the patient whose condition was as expected and the discharging patient. Nurses used mental models for decision-making in documenting in progress notes, and the cues nurses used to direct their assessment of patients' needs demonstrated situation awareness at different levels. Nurses demonstrate situation awareness at different levels in their decision-making processes. While situation awareness is important, it is also important to use an appropriate decision-making framework. Cognitive continuum theory is suggested as a decision-making model that could support situation awareness when nurses made decisions about documenting patient care. Because nurses are key decision-makers, it is imperative that effective decisions are made that translate into safe clinical care. Including situation awareness training, combined with employing cognitive continuum theory as a decision-making framework, provides a powerful means of guiding nurses' decision-making. © 2012 Blackwell Publishing Ltd.

  17. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  18. Urban Climate Resilience - Connecting climate models with decision support cyberinfrastructure using open standards

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Percivall, G.; Idol, T. A.

    2015-12-01

    Experts in climate modeling, remote sensing of the Earth, and cyber infrastructure must work together in order to make climate predictions available to decision makers. Such experts and decision makers worked together in the Open Geospatial Consortium's (OGC) Testbed 11 to address a scenario of population displacement by coastal inundation due to the predicted sea level rise. In a Policy Fact Sheet "Harnessing Climate Data to Boost Ecosystem & Water Resilience", issued by White House Office of Science and Technology (OSTP) in December 2014, OGC committed to increase access to climate change information using open standards. In July 2015, the OGC Testbed 11 Urban Climate Resilience activity delivered on that commitment with open standards based support for climate-change preparedness. Using open standards such as the OGC Web Coverage Service and Web Processing Service and the NetCDF and GMLJP2 encoding standards, Testbed 11 deployed an interoperable high-resolution flood model to bring climate model outputs together with global change assessment models and other remote sensing data for decision support. Methods to confirm model predictions and to allow "what-if-scenarios" included in-situ sensor webs and crowdsourcing. A scenario was in two locations: San Francisco Bay Area and Mozambique. The scenarios demonstrated interoperation and capabilities of open geospatial specifications in supporting data services and processing services. The resultant High Resolution Flood Information System addressed access and control of simulation models and high-resolution data in an open, worldwide, collaborative Web environment. The scenarios examined the feasibility and capability of existing OGC geospatial Web service specifications in supporting the on-demand, dynamic serving of flood information from models with forecasting capacity. Results of this testbed included identification of standards and best practices that help researchers and cities deal with climate-related issues. Results of the testbeds will now be deployed in pilot applications. The testbed also identified areas of additional development needed to help identify scientific investments and cyberinfrastructure approaches needed to improve the application of climate science research results to urban climate resilence.

  19. Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises

    USGS Publications Warehouse

    Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa

    2008-01-01

    Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.

  20. [Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model : Are your clinical imaging processes ready for the digital era?

    PubMed

    Studzinski, J

    2017-06-01

    The Digital Imaging Adoption Model (DIAM) has been jointly developed by HIMSS Analytics and the European Society of Radiology (ESR). It helps evaluate the maturity of IT-supported processes in medical imaging, particularly in radiology. This eight-stage maturity model drives your organisational, strategic and tactical alignment towards imaging-IT planning. The key audience for the model comprises hospitals with imaging centers, as well as external imaging centers that collaborate with hospitals. The assessment focuses on different dimensions relevant to digital imaging, such as software infrastructure and usage, workflow security, clinical documentation and decision support, data exchange and analytical capabilities. With its standardised approach, it enables regional, national and international benchmarking. All DIAM participants receive a structured report that can be used as a basis for presenting, e.g. budget planning and investment decisions at management level.

  1. A decision-support tool to inform Australian strategies for preventing suicide and suicidal behaviour.

    PubMed

    Page, Andrew; Atkinson, Jo-An; Heffernan, Mark; McDonnell, Geoff; Hickie, Ian

    2017-04-27

    Dynamic simulation modelling is increasingly being recognised as a valuable decision-support tool to help guide investments and actions to address complex public health issues such as suicide. In particular, participatory system dynamics (SD) modelling provides a useful tool for asking high-level 'what if' questions, and testing the likely impacts of different combinations of policies and interventions at an aggregate level before they are implemented in the real world. We developed an SD model for suicide prevention in Australia, and investigated the hypothesised impacts over the next 10 years (2015-2025) of a combination of current intervention strategies proposed for population interventions in Australia: 1) general practitioner (GP) training, 2) coordinated aftercare in those who have attempted suicide, 3) school-based mental health literacy programs, 4) brief-contact interventions in hospital settings, and 5) psychosocial treatment approaches. Findings suggest that the largest reductions in suicide were associated with GP training (6%) and coordinated aftercare approaches (4%), with total reductions of 12% for all interventions combined. This paper highlights the value of dynamic modelling methods for managing complexity and uncertainty, and demonstrates their potential use as a decision-support tool for policy makers and program planners for community suicide prevention actions.

  2. Clinical decision support tool for Co-management signalling.

    PubMed

    Horta, Alexandra Bayão; Salgado, Cátia; Fernandes, Marta; Vieira, Susana; Sousa, João M; Papoila, Ana Luísa; Xavier, Miguel

    2018-05-01

    Co-management between internists and surgeons of selected patients is becoming one of the pillars of modern clinical management in large hospitals. Defining the patients to be co-managed is essential. The aim of this study is to create a decision tool using real-world patient data collected in the preoperative period, to support the decision on which patients should have the co-management service offered. Data was collected from the electronic clinical health records of patients who had an International Classification of Diseases, 9th edition (ICD-9) code of colorectal surgery during the period between January 2012 and October 2014 in a 200 bed private teaching hospital in Lisbon. ICD-9 codes of colorectal surgery [48.5 and 48.6 (anterior rectal resection and abdominoperineal resection), 45.7 (partial colectomy), 45.8 (Total Colectomy), and 45.9 (Bowel Anastomosis)] were used. Only patients above 18 years old were considered. Patients with more than one procedure were excluded from the study. From these data the authors investigated the construction of predictive models using logistic regression and Takagi-Sugeno fuzzy modelling. Data contains information obtained from the clinical records of a cohort of 344 adult patients. Data from 398 emergent and elective surgeries were collected, from which 54 were excluded because they were second procedures for the same patients. Four preoperative variables were identified as being the most predictive of co-management, in multivariable regression analysis. The final model performed well after being internally validated (0.81 AUC, 77% accuracy, 74% sensitivity, 78% specificity, 93% negative predictive value). The results indicate that the decision process can be more objective and potentially automated. The authors developed a prediction model based on preoperative characteristics, in order to support the decision for the co-management of surgical patients in the postoperative ward setting. The model is a simple bedside decision tool that uses only four numerical variables. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many decision supports and evaluations. The main focus of the instrument is operational drought management and evaluating adaptive measures for different climate scenario's. It has also been used though as a basis to evaluate water quality of WFD-water bodies and measures, nutrient-leaching and describing WFD groundwater bodies. There is a toolkit to translate the hydrological NHI results to values for different water users. For instance with the NHI results agricultural yields can be calculated, effects on ground water dependant ecosystems, subsidence, shipping, drinking water supply. This makes NHI a valuable decision support system in Dutch water management.

  4. Multifaceted Modelling of Complex Business Enterprises

    PubMed Central

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control. PMID:26247591

  5. Multifaceted Modelling of Complex Business Enterprises.

    PubMed

    Chakraborty, Subrata; Mengersen, Kerrie; Fidge, Colin; Ma, Lin; Lassen, David

    2015-01-01

    We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

  6. A Conceptual Framework for Decision-making Support in Uncertainty- and Risk-based Diagnosis of Rare Clinical Cases by Specialist Physicians.

    PubMed

    Santos, Adriano A; Moura, J Antão B; de Araújo, Joseana Macêdo Fechine Régis

    2015-01-01

    Mitigating uncertainty and risks faced by specialist physicians in analysis of rare clinical cases is something desired by anyone who needs health services. The number of clinical cases never seen by these experts, with little documentation, may introduce errors in decision-making. Such errors negatively affect well-being of patients, increase procedure costs, rework, health insurance premiums, and impair the reputation of specialists and medical systems involved. In this context, IT and Clinical Decision Support Systems (CDSS) play a fundamental role, supporting decision-making process, making it more efficient and effective, reducing a number of avoidable medical errors and enhancing quality of treatment given to patients. An investigation has been initiated to look into characteristics and solution requirements of this problem, model it, propose a general solution in terms of a conceptual risk-based, automated framework to support rare-case medical diagnostics and validate it by means of case studies. A preliminary validation study of the proposed framework has been carried out by interviews conducted with experts who are practicing professionals, academics, and researchers in health care. This paper summarizes the investigation and its positive results. These results motivate continuation of research towards development of the conceptual framework and of a software tool that implements the proposed model.

  7. Supporting multi-stakeholder environmental decisions.

    PubMed

    Hajkowicz, Stefan A

    2008-09-01

    This paper examines how multiple criteria analysis (MCA) can be used to support multi-stakeholder environmental management decisions. It presents a study through which 48 stakeholders from environmental, primary production and community interest groups used MCA to prioritise 30 environmental management problems in the Mackay-Whitsunday region of Queensland, Australia. The MCA model, with procedures for aggregating multi-stakeholder output, was used to inform a final decision on the priority of the region's environmental management problems. The result was used in the region's environmental management plan as required under Australia's Natural Heritage Trust programme. The study shows how relatively simple MCA methods can help stakeholders make group decisions, even when they hold strongly conflicting preferences.

  8. Rationality versus reality: the challenges of evidence-based decision making for health policy makers

    PubMed Central

    2010-01-01

    Background Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process. Discussion We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence. Summary In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved. PMID:20504357

  9. Rationality versus reality: the challenges of evidence-based decision making for health policy makers.

    PubMed

    McCaughey, Deirdre; Bruning, Nealia S

    2010-05-26

    Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process. We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence. In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved.

  10. An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship

    NASA Astrophysics Data System (ADS)

    Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.

  11. How users adopt healthcare information: An empirical study of an online Q&A community.

    PubMed

    Jin, Jiahua; Yan, Xiangbin; Li, Yijun; Li, Yumei

    2016-02-01

    The emergence of social media technology has led to the creation of many online healthcare communities, where patients can easily share and look for healthcare-related information from peers who have experienced a similar problem. However, with increased user-generated content, there is a need to constantly analyse which content should be trusted as one sifts through enormous amounts of healthcare information. This study aims to explore patients' healthcare information seeking behavior in online communities. Based on dual-process theory and the knowledge adoption model, we proposed a healthcare information adoption model for online communities. This model highlights that information quality, emotional support, and source credibility are antecedent variables of adoption likelihood of healthcare information, and competition among repliers and involvement of recipients moderate the relationship between the antecedent variables and adoption likelihood. Empirical data were collected from the healthcare module of China's biggest Q&A community-Baidu Knows. Text mining techniques were adopted to calculate the information quality and emotional support contained in each reply text. A binary logistics regression model and hierarchical regression approach were employed to test the proposed conceptual model. Information quality, emotional support, and source credibility have significant and positive impact on healthcare information adoption likelihood, and among these factors, information quality has the biggest impact on a patient's adoption decision. In addition, competition among repliers and involvement of recipients were tested as moderating effects between these antecedent factors and the adoption likelihood. Results indicate competition among repliers positively moderates the relationship between source credibility and adoption likelihood, and recipients' involvement positively moderates the relationship between information quality, source credibility, and adoption decision. In addition to information quality and source credibility, emotional support has significant positive impact on individuals' healthcare information adoption decisions. Moreover, the relationships between information quality, source credibility, emotional support, and adoption decision are moderated by competition among repliers and involvement of recipients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. How do ants make sense of gravity? A Boltzmann Walker analysis of Lasius niger trajectories on various inclines.

    PubMed

    Khuong, Anaïs; Lecheval, Valentin; Fournier, Richard; Blanco, Stéphane; Weitz, Sébastian; Bezian, Jean-Jacques; Gautrais, Jacques

    2013-01-01

    The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.

  13. How Do Ants Make Sense of Gravity? A Boltzmann Walker Analysis of Lasius niger Trajectories on Various Inclines

    PubMed Central

    Khuong, Anaïs; Lecheval, Valentin; Fournier, Richard; Blanco, Stéphane; Weitz, Sébastian; Bezian, Jean-Jacques; Gautrais, Jacques

    2013-01-01

    The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by rad ( data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ( segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines. PMID:24204636

  14. Knowledge mobilisation for policy development: implementing systems approaches through participatory dynamic simulation modelling.

    PubMed

    Freebairn, Louise; Rychetnik, Lucie; Atkinson, Jo-An; Kelly, Paul; McDonnell, Geoff; Roberts, Nick; Whittall, Christine; Redman, Sally

    2017-10-02

    Evidence-based decision-making is an important foundation for health policy and service planning decisions, yet there remain challenges in ensuring that the many forms of available evidence are considered when decisions are being made. Mobilising knowledge for policy and practice is an emergent process, and one that is highly relational, often messy and profoundly context dependent. Systems approaches, such as dynamic simulation modelling can be used to examine both complex health issues and the context in which they are embedded, and to develop decision support tools. This paper reports on the novel use of participatory simulation modelling as a knowledge mobilisation tool in Australian real-world policy settings. We describe how this approach combined systems science methodology and some of the core elements of knowledge mobilisation best practice. We describe the strategies adopted in three case studies to address both technical and socio-political issues, and compile the experiential lessons derived. Finally, we consider the implications of these knowledge mobilisation case studies and provide evidence for the feasibility of this approach in policy development settings. Participatory dynamic simulation modelling builds on contemporary knowledge mobilisation approaches for health stakeholders to collaborate and explore policy and health service scenarios for priority public health topics. The participatory methods place the decision-maker at the centre of the process and embed deliberative methods and co-production of knowledge. The simulation models function as health policy and programme dynamic decision support tools that integrate diverse forms of evidence, including research evidence, expert knowledge and localised contextual information. Further research is underway to determine the impact of these methods on health service decision-making.

  15. User-centered design to improve clinical decision support in primary care.

    PubMed

    Brunner, Julian; Chuang, Emmeline; Goldzweig, Caroline; Cain, Cindy L; Sugar, Catherine; Yano, Elizabeth M

    2017-08-01

    A growing literature has demonstrated the ability of user-centered design to make clinical decision support systems more effective and easier to use. However, studies of user-centered design have rarely examined more than a handful of sites at a time, and have frequently neglected the implementation climate and organizational resources that influence clinical decision support. The inclusion of such factors was identified by a systematic review as "the most important improvement that can be made in health IT evaluations." (1) Identify the prevalence of four user-centered design practices at United States Veterans Affairs (VA) primary care clinics and assess the perceived utility of clinical decision support at those clinics; (2) Evaluate the association between those user-centered design practices and the perceived utility of clinical decision support. We analyzed clinic-level survey data collected in 2006-2007 from 170 VA primary care clinics. We examined four user-centered design practices: 1) pilot testing, 2) provider satisfaction assessment, 3) formal usability assessment, and 4) analysis of impact on performance improvement. We used a regression model to evaluate the association between user-centered design practices and the perceived utility of clinical decision support, while accounting for other important factors at those clinics, including implementation climate, available resources, and structural characteristics. We also examined associations separately at community-based clinics and at hospital-based clinics. User-centered design practices for clinical decision support varied across clinics: 74% conducted pilot testing, 62% conducted provider satisfaction assessment, 36% conducted a formal usability assessment, and 79% conducted an analysis of impact on performance improvement. Overall perceived utility of clinical decision support was high, with a mean rating of 4.17 (±.67) out of 5 on a composite measure. "Analysis of impact on performance improvement" was the only user-centered design practice significantly associated with perceived utility of clinical decision support, b=.47 (p<.001). This association was present in hospital-based clinics, b=.34 (p<.05), but was stronger at community-based clinics, b=.61 (p<.001). Our findings are highly supportive of the practice of analyzing the impact of clinical decision support on performance metrics. This was the most common user-centered design practice in our study, and was the practice associated with higher perceived utility of clinical decision support. This practice may be particularly helpful at community-based clinics, which are typically less connected to VA medical center resources. Published by Elsevier B.V.

  16. AQUATOOL, a generalized decision-support system for water-resources planning and operational management

    NASA Astrophysics Data System (ADS)

    Andreu, J.; Capilla, J.; Sanchís, E.

    1996-04-01

    This paper describes a generic decision-support system (DSS) which was originally designed for the planning stage of dicision-making associated with complex river basins. Subsequently, it was expanded to incorporate modules relating to the operational stage of decision-making. Computer-assisted design modules allow any complex water-resource system to be represented in graphical form, giving access to geographically referenced databases and knowledge bases. The modelling capability includes basin simulation and optimization modules, an aquifer flow modelling module and two modules for risk assessment. The Segura and Tagus river basins have been used as case studies in the development and validation phases. The value of this DSS is demonstrated by the fact that both River Basin Agencies currently use a version for the efficient management of their water resources.

  17. Fire rehabilitation decisions at landscape scales: utilizing state-and-transition models developed through disturbance response grouping of ecological sites

    USDA-ARS?s Scientific Manuscript database

    Recognizing the utility of ecological sites and the associated state-and-transition model (STM) for decision support, the Bureau of Land Management in Nevada partnered with Nevada NRCS and the University of Nevada, Reno (UNR) in 2009 with the goal of creating a team that could (1) expedite developme...

  18. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  19. Operationalising uncertainty in data and models for integrated water resources management.

    PubMed

    Blind, M W; Refsgaard, J C

    2007-01-01

    Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project 'Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)' has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.

  20. WMOST 2.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of managemen

  1. WMOST 3.0 Download Page

    EPA Pesticide Factsheets

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management.

  2. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  3. Psychosocial work environment in school and students' somatic health complaints: An analysis of buffering resources.

    PubMed

    Sonmark, Kristina; Modin, Bitte

    2017-02-01

    This study explores the association between the psychosocial work environment in school and students' somatic health complaints. With its point of departure from the Demand-Control-Support (DCS) model, the aim was to examine how aspects of decision control and social support can moderate stress-related health implications of high psychological demands. Data come from two cross-sectional waves of the Swedish version of Health Behaviour in School-aged Children (HBSC 2005/2006 and 2009/2010), which consists of a total of 9427 11-, 13- and 15-year-old students. A two-level random intercept model was applied, with school class as the level 2 unit. Findings showed significant associations between school demands and somatic health complaints for all studied age groups, with a slight increase in strength with age. Decision control as well as social support from teachers, parents and peers consistently predicted a favorable association with health. An age pattern emerged in the analyses of stress-moderating resources. For 11 year olds parental support was the only resource that displayed a significant interaction with demands in relation to somatic health complaints, whereas for 13 year olds, decision control and support from teachers and parents all demonstrated moderating effects on student health. For 15 year olds, however, it was peer support that acted as a buffering resource in the studied relationship. The psychosocial work environment is an important predictor of students' health complaints. Overall, social support was a better stress-moderating resource than decision control, but some "buffers" were more important at certain ages than others.

  4. Developing Quality Indicators and Auditing Protocols from Formal Guideline Models: Knowledge Representation and Transformations

    PubMed Central

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A.

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically (1) context-specific and (2) case-mix-adjusted quality indicators that (3) can model global or local levels of detail about the guideline (4) parameterized by defining the reliability of each indicator or element of the guideline. PMID:14728124

  5. The relationship between social support, shared decision-making and patient's trust in doctors: a cross-sectional survey of 2,197 inpatients using the Cologne Patient Questionnaire.

    PubMed

    Ommen, Oliver; Thuem, Sonja; Pfaff, Holger; Janssen, Christian

    2011-06-01

    Empirical studies have confirmed that a trusting physician-patient interaction promotes patient satisfaction, adherence to treatment and improved health outcomes. The objective of this analysis was to investigate the relationship between social support, shared decision-making and inpatient's trust in physicians in a hospital setting. A written questionnaire was completed by 2,197 patients who were treated in the year 2000 in six hospitals in Germany. Logistic regression was performed with a dichotomized index for patient's trust in physicians. The logistic regression model identified significant relationships (p < 0.05) in terms of emotional support (standardized effect coefficient [sc], 3.65), informational support (sc, 1.70), shared decision-making (sc, 1.40), age (sc, 1.14), socioeconomic status (sc, 1.15) and gender (sc, 1.15). We found no significant relationship between 'tendency to excuse' and trust. The last regression model accounted for 49.1% of Nagelkerke's R-square. Insufficient physician communication skills can lead to extensive negative effects on the trust of patients in their physicians. Thus, it becomes clear that medical support requires not only biomedical, but also psychosocial skills.

  6. Will Decision Support in Medications Order Entry Save Money? A Return On Investment Analysis of the Case of the Hong Kong Hospital Authority

    PubMed Central

    Fung, Kin Wah; Vogel, Lynn Harold

    2003-01-01

    The computerized medications order entry system currently used in the public hospitals of Hong Kong does not have decision support features. Plans are underway to add decision support to this system to alert physicians on drug-allergy conflicts, drug-lab result conflicts, drug-drug interactions and atypical dosages. A return on investment analysis is done on this enhancement, both as an examination of whether there is a positive return on the investment and as a contribution to the ongoing discussion of the use of return on investment models in health care information technology investments. It is estimated that the addition of decision support will reduce adverse drug events by 4.2 – 8.4%. Based on this estimate, a total net saving of $44,000 – $586,000 is expected over five years. The breakeven period is estimated to be between two to four years. PMID:14728171

  7. Don't panic--prepare: towards crisis-aware models of emergency department operations.

    PubMed

    Ceglowski, Red; Churilov, Leonid; Wasserheil, Jeff

    2005-12-01

    The existing models of Emergency Department (ED) operations that are based on the "flow-shop" management logic do not provide adequate decision support in dealing with the ED overcrowding crises. A conceptually different crisis-aware approach to ED modelling and operational decision support is introduced in this paper. It is based on Perrow's theory of "normal accidents" and calls for recognizing the inevitable nature of ED overcrowding crises within current health system setup. Managing the crisis before it happens--a standard approach in crisis management area--should become an integral part of ED operations management. The potential implications of adopting such a crisis-aware perspective for health services research and ED management are outlined.

  8. Strategic analytics: towards fully embedding evidence in healthcare decision-making.

    PubMed

    Garay, Jason; Cartagena, Rosario; Esensoy, Ali Vahit; Handa, Kiren; Kane, Eli; Kaw, Neal; Sadat, Somayeh

    2015-01-01

    Cancer Care Ontario (CCO) has implemented multiple information technology solutions and collected health-system data to support its programs. There is now an opportunity to leverage these data and perform advanced end-to-end analytics that inform decisions around improving health-system performance. In 2014, CCO engaged in an extensive assessment of its current data capacity and capability, with the intent to drive increased use of data for evidence-based decision-making. The breadth and volume of data at CCO uniquely places the organization to contribute to not only system-wide operational reporting, but more advanced modelling of current and future state system management and planning. In 2012, CCO established a strategic analytics practice to assist the agency's programs contextualize and inform key business decisions and to provide support through innovative predictive analytics solutions. This paper describes the organizational structure, services and supporting operations that have enabled progress to date, and discusses the next steps towards the vision of embedding evidence fully into healthcare decision-making. Copyright © 2014 Longwoods Publishing.

  9. Development of a decision support system for tsunami evacuation: application to the Jiyang District of Sanya city in China

    NASA Astrophysics Data System (ADS)

    Hou, Jingming; Yuan, Ye; Wang, Peitao; Ren, Zhiyuan; Li, Xiaojuan

    2017-03-01

    Major tsunami disasters often cause great damage in the first few hours following an earthquake. The possible severity of such events requires preparations to prevent tsunami disasters or mitigate them. This paper is an attempt to develop a decision support system for rapid tsunami evacuation for local decision makers. Based on the numerical results database of tsunami disasters, this system can quickly obtain the tsunami inundation and travel time. Because numerical models are calculated in advance, this system can reduce decision-making time. Population distribution, as a vulnerability factor, was analyzed to identify areas of high risk for tsunami disasters. Combined with spatial data, this system can comprehensively analyze the dynamic and static evacuation process and identify problems that negatively impact evacuation, thus supporting the decision-making for tsunami evacuation in high-risk areas. When an earthquake and tsunami occur, this system can rapidly obtain the tsunami inundation and travel time and provide information to assist with tsunami evacuation operations.

  10. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  11. A Conceptual Model of the Role of Communication in Surrogate Decision Making for Hospitalized Adults

    PubMed Central

    Torke, Alexia M.; Petronio, Sandra; Sachs, Greg A.; Helft, Paul R.; Purnell, Christianna

    2011-01-01

    Objective To build a conceptual model of the role of communication in decision making, based on literature from medicine, communication studies and medical ethics. Methods We propose a model and describe each construct in detail. We review what is known about interpersonal and patient-physician communication, describe literature about surrogate-clinician communication, and discuss implications for our developing model. Results The communication literature proposes two major elements of interpersonal communication: information processing and relationship building. These elements are composed of constructs such as information disclosure and emotional support that are likely to be relevant to decision making. We propose these elements of communication impact decision making, which in turn affects outcomes for both patients and surrogates. Decision making quality may also mediate the relationship between communication and outcomes. Conclusion Although many elements of the model have been studied in relation to patient-clinician communication, there is limited data about surrogate decision making. There is evidence of high surrogate distress associated with decision making that may be alleviated by communication–focused interventions. More research is needed to test the relationships proposed in the model. Practice Implications Good communication with surrogates may improve both the quality of medical decisions and outcomes for the patient and surrogate. PMID:21889865

  12. A conceptual model of the role of communication in surrogate decision making for hospitalized adults.

    PubMed

    Torke, Alexia M; Petronio, Sandra; Sachs, Greg A; Helft, Paul R; Purnell, Christianna

    2012-04-01

    To build a conceptual model of the role of communication in decision making, based on literature from medicine, communication studies and medical ethics. We proposed a model and described each construct in detail. We review what is known about interpersonal and patient-physician communication, described literature about surrogate-clinician communication, and discussed implications for our developing model. The communication literature proposes two major elements of interpersonal communication: information processing and relationship building. These elements are composed of constructs such as information disclosure and emotional support that are likely to be relevant to decision making. We propose these elements of communication impact decision making, which in turn affects outcomes for both patients and surrogates. Decision making quality may also mediate the relationship between communication and outcomes. Although many elements of the model have been studied in relation to patient-clinician communication, there is limited data about surrogate decision making. There is evidence of high surrogate distress associated with decision making that may be alleviated by communication-focused interventions. More research is needed to test the relationships proposed in the model. Good communication with surrogates may improve both the quality of medical decisions and outcomes for the patient and surrogate. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Artificial intelligence based decision support for trumpeter swan management

    USGS Publications Warehouse

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988-2000. Applying the Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for comparing flyway distributions of waterfowl over time that seemed to work well. Based on this approach, the empirical evidence that I gathered led me to conclude that the base queuing model does accurately simulate swan distributions in the flyway. The system was insensitive to almost all model parameters tested. That remains perplexing, but might result from the base queuing model, itself, being particularly effective at representing the actual ecological diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.

  14. NASA Wrangler: Automated Cloud-Based Data Assembly in the RECOVER Wildfire Decision Support System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Carroll, Mark; Gill, Roger; Wooten, Margaret; Weber, Keith; Blair, Kindra; May, Jeffrey; Toombs, William

    2017-01-01

    NASA Wrangler is a loosely-coupled, event driven, highly parallel data aggregation service designed to take advantageof the elastic resource capabilities of cloud computing. Wrangler automatically collects Earth observational data, climate model outputs, derived remote sensing data products, and historic biophysical data for pre-, active-, and post-wildfire decision making. It is a core service of the RECOVER decision support system, which is providing rapid-response GIS analytic capabilities to state and local government agencies. Wrangler reduces to minutes the time needed to assemble and deliver crucial wildfire-related data.

  15. fMRI evidence for strategic decision-making during resolution of pronoun reference

    PubMed Central

    McMillan, Corey T.; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray

    2012-01-01

    Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun’s referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun’s reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun’s reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. PMID:22245014

  16. Representing Human Expertise by the OWL Web Ontology Language to Support Knowledge Engineering in Decision Support Systems.

    PubMed

    Ramzan, Asia; Wang, Hai; Buckingham, Christopher

    2014-01-01

    Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

  17. A Web-Based Decision Support System for Assessing Regional Water-Quality Conditions and Management Actions

    USGS Publications Warehouse

    Booth, N.L.; Everman, E.J.; Kuo, I.-L.; Sprague, L.; Murphy, L.

    2011-01-01

    The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water-quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water-quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow-weighted concentration, or load of constituents in water under various land-use condition, change, or resource management scenarios. A web-based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water-quality conditions and to offer sophisticated scenario testing capabilities for research and water-quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water-quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000-scale River Reach File (RF1) and 1:100,000-scale National Hydrography Dataset (medium-resolution, NHDPlus) stream networks. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  18. Parallel constraint satisfaction in memory-based decisions.

    PubMed

    Glöckner, Andreas; Hodges, Sara D

    2011-01-01

    Three studies sought to investigate decision strategies in memory-based decisions and to test the predictions of the parallel constraint satisfaction (PCS) model for decision making (Glöckner & Betsch, 2008). Time pressure was manipulated and the model was compared against simple heuristics (take the best and equal weight) and a weighted additive strategy. From PCS we predicted that fast intuitive decision making is based on compensatory information integration and that decision time increases and confidence decreases with increasing inconsistency in the decision task. In line with these predictions we observed a predominant usage of compensatory strategies under all time-pressure conditions and even with decision times as short as 1.7 s. For a substantial number of participants, choices and decision times were best explained by PCS, but there was also evidence for use of simple heuristics. The time-pressure manipulation did not significantly affect decision strategies. Overall, the results highlight intuitive, automatic processes in decision making and support the idea that human information-processing capabilities are less severely bounded than often assumed.

  19. Human Decision Processes: Implications for SSA Support Tools

    NASA Astrophysics Data System (ADS)

    Picciano, P.

    2013-09-01

    Despite significant advances in computing power and artificial intelligence (AI), few critical decisions are made without a human decision maker in the loop. Space Situational Awareness (SSA) missions are both critical and complex, typically adhering to the human-in-the-loop (HITL) model. The collection of human operators injects a needed diversity of expert knowledge, experience, and authority required to successfully fulfill SSA tasking. A wealth of literature on human decision making exists citing myriad empirical studies and offering a varied set of prescriptive and descriptive models of judgment and decision making (Hastie & Dawes, 2001; Baron, 2000). Many findings have been proven sufficiently robust to allow information architects or system/interface designers to take action to improve decision processes. For the purpose of discussion, these concepts are bifurcated in two groups: 1) vulnerabilities to mitigate, and 2) capabilities to augment. These vulnerabilities and capabilities refer specifically to the decision process and should not be confused with a shortcoming or skill of a specific human operator. Thus the framing of questions and orders, the automated tools with which to collaborate, priming and contextual data, and the delivery of information all play a critical role in human judgment and choice. Evaluating the merits of any decision can be elusive; in order to constrain this discussion, ‘rational choice' will tend toward the economic model characteristics such as maximizing utility and selection consistency (e.g., if A preferred to B, and B preferred to C, than A should be preferred to C). Simple decision models often encourage one to list the pros and cons of a decision, perhaps use a weighting schema, but one way or another weigh the future benefit (or harm) of making a selection. The result (sought by the rationalist models) should drive toward higher utility. Despite notable differences in researchers' theses (to be discussed in the full paper), one opinion shared is that the rational, economic, deliberate listing/evaluation of all options is NOT representative of how many decision are made. A framework gaining interest lately describes two systems predominantly at work: intuition and reasoning (Kahneman, 2003). Intuition is fast, automatic, and parallel contrasted with the more effortful, deliberative, and sequential reasoning. One of the issues of contention is that considerable research is stacked supporting both sides claiming that intuition is: • A hallmark of expertise responsible for rapid, optimal decisions in the face of adversity • A vulnerability where biases serve as decision traps leading to wrong choices Using seminal studies from a range of domains and tasking, potential solutions for SSA decision support will be offered. Important issues such as managing uncertainty, framing inquiries, and information architecture, and contextual cues will be discussed. The purpose is to provide awareness of the human limitations and capabilities in complex decision making so engineers and designers can consider such factors in their development of SSA tools.

  20. A green chemistry-based classification model for the synthesis of silver nanoparticles

    EPA Science Inventory

    The assessment of implementation of green chemistry principles in the synthesis of nanomaterials is a complex decision-making problem that necessitates integration of several evaluation criteria. Multiple Criteria Decision Aiding (MCDA) provides support for such a challenge. One ...

  1. Tapping into community wisdom and integrating local knowledge into revitalization efforts

    EPA Science Inventory

    Local decision-making is sometimes considered a puzzle by research ecologists, resource managers, and policy researchers. The eternal hope is to find that model or concept that provides the “right” information to support local environmental decisions. Researchers have...

  2. IMPROVED SCIENCE AND DECISION SUPPORT FOR MANAGING WATERSHED NUTRIENT LOADS

    EPA Science Inventory

    The proposed research addresses two critical gaps in the TMDL process: (1) the inadequacy of presently existing receiving water models to accurately simulate nutrient-sediment-water interactions and fixed plants; and (2) the lack of decision-oriented optimization f...

  3. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  4. Teaching Adolescents with Mild Mental Retardation to Make Decisions in Leisure through the Use of Self-Control Techniques.

    ERIC Educational Resources Information Center

    Mahon, Michael J.; Bullock, Charles C.

    1992-01-01

    Study examined the impact of decision-making instruction which incorporated self-control techniques and instruction which provided only encouragement and verbal praise on decision making in leisure (DML) on adolescents with mild mental retardation. Results support the efficacy of the DML model in facilitating thoughtful DML for study subjects. (SM)

  5. Modeling Applications and Tools

    EPA Pesticide Factsheets

    The U.S. EPA's Air Quality Modeling Group (AQMG) conducts modeling analyses to support policy and regulatory decisions in OAR and provides leadership and direction on the full range of air quality models and other mathematical simulation techniques used in

  6. A Competing Neurobehavioral Decision Systems Model of SES-Related Health and Behavioral Disparities

    PubMed Central

    Bickel, W. K.; Moody, L.; Quisenberry, A. J.; Ramey, C. T.; Sheffer, C. E.

    2014-01-01

    We propose that executive dysfunction is an important component relating the socioeconomic status gradient of select health behaviors. We review and find evidence supporting an SES gradient associated with (1) negative health behaviors (e.g., obesity, excessive use of alcohol, tobacco and other substances), and (2) executive dysfunction. Moreover, the evidence supports that stress and insufficient cognitive resources contribute to executive dysfunction and that executive dysfunction is evident among individuals who smoke cigarettes, are obese, abuse alcohol, and use illicit drugs. Collectively these data supports the dual system model of cognitive control, referred to here as the Competing Neurobehavioral Decision Systems hypothesis. The implications of these relationships for intervention and social justice considerations are discussed. PMID:25008219

  7. The role of emotion in decision-making: a cognitive neuroeconomic approach towards understanding sexual risk behavior.

    PubMed

    Gutnik, Lily A; Hakimzada, A Forogh; Yoskowitz, Nicole A; Patel, Vimla L

    2006-12-01

    Models of decision-making usually focus on cognitive, situational, and socio-cultural variables in accounting for human performance. However, the emotional component is rarely addressed within these models. This paper reviews evidence for the emotional aspect of decision-making and its role within a new framework of investigation, called neuroeconomics. The new approach aims to build a comprehensive theory of decision-making, through the unification of theories and methods from economics, psychology, and neuroscience. In this paper, we review these integrative research methods and their applications to issues of public health, with illustrative examples from our research on young adults' safe sex practices. This approach promises to be valuable as a comprehensively descriptive and possibly, better predictive model for construction and customization of decision support tools for health professionals and consumers.

  8. Simulation modelling as a tool for knowledge mobilisation in health policy settings: a case study protocol.

    PubMed

    Freebairn, L; Atkinson, J; Kelly, P; McDonnell, G; Rychetnik, L

    2016-09-21

    Evidence-informed decision-making is essential to ensure that health programs and services are effective and offer value for money; however, barriers to the use of evidence persist. Emerging systems science approaches and advances in technology are providing new methods and tools to facilitate evidence-based decision-making. Simulation modelling offers a unique tool for synthesising and leveraging existing evidence, data and expert local knowledge to examine, in a robust, low risk and low cost way, the likely impact of alternative policy and service provision scenarios. This case study will evaluate participatory simulation modelling to inform the prevention and management of gestational diabetes mellitus (GDM). The risks associated with GDM are well recognised; however, debate remains regarding diagnostic thresholds and whether screening and treatment to reduce maternal glucose levels reduce the associated risks. A diagnosis of GDM may provide a leverage point for multidisciplinary lifestyle modification interventions. This research will apply and evaluate a simulation modelling approach to understand the complex interrelation of factors that drive GDM rates, test options for screening and interventions, and optimise the use of evidence to inform policy and program decision-making. The study design will use mixed methods to achieve the objectives. Policy, clinical practice and research experts will work collaboratively to develop, test and validate a simulation model of GDM in the Australian Capital Territory (ACT). The model will be applied to support evidence-informed policy dialogues with diverse stakeholders for the management of GDM in the ACT. Qualitative methods will be used to evaluate simulation modelling as an evidence synthesis tool to support evidence-based decision-making. Interviews and analysis of workshop recordings will focus on the participants' engagement in the modelling process; perceived value of the participatory process, perceived commitment, influence and confidence of stakeholders in implementing policy and program decisions identified in the modelling process; and the impact of the process in terms of policy and program change. The study will generate empirical evidence on the feasibility and potential value of simulation modelling to support knowledge mobilisation and consensus building in health settings.

  9. Data to Decisions: Creating a Culture of Model-Driven Drug Discovery.

    PubMed

    Brown, Frank K; Kopti, Farida; Chang, Charlie Zhenyu; Johnson, Scott A; Glick, Meir; Waller, Chris L

    2017-09-01

    Merck & Co., Inc., Kenilworth, NJ, USA, is undergoing a transformation in the way that it prosecutes R&D programs. Through the adoption of a "model-driven" culture, enhanced R&D productivity is anticipated, both in the form of decreased attrition at each stage of the process and by providing a rational framework for understanding and learning from the data generated along the way. This new approach focuses on the concept of a "Design Cycle" that makes use of all the data possible, internally and externally, to drive decision-making. These data can take the form of bioactivity, 3D structures, genomics, pathway, PK/PD, safety data, etc. Synthesis of high-quality data into models utilizing both well-established and cutting-edge methods has been shown to yield high confidence predictions to prioritize decision-making and efficiently reposition resources within R&D. The goal is to design an adaptive research operating plan that uses both modeled data and experiments, rather than just testing, to drive project decision-making. To support this emerging culture, an ambitious information management (IT) program has been initiated to implement a harmonized platform to facilitate the construction of cross-domain workflows to enable data-driven decision-making and the construction and validation of predictive models. These goals are achieved through depositing model-ready data, agile persona-driven access to data, a unified cross-domain predictive model lifecycle management platform, and support for flexible scientist-developed workflows that simplify data manipulation and consume model services. The end-to-end nature of the platform, in turn, not only supports but also drives the culture change by enabling scientists to apply predictive sciences throughout their work and over the lifetime of a project. This shift in mindset for both scientists and IT was driven by an early impactful demonstration of the potential benefits of the platform, in which expert-level early discovery predictive models were made available from familiar desktop tools, such as ChemDraw. This was built using a workflow-driven service-oriented architecture (SOA) on top of the rigorous registration of all underlying model entities.

  10. Use of declarative statements in creating and maintaining computer-interpretable knowledge bases for guideline-based care.

    PubMed

    Tu, Samson W; Hrabak, Karen M; Campbell, James R; Glasgow, Julie; Nyman, Mark A; McClure, Robert; McClay, James; Abarbanel, Robert; Mansfield, James G; Martins, Susana M; Goldstein, Mary K; Musen, Mark A

    2006-01-01

    Developing computer-interpretable clinical practice guidelines (CPGs) to provide decision support for guideline-based care is an extremely labor-intensive task. In the EON/ATHENA and SAGE projects, we formulated substantial portions of CPGs as computable statements that express declarative relationships between patient conditions and possible interventions. We developed query and expression languages that allow a decision-support system (DSS) to evaluate these statements in specific patient situations. A DSS can use these guideline statements in multiple ways, including: (1) as inputs for determining preferred alternatives in decision-making, and (2) as a way to provide targeted commentaries in the clinical information system. The use of these declarative statements significantly reduces the modeling expertise and effort required to create and maintain computer-interpretable knowledge bases for decision-support purpose. We discuss possible implications for sharing of such knowledge bases.

  11. Linking guidelines to Electronic Health Record design for improved chronic disease management.

    PubMed

    Barretto, Sistine A; Warren, Jim; Goodchild, Andrew; Bird, Linda; Heard, Sam; Stumptner, Markus

    2003-01-01

    The promise of electronic decision support to promote evidence based practice remains elusive in the context of chronic disease management. We examine the problem of achieving a close relationship of Electronic Health Record (EHR) content to other components of a clinical information system (guidelines, decision support and workflow), particularly linking the decisions made by providers back to the guidelines. We use the openEHR architecture, which allows extension of a core Reference Model via Archetypes to refine the detailed information recording options for specific classes of encounter. We illustrate the use of openEHR for tracking the relationship of a series of clinical encounters to a guideline via a case study of guideline-compliant treatment of hypertension in diabetes. This case study shows the contribution guideline content can have on problem-specific EHR structure and demonstrates the potential for a constructive interaction of electronic decision support and the EHR.

  12. Linking Guidelines to Electronic Health Record Design for Improved Chronic Disease Management

    PubMed Central

    Barretto, Sistine A.; Warren, Jim; Goodchild, Andrew; Bird, Linda; Heard, Sam; Stumptner, Markus

    2003-01-01

    The promise of electronic decision support to promote evidence based practice remains elusive in the context of chronic disease management. We examine the problem of achieving a close relationship of Electronic Health Record (EHR) content to other components of a clinical information system (guidelines, decision support and work-flow), particularly linking the decisions made by providers back to the guidelines. We use the openEHR architecture, which allows extension of a core Reference Model via Archetypes to refine the detailed information recording options for specific classes of encounter. We illustrate the use of openEHR for tracking the relationship of a series of clinical encounters to a guideline via a case study of guideline-compliant treatment of hypertension in diabetes. This case study shows the contribution guideline content can have on problem-specific EHR structure and demonstrates the potential for a constructive interaction of electronic decision support and the EHR. PMID:14728135

  13. Understanding the stakeholders' intention to use economic decision-support tools: A cross-sectional study with the tobacco return on investment tool.

    PubMed

    Cheung, Kei Long; Evers, Silvia M A A; Hiligsmann, Mickaël; Vokó, Zoltán; Pokhrel, Subhash; Jones, Teresa; Muñoz, Celia; Wolfenstetter, Silke B; Józwiak-Hagymásy, Judit; de Vries, Hein

    2016-01-01

    Despite an increased number of economic evaluations of tobacco control interventions, the uptake by stakeholders continues to be limited. Understanding the underlying mechanism in adopting such economic decision-support tools by stakeholders is therefore important. By applying the I-Change Model, this study aims to identify which factors determine potential uptake of an economic decision-support tool, i.e., the Return on Investment tool. Stakeholders (decision-makers, purchasers of services/pharma products, professionals/service providers, evidence generators and advocates of health promotion) were interviewed in five countries, using an I-Change based questionnaire. MANOVA's were conducted to assess differences between intenders and non-intenders regarding beliefs. A multiple regression analysis was conducted to identify the main explanatory variables of intention to use an economic decision-support tool. Ninety-three stakeholders participated. Significant differences in beliefs were found between non-intenders and intenders: risk perception, attitude, social support, and self-efficacy towards using the tool. Regression showed that demographics, pre-motivational, and motivational factors explained 69% of the variation in intention. This study is the first to provide a theoretical framework to understand differences in beliefs between stakeholders who do or do not intend to use economic decision-support tools, and empirically corroborating the framework. This contributes to our understanding of the facilitators and barriers to the uptake of these studies. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Decision-case mix model for analyzing variation in cesarean rates.

    PubMed

    Eldenburg, L; Waller, W S

    2001-01-01

    This article contributes a decision-case mix model for analyzing variation in c-section rates. Like recent contributions to the literature, the model systematically takes into account the effect of case mix. Going beyond past research, the model highlights differences in physician decision making in response to obstetric factors. Distinguishing the effects of physician decision making and case mix is important in understanding why c-section rates vary and in developing programs to effect change in physician behavior. The model was applied to a sample of deliveries at a hospital where physicians exhibited considerable variation in their c-section rates. Comparing groups with a low versus high rate, the authors' general conclusion is that the difference in physician decision tendencies (to perform a c-section), in response to specific obstetric factors, is at least as important as case mix in explaining variation in c-section rates. The exact effects of decision making versus case mix depend on how the model application defines the obstetric condition of interest and on the weighting of deliveries by their estimated "risk of Cesarean." The general conclusion is supported by an additional analysis that uses the model's elements to predict individual physicians' annual c-section rates.

  15. Disaster Management with a Next Generation Disaster Decision Support System

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    As populations become increasingly concentrated in large cities, the world is experiencing an inevitably growing trend towards the urbanisation of disasters. Scientists have contributed significant advances in understanding the geophysical causes of natural hazards and have developed sophisticated tools to predict their effects; while, much less attention has been devoted to tools that increase situational awareness, facilitate leadership, provide effective communication channels and data flow and enhance the cognitive abilities of decision makers and first responders. In this paper, we envisioned the capabilities of a next generation disaster decision support system and hence proposed a state-of-the-art system architecture design to facilitate the decision making process in natural catastrophes such as flood and bushfire by utilising a combination of technologies for multi-channel data aggregation, disaster modelling, visualisation and optimisation. Moreover, we put our thoughts into action by implementing an Intelligent Disaster Decision Support System (IDDSS). The developed system can easily plug in to external disaster models and aggregate large amount of heterogeneous data from government agencies, sensor networks, and crowd sourcing platforms in real-time to enhance the situational awareness of decision makers and offer them a comprehensive understanding of disaster impacts from diverse perspectives such as environment, infrastructure and economy, etc. Sponsored by the Australian Government and the Victorian Department of Justice (Australia), the system was built upon a series of open-source frameworks (see attached figure) with four key components: data management layer, model application layer, processing service layer and presentation layer. It has the potential to be adopted by a range of agencies across Australian jurisdictions to assist stakeholders in accessing, sharing and utilising available information in their management of disaster events.

  16. ARES: A System for Real-Time Operational and Tactical Decision Support

    DTIC Science & Technology

    1986-12-01

    In B]LE LCLGf. 9 NAVAL POSTGRADUATE SCHOOL Monterey, California Vi,-. %*.. THESIS - ’ A RE S A SYSTEM -OR REAL- 1I I .-.. --- OPERATIONAL AND...able) aval Postgraduate School 54 Naval Postgraduate School NN DRESS (City,. State,. and ZIP Code) 7b ADDRESS (City,. State,. and ZIP Code...SUBJECT TERMS (Continue on reverse if necessaty and identify by block number) LD GROUP SUB-GROUP Decision Support System, Logistics Model, Operational

  17. Warfighter decision making performance analysis as an investment priority driver

    NASA Astrophysics Data System (ADS)

    Thornley, David J.; Dean, David F.; Kirk, James C.

    2010-04-01

    Estimating the relative value of alternative tactics, techniques and procedures (TTP) and information systems requires measures of the costs and benefits of each, and methods for combining and comparing those measures. The NATO Code of Best Practice for Command and Control Assessment explains that decision making quality would ideally be best assessed on outcomes. Lessons learned in practice can be assessed statistically to support this, but experimentation with alternate measures in live conflict is undesirable. To this end, the development of practical experimentation to parameterize effective constructive simulation and analytic modelling for system utility prediction is desirable. The Land Battlespace Systems Department of Dstl has modeled human development of situational awareness to support constructive simulation by empirically discovering how evidence is weighed according to circumstance, personality, training and briefing. The human decision maker (DM) provides the backbone of the information processing activity associated with military engagements because of inherent uncertainty associated with combat operations. To develop methods for representing the process in order to assess equipment and non-technological interventions such as training and TTPs we are developing componentized or modularized timed analytic stochastic model components and instruments as part of a framework to support quantitative assessment of intelligence production and consumption methods in a human decision maker-centric mission space. In this paper, we formulate an abstraction of the human intelligence fusion process from the Defence Science and Technology Laboratory's (Dstl's) INCIDER model to include in our framework, and synthesize relevant cost and benefit characteristics.

  18. Conceptual and Empirical Approaches to Financial Decision-making by Older Adults: Results from a Financial Decision-Making Rating Scale

    PubMed Central

    Lichtenberg, Peter A.; Ocepek-Welikson, Katja; Ficker, Lisa J.; Gross, Evan; Rahman-Filipiak, Analise; Teresi, Jeanne A.

    2017-01-01

    Objectives The objectives of this study were threefold: (1) to empirically test the conceptual model proposed by the Lichtenberg Financial Decision Rating Scale (LFDRS); (2) to examine the psychometric properties of the LFDRS contextual factors in financial decision-making by investigating both the reliability and convergent validity of the subscales and total scale, and (3) extending previous work on the scale through the collection of normative data on financial decision-making. Methods A convenience sample of 200 independent function and community dwelling older adults underwent cognitive and financial management testing and were interviewed using the LFDRS. Confirmatory factor analysis, internal consistency measures, and hierarchical regression were used in a sample of 200 community-dwelling older adults, all of whom were making or had recently made a significant financial decision. Results Results confirmed the scale’s reliability and supported the conceptual model. Convergent validity analyses indicate that as hypothesized, cognition is a significant predictor of risk scores. Financial management scores, however, were not predictive of decision-making risk scores. Conclusions The psychometric properties of the LFDRS support the scale’s use as it was proposed in Lichtenberg et al., 2015. Clinical Implications The LFDRS instructions and scale are provided for clinicians to use in financial capacity assessments. PMID:29077531

  19. A decision support system for real-time hydropower scheduling in a competitive power market environment

    NASA Astrophysics Data System (ADS)

    Shawwash, Ziad Khaled Elias

    2000-10-01

    The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson learned from developing and implementing the system was that there is no alternative to working very closely with the intended end-users of the system, and with the people who have deep knowledge, experience and understanding of how the system is and should be operated.

  20. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties

    NASA Astrophysics Data System (ADS)

    Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.

    2017-12-01

    Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.

  1. Characterizing species at risk. II: Using Bayesian belief networks as decision support tools to determine species conservation categories under the Northwest Forest Plan.

    Treesearch

    B.G. Marcot; P.A. Hohenlohe; S. Morey; R. Holmes; R. Molina; M.C. Turley; M.H. Huff; J.A. Laurence

    2006-01-01

    We developed decision-aiding models as Bayesian belief networks (BBNs) that represented evaluation guidelines used to determine the appropriate conservation of hundreds of potentially rare species on federally-administered lands in the Pacific Northwest United States. The models were used in a structured assessment and paneling procedure as part of an adaptive...

  2. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    PubMed Central

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355

  3. The disruption management model.

    PubMed

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  4. Creating a process for incorporating epidemiological modelling into outbreak management decisions.

    PubMed

    Akselrod, Hana; Mercon, Monica; Kirkeby Risoe, Petter; Schlegelmilch, Jeffrey; McGovern, Joanne; Bogucki, Sandy

    2012-01-01

    Modern computational models of infectious diseases greatly enhance our ability to understand new infectious threats and assess the effects of different interventions. The recently-released CDC Framework for Preventing Infectious Diseases calls for increased use of predictive modelling of epidemic emergence for public health preparedness. Currently, the utility of these technologies in preparedness and response to outbreaks is limited by gaps between modelling output and information requirements for incident management. The authors propose an operational structure that will facilitate integration of modelling capabilities into action planning for outbreak management, using the Incident Command System (ICS) and Synchronization Matrix framework. It is designed to be adaptable and scalable for use by state and local planners under the National Response Framework (NRF) and Emergency Support Function #8 (ESF-8). Specific epidemiological modelling requirements are described, and integrated with the core processes for public health emergency decision support. These methods can be used in checklist format to align prospective or real-time modelling output with anticipated decision points, and guide strategic situational assessments at the community level. It is anticipated that formalising these processes will facilitate translation of the CDC's policy guidance from theory to practice during public health emergencies involving infectious outbreaks.

  5. An Evaluation of the Decision-Making Capacity Assessment Model.

    PubMed

    Brémault-Phillips, Suzette C; Parmar, Jasneet; Friesen, Steven; Rogers, Laura G; Pike, Ashley; Sluggett, Bryan

    2016-09-01

    The Decision-Making Capacity Assessment (DMCA) Model includes a best-practice process and tools to assess DMCA, and implementation strategies at the organizational and assessor levels to support provision of DMCAs across the care continuum. A Developmental Evaluation of the DMCA Model was conducted. A mixed methods approach was used. Survey ( N = 126) and focus group ( N = 49) data were collected from practitioners utilizing the Model. Strengths of the Model include its best-practice and implementation approach, applicability to independent practitioners and inter-professional teams, focus on training/mentoring to enhance knowledge/skills, and provision of tools/processes. Post-training, participants agreed that they followed the Model's guiding principles (90%), used problem-solving (92%), understood discipline-specific roles (87%), were confident in their knowledge of DMCAs (75%) and pertinent legislation (72%), accessed consultative services (88%), and received management support (64%). Model implementation is impeded when role clarity, physician engagement, inter-professional buy-in, accountability, dedicated resources, information sharing systems, and remuneration are lacking. Dedicated resources, job descriptions inclusive of DMCAs, ongoing education/mentoring supports, access to consultative services, and appropriate remuneration would support implementation. The DMCA Model offers practitioners, inter-professional teams, and organizations a best-practice and implementation approach to DMCAs. Addressing barriers and further contextualizing the Model would be warranted.

  6. Serial, parallel and hierarchical decision making in primates

    PubMed Central

    Zylberberg, Ariel; Lorteije, Jeannette AM; Ouellette, Brian G; De Zeeuw, Chris I; Sigman, Mariano; Roelfsema, Pieter

    2017-01-01

    The study of decision-making has mainly focused on isolated decisions where choices are associated with motor actions. However, problem-solving often involves considering a hierarchy of sub-decisions. In a recent study (Lorteije et al. 2015), we reported behavioral and neuronal evidence for hierarchical decision making in a task with a small decision tree. We observed a first phase of parallel evidence integration for multiple sub-decisions, followed by a phase in which the overall strategy formed. It has been suggested that a 'flat' competition between the ultimate motor actions might also explain these results. A reanalysis of the data does not support the critical predictions of flat models. We also examined the time-course of decision making in other, related tasks and report conditions where evidence integration for successive decisions is decoupled, which excludes flat models. We conclude that the flexibility of decision-making implies that the strategies are genuinely hierarchical. DOI: http://dx.doi.org/10.7554/eLife.17331.001 PMID:28648172

  7. Integrating local, expert, and practical knowledge in community remediation and revitalization

    EPA Science Inventory

    Researchers and natural resource managers often develop tools and methods to facilitate the inclusion of science in local environmental decision-making. The eternal hope is to find that model or concept that provides the “right” information to support these decisions....

  8. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the transmission network operator depends on the characteristic of the power market and the topology of the transmission network. Also, the second model, which considers interactions between generation and transmission sectors, yields higher social welfare in the electric power market, than the third model where generation firms and transmission network operator make investment decisions separately.

  9. A Five- Year CMAQ Model Performance for Wildfires and ...

    EPA Pesticide Factsheets

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. Two components of the biomass burning inventory, wildfires and prescribed fires are routinely estimated in the national emissions inventory. However, there is a large amount of uncertainty in the development of these emission inventory sectors. We have completed a 5 year set of CMAQ model simulations (2008-2012) in which we have simulated regional air quality with and without the wildfire and prescribed fire inventory. We will examine CMAQ model performance over regions with significant PM2.5 and Ozone contribution from prescribed fires and wildfires. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  10. Anticoagulation therapy advisor: a decision-support system for heparin therapy during ECMO.

    PubMed Central

    Peverini, R. L.; Sale, M.; Rhine, W. D.; Fagan, L. M.; Lenert, L. A.

    1992-01-01

    We present a case study describing our development of a mathematical model to control a clinical parameter in a patient--in this case, the degree of anticoagulation during extracorporeal membrane oxygenation (ECMO) support. During ECMO therapy, an anticoagulant agent (heparin) is administered to prevent thrombosis. Under- or over-coagulation can have grave consequences. To improve control of anticoagulation, we developed a pharmacokinetic-pharmacodynamic (PK-PD) model that predicts activated clotting times (ACT) using the NONMEM program. We then integrated this model into a decision-support system, and validated it with an independent data set. The population model had a mean absolute error of prediction for ACT values of 33.5 seconds, with a mean bias in estimation of -14.3 seconds. Individualization of model-parameter estimates using nonlinear regression improved the absolute error prediction to 25.5 seconds, and lowered the mean bias to -3.1 seconds. The PK-PD model is coupled with software for heuristic interpretation of model results to provide a complete environment for the management of anticoagulation. PMID:1482937

  11. Effects of imperfect automation on decision making in a simulated command and control task.

    PubMed

    Rovira, Ericka; McGarry, Kathleen; Parasuraman, Raja

    2007-02-01

    Effects of four types of automation support and two levels of automation reliability were examined. The objective was to examine the differential impact of information and decision automation and to investigate the costs of automation unreliability. Research has shown that imperfect automation can lead to differential effects of stages and levels of automation on human performance. Eighteen participants performed a "sensor to shooter" targeting simulation of command and control. Dependent variables included accuracy and response time of target engagement decisions, secondary task performance, and subjective ratings of mental work-load, trust, and self-confidence. Compared with manual performance, reliable automation significantly reduced decision times. Unreliable automation led to greater cost in decision-making accuracy under the higher automation reliability condition for three different forms of decision automation relative to information automation. At low automation reliability, however, there was a cost in performance for both information and decision automation. The results are consistent with a model of human-automation interaction that requires evaluation of the different stages of information processing to which automation support can be applied. If fully reliable decision automation cannot be guaranteed, designers should provide users with information automation support or other tools that allow for inspection and analysis of raw data.

  12. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less

  13. Middle Mississippi River decision support system: user's manual

    USGS Publications Warehouse

    Rohweder, Jason J.; Zigler, Steven J.; Fox, Timothy J.; Hulse, Steven N.

    2005-01-01

    This user's manual describes the Middle Mississippi River Decision Support System (MMRDSS) and gives detailed examples on its use. The MMRDSS provides a framework to assist decision makers regarding natural resource issues in the Middle Mississippi River floodplain. The MMRDSS is designed to provide users with a spatially explicit tool for tasks, such as inventorying existing knowledge, developing models to investigate the potential effects of management decisions, generating hypotheses to advance scientific understanding, and developing scientifically defensible studies and monitoring. The MMRDSS also includes advanced tools to assist users in evaluating differences in complexity, connectivity, and structure of aquatic habitats among river reaches. The Environmental Systems Research Institute ArcView 3.x platform was used to create and package the data and tools of the MMRDSS.

  14. Decision-Oriented Health Technology Assessment: One Step Forward in Supporting the Decision-Making Process in Hospitals.

    PubMed

    Ritrovato, Matteo; Faggiano, Francesco C; Tedesco, Giorgia; Derrico, Pietro

    2015-06-01

    This article outlines the Decision-Oriented Health Technology Assessment: a new implementation of the European network for Health Technology Assessment Core Model, integrating the multicriteria decision-making analysis by using the analytic hierarchy process to introduce a standardized methodological approach as a valued and shared tool to support health care decision making within a hospital. Following the Core Model as guidance (European network for Health Technology Assessment. HTA core model for medical and surgical interventions. Available from: http://www.eunethta.eu/outputs/hta-core-model-medical-and-surgical-interventions-10r. [Accessed May 27, 2014]), it is possible to apply the analytic hierarchy process to break down a problem into its constituent parts and identify priorities (i.e., assigning a weight to each part) in a hierarchical structure. Thus, it quantitatively compares the importance of multiple criteria in assessing health technologies and how the alternative technologies perform in satisfying these criteria. The verbal ratings are translated into a quantitative form by using the Saaty scale (Saaty TL. Decision making with the analytic hierarchy process. Int J Serv Sci 2008;1:83-98). An eigenvectors analysis is used for deriving the weights' systems (i.e., local and global weights' system) that reflect the importance assigned to the criteria and the priorities related to the performance of the alternative technologies. Compared with the Core Model, this methodological approach supplies a more timely as well as contextualized evidence for a specific technology, making it possible to obtain data that are more relevant and easier to interpret, and therefore more useful for decision makers to make investment choices with greater awareness. We reached the conclusion that although there may be scope for improvement, this implementation is a step forward toward the goal of building a "solid bridge" between the scientific evidence and the final decision maker's choice. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn, provide insight into the effect of various faults or failures on the risk and failure drivers of the system and the likelihood of possible end case scenarios, thereby facilitating the decision making process during operations. This paper describes the process of adjusting PRA models based on observed spacecraft data, on one hand, and utilizing the models for insight into the future system behavior on the other hand. While PRA models are typically used as a decision aid during the design phase of a space mission, we advocate adjusting them based on the observed behavior of the spacecraft and utilizing them for decision support during the operations phase.

  16. Theory-based design and field-testing of an intervention to support women choosing surgery for breast cancer: BresDex.

    PubMed

    Sivell, Stephanie; Marsh, William; Edwards, Adrian; Manstead, Antony S R; Clements, Alison; Elwyn, Glyn

    2012-02-01

    Design and undertake usability and field-testing evaluation of a theory-guided decision aid (BresDex) in supporting women choosing surgery for early breast cancer. An extended Theory of Planned Behavior (TPB) and the Common Sense Model of Illness Representations (CSM) guided the design of BresDex. BresDex was evaluated and refined across 3 cycles by interviewing 6 women without personal history of breast cancer, 8 women with personal history of breast cancer who had completed treatment and 11 women newly diagnosed with breast cancer. Participants were interviewed for views on content, presentation (usability) and perceived usefulness towards deciding on treatment (utility). Framework analysis was used, guided by the extended TPB and the CSM. BresDex was positively received in content and presentation (usability). It appeared an effective support to decision-making and useful source for further information, particularly in clarifying attitudes, social norms and perceived behavioral control, and presenting consequences of decisions (utility). This study illustrates the potential benefit of the extended TPB and CSM in designing a decision aid to support women choosing breast cancer surgery. BresDex could provide decision-making support and serve as an additional source of information, to complement the care received from the clinical team. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  18. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  19. A non-linear optimization programming model for air quality planning including co-benefits for GHG emissions.

    PubMed

    Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa

    2018-04-15

    This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  1. Towards knowledge-based systems in clinical practice: development of an integrated clinical information and knowledge management support system.

    PubMed

    Kalogeropoulos, Dimitris A; Carson, Ewart R; Collinson, Paul O

    2003-09-01

    Given that clinicians presented with identical clinical information will act in different ways, there is a need to introduce into routine clinical practice methods and tools to support the scientific homogeneity and accountability of healthcare decisions and actions. The benefits expected from such action include an overall reduction in cost, improved quality of care, patient and public opinion satisfaction. Computer-based medical data processing has yielded methods and tools for managing the task away from the hospital management level and closer to the desired disease and patient management level. To this end, advanced applications of information and disease process modelling technologies have already demonstrated an ability to significantly augment clinical decision making as a by-product. The wide-spread acceptance of evidence-based medicine as the basis of cost-conscious and concurrently quality-wise accountable clinical practice suffices as evidence supporting this claim. Electronic libraries are one-step towards an online status of this key health-care delivery quality control environment. Nonetheless, to date, the underlying information and knowledge management technologies have failed to be integrated into any form of pragmatic or marketable online and real-time clinical decision making tool. One of the main obstacles that needs to be overcome is the development of systems that treat both information and knowledge as clinical objects with same modelling requirements. This paper describes the development of such a system in the form of an intelligent clinical information management system: a system which at the most fundamental level of clinical decision support facilitates both the organised acquisition of clinical information and knowledge and provides a test-bed for the development and evaluation of knowledge-based decision support functions.

  2. Informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness.

    PubMed

    Herasevich, Vitaly; Pickering, Brian W; Dong, Yue; Peters, Steve G; Gajic, Ognjen

    2010-03-01

    To develop and validate an informatics infrastructure for syndrome surveillance, decision support, reporting, and modeling of critical illness. Using open-schema data feeds imported from electronic medical records (EMRs), we developed a near-real-time relational database (Multidisciplinary Epidemiology and Translational Research in Intensive Care Data Mart). Imported data domains included physiologic monitoring, medication orders, laboratory and radiologic investigations, and physician and nursing notes. Open database connectivity supported the use of Boolean combinations of data that allowed authorized users to develop syndrome surveillance, decision support, and reporting (data "sniffers") routines. Random samples of database entries in each category were validated against corresponding independent manual reviews. The Multidisciplinary Epidemiology and Translational Research in Intensive Care Data Mart accommodates, on average, 15,000 admissions to the intensive care unit (ICU) per year and 200,000 vital records per day. Agreement between database entries and manual EMR audits was high for sex, mortality, and use of mechanical ventilation (kappa, 1.0 for all) and for age and laboratory and monitored data (Bland-Altman mean difference +/- SD, 1(0) for all). Agreement was lower for interpreted or calculated variables, such as specific syndrome diagnoses (kappa, 0.5 for acute lung injury), duration of ICU stay (mean difference +/- SD, 0.43+/-0.2), or duration of mechanical ventilation (mean difference +/- SD, 0.2+/-0.9). Extraction of essential ICU data from a hospital EMR into an open, integrative database facilitates process control, reporting, syndrome surveillance, decision support, and outcome research in the ICU.

  3. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  4. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less

  5. A Qualitative Study of How Health Coaches Support Patients in Making Health-Related Decisions and Behavioral Changes

    PubMed Central

    Thom, David H.; Wolf, Jessica; Gardner, Heather; DeVore, Denise; Lin, Michael; Ma, Andy; Ibarra-Castro, Ana; Saba, George

    2016-01-01

    PURPOSE Although health coaches are a growing resource for supporting patients in making health decisions, we know very little about the experience of health. We undertook a qualitative study of how health coaches support patients in making decisions and implementing changes to improve their health. METHODS We conducted 6 focus groups (3 in Spanish and 3 in English) with 25 patients and 5 friends or family members, followed by individual interviews with 42 patients, 17 family members, 17 health coaches, and 20 clinicians. Audio recordings were transcribed and analyzed by at least 2 members of the study team in ATLAS.ti using principles of grounded theory to identify themes and the relationship between them. RESULTS We identified 7 major themes that were related to each other in the final conceptual model. Similarities between health coaches and patients and the time health coaches spent with patients helped establish the health coach–patient relationship. The coach-patient relationship allowed for, and was further strengthened by, 4 themes of key coaching activities: education, personal support, practical support, and acting as a bridge between patients and clinicians. CONCLUSIONS We identified a conceptual model that supports the development of a strong relationship, which in turn provides the basis for effective coaching. These results can be used to design health coach training curricula and to support health coaches in practice. PMID:28376437

  6. A Digital Framework to Support Providers and Patients in Diabetes Related Behavior Modification.

    PubMed

    Abidi, Samina; Vallis, Michael; Piccinini-Vallis, Helena; Imran, Syed Ali; Abidi, Syed Sibte Raza

    2017-01-01

    We present Diabetes Web-Centric Information and Support Environment (D-WISE) that features: (a) Decision support tool to assist family physicians to administer Behavior Modification (BM) strategies to patients; and (b) Patient BM application that offers BM strategies and motivational interventions to engage patients. We take a knowledge management approach, using semantic web technologies, to model the social cognition theory constructs, Canadian diabetes guidelines and BM protocols used locally, in terms of a BM ontology that drives the BM decision support to physicians and BM strategy adherence monitoring and messaging to patients. We present the qualitative analysis of D-WISE usability by both physicians and patients.

  7. Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2011-01-01

    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time. PMID:21415911

  8. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

    PubMed

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C

    2011-01-01

    The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

  9. Decision support system for health care resources allocation

    PubMed Central

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-01-01

    Background A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. Aim The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. Methods To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. Results A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. Conclusion In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff. PMID:28848645

  10. Decision support system for health care resources allocation.

    PubMed

    Sebaa, Abderrazak; Nouicer, Amina; Tari, AbdelKamel; Tarik, Ramtani; Abdellah, Ouhab

    2017-06-01

    A study about healthcare resources can improve decisions regarding the allotment and mobilization of medical resources and to better guide future investment in the health sector. The aim of this work was to design and implement a decision support system to improve medical resources allocation of Bejaia region. To achieve the retrospective cohort study, we integrated existing clinical databases from different Bejaia department health sector institutions (an Algerian department) to collect information about patients from January 2015 through December 2015. Data integration was performed in a data warehouse using the multi-dimensional model and OLAP cube. During implementation, we used Microsoft SQL server 2012 and Microsoft Excel 2010. A medical decision support platform was introduced, and was implemented during the planning stages allowing the management of different medical orientations, it provides better apportionment and allotment of medical resources, and ensures that the allocation of health care resources has optimal effects on improving health. In this study, we designed and implemented a decision support system which would improve health care in Bejaia department to especially assist in the selection of the optimum location of health center and hospital, the specialty of the health center, the medical equipment and the medical staff.

  11. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations.

    PubMed

    Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-06-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

  12. Improved Hydrological Decision Support System for the Lower Mekong River Basin Using Satellite-Based Earth Observations

    PubMed Central

    Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat

    2018-01-01

    Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116

  13. An Evaluation of the Decision-Making Capacity Assessment Model

    PubMed Central

    Brémault-Phillips, Suzette C.; Parmar, Jasneet; Friesen, Steven; Rogers, Laura G.; Pike, Ashley; Sluggett, Bryan

    2016-01-01

    Background The Decision-Making Capacity Assessment (DMCA) Model includes a best-practice process and tools to assess DMCA, and implementation strategies at the organizational and assessor levels to support provision of DMCAs across the care continuum. A Developmental Evaluation of the DMCA Model was conducted. Methods A mixed methods approach was used. Survey (N = 126) and focus group (N = 49) data were collected from practitioners utilizing the Model. Results Strengths of the Model include its best-practice and implementation approach, applicability to independent practitioners and inter-professional teams, focus on training/mentoring to enhance knowledge/skills, and provision of tools/processes. Post-training, participants agreed that they followed the Model’s guiding principles (90%), used problem-solving (92%), understood discipline-specific roles (87%), were confident in their knowledge of DMCAs (75%) and pertinent legislation (72%), accessed consultative services (88%), and received management support (64%). Model implementation is impeded when role clarity, physician engagement, inter-professional buy-in, accountability, dedicated resources, information sharing systems, and remuneration are lacking. Dedicated resources, job descriptions inclusive of DMCAs, ongoing education/mentoring supports, access to consultative services, and appropriate remuneration would support implementation. Conclusions The DMCA Model offers practitioners, inter-professional teams, and organizations a best-practice and implementation approach to DMCAs. Addressing barriers and further contextualizing the Model would be warranted. PMID:27729947

  14. GIS, modeling, and politics: on the tensions of collaborative decision support.

    PubMed

    Ramsey, Kevin

    2009-05-01

    A tension exists at the heart of efforts to support collaboration with GIS. Many scholars and practitioners seek to support two separate objectives: (1) problem solving and (2) the exploration of diverse problem understandings. GIS applications designed for problem solving often pre-define the problem space by structuring the kind of information that can be considered or the way in which the problem is conceptualized. In doing so, they necessarily privilege particular perspectives and understandings of the problem while marginalizing others. As a result, these initiatives undermine their second objective. This is problematic in the context of contentious environmental decisions which have broad-reaching impacts on people with diverse perspectives and interests. In such contexts, I argue that equitable collaboration is impossible without first emphasizing the exploration of diverse problem understandings. I support this argument theoretically by turning to the literatures on collaborative planning and spatial decision support, and empirically in my analysis of a case study of an effort to construct a GIS for supporting collaborative water resource management in rural Idaho. Reflecting upon the case, I provide a set of recommendations to those seeking to better negotiate the tensions of supporting collaboration with GIS in the context of contentious environmental and natural resource decisions.

  15. HNS-MS : Improving Member States preparedness to face an HNS pollution of the Marine System

    NASA Astrophysics Data System (ADS)

    Legrand, Sebastien; Le Floch, Stéphane; Aprin, Laurent; Parthenay, Valérie; Donnay, Eric; Parmentier, Koen; Ovidio, Fabrice; Schallier, Ronny; Poncet, Florence; Chataing, Sophie; Poupon, Emmanuelle; Hellouvry, Yann-Hervé

    2016-04-01

    When dealing with a HNS pollution incident, one of the priority requirements is the identification of the hazard and an assessment of the risk posed to the public and responder safety, the environment and socioeconomic assets upon which a state or coastal community depend. The primary factors which determine the safety, environmental and socioeconomic impact of the released substance(s) relate to their physico-chemical properties and fate in the environment. Until now, preparedness actions at various levels have primarily aimed at classifying the general environmental or public health hazard of an HNS, or at performing a risk analysis of HNS transported in European marine regions. Operational datasheets have been (MIDSIS-TROCS) or are being (MAR-CIS) developed collating detailed, substance-specific information for responders and covering information needs at the first stage of an incident. However, contrary to oil pollution preparedness and response tools, only few decision-support tools used by Member State authorities (Coastguard agencies or other) integrate 3D models that are able to simulate the drift, fate and behaviour of HNS spills in the marine environment. When they do, they usually consider simplified or steady-state environmental conditions. Moreover, the above-mentioned available HNS information is currently not sufficiently detailed or not suitably classified to be used as an input for an advanced HNS support decision tool. HNS-MS aims at developing a 'one-stop shop' integrated HNS decision-support tool that is able to predict the drift, behaviour and Fate of HNS spills under realistic environmental conditions and at providing key product information - drawing upon and in complement to existing studies and databases - to improve the understanding and evaluation of a HNS spill situation in the field and the environmental and safety-related issues at stake. The 3D HNS drift and fate model and decision-support tool will also be useful at the preparedness stage. The expected results will be an operational HNS decision-support tool (prototype) for the Bonn Agreement area that can also be viewed as a demonstrator tool for other European marine regions. The developed tool will have a similar operational level as OSERIT, the Belgian oil spill drift model. The HNS decision-support tool will integrate the following features: 1. A database containing the physico-chemical parameters needed to compute the behaviour in the marine environment of 100+ relevant HNS; 2. A database of environmental and socioeconomic HNS-sensitive features; 3. A three dimensional HNS spill drift and fate model able to simulate HNS behaviour in the marine environment (including floaters, sinkers, evaporators and dissolvers). 4. A user-friendly web-based interface allowing Coastguard stations to launch a HNS drift simulation and visualize post-processed results in support of an incident evaluation and decision-making process. In this contribution, we will present the methodology followed to develop these four features.

  16. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods.

    PubMed

    Skjerdal, Taran; Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; de Cecare, Alessandra; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Trevisiani, Marcello; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine

    2017-01-01

    A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes , quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as "good"; "sufficient"; or "corrective action needed" based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users.

  17. The STARTEC Decision Support Tool for Better Tradeoffs between Food Safety, Quality, Nutrition, and Costs in Production of Advanced Ready-to-Eat Foods

    PubMed Central

    Gefferth, Andras; Spajic, Miroslav; Estanga, Edurne Gaston; Vitali, Silvia; Pasquali, Frederique; Bovo, Federica; Manfreda, Gerardo; Mancusi, Rocco; Tessema, Girum Tadesse; Fagereng, Tone; Moen, Lena Haugland; Lyshaug, Lars; Koidis, Anastasios; Delgado-Pando, Gonzalo; Stratakos, Alexandros Ch.; Boeri, Marco; From, Cecilie; Syed, Hyat; Muccioli, Mirko; Mulazzani, Roberto; Halbert, Catherine

    2017-01-01

    A prototype decision support IT-tool for the food industry was developed in the STARTEC project. Typical processes and decision steps were mapped using real life production scenarios of participating food companies manufacturing complex ready-to-eat foods. Companies looked for a more integrated approach when making food safety decisions that would align with existing HACCP systems. The tool was designed with shelf life assessments and data on safety, quality, and costs, using a pasta salad meal as a case product. The process flow chart was used as starting point, with simulation options at each process step. Key parameters like pH, water activity, costs of ingredients and salaries, and default models for calculations of Listeria monocytogenes, quality scores, and vitamin C, were placed in an interactive database. Customization of the models and settings was possible on the user-interface. The simulation module outputs were provided as detailed curves or categorized as “good”; “sufficient”; or “corrective action needed” based on threshold limit values set by the user. Possible corrective actions were suggested by the system. The tool was tested and approved by end-users based on selected ready-to-eat food products. Compared to other decision support tools, the STARTEC-tool is product-specific and multidisciplinary and includes interpretation and targeted recommendations for end-users. PMID:29457031

  18. SAMPLING PROTOCOLS TO SUPPORT CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...

  19. RESTSIM: A Simulation Model That Highlights Decision Making under Conditions of Uncertainty.

    ERIC Educational Resources Information Center

    Zinkhan, George M.; Taylor, James R.

    1983-01-01

    Describes RESTSIM, an interactive computer simulation program for graduate and upper-level undergraduate management, marketing, and retailing courses, which introduces naive users to simulation as a decision support technique, and provides a vehicle for studying various statistical procedures for evaluating simulation output. (MBR)

  20. Predicting Fecal Indicator Bacteria Concentrations in the South Fork Broad River Watershed Using Virtual Beach

    EPA Science Inventory

    Virtual Beach (VB) is a decision support tool that constructs site-specific statistical models to predict fecal indicator bacteria (FIB) at recreational beaches. Although primarily designed for making decisions regarding beach closures or issuance of swimming advisories based on...

  1. Science and Systems in Support of Multi-hazard Early Warnings and Decisions

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2015-12-01

    The demand for improved climate knowledge and information is well documented. As noted in the IPCC (SREX, AR5), the UNISDR Global Assessment Reports and other assessments, this demand has increased pressure for information to support planning under changing rates and emergence of multiple hazards including climate extremes (drought, heat waves, floods). "Decision support" is now a popular term in the climate applications research community. While existing decision support activities can be identified in many disparate settings (e.g. federal, academic, private), the challenge of changing environments (coupled physical and social) is actually one of crafting implementation strategies for improving decision quality (not just meeting "user needs"). This includes overcoming weaknesses in co-production models, moving beyond DSSs as simply "software", coordinating innovation mapping and diffusion, and providing fora and gaming tools to identify common interests and differences in the way risks are perceived and managed among the affected groups. We outline the development and evolution of multi-hazard early warning systems in the United States and elsewhere, focusing on climate-related hazards. In particular, the presentation will focus on the climate science and information needed for (1) improved monitoring and modeling, (2) generating risk profiles, (3) developing information systems and scenarios for critical thresholds, (4) the net benefits of using new information (5) characterizing and bridging the "last mile" in the context of longer-term risk management.

  2. Decision support system for emergency management of oil spill accidents in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Lecci, Rita; Turrisi, Giuseppe; Cretì, Sergio; Martinelli, Sara; Agostini, Paola; Marra, Palmalisa; Palermo, Francesco

    2016-08-01

    This paper presents an innovative web-based decision support system to facilitate emergency management in the case of oil spill accidents, called WITOIL (Where Is The Oil). The system can be applied to create a forecast of oil spill events, evaluate uncertainty of the predictions, and calculate hazards based on historical meteo-oceanographic datasets. To compute the oil transport and transformation, WITOIL uses the MEDSLIK-II oil spill model forced by operational meteo-oceanographic services. Results of the modeling are visualized through Google Maps. A special application for Android is designed to provide mobile access for competent authorities, technical and scientific institutions, and citizens.

  3. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  4. QuEST for malware type-classification

    NASA Astrophysics Data System (ADS)

    Vaughan, Sandra L.; Mills, Robert F.; Grimaila, Michael R.; Peterson, Gilbert L.; Oxley, Mark E.; Dube, Thomas E.; Rogers, Steven K.

    2015-05-01

    Current cyber-related security and safety risks are unprecedented, due in no small part to information overload and skilled cyber-analyst shortages. Advances in decision support and Situation Awareness (SA) tools are required to support analysts in risk mitigation. Inspired by human intelligence, research in Artificial Intelligence (AI) and Computational Intelligence (CI) have provided successful engineering solutions in complex domains including cyber. Current AI approaches aggregate large volumes of data to infer the general from the particular, i.e. inductive reasoning (pattern-matching) and generally cannot infer answers not previously programmed. Whereas humans, rarely able to reason over large volumes of data, have successfully reached the top of the food chain by inferring situations from partial or even partially incorrect information, i.e. abductive reasoning (pattern-completion); generating a hypothetical explanation of observations. In order to achieve an engineering advantage in computational decision support and SA we leverage recent research in human consciousness, the role consciousness plays in decision making, modeling the units of subjective experience which generate consciousness, qualia. This paper introduces a novel computational implementation of a Cognitive Modeling Architecture (CMA) which incorporates concepts of consciousness. We apply our model to the malware type-classification task. The underlying methodology and theories are generalizable to many domains.

  5. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze geothermal resource potential as well as integrate the decision support system with multi-touch interfaces which allow multiple stakeholders to view and interact with data. Beyond visual and tactile appeal, these interfaces also allow participants to dynamically update decision variables and decision preferences to create multiple scenarios and evaluate potential outcomes. Through this interactive scenario building, potential development sites can be targeted and stakeholders can interact with data to engage in substantive dialogue for related long-term planning or crisis response.

  6. A Decision Model for Supporting Task Allocation Processes in Global Software Development

    NASA Astrophysics Data System (ADS)

    Lamersdorf, Ansgar; Münch, Jürgen; Rombach, Dieter

    Today, software-intensive systems are increasingly being developed in a globally distributed way. However, besides its benefit, global development also bears a set of risks and problems. One critical factor for successful project management of distributed software development is the allocation of tasks to sites, as this is assumed to have a major influence on the benefits and risks. We introduce a model that aims at improving management processes in globally distributed projects by giving decision support for task allocation that systematically regards multiple criteria. The criteria and causal relationships were identified in a literature study and refined in a qualitative interview study. The model uses existing approaches from distributed systems and statistical modeling. The article gives an overview of the problem and related work, introduces the empirical and theoretical foundations of the model, and shows the use of the model in an example scenario.

  7. On the design of computer-based models for integrated environmental science.

    PubMed

    McIntosh, Brian S; Jeffrey, Paul; Lemon, Mark; Winder, Nick

    2005-06-01

    The current research agenda in environmental science is dominated by calls to integrate science and policy to better understand and manage links between social (human) and natural (nonhuman) processes. Freshwater resource management is one area where such calls can be heard. Designing computer-based models for integrated environmental science poses special challenges to the research community. At present it is not clear whether such tools, or their outputs, receive much practical policy or planning application. It is argued that this is a result of (1) a lack of appreciation within the research modeling community of the characteristics of different decision-making processes including policy, planning, and (2) participation, (3) a lack of appreciation of the characteristics of different decision-making contexts, (4) the technical difficulties in implementing the necessary support tool functionality, and (5) the socio-technical demands of designing tools to be of practical use. This article presents a critical synthesis of ideas from each of these areas and interprets them in terms of design requirements for computer-based models being developed to provide scientific information support for policy and planning. Illustrative examples are given from the field of freshwater resources management. Although computer-based diagramming and modeling tools can facilitate processes of dialogue, they lack adequate simulation capabilities. Component-based models and modeling frameworks provide such functionality and may be suited to supporting problematic or messy decision contexts. However, significant technical (implementation) and socio-technical (use) challenges need to be addressed before such ambition can be realized.

  8. AdViSHE: A Validation-Assessment Tool of Health-Economic Models for Decision Makers and Model Users.

    PubMed

    Vemer, P; Corro Ramos, I; van Voorn, G A K; Al, M J; Feenstra, T L

    2016-04-01

    A trade-off exists between building confidence in health-economic (HE) decision models and the use of scarce resources. We aimed to create a practical tool providing model users with a structured view into the validation status of HE decision models, to address this trade-off. A Delphi panel was organized, and was completed by a workshop during an international conference. The proposed tool was constructed iteratively based on comments from, and the discussion amongst, panellists. During the Delphi process, comments were solicited on the importance and feasibility of possible validation techniques for modellers, their relevance for decision makers, and the overall structure and formulation in the tool. The panel consisted of 47 experts in HE modelling and HE decision making from various professional and international backgrounds. In addition, 50 discussants actively engaged in the discussion at the conference workshop and returned 19 questionnaires with additional comments. The final version consists of 13 items covering all relevant aspects of HE decision models: the conceptual model, the input data, the implemented software program, and the model outcomes. Assessment of the Validation Status of Health-Economic decision models (AdViSHE) is a validation-assessment tool in which model developers report in a systematic way both on validation efforts performed and on their outcomes. Subsequently, model users can establish whether confidence in the model is justified or whether additional validation efforts should be undertaken. In this way, AdViSHE enhances transparency of the validation status of HE models and supports efficient model validation.

  9. Sensemaking Strategies for Ethical Decision-making.

    PubMed

    Caughron, Jay J; Antes, Alison L; Stenmark, Cheryl K; Thiel, Chaise E; Wang, Xiaoqian; Mumford, Michael D

    2011-01-01

    The current study uses a sensemaking model and thinking strategies identified in earlier research to examine ethical decision-making. Using a sample of 163 undergraduates, a low fidelity simulation approach is used to study the effects personal involvement (in causing the problem and personal involvement in experiencing the outcomes of the problem) could have on the use of cognitive reasoning strategies that have been shown to promote ethical decision-making. A mediated model is presented which suggests that environmental factors influence reasoning strategies, reasoning strategies influence sensemaking, and sensemaking in turn influences ethical decision-making. Findings were mixed but generally supported the hypothesized model. Interestingly, framing the outcomes of ethically charged situations in terms of more global organizational outcomes rather than personal outcomes was found to promote the use of pro-ethical cognitive reasoning strategies.

  10. Sensemaking Strategies for Ethical Decision-making

    PubMed Central

    Caughron, Jay J.; Antes, Alison L.; Stenmark, Cheryl K.; Thiel, Chaise E.; Wang, Xiaoqian; Mumford, Michael D.

    2015-01-01

    The current study uses a sensemaking model and thinking strategies identified in earlier research to examine ethical decision-making. Using a sample of 163 undergraduates, a low fidelity simulation approach is used to study the effects personal involvement (in causing the problem and personal involvement in experiencing the outcomes of the problem) could have on the use of cognitive reasoning strategies that have been shown to promote ethical decision-making. A mediated model is presented which suggests that environmental factors influence reasoning strategies, reasoning strategies influence sensemaking, and sensemaking in turn influences ethical decision-making. Findings were mixed but generally supported the hypothesized model. Interestingly, framing the outcomes of ethically charged situations in terms of more global organizational outcomes rather than personal outcomes was found to promote the use of pro-ethical cognitive reasoning strategies. PMID:26257505

  11. The EVOTION Decision Support System: Utilizing It for Public Health Policy-Making in Hearing Loss.

    PubMed

    Katrakazas, Panagiotis; Trenkova, Lyubov; Milas, Josip; Brdaric, Dario; Koutsouris, Dimitris

    2017-01-01

    As Decision Support Systems start to play a significant role in decision making, especially in the field of public-health policy making, we present an initial attempt to formulate such a system in the concept of public health policy making for hearing loss related problems. Justification for the system's conceptual architecture and its key functionalities are presented. The introduction of the EVOTION DSS sets a key innovation and a basis for paradigm shift in policymaking, by incorporating relevant models, big data analytics and generic demographic data. Expected outcomes for this joint effort are discussed from a public-health point of view.

  12. An IT Architecture for Systems Medicine.

    PubMed

    Ganzinger, Matthias; Gietzelt, Matthias; Karmen, Christian; Firnkorn, Daniel; Knaup, Petra

    2015-01-01

    Systems medicine aims to support treatment of complex diseases like cancer by integrating all available data for the disease. To provide such a decision support in clinical practice, a suitable IT architecture is necessary. We suggest a generic architecture comprised of the following three layers: data representation, decision support, and user interface. For the systems medicine research project "Clinically-applicable, omics-based assessment of survival, side effects, and targets in multiple myeloma" (CLIOMMICS) we developed a concrete instance of the generic architecture. We use i2b2 for representing the harmonized data. Since no deterministic model exists for multiple myeloma we use case-based reasoning for decision support. For clinical practice, visualizations of the results must be intuitive and clear. At the same time, they must communicate the uncertainty immanent in stochastic processes. Thus, we develop a specific user interface for systems medicine based on the web portal software Liferay.

  13. On implementing clinical decision support: achieving scalability and maintainability by combining business rules and ontologies.

    PubMed

    Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya

    2006-01-01

    We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.

  14. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    PubMed

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  15. Projected 2050 Model Simulations for the Chesapeake Bay ...

    EPA Pesticide Factsheets

    The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and future, 2050, Weather Research and Forecast (WRF) metrological and Community Multiscale Air Quality (CMAQ) chemical transport model simulations to provide meteorological and nutrient deposition estimates for inclusion of the Chesapeake Bay Program’s assessment of how climate and land use change may impact water quality and ecosystem health. This presentation will present the timeline and research updates. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  16. Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions

    PubMed Central

    2017-01-01

    A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy. PMID:29209469

  17. Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions.

    PubMed

    Nantha, Yogarabindranath Swarna

    2017-11-01

    A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy.

  18. Developing and Transitioning Numerical Air Quality Models to Improve Air Quality and Public Health Decision-Making in El Salvador and Costa Rica As Part of the Servir Applied Sciences Team

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Huff, A. K.; Gomori, S. G.; Sadoff, N.

    2014-12-01

    In order to enhance the capacity for air quality modeling and improve air quality monitoring and management in the SERVIR Mesoamerica region, members of SERVIR's Applied Sciences Team (AST) are developing national numerical air quality models for El Salvador and Costa Rica. We are working with stakeholders from the El Salvador Ministry of the Environment and Natural Resources (MARN); National University of Costa Rica (UNA); the Costa Rica Ministry of the Environment, Energy, and Telecommunications (MINAET); and Costa Rica National Meteorological Institute (IMN), who are leaders in air quality monitoring and management in the Mesoamerica region. Focusing initially on these institutions will build sustainability in regional modeling activities by developing air quality modeling capability that can be shared with other countries in Mesoamerica. The air quality models are based on the Community Multi-scale Air Quality (CMAQ) model and incorporate meteorological inputs from the Weather Research and Forecasting (WRF) model, as well as national emissions inventories from El Salvador and Costa Rica. The models are being optimized for urban air quality, which is a priority of decision-makers in Mesoamerica. Once experimental versions of the modeling systems are complete, they will be transitioned to servers run by stakeholders in El Salvador and Costa Rica. The numerical air quality models will provide decision support for stakeholders to identify 1) high-priority areas for expanding national ambient air monitoring networks, 2) needed revisions to national air quality regulations, and 3) gaps in national emissions inventories. This project illustrates SERVIR's goal of the transition of science to support decision-making through capacity building in Mesoamerica, and it aligns with the Group on Earth Observations' health societal benefit theme. This presentation will describe technical aspects of the development of the models and outline key steps in our successful collaboration with the Mesoamerican stakeholders, including the processes of identifying and engaging decision-makers, understanding their requirements and limitations, communicating status updates on a regular basis, and providing sufficient training for end users to be able to utilize the models in a decision-making context.

  19. Personalization and Patient Involvement in Decision Support Systems: Current Trends

    PubMed Central

    Sacchi, L.; Lanzola, G.; Viani, N.

    2015-01-01

    Summary Objectives This survey aims at highlighting the latest trends (2012-2014) on the development, use, and evaluation of Information and Communication Technologies (ICT) based decision support systems (DSSs) in medicine, with a particular focus on patient-centered and personalized care. Methods We considered papers published on scientific journals, by querying PubMed and Web of Science™. Included studies focused on the implementation or evaluation of ICT-based tools used in clinical practice. A separate search was performed on computerized physician order entry systems (CPOEs), since they are increasingly embedding patient-tailored decision support. Results We found 73 papers on DSSs (53 on specific ICT tools) and 72 papers on CPOEs. Although decision support through the delivery of recommendations is frequent (28/53 papers), our review highlighted also DSSs only based on efficient information presentation (25/53). Patient participation in making decisions is still limited (9/53), and mostly focused on risk communication. The most represented medical area is cancer (12%). Policy makers are beginning to be included among stakeholders (6/73), but integration with hospital information systems is still low. Concerning knowledge representation/management issues, we identified a trend towards building inference engines on top of standard data models. Most of the tools (57%) underwent a formal assessment study, even if half of them aimed at evaluating usability and not effectiveness. Conclusions Overall, we have noticed interesting evolutions of medical DSSs to improve communication with the patient, consider the economic and organizational impact, and use standard models for knowledge representation. However, systems focusing on patient-centered care still do not seem to be available at large. PMID:26293857

  20. A knowledge-based patient assessment system: conceptual and technical design.

    PubMed Central

    Reilly, C. A.; Zielstorff, R. D.; Fox, R. L.; O'Connell, E. M.; Carroll, D. L.; Conley, K. A.; Fitzgerald, P.; Eng, T. K.; Martin, A.; Zidik, C. M.; Segal, M.

    2000-01-01

    This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring. PMID:11079970

  1. Compromise decision support problems for hierarchical design involving uncertainty

    NASA Astrophysics Data System (ADS)

    Vadde, S.; Allen, J. K.; Mistree, F.

    1994-08-01

    In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.

  2. A knowledge-based patient assessment system: conceptual and technical design.

    PubMed

    Reilly, C A; Zielstorff, R D; Fox, R L; O'Connell, E M; Carroll, D L; Conley, K A; Fitzgerald, P; Eng, T K; Martin, A; Zidik, C M; Segal, M

    2000-01-01

    This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring.

  3. Leader Experience and the Identification of Challenges in a Stability and Support Operation

    DTIC Science & Technology

    2006-07-01

    consistent with normative decision making models ( Vroom & Jago, 1988; Vroom & Yetton, 1973) and contingency leadership theories (Fiedler, 1978, Hersey...latent growth modeling . In D. V. Day, S . J. Zaccaro, S . M. Halpin (Eds.), Leader development for transforming organizations (pp. 41-69). Mahwah, NJ... Vroom , V. H., & Yetton, P. N. (1973). Leadership decision making. Pittsburg, PA: University of Pittsburg Press. Weidenbeck, S . (1985). Novice/expert

  4. A Computational Model of Reasoning from the Clinical Literature

    PubMed Central

    Rennels, Glenn D.

    1986-01-01

    This paper explores the premise that a formalized representation of empirical studies can play a central role in computer-based decision support. The specific motivations underlying this research include the following propositions: 1. Reasoning from experimental evidence contained in the clinical literature is central to the decisions physicians make in patient care. 2. A computational model, based upon a declarative representation for published reports of clinical studies, can drive a computer program that selectively tailors knowledge of the clinical literature as it is applied to a particular case. 3. The development of such a computational model is an important first step toward filling a void in computer-based decision support systems. Furthermore, the model may help us better understand the general principles of reasoning from experimental evidence both in medicine and other domains. Roundsman is a developmental computer system which draws upon structured representations of the clinical literature in order to critique plans for the management of primary breast cancer. Roundsman is able to produce patient-specific analyses of breast cancer management options based on the 24 clinical studies currently encoded in its knowledge base. The Roundsman system is a first step in exploring how the computer can help to bring a critical analysis of the relevant literature to the physician, structured around a particular patient and treatment decision.

  5. Use of Decision Models in the Development of Evidence-Based Clinical Preventive Services Recommendations: Methods of the U.S. Preventive Services Task Force.

    PubMed

    Owens, Douglas K; Whitlock, Evelyn P; Henderson, Jillian; Pignone, Michael P; Krist, Alex H; Bibbins-Domingo, Kirsten; Curry, Susan J; Davidson, Karina W; Ebell, Mark; Gillman, Matthew W; Grossman, David C; Kemper, Alex R; Kurth, Ann E; Maciosek, Michael; Siu, Albert L; LeFevre, Michael L

    2016-10-04

    The U.S. Preventive Services Task Force (USPSTF) develops evidence-based recommendations about preventive care based on comprehensive systematic reviews of the best available evidence. Decision models provide a complementary, quantitative approach to support the USPSTF as it deliberates about the evidence and develops recommendations for clinical and policy use. This article describes the rationale for using modeling, an approach to selecting topics for modeling, and how modeling may inform recommendations about clinical preventive services. Decision modeling is useful when clinical questions remain about how to target an empirically established clinical preventive service at the individual or program level or when complex determinations of magnitude of net benefit, overall or among important subpopulations, are required. Before deciding whether to use decision modeling, the USPSTF assesses whether the benefits and harms of the preventive service have been established empirically, assesses whether there are key issues about applicability or implementation that modeling could address, and then defines the decision problem and key questions to address through modeling. Decision analyses conducted for the USPSTF are expected to follow best practices for modeling. For chosen topics, the USPSTF assesses the strengths and limitations of the systematically reviewed evidence and the modeling analyses and integrates the results of each to make preventive service recommendations.

  6. A Decision-Oriented Investigation of Air Force Civil Engineering’s Operations Branch and the Implications for a Decision Support System.

    DTIC Science & Technology

    1984-09-01

    information when making a decision [ Szilagyi and Wallace , 1983:3201." Driver and Mock used cognitive complexity ideas to develop this two dimensional...flexible AMOUNT OF INFORMATION USED High hierarchic integrative Figure 6. Cognitive Complexity Model ( Szilagyi and Wallace , 1983:321) Decisive Style. The...large amount of inform- ation. However, he processes this information with a multiple focus approach ( Szilagyi and Wallace , 1983:320-321). 26 McKenney

  7. Bringing the "social" into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sanderson, Matthew R.; Bergtold, Jason S.; Heier Stamm, Jessica L.; Caldas, Marcellus M.; Ramsey, Steven M.

    2017-08-01

    Identifying means of empirically modeling the human component of a coupled, human-water system becomes critically important to further advances in sociohydrology. We develop a social-psychological model of environmental decision making that addresses four key challenges of incorporating social science into integrated models. We use the model to explain preferences for three conservation policies designed to conserve and protect water resources and aquatic ecosystems in the Smoky Hill River Basin, a semiarid agricultural region in the Central U.S. Great Plains. Further, we compare the model's capacity to explain policy preferences among members of two groups in the River Basin: agricultural producers and members of nonfarming communities. We find that financial obligation is the strongest and most consistent explanation of support for conservation policies among members of both groups. We also find that policy support is grounded in cultural values—deeply held ideas about right and wrong. Environmental values are particularly important explanations of policy support. The constellations of values invoked to make decisions about policies, and the social-psychological pathways linking values to policy support, can vary across policies and types of agents (farmers and nonfarmers). We discuss the implications of the results for future research in sociohydrology.

  8. Ignorance- versus evidence-based decision making: a decision time analysis of the recognition heuristic.

    PubMed

    Hilbig, Benjamin E; Pohl, Rüdiger F

    2009-09-01

    According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.

  9. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  10. A comparative assessment of tools for ecosystem services quantification and valuation

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Semmens, Darius; Waage, Sissel; Winthrop, Robert

    2013-01-01

    To enter widespread use, ecosystem service assessments need to be quantifiable, replicable, credible, flexible, and affordable. With recent growth in the field of ecosystem services, a variety of decision-support tools has emerged to support more systematic ecosystem services assessment. Despite the growing complexity of the tool landscape, thorough reviews of tools for identifying, assessing, modeling and in some cases monetarily valuing ecosystem services have generally been lacking. In this study, we describe 17 ecosystem services tools and rate their performance against eight evaluative criteria that gauge their readiness for widespread application in public- and private-sector decision making. We describe each of the tools′ intended uses, services modeled, analytical approaches, data requirements, and outputs, as well time requirements to run seven tools in a first comparative concurrent application of multiple tools to a common location – the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. Based on this work, we offer conclusions about these tools′ current ‘readiness’ for widespread application within both public- and private-sector decision making processes. Finally, we describe potential pathways forward to reduce the resource requirements for running ecosystem services models, which are essential to facilitate their more widespread use in environmental decision making.

  11. Measuring sustainable development using a multi-criteria model: a case study.

    PubMed

    Boggia, Antonio; Cortina, Carla

    2010-11-01

    This paper shows how Multi-criteria Decision Analysis (MCDA) can help in a complex process such as the assessment of the level of sustainability of a certain area. The paper presents the results of a study in which a model for measuring sustainability was implemented to better aid public policy decisions regarding sustainability. In order to assess sustainability in specific areas, a methodological approach based on multi-criteria analysis has been developed. The aim is to rank areas in order to understand the specific technical and/or financial support that they need to develop sustainable growth. The case study presented is an assessment of the level of sustainability in different areas of an Italian Region using the MCDA approach. Our results show that MCDA is a proper approach for sustainability assessment. The results are easy to understand and the evaluation path is clear and transparent. This is what decision makers need for having support to their decisions. The multi-criteria model for evaluation has been developed respecting the sustainable development economic theory, so that final results can have a clear meaning in terms of sustainability. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Improvement of sand filter and constructed wetland design using an environmental decision support system.

    PubMed

    Turon, Clàudia; Comas, Joaquim; Torrens, Antonina; Molle, Pascal; Poch, Manel

    2008-01-01

    With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal.

  13. The Rational Patient and Beyond: Implications for Treatment Adherence in People with Psychiatric Disabilities

    PubMed Central

    Corrigan, Patrick W.; Rüsch, Nicolas; Ben-Zeev, Dror; Sher, Tamara

    2014-01-01

    Purpose/Objective Many people with psychiatric disabilities do not benefit from evidence-based practices because they often do not seek out or fully adhere to them. One way psychologists have made sense of this rehabilitation and health decision process and subsequent behaviors (of which adherence might be viewed as one) is by proposing a “rational patient;” namely, that decisions are made deliberatively by weighing perceived costs and benefits of intervention options. Social psychological research, however, suggests limitations to a rational patient theory that impact models of health decision making. Design The research literature was reviewed for studies of rational patient models and alternative theories with empirical support. Special focus was on models specifically related to decisions about rehabilitation strategies for psychiatric disability. Results Notions of the rational patient evolved out of several psychological models including the health belief model, protection motivation theory, and theory of planned behavior. A variety of practice strategies evolved to promote rational decision making. However, research also suggests limitations to rational deliberations of health. (1) Rather than carefully and consciously considered, many health decisions are implicit, potentially occurring outside awareness. (2) Decisions are not always planful; often it is the immediate exigencies of a context rather than an earlier balance of costs and benefits that has the greatest effects. (3) Cool cognitions often do not dictate the process; emotional factors have an important role in health decisions. Each of these limitations suggests additional practice strategies that facilitate a person’s health decisions. Conclusions/Implications Old models of rational decision making need to be supplanted by multi-process models that explain supra-deliberative factors in health decisions and behaviors. PMID:24446671

  14. The rational patient and beyond: implications for treatment adherence in people with psychiatric disabilities.

    PubMed

    Corrigan, Patrick W; Rüsch, Nicolas; Ben-Zeev, Dror; Sher, Tamara

    2014-02-01

    Many people with psychiatric disabilities do not benefit from evidence-based practices because they often do not seek out or fully adhere to them. One way psychologists have made sense of this rehabilitation and health decision process and subsequent behaviors (of which adherence might be viewed as one) is by proposing a "rational patient"; namely, that decisions are made deliberatively by weighing perceived costs and benefits of intervention options. Social psychological research, however, suggests limitations to a rational patient theory that impact models of health decision making. The research literature was reviewed for studies of rational patient models and alternative theories with empirical support. Special focus was on models specifically related to decisions about rehabilitation strategies for psychiatric disability. Notions of the rational patient evolved out of several psychological models including the health belief model, protection motivation theory, and theory of planned behavior. A variety of practice strategies evolved to promote rational decision making. However, research also suggests limitations to rational deliberations of health. (1) Rather than carefully and consciously considered, many health decisions are implicit, potentially occurring outside awareness. (2) Decisions are not always planful; often it is the immediate exigencies of a context rather than an earlier balance of costs and benefits that has the greatest effects. (3) Cool cognitions often do not dictate the process; emotional factors have an important role in health decisions. Each of these limitations suggests additional practice strategies that facilitate a person's health decisions. Old models of rational decision making need to be supplanted by multiprocess models that explain supradeliberative factors in health decisions and behaviors. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Data-Driven Decision Making in Community Colleges: An Integrative Model for Institutional Effectiveness

    ERIC Educational Resources Information Center

    Callery, Claude Adam

    2012-01-01

    This qualitative study identified the best practices utilized by community colleges to achieve systemic and cultural agreement in support of the integration of institutional effectiveness measures (key performance indicators) to inform decision making. In addition, the study identifies the relevant motives, organizational structure, and processes…

  16. Predicting E. Coli and Enterococci Concentrations in the South Fork Broad River Watershed Using Virtual Beach

    EPA Science Inventory

    Virtual Beach (VB) is a decision support tool that constructs site-specific statistical models to predict fecal indicator bacteria (FIB) at locations of exposure. Although primarily designed for making decisions regarding beach closures or issuance of swimming advisories based on...

  17. REGIONAL VULNERABILITY ASSESSMENT (REVA) IMPROVING ENVIRONMENTAL DECISION MAKING THROUGH CLIENT PARTNERSHIPS

    EPA Science Inventory

    The Regional Vulnerability Assessment (ReV A) Program is an applied research program t,1at is focusing on using spatial information and model results to support environmental decision-making at regional- down to local-scales. Re VA has developed analysis and assessment methods to...

  18. Prescriptive models to support decision making in genetics.

    PubMed

    Pauker, S G; Pauker, S P

    1987-01-01

    Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.

  19. Decision Making Under Objective Risk Conditions-a Review of Cognitive and Emotional Correlates, Strategies, Feedback Processing, and External Influences.

    PubMed

    Schiebener, Johannes; Brand, Matthias

    2015-06-01

    While making decisions under objective risk conditions, the probabilities of the consequences of the available options are either provided or calculable. Brand et al. (Neural Networks 19:1266-1276, 2006) introduced a model describing the neuro-cognitive processes involved in such decisions. In this model, executive functions associated with activity in the fronto-striatal loop are important for developing and applying decision-making strategies, and for verifying, adapting, or revising strategies according to feedback. Emotional rewards and punishments learned from such feedback accompany these processes. In this literature review, we found support for the role of executive functions, but also found evidence for the importance of further cognitive abilities in decision making. Moreover, in addition to reflective processing (driven by cognition), decisions can be guided by impulsive processing (driven by anticipation of emotional reward and punishment). Reflective and impulsive processing may interact during decision making, affecting the evaluation of available options, as both processes are affected by feedback. Decision-making processes are furthermore modulated by individual attributes (e.g., age), and external influences (e.g., stressors). Accordingly, we suggest a revised model of decision making under objective risk conditions.

  20. An Integrated Decision-Making Model for Categorizing Weather Products and Decision Aids

    NASA Technical Reports Server (NTRS)

    Elgin, Peter D.; Thomas, Rickey P.

    2004-01-01

    The National Airspace System s capacity will experience considerable growth in the next few decades. Weather adversely affects safe air travel. The FAA and NASA are working to develop new technologies that display weather information to support situation awareness and optimize pilot decision-making in avoiding hazardous weather. Understanding situation awareness and naturalistic decision-making is an important step in achieving this goal. Information representation and situation time stress greatly influence attentional resource allocation and working memory capacity, potentially obstructing accurate situation awareness assessments. Three naturalistic decision-making theories were integrated to provide an understanding of the levels of decision making incorporated in three operational situations and two conditions. The task characteristics associated with each phase of flight govern the level of situation awareness attained and the decision making processes utilized. Weather product s attributes and situation task characteristics combine to classify weather products according to the decision-making processes best supported. In addition, a graphical interface is described that affords intuitive selection of the appropriate weather product relative to the pilot s current flight situation.

Top