Sample records for decision tree analyses

  1. Safety validation of decision trees for hepatocellular carcinoma.

    PubMed

    Wang, Xian-Qiang; Liu, Zhe; Lv, Wen-Ping; Luo, Ying; Yang, Guang-Yun; Li, Chong-Hui; Meng, Xiang-Fei; Liu, Yang; Xu, Ke-Sen; Dong, Jia-Hong

    2015-08-21

    To evaluate a different decision tree for safe liver resection and verify its efficiency. A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital, and 634 hepatocellular carcinoma (HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure (PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L (the "50-50" criteria), which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree, Tokyo University-Makuuchi decision tree, and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence, and the PHLF rates were recorded. The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the Swiss-Clavien, Tokyo University-Makuuchi, and Chinese consensus decision trees were applied were 581, 573, and 622, and the PHLF rates were 2.75%, 2.62%, and 2.73%, respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree (P < 0.01,P < 0.01); nevertheless, the latter two shared no difference (P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees. The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo University-Makuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.

  2. Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets.

    PubMed

    Sankari, E Siva; Manimegalai, D

    2017-12-21

    Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    PubMed

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  4. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  5. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  6. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    PubMed

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.

  7. Identifying the performance characteristics of a winning outcome in elite mixed martial arts competition.

    PubMed

    James, Lachlan P; Robertson, Sam; Haff, G Gregory; Beckman, Emma M; Kelly, Vincent G

    2017-03-01

    To determine those performance indicators that have the greatest influence on classifying outcome at the elite level of mixed martial arts (MMA). A secondary objective was to establish the efficacy of decision tree analysis in explaining the characteristics of victory when compared to alternate statistical methods. Cross-sectional observational. Eleven raw performance indicators from male Ultimate Fighting Championship bouts (n=234) from July 2014 to December 2014 were screened for analysis. Each raw performance indicator was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional performance indicators were calculated from the dataset and included in the analysis. Cohen's d effect sizes were employed to determine the magnitude of the differences between Wins and Losses, while decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses (DFA) were used to classify outcome (Win and Loss). Effect size comparisons revealed differences between Wins and Losses across a number of performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance indicators were the most influential in explaining outcome. The decision tree models also revealed multiple combinations of performance indicators leading to victory. The decision tree analyses suggest that grappling activity and technique accuracy are of particular importance in achieving victory in elite-level MMA competition. The DFA results supported the importance of these performance indicators. Decision tree induction represents an intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared to DFA. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis.

    PubMed

    Satomi, Junichiro; Ghaibeh, A Ammar; Moriguchi, Hiroki; Nagahiro, Shinji

    2015-07-01

    The severity of clinical signs and symptoms of cranial dural arteriovenous fistulas (DAVFs) are well correlated with their pattern of venous drainage. Although the presence of cortical venous drainage can be considered a potential predictor of aggressive DAVF behaviors, such as intracranial hemorrhage or progressive neurological deficits due to venous congestion, accurate statistical analyses are currently not available. Using a decision tree data mining method, the authors aimed at clarifying the predictability of the future development of aggressive behaviors of DAVF and at identifying the main causative factors. Of 266 DAVF patients, 89 were eligible for analysis. Under observational management, 51 patients presented with intracranial hemorrhage/infarction during the follow-up period. The authors created a decision tree able to assess the risk for the development of aggressive DAVF behavior. Evaluated by 10-fold cross-validation, the decision tree's accuracy, sensitivity, and specificity were 85.28%, 88.33%, and 80.83%, respectively. The tree shows that the main factor in symptomatic patients was the presence of cortical venous drainage. In its absence, the lesion location determined the risk of a DAVF developing aggressive behavior. Decision tree analysis accurately predicts the future development of aggressive DAVF behavior.

  9. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  10. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  11. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  12. Prescriptive models to support decision making in genetics.

    PubMed

    Pauker, S G; Pauker, S P

    1987-01-01

    Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.

  13. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    PubMed

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  14. Decision tree and PCA-based fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sun, Weixiang; Chen, Jin; Li, Jiaqing

    2007-04-01

    After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.

  15. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  16. Outsourcing medical data analyses: can technology overcome legal, privacy, and confidentiality issues?

    PubMed

    Brumen, Bostjan; Heričko, Marjan; Sevčnikar, Andrej; Završnik, Jernej; Hölbl, Marko

    2013-12-16

    Medical data are gold mines for deriving the knowledge that could change the course of a single patient's life or even the health of the entire population. A data analyst needs to have full access to relevant data, but full access may be denied by privacy and confidentiality of medical data legal regulations, especially when the data analyst is not affiliated with the data owner. Our first objective was to analyze the privacy and confidentiality issues and the associated regulations pertaining to medical data, and to identify technologies to properly address these issues. Our second objective was to develop a procedure to protect medical data in such a way that the outsourced analyst would be capable of doing analyses on protected data and the results would be comparable, if not the same, as if they had been done on the original data. Specifically, our hypothesis was there would not be a difference between the outsourced decision trees built on encrypted data and the ones built on original data. Using formal definitions, we developed an algorithm to protect medical data for outsourced analyses. The algorithm was applied to publicly available datasets (N=30) from the medical and life sciences fields. The analyses were performed on the original and the protected datasets and the results of the analyses were compared. Bootstrapped paired t tests for 2 dependent samples were used to test whether the mean differences in size, number of leaves, and the accuracy of the original and the encrypted decision trees were significantly different. The decision trees built on encrypted data were virtually the same as those built on original data. Out of 30 datasets, 100% of the trees had identical accuracy. The size of a tree and the number of leaves was different only once (1/30, 3%, P=.19). The proposed algorithm encrypts a file with plain text medical data into an encrypted file with the data protected in such a way that external data analyses are still possible. The results show that the results of analyses on original and on protected data are identical or comparably similar. The approach addresses the privacy and confidentiality issues that arise with medical data and is adherent to strict legal rules in the United States and Europe regarding the processing of the medical data.

  17. Outsourcing Medical Data Analyses: Can Technology Overcome Legal, Privacy, and Confidentiality Issues?

    PubMed Central

    2013-01-01

    Background Medical data are gold mines for deriving the knowledge that could change the course of a single patient’s life or even the health of the entire population. A data analyst needs to have full access to relevant data, but full access may be denied by privacy and confidentiality of medical data legal regulations, especially when the data analyst is not affiliated with the data owner. Objective Our first objective was to analyze the privacy and confidentiality issues and the associated regulations pertaining to medical data, and to identify technologies to properly address these issues. Our second objective was to develop a procedure to protect medical data in such a way that the outsourced analyst would be capable of doing analyses on protected data and the results would be comparable, if not the same, as if they had been done on the original data. Specifically, our hypothesis was there would not be a difference between the outsourced decision trees built on encrypted data and the ones built on original data. Methods Using formal definitions, we developed an algorithm to protect medical data for outsourced analyses. The algorithm was applied to publicly available datasets (N=30) from the medical and life sciences fields. The analyses were performed on the original and the protected datasets and the results of the analyses were compared. Bootstrapped paired t tests for 2 dependent samples were used to test whether the mean differences in size, number of leaves, and the accuracy of the original and the encrypted decision trees were significantly different. Results The decision trees built on encrypted data were virtually the same as those built on original data. Out of 30 datasets, 100% of the trees had identical accuracy. The size of a tree and the number of leaves was different only once (1/30, 3%, P=.19). Conclusions The proposed algorithm encrypts a file with plain text medical data into an encrypted file with the data protected in such a way that external data analyses are still possible. The results show that the results of analyses on original and on protected data are identical or comparably similar. The approach addresses the privacy and confidentiality issues that arise with medical data and is adherent to strict legal rules in the United States and Europe regarding the processing of the medical data. PMID:24342053

  18. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    PubMed

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  19. Interactions between factors related to the decision of sex offenders to confess during police interrogation: a classification-tree approach.

    PubMed

    Beauregard, Eric; Deslauriers-Varin, Nadine; St-Yves, Michel

    2010-09-01

    Most studies of confessions have looked at the influence of individual factors, neglecting the potential interactions between these factors and their impact on the decision to confess or not during an interrogation. Classification and regression tree analyses conducted on a sample of 624 convicted sex offenders showed that certain factors related to the offenders (e.g., personality, criminal career), victims (e.g., sex, relationship to offender), and case (e.g., time of day of the crime) were related to the decision to confess or not during the police interrogation. Several interactions were also observed between these factors. Results will be discussed in light of previous findings and interrogation strategies for sex offenders.

  20. A Comparison of Four Software Programs for Implementing Decision Analytic Cost-Effectiveness Models.

    PubMed

    Hollman, Chase; Paulden, Mike; Pechlivanoglou, Petros; McCabe, Christopher

    2017-08-01

    The volume and technical complexity of both academic and commercial research using decision analytic modelling has increased rapidly over the last two decades. The range of software programs used for their implementation has also increased, but it remains true that a small number of programs account for the vast majority of cost-effectiveness modelling work. We report a comparison of four software programs: TreeAge Pro, Microsoft Excel, R and MATLAB. Our focus is on software commonly used for building Markov models and decision trees to conduct cohort simulations, given their predominance in the published literature around cost-effectiveness modelling. Our comparison uses three qualitative criteria as proposed by Eddy et al.: "transparency and validation", "learning curve" and "capability". In addition, we introduce the quantitative criterion of processing speed. We also consider the cost of each program to academic users and commercial users. We rank the programs based on each of these criteria. We find that, whilst Microsoft Excel and TreeAge Pro are good programs for educational purposes and for producing the types of analyses typically required by health technology assessment agencies, the efficiency and transparency advantages of programming languages such as MATLAB and R become increasingly valuable when more complex analyses are required.

  1. Decision tree analysis of factors influencing rainfall-related building damage

    NASA Astrophysics Data System (ADS)

    Spekkers, M. H.; Kok, M.; Clemens, F. H. L. R.; ten Veldhuis, J. A. E.

    2014-04-01

    Flood damage prediction models are essential building blocks in flood risk assessments. Little research has been dedicated so far to damage of small-scale urban floods caused by heavy rainfall, while there is a need for reliable damage models for this flood type among insurers and water authorities. The aim of this paper is to investigate a wide range of damage-influencing factors and their relationships with rainfall-related damage, using decision tree analysis. For this, district-aggregated claim data from private property insurance companies in the Netherlands were analysed, for the period of 1998-2011. The databases include claims of water-related damage, for example, damages related to rainwater intrusion through roofs and pluvial flood water entering buildings at ground floor. Response variables being modelled are average claim size and claim frequency, per district per day. The set of predictors include rainfall-related variables derived from weather radar images, topographic variables from a digital terrain model, building-related variables and socioeconomic indicators of households. Analyses were made separately for property and content damage claim data. Results of decision tree analysis show that claim frequency is most strongly associated with maximum hourly rainfall intensity, followed by real estate value, ground floor area, household income, season (property data only), buildings age (property data only), ownership structure (content data only) and fraction of low-rise buildings (content data only). It was not possible to develop statistically acceptable trees for average claim size, which suggest that variability in average claim size is related to explanatory variables that cannot be defined at the district scale. Cross-validation results show that decision trees were able to predict 22-26% of variance in claim frequency, which is considerably better compared to results from global multiple regression models (11-18% of variance explained). Still, a large part of the variance in claim frequency is left unexplained, which is likely to be caused by variations in data at subdistrict scale and missing explanatory variables.

  2. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  3. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  4. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  5. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  6. To analyse a trace or not? Evaluating the decision-making process in the criminal investigation.

    PubMed

    Bitzer, Sonja; Ribaux, Olivier; Albertini, Nicola; Delémont, Olivier

    2016-05-01

    In order to broaden our knowledge and understanding of the decision steps in the criminal investigation process, we started by evaluating the decision to analyse a trace and the factors involved in this decision step. This decision step is embedded in the complete criminal investigation process, involving multiple decision and triaging steps. Considering robbery cases occurring in a geographic region during a 2-year-period, we have studied the factors influencing the decision to submit biological traces, directly sampled on the scene of the robbery or on collected objects, for analysis. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility and decision tree analysis was carried out. Factors in each category played a role in the decision to analyse a biological trace. Interestingly, factors involving information available prior to the analysis are of importance, such as the fact that a positive result (a profile suitable for comparison) is already available in the case, or that a suspect has been identified through traditional police work before analysis. One factor that was taken into account, but was not significant, is the matrix of the trace. Hence, the decision to analyse a trace is not influenced by this variable. The decision to analyse a trace first is very complex and many of the tested variables were taken into account. The decisions are often made on a case-by-case basis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree

    PubMed Central

    Safi, Yaser

    2016-01-01

    Diagnosis of oral ulcerative lesions might be quite challenging. This narrative review article aims to introduce an updated decision tree for diagnosing oral ulcerative lesions on the basis of their diagnostic features. Various general search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of MeSH keywords such as “oral ulcer,” “stomatitis,” and “mouth diseases.” Thereafter, English-language articles published since 1983 to 2015 in both medical and dental journals including reviews, meta-analyses, original papers, and case reports were appraised. Upon compilation of the relevant data, oral ulcerative lesions were categorized into three major groups: acute, chronic, and recurrent ulcers and into five subgroups: solitary acute, multiple acute, solitary chronic, multiple chronic, and solitary/multiple recurrent, based on the number and duration of lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by stepwise progression. PMID:27781066

  8. An Exploratory Data Analysis System for Support in Medical Decision-Making

    PubMed Central

    Copeland, J. A.; Hamel, B.; Bourne, J. R.

    1979-01-01

    An experimental system was developed to allow retrieval and analysis of data collected during a study of neurobehavioral correlates of renal disease. After retrieving data organized in a relational data base, simple bivariate statistics of parametric and nonparametric nature could be conducted. An “exploratory” mode in which the system provided guidance in selection of appropriate statistical analyses was also available to the user. The system traversed a decision tree using the inherent qualities of the data (e.g., the identity and number of patients, tests, and time epochs) to search for the appropriate analyses to employ.

  9. Decision-Tree Formulation With Order-1 Lateral Execution

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index

  10. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    PubMed

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  11. Decision tree analyses of key patient characteristics in Middle Eastern/North African and Latin American men treated with long-acting and short-acting PDE5 inhibitors for erectile dysfunction.

    PubMed

    Rubio-Aurioles, Eusebio; El-Meliegy, Amr; Abdulwahed, Samer; Henneges, Carsten; Sorsaburu, Sebastian; Gurbuz, Sirel

    2015-02-01

    Phosphodiesterase type 5 (PDE5) inhibitors have discontinuation rates as high as 60% in men with erectile dysfunction. Treatment satisfaction has been significantly associated with treatment continuation. Understanding key characteristics in terms of treatment preference, relationship, and lifestyle issues could provide direction on how to improve compliance with PDE5 inhibitor treatment globally. The objective was to identify subgroups of interest in the pooled database of two observational studies conducted in Latin America (LA) and Middle East/North Africa (MENA) exploring patient characteristics and prescription of either a long- or short-acting PDE5 inhibitor at baseline. Two identical prospective, non-interventional, observational, studies in MENA (N = 493) and LA (N = 511) treated men with an 'on demand' (pro re nata, PRN) PDE5 inhibitor (sildenafil, tadalafil, vardenafil, or lodenafil) during 6 months. In this post-hoc meta-analysis of two observational studies with equal design, pooled data were analyzed to determine patient characteristics and PDE5 inhibitor prescribed/used most likely to be associated with patient expectations, satisfaction, self-esteem, and patient-partner relationships. Decision tree analyses, with and without weighting, were used to identify and describe key features. In each analysis of patient expectations, patient-partner relationship, and self-esteem, we describe the two major subgroups at baseline for each decision tree. Analyses of patient expectations and sexual self-esteem revealed that patients prescribed long-acting PDE5 inhibitors (59%) highlighted the importance of treatment effect duration, second to partner satisfaction with treatment, while patients prescribed short-acting PDE5 inhibitors (32%) placed less importance on treatment effect duration but considerable importance on treatment effect lasting until intercourse completion. Further insights regarding patients, partner relationship characteristics, and treatment expectations were identified. Our analyses have described key characteristics, such as self- and partner perceptions, sexual attitudes, and treatment expectations in relation to the patients' country and prescribed treatment, which might guide treatment decisions in MENA and LA men with ED.

  12. Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.

    PubMed

    Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang

    2013-01-01

    Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.

  13. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  14. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  15. VC-dimension of univariate decision trees.

    PubMed

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  16. The Decision Tree: A Tool for Achieving Behavioral Change.

    ERIC Educational Resources Information Center

    Saren, Dru

    1999-01-01

    Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…

  17. Development and acceptability testing of decision trees for self-management of prosthetic socket fit in adults with lower limb amputation.

    PubMed

    Lee, Daniel Joseph; Veneri, Diana A

    2018-05-01

    The most common complaint lower limb prosthesis users report is inadequacy of a proper socket fit. Adjustments to the residual limb-socket interface can be made by the prosthesis user without consultation of a clinician in many scenarios through skilled self-management. Decision trees guide prosthesis wearers through the self-management process, empowering them to rectify fit issues, or referring them to a clinician when necessary. This study examines the development and acceptability testing of patient-centered decision trees for lower limb prosthesis users. Decision trees underwent a four-stage process: literature review and expert consultation, designing, two-rounds of expert panel review and revisions, and target audience testing. Fifteen lower limb prosthesis users (average age 61 years) reviewed the decision trees and completed an acceptability questionnaire. Participants reported agreement of 80% or above in five of the eight questions related to acceptability of the decision trees. Disagreement was related to the level of experience of the respondent. Decision trees were found to be easy to use, illustrate correct solutions to common issues, and have terminology consistent with that of a new prosthesis user. Some users with greater than 1.5 years of experience would not use the decision trees based on their own self-management skills. Implications for Rehabilitation Discomfort of the residual limb-prosthetic socket interface is the most common reason for clinician visits. Prosthesis users can use decision trees to guide them through the process of obtaining a proper socket fit independently. Newer users may benefit from using the decision trees more than experienced users.

  18. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    PubMed

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  19. The CERAD Neuropsychological Assessment Battery Is Sensitive to Alcohol-Related Cognitive Deficiencies in Elderly Patients: A Retrospective Matched Case-Control Study.

    PubMed

    Kaufmann, Liane; Huber, Stefan; Mayer, Daniel; Moeller, Korbinian; Marksteiner, Josef

    2018-04-01

    Adverse effects of heavy drinking on cognition have frequently been reported. In the present study, we systematically examined for the first time whether clinical neuropsychological assessments may be sensitive to alcohol abuse in elderly patients with suspected minor neurocognitive disorder. A total of 144 elderly with and without alcohol abuse (each group n=72; mean age 66.7 years) were selected from a patient pool of n=738 by applying propensity score matching (a statistical method allowing to match participants in experimental and control group by balancing various covariates to reduce selection bias). Accordingly, study groups were almost perfectly matched regarding age, education, gender, and Mini Mental State Examination score. Neuropsychological performance was measured using the CERAD (Consortium to Establish a Registry for Alzheimer's Disease). Classification analyses (i.e., decision tree and boosted trees models) were conducted to examine whether CERAD variables or total score contributed to group classification. Decision tree models disclosed that groups could be reliably classified based on the CERAD variables "Word List Discriminability" (tapping verbal recognition memory, 64% classification accuracy) and "Trail Making Test A" (measuring visuo-motor speed, 59% classification accuracy). Boosted tree analyses further indicated the sensitivity of "Word List Recall" (measuring free verbal recall) for discriminating elderly with versus without a history of alcohol abuse. This indicates that specific CERAD variables seem to be sensitive to alcohol-related cognitive dysfunctions in elderly patients with suspected minor neurocognitive disorder. (JINS, 2018, 24, 360-371).

  20. Soft context clustering for F0 modeling in HMM-based speech synthesis

    NASA Astrophysics Data System (ADS)

    Khorram, Soheil; Sameti, Hossein; King, Simon

    2015-12-01

    This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.

  1. Decision trees in epidemiological research.

    PubMed

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  2. A practical guidance for Cramer class determination.

    PubMed

    Roberts, David W; Aptula, Aynur; Schultz, Terry W; Shen, Jie; Api, Anne Marie; Bhatia, Sneha; Kromidas, Lambros

    2015-12-01

    Expanded use of the Threshold of Toxicological Concern (TTC) methodology has brought into discussion the intent of the original questions used in the Cramer scheme or Cramer decision tree. We have analysed, both manually and by Toxtree software, a large dataset of fragrance ingredients and identified several issues with the original Cramer questions. Some relate to definitions and wording of questions; others relate to in silico interpretation of the questions. We have endeavoured to address all of these inconsistencies and misinterpretations without changing the basic structure and principles of the original decision tree. Based on the analysis of a large data set of over 2500 fragrance ingredients, we found that most of the 33 questions in the original Cramer scheme are straightforward. Through repeated examination each of the 33 questions, we found 14 where the logic underlying the development of the rule is unclear. These questions are well served by minor wording changes and/or further explanation designed to capture what we perceive to be the intent of the original decision tree. The findings reported here could be used as a guidance for conducting Cramer classification and provide advices for the improvement of the in silico tools. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  4. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  5. Bioinformatics in proteomics: application, terminology, and pitfalls.

    PubMed

    Wiemer, Jan C; Prokudin, Alexander

    2004-01-01

    Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.

  6. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    PubMed

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  7. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  8. Bayesian averaging over Decision Tree models for trauma severity scoring.

    PubMed

    Schetinin, V; Jakaite, L; Krzanowski, W

    2018-01-01

    Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Identification of Some Zeolite Group Minerals by Application of Artificial Neural Network and Decision Tree Algorithm Based on SEM-EDS Data

    NASA Astrophysics Data System (ADS)

    Akkaş, Efe; Evren Çubukçu, H.; Akin, Lutfiye; Erkut, Volkan; Yurdakul, Yasin; Karayigit, Ali Ihsan

    2016-04-01

    Identification of zeolite group minerals is complicated due to their similar chemical formulas and habits. Although the morphologies of various zeolite crystals can be recognized under Scanning Electron Microscope (SEM), it is relatively more challenging and problematic process to identify zeolites using their mineral chemical data. SEMs integrated with energy dispersive X-ray spectrometers (EDS) provide fast and reliable chemical data of minerals. However, considering elemental similarities of characteristic chemical formulae of zeolite species (e.g. Clinoptilolite ((Na,K,Ca)2 -3Al3(Al,Si)2Si13O3612H2O) and Erionite ((Na2,K2,Ca)2Al4Si14O36ṡ15H2O)) EDS data alone does not seem to be sufficient for correct identification. Furthermore, the physical properties of the specimen (e.g. roughness, electrical conductivity) and the applied analytical conditions (e.g. accelerating voltage, beam current, spot size) of the SEM-EDS should be uniform in order to obtain reliable elemental results of minerals having high alkali (Na, K) and H2O (approx. %14-18) contents. This study which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK Project No: 113Y439), aims to construct a database as large as possible for various zeolite minerals and to develop a general prediction model for the identification of zeolite minerals using SEM-EDS data. For this purpose, an artificial neural network and rule based decision tree algorithm were employed. Throughout the analyses, a total of 1850 chemical data were collected from four distinct zeolite species, (Clinoptilolite-Heulandite, Erionite, Analcime and Mordenite) observed in various rocks (e.g. coals, pyroclastics). In order to obtain a representative training data set for each minerals, a selection procedure for reference mineral analyses was applied. During the selection procedure, SEM based crystal morphology data, XRD spectra and re-calculated cationic distribution, obtained by EDS have been used for the characterization of the training set. Consequently, for each zeolite species 250 EDS data (as elemental intensities) used for training and 200 ±50 analyses were tested. Finally, two prediction models were developed. The constructed models with various cross-correlation values (r) yielded an average accuracy of >91% for the best predictions using C5.0 Decision Tree algorithm and back propagation artificial neural network. Despite having similar accuracies, the developed models exhibit different prediction behaviors for some zeolite minerals. The results demonstrate that artificial neural network as a nonlinear tool and decision tree algorithm as a rule based prediction model would be employed to provide considerably efficient and reliable identification/classification of some zeolite minerals regardless of their similar elemental compositions. Keywords: mineral identification; zeolites; energy dispersive spectrometry; artificial neural networks; decision tree.

  11. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  12. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  13. Climate analyses to assess risks from invasive forest insects: Simple matching to advanced models

    Treesearch

    Robert C. Venette

    2017-01-01

    Purpose of Review. The number of invasive alien insects that adversely affect trees and forests continues to increase as do associated ecological, economic, and sociological impacts. Prevention strategies remain the most cost-effective approach to address the issue, but risk management decisions, particularly those affecting international trade,...

  14. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  15. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  16. Objective consensus from decision trees.

    PubMed

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  17. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  18. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  19. Using decision trees to understand structure in missing data

    PubMed Central

    Tierney, Nicholas J; Harden, Fiona A; Harden, Maurice J; Mengersen, Kerrie L

    2015-01-01

    Objectives Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting Data taken from employees at 3 different industrial sites in Australia. Participants 7915 observations were included. Materials and methods The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions Researchers are encouraged to use CART and BRT models to explore and understand missing data. PMID:26124509

  20. Decision tree and ensemble learning algorithms with their applications in bioinformatics.

    PubMed

    Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping

    2011-01-01

    Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.

  1. A Decision Tree for Psychology Majors: Supplying Questions as Well as Answers.

    ERIC Educational Resources Information Center

    Poe, Retta E.

    1988-01-01

    Outlines the development of a psychology careers decision tree to help faculty advise students plan their program. States that students using the decision tree may benefit by learning more about their career options and by acquiring better question-asking skills. (GEA)

  2. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  3. The value of decision tree analysis in planning anaesthetic care in obstetrics.

    PubMed

    Bamber, J H; Evans, S A

    2016-08-01

    The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Building of fuzzy decision trees using ID3 algorithm

    NASA Astrophysics Data System (ADS)

    Begenova, S. B.; Avdeenko, T. V.

    2018-05-01

    Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.

  5. Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery

    DTIC Science & Technology

    2007-09-21

    a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios

  6. Probabilistic flood damage modelling at the meso-scale

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2014-05-01

    Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.

  7. An association between dietary habits and traffic accidents in patients with chronic liver disease: A data-mining analysis

    PubMed Central

    KAWAGUCHI, TAKUMI; SUETSUGU, TAKURO; OGATA, SHYOU; IMANAGA, MINAMI; ISHII, KUMIKO; ESAKI, NAO; SUGIMOTO, MASAKO; OTSUYAMA, JYURI; NAGAMATSU, AYU; TANIGUCHI, EITARO; ITOU, MINORU; ORIISHI, TETSUHARU; IWASAKI, SHOKO; MIURA, HIROKO; TORIMURA, TAKUJI

    2016-01-01

    The incidence of traffic accidents in patients with chronic liver disease (CLD) is high in the USA. However, the characteristics of patients, including dietary habits, differ between Japan and the USA. The present study investigated the incidence of traffic accidents in CLD patients and the clinical profiles associated with traffic accidents in Japan using a data-mining analysis. A cross-sectional study was performed and 256 subjects [148 CLD patients (CLD group) and 106 patients with other digestive diseases (disease control group)] were enrolled; 2 patients were excluded. The incidence of traffic accidents was compared between the two groups. Independent factors for traffic accidents were analyzed using logistic regression and decision-tree analyses. The incidence of traffic accidents did not differ between the CLD and disease control groups (8.8 vs. 11.3%). The results of the logistic regression analysis showed that yoghurt consumption was the only independent risk factor for traffic accidents (odds ratio, 0.37; 95% confidence interval, 0.16–0.85; P=0.0197). Similarly, the results of the decision-tree analysis showed that yoghurt consumption was the initial divergence variable. In patients who consumed yoghurt habitually, the incidence of traffic accidents was 6.6%, while that in patients who did not consume yoghurt was 16.0%. CLD was not identified as an independent factor in the logistic regression and decision-tree analyses. In conclusion, the difference in the incidence of traffic accidents in Japan between the CLD and disease control groups was insignificant. Furthermore, yoghurt consumption was an independent negative risk factor for traffic accidents in patients with digestive diseases, including CLD. PMID:27123257

  8. An association between dietary habits and traffic accidents in patients with chronic liver disease: A data-mining analysis.

    PubMed

    Kawaguchi, Takumi; Suetsugu, Takuro; Ogata, Shyou; Imanaga, Minami; Ishii, Kumiko; Esaki, Nao; Sugimoto, Masako; Otsuyama, Jyuri; Nagamatsu, Ayu; Taniguchi, Eitaro; Itou, Minoru; Oriishi, Tetsuharu; Iwasaki, Shoko; Miura, Hiroko; Torimura, Takuji

    2016-05-01

    The incidence of traffic accidents in patients with chronic liver disease (CLD) is high in the USA. However, the characteristics of patients, including dietary habits, differ between Japan and the USA. The present study investigated the incidence of traffic accidents in CLD patients and the clinical profiles associated with traffic accidents in Japan using a data-mining analysis. A cross-sectional study was performed and 256 subjects [148 CLD patients (CLD group) and 106 patients with other digestive diseases (disease control group)] were enrolled; 2 patients were excluded. The incidence of traffic accidents was compared between the two groups. Independent factors for traffic accidents were analyzed using logistic regression and decision-tree analyses. The incidence of traffic accidents did not differ between the CLD and disease control groups (8.8 vs. 11.3%). The results of the logistic regression analysis showed that yoghurt consumption was the only independent risk factor for traffic accidents (odds ratio, 0.37; 95% confidence interval, 0.16-0.85; P=0.0197). Similarly, the results of the decision-tree analysis showed that yoghurt consumption was the initial divergence variable. In patients who consumed yoghurt habitually, the incidence of traffic accidents was 6.6%, while that in patients who did not consume yoghurt was 16.0%. CLD was not identified as an independent factor in the logistic regression and decision-tree analyses. In conclusion, the difference in the incidence of traffic accidents in Japan between the CLD and disease control groups was insignificant. Furthermore, yoghurt consumption was an independent negative risk factor for traffic accidents in patients with digestive diseases, including CLD.

  9. Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets

    ERIC Educational Resources Information Center

    Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.

    2012-01-01

    This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…

  10. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    DOEpatents

    Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  11. The decision tree classifier - Design and potential. [for Landsat-1 data

    NASA Technical Reports Server (NTRS)

    Hauska, H.; Swain, P. H.

    1975-01-01

    A new classifier has been developed for the computerized analysis of remote sensor data. The decision tree classifier is essentially a maximum likelihood classifier using multistage decision logic. It is characterized by the fact that an unknown sample can be classified into a class using one or several decision functions in a successive manner. The classifier is applied to the analysis of data sensed by Landsat-1 over Kenosha Pass, Colorado. The classifier is illustrated by a tree diagram which for processing purposes is encoded as a string of symbols such that there is a unique one-to-one relationship between string and decision tree.

  12. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  13. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  14. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  15. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    ERIC Educational Resources Information Center

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  16. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process

    PubMed Central

    Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  17. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    PubMed

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  18. Computerized Adaptive Test vs. decision trees: Development of a support decision system to identify suicidal behavior.

    PubMed

    Delgado-Gomez, D; Baca-Garcia, E; Aguado, D; Courtet, P; Lopez-Castroman, J

    2016-12-01

    Several Computerized Adaptive Tests (CATs) have been proposed to facilitate assessments in mental health. These tests are built in a standard way, disregarding useful and usually available information not included in the assessment scales that could increase the precision and utility of CATs, such as the history of suicide attempts. Using the items of a previously developed scale for suicidal risk, we compared the performance of a standard CAT and a decision tree in a support decision system to identify suicidal behavior. We included the history of past suicide attempts as a class for the separation of patients in the decision tree. The decision tree needed an average of four items to achieve a similar accuracy than a standard CAT with nine items. The accuracy of the decision tree, obtained after 25 cross-validations, was 81.4%. A shortened test adapted for the separation of suicidal and non-suicidal patients was developed. CATs can be very useful tools for the assessment of suicidal risk. However, standard CATs do not use all the information that is available. A decision tree can improve the precision of the assessment since they are constructed using a priori information. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  20. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  1. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach.

    PubMed

    Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J

    2009-11-22

    Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  2. Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree

    NASA Astrophysics Data System (ADS)

    Wahyuni, Sri

    2018-03-01

    Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.

  3. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    ERIC Educational Resources Information Center

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  4. Decision Tree Phytoremediation

    DTIC Science & Technology

    1999-12-01

    aromatic hydrocarbons, and landfill leachates . Phytoremediation has been used for point and nonpoint source hazardous waste control. 1.2 Types of... Phytoremediation Prepared by Interstate Technology and Regulatory Cooperation Work Group Phytoremediation Work Team December 1999 Decision Tree...1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Phytoremediation Decision Tree 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  5. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  6. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  7. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    PubMed

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  8. Application of preprocessing filtering on Decision Tree C4.5 and rough set theory

    NASA Astrophysics Data System (ADS)

    Chan, Joseph C. C.; Lin, Tsau Y.

    2001-03-01

    This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.

  9. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cost-effectiveness of antenatal screening for neonatal alloimmune thrombocytopenia.

    PubMed

    Killie, M K; Kjeldsen-Kragh, J; Husebekk, A; Skogen, B; Olsen, J A; Kristiansen, I S

    2007-05-01

    To estimate the costs and health consequences of three different screening strategies for neonatal alloimmune thrombocytopenia (NAIT). Cost-utility analysis on the basis of a decision tree that incorporates the relevant strategies and outcomes. Three health regions in Norway encompassing a 2.78 million population. Pregnant women (n = 100,448) screened for human platelet antigen (HPA) 1a and anti-HPA 1a antibodies, and their babies. Decision tree analysis. In three branches of the decision tree, pregnant women entered a programme while in one no screening was performed. The three different screening strategies included all HPA 1a negative women, only HPA 1a negative, HLA DRB3*0101 positive women or only HPA 1a negative women with high level of anti-HPA 1a antibodies. Included women underwent ultrasound examination and elective caesarean section 2-4 weeks before term. Severely thrombocytopenic newborn were transfused immediately with compatible platelets. Quality-adjusted life years (QALYs) and costs. Compared with no screening, a programme of screening and subsequent treatment would generate between 210 and 230 additional QALYs among 100,000 pregnant women, and at the same time, reduce health care costs by approximately 1.7 million euros. The sensitivity analyses indicate that screening is cost effective or even cost saving within a wide range of probabilities and costs. Our calculations indicate that it is possible to establish an antenatal screening programme for NAIT that is cost effective.

  11. A Decision Tree to Identify Children Affected by Prenatal Alcohol Exposure

    PubMed Central

    Goh, Patrick K.; Doyle, Lauren R.; Glass, Leila; Jones, Kenneth L.; Riley, Edward P.; Coles, Claire D.; Hoyme, H. Eugene; Kable, Julie A.; May, Philip A.; Kalberg, Wendy O.; Elizabeth, R. Sowell; Wozniak, Jeffrey R.; Mattson, Sarah N.

    2017-01-01

    Objective To develop and validate a hierarchical decision tree model, combining neurobehavioral and physical measures, for identification of children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the United States. The model was developed after evaluating over 1000 neurobehavioral and dysmorphology variables collected from 434 children (8–16y) with prenatal alcohol exposure, with and without fetal alcohol syndrome (FAS), and non-exposed controls, with and without other clinically-relevant behavioral or cognitive concerns. The model was subsequently validated in an independent sample of 454 children in two age ranges (5–7y or 10–16y). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from non-exposed controls, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment. PMID:27476634

  12. Multivariate analysis of flow cytometric data using decision trees.

    PubMed

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  13. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-07-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  14. Using decision tree analysis to identify risk factors for relapse to smoking

    PubMed Central

    Piper, Megan E.; Loh, Wei-Yin; Smith, Stevens S.; Japuntich, Sandra J.; Baker, Timothy B.

    2010-01-01

    This research used classification tree analysis and logistic regression models to identify risk factors related to short- and long-term abstinence. Baseline and cessation outcome data from two smoking cessation trials, conducted from 2001 to 2002, in two Midwestern urban areas, were analyzed. There were 928 participants (53.1% women, 81.8% white) with complete data. Both analyses suggest that relapse risk is produced by interactions of risk factors and that early and late cessation outcomes reflect different vulnerability factors. The results illustrate the dynamic nature of relapse risk and suggest the importance of efficient modeling of interactions in relapse prediction. PMID:20397871

  15. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  16. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  17. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  18. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  19. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  20. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  1. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  2. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  3. A universal hybrid decision tree classifier design for human activity classification.

    PubMed

    Chien, Chieh; Pottie, Gregory J

    2012-01-01

    A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.

  4. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options. PMID:25848413

  5. CorRECTreatment: a web-based decision support tool for rectal cancer treatment that uses the analytic hierarchy process and decision tree.

    PubMed

    Suner, A; Karakülah, G; Dicle, O; Sökmen, S; Çelikoğlu, C C

    2015-01-01

    The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians' decision making. The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options.

  6. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  7. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: clinical outcomes using an objective decision tree.

    PubMed

    Stonecipher, Karl; Parrish, Joseph; Stonecipher, Megan

    2018-05-18

    This review is intended to update and educate the reader on the currently available options for laser vision correction, more specifically, laser-assisted in-situ keratomileusis (LASIK). In addition, some related clinical outcomes data from over 1000 cases performed over a 1-year are presented to highlight some differences between the various treatment profiles currently available including the rapidity of visual recovery. The cases in question were performed on the basis of a decision tree to segregate patients on the basis of anatomical, topographic and aberrometry findings; the decision tree was formulated based on the data available in some of the reviewed articles. Numerous recent studies reported in the literature provide data related to the risks and benefits of LASIK; alternatives to a laser refractive procedure are also discussed. The results from these studies have been used to prepare a decision tree to assist the surgeon in choosing the best option for the patient based on the data from several standard preoperative diagnostic tests. The data presented here should aid surgeons in understanding the effects of currently available LASIK treatment profiles. Surgeons should also be able to appreciate how the findings were used to create a decision tree to help choose the most appropriate treatment profile for patients. Finally, the retrospective evaluation of clinical outcomes based on the decision tree should provide surgeons with a realistic expectation for their own outcomes should they adopt such a decision tree in their own practice.

  9. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    NASA Astrophysics Data System (ADS)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  10. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  11. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. R.; Landgrebe, David

    1991-01-01

    Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  12. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. Rasoul; Landgrebe, David

    1990-01-01

    Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  13. Assessing visual green effects of individual urban trees using airborne Lidar data.

    PubMed

    Chen, Ziyue; Xu, Bing; Gao, Bingbo

    2015-12-01

    Urban trees benefit people's daily life in terms of air quality, local climate, recreation and aesthetics. Among these functions, a growing number of studies have been conducted to understand the relationship between residents' preference towards local environments and visual green effects of urban greenery. However, except for on-site photography, there are few quantitative methods to calculate green visibility, especially tree green visibility, from viewers' perspectives. To fill this research gap, a case study was conducted in the city of Cambridge, which has a diversity of tree species, sizes and shapes. Firstly, a photograph-based survey was conducted to approximate the actual value of visual green effects of individual urban trees. In addition, small footprint airborne Lidar (Light detection and ranging) data was employed to measure the size and shape of individual trees. Next, correlations between visual tree green effects and tree structural parameters were examined. Through experiments and gradual refinement, a regression model with satisfactory R2 and limited large errors is proposed. Considering the diversity of sample trees and the result of cross-validation, this model has the potential to be applied to other study sites. This research provides urban planners and decision makers with an innovative method to analyse and evaluate landscape patterns in terms of tree greenness. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  15. A Decision Tree for Nonmetric Sex Assessment from the Skull.

    PubMed

    Langley, Natalie R; Dudzik, Beatrix; Cloutier, Alesia

    2018-01-01

    This study uses five well-documented cranial nonmetric traits (glabella, mastoid process, mental eminence, supraorbital margin, and nuchal crest) and one additional trait (zygomatic extension) to develop a validated decision tree for sex assessment. The decision tree was built and cross-validated on a sample of 293 U.S. White individuals from the William M. Bass Donated Skeletal Collection. Ordinal scores from the six traits were analyzed using the partition modeling option in JMP Pro 12. A holdout sample of 50 skulls was used to test the model. The most accurate decision tree includes three variables: glabella, zygomatic extension, and mastoid process. This decision tree yielded 93.5% accuracy on the training sample, 94% on the cross-validated sample, and 96% on a holdout validation sample. Linear weighted kappa statistics indicate acceptable agreement among observers for these variables. Mental eminence should be avoided, and definitions and figures should be referenced carefully to score nonmetric traits. © 2017 American Academy of Forensic Sciences.

  16. A framework for sensitivity analysis of decision trees.

    PubMed

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  17. Magnetic Resonance Imaging Measures of Brain Structure to Predict Antidepressant Treatment Outcome in Major Depressive Disorder.

    PubMed

    Korgaonkar, Mayuresh S; Rekshan, William; Gordon, Evian; Rush, A John; Williams, Leanne M; Blasey, Christine; Grieve, Stuart M

    2015-01-01

    Less than 50% of patients with Major Depressive Disorder (MDD) reach symptomatic remission with their initial antidepressant medication (ADM). There are currently no objective measures with which to reliably predict which individuals will achieve remission to ADMs. 157 participants with MDD from the International Study to Predict Optimized Treatment in Depression (iSPOT-D) underwent baseline MRIs and completed eight weeks of treatment with escitalopram, sertraline or venlafaxine-ER. A score at week 8 of 7 or less on the 17 item Hamilton Rating Scale for Depression defined remission. Receiver Operator Characteristics (ROC) analysis using the first 50% participants was performed to define decision trees of baseline MRI volumetric and connectivity (fractional anisotropy) measures that differentiated non-remitters from remitters with maximal sensitivity and specificity. These decision trees were tested for replication in the remaining participants. Overall, 35% of all participants achieved remission. ROC analyses identified two decision trees that predicted a high probability of non-remission and that were replicated: 1. Left middle frontal volume < 14 · 8 mL & right angular gyrus volume > 6 · 3 mL identified 55% of non-remitters with 85% accuracy; and 2. Fractional anisotropy values in the left cingulum bundle < 0 · 63, right superior fronto-occipital fasciculus < 0 · 54 and right superior longitudinal fasciculus < 0 · 50 identified 15% of the non-remitters with 84% accuracy. All participants who met criteria for both decision trees were correctly identified as non-remitters. Pretreatment MRI measures seem to reliably identify a subset of patients who do not remit with a first step medication that includes one of these commonly used medications. Findings are consistent with a neuroanatomical basis for non-remission in depressed patients. Brain Resource Ltd is the sponsor for the iSPOT-D study (NCT00693849).

  18. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  19. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  20. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  1. [Comparison of Discriminant Analysis and Decision Trees for the Detection of Subclinical Keratoconus].

    PubMed

    Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens

    2017-08-15

    Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.

  2. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.

  3. Uncertain decision tree inductive inference

    NASA Astrophysics Data System (ADS)

    Zarban, L.; Jafari, S.; Fakhrahmad, S. M.

    2011-10-01

    Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.

  4. The utility of a classificatory decision tree approach to assist clinical differentiation of melancholic and non-melancholic depression.

    PubMed

    Parker, G; McCraw, S; Hadzi-Pavlovic, D

    2015-07-15

    Studies suggest that differentiating melancholic from non-melancholic depressive disorders is advanced by use of illness course as well as symptom variables but, in practice, potentially differentiating variables are generally positioned as having equal value. Judging that differentiating features are more likely to vary in their signal intensity, we sought to determine the number of features required to effect differentiation and their hierarchical order. The 24-item clinician-rated Sydney Melancholia Prototype Index (SMPI-CR) was completed for 364 unipolar depressed patients. The sample was divided into two cohorts according to the recruitment period. An RPART classification tree analysis identified the most discriminating SMPI items in the development sample of 197 patients, and examined the sensitivity and specificity of the diagnostic decisions, then sought to replicate findings in a validation sample of 169 patients. Independent analyses of putative SMPI items identified only seven items as required to discriminate those with clinically-diagnosed melancholic or non-melancholic depression when the conditions were examined separately. An RPART analysis considering differentiation of melancholic and non-melancholic depression in the total samples retained five of those items in the classification tree, three of which were non-symptom items, and with 92% sensitivity and 80% specificity in the development sample. This reduced item set showed 93% sensitivity and 82% specificity in the validation sample. Our clinical judgment of melancholic or non-melancholic depression may not correspond with the clinical logic employed by other clinicians. Only five SMPI items were required to derive a succinct and efficient decision tree, comprising high sensitivity and specificity in differentiating melancholic and non-melancholic depression. Current study findings provide an empirical model that could enrich clinicians׳ approach to differentiating melancholic and non-melancholic depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparative Issues and Methods in Organizational Diagnosis. Report II. The Decision Tree Approach.

    DTIC Science & Technology

    organizational diagnosis . The advantages and disadvantages of the decision-tree approach generally, and in this study specifically, are examined. A pre-test, using a civilian sample of 174 work groups with Survey of Organizations data, was conducted to assess various decision-tree classification criteria, in terms of their similarity to the distance function used by Bowers and Hausser (1977). The results suggested the use of a large developmental sample, which should result in more distinctly defined boundary lines between classification profiles. Also, the decision matrix

  6. FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

    PubMed

    Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W

    2014-12-01

    Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

  7. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  8. MRI-based decision tree model for diagnosis of biliary atresia.

    PubMed

    Kim, Yong Hee; Kim, Myung-Joon; Shin, Hyun Joo; Yoon, Haesung; Han, Seok Joo; Koh, Hong; Roh, Yun Ho; Lee, Mi-Jung

    2018-02-23

    To evaluate MRI findings and to generate a decision tree model for diagnosis of biliary atresia (BA) in infants with jaundice. We retrospectively reviewed features of MRI and ultrasonography (US) performed in infants with jaundice between January 2009 and June 2016 under approval of the institutional review board, including the maximum diameter of periportal signal change on MRI (MR triangular cord thickness, MR-TCT) or US (US-TCT), visibility of common bile duct (CBD) and abnormality of gallbladder (GB). Hepatic subcapsular flow was reviewed on Doppler US. We performed conditional inference tree analysis using MRI findings to generate a decision tree model. A total of 208 infants were included, 112 in the BA group and 96 in the non-BA group. Mean age at the time of MRI was 58.7 ± 36.6 days. Visibility of CBD, abnormality of GB and MR-TCT were good discriminators for the diagnosis of BA and the MRI-based decision tree using these findings with MR-TCT cut-off 5.1 mm showed 97.3 % sensitivity, 94.8 % specificity and 96.2 % accuracy. MRI-based decision tree model reliably differentiates BA in infants with jaundice. MRI can be an objective imaging modality for the diagnosis of BA. • MRI-based decision tree model reliably differentiates biliary atresia in neonatal cholestasis. • Common bile duct, gallbladder and periportal signal changes are the discriminators. • MRI has comparable performance to ultrasonography for diagnosis of biliary atresia.

  9. [Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

    PubMed

    Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi

    2013-02-01

    The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

  10. Comparison of neurofuzzy logic and decision trees in discovering knowledge from experimental data of an immediate release tablet formulation.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.

  11. Parallel object-oriented decision tree system

    DOEpatents

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  12. Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.

    DTIC Science & Technology

    1984-10-01

    O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state

  13. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  14. Probabilistic, meso-scale flood loss modelling

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  15. Prediction of heart disease using apache spark analysing decision trees and gradient boosting algorithm

    NASA Astrophysics Data System (ADS)

    Chugh, Saryu; Arivu Selvan, K.; Nadesh, RK

    2017-11-01

    Numerous destructive things influence the working arrangement of human body as hypertension, smoking, obesity, inappropriate medication taking which causes many contrasting diseases as diabetes, thyroid, strokes and coronary diseases. The impermanence and horribleness of the environment situation is also the reason for the coronary disease. The structure of Apache start relies on the evolution which requires gathering of the data. To break down the significance of use programming focused on data structure the Apache stop ought to be utilized and it gives various central focuses as it is fast in light as it uses memory worked in preparing. Apache Spark continues running on dispersed environment and chops down the data in bunches giving a high profitability rate. Utilizing mining procedure as a part of the determination of coronary disease has been exhaustively examined indicating worthy levels of precision. Decision trees, Neural Network, Gradient Boosting Algorithm are the various apache spark proficiencies which help in collecting the information.

  16. FCMPSO: An Imputation for Missing Data Features in Heart Disease Classification

    NASA Astrophysics Data System (ADS)

    Salleh, Mohd Najib Mohd; Ashikin Samat, Nurul

    2017-08-01

    The application of data mining and machine learning in directing clinical research into possible hidden knowledge is becoming greatly influential in medical areas. Heart Disease is a killer disease around the world, and early prevention through efficient methods can help to reduce the mortality number. Medical data may contain many uncertainties, as they are fuzzy and vague in nature. Nonetheless, imprecise features data such as no values and missing values can affect quality of classification results. Nevertheless, the other complete features are still capable to give information in certain features. Therefore, an imputation approach based on Fuzzy C-Means and Particle Swarm Optimization (FCMPSO) is developed in preprocessing stage to help fill in the missing values. Then, the complete dataset is trained in classification algorithm, Decision Tree. The experiment is trained with Heart Disease dataset and the performance is analysed using accuracy, precision, and ROC values. Results show that the performance of Decision Tree is increased after the application of FCMSPO for imputation.

  17. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework.

    PubMed

    Briggs, Andrew H; Ades, A E; Price, Martin J

    2003-01-01

    In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.

  18. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  19. The Decision Tree for Teaching Management of Uncertainty

    ERIC Educational Resources Information Center

    Knaggs, Sara J.; And Others

    1974-01-01

    A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)

  20. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  1. A Search for the tt¯H (H → bb) Large Hadron Collider with the atlas detector using a matrix element method

    NASA Astrophysics Data System (ADS)

    Basye, Austin T.

    A matrix element method analysis of the Standard Model Higgs boson, produced in association with two top quarks decaying to the lepton-plus-jets channel is presented. Based on 20.3 fb--1 of s=8 TeV data, produced at the Large Hadron Collider and collected by the ATLAS detector, this analysis utilizes multiple advanced techniques to search for ttH signatures with a 125 GeV Higgs boson decaying to two b -quarks. After categorizing selected events based on their jet and b-tag multiplicities, signal rich regions are analyzed using the matrix element method. Resulting variables are then propagated to two parallel multivariate analyses utilizing Neural Networks and Boosted Decision Trees respectively. As no significant excess is found, an observed (expected) limit of 3.4 (2.2) times the Standard Model cross-section is determined at 95% confidence, using the CLs method, for the Neural Network analysis. For the Boosted Decision Tree analysis, an observed (expected) limit of 5.2 (2.7) times the Standard Model cross-section is determined at 95% confidence, using the CLs method. Corresponding unconstrained fits of the Higgs boson signal strength to the observed data result in the measured signal cross-section to Standard Model cross-section prediction of mu = 1.2 +/- 1.3(total) +/- 0.7(stat.) for the Neural Network analysis, and mu = 2.9 +/- 1.4(total) +/- 0.8(stat.) for the Boosted Decision Tree analysis.

  2. Cost-effectiveness Analysis with Influence Diagrams.

    PubMed

    Arias, M; Díez, F J

    2015-01-01

    Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.

  3. Discovering Decision Knowledge from Web Log Portfolio for Managing Classroom Processes by Applying Decision Tree and Data Cube Technology.

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Liu, Chen-Chung; Ou, Kuo-Liang; Liu, Baw-Jhiune

    2000-01-01

    Discusses the use of Web logs to record student behavior that can assist teachers in assessing performance and making curriculum decisions for distance learning students who are using Web-based learning systems. Adopts decision tree and data cube information processing methodologies for developing more effective pedagogical strategies. (LRW)

  4. Assessing School Readiness for a Practice Arrangement Using Decision Tree Methodology.

    ERIC Educational Resources Information Center

    Barger, Sara E.

    1998-01-01

    Questions in a decision-tree address mission, faculty interest, administrative support, and practice plan as a way of assessing arrangements for nursing faculty's clinical practice. Decisions should be based on congruence between the human resource allocation and the reward systems. (SK)

  5. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  6. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    PubMed

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  7. On Parallelism and the Penman Natural Language Generation System.

    DTIC Science & Technology

    1988-04-01

    TagfiniteA Tagsubject L untag ed Figure 2-2: System network with choosers & realization statements 7 decision . We will give a more detailed account of...2: enter the current system. The chooser of the system is in charge of * selection of features. The chooser is itself a decision tree with certain...organization of a chooser is the same as a decision (discrimination) tree, and each branching point in the tree is defined by Ask operation. For example, in

  8. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  9. Evaluation of Decision Trees for Cloud Detection from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Nemani, Ramakrishna

    2005-01-01

    Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.

  10. Decision-Tree Analysis for Predicting First-Time Pass/Fail Rates for the NCLEX-RN® in Associate Degree Nursing Students.

    PubMed

    Chen, Hsiu-Chin; Bennett, Sean

    2016-08-01

    Little evidence shows the use of decision-tree algorithms in identifying predictors and analyzing their associations with pass rates for the NCLEX-RN(®) in associate degree nursing students. This longitudinal and retrospective cohort study investigated whether a decision-tree algorithm could be used to develop an accurate prediction model for the students' passing or failing the NCLEX-RN. This study used archived data from 453 associate degree nursing students in a selected program. The chi-squared automatic interaction detection analysis of the decision trees module was used to examine the effect of the collected predictors on passing/failing the NCLEX-RN. The actual percentage scores of Assessment Technologies Institute®'s RN Comprehensive Predictor(®) accurately identified students at risk of failing. The classification model correctly classified 92.7% of the students for passing. This study applied the decision-tree model to analyze a sequence database for developing a prediction model for early remediation in preparation for the NCLEXRN. [J Nurs Educ. 2016;55(8):454-457.]. Copyright 2016, SLACK Incorporated.

  11. Sequential decision tree using the analytic hierarchy process for decision support in rectal cancer.

    PubMed

    Suner, Aslı; Çelikoğlu, Can Cengiz; Dicle, Oğuz; Sökmen, Selman

    2012-09-01

    The aim of the study is to determine the most appropriate method for construction of a sequential decision tree in the management of rectal cancer, using various patient-specific criteria and treatments such as surgery, chemotherapy, and radiotherapy. An analytic hierarchy process (AHP) was used to determine the priorities of variables. Relevant criteria used in two decision steps and their relative priorities were established by a panel of five general surgeons. Data were collected via a web-based application and analyzed using the "Expert Choice" software specifically developed for the AHP. Consistency ratios in the AHP method were calculated for each set of judgments, and the priorities of sub-criteria were determined. A sequential decision tree was constructed for the best treatment decision process, using priorities determined by the AHP method. Consistency ratios in the AHP method were calculated for each decision step, and the judgments were considered consistent. The tumor-related criterion "presence of perforation" (0.331) and the patient-surgeon-related criterion "surgeon's experience" (0.630) had the highest priority in the first decision step. In the second decision step, the tumor-related criterion "the stage of the disease" (0.230) and the patient-surgeon-related criterion "surgeon's experience" (0.281) were the paramount criteria. The results showed some variation in the ranking of criteria between the decision steps. In the second decision step, for instance, the tumor-related criterion "presence of perforation" was just the fifth. The consistency of decision support systems largely depends on the quality of the underlying decision tree. When several choices and variables have to be considered in a decision, it is very important to determine priorities. The AHP method seems to be effective for this purpose. The decision algorithm developed by this method is more realistic and will improve the quality of the decision tree. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of Taxi Time Prediction Performance Using Different Taxi Speed Decision Trees

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    In the STBO modeler and tactical surface scheduler for ATD-2 project, taxi speed decision trees are used to calculate the unimpeded taxi times of flights taxiing on the airport surface. The initial taxi speed values in these decision trees did not show good prediction accuracy of taxi times. Using the more recent, reliable surveillance data, new taxi speed values in ramp area and movement area were computed. Before integrating these values into the STBO system, we performed test runs using live data from Charlotte airport, with different taxi speed settings: 1) initial taxi speed values and 2) new ones. Taxi time prediction performance was evaluated by comparing various metrics. The results show that the new taxi speed decision trees can calculate the unimpeded taxi-out times more accurately.

  13. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  14. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  15. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  16. RE-Powering’s Electronic Decision Tree

    EPA Pesticide Factsheets

    Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations

  17. [Modeling in value-based medicine].

    PubMed

    Neubauer, A S; Hirneiss, C; Kampik, A

    2010-03-01

    Modeling plays an important role in value-based medicine (VBM). It allows decision support by predicting potential clinical and economic consequences, frequently combining different sources of evidence. Based on relevant publications and examples focusing on ophthalmology the key economic modeling methods are explained and definitions are given. The most frequently applied model types are decision trees, Markov models, and discrete event simulation (DES) models. Model validation includes besides verifying internal validity comparison with other models (external validity) and ideally validation of its predictive properties. The existing uncertainty with any modeling should be clearly stated. This is true for economic modeling in VBM as well as when using disease risk models to support clinical decisions. In economic modeling uni- and multivariate sensitivity analyses are usually applied; the key concepts here are tornado plots and cost-effectiveness acceptability curves. Given the existing uncertainty, modeling helps to make better informed decisions than without this additional information.

  18. Decision Tree Approach for Soil Liquefaction Assessment

    PubMed Central

    Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498

  19. Decision tree approach for soil liquefaction assessment.

    PubMed

    Gandomi, Amir H; Fridline, Mark M; Roke, David A

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.

  20. Exploratory Decision-Tree Modeling of Data from the Randomized REACTT Trial of Tadalafil Versus Placebo to Predict Recovery of Erectile Function After Bilateral Nerve-Sparing Radical Prostatectomy.

    PubMed

    Montorsi, Francesco; Oelke, Matthias; Henneges, Carsten; Brock, Gerald; Salonia, Andrea; d'Anzeo, Gianluca; Rossi, Andrea; Mulhall, John P; Büttner, Hartwig

    2016-09-01

    Understanding predictors for the recovery of erectile function (EF) after nerve-sparing radical prostatectomy (nsRP) might help clinicians and patients in preoperative counseling and expectation management of EF rehabilitation strategies. To describe the effect of potential predictors on EF recovery after nsRP by post hoc decision-tree modeling of data from A Study of Tadalafil After Radical Prostatectomy (REACTT). Randomized double-blind double-dummy placebo-controlled trial in 423 men aged <68 yr with adenocarcinoma of the prostate (Gleason ≤7, normal preoperative EF) who underwent nsRP at 50 centers from nine European countries and Canada. Postsurgery 1:1:1 randomization to 9-mo double-blind treatment with tadalafil 5mg once a day (OaD), tadalafil 20mg on demand, or placebo, followed by a 6-wk drug-free-washout, and a 3-mo open-label tadalafil OaD treatment. Three decision-tree models, using the International Index of Erectile Function-Erectile Function (IIEF-EF) domain score at the end of double-blind treatment, washout, and open-label treatment as response variable. Each model evaluated the association between potential predictors: presurgery IIEF domain and IIEF single-item scores, surgical approach, nerve-sparing score (NSS), and postsurgery randomized treatment group. The first decision-tree model (n=422, intention-to-treat population) identified high presurgery sexual desire (IIEF item 12: ≥3.5 and <3.5) as the key predictor for IIEF-EF at the end of double-blind treatment (mean IIEF-EF: 14.9 and 11.1), followed by high confidence to get and maintain an erection (IIEF item 15: ≥3.5 and <3.5; IIEF-EF: 15.4 and 7.1). For patients meeting these criteria, additional non-IIEF-related predictors included robot-assisted laparoscopic surgery (yes or no; IIEF-EF: 19.3 and 12.6), quality of nerve sparing (NSS: <2.5 and ≥2.5; IIEF-EF: 14.3 and 10.5), and treatment with tadalafil OaD (yes and no; IIEF-EF: 17.6 and 14.3). Additional analyses after washout and open-label treatment identified high presurgery intercourse satisfaction as the key predictor. Exploratory decision-tree analyses identified high presurgery sexual desire, confidence, and intercourse satisfaction as key predictors for EF recovery. Patients meeting these criteria might benefit the most from conserving surgery and early postsurgery EF rehabilitation. Strategies for improving EF after surgery should be discussed preoperatively with all patients; this information may support expectation management for functional recovery on an individual patient level. Understanding how patient characteristics and different treatment options affect the recovery of erectile function (EF) after radical surgery for prostate cancer might help physicians select the optimal treatment for their patients. This analysis of data from a clinical trial suggested that high presurgery sexual desire, sexual confidence, and intercourse satisfaction are key factors predicting EF recovery. Patients meeting these criteria might benefit the most from conserving surgery (robot-assisted surgery, perfect nerve sparing) and postsurgery medical rehabilitation of EF. ClinicalTrials.gov, NCT01026818. Copyright © 2016. Published by Elsevier B.V.

  1. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    ERIC Educational Resources Information Center

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  2. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  3. PRIA 3 Fee Determination Decision Tree

    EPA Pesticide Factsheets

    The PRIA 3 decision tree will help applicants requesting a pesticide registration or certain tolerance action to accurately identify the category of their application and the amount of the required fee before they submit the application.

  4. Solar and Wind Site Screening Decision Trees

    EPA Pesticide Factsheets

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  5. STBase: one million species trees for comparative biology.

    PubMed

    McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.

  6. An analysis of tree mortality using high resolution remotely-sensed data for mixed-conifer forests in San Diego county

    NASA Astrophysics Data System (ADS)

    Freeman, Mary Pyott

    ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.

  7. Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities.

    PubMed

    Moon, Mikyung; Lee, Soo-Kyoung

    2017-01-01

    The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. The data were extracted from the 2014 National Inpatient Sample (NIS)-data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89 * ). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, "injuries to the hip and thigh" was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data.

  8. Predicting the probability of mortality of gastric cancer patients using decision tree.

    PubMed

    Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R

    2015-06-01

    Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.

  9. Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.

    PubMed

    Malehi, Amal Saki

    2014-01-01

    The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.

  10. Correlation Between the System Capabilities Analytic Process (SCAP) and the Missions and Means Framework (MMF)

    DTIC Science & Technology

    2013-05-01

    specifics of the correlation will be explored followed by discussion of new paradigms— the ordered event list (OEL) and the decision tree — that result from...4.2.1  Brief Overview of the Decision Tree Paradigm ................................................15  4.2.2  OEL Explained...6  Figure 3. A depiction of a notional fault/activation tree . ................................................................7

  11. Personalized Modeling for Prediction with Decision-Path Models

    PubMed Central

    Visweswaran, Shyam; Ferreira, Antonio; Ribeiro, Guilherme A.; Oliveira, Alexandre C.; Cooper, Gregory F.

    2015-01-01

    Deriving predictive models in medicine typically relies on a population approach where a single model is developed from a dataset of individuals. In this paper we describe and evaluate a personalized approach in which we construct a new type of decision tree model called decision-path model that takes advantage of the particular features of a given person of interest. We introduce three personalized methods that derive personalized decision-path models. We compared the performance of these methods to that of Classification And Regression Tree (CART) that is a population decision tree to predict seven different outcomes in five medical datasets. Two of the three personalized methods performed statistically significantly better on area under the ROC curve (AUC) and Brier skill score compared to CART. The personalized approach of learning decision path models is a new approach for predictive modeling that can perform better than a population approach. PMID:26098570

  12. Machine Learning Techniques for Prediction of Early Childhood Obesity.

    PubMed

    Dugan, T M; Mukhopadhyay, S; Carroll, A; Downs, S

    2015-01-01

    This paper aims to predict childhood obesity after age two, using only data collected prior to the second birthday by a clinical decision support system called CHICA. Analyses of six different machine learning methods: RandomTree, RandomForest, J48, ID3, Naïve Bayes, and Bayes trained on CHICA data show that an accurate, sensitive model can be created. Of the methods analyzed, the ID3 model trained on the CHICA dataset proved the best overall performance with accuracy of 85% and sensitivity of 89%. Additionally, the ID3 model had a positive predictive value of 84% and a negative predictive value of 88%. The structure of the tree also gives insight into the strongest predictors of future obesity in children. Many of the strongest predictors seen in the ID3 modeling of the CHICA dataset have been independently validated in the literature as correlated with obesity, thereby supporting the validity of the model. This study demonstrated that data from a production clinical decision support system can be used to build an accurate machine learning model to predict obesity in children after age two.

  13. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees inmore » a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.« less

  14. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.

  15. Can Classification Tree Analyses Help Improve Decision Making About Treatments for Depression and Anxiety Disorders? A Preliminary Investigation

    PubMed Central

    Rhodes, Louisa; Naumann, Ulrike M.

    2011-01-01

    Objective: To identify how decisions about treatment are being made in secondary services for anxiety disorders and depression and, specifically, whether it was possible to predict the decisions to refer for evidence-based treatments. Method: Post hoc classification tree analysis was performed using a sample from an audit on implementation of the National Institute for Health and Clinical Excellence Guidelines for Depression and Anxiety Disorders. The audit was of 5 teams offering secondary care services; they included psychiatrists, psychologists, community psychiatric nurses, social workers, dual-diagnosis workers, and vocational workers. The patient sample included all of those with a primary problem of depression (n = 56) or an anxiety disorder (n = 16) who were offered treatment from February 16 to April 3, 2009. The outcome variable was whether or not evidence-based treatments were offered, and the predictor variables were presenting problem, risk, comorbid problem, social problems, and previous psychiatric history. Results: Treatment decisions could be more accurately predicted for anxiety disorders (93% correct) than for depression (55%). For anxiety disorders, the presence or absence of social problems was a good predictor for whether evidence-based or non–evidence-based treatments were offered; 44% (4/9) of those with social problems vs 100% (6/6) of those without social problems were offered evidence-based treatments. For depression, patients’ risk rating had the largest impact on treatment decisions, although no one variable could be identified as individually predictive of all treatment decisions. Conclusions: Treatment decisions were generally consistent for anxiety disorders but more idiosyncratic for depression, making the development of a decision-making model very difficult for depression. The lack of clarity of some terms in the clinical guidelines and the more complex nature of depression could be factors contributing to this difficulty. Further research is needed to understand the complex nature of decision making with depressed patients. PMID:22295255

  16. Vlsi implementation of flexible architecture for decision tree classification in data mining

    NASA Astrophysics Data System (ADS)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  17. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  18. The Utility of Decision Trees in Oncofertility Care in Japan.

    PubMed

    Ito, Yuki; Shiraishi, Eriko; Kato, Atsuko; Haino, Takayuki; Sugimoto, Kouhei; Okamoto, Aikou; Suzuki, Nao

    2017-03-01

    To identify the utility and issues associated with the use of decision trees in oncofertility patient care in Japan. A total of 35 women who had been diagnosed with cancer, but had not begun anticancer treatment, were enrolled. We applied the oncofertility decision tree for women published by Gardino et al. to counsel a consecutive series of women on fertility preservation (FP) options following cancer diagnosis. Percentage of women who decided to undergo oocyte retrieval for embryo cryopreservation and the expected live-birth rate for these patients were calculated using the following equation: expected live-birth rate = pregnancy rate at each age per embryo transfer × (1 - miscarriage rate) × No. of cryopreserved embryos. Oocyte retrieval was performed for 17 patients (48.6%; mean ± standard deviation [SD] age, 36.35 ± 3.82 years). The mean ± SD number of cryopreserved embryos was 5.29 ± 4.63. The expected live-birth rate was 0.66. The expected live-birth rate with FP indicated that one in three oncofertility patients would not expect to have a live birth following oocyte retrieval and embryo cryopreservation. While the decision trees were useful as decision-making tools for women contemplating FP, in the context of the current restrictions on oocyte donation and the extremely small number of adoptions in Japan, the remaining options for fertility after cancer are limited. In order for cancer survivors to feel secure in their decisions, the decision tree may need to be adapted simultaneously with improvements to the social environment, such as greater support for adoption.

  19. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  20. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  1. The application of a decision tree to establish the parameters associated with hypertension.

    PubMed

    Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid

    2017-02-01

    Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    PubMed

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  3. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  4. Evaluation with Decision Trees of Efficacy and Safety of Semirigid Ureteroscopy in the Treatment of Proximal Ureteral Calculi.

    PubMed

    Sancak, Eyup Burak; Kılınç, Muhammet Fatih; Yücebaş, Sait Can

    2017-01-01

    The decision on the choice of proximal ureteral stone therapy depends on many factors, and sometimes urologists have difficulty in choosing the treatment option. This study is aimed at evaluating the factors affecting the success of semirigid ureterorenoscopy (URS) using the "decision tree" method. From January 2005 to November 2015, the data of consecutive patients treated for proximal ureteral stone were retrospectively analyzed. A total of 920 patients with proximal ureteral stone treated with semirigid URS were included in the study. All statistically significant attributes were tested using the decision tree method. The model created using decision tree had a sensitivity of 0.993 and an accuracy of 0.857. While URS treatment was successful in 752 patients (81.7%), it was unsuccessful in 168 patients (18.3%). According to the decision tree method, the most important factor affecting the success of URS is whether the stone is impacted to the ureteral wall. The second most important factor affecting treatment was intramural stricture requiring dilatation if the stone is impacted, and the size of the stone if not impacted. Our study suggests that the impacted stone, intramural stricture requiring dilatation and stone size may have a significant effect on the success rate of semirigid URS for proximal ureteral stone. Further studies with population-based and longitudinal design should be conducted to confirm this finding. © 2017 S. Karger AG, Basel.

  5. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  6. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  7. Planning effectiveness may grow on fault trees.

    PubMed

    Chow, C W; Haddad, K; Mannino, B

    1991-10-01

    The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.

  8. Exploratory Decision-Tree Modeling of Data from the Randomized REACTT Trial of Tadalafil Versus Placebo to Predict Recovery of Erectile Function After Bilateral Nerve-Sparing Radical Prostatectomy

    PubMed Central

    Montorsi, Francesco; Oelke, Matthias; Henneges, Carsten; Brock, Gerald; Salonia, Andrea; d’Anzeo, Gianluca; Rossi, Andrea; Mulhall, John P.; Büttner, Hartwig

    2017-01-01

    Background Understanding predictors for the recovery of erectile function (EF) after nerve-sparing radical prostatectomy (nsRP) might help clinicians and patients in preoperative counseling and expectation management of EF rehabilitation strategies. Objective To describe the effect of potential predictors on EF recovery after nsRP by post hoc decision-tree modeling of data from A Study of Tadalafil After Radical Prostatectomy (REACTT). Design, setting, and participants Randomized double-blind double-dummy placebo-controlled trial in 423 men aged <68 yr with adenocarcinoma of the prostate (Gleason ≤7, normal preoperative EF) who underwent nsRP at 50 centers from nine European countries and Canada. Intervention Postsurgery 1:1:1 randomization to 9-mo double-blind treatment with tadalafil 5 mg once a day (OaD), tadalafil 20 mg on demand, or placebo, followed by a 6-wk drug-free-washout, and a 3-mo open-label tadalafil OaD treatment. Outcome measurements and statistical analysis Three decision-tree models, using the International Index of Erectile Function-Erectile Function (IIEF-EF) domain score at the end of double-blind treatment, washout, and open-label treatment as response variable. Each model evaluated the association between potential predictors: presurgery IIEF domain and IIEF single-item scores, surgical approach, nerve-sparing score (NSS), and postsurgery randomized treatment group. Results and limitations The first decision-tree model (n = 422, intention-to-treat population) identified high presurgery sexual desire (IIEF item 12: ≥3.5 and <3.5) as the key predictor for IIEF-EF at the end of double-blind treatment (mean IIEF-EF: 14.9 and 11.1), followed by high confidence to get and maintain an erection (IIEF item 15: ≥3.5 and <3.5; IIEF-EF: 15.4 and 7.1). For patients meeting these criteria, additional non-IIEF–related predictors included robot-assisted laparoscopic surgery (yes or no; IIEF-EF: 19.3 and 12.6), quality of nerve sparing (NSS: <2.5 and ≥2.5; IIEF-EF: 14.3 and 10.5), and treatment with tadalafil OaD (yes and no; IIEF-EF: 17.6 and 14.3). Additional analyses after washout and open-label treatment identified high presurgery intercourse satisfaction as the key predictor. Conclusions Exploratory decision-tree analyses identified high presurgery sexual desire, confidence, and intercourse satisfaction as key predictors for EF recovery. Patients meeting these criteria might benefit the most from conserving surgery and early postsurgery EF rehabilitation. Strategies for improving EF after surgery should be discussed preoperatively with all patients; this information may support expectation management for functional recovery on an individual patient level. Patient summary Understanding how patient characteristics and different treatment options affect the recovery of erectile function (EF) after radical surgery for prostate cancer might help physicians select the optimal treatment for their patients. This analysis of data from a clinical trial suggested that high presurgery sexual desire, sexual confidence, and intercourse satisfaction are key factors predicting EF recovery. Patients meeting these criteria might benefit the most from conserving surgery (robot-assisted surgery, perfect nerve sparing) and postsurgery medical rehabilitation of EF. Trial registration ClinicalTrials.gov, NCT01026818 PMID:26947602

  9. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Treesearch

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  10. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  11. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    PubMed

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  12. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    PubMed

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2  = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  13. Medialization thyroplasty versus injection laryngoplasty: a cost minimization analysis.

    PubMed

    Tam, Samantha; Sun, Hongmei; Sarma, Sisira; Siu, Jennifer; Fung, Kevin; Sowerby, Leigh

    2017-02-20

    Medialization thyroplasty and injection laryngoplasty are widely accepted treatment options for unilateral vocal fold paralysis. Although both procedures result in similar clinical outcomes, little is known about the corresponding medical care costs. Medialization thyroplasty requires expensive operating room resources while injection laryngoplasty utilizes outpatient resources but may require repeated procedures. The purpose of this study, therefore, is to quantify the cost differences in adult patients with unilateral vocal fold paralysis undergoing medialization thyroplasty versus injection laryngoplasty. Cost minimization analysis conducted using a decision tree model. A decision tree model was constructed to capture clinical scenarios for medialization thyroplasty and injection laryngoplasty. Probabilities for various events were obtained from a retrospective cohort from the London Health Sciences Centre, Canada. Costs were derived from the published literature and the London Health Science Centre. All costs were reported in 2014 Canadian dollars. Time horizon was 5 years. The study was conducted from an academic hospital perspective in Canada. Various sensitivity analyses were conducted to assess differences in procedure-specific costs and probabilities of key events. Sixty-three patients underwent medialization thyroplasty and 41 underwent injection laryngoplasty. Cost of medialization thyroplasty was C$2499.10 per patient whereas those treated with injection laryngoplasty cost C$943.19. Results showed that cost savings with IL were C$1555.91. Deterministic and probabilistic sensitivity analyses suggested cost savings ranged from C$596 to C$3626. Treatment with injection laryngoplasty results in cost savings of C$1555.91 per patient. Our extensive sensitivity analyses suggest that switching from medialization thyroplasty to injection laryngoplasty will lead to a minimum cost savings of C$596 per patient. Considering the significant cost savings and similar effectiveness, injection laryngoplasty should be strongly considered as a preferred treatment option for patients diagnosed with unilateral vocal fold paralysis.

  14. Supraorbital Versus Endoscopic Endonasal Approaches for Olfactory Groove Meningiomas: A Cost-Minimization Study.

    PubMed

    Gandhoke, Gurpreet S; Pease, Matthew; Smith, Kenneth J; Sekula, Raymond F

    2017-09-01

    To perform a cost-minimization study comparing the supraorbital and endoscopic endonasal (EEA) approach with or without craniotomy for the resection of olfactory groove meningiomas (OGMs). We built a decision tree using probabilities of gross total resection (GTR) and cerebrospinal fluid (CSF) leak rates with the supraorbital approach versus EEA with and without additional craniotomy. The cost (not charge or reimbursement) at each "stem" of this decision tree for both surgical options was obtained from our hospital's finance department. After a base case calculation, we applied plausible ranges to all parameters and carried out multiple 1-way sensitivity analyses. Probabilistic sensitivity analyses confirmed our results. The probabilities of GTR (0.8) and CSF leak (0.2) for the supraorbital craniotomy were obtained from our series of 5 patients who underwent a supraorbital approach for the resection of an OGM. The mean tumor volume was 54.6 cm 3 (range, 17-94.2 cm 3 ). Literature-reported rates of GTR (0.6) and CSF leak (0.3) with EEA were applied to our economic analysis. Supraorbital craniotomy was the preferred strategy, with an expected value of $29,423, compared with an EEA cost of $83,838. On multiple 1-way sensitivity analyses, supraorbital craniotomy remained the preferred strategy, with a minimum cost savings of $46,000 and a maximum savings of $64,000. Probabilistic sensitivity analysis found the lowest cost difference between the 2 surgical options to be $37,431. Compared with EEA, supraorbital craniotomy provides substantial cost savings in the treatment of OGMs. Given the potential differences in effectiveness between approaches, a cost-effectiveness analysis should be undertaken. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Interpretation of diagnostic data: 6. How to do it with more complex maths.

    PubMed

    1983-11-15

    We have now shown you how to use decision analysis in making those rare, tough diagnostic decisions that are not soluble through other, easier routes. In summary, to "use more complex maths" the following steps will be useful: Create a decision tree or map of all the pertinent courses of action and their consequences. Assign probabilities to the branches of each chance node. Assign utilities to each of the potential outcomes shown on the decision tree. Combine the probabilities and utilities for each node on the decision tree. Pick the decision that leads to the highest expected utility. Test your decision for its sensitivity to clinically sensible changes in probabilities and utilities. That concludes this series of clinical epidemiology rounds. You've come a long way from "doing it with pictures" and are now able to extract most of the diagnostic information that can be provided from signs, symptoms and laboratory investigations. We would appreciate learning whether you have found this series useful and how we can do a better job of presenting these and other elements of "the science of the art of medicine".

  16. Policy Route Map for Academic Libraries' Digital Content

    ERIC Educational Resources Information Center

    Koulouris, Alexandros; Kapidakis, Sarantos

    2012-01-01

    This paper presents a policy decision tree for digital information management in academic libraries. The decision tree is a policy guide, which offers alternative access and reproduction policy solutions according to the prevailing circumstances (for example acquisition method, copyright ownership). It refers to the digital information life cycle,…

  17. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  18. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    PubMed

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  19. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  20. STBase: One Million Species Trees for Comparative Biology

    PubMed Central

    McMahon, Michelle M.; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J.

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees. PMID:25679219

  1. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW which were designed to automate functions and decisions associated with a combat aircraft's subsystems, are discussed. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base and to assess the cooperation between the rule bases. Simulation and comparative workload results for two mission scenarios are given. The scenarios are inbound surface-to-air-missile attack on the aircraft and pilot incapacitation. The methodology used to develop the AUTOCREW knowledge bases is summarized. Issues involved in designing the navigation sensor selection expert in AUTOCREW's NAVIGATOR knowledge base are discussed in detail. The performance of seven navigation systems aiding a medium-accuracy INS was investigated using Kalman filter covariance analyses. A navigation sensor management (NSM) expert system was formulated from covariance simulation data using the analysis of variance (ANOVA) method and the ID3 algorithm. ANOVA results show that statistically different position accuracies are obtained when different navaids are used, the number of navaids aiding the INS is varied, the aircraft's trajectory is varied, and the performance history is varied. The ID3 algorithm determines the NSM expert's classification rules in the form of decision trees. The performance of these decision trees was assessed on two arbitrary trajectories, and the results demonstrate that the NSM expert adapts to new situations and provides reasonable estimates of the expected hybrid performance.

  2. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  3. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  4. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  5. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  6. Pattern extraction for high-risk accidents in the construction industry: a data-mining approach.

    PubMed

    Amiri, Mehran; Ardeshir, Abdollah; Fazel Zarandi, Mohammad Hossein; Soltanaghaei, Elahe

    2016-09-01

    Accidents involving falls and falling objects (group I) are highly frequent accidents in the construction industry. While being hit by a vehicle, electric shock, collapse in the excavation and fire or explosion accidents (group II) are much less frequent, they make up a considerable proportion of severe accidents. In this study, multiple-correspondence analysis, decision tree, ensembles of decision tree and association rules methods are employed to analyse a database of construction accidents throughout Iran between 2007 and 2011. The findings indicate that in group I, there is a significant correspondence among these variables: time of accident, place of accident, body part affected, final consequence of accident and lost workdays. Moreover, the frequency of accidents in the night shift is less than others, and the frequency of injury to the head, back, spine and limbs are more. In group II, the variables time of accident and body part affected are mostly related and the frequency of accidents among married and older workers is more than single and young workers. There was a higher frequency in the evening, night shifts and weekends. The results of this study are totally in line with the previous research.

  7. A decision tree model for predicting mediastinal lymph node metastasis in non-small cell lung cancer with F-18 FDG PET/CT.

    PubMed

    Pak, Kyoungjune; Kim, Keunyoung; Kim, Mi-Hyun; Eom, Jung Seop; Lee, Min Ki; Cho, Jeong Su; Kim, Yun Seong; Kim, Bum Soo; Kim, Seong Jang; Kim, In Joo

    2018-01-01

    We aimed to develop a decision tree model to improve diagnostic performance of positron emission tomography/computed tomography (PET/CT) to detect metastatic lymph nodes (LN) in non-small cell lung cancer (NSCLC). 115 patients with NSCLC were included in this study. The training dataset included 66 patients. A decision tree model was developed with 9 variables, and validated with 49 patients: short and long diameters of LNs, ratio of short and long diameters, maximum standardized uptake value (SUVmax) of LN, mean hounsfield unit, ratio of LN SUVmax and ascending aorta SUVmax (LN/AA), and ratio of LN SUVmax and superior vena cava SUVmax. A total of 301 LNs of 115 patients were evaluated in this study. Nodular calcification was applied as the initial imaging parameter, and LN SUVmax (≥3.95) was assessed as the second. LN/AA (≥2.92) was required to high LN SUVmax. Sensitivity was 50% for training dataset, and 40% for validation dataset. However, specificity was 99.28% for training dataset, and 96.23% for validation dataset. In conclusion, we have developed a new decision tree model for interpreting mediastinal LNs. All LNs with nodular calcification were benign, and LNs with high LN SUVmax and high LN/AA were metastatic Further studies are needed to incorporate subjective parameters and pathologic evaluations into a decision tree model to improve the test performance of PET/CT.

  8. Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic-Ischemic Brain Injury.

    PubMed

    Phan, Thanh G; Chen, Jian; Singhal, Shaloo; Ma, Henry; Clissold, Benjamin B; Ly, John; Beare, Richard

    2018-01-01

    Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data. The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00). Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

  9. The Potential of GIS as a Management Tool for Avenue Trees Population in Small Communities; a Case Study of Idi-Shin Community, Ibadan, Nigeria

    NASA Astrophysics Data System (ADS)

    Olokeogun, O. S.; Akintola, O. O.; Abodunrin, E. K.

    2016-06-01

    This study demonstrates the potentials of Geographic Information System (GIS) as a management tool for avenue trees (Street trees) populations in small communities (using Idi-Ishin community, Ibadan, Nigeria as a case study). GIS is a decision support system which integrate data or set of data from different sources, bringing them under the same referencing system in a computer system. An Ikonos Imagery (1m Spatial Resolution) of the study area was digitized to produce a digital map using ArcGIS 10.1 version. The avenue trees species ≥ 5cm diameter at breast height (DBH) was selected for enumeration. These trees were then measured and tagged. The Height, Girth and Geographic location (X &Y coordinate) of the trees were measured with Haga altimeter, Girthing tape and Hand held Global Positioning System (GPS) respectively. The species and families of the trees enumerated were also identified. Data were analysed for basal area (BA) and volume (V). A total number of 43 avenue trees were assessed in Idi-Ishin Community. Roystonea regia accounted for the majority of the avenue trees (25.58%), followed by Polyanthia longiflora (23.26%), Gliricida seprium (20.93%), Eucalyptus toreliana (13.95%), Delunix regea (6.98%). However Terminalia catapa, Terminalia radii, Azadrachita indica and Newbodia levis had the same abundance of 2.33%. It was also observed that the benefits derived from these avenue trees includes; Carbon sequestration, Beautification, Wind break and shade. A spatial relational database was created for the assessed avenue trees using ArcCatalog of ArcGIS 10.1 version. Based on the findings from the study (which serves as baseline information for the management of the avenue trees in the study area), it was therefore recommended that subsequent assessment should be carried out at 3-5 year interval in other to ensure proper and continuous monitoring and updating of the data.

  10. Fish to meat intake ratio and cooking oils are associated with hepatitis C virus carriers with persistently normal alanine aminotransferase levels.

    PubMed

    Otsuka, Momoka; Uchida, Yuki; Kawaguchi, Takumi; Taniguchi, Eitaro; Kawaguchi, Atsushi; Kitani, Shingo; Itou, Minoru; Oriishi, Tetsuharu; Kakuma, Tatsuyuki; Tanaka, Suiko; Yagi, Minoru; Sata, Michio

    2012-10-01

      Dietary habits are involved in the development of chronic inflammation; however, the impact of dietary profiles of hepatitis C virus carriers with persistently normal alanine transaminase levels (HCV-PNALT) remains unclear. The decision-tree algorithm is a data-mining statistical technique, which uncovers meaningful profiles of factors from a data collection. We aimed to investigate dietary profiles associated with HCV-PNALT using a decision-tree algorithm.   Twenty-seven HCV-PNALT and 41 patients with chronic hepatitis C were enrolled in this study. Dietary habit was assessed using a validated semiquantitative food frequency questionnaire. A decision-tree algorithm was created by dietary variables, and was evaluated by area under the receiver operating characteristic curve analysis (AUROC).   In multivariate analysis, fish to meat ratio, dairy product and cooking oils were identified as independent variables associated with HCV-PNALT. The decision-tree algorithm was created with two variables: a fish to meat ratio and cooking oils/ideal bodyweight. When subjects showed a fish to meat ratio of 1.24 or more, 68.8% of the subjects were HCV-PNALT. On the other hand, 11.5% of the subjects were HCV-PNALT when subjects showed a fish to meat ratio of less than 1.24 and cooking oil/ideal bodyweight of less than 0.23 g/kg. The difference in the proportion of HCV-PNALT between these groups are significant (odds ratio 16.87, 95% CI 3.40-83.67, P = 0.0005). Fivefold cross-validation of the decision-tree algorithm showed an AUROC of 0.6947 (95% CI 0.5656-0.8238, P = 0.0067).   The decision-tree algorithm disclosed that fish to meat ratio and cooking oil/ideal bodyweight were associated with HCV-PNALT. © 2012 The Japan Society of Hepatology.

  11. Association of Streptomyces community composition determined by PCR-denaturing gradient gel electrophoresis with indoor mold status

    PubMed Central

    Johansson, Elisabet; Reponen, Tiina; Meller, Jarek; Vesper, Stephen; Yadav, Jagjit

    2014-01-01

    Both Streptomyces species and mold species have previously been isolated from moisture-damaged building materials; however, an association between these two groups of microorganisms in indoor environments is not clear. In this study we used a culture-independent method, PCR denaturing gradient gel electrophoresis (PCR-DGGE) to investigate the composition of the Streptomyces community in house dust. Twenty-three dust samples each from two sets of homes categorized as high-mold and low-mold based on mold specific quantitative PCR-analysis were used in the study. Taxonomic identification of prominent bands was performed by cloning and sequencing. Associations between DGGE amplicon band intensities and home mold status were assessed using univariate analyses, as well as multivariate recursive partitioning (decision trees) to test the predictive value of combinations of bands intensities. In the final classification tree, a combination of two bands was significantly associated with mold status of the home (p = 0.001). The sequence corresponding to one of the bands in the final decision tree matched a group of Streptomyces species that included S. coelicolor and S. sampsonii, both of which have been isolated from moisture-damaged buildings previously. The closest match for the majority of sequences corresponding to a second band consisted of a group of Streptomyces species that included S. hygroscopicus, an important producer of antibiotics and immunosuppressors. Taken together, the study showed that DGGE can be a useful tool for identifying bacterial species that may be more prevalent in mold-damaged buildings. PMID:25331035

  12. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  13. Computerization of guidelines: a knowledge specification method to convert text to detailed decision tree for electronic implementation.

    PubMed

    Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles

    2004-01-01

    The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.

  14. Validating a decision tree for serious infection: diagnostic accuracy in acutely ill children in ambulatory care.

    PubMed

    Verbakel, Jan Y; Lemiengre, Marieke B; De Burghgraeve, Tine; De Sutter, An; Aertgeerts, Bert; Bullens, Dominique M A; Shinkins, Bethany; Van den Bruel, Ann; Buntinx, Frank

    2015-08-07

    Acute infection is the most common presentation of children in primary care with only few having a serious infection (eg, sepsis, meningitis, pneumonia). To avoid complications or death, early recognition and adequate referral are essential. Clinical prediction rules have the potential to improve diagnostic decision-making for rare but serious conditions. In this study, we aimed to validate a recently developed decision tree in a new but similar population. Diagnostic accuracy study validating a clinical prediction rule. Acutely ill children presenting to ambulatory care in Flanders, Belgium, consisting of general practice and paediatric assessment in outpatient clinics or the emergency department. Physicians were asked to score the decision tree in every child. The outcome of interest was hospital admission for at least 24 h with a serious infection within 5 days after initial presentation. We report the diagnostic accuracy of the decision tree in sensitivity, specificity, likelihood ratios and predictive values. In total, 8962 acute illness episodes were included, of which 283 lead to admission to hospital with a serious infection. Sensitivity of the decision tree was 100% (95% CI 71.5% to 100%) at a specificity of 83.6% (95% CI 82.3% to 84.9%) in the general practitioner setting with 17% of children testing positive. In the paediatric outpatient and emergency department setting, sensitivities were below 92%, with specificities below 44.8%. In an independent validation cohort, this clinical prediction rule has shown to be extremely sensitive to identify children at risk of hospital admission for a serious infection in general practice, making it suitable for ruling out. NCT02024282. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  16. Decay fungi of oaks and associated hardwoods for western arborists

    Treesearch

    Jessie A. Glaeser; Kevin T. Smith

    2010-01-01

    Examination of trees for the presence and extent of decay should be part of any hazard tree assessment. Identification of the fungi responsible for the decay improves prediction of tree performance and the quality of management decisions, including tree pruning or removal. Scouting for Sudden Oak Death (SOD) in the West has drawn attention to hardwood tree species,...

  17. Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.

    PubMed

    Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul

    2012-06-01

    Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  18. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  19. Which Types of Leadership Styles Do Followers Prefer? A Decision Tree Approach

    ERIC Educational Resources Information Center

    Salehzadeh, Reza

    2017-01-01

    Purpose: The purpose of this paper is to propose a new method to find the appropriate leadership styles based on the followers' preferences using the decision tree technique. Design/methodology/approach: Statistical population includes the students of the University of Isfahan. In total, 750 questionnaires were distributed; out of which, 680…

  20. The Americans with Disabilities Act: A Decision Tree for Social Services Administrators

    ERIC Educational Resources Information Center

    O'Brien, Gerald V.; Ellegood, Christina

    2005-01-01

    The 1990 Americans with Disabilities Act has had a profound influence on social workers and social services administrators in virtually all work settings. Because of the multiple elements of the act, however, assessing the validity of claims can be a somewhat arduous and complicated task. This article provides a "decision tree" for…

  1. A Decision-Tree-Oriented Guidance Mechanism for Conducting Nature Science Observation Activities in a Context-Aware Ubiquitous Learning

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung

    2010-01-01

    A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…

  2. A decision tree approach using silvics to guide planning for forest restoration

    Treesearch

    Sharon M. Hermann; John S. Kush; John C. Gilbert

    2013-01-01

    We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....

  3. What Satisfies Students? Mining Student-Opinion Data with Regression and Decision-Tree Analysis. AIR 2002 Forum Paper.

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…

  4. Foraging Behaviour in Magellanic Woodpeckers Is Consistent with a Multi-Scale Assessment of Tree Quality

    PubMed Central

    Vergara, Pablo M.; Soto, Gerardo E.; Rodewald, Amanda D.; Meneses, Luis O.; Pérez-Hernández, Christian G.

    2016-01-01

    Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox’s proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales. PMID:27416115

  5. Foraging Behaviour in Magellanic Woodpeckers Is Consistent with a Multi-Scale Assessment of Tree Quality.

    PubMed

    Vergara, Pablo M; Soto, Gerardo E; Moreira-Arce, Darío; Rodewald, Amanda D; Meneses, Luis O; Pérez-Hernández, Christian G

    2016-01-01

    Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox's proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales.

  6. Human Mars Mission Design - The Ultimate Systems Challenge

    NASA Technical Reports Server (NTRS)

    Connolly, John F.; Joosten, B. Kent; Drake, Bret; Hoffman, Steve; Polsgrove, Tara; Rucker, Michelle; Andrews, Alida; Williams, Nehemiah

    2017-01-01

    A human mission to Mars will occur at some time in the coming decades. When it does, it will be the end result of a complex network of interconnected design choices, systems analyses, technical optimizations, and non-technical compromises. This mission will extend the technologies, engineering design, and systems analyses to new limits, and may very well be the most complex undertaking in human history. It can be illustrated as a large menu, or as a large decision tree. Whatever the visualization tool, there are numerous design decisions required to assemble a human Mars mission, and many of these interconnect with one another. This paper examines these many decisions and further details a number of choices that are highly interwoven throughout the mission design. The large quantity of variables and their interconnectedness results in a highly complex systems challenge, and the paper illustrates how a change in one variable results in ripples (sometimes unintended) throughout many other facets of the design. The paper concludes with a discussion of some mission design variables that can be addressed first, and those that have already been addressed as a result of ongoing National Aeronautics and Space Administration (NASA) developments, or as a result of decisions outside the technical arena. It advocates the need for a 'reference design' that can be used as a point of comparison, and to illustrate the system-wide impacts as design variables change.

  7. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru

    2015-11-17

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.

  8. A method of building of decision trees based on data from wearable device during a rehabilitation of patients with tibia fractures

    NASA Astrophysics Data System (ADS)

    Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.

    2015-11-01

    Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.

  9. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  10. Classification tree for the assessment of sedentary lifestyle among hypertensive.

    PubMed

    Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale

    2016-04-01

    To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  11. An improved classification tree analysis of high cost modules based upon an axiomatic definition of complexity

    NASA Technical Reports Server (NTRS)

    Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.

    1992-01-01

    Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.

  12. A key for the Forest Service hardwood tree grades

    Treesearch

    Gary W. Miller; Leland F. Hanks; Harry V., Jr. Wiant

    1986-01-01

    A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paried choices that lead the user to a decision regarding tree grade.

  13. Inferences from growing trees backwards

    Treesearch

    David W. Green; Kent A. McDonald

    1997-01-01

    The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...

  14. Acute Mental Discomfort Associated with Suicide Behavior in a Clinical Sample of Patients with Affective Disorders: Ascertaining Critical Variables Using Artificial Intelligence Tools.

    PubMed

    Morales, Susana; Barros, Jorge; Echávarri, Orietta; García, Fabián; Osses, Alex; Moya, Claudia; Maino, María Paz; Fischman, Ronit; Núñez, Catalina; Szmulewicz, Tita; Tomicic, Alemka

    2017-01-01

    In efforts to develop reliable methods to detect the likelihood of impending suicidal behaviors, we have proposed the following. To gain a deeper understanding of the state of suicide risk by determining the combination of variables that distinguishes between groups with and without suicide risk. A study involving 707 patients consulting for mental health issues in three health centers in Greater Santiago, Chile. Using 345 variables, an analysis was carried out with artificial intelligence tools, Cross Industry Standard Process for Data Mining processes, and decision tree techniques. The basic algorithm was top-down, and the most suitable division produced by the tree was selected by using the lowest Gini index as a criterion and by looping it until the condition of belonging to the group with suicidal behavior was fulfilled. Four trees distinguishing the groups were obtained, of which the elements of one were analyzed in greater detail, since this tree included both clinical and personality variables. This specific tree consists of six nodes without suicide risk and eight nodes with suicide risk (tree decision 01, accuracy 0.674, precision 0.652, recall 0.678, specificity 0.670, F measure 0.665, receiver operating characteristic (ROC) area under the curve (AUC) 73.35%; tree decision 02, accuracy 0.669, precision 0.642, recall 0.694, specificity 0.647, F measure 0.667, ROC AUC 68.91%; tree decision 03, accuracy 0.681, precision 0.675, recall 0.638, specificity 0.721, F measure, 0.656, ROC AUC 65.86%; tree decision 04, accuracy 0.714, precision 0.734, recall 0.628, specificity 0.792, F measure 0.677, ROC AUC 58.85%). This study defines the interactions among a group of variables associated with suicidal ideation and behavior. By using these variables, it may be possible to create a quick and easy-to-use tool. As such, psychotherapeutic interventions could be designed to mitigate the impact of these variables on the emotional state of individuals, thereby reducing eventual risk of suicide. Such interventions may reinforce psychological well-being, feelings of self-worth, and reasons for living, for each individual in certain groups of patients.

  15. Analytical and CASE study on Limited Search, ID3, CHAID, C4.5, Improved C4.5 and OVA Decision Tree Algorithms to design Decision Support System

    NASA Astrophysics Data System (ADS)

    Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet

    2010-11-01

    In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.

  16. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.

    PubMed

    Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver

    2008-07-01

    DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

  17. Uninjured trees - a meaningful guide to white-pine weevil control decisions

    Treesearch

    William E. Waters

    1962-01-01

    The white-pine weevil, Pissodes strobi, is a particularly insidious forest pest that can render a stand of host trees virtually worthless. It rarely, if ever, kills a tree; but the crooks, forks, and internal defects that develop in attacked trees over a period of years may reduce the merchantable volume and value of the tree at harvest age to zero. Dollar losses are...

  18. Compensatory value of urban trees in the United States

    Treesearch

    David J. Nowak; Daniel E. Crane; John F. Dwyer

    2002-01-01

    Understanding the value of an urban forest can give decision makers a better foundation for urban tree namagement. Based on tree-valuation methods of the Council of Tree and Landscape Appraisers and field data from eight cities, total compensatory value of tree populations in U.S. cities ranges from $101 million in Jersey City, New Jersey, to $6.2 billion in New York,...

  19. A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.

    PubMed

    Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A

    2018-01-01

    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.

  20. A fault tree model to assess probability of contaminant discharge from shipwrecks.

    PubMed

    Landquist, H; Rosén, L; Lindhe, A; Norberg, T; Hassellöv, I-M; Lindgren, J F; Dahllöf, I

    2014-11-15

    Shipwrecks on the sea floor around the world may contain hazardous substances that can cause harm to the marine environment. Today there are no comprehensive methods for environmental risk assessment of shipwrecks, and thus there is poor support for decision-making on prioritization of mitigation measures. The purpose of this study was to develop a tool for quantitative risk estimation of potentially polluting shipwrecks, and in particular an estimation of the annual probability of hazardous substance discharge. The assessment of the probability of discharge is performed using fault tree analysis, facilitating quantification of the probability with respect to a set of identified hazardous events. This approach enables a structured assessment providing transparent uncertainty and sensitivity analyses. The model facilitates quantification of risk, quantification of the uncertainties in the risk calculation and identification of parameters to be investigated further in order to obtain a more reliable risk calculation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    PubMed

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  2. Test Reviews: Euler, B. L. (2007). "Emotional Disturbance Decision Tree". Lutz, FL: Psychological Assessment Resources

    ERIC Educational Resources Information Center

    Tansy, Michael

    2009-01-01

    The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…

  3. Phytotechnology Technical and Regulatory Guidance Document

    DTIC Science & Technology

    2001-04-01

    contaminated media is rather new. Throughout the development process of this document, we referred to the science as “ phytoremediation .” Recently...the media containing contaminants, we now refer to “phytotechnologies” as the overarching terminology, while using “ phytoremediation ” more...publication of the ITRC document, Phytoremediation Decision Tree. The decision tree was designed to allow potential users to take basic information

  4. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  5. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study.

    PubMed

    Ramezankhani, Azra; Pournik, Omid; Shahrabi, Jamal; Khalili, Davood; Azizi, Fereidoun; Hadaegh, Farzad

    2014-09-01

    The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.

    PubMed

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab

    2017-09-01

    Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.

  7. Data mining for multiagent rules, strategies, and fuzzy decision tree structure

    NASA Astrophysics Data System (ADS)

    Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin

    2002-03-01

    A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.

  8. Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods.

    PubMed

    Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi

    2017-06-01

    Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.

  9. Risk Factors Predicting Infectious Lactational Mastitis: Decision Tree Approach versus Logistic Regression Analysis.

    PubMed

    Fernández, Leónides; Mediano, Pilar; García, Ricardo; Rodríguez, Juan M; Marín, María

    2016-09-01

    Objectives Lactational mastitis frequently leads to a premature abandonment of breastfeeding; its development has been associated with several risk factors. This study aims to use a decision tree (DT) approach to establish the main risk factors involved in mastitis and to compare its performance for predicting this condition with a stepwise logistic regression (LR) model. Methods Data from 368 cases (breastfeeding women with mastitis) and 148 controls were collected by a questionnaire about risk factors related to medical history of mother and infant, pregnancy, delivery, postpartum, and breastfeeding practices. The performance of the DT and LR analyses was compared using the area under the receiver operating characteristic (ROC) curve. Sensitivity, specificity and accuracy of both models were calculated. Results Cracked nipples, antibiotics and antifungal drugs during breastfeeding, infant age, breast pumps, familial history of mastitis and throat infection were significant risk factors associated with mastitis in both analyses. Bottle-feeding and milk supply were related to mastitis for certain subgroups in the DT model. The areas under the ROC curves were similar for LR and DT models (0.870 and 0.835, respectively). The LR model had better classification accuracy and sensitivity than the DT model, but the last one presented better specificity at the optimal threshold of each curve. Conclusions The DT and LR models constitute useful and complementary analytical tools to assess the risk of lactational infectious mastitis. The DT approach identifies high-risk subpopulations that need specific mastitis prevention programs and, therefore, it could be used to make the most of public health resources.

  10. Cost-Effectiveness Analysis of Interventions to Reduce Risk of Aspiration in Elderly Cancer Survivors Residing in Skilled Nursing Facilities.

    PubMed

    Mantravadi, S

    2017-04-01

    Aspiration can occur in patients of any age group, but it can be prevented. The primary population at risk is made up of survivors of cancer because of their increased risk of mucositis, mucosal atrophy, and dysphagia associated with chemotherapy, radiotherapy, and the disease process itself. The rate of incidence of aspiration cannot be quantified, because minor cases of aspiration often go unreported. Sequelae ensuing from aspirations can include pneumonia, end-stage kidney disease, dialysis, and death. Analyses of cost, decision-tree modeling, and cost effectiveness were performed to compare a hypothetical, interventional model based on best practices with usual (standard) care. A societal perspective was used as the economic view point. Direct costs, caregiver time, and market values for wages were estimated for the 2 interventions. Effectiveness values for the cost-effectiveness and decision-tree analyses were obtained from the literature. The incremental-cost-effectiveness ratio was calculated and used to compare the intervention with usual care. The interventional method was more costly but more effective than usual care. A sensitivity analysis considered the uncertainty of event probability (aspiration vs no aspiration). The interventional protocol for aspiration reduction continued to be more cost effective than usual care. Aspiration takes a financial toll on all facets of health care, including on nurses, skilled nursing facilities, patients, their families, and insurers, among others. Implementing guidelines that describe best practices for aspiration appears to be a cost-effective strategy for reducing aspirations among cancer survivors - especially elderly patients - who live in skilled nursing facilities.

  11. The application of data mining techniques to oral cancer prognosis.

    PubMed

    Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan

    2015-05-01

    This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.

  12. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  13. Modeling individual tree survial

    Treesearch

    Quang V. Cao

    2016-01-01

    Information provided by growth and yield models is the basis for forest managers to make decisions on how to manage their forests. Among different types of growth models, whole-stand models offer predictions at stand level, whereas individual-tree models give detailed information at tree level. The well-known logistic regression is commonly used to predict tree...

  14. Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.

    2012-12-01

    Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.

  15. Using decision tree models to depict primary care physicians CRC screening decision heuristics.

    PubMed

    Wackerbarth, Sarah B; Tarasenko, Yelena N; Curtis, Laurel A; Joyce, Jennifer M; Haist, Steven A

    2007-10-01

    The purpose of this study was to identify decision heuristics utilized by primary care physicians in formulating colorectal cancer screening recommendations. Qualitative research using in-depth semi-structured interviews. We interviewed 66 primary care internists and family physicians evenly drawn from academic and community practices. A majority of physicians were male, and almost all were white, non-Hispanic. Three researchers independently reviewed each transcript to determine the physician's decision criteria and developed decision trees. Final trees were developed by consensus. The constant comparative methodology was used to define the categories. Physicians were found to use 1 of 4 heuristics ("age 50," "age 50, if family history, then earlier," "age 50, if family history, then screen at age 40," or "age 50, if family history, then adjust relative to reference case") for the timing recommendation and 5 heuristics ["fecal occult blood test" (FOBT), "colonoscopy," "if not colonoscopy, then...," "FOBT and another test," and "a choice between options"] for the type decision. No connection was found between timing and screening type heuristics. We found evidence of heuristic use. Further research is needed to determine the potential impact on quality of care.

  16. Semi-Automated Approach for Mapping Urban Trees from Integrated Aerial LiDAR Point Cloud and Digital Imagery Datasets

    NASA Astrophysics Data System (ADS)

    Dogon-Yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.

    2016-09-01

    Mapping of trees plays an important role in modern urban spatial data management, as many benefits and applications inherit from this detailed up-to-date data sources. Timely and accurate acquisition of information on the condition of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting trees include ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraints, such as labour intensive field work and a lot of financial requirement which can be overcome by means of integrated LiDAR and digital image datasets. Compared to predominant studies on trees extraction mainly in purely forested areas, this study concentrates on urban areas, which have a high structural complexity with a multitude of different objects. This paper presented a workflow about semi-automated approach for extracting urban trees from integrated processing of airborne based LiDAR point cloud and multispectral digital image datasets over Istanbul city of Turkey. The paper reveals that the integrated datasets is a suitable technology and viable source of information for urban trees management. As a conclusion, therefore, the extracted information provides a snapshot about location, composition and extent of trees in the study area useful to city planners and other decision makers in order to understand how much canopy cover exists, identify new planting, removal, or reforestation opportunities and what locations have the greatest need or potential to maximize benefits of return on investment. It can also help track trends or changes to the urban trees over time and inform future management decisions.

  17. Risk Acceptance Personality Paradigm: How We View What We Don't Know We Don't Know

    NASA Technical Reports Server (NTRS)

    Massie, Michael J.; Morris, A. Terry

    2011-01-01

    The purpose of integrated hazard analyses, probabilistic risk assessments, failure modes and effects analyses, fault trees and many other similar tools is to give managers of a program some idea of the risks associated with their program. All risk tools establish a set of undesired events and then try to evaluate the risk to the program by assessing the severity of the undesired event and the likelihood of that event occurring. Some tools provide qualitative results, some provide quantitative results and some do both. However, in the end the program manager and his/her team must decide which risks are acceptable and which are not. Even with a wide array of analysis tools available, risk acceptance is often a controversial and difficult decision making process. And yet, today's space exploration programs are moving toward more risk based design approaches. Thus, risk identification and good risk assessment is becoming even more vital to the engineering development process. This paper explores how known and unknown information influences risk-based decisions by looking at how the various parts of our personalities are affected by what they know and what they don't know. This paper then offers some criteria for consideration when making risk-based decisions.

  18. Decision-Tree Program

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  19. Interpretable Categorization of Heterogeneous Time Series Data

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua

    2017-01-01

    We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.

  20. Application of data mining techniques to explore predictors of upper urinary tract damage in patients with neurogenic bladder.

    PubMed

    Fang, H; Lu, B; Wang, X; Zheng, L; Sun, K; Cai, W

    2017-08-17

    This study proposed a decision tree model to screen upper urinary tract damage (UUTD) for patients with neurogenic bladder (NGB). Thirty-four NGB patients with UUTD were recruited in the case group, while 78 without UUTD were included in the control group. A decision tree method, classification and regression tree (CART), was then applied to develop the model in which UUTD was used as a dependent variable and history of urinary tract infections, bladder management, conservative treatment, and urodynamic findings were used as independent variables. The urethra function factor was found to be the primary screening information of patients and treated as the root node of the tree; Pabd max (maximum abdominal pressure, >14 cmH2O), Pves max (maximum intravesical pressure, ≤89 cmH2O), and gender (female) were also variables associated with UUTD. The accuracy of the proposed model was 84.8%, and the area under curve was 0.901 (95%CI=0.844-0.958), suggesting that the decision tree model might provide a new and convenient way to screen UUTD for NGB patients in both undeveloped and developing areas.

  1. Graphic Representations as Tools for Decision Making.

    ERIC Educational Resources Information Center

    Howard, Judith

    2001-01-01

    Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)

  2. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences.

    PubMed

    Duchêne, David; Duchêne, Sebastian; Ho, Simon Y W

    2015-07-01

    Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance. © 2014 John Wiley & Sons Ltd.

  3. The Effect of Defense R&D Expenditures on Military Capability and Technological Spillover

    DTIC Science & Technology

    2013-03-01

    ix List of Figures Page Figure 1. Decision Tree for Sectoring R&D Units...approach, often called sectoring , categorizes R&D activities by funding source, and the functional approach categorizes R&D activities by their objective...economic objectives (defense, and control and care of environment) (OECD, 2002). Figure 1 shows the decision tree for sectoring R&D units and

  4. Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.

    2017-12-01

    Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.

  5. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  6. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase-Producing Organism.

    PubMed

    Goodman, Katherine E; Lessler, Justin; Cosgrove, Sara E; Harris, Anthony D; Lautenbach, Ebbing; Han, Jennifer H; Milstone, Aaron M; Massey, Colin J; Tamma, Pranita D

    2016-10-01

    Timely identification of extended-spectrum β-lactamase (ESBL) bacteremia can improve clinical outcomes while minimizing unnecessary use of broad-spectrum antibiotics, including carbapenems. However, most clinical microbiology laboratories currently require at least 24 additional hours from the time of microbial genus and species identification to confirm ESBL production. Our objective was to develop a user-friendly decision tree to predict which organisms are ESBL producing, to guide appropriate antibiotic therapy. We included patients ≥18 years of age with bacteremia due to Escherichia coli or Klebsiella species from October 2008 to March 2015 at Johns Hopkins Hospital. Isolates with ceftriaxone minimum inhibitory concentrations ≥2 µg/mL underwent ESBL confirmatory testing. Recursive partitioning was used to generate a decision tree to determine the likelihood that a bacteremic patient was infected with an ESBL producer. Discrimination of the original and cross-validated models was evaluated using receiver operating characteristic curves and by calculation of C-statistics. A total of 1288 patients with bacteremia met eligibility criteria. For 194 patients (15%), bacteremia was due to a confirmed ESBL producer. The final classification tree for predicting ESBL-positive bacteremia included 5 predictors: history of ESBL colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the prior 6 months. The decision tree's positive and negative predictive values were 90.8% and 91.9%, respectively. Our findings suggest that a clinical decision tree can be used to estimate a bacteremic patient's likelihood of infection with ESBL-producing bacteria. Recursive partitioning offers a practical, user-friendly approach for addressing important diagnostic questions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Ensemble stump classifiers and gene expression signatures in lung cancer.

    PubMed

    Frey, Lewis; Edgerton, Mary; Fisher, Douglas; Levy, Shawn

    2007-01-01

    Microarray data sets for cancer tumor tissue generally have very few samples, each sample having thousands of probes (i.e., continuous variables). The sparsity of samples makes it difficult for machine learning techniques to discover probes relevant to the classification of tumor tissue. By combining data from different platforms (i.e., data sources), data sparsity is reduced, but this typically requires normalizing data from the different platforms, which can be non-trivial. This paper proposes a variant on the idea of ensemble learners to circumvent the need for normalization. To facilitate comprehension we build ensembles of very simple classifiers known as decision stumps--decision trees of one test each. The Ensemble Stump Classifier (ESC) identifies an mRNA signature having three probes and high accuracy for distinguishing between adenocarcinoma and squamous cell carcinoma of the lung across four data sets. In terms of accuracy, ESC outperforms a decision tree classifier on all four data sets, outperforms ensemble decision trees on three data sets, and simple stump classifiers on two data sets.

  8. Traditional Chinese medicine pharmacovigilance in signal detection: decision tree-based data classification.

    PubMed

    Wei, Jian-Xiang; Wang, Jing; Zhu, Yun-Xia; Sun, Jun; Xu, Hou-Ming; Li, Ming

    2018-03-09

    Traditional Chinese Medicine (TCM) is a style of traditional medicine informed by modern medicine but built on a foundation of more than 2500 years of Chinese medical practice. According to statistics, TCM accounts for approximately 14% of total adverse drug reaction (ADR) spontaneous reporting data in China. Because of the complexity of the components in TCM formula, which makes it essentially different from Western medicine, it is critical to determine whether ADR reports of TCM should be analyzed independently. Reports in the Chinese spontaneous reporting database between 2010 and 2011 were selected. The dataset was processed and divided into the total sample (all data) and the subsample (including TCM data only). Four different ADR signal detection methods-PRR, ROR, MHRA and IC- currently widely used in China, were applied for signal detection on the two samples. By comparison of experimental results, three of them-PRR, MHRA and IC-were chosen to do the experiment. We designed several indicators for performance evaluation such as R (recall ratio), P (precision ratio), and D (discrepancy ratio) based on the reference database and then constructed a decision tree for data classification based on such indicators. For PRR: R 1 -R 2  = 0.72%, P 1 -P 2  = 0.16% and D = 0.92%; For MHRA: R 1 -R 2  = 0.97%, P 1 -P 2  = 0.20% and D = 1.18%; For IC: R 1 -R 2  = 1.44%, P 2 -P 1  = 4.06% and D = 4.72%. The threshold of R,Pand Dis set as 2%, 2% and 3% respectively. Based on the decision tree, the results are "separation" for PRR, MHRA and IC. In order to improve the efficiency and accuracy of signal detection, we suggest that TCM data should be separated from the total sample when conducting analyses.

  9. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree.

    PubMed

    Acharya, Tri Dev; Lee, Dong Ha; Yang, In Tae; Lee, Jae Kang

    2016-07-12

    Water bodies are essential to humans and other forms of life. Identification of water bodies can be useful in various ways, including estimation of water availability, demarcation of flooded regions, change detection, and so on. In past decades, Landsat satellite sensors have been used for land use classification and water body identification. Due to the introduction of a New Operational Land Imager (OLI) sensor on Landsat 8 with a high spectral resolution and improved signal-to-noise ratio, the quality of imagery sensed by Landsat 8 has improved, enabling better characterization of land cover and increased data size. Therefore, it is necessary to explore the most appropriate and practical water identification methods that take advantage of the improved image quality and use the fewest inputs based on the original OLI bands. The objective of the study is to explore the potential of a J48 decision tree (JDT) in identifying water bodies using reflectance bands from Landsat 8 OLI imagery. J48 is an open-source decision tree. The test site for the study is in the Northern Han River Basin, which is located in Gangwon province, Korea. Training data with individual bands were used to develop the JDT model and later applied to the whole study area. The performance of the model was statistically analysed using the kappa statistic and area under the curve (AUC). The results were compared with five other known water identification methods using a confusion matrix and related statistics. Almost all the methods showed high accuracy, and the JDT was successfully applied to the OLI image using only four bands, where the new additional deep blue band of OLI was found to have the third highest information gain. Thus, the JDT can be a good method for water body identification based on images with improved resolution and increased size.

  10. The analysis of rapidly developing fog at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.; Atchison, Michael K.; Schumann, Robin; Taylor, Greg E.; Yersavich, Ann; Warburton, John D.

    1994-01-01

    This report documents fog precursors and fog climatology at Kennedy Space Center (KSC) Florida from 1986 to 1990. The major emphasis of this report focuses on rapidly developing fog events that would affect the less than 7-statute mile visibility rule for End-Of-Mission (EOM) Shuttle landing at KSC (Rule 4-64(A)). The Applied Meteorology Unit's (AMU's) work is to: develop a data base for study of fog associated weather conditions relating to violations of this landing constraint; develop forecast techniques or rules-of-thumb to determine whether or not current conditions are likely to result in an acceptable condition at landing; validate the forecast techniques; and transition techniques to operational use. As part of the analysis the fog events were categorized as either advection, pre-frontal or radiation. As a result of these analyses, the AMU developed a fog climatological data base, identified fog precursors and developed forecaster tools and decision trees. The fog climatological analysis indicates that during the fog season (October to April) there is a higher risk for a visibility violation at KSC during the early morning hours (0700 to 1200 UTC), while 95 percent of all fog events have dissipated by 1600 UTC. A high number of fog events are characterized by a westerly component to the surface wind at KSC (92 percent) and 83 percent of the fog events had fog develop west of KSC first (up to 2 hours). The AMU developed fog decision trees and forecaster tools that would help the forecaster identify fog precursors up to 12 hours in advance. Using the decision trees as process tools ensures the important meteorological data are not overlooked in the forecast process. With these tools and a better understanding of fog formation in the local KSC area, the Shuttle weather support forecaster should be able to give the Launch and Flight Directors a better KSC fog forecast with more confidence.

  11. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China

    PubMed Central

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-01-01

    Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328

  12. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  13. The risk of disabling, surgery and reoperation in Crohn's disease - A decision tree-based approach to prognosis.

    PubMed

    Dias, Cláudia Camila; Pereira Rodrigues, Pedro; Fernandes, Samuel; Portela, Francisco; Ministro, Paula; Martins, Diana; Sousa, Paula; Lago, Paula; Rosa, Isadora; Correia, Luis; Moura Santos, Paula; Magro, Fernando

    2017-01-01

    Crohn's disease (CD) is a chronic inflammatory bowel disease known to carry a high risk of disabling and many times requiring surgical interventions. This article describes a decision-tree based approach that defines the CD patients' risk or undergoing disabling events, surgical interventions and reoperations, based on clinical and demographic variables. This multicentric study involved 1547 CD patients retrospectively enrolled and divided into two cohorts: a derivation one (80%) and a validation one (20%). Decision trees were built upon applying the CHAIRT algorithm for the selection of variables. Three-level decision trees were built for the risk of disabling and reoperation, whereas the risk of surgery was described in a two-level one. A receiver operating characteristic (ROC) analysis was performed, and the area under the curves (AUC) Was higher than 70% for all outcomes. The defined risk cut-off values show usefulness for the assessed outcomes: risk levels above 75% for disabling had an odds test positivity of 4.06 [3.50-4.71], whereas risk levels below 34% and 19% excluded surgery and reoperation with an odds test negativity of 0.15 [0.09-0.25] and 0.50 [0.24-1.01], respectively. Overall, patients with B2 or B3 phenotype had a higher proportion of disabling disease and surgery, while patients with later introduction of pharmacological therapeutic (1 months after initial surgery) had a higher proportion of reoperation. The decision-tree based approach used in this study, with demographic and clinical variables, has shown to be a valid and useful approach to depict such risks of disabling, surgery and reoperation.

  14. Chi-squared Automatic Interaction Detection Decision Tree Analysis of Risk Factors for Infant Anemia in Beijing, China.

    PubMed

    Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin

    2016-05-20

    In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.

  15. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  16. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including…

  17. Assessment of various supervised learning algorithms using different performance metrics

    NASA Astrophysics Data System (ADS)

    Susheel Kumar, S. M.; Laxkar, Deepak; Adhikari, Sourav; Vijayarajan, V.

    2017-11-01

    Our work brings out comparison based on the performance of supervised machine learning algorithms on a binary classification task. The supervised machine learning algorithms which are taken into consideration in the following work are namely Support Vector Machine(SVM), Decision Tree(DT), K Nearest Neighbour (KNN), Naïve Bayes(NB) and Random Forest(RF). This paper mostly focuses on comparing the performance of above mentioned algorithms on one binary classification task by analysing the Metrics such as Accuracy, F-Measure, G-Measure, Precision, Misclassification Rate, False Positive Rate, True Positive Rate, Specificity, Prevalence.

  18. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In this context it is not surprising that the increased hydrologic variability and uncertainty produced by many climate risk analyses bedevil water resource decision making. The Climate Risk Informed Decision Analysis (CRIDA) approach builds on work found in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework" which provide guidance of vulnerability assessments. It guides practitioners through a "Level of Concern" analysis where climate vulnerabilities are analyzed to produce actionable alternatives and decisions.

  19. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.

    PubMed

    Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu

    2018-06-15

    Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Finding structure in data using multivariate tree boosting

    PubMed Central

    Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.

    2016-01-01

    Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183

  1. [A prediction model for internet game addiction in adolescents: using a decision tree analysis].

    PubMed

    Kim, Ki Sook; Kim, Kyung Hee

    2010-06-01

    This study was designed to build a theoretical frame to provide practical help to prevent and manage adolescent internet game addiction by developing a prediction model through a comprehensive analysis of related factors. The participants were 1,318 students studying in elementary, middle, and high schools in Seoul and Gyeonggi Province, Korea. Collected data were analyzed using the SPSS program. Decision Tree Analysis using the Clementine program was applied to build an optimum and significant prediction model to predict internet game addiction related to various factors, especially parent related factors. From the data analyses, the prediction model for factors related to internet game addiction presented with 5 pathways. Causative factors included gender, type of school, siblings, economic status, religion, time spent alone, gaming place, payment to Internet café, frequency, duration, parent's ability to use internet, occupation (mother), trust (father), expectations regarding adolescent's study (mother), supervising (both parents), rearing attitude (both parents). The results suggest preventive and managerial nursing programs for specific groups by path. Use of this predictive model can expand the role of school nurses, not only in counseling addicted adolescents but also, in developing and carrying out programs with parents and approaching adolescents individually through databases and computer programming.

  2. Computational diagnosis of canine lymphoma

    NASA Astrophysics Data System (ADS)

    Mirkes, E. M.; Alexandrakis, I.; Slater, K.; Tuli, R.; Gorban, A. N.

    2014-03-01

    One out of four dogs will develop cancer in their lifetime and 20% of those will be lymphoma cases. PetScreen developed a lymphoma blood test using serum samples collected from several veterinary practices. The samples were fractionated and analysed by mass spectrometry. Two protein peaks, with the highest diagnostic power, were selected and further identified as acute phase proteins, C-Reactive Protein and Haptoglobin. Data mining methods were then applied to the collected data for the development of an online computer-assisted veterinary diagnostic tool. The generated software can be used as a diagnostic, monitoring and screening tool. Initially, the diagnosis of lymphoma was formulated as a classification problem and then later refined as a lymphoma risk estimation. Three methods, decision trees, kNN and probability density evaluation, were used for classification and risk estimation and several preprocessing approaches were implemented to create the diagnostic system. For the differential diagnosis the best solution gave a sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provided the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). Furthermore, the development and application of new techniques for the generation of risk maps allowed their user-friendly visualization.

  3. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, micropterus dolomieu

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.

    2011-01-01

    This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.

  4. Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning

    NASA Technical Reports Server (NTRS)

    Otterstatter, Matthew R.

    2005-01-01

    The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.

  5. The use of decision trees and naïve Bayes algorithms and trace element patterns for controlling the authenticity of free-range-pastured hens' eggs.

    PubMed

    Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando

    2014-09-01

    This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®

  6. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  7. Pollution mitigation and carbon sequestration by an urban forest.

    PubMed

    Brack, C L

    2002-01-01

    At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.

  8. Using real options analysis to support strategic management decisions

    NASA Astrophysics Data System (ADS)

    Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan

    2013-12-01

    Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.

  9. Improving ensemble decision tree performance using Adaboost and Bagging

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie

    2015-12-01

    Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.

  10. Knowledge Quality Functions for Rule Discovery

    DTIC Science & Technology

    1994-09-01

    Managers in many organizations finding themselves in the possession of large and rapidly growing databases are beginning to suspect the information in their...missing values (Smyth and Goodman, 1992, p. 303). Decision trees "tend to grow very large for realistic applications and are thus difficult to interpret...by humans" (Holsheimer, 1994, p. 42). Decision trees also grow excessively complicated in the presence of noisy databases (Dhar and Tuzhilin, 1993, p

  11. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  12. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  14. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm.

    PubMed

    Tayefi, Maryam; Tajfard, Mohammad; Saffar, Sara; Hanachi, Parichehr; Amirabadizadeh, Ali Reza; Esmaeily, Habibollah; Taghipour, Ali; Ferns, Gordon A; Moohebati, Mohsen; Ghayour-Mobarhan, Majid

    2017-04-01

    Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Comparison between Decision Tree and Random Forest in Determining the Risk Factors Associated with Type 2 Diabetes.

    PubMed

    Esmaily, Habibollah; Tayefi, Maryam; Doosti, Hassan; Ghayour-Mobarhan, Majid; Nezami, Hossein; Amirabadizadeh, Alireza

    2018-04-24

    We aimed to identify the associated risk factors of type 2 diabetes mellitus (T2DM) using data mining approach, decision tree and random forest techniques using the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) Study program. A cross-sectional study. The MASHAD study started in 2010 and will continue until 2020. Two data mining tools, namely decision trees, and random forests, are used for predicting T2DM when some other characteristics are observed on 9528 subjects recruited from MASHAD database. This paper makes a comparison between these two models in terms of accuracy, sensitivity, specificity and the area under ROC curve. The prevalence rate of T2DM was 14% among these subjects. The decision tree model has 64.9% accuracy, 64.5% sensitivity, 66.8% specificity, and area under the ROC curve measuring 68.6%, while the random forest model has 71.1% accuracy, 71.3% sensitivity, 69.9% specificity, and area under the ROC curve measuring 77.3% respectively. The random forest model, when used with demographic, clinical, and anthropometric and biochemical measurements, can provide a simple tool to identify associated risk factors for type 2 diabetes. Such identification can substantially use for managing the health policy to reduce the number of subjects with T2DM .

  16. Contrasting determinants for the introduction and establishment success of exotic birds in Taiwan using decision trees models.

    PubMed

    Liang, Shih-Hsiung; Walther, Bruno Andreas; Shieh, Bao-Sen

    2017-01-01

    Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies.

  17. Contrasting determinants for the introduction and establishment success of exotic birds in Taiwan using decision trees models

    PubMed Central

    Liang, Shih-Hsiung; Walther, Bruno Andreas

    2017-01-01

    Background Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. Methods We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. Results The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Discussion Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies. PMID:28316893

  18. Restoration of contaminated ecosystems: adaptive management in a changing climate

    USGS Publications Warehouse

    Farag, Aida; Larson, Diane L.; Stauber, Jenny; Stahl, Ralph; Isanhart, John; McAbee, Kevin T.; Walsh, Christopher J.

    2017-01-01

    Three case studies illustrate how adaptive management (AM) has been used in ecological restorations that involve contaminants. Contaminants addressed include mercury, selenium, and contaminants and physical disturbances delivered to streams by urban stormwater runoff. All three cases emphasize the importance of broad stakeholder input early and consistently throughout decision analysis for AM. Risk of contaminant exposure provided input to the decision analyses (e.g. selenium exposure to endangered razorback suckers, Stewart Lake; multiple contaminants in urban stormwater runoff, Melbourne) and was balanced with the protection of resources critical for a desired future state (e.g. preservation old growth trees, South River). Monitoring also played a critical role in the ability to conduct the decision analyses necessary for AM plans. For example, newer technologies in the Melbourne case provided a testable situation where contaminant concentrations and flow disturbance were reduced to support a return to good ecological condition. In at least one case (Stewart Lake), long-term monitoring data are being used to document the potential effects of climate change on a restoration trajectory. Decision analysis formalized the process by which stakeholders arrived at the priorities for the sites, which together constituted the desired future condition towards which each restoration is aimed. Alternative models were developed that described in mechanistic terms how restoration can influence the system towards the desired future condition. Including known and anticipated effects of future climate scenarios in these models will make them robust to the long-term exposure and effects of contaminants in restored ecosystems.

  19. Environmental justice and factors that influence participation in tree planting programs in Portland, Oregon, U.S

    Treesearch

    Geoffrey H. Donovan; John Mills

    2014-01-01

    Many cities have policies encouraging homeowners to plant trees. For these policies to be effective, it is important to understand what motivates a homeowner’s tree-planting decision. Researchers address this question by identifying variables that influence participation in a tree-planting program in Portland, Oregon, U.S. According to the study, homeowners with street...

  20. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  1. Kernel and divergence techniques in high energy physics separations

    NASA Astrophysics Data System (ADS)

    Bouř, Petr; Kůs, Václav; Franc, Jiří

    2017-10-01

    Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.

  2. A divide and conquer approach to cope with uncertainty, human health risk, and decision making in contaminant hydrology

    NASA Astrophysics Data System (ADS)

    de Barros, Felipe P. J.; Bolster, Diogo; Sanchez-Vila, Xavier; Nowak, Wolfgang

    2011-05-01

    Assessing health risk in hydrological systems is an interdisciplinary field. It relies on the expertise in the fields of hydrology and public health and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties and variabilities present in hydrological, physiological, and human behavioral parameters. Despite significant theoretical advancements in stochastic hydrology, there is still a dire need to further propagate these concepts to practical problems and to society in general. Following a recent line of work, we use fault trees to address the task of probabilistic risk analysis and to support related decision and management problems. Fault trees allow us to decompose the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural divide and conquer approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance, and stage of analysis. Three differences are highlighted in this paper when compared to previous works: (1) The fault tree proposed here accounts for the uncertainty in both hydrological and health components, (2) system failure within the fault tree is defined in terms of risk being above a threshold value, whereas previous studies that used fault trees used auxiliary events such as exceedance of critical concentration levels, and (3) we introduce a new form of stochastic fault tree that allows us to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  3. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.

    PubMed

    Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K

    2008-07-01

    A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.

  4. A functional–structural model for radiata pine (Pinus radiata) focusing on tree architecture and wood quality

    PubMed Central

    Fernández, M. Paulina; Norero, Aldo; Vera, Jorge R.; Pérez, Eduardo

    2011-01-01

    Backgrounds and Aims Functional–structural models are interesting tools to relate environmental and management conditions with forest growth. Their three-dimensional images can reveal important characteristics of wood used for industrial products. Like virtual laboratories, they can be used to evaluate relationships among species, sites and management, and to support silvicultural design and decision processes. Our aim was to develop a functional–structural model for radiata pine (Pinus radiata) given its economic importance in many countries. Methods The plant model uses the L-system language. The structure of the model is based on operational units, which obey particular rules, and execute photosynthesis, respiration and morphogenesis, according to their particular characteristics. Plant allometry is adhered to so that harmonic growth and plant development are achieved. Environmental signals for morphogenesis are used. Dynamic turnover guides the normal evolution of the tree. Monthly steps allow for detailed information of wood characteristics. The model is independent of traditional forest inventory relationships and is conceived as a mechanistic model. For model parameterization, three databases which generated new information relating to P. radiata were analysed and incorporated. Key Results Simulations under different and contrasting environmental and management conditions were run and statistically tested. The model was validated against forest inventory data for the same sites and times and against true crown architectural data. The performance of the model for 6-year-old trees was encouraging. Total height, diameter and lengths of growth units were adequately estimated. Branch diameters were slightly overestimated. Wood density values were not satisfactory, but the cyclical pattern and increase of growth rings were reasonably well modelled. Conclusions The model was able to reproduce the development and growth of the species based on mechanistic formulations. It may be valuable in assessing stand behaviour under different environmental and management conditions, assisting in decision-making with regard to management, and as a research tool to formulate hypothesis regarding forest tree growth and development. PMID:21987452

  5. Re-Construction of Reference Population and Generating Weights by Decision Tree

    DTIC Science & Technology

    2017-07-21

    2017 Claflin University Orangeburg, SC 29115 DEFENSE EQUAL OPPORTUNITY MANAGEMENT INSTITUTE RESEARCH, DEVELOPMENT, AND STRATEGIC...Original Dataset 32 List of Figures in Appendix B Figure 1: Flow and Components of Project 20 Figure 2: Decision Tree 31 Figure 3: Effects of Weight...can compare the sample data. The dataset of this project has the reference population on unit level for group and gender, which is in red-dotted box

  6. An Approach for Implementing a Microcomputer Based Report Origination System in the Ada Programming Language

    DTIC Science & Technology

    1983-03-01

    Decision Tree -------------------- 62 4-E. PACKAGE unitrep Action/Area Selection flow Chart 82 4-7. PACKAGE unitrep Control Flow Chart...the originetor wculd manually draft simple, readable, formatted iressages using "-i predef.ined forms and decision logic trees . This alternative was...Study Analysis DATA CCNTENT ERRORS PERCENT OF ERRORS Character Type 2.1 Calcvlations/Associations 14.3 Message Identification 4.? Value Pisiratch 22.E

  7. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.

  8. Method and apparatus for detecting a desired behavior in digital image data

    DOEpatents

    Kegelmeyer, Jr., W. Philip

    1997-01-01

    A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.

  9. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China.

    PubMed

    Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying

    2016-11-09

    Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities-for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals-were the main external sources of a large amount of Hg in the farmland soil.

  10. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements

    PubMed Central

    Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338

  11. Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach

    PubMed Central

    Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor

    2016-01-01

    Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313

  12. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  13. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  14. Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China

    PubMed Central

    Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying

    2016-01-01

    Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities—for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals—were the main external sources of a large amount of Hg in the farmland soil. PMID:27834884

  15. A hybrid approach of stepwise regression, logistic regression, support vector machine, and decision tree for forecasting fraudulent financial statements.

    PubMed

    Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De

    2014-01-01

    As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.

  16. Tree value system: users guide.

    Treesearch

    J.K. Ayer Sachet; D.G. Briggs; R.D. Fight

    1989-01-01

    This paper instructs resource analysts on use of the Tree Value System (TREEVAL). TREEVAL is a microcomputer system of programs for calculating tree or stand values and volumes based on predicted product recovery. Designed for analyzing silvicultural decisions, the system can also be used for appraisals and for evaluating log bucking. The system calculates results...

  17. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A decision support tool for identifying abuse of controlled substances by ForwardHealth Medicaid members.

    PubMed

    Mailloux, Allan T; Cummings, Stephen W; Mugdh, Mrinal

    2010-01-01

    Our objective was to use Wisconsin's Medicaid Evaluation and Decision Support (MEDS) data warehouse to develop and validate a decision support tool (DST) that (1) identifies Wisconsin Medicaid fee-for-service recipients who are abusing controlled substances, (2) effectively replicates clinical pharmacist recommendations for interventions intended to curb abuse of physician and pharmacy services, and (3) automates data extraction, profile generation and tracking of recommendations and interventions. From pharmacist manual reviews of medication profiles, seven measures of overutilization of controlled substances were developed, including (1-2) 6-month and 2-month "shopping" scores, (3-4) 6-month and 2-month forgery scores, (5) duplicate/same day prescriptions, (6) count of controlled substance claims, and the (7) shopping 6-month score for the individual therapeutic class with the highest score. The pattern analysis logic for the measures was encoded into SQL and applied to the medication profiles of 190 recipients who had already undergone manual review. The scores for each measure and numbers of providers were analyzed by exhaustive chi-squared automatic interaction detection (CHAID) to determine significant thresholds and combinations of predictors of pharmacist recommendations, resulting in a decision tree to classify recipients by pharmacist recommendations. The overall correct classification rate of the decision tree was 95.3%, with a 2.4% false positive rate and 4.0% false negative rate for lock-in versus prescriber-alert letter recommendations. Measures used by the decision tree include the 2-month and 6-month shopping scores, and the number of pharmacies and prescribers. The number of pharmacies was the best predictor of abuse of controlled substances. When a Medicaid recipient receives prescriptions for controlled substances at 8 or more pharmacies, the likelihood of a lock-in recommendation is 90%. The availability of the Wisconsin MEDS data warehouse has enabled development and application of a decision tree for detecting recipient fraud and abuse of controlled substance medications. Using standard pharmacy claims data, the decision tree effectively replicates pharmacist manual review recommendations. The DST has automated extraction and evaluation of pharmacy claims data for creating recommendations for guiding pharmacists in the selection of profiles for manual review. The DST is now the primary method used by the Wisconsin Medicaid program to detect fraud and abuse of physician and pharmacy services committed by recipients.

  19. A decision support system using combined-classifier for high-speed data stream in smart grid

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun

    2016-11-01

    Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.

  20. Advanced Subspace Techniques for Modeling Channel and Session Variability in a Speaker Recognition System

    DTIC Science & Technology

    2012-03-01

    with each SVM discriminating between a pair of the N total speakers in the data set. The (( + 1))/2 classifiers then vote on the final...classification of a test sample. The Random Forest classifier is an ensemble classifier that votes amongst decision trees generated with each node using...Forest vote , and the effects of overtraining will be mitigated by the fact that each decision tree is overtrained differently (due to the random

  1. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1) virus infection: CART analysis of international cases.

    PubMed

    Patel, Rita B; Mathur, Maya B; Gould, Michael; Uyeki, Timothy M; Bhattacharya, Jay; Xiao, Yang; Khazeni, Nayer

    2014-01-01

    Human infections with highly pathogenic avian influenza (HPAI) A (H5N1) viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions. We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar), including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality. We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years) and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.76-0.86). A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  2. Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir

    NASA Astrophysics Data System (ADS)

    Oral, L. O.; Tecim, V.

    2013-05-01

    Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.

  3. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  4. A dynamic fault tree model of a propulsion system

    NASA Technical Reports Server (NTRS)

    Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila

    2006-01-01

    We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.

  5. Including public-health benefits of trees in urban-forestry decision making

    Treesearch

    Geoffrey H. Donovan

    2017-01-01

    Research demonstrating the biophysical benefits of urban trees are often used to justify investments in urban forestry. Far less emphasis, however, is placed on the non-bio-physical benefits such as improvements in public health. Indeed, the public-health benefits of trees may be significantly larger than the biophysical benefits, and, therefore, failure to account for...

  6. Goal Programming: A New Tool for the Christmas Tree Industry

    Treesearch

    Bruce G. Hansen

    1977-01-01

    Goal programing (GP) can be useful for decision making in the natural Christmas tree industry. Its usefulness is demonstrated through an analysis of a hypothetical problem in which two potential growers decide how to use 10 acres in growing Christmas trees. Though the physical settings are identical, distinct differences between their goals significantly influence the...

  7. Lessons learned from Applications of a Decision Tree for Confronting Climate Change Uncertainty - the Short Term and the Long Term

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Wi, S.; Bonzanigo, L.; Taner, M. U.; Rodriguez, D.; Garcia, L.; Brown, C.

    2016-12-01

    The Decision Tree for Confronting Climate Change Uncertainty is a hierarchical, staged framework for accomplishing climate change risk management in water resources system investments. Since its development for the World Bank Water Group two years ago, the framework has been applied to pilot demonstration projects in Nepal (hydropower generation), Mexico (water supply), Kenya (multipurpose reservoir operation), and Indonesia (flood risks to dam infrastructure). An important finding of the Decision Tree demonstration projects has been the need to present the risks/opportunities of climate change to stakeholders and investors in proportion to risks/opportunities and hazards of other kinds. This presentation will provide an overview of tools and techniques used to quantify risks/opportunities to each of the project types listed above, with special attention to those found most useful for exploration of the risk space. Careful exploration of the risk/opportunity space shows that some interventions would be better taken now, whereas risks/opportunities of other types would be better instituted incrementally in order to maintain reversibility and flexibility. A number of factors contribute to the robustness/flexibility tradeoff: available capital, magnitude and imminence of potential risk/opportunity, modular (or not) character of investment, and risk aversion of the decision maker, among others. Finally, in each case, nuance was required in the translation of Decision Tree findings into actionable policy recommendations. Though the narrative of stakeholder solicitation, engagement, and ultimate partnership is unique to each case, summary lessons are available from the portfolio that can serve as a guideline to the community of climate change risk managers.

  8. Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation.

    PubMed

    Pinzón-Sánchez, C; Cabrera, V E; Ruegg, P L

    2011-04-01

    The objective of this study was to develop a decision tree to evaluate the economic impact of different durations of intramammary treatment for the first case of mild or moderate clinical mastitis (CM) occurring in early lactation with various scenarios of pathogen distributions and use of on-farm culture. The tree included 2 decision and 3 probability events. The first decision evaluated use of on-farm culture (OFC; 2 programs using OFC and 1 not using OFC) and the second decision evaluated treatment strategies (no intramammary antimicrobials or antimicrobials administered for 2, 5, or 8 d). The tree included probabilities for the distribution of etiologies (gram-positive, gram-negative, or no growth), bacteriological cure, and recurrence. The economic consequences of mastitis included costs of diagnosis and initial treatment, additional treatments, labor, discarded milk, milk production losses due to clinical and subclinical mastitis, culling, and transmission of infection to other cows (only for CM caused by Staphylococcus aureus). Pathogen-specific estimates for bacteriological cure and milk losses were used. The economically optimal path for several scenarios was determined by comparison of expected monetary values. For most scenarios, the optimal economic strategy was to treat CM caused by gram-positive pathogens for 2 d and to avoid antimicrobials for CM cases caused by gram-negative pathogens or when no pathogen was recovered. Use of extended intramammary antimicrobial therapy (5 or 8 d) resulted in the least expected monetary values. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees.

    PubMed

    Scholz, Miklas; Uzomah, Vincent C

    2013-08-01

    The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elter, M.; Schulz-Wendtland, R.; Wittenberg, T.

    2007-11-15

    Mammography is the most effective method for breast cancer screening available today. However, the low positive predictive value of breast biopsy resulting from mammogram interpretation leads to approximately 70% unnecessary biopsies with benign outcomes. To reduce the high number of unnecessary breast biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the last several years. These systems help physicians in their decision to perform a breast biopsy on a suspicious lesion seen in a mammogram or to perform a short term follow-up examination instead. We present two novel CAD approaches that both emphasize an intelligible decision process to predictmore » breast biopsy outcomes from BI-RADS findings. An intelligible reasoning process is an important requirement for the acceptance of CAD systems by physicians. The first approach induces a global model based on decison-tree learning. The second approach is based on case-based reasoning and applies an entropic similarity measure. We have evaluated the performance of both CAD approaches on two large publicly available mammography reference databases using receiver operating characteristic (ROC) analysis, bootstrap sampling, and the ANOVA statistical significance test. Both approaches outperform the diagnosis decisions of the physicians. Hence, both systems have the potential to reduce the number of unnecessary breast biopsies in clinical practice. A comparison of the performance of the proposed decision tree and CBR approaches with a state of the art approach based on artificial neural networks (ANN) shows that the CBR approach performs slightly better than the ANN approach, which in turn results in slightly better performance than the decision-tree approach. The differences are statistically significant (p value <0.001). On 2100 masses extracted from the DDSM database, the CRB approach for example resulted in an area under the ROC curve of A(z)=0.89{+-}0.01, the decision-tree approach in A(z)=0.87{+-}0.01, and the ANN approach in A(z)=0.88{+-}0.01.« less

  11. Information processing requirements for on-board monitoring of automatic landing

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Karmarkar, J. S.

    1977-01-01

    A systematic procedure is presented for determining the information processing requirements for on-board monitoring of automatic landing systems. The monitoring system detects landing anomalies through use of appropriate statistical tests. The time-to-correct aircraft perturbations is determined from covariance analyses using a sequence of suitable aircraft/autoland/pilot models. The covariance results are used to establish landing safety and a fault recovery operating envelope via an event outcome tree. This procedure is demonstrated with examples using the NASA Terminal Configured Vehicle (B-737 aircraft). The procedure can also be used to define decision height, assess monitoring implementation requirements, and evaluate alternate autoland configurations.

  12. Application of Decision Tree to Obtain Optimal Operation Rules for Reservoir Flood Control Considering Sediment Desilting-Case Study of Tseng Wen Reservoir

    NASA Astrophysics Data System (ADS)

    ShiouWei, L.

    2014-12-01

    Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan.  Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating.  Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.

  13. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining.

    PubMed

    Habibi, Shafi; Ahmadi, Maryam; Alizadeh, Somayeh

    2015-03-18

    The aim of this study was to examine a predictive model using features related to the diabetes type 2 risk factors. The data were obtained from a database in a diabetes control system in Tabriz, Iran. The data included all people referred for diabetes screening between 2009 and 2011. The features considered as "Inputs" were: age, sex, systolic and diastolic blood pressure, family history of diabetes, and body mass index (BMI). Moreover, we used diagnosis as "Class". We applied the "Decision Tree" technique and "J48" algorithm in the WEKA (3.6.10 version) software to develop the model. After data preprocessing and preparation, we used 22,398 records for data mining. The model precision to identify patients was 0.717. The age factor was placed in the root node of the tree as a result of higher information gain. The ROC curve indicates the model function in identification of patients and those individuals who are healthy. The curve indicates high capability of the model, especially in identification of the healthy persons. We developed a model using the decision tree for screening T2DM which did not require laboratory tests for T2DM diagnosis.

  15. Predicting the disease of Alzheimer with SNP biomarkers and clinical data using data mining classification approach: decision tree.

    PubMed

    Erdoğan, Onur; Aydin Son, Yeşim

    2014-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.

  16. Analyses of Great Smoky Mountain Red Spruce Tree Ring Data

    Treesearch

    Paul C. van Deusen; [Editor

    1988-01-01

    Four different analyses of red spruce tree ring data from the Great Smoky Mountains are presented along with a description of the spruce/fir ecosystem.The analyses use several techniques including spatial analysis, fractals, spline detrending, and the Kalman filter.

  17. Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.

    PubMed

    Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward

    2015-02-01

    Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.

  18. The Efficiency of Random Forest Method for Shoreline Extraction from LANDSAT-8 and GOKTURK-2 Imageries

    NASA Astrophysics Data System (ADS)

    Bayram, B.; Erdem, F.; Akpinar, B.; Ince, A. K.; Bozkurt, S.; Catal Reis, H.; Seker, D. Z.

    2017-11-01

    Coastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of "TUBITAK Project (Project No: 115Y718) titled "Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model - Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example". Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and water-body classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band) and GOKTURK-2 (4th band) imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.

  19. Development and Validation of a Primary Care-Based Family Health History and Decision Support Program (MeTree)

    PubMed Central

    Orlando, Lori A.; Buchanan, Adam H.; Hahn, Susan E.; Christianson, Carol A.; Powell, Karen P.; Skinner, Celette Sugg; Chesnut, Blair; Blach, Colette; Due, Barbara; Ginsburg, Geoffrey S.; Henrich, Vincent C.

    2016-01-01

    INTRODUCTION Family health history is a strong predictor of disease risk. To reduce the morbidity and mortality of many chronic diseases, risk-stratified evidence-based guidelines strongly encourage the collection and synthesis of family health history to guide selection of primary prevention strategies. However, the collection and synthesis of such information is not well integrated into clinical practice. To address barriers to collection and use of family health histories, the Genomedical Connection developed and validated MeTree, a Web-based, patient-facing family health history collection and clinical decision support tool. MeTree is designed for integration into primary care practices as part of the genomic medicine model for primary care. METHODS We describe the guiding principles, operational characteristics, algorithm development, and coding used to develop MeTree. Validation was performed through stakeholder cognitive interviewing, a genetic counseling pilot program, and clinical practice pilot programs in 2 community-based primary care clinics. RESULTS Stakeholder feedback resulted in changes to MeTree’s interface and changes to the phrasing of clinical decision support documents. The pilot studies resulted in the identification and correction of coding errors and the reformatting of clinical decision support documents. MeTree’s strengths in comparison with other tools are its seamless integration into clinical practice and its provision of action-oriented recommendations guided by providers’ needs. LIMITATIONS The tool was validated in a small cohort. CONCLUSION MeTree can be integrated into primary care practices to help providers collect and synthesize family health history information from patients with the goal of improving adherence to risk-stratified evidence-based guidelines. PMID:24044145

  20. Detection of clinical mastitis with sensor data from automatic milking systems is improved by using decision-tree induction.

    PubMed

    Kamphuis, C; Mollenhorst, H; Heesterbeek, J A P; Hogeveen, H

    2010-08-01

    The objective was to develop and validate a clinical mastitis (CM) detection model by means of decision-tree induction. For farmers milking with an automatic milking system (AMS), it is desirable that the detection model has a high level of sensitivity (Se), especially for more severe cases of CM, at a very high specificity (Sp). In addition, an alert for CM should be generated preferably at the quarter milking (QM) at which the CM infection is visible for the first time. Data were collected from 9 Dutch dairy herds milking automatically during a 2.5-yr period. Data included sensor data (electrical conductivity, color, and yield) at the QM level and visual observations of quarters with CM recorded by the farmers. Visual observations of quarters with CM were combined with sensor data of the most recent automatic milking recorded for that same quarter, within a 24-h time window before the visual assessment time. Sensor data of 3.5 million QM were collected, of which 348 QM were combined with a CM observation. Data were divided into a training set, including two-thirds of all data, and a test set. Cows in the training set were not included in the test set and vice versa. A decision-tree model was trained using only clear examples of healthy (n=24,717) or diseased (n=243) QM. The model was tested on 105 QM with CM and a random sample of 50,000 QM without CM. While keeping the Se at a level comparable to that of models currently used by AMS, the decision-tree model was able to decrease the number of false-positive alerts by more than 50%. At an Sp of 99%, 40% of the CM cases were detected. Sixty-four percent of the severe CM cases were detected and only 12.5% of the CM that were scored as watery milk. The Se increased considerably from 40% to 66.7% when the time window increased from less than 24h before the CM observation, to a time window from 24h before to 24h after the CM observation. Even at very wide time windows, however, it was impossible to reach an Se of 100%. This indicates the inability to detect all CM cases based on sensor data alone. Sensitivity levels varied largely when the decision tree was validated per herd. This trend was confirmed when decision trees were trained using data from 8 herds and tested on data from the ninth herd. This indicates that when using the decision tree as a generic CM detection model in practice, some herds will continue having difficulties in detecting CM using mastitis alert lists, whereas others will perform well. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Predicting post-fire tree mortality for 12 western US conifers using the First-Order Fire Effects Model (FOFEM)

    Treesearch

    Sharon Hood; Duncan Lutes

    2017-01-01

    Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...

  2. Context-Sensitive Ethics in School Psychology

    ERIC Educational Resources Information Center

    Lasser, Jon; Klose, Laurie McGarry; Robillard, Rachel

    2013-01-01

    Ethical codes and licensing rules provide foundational guidance for practicing school psychologists, but these sources fall short in their capacity to facilitate effective decision-making. When faced with ethical dilemmas, school psychologists can turn to decision-making models, but step-wise decision trees frequently lack the situation…

  3. Simple street tree sampling

    Treesearch

    David J. Nowak; Jeffrey T. Walton; James Baldwin; Jerry Bond

    2015-01-01

    Information on street trees is critical for management of this important resource. Sampling of street tree populations provides an efficient means to obtain street tree population information. Long-term repeat measures of street tree samples supply additional information on street tree changes and can be used to report damages from catastrophic events. Analyses of...

  4. ETE: a python Environment for Tree Exploration.

    PubMed

    Huerta-Cepas, Jaime; Dopazo, Joaquín; Gabaldón, Toni

    2010-01-13

    Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org.

  5. ETE: a python Environment for Tree Exploration

    PubMed Central

    2010-01-01

    Background Many bioinformatics analyses, ranging from gene clustering to phylogenetics, produce hierarchical trees as their main result. These are used to represent the relationships among different biological entities, thus facilitating their analysis and interpretation. A number of standalone programs are available that focus on tree visualization or that perform specific analyses on them. However, such applications are rarely suitable for large-scale surveys, in which a higher level of automation is required. Currently, many genome-wide analyses rely on tree-like data representation and hence there is a growing need for scalable tools to handle tree structures at large scale. Results Here we present the Environment for Tree Exploration (ETE), a python programming toolkit that assists in the automated manipulation, analysis and visualization of hierarchical trees. ETE libraries provide a broad set of tree handling options as well as specific methods to analyze phylogenetic and clustering trees. Among other features, ETE allows for the independent analysis of tree partitions, has support for the extended newick format, provides an integrated node annotation system and permits to link trees to external data such as multiple sequence alignments or numerical arrays. In addition, ETE implements a number of built-in analytical tools, including phylogeny-based orthology prediction and cluster validation techniques. Finally, ETE's programmable tree drawing engine can be used to automate the graphical rendering of trees with customized node-specific visualizations. Conclusions ETE provides a complete set of methods to manipulate tree data structures that extends current functionality in other bioinformatic toolkits of a more general purpose. ETE is free software and can be downloaded from http://ete.cgenomics.org. PMID:20070885

  6. Identification of subgroups by risk of graft failure after paediatric renal transplantation: application of survival tree models on the ESPN/ERA-EDTA Registry.

    PubMed

    Lofaro, Danilo; Jager, Kitty J; Abu-Hanna, Ameen; Groothoff, Jaap W; Arikoski, Pekka; Hoecker, Britta; Roussey-Kesler, Gwenaelle; Spasojević, Brankica; Verrina, Enrico; Schaefer, Franz; van Stralen, Karlijn J

    2016-02-01

    Identification of patient groups by risk of renal graft loss might be helpful for accurate patient counselling and clinical decision-making. Survival tree models are an alternative statistical approach to identify subgroups, offering cut-off points for covariates and an easy-to-interpret representation. Within the European Society of Pediatric Nephrology/European Renal Association-European Dialysis and Transplant Association (ESPN/ERA-EDTA) Registry data we identified paediatric patient groups with specific profiles for 5-year renal graft survival. Two analyses were performed, including (i) parameters known at time of transplantation and (ii) additional clinical measurements obtained early after transplantation. The identified subgroups were added as covariates in two survival models. The prognostic performance of the models was tested and compared with conventional Cox regression analyses. The first analysis included 5275 paediatric renal transplants. The best 5-year graft survival (90.4%) was found among patients who received a renal graft as a pre-emptive transplantation or after short-term dialysis (<45 days), whereas graft survival was poorest (51.7%) in adolescents transplanted after long-term dialysis (>2.2 years). The Cox model including both pre-transplant factors and tree subgroups had a significantly better predictive performance than conventional Cox regression (P < 0.001). In the analysis including clinical factors, graft survival ranged from 97.3% [younger patients with estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m(2) and dialysis <20 months] to 34.7% (adolescents with eGFR <60 mL/min/1.73 m(2) and dialysis >20 months). Also in this case combining tree findings and clinical factors improved the predictive performance as compared with conventional Cox model models (P < 0.0001). In conclusion, we demonstrated the tree model to be an accurate and attractive tool to predict graft failure for patients with specific characteristics. This may aid the evaluation of individual graft prognosis and thereby the design of measures to improve graft survival in the poor prognosis groups. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  7. Branch: an interactive, web-based tool for testing hypotheses and developing predictive models.

    PubMed

    Gangavarapu, Karthik; Babji, Vyshakh; Meißner, Tobias; Su, Andrew I; Good, Benjamin M

    2016-07-01

    Branch is a web application that provides users with the ability to interact directly with large biomedical datasets. The interaction is mediated through a collaborative graphical user interface for building and evaluating decision trees. These trees can be used to compose and test sophisticated hypotheses and to develop predictive models. Decision trees are built and evaluated based on a library of imported datasets and can be stored in a collective area for sharing and re-use. Branch is hosted at http://biobranch.org/ and the open source code is available at http://bitbucket.org/sulab/biobranch/ asu@scripps.edu or bgood@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  8. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  9. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  10. Online adaptive decision trees: pattern classification and function approximation.

    PubMed

    Basak, Jayanta

    2006-09-01

    Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.

  11. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  12. The economic impact of pig-associated parasitic zoonosis in Northern Lao PDR.

    PubMed

    Choudhury, Adnan Ali Khan; Conlan, James V; Racloz, Vanessa Nadine; Reid, Simon Andrew; Blacksell, Stuart D; Fenwick, Stanley G; Thompson, Andrew R C; Khamlome, Boualam; Vongxay, Khamphouth; Whittaker, Maxine

    2013-03-01

    The parasitic zoonoses human cysticercosis (Taenia solium), taeniasis (other Taenia species) and trichinellosis (Trichinella species) are endemic in the Lao People's Democratic Republic (Lao PDR). This study was designed to quantify the economic burden pig-associated zoonotic disease pose in Lao PDR. In particular, the analysis included estimation of the losses in the pork industry as well as losses due to human illness and lost productivity. A Markov-probability based decision-tree model was chosen to form the basis of the calculations to estimate the economic and public health impacts of taeniasis, trichinellosis and cysticercosis. Two different decision trees were run simultaneously on the model's human cohort. A third decision tree simulated the potential impacts on pig production. The human capital method was used to estimate productivity loss. The results found varied significantly depending on the rate of hospitalisation due to neurocysticerosis. This study is the first systematic estimate of the economic impact of pig-associated zoonotic diseases in Lao PDR that demonstrates the significance of the diseases in that country.

  13. Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework

    NASA Astrophysics Data System (ADS)

    Loschetter, Annick; Rohmer, Jérémy

    2016-04-01

    Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered. For the parameters that concern expert setting, the weight attributed to monitoring measurement ω, the mean of thresholds, the economic context and the setting of the decision threshold are very influential. The interest of applying the VOI theory (more precisely the value of imperfect information) in the BET framework was demonstrated as support for helping experts in the setting of the monitoring system or for helping managers to decide the installation of additional monitoring systems. Acknowledgments: This work was carried out in the framework of the project MEDSUV. This project is funded under the call FP7 ENV.2012.6.4-2: Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. Grant agreement n°308665.

  14. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  15. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  16. Comparison of two data mining techniques in labeling diagnosis to Iranian pharmacy claim dataset: artificial neural network (ANN) versus decision tree model.

    PubMed

    Rezaei-Darzi, Ehsan; Farzadfar, Farshad; Hashemi-Meshkini, Amir; Navidi, Iman; Mahmoudi, Mahmoud; Varmaghani, Mehdi; Mehdipour, Parinaz; Soudi Alamdari, Mahsa; Tayefi, Batool; Naderimagham, Shohreh; Soleymani, Fatemeh; Mesdaghinia, Alireza; Delavari, Alireza; Mohammad, Kazem

    2014-12-01

    This study aimed to evaluate and compare the prediction accuracy of two data mining techniques, including decision tree and neural network models in labeling diagnosis to gastrointestinal prescriptions in Iran. This study was conducted in three phases: data preparation, training phase, and testing phase. A sample from a database consisting of 23 million pharmacy insurance claim records, from 2004 to 2011 was used, in which a total of 330 prescriptions were assessed and used to train and test the models simultaneously. In the training phase, the selected prescriptions were assessed by both a physician and a pharmacist separately and assigned a diagnosis. To test the performance of each model, a k-fold stratified cross validation was conducted in addition to measuring their sensitivity and specificity. Generally, two methods had very similar accuracies. Considering the weighted average of true positive rate (sensitivity) and true negative rate (specificity), the decision tree had slightly higher accuracy in its ability for correct classification (83.3% and 96% versus 80.3% and 95.1%, respectively). However, when the weighted average of ROC area (AUC between each class and all other classes) was measured, the ANN displayed higher accuracies in predicting the diagnosis (93.8% compared with 90.6%). According to the result of this study, artificial neural network and decision tree model represent similar accuracy in labeling diagnosis to GI prescription.

  17. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  18. A review on machine learning principles for multi-view biological data integration.

    PubMed

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  19. The GRACE Checklist: A Validated Assessment Tool for High Quality Observational Studies of Comparative Effectiveness.

    PubMed

    Dreyer, Nancy A; Bryant, Allison; Velentgas, Priscilla

    2016-10-01

    Recognizing the growing need for robust evidence about treatment effectiveness in real-world populations, the Good Research for Comparative Effectiveness (GRACE) guidelines have been developed for noninterventional studies of comparative effectiveness to determine which studies are sufficiently rigorous to be reliable enough for use in health technology assessments. To evaluate which aspects of the GRACE Checklist contribute most strongly to recognition of quality. We assembled 28 observational comparative effectiveness articles published from 2001 to 2010 that compared treatment effectiveness and/or safety of drugs, medical devices, and medical procedures. Twenty-two volunteers from academia, pharmaceutical companies, and government agencies applied the GRACE Checklist to those articles, providing 56 assessments. Ten senior academic and industry experts provided assessments of overall article quality for the purpose of decision support. We also rated each article based on the number of annual citations and impact factor of the journal in which the article was published. To identify checklist items that were most predictive of quality, classification and regression tree (CART) analysis, a binary, recursive, partitioning methodology, was used to create 3 decision trees, which compared the 56 article assessments with 3 external quality outcomes: (1) expert assessment of overall quality, (2) citation frequency, and (3) impact factor. A fourth tree looked at the composite outcome of all 3 quality indicators. The best predictors of quality included the following: use of concurrent comparators, limiting the study to new initiators of the study drug, equivalent measurement of outcomes in study groups, collecting data on most if not all known confounders or effect modifiers, accounting for immortal time bias in the analysis, and use of sensitivity analyses to test how much effect estimates depended on various assumptions. Only sensitivity analyses appeared consistently as a predictor of quality in all 4 trees. When a composite outcome of the 3 quality measures was used, the GRACE Checklist showed high sensitivity and specificity (71.43% and 80.95%, respectively). The GRACE Checklist stands out from other consensus-driven and expert guidance documents because of its extensive validation efforts. This most recent work shows that the checklist has strong sensitivity and specificity, increasing its utility as a screening tool to identify high-quality observational comparative effectiveness research worthy of in-depth review and applicability for decision support. No outside funding supported this research. All authors are full-time employees of Quintiles, which provides research and consulting services to the biopharmaceutical industry. The authors have no other disclosures to report. Two of the 3 CART trees were presented at the International Society of Pharmacepidemiology in 2015 ("Article Citations per Year" and "Journal Impact Factor"). The original validation study was published in the March 2014 issue of the Journal of Managed Care & Specialty Pharmacy. The checklist questions and scoring were included using a table that was originally published by this journal in 2014. Study concept and design were primarily contributed by Dreyer and Velentgas, along with Bryant. Bryant took the lead in data collection and analysis, along with Dreyer and Velentgas, and data interpretation was performed by Dreyer, Velentgas, and Bryant. The manuscript was written and revised primarily by Dreyer, along with Bryant and Velentgas.

  20. Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment.

    PubMed

    Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W

    2018-02-01

    Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

  1. Hydrochemical analysis of groundwater using a tree-based model

    NASA Astrophysics Data System (ADS)

    Litaor, M. Iggy; Brielmann, H.; Reichmann, O.; Shenker, M.

    2010-06-01

    SummaryHydrochemical indices are commonly used to ascertain aquifer characteristics, salinity problems, anthropogenic inputs and resource management, among others. This study was conducted to test the applicability of a binary decision tree model to aquifer evaluation using hydrochemical indices as input. The main advantage of the tree-based model compared to other commonly used statistical procedures such as cluster and factor analyses is the ability to classify groundwater samples with assigned probability and the reduction of a large data set into a few significant variables without creating new factors. We tested the model using data sets collected from headwater springs of the Jordan River, Israel. The model evaluation consisted of several levels of complexity, from simple separation between the calcium-magnesium-bicarbonate water type of karstic aquifers to the more challenging separation of calcium-sodium-bicarbonate water type flowing through perched and regional basaltic aquifers. In all cases, the model assigned measures for goodness of fit in the form of misclassification errors and singled out the most significant variable in the analysis. The model proceeded through a sequence of partitions providing insight into different possible pathways and changing lithology. The model results were extremely useful in constraining the interpretation of geological heterogeneity and constructing a conceptual flow model for a given aquifer. The tree model clearly identified the hydrochemical indices that were excluded from the analysis, thus providing information that can lead to a decrease in the number of routinely analyzed variables and a significant reduction in laboratory cost.

  2. Automatic Data Filter Customization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas

    2013-01-01

    This work predicts whether a retrieval algorithm will usefully determine CO2 concentration from an input spectrum of GOSAT (Greenhouse Gases Observing Satellite). This was done to eliminate needless runtime on atmospheric soundings that would never yield useful results. A space of 50 dimensions was examined for predictive power on the final CO2 results. Retrieval algorithms are frequently expensive to run, and wasted effort defeats requirements and expends needless resources. This algorithm could be used to help predict and filter unneeded runs in any computationally expensive regime. Traditional methods such as the Fischer discriminant analysis and decision trees can attempt to predict whether a sounding will be properly processed. However, this work sought to detect a subsection of the dimensional space that can be simply filtered out to eliminate unwanted runs. LDAs (linear discriminant analyses) and other systems examine the entire data and judge a "best fit," giving equal weight to complex and problematic regions as well as simple, clear-cut regions. In this implementation, a genetic space of "left" and "right" thresholds outside of which all data are rejected was defined. These left/right pairs are created for each of the 50 input dimensions. A genetic algorithm then runs through countless potential filter settings using a JPL computer cluster, optimizing the tossed-out data s yield (proper vs. improper run removal) and number of points tossed. This solution is robust to an arbitrary decision boundary within the data and avoids the global optimization problem of whole-dataset fitting using LDA or decision trees. It filters out runs that would not have produced useful CO2 values to save needless computation. This would be an algorithmic preprocessing improvement to any computationally expensive system.

  3. Landslide susceptibility mapping using decision-tree based CHi-squared automatic interaction detection (CHAID) and Logistic regression (LR) integration

    NASA Astrophysics Data System (ADS)

    Althuwaynee, Omar F.; Pradhan, Biswajeet; Ahmad, Noordin

    2014-06-01

    This article uses methodology based on chi-squared automatic interaction detection (CHAID), as a multivariate method that has an automatic classification capacity to analyse large numbers of landslide conditioning factors. This new algorithm was developed to overcome the subjectivity of the manual categorization of scale data of landslide conditioning factors, and to predict rainfall-induced susceptibility map in Kuala Lumpur city and surrounding areas using geographic information system (GIS). The main objective of this article is to use CHi-squared automatic interaction detection (CHAID) method to perform the best classification fit for each conditioning factor, then, combining it with logistic regression (LR). LR model was used to find the corresponding coefficients of best fitting function that assess the optimal terminal nodes. A cluster pattern of landslide locations was extracted in previous study using nearest neighbor index (NNI), which were then used to identify the clustered landslide locations range. Clustered locations were used as model training data with 14 landslide conditioning factors such as; topographic derived parameters, lithology, NDVI, land use and land cover maps. Pearson chi-squared value was used to find the best classification fit between the dependent variable and conditioning factors. Finally the relationship between conditioning factors were assessed and the landslide susceptibility map (LSM) was produced. An area under the curve (AUC) was used to test the model reliability and prediction capability with the training and validation landslide locations respectively. This study proved the efficiency and reliability of decision tree (DT) model in landslide susceptibility mapping. Also it provided a valuable scientific basis for spatial decision making in planning and urban management studies.

  4. Cost-effectiveness of the introduction of the pneumococcal polysaccharide vaccine in elderly Colombian population.

    PubMed

    Castañeda-Orjuela, Carlos; Alvis-Guzmán, Nelson; Paternina, Angel José; De la Hoz-Restrepo, Fernando

    2011-10-13

    Streptococcus pneumoniae causes community-acquired pneumonia, otitis media and meningitis, with higher incidences at the extremes of life. PPV-23 vaccine is widely used in prevention of pneumonia and invasive pneumococcal disease in older adults in developed countries. We developed an evaluation of cost-effectiveness of implementing PPV-23 in Colombian population over 60 years. The number of cases of pneumonia and meningitis in patients over 60 years and the proportion by S. pneumoniae was estimated based on a review of literature. A decision tree model with a 5-year time horizon was built to evaluate the cost-effectiveness of the implementation of the PPV-23 in this population. Direct health care costs of out- and in-patients were calculated based on expenditure records from the Bogota public health system. Incremental cost-effectiveness ratios per life saved and per year of life gained were estimated based on the decision tree model. Deterministic and probabilistic sensitivity analyses were performed. Without vaccination 4460 (range 2384-8162) bacteremic pneumococcal pneumonias and 141 (range 73-183) pneumococcal meningitis would occur among people over 60 years old in Colombia. In the first year, vaccination with PPV-23 at US$8/dose would save 480 (range 100-1753) deaths due to Invasive and non-invasive pneumococcal disease. Vaccination would results in US$3400/deaths averted (range US$1028-10,862) and US$1514/life years gained (range US$408-5404). Vaccination with PPV-23 in over 60 years is a highly cost-effective public health measure in Colombia. Despite some limitations, the results are robust, and may help developing countries to perform informed decisions about the introduction of the vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Insurance Contract Analysis for Company Decision Support in Acquisition Management

    NASA Astrophysics Data System (ADS)

    Chernovita, H. P.; Manongga, D.; Iriani, A.

    2017-01-01

    One of company activities to retain their business is marketing the products which include in acquisition management to get new customers. Insurance contract analysis using ID3 to produce decision tree and rules to be decision support for the insurance company. The decision tree shows 13 rules that lead to contract termination claim. This could be a guide for the insurance company in acquisition management to prevent contract binding with these contract condition because it has a big chance for the customer to terminate their insurance contract before its expired date. As the result, there are several strong points that could be the determinant of contract termination such as: 1) customer age whether too young or too old, 2) long insurance period (above 10 years), 3) big insurance amount, 4) big amount of premium charges, and 5) payment method.

  6. Comparative seed-tree and selection harvesting costs in young-growth mixed-conifer stands

    Treesearch

    William A. Atkinson; Dale O. Hall

    1963-01-01

    Little difference was found between yarding and felling costs in seed-tree and selection harvest cuts. The volume per acre logged was 23,800 board feet on the seed-tree compartments and 10,600 board feet on the selection compartments. For a comparable operation with this range of volumes, cutting method decisions should be based on factors other than logging costs....

  7. Merger of three modeling approaches to assess potential effects of climate change on trees in the eastern United States

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters

    2010-01-01

    Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....

  8. Phylogenomic analyses data of the avian phylogenomics project.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Narula, Nitish; Liu, Liang; Burt, Dave; Ellegren, Hans; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas Pius; Zhang, Guojie

    2015-01-01

    Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.

  9. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets

    PubMed Central

    Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd

    2018-01-01

    Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474

  10. Divide and Conquer: A Valid Approach for Risk Assessment and Decision Making under Uncertainty for Groundwater-Related Diseases

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.

    2010-12-01

    Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.

  11. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  12. Predicting water suppy and actual evapotranspiration of street trees

    NASA Astrophysics Data System (ADS)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  13. Estimating the Effective Sample Size of Tree Topologies from Bayesian Phylogenetic Analyses

    PubMed Central

    Lanfear, Robert; Hua, Xia; Warren, Dan L.

    2016-01-01

    Bayesian phylogenetic analyses estimate posterior distributions of phylogenetic tree topologies and other parameters using Markov chain Monte Carlo (MCMC) methods. Before making inferences from these distributions, it is important to assess their adequacy. To this end, the effective sample size (ESS) estimates how many truly independent samples of a given parameter the output of the MCMC represents. The ESS of a parameter is frequently much lower than the number of samples taken from the MCMC because sequential samples from the chain can be non-independent due to autocorrelation. Typically, phylogeneticists use a rule of thumb that the ESS of all parameters should be greater than 200. However, we have no method to calculate an ESS of tree topology samples, despite the fact that the tree topology is often the parameter of primary interest and is almost always central to the estimation of other parameters. That is, we lack a method to determine whether we have adequately sampled one of the most important parameters in our analyses. In this study, we address this problem by developing methods to estimate the ESS for tree topologies. We combine these methods with two new diagnostic plots for assessing posterior samples of tree topologies, and compare their performance on simulated and empirical data sets. Combined, the methods we present provide new ways to assess the mixing and convergence of phylogenetic tree topologies in Bayesian MCMC analyses. PMID:27435794

  14. Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents.

    PubMed

    Wang, Bo; Ives, Anthony R

    2017-03-01

    Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.

  15. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  16. Machine learning reveals orbital interaction in materials

    NASA Astrophysics Data System (ADS)

    Lam Pham, Tien; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Tsuda, Koji; Takigawa, Ichigaku; Chi Dam, Hieu

    2017-12-01

    We propose a novel representation of materials named an 'orbital-field matrix (OFM)', which is based on the distribution of valence shell electrons. We demonstrate that this new representation can be highly useful in mining material data. Experimental investigation shows that the formation energies of crystalline materials, atomization energies of molecular materials, and local magnetic moments of the constituent atoms in bimetal alloys of lanthanide metal and transition-metal can be predicted with high accuracy using the OFM. Knowledge regarding the role of the coordination numbers of the transition-metal and lanthanide elements in determining the local magnetic moments of the transition-metal sites can be acquired directly from decision tree regression analyses using the OFM.

  17. Forestry 101.

    ERIC Educational Resources Information Center

    Markham, Mary T.

    2000-01-01

    Introduces a unit on forest management in which students manage the school forest. Involves students in tree identification, determining the size or volume and height of trees, and evaluation of the forest for management decisions. Integrates mathematics, writing, and social studies with plant classification, plant reproduction, and the use of…

  18. Decision and Game Theory for Security

    NASA Astrophysics Data System (ADS)

    Alpcan, Tansu; Buttyán, Levente; Baras, John S.

    Attack--defense trees are used to describe security weaknesses of a system and possible countermeasures. In this paper, the connection between attack--defense trees and game theory is made explicit. We show that attack--defense trees and binary zero-sum two-player extensive form games have equivalent expressive power when considering satisfiability, in the sense that they can be converted into each other while preserving their outcome and their internal structure.

  19. Comparative study of biodegradability prediction of chemicals using decision trees, functional trees, and logistic regression.

    PubMed

    Chen, Guangchao; Li, Xuehua; Chen, Jingwen; Zhang, Ya-Nan; Peijnenburg, Willie J G M

    2014-12-01

    Biodegradation is the principal environmental dissipation process of chemicals. As such, it is a dominant factor determining the persistence and fate of organic chemicals in the environment, and is therefore of critical importance to chemical management and regulation. In the present study, the authors developed in silico methods assessing biodegradability based on a large heterogeneous set of 825 organic compounds, using the techniques of the C4.5 decision tree, the functional inner regression tree, and logistic regression. External validation was subsequently carried out by 2 independent test sets of 777 and 27 chemicals. As a result, the functional inner regression tree exhibited the best predictability with predictive accuracies of 81.5% and 81.0%, respectively, on the training set (825 chemicals) and test set I (777 chemicals). Performance of the developed models on the 2 test sets was subsequently compared with that of the Estimation Program Interface (EPI) Suite Biowin 5 and Biowin 6 models, which also showed a better predictability of the functional inner regression tree model. The model built in the present study exhibits a reasonable predictability compared with existing models while possessing a transparent algorithm. Interpretation of the mechanisms of biodegradation was also carried out based on the models developed. © 2014 SETAC.

  20. Multiple Criteria Decision Analysis (MCDA) for evaluating new medicines in Health Technology Assessment and beyond: The Advance Value Framework.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2017-09-01

    Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and become readily adaptable across different settings, the Advance Value Framework could be offered as a decision-support tool for evaluators and payers to aid coverage and reimbursement of new medicines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The economic impact of introducing serotonin-noradrenaline reuptake inhibitors into the Brazilian national drug formulary: cost-effectiveness and budget-impact analyses.

    PubMed

    Machado, Márcio; Iskedjian, Michael; Ruiz, Inés A; Einarson, Thomas R

    2007-01-01

    To determine the cost effectiveness, from the Brazilian Ministry of Health viewpoint, of three antidepressant classes for major depressive disorder (MDD), and the budget impact of introducing serotonin-noradrenaline (norepinephrine) reuptake inhibitors (SNRIs) into the current Brazilian national drug formulary, assuming a 6-month treatment duration. An existing decision-tree model was adapted to Brazil, based on local guidelines. Clinical data were obtained from published meta-analyses. Patients included adults aged > or =18 years with MDD, diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, third and fourth editions (DSM-III/IV), with moderate-to-severe disease (Hamilton Depression Rating Scale [HAMD] > or =15 or Montgomery-Asberg Depression Rating Scale [MADRS] > or =18), without co-morbidities or co-medications, receiving > or =6 weeks of treatment with SNRIs, selective serotonin reuptake inhibitors (SSRIs) and/or tricyclic antidepressants (TCAs). Clinical outcome was remission (HAMD < or =7 or MADRS < or =12). Direct costs (drugs, physician visits, hospitalisations) were included. Drug costs were obtained from the 2006 Brazilian National Drug Price List, and hospitalisation and physician costs from the 2006 Healthcare System database. Costs were valued in Brazilian Reais ($Brz), year 2006 values ($Brz1 = $US0.47). Univariate and Monte Carlo sensitivity analyses tested model robustness. Expected costs per patient treated were SNRIs $Brz4848; SSRIs $Brz5466; and TCAs $Brz5046, and overall success rates (primary plus secondary treatment across all decision tree branches) were SNRIs 78.1%; SSRIs 74.0%; and TCAs 76.4%. Average costs/success were SNRIs $Brz6209; SSRIs $Brz7385; and TCAs $Brz6602. SNRIs dominated in incremental cost-effectiveness analyses. Monte Carlo analysis confirmed drug classes' relative positions; however, there was considerable uncertainty. Introducing SNRIs into the formulary could generate average savings of 1% of the total budget, with a 52% probability of savings. SNRIs appear to be cost effective against SSRIs and TCAs when prescribed to patients with MDD in Brazil. However, their inclusion into the national drug list would generate minor savings compared with the current formulary of SSRIs and TCAs. Thus, we considered such inclusion as 'cost-neutral', since no major probability of savings or increased expenditures were observed.

  2. Office of Legacy Management Decision Tree for Solar Photovoltaic Projects - 13317

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, John; Butherus, Michael; Barr, Deborah L.

    2013-07-01

    To support consideration of renewable energy power development as a land reuse option, the DOE Office of Legacy Management (LM) and the National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of wind and solar renewable energy resources on LM lands. From a solar capacity perspective, the larger sites in the western United States present opportunities for constructing solar photovoltaic (PV) projects. A detailed analysis and preliminary plan was developed for three large sites in New Mexico, assessing the costs, the conceptual layout of a PV system, and the electric utility interconnection process. As a result ofmore » the study, a 1,214-hectare (3,000-acre) site near Grants, New Mexico, was chosen for further study. The state incentives, utility connection process, and transmission line capacity were key factors in assessing the feasibility of the project. LM's Durango, Colorado, Disposal Site was also chosen for consideration because the uranium mill tailings disposal cell is on a hillside facing south, transmission lines cross the property, and the community was very supportive of the project. LM worked with the regulators to demonstrate that the disposal cell's long-term performance would not be impacted by the installation of a PV solar system. A number of LM-unique issues were resolved in making the site available for a private party to lease a portion of the site for a solar PV project. A lease was awarded in September 2012. Using a solar decision tree that was developed and launched by the EPA and NREL, LM has modified and expanded the decision tree structure to address the unique aspects and challenges faced by LM on its multiple sites. The LM solar decision tree covers factors such as land ownership, usable acreage, financial viability of the project, stakeholder involvement, and transmission line capacity. As additional sites are transferred to LM in the future, the decision tree will assist in determining whether a solar PV project is feasible on the new sites. (authors)« less

  3. Analysis of biweight site chronologies: relative weights of individual trees over time

    Treesearch

    Kurt H. Riitters

    1990-01-01

    The relative weights on individual trees in a biweight site chronology can indicate the consistency of tree growth responses to macroclimate and can be the basis for stratifying trees in climate-growth analyses. This was explored with 45 years of ring-width indices for 200 trees from five even-aged jack pine (Pinus hanksiana Lamb.) stands. Average individual-tree...

  4. Evaluation of the seasonal and annual abortifacient risk of western juniper trees on Oregon rangelands: Abortion risk of western juniper trees

    USDA-ARS?s Scientific Manuscript database

    Western juniper trees can cause late term abortions in cattle, similar to ponderosa pine trees. Analyses of western juniper trees from 35 locations across the state of Oregon suggest that western juniper trees in all areas present an abortion risk in pregnant cattle. Results from this study demonstr...

  5. Factors leading to the involvement of Forensic Advisors in the Belgian criminal justice system.

    PubMed

    Bitzer, Sonja

    2018-04-01

    Forensic Advisors at the National Institute for Criminalistics and Criminology in Brussels act as advising body to the magistrate regarding analytical possibilities and the usefulness of trace analysis in a case. Initially, their function was devised to assist in complex murder cases with unknown offender. However, in a previous study, the increasing diversity of the cases they are requested for has been observed (Bitzer et al., in press). In order to deepen our understanding of the decision steps in the criminal investigation process, the decision to involve a Forensic Advisor and the factors leading to their involvement were evaluated. The study focused on homicide, robbery and burglary cases with and without requests for a Forensic Advisor between January 2014 and June 2016. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility. Decision tree modelling was carried out in order to identify the factors influencing the request for a Forensic Advisor in the case. The decision to request a Forensic Advisor differs between different types of offences. It also depends on the complexity of the case in terms of the number of traces and objects collected at the crime scene, and the availability of witness reports. Indeed, Forensic Advisors take the role of trace analysis coordinator by providing an overview of all available traces, objects, analyses and results. According to the principal implication factors and the performed case study, the contribution of Forensic Advisors consists mainly in summarising all information and advise on potential additional analyses. This might be explained by a loss of overview of the information and the possibilities regarding trace analysis by the magistrate responsible of the case. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  7. Incidence and effects of endemic populations of forest pests in young mixed-conifer forests of the Sierra Nevada

    Treesearch

    Carroll B. Williams; David L. Azuma; George T. Ferrell

    1992-01-01

    Approximately 3.200 trees in young mixed-conifer stands were examined for pest activity and human-caused or mechanical injuries, and approximately 25 percent of these trees were randomly selected for stem analyses. The examination of trees felled for stem analyses showed that 409 (47 percent) were free of pests and 466 (53 percent) had one or more pest categories....

  8. Phytoremediation of trichloroethene (TCE) using cottonwood trees

    USGS Publications Warehouse

    Jones, S.A.; Lee, R.W.; Kuniansky, E.L.; Leeson, Andrea; Alleman, Bruce C.

    1999-01-01

    Phytoremediation uses the natural ability of plants to degrade contaminants in ground water. A field demonstration designed to remediate aerobic shallow ground water that contains trichloroethene began in April 1996 with the planting of cottonwood trees over an approximately 0.2-hectare area at the Naval Air Station, Fort Worth, Tx. Ground water was sampled in July 1997, November 1997, February 1998, and June 1998. Analyses from samples indicate that tree roots have the potential to create anaerobic conditions in the ground water that will facilitate degradation of trichloroethene by microbially mediated reductive dichlorination. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about-20 years old) 60 meters southwest of the cottonwood plantings. Reduction of dissolved oxygen is the primary microbially mediated reaction occurring in the ground water beneath the planted trees, whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dichlorination either is not occurring or is not a primary process away from the mature tree. On the basis of isotopic analyses of carbon-13 at locations away from the mature tree, trichloroethene concentration is controlled by volatilization.Phytoremediation uses the natural ability of plants to degrade contaminants in ground water. A field demonstration designed to remediate aerobic shallow ground water that contains trichloroethene began in April 1996 with the planting of cottonwood trees over an approximately 0.2-hectare area at the Naval Air Station, Fort Worth, Tx. Ground water was sampled in July 1997, November 1997, February 1998, and June 1998. Analyses from samples indicate that tree roots have the potential to create anaerobic conditions in the ground water that will facilitate degradation of trichloroethene by microbially mediated reductive dichlorination. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about-20 years old) 60 meters southwest of the cottonwood plantings. Reduction of dissolved oxygen is the primary microbially mediated reaction occurring in the ground water beneath the planted trees, whereas near the mature cottonwood tree, data indicate that methanogenesis is the most probable reaction occurring. Reductive dichlorination either is not occurring or is not a primary process away from the mature tree. On the basis of isotopic analyses of carbon-13 at locations away from the mature tree, trichloroethene concentration is controlled by volatilization.

  9. Urban tree mortality: a primer on demographic approaches

    Treesearch

    Lara A. Roman; John J. Battles; Joe R. McBride

    2016-01-01

    Realizing the benefits of tree planting programs depends on tree survival. Projections of urban forest ecosystem services and cost-benefit analyses are sensitive to assumptions about tree mortality rates. Long-term mortality data are needed to improve the accuracy of these models and optimize the public investment in tree planting. With more accurate population...

  10. Decision tree analysis as a supplementary tool to enhance histomorphological differentiation when distinguishing human from non-human cranial bone in both burnt and unburnt states: A feasibility study.

    PubMed

    Simmons, T; Goodburn, B; Singhrao, S K

    2016-01-01

    This feasibility study was undertaken to describe and record the histological characteristics of burnt and unburnt cranial bone fragments from human and non-human bones. Reference series of fully mineralized, transverse sections of cranial bone, from all variables and specimen states, were prepared by manual cutting and semi-automated grinding and polishing methods. A photomicrograph catalogue reflecting differences in burnt and unburnt bone from human and non-humans was recorded and qualitative analysis was performed using an established classification system based on primary bone characteristics. The histomorphology associated with human and non-human samples was, for the main part, preserved following burning at high temperature. Clearly, fibro-lamellar complex tissue subtypes, such as plexiform or laminar primary bone, were only present in non-human bones. A decision tree analysis based on histological features provided a definitive identification key for distinguishing human from non-human bone, with an accuracy of 100%. The decision tree for samples where burning was unknown was 96% accurate, and multi-step classification to taxon was possible with 100% accuracy. The results of this feasibility study strongly suggest that histology remains a viable alternative technique if fragments of cranial bone require forensic examination in both burnt and unburnt states. The decision tree analysis may provide an additional but vital tool to enhance data interpretation. Further studies are needed to assess variation in histomorphology taking into account other cranial bones, ontogeny, species and burning conditions. © The Author(s) 2015.

  11. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  12. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Three screening methods for cognitive dysfunction using the Mini-Mental State Examination and Korean Dementia Screening Questionnaire.

    PubMed

    Choi, Seong Hye; Park, Moon Ho

    2016-02-01

    To screen for and determine cognitive dysfunction, cognitive tests and/or informant reports are commonly used. However, these cognitive tests and informant reports are not always available. The present study investigated three screening methods using the Mini-Mental State Examination (MMSE) as the cognitive test, and the Korean dementia screening questionnaire (KDSQ) as the informant report. Participants were recruited from the Korea Clinical Research Center for Dementia of South Korea, and included 2861 patients with Alzheimer's disease (dementia), 3519 patients with mild cognitive impairment and 1375 controls with no cognitive dysfunction. Three screening methods were tested: (i) MMSE alone (MMSE(cut-off) ); (ii) a conventional combination of MMSE and KDSQ (MMSE+KDSQ(cut-off) ); and (iii) a decision tree with MMSE and KDSQ (MMSE+KDSQ(decision tree) ). For discriminating any cognitive dysfunction from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.784). For discriminating dementia from controls, MMSE+KDSQ(cut-off) had the highest area under the receiver operating characteristic curve (0.899). For discriminating mild cognitive impairment from controls, MMSE(cut-off) had the highest area under the receiver operating characteristic curve (0.683). MMSE+KDSQ(decision tree) showed the highest sensitivity for all discriminations. For overall classification accuracy, MMSE+KDSQ(decision tree) had the highest value (70.0%). These three methods had different advantageous properties for screening and staging cognitive dysfunction. As there might be different availability across clinical settings, these three methods can be selected and used according to situational needs. © 2015 Japan Geriatrics Society.

  14. The risk factors of laryngeal pathology in Korean adults using a decision tree model.

    PubMed

    Byeon, Haewon

    2015-01-01

    The purpose of this study was to identify risk factors affecting laryngeal pathology in the Korean population and to evaluate the derived prediction model. Cross-sectional study. Data were drawn from the 2008 Korea National Health and Nutritional Examination Survey. The subjects were 3135 persons (1508 male and 2114 female) aged 19 years and older living in the community. The independent variables were age, sex, occupation, smoking, alcohol drinking, and self-reported voice problems. A decision tree analysis was done to identify risk factors for predicting a model of laryngeal pathology. The significant risk factors of laryngeal pathology were age, gender, occupation, smoking, and self-reported voice problem in decision tree model. Four significant paths were identified in the decision tree model for the prediction of laryngeal pathology. Those identified as high risk groups for laryngeal pathology included those who self-reported a voice problem, those who were males in their 50s who did not recognize a voice problem, those who were not economically active males in their 40s, and male workers aged 19 and over and under 50 or 60 and over who currently smoked. The results of this study suggest that individual risk factors, such as age, sex, occupation, health behavior, and self-reported voice problem, affect the onset of laryngeal pathology in a complex manner. Based on the results of this study, early management of the high-risk groups is needed for the prevention of laryngeal pathology. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    NASA Astrophysics Data System (ADS)

    Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe

    2017-04-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.

  16. Inside the black box: starting to uncover the underlying decision rules used in one-by-one expert assessment of occupational exposure in case-control studies

    PubMed Central

    Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.

    2014-01-01

    Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187

  17. One tree to link them all: a phylogenetic dataset for the European tetrapoda.

    PubMed

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-08-08

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

  18. Team decision problems with classical and quantum signals

    PubMed Central

    Brandenburger, Adam; La Mura, Pierfrancesco

    2016-01-01

    We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570–576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193–216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79–96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. PMID:26621985

  19. Spatial modeling and classification of corneal shape.

    PubMed

    Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan

    2007-03-01

    One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.

  20. Team decision problems with classical and quantum signals.

    PubMed

    Brandenburger, Adam; La Mura, Pierfrancesco

    2016-01-13

    We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570-576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193-216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79-96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. © 2015 The Authors.

  1. Using decision-tree classifier systems to extract knowledge from databases

    NASA Technical Reports Server (NTRS)

    St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.

    1990-01-01

    One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.

  2. Behaviour change in overweight and obese pregnancy: a decision tree to support the development of antenatal lifestyle interventions.

    PubMed

    Ainscough, Kate M; Lindsay, Karen L; O'Sullivan, Elizabeth J; Gibney, Eileen R; McAuliffe, Fionnuala M

    2017-10-01

    Antenatal healthy lifestyle interventions are frequently implemented in overweight and obese pregnancy, yet there is inconsistent reporting of the behaviour-change methods and behavioural outcomes. This limits our understanding of how and why such interventions were successful or not. The current paper discusses the application of behaviour-change theories and techniques within complex lifestyle interventions in overweight and obese pregnancy. The authors propose a decision tree to help guide researchers through intervention design, implementation and evaluation. The implications for adopting behaviour-change theories and techniques, and using appropriate guidance when constructing and evaluating interventions in research and clinical practice are also discussed. To enhance the evidence base for successful behaviour-change interventions during pregnancy, adoption of behaviour-change theories and techniques, and use of published guidelines when designing lifestyle interventions are necessary. The proposed decision tree may be a useful guide for researchers working to develop effective behaviour-change interventions in clinical settings. This guide directs researchers towards key literature sources that will be important in each stage of study development.

  3. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  4. Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling.

    PubMed

    Nakas, Christos T; Schütz, Narayan; Werners, Marcus; Leichtle, Alexander B

    2016-01-01

    Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the "big data" era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.

  5. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    NASA Astrophysics Data System (ADS)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  6. Can SLE classification rules be effectively applied to diagnose unclear SLE cases?

    PubMed Central

    Mesa, Annia; Fernandez, Mitch; Wu, Wensong; Narasimhan, Giri; Greidinger, Eric L.; Mills, DeEtta K.

    2016-01-01

    Summary Objective Develop a novel classification criteria to distinguish between unclear SLE and MCTD cases. Methods A total of 205 variables from 111 SLE and 55 MCTD patients were evaluated to uncover unique molecular and clinical markers for each disease. Binomial logistic regressions (BLR) were performed on currently used SLE and MCTD classification criteria sets to obtain six reduced models with power to discriminate between unclear SLE and MCTD patients which were confirmed by Receiving Operating Characteristic (ROC) curve. Decision trees were employed to delineate novel classification rules to discriminate between unclear SLE and MCTD patients. Results SLE and MCTD patients exhibited contrasting molecular markers and clinical manifestations. Furthermore, reduced models highlighted SLE patients exhibit prevalence of skin rashes and renal disease while MCTD cases show dominance of myositis and muscle weakness. Additionally decision trees analyses revealed a novel classification rule tailored to differentiate unclear SLE and MCTD patients (Lu-vs-M) with an overall accuracy of 88%. Conclusions Validation of our novel proposed classification rule (Lu-vs-M) includes novel contrasting characteristics (calcinosis, CPK elevated and anti-IgM reactivity for U1-70K, U1A and U1C) between SLE and MCTD patients and showed a 33% improvement in distinguishing these disorders when compare to currently used classification criteria sets. Pending additional validation, our novel classification rule is a promising method to distinguish between patients with unclear SLE and MCTD diagnosis. PMID:27353506

  7. Empirical therapies among adults hospitalized for community-acquired upper urinary tract infections: A decision-tree analysis of mortality, costs, and resistance.

    PubMed

    Parienti, J J; Lucet, J C; Lefort, A; Armand-Lefèvre, L; Wolff, M; Caron, F; Cattoir, V; Yazdanpanah, Y

    2015-09-01

    Poor outcomes occur when patients with serious infections receive antibiotics to which the organisms are resistant. Decision trees simulated in-hospital mortality, costs, incremental cost-effectiveness ratio per life year saved, and carbapenem resistance according to 3 empirical antibiotic strategies among adults hospitalized for community-acquired (CA) upper urinary tract infections (UTIs): ceftriaxone (CRO) plus gentamicin (GM) in the intensive care unit (ICU), imipenem (IMP), and individualized choice (IMP or CRO) based on clinical risk factors for CA- extended-spectrum β-lactamase (ESBL). The estimated prevalence of CA-ESBL on admission was 5% (range, 1.3%-17.6%); 3% and 97% were admitted to the ICU and medical ward (MW), respectively. In the ICU, CRO plus GM was dominated; IMP was cost-effective (incremental cost-effectiveness ratio: €4,400 per life year saved compared with individualized choice). In the MW, IMP had no impact on mortality and was less costly (-€142 per patient vs CRO, -€38 vs individualized choice). The dominance of IMP was consistent in sensitivity analyses. Compared with CRO, colonization by carbapenem-resistant pathogens increased by an odds ratio of 4.5 in the IMP strategy. Among the ICU patients, empirical IMP therapy reduces mortality at an acceptable cost. Among MW patients, individualized choice or CRO is preferred to limit carbapenem resistance at a reasonable cost. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Moral Fiber?

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2000-01-01

    Discusses a 2000 federal trial court decision upholding a Kentucky district's termination of a tenured teacher who presented a curricular segment on industrial hemp as part of a "save-the-trees" unit. The decision underscores teachers' severely limited constitutional rights in the curricular context. (MLH)

  9. IND - THE IND DECISION TREE PACKAGE

    NASA Technical Reports Server (NTRS)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.

  10. A classification tree approach for improving the utilization of flow cytometry testing of blood specimens for B-cell non-Hodgkin lymphoproliferative disorders.

    PubMed

    Healey, Ryan; Naugler, Christopher; de Koning, Lawrence; Patel, Jay L

    2015-01-01

    We sought to improve the diagnostic efficiency of flow cytometry investigation on blood by developing data-driven ordering guidelines. Our goal was to improve flow cytometry utilization by decreasing negative testing, therefore reducing healthcare costs. We investigated several laboratory tests performed alongside flow cytometry to identify biomarkers useful in excluding non-leukemic bloods. Test results and patient demographic features were subjected to receiver-operator characteristic (ROC) curve, logistic regression and classification tree analyses to find significant predictors and develop decision rules. Our data show that, in the absence of a compelling clinical indication, flow cytometry testing is largely non-informative on bloods from patients less than 50 years of age having an absolute lymphocyte count (ALC) below 5.0 × 10(9)/L. For patients over age 50 having an ALC below this value, a ferritin value above 450 μg/L is counter-indicative of B-cell clonality. Using these guidelines, 26% of cases were correctly predicted as negative with greater than 97% accuracy.

  11. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree.

    PubMed

    Price, Paul; Zaleski, Rosemary; Hollnagel, Heli; Ketelslegers, Hans; Han, Xianglu

    2014-01-01

    Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture's toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.

  12. The use of decision tree induction and artificial neural networks for recognizing the geochemical distribution patterns of LREE in the Choghart deposit, Central Iran

    NASA Astrophysics Data System (ADS)

    Zaremotlagh, S.; Hezarkhani, A.

    2017-04-01

    Some evidences of rare earth elements (REE) concentrations are found in iron oxide-apatite (IOA) deposits which are located in Central Iranian microcontinent. There are many unsolved problems about the origin and metallogenesis of IOA deposits in this district. Although it is considered that felsic magmatism and mineralization were simultaneous in the district, interaction of multi-stage hydrothermal-magmatic processes within the Early Cambrian volcano-sedimentary sequence probably caused some epigenetic mineralizations. Secondary geological processes (e.g., multi-stage mineralization, alteration, and weathering) have affected on variations of major elements and possible redistribution of REE in IOA deposits. Hence, the geochemical behaviors and distribution patterns of REE are expected to be complicated in different zones of these deposits. The aim of this paper is recognizing LREE distribution patterns based on whole-rock chemical compositions and automatic discovery of their geochemical rules. For this purpose, the pattern recognition techniques including decision tree and neural network were applied on a high-dimensional geochemical dataset from Choghart IOA deposit. Because some data features were irrelevant or redundant in recognizing the distribution patterns of each LREE, a greedy attribute subset selection technique was employed to select the best subset of predictors used in classification tasks. The decision trees (CART algorithm) were pruned optimally to more accurately categorize independent test data than unpruned ones. The most effective classification rules were extracted from the pruned tree to describe the meaningful relationships between the predictors and different concentrations of LREE. A feed-forward artificial neural network was also applied to reliably predict the influence of various rock compositions on the spatial distribution patterns of LREE with a better performance than the decision tree induction. The findings of this study could be effectively used to visualize the LREE distribution patterns as geochemical maps.

  13. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    USGS Publications Warehouse

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree competition studies, in which tree spatial patterning is typically not taken into account. Our findings highlight the importance of forest structure – particularly the spatial arrangement of trees – in regulating inter-tree competition and growth in structurally diverse forests, and they provide insight into the causes and consequences of heterogeneity in this old-growth system.

  14. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  15. Single trial decoding of belief decision making from EEG and fMRI data using independent components features

    PubMed Central

    Douglas, Pamela K.; Lau, Edward; Anderson, Ariana; Head, Austin; Kerr, Wesley; Wollner, Margalit; Moyer, Daniel; Li, Wei; Durnhofer, Mike; Bramen, Jennifer; Cohen, Mark S.

    2013-01-01

    The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM) results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities. PMID:23914164

  16. Analysts guide: TreeVal for Windows, Version 2.0.

    Treesearch

    R.D. Fight; J.T. Chmelik; E.A. Coulter

    2001-01-01

    TreeVal for Windows provides financial information and analysis to support silvicultural decisions in coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). It integrates the effect of growth and yield, management costs, harvesting costs, product and mill type, manufacturing costs, product prices, and product grade premiums. Output files from...

  17. Phylodiversity to inform conservation policy: An Australian example.

    PubMed

    Laity, Tania; Laffan, Shawn W; González-Orozco, Carlos E; Faith, Daniel P; Rosauer, Dan F; Byrne, Margaret; Miller, Joseph T; Crayn, Darren; Costion, Craig; Moritz, Craig C; Newport, Karl

    2015-11-15

    Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Does Gene Tree Discordance Explain the Mismatch between Macroevolutionary Models and Empirical Patterns of Tree Shape and Branching Times?

    PubMed Central

    Stadler, Tanja; Degnan, James H.; Rosenberg, Noah A.

    2016-01-01

    Classic null models for speciation and extinction give rise to phylogenies that differ in distribution from empirical phylogenies. In particular, empirical phylogenies are less balanced and have branching times closer to the root compared to phylogenies predicted by common null models. This difference might be due to null models of the speciation and extinction process being too simplistic, or due to the empirical datasets not being representative of random phylogenies. A third possibility arises because phylogenetic reconstruction methods often infer gene trees rather than species trees, producing an incongruity between models that predict species tree patterns and empirical analyses that consider gene trees. We investigate the extent to which the difference between gene trees and species trees under a combined birth–death and multispecies coalescent model can explain the difference in empirical trees and birth–death species trees. We simulate gene trees embedded in simulated species trees and investigate their difference with respect to tree balance and branching times. We observe that the gene trees are less balanced and typically have branching times closer to the root than the species trees. Empirical trees from TreeBase are also less balanced than our simulated species trees, and model gene trees can explain an imbalance increase of up to 8% compared to species trees. However, we see a much larger imbalance increase in empirical trees, about 100%, meaning that additional features must also be causing imbalance in empirical trees. This simulation study highlights the necessity of revisiting the assumptions made in phylogenetic analyses, as these assumptions, such as equating the gene tree with the species tree, might lead to a biased conclusion. PMID:26968785

  19. Effect of altering local protein fluctuations using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  20. Case-based explanation of non-case-based learning methods.

    PubMed Central

    Caruana, R.; Kangarloo, H.; Dionisio, J. D.; Sinha, U.; Johnson, D.

    1999-01-01

    We show how to generate case-based explanations for non-case-based learning methods such as artificial neural nets or decision trees. The method uses the trained model (e.g., the neural net or the decision tree) as a distance metric to determine which cases in the training set are most similar to the case that needs to be explained. This approach is well suited to medical domains, where it is important to understand predictions made by complex machine learning models, and where training and clinical practice makes users adept at case interpretation. PMID:10566351

  1. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  2. The Relation of Student Behavior, Peer Status, Race, and Gender to Decisions about School Discipline Using CHAID Decision Trees and Regression Modeling

    ERIC Educational Resources Information Center

    Horner, Stacy B.; Fireman, Gary D.; Wang, Eugene W.

    2010-01-01

    Peer nominations and demographic information were collected from a diverse sample of 1493 elementary school participants to examine behavior (overt and relational aggression, impulsivity, and prosociality), context (peer status), and demographic characteristics (race and gender) as predictors of teacher and administrator decisions about…

  3. Constructing a Graphic Organizer in the Classroom: Introductory Students' Perception of Achievement Using a Decision Map to Solve Aqueous Acid-Base Equilibria Problems

    ERIC Educational Resources Information Center

    DeMeo, Stephen

    2007-01-01

    Common examples of graphic organizers include flow diagrams, concept maps, and decision trees. The author has created a novel type of graphic organizer called a decision map. A decision map is a directional heuristic that helps learners solve problems within a generic framework. It incorporates questions that the user must answer and contains…

  4. STRIDE: Species Tree Root Inference from Gene Duplication Events.

    PubMed

    Emms, David M; Kelly, Steven

    2017-12-01

    The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. A multilocus perspective on the speciation history of a North American aridland toad (Anaxyrus punctatus).

    PubMed

    Bryson, Robert W; Jaeger, Jef R; Lemos-Espinal, Julio A; Lazcano, David

    2012-09-01

    Interpretations of phylogeographic patterns can change when analyses shift from single gene-tree to multilocus coalescent analyses. Using multilocus coalescent approaches, a species tree and divergence times can be estimated from a set of gene trees while accounting for gene-tree stochasticity. We utilized the conceptual strengths of a multilocus coalescent approach coupled with complete range-wide sampling to examine the speciation history of a broadly distributed, North American warm-desert toad, Anaxyrus punctatus. Phylogenetic analyses provided strong support for three major lineages within A. punctatus. Each lineage broadly corresponded to one of three desert regions. Early speciation in A. punctatus appeared linked to late Miocene-Pliocene development of the Baja California peninsula. This event was likely followed by a Pleistocene divergence associated with the separation of the Chihuahuan and Sonoran Deserts. Our multilocus coalescent-based reconstruction provides an informative contrast to previous single gene-tree estimates of the evolutionary history of A. punctatus. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Outsourcing the Portal: Another Branch in the Decision Tree.

    ERIC Educational Resources Information Center

    McMahon, Tim

    2000-01-01

    Discussion of the management of information resources in organizations focuses on the use of portal technologies to update intranet capabilities. Considers application outsourcing decisions, reviews benefits (including reducing costs) as well as concerns, and describes application service providers (ASPs). (LRW)

  7. Introduced and invasive species in novel rangeland ecosystems: friends or foes?

    USGS Publications Warehouse

    Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.

    2012-01-01

    Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses and hold stakeholder workshops to resolve conflicts.

  8. When do species-tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny.

    PubMed

    Lambert, Shea M; Reeder, Tod W; Wiens, John J

    2015-01-01

    Simulation studies suggest that coalescent-based species-tree methods are generally more accurate than concatenated analyses. However, these species-tree methods remain impractical for many large datasets. Thus, a critical but unresolved issue is when and why concatenated and coalescent species-tree estimates will differ. We predict such differences for branches in concatenated trees that are short, weakly supported, and have conflicting gene trees. We test these predictions in Scincidae, the largest lizard family, with data from 10 nuclear genes for 17 ingroup taxa and 44 genes for 12 taxa. We support our initial predictions, andsuggest that simply considering uncertainty in concatenated trees may sometimes encompass the differences between these methods. We also found that relaxed-clock concatenated trees can be surprisingly similar to the species-tree estimate. Remarkably, the coalescent species-tree estimates had slightly lower support values when based on many more genes (44 vs. 10) and a small (∼30%) reduction in taxon sampling. Thus, taxon sampling may be more important than gene sampling when applying species-tree methods to deep phylogenetic questions. Finally, our coalescent species-tree estimates tentatively support division of Scincidae into three monophyletic subfamilies, a result otherwise found only in concatenated analyses with extensive species sampling. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Stereospecific analysis of triacylglycerols as a useful means to evaluate genuineness of pumpkin seed oils: lesson from virgin olive oil analyses.

    PubMed

    Butinar, Bojan; Bucar-Miklavcic, Milena; Valencic, Vasilij; Raspor, Peter

    2010-05-12

    In Slovenia two superb vegetable oils with high added nutritional value are produced: "Ekstra devisko oljcno olje Slovenske Istre (extra virgin olive oil from Slovene Istra)" and "Stajersko prekmursko bucno olje (pumpkin seed oil from Slovenia)". Their quality and genuineness must be monitored as adulteration can easily be undertaken. Olive oil genuineness determination experiences can show how analyses following an experience data-driven decision tree gathering several chemical determinations (fatty acids, (E)-isomers of fatty acids, sterol and tocopherol determinations) may be helpful in assessing the pumpkin seed oil from Slovenia genuineness. In the present work a set of HPLC triacylglycerol determinations was performed, based on the nine main triacylglycerols (LLLn, LLL, PLL, LOO, PLO, OOO, POO, SPL, and SLS) on a limited number of different pumpkin seed oils from northeastern Slovenia. The performed determinations showed that stereospecific analyses of triacylglycerols together with other chemical determinations can be useful in building a protocol for the evaluation of the genuineness of pumpkin seed oil from Slovenia.

  10. A novel decision tree approach based on transcranial Doppler sonography to screen for blunt cervical vascular injuries.

    PubMed

    Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha

    2013-06-01

    Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.

  11. Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes

    PubMed Central

    2013-01-01

    Background Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets. Results A multi-step decision tree-based method is described for defining endotypes based on gene expression, clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it provides easy access to all genes and clinical covariates that distinguish the groups. Conclusions The multi-step decision tree method described here will lead to better understanding of complex disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms underlying these diseases. This application should be considered a complement to ongoing efforts to better define and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby accounting for both major determinants of disease. PMID:24188919

  12. An evaluation of consensus techniques for diagnostic interpretation

    NASA Astrophysics Data System (ADS)

    Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.

    2018-02-01

    Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.

  13. Engineering design for pedestrian safety at highway-rail grade crossings

    DOT National Transportation Integrated Search

    2016-07-01

    A number of pedestrian treatments at railroad grade crossings have been developed and are used throughout the United States. The decision of when to use these treatments is generally a matter of best practices, using a decision tree, or conducting a ...

  14. Health and climate related ecosystem services provided by street trees in the urban environment.

    PubMed

    Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W

    2016-03-08

    Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.

  15. A tree biomass and carbon estimation system

    Treesearch

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  16. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants

    PubMed Central

    Mathews, Sarah; Clements, Mark D.; Beilstein, Mark A.

    2010-01-01

    Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence. PMID:20047866

  17. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations

    PubMed Central

    2013-01-01

    Background Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. Results In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. Conclusion We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets. PMID:24229408

  18. SUNPLIN: simulation with uncertainty for phylogenetic investigations.

    PubMed

    Martins, Wellington S; Carmo, Welton C; Longo, Humberto J; Rosa, Thierson C; Rangel, Thiago F

    2013-11-15

    Phylogenetic comparative analyses usually rely on a single consensus phylogenetic tree in order to study evolutionary processes. However, most phylogenetic trees are incomplete with regard to species sampling, which may critically compromise analyses. Some approaches have been proposed to integrate non-molecular phylogenetic information into incomplete molecular phylogenies. An expanded tree approach consists of adding missing species to random locations within their clade. The information contained in the topology of the resulting expanded trees can be captured by the pairwise phylogenetic distance between species and stored in a matrix for further statistical analysis. Thus, the random expansion and processing of multiple phylogenetic trees can be used to estimate the phylogenetic uncertainty through a simulation procedure. Because of the computational burden required, unless this procedure is efficiently implemented, the analyses are of limited applicability. In this paper, we present efficient algorithms and implementations for randomly expanding and processing phylogenetic trees so that simulations involved in comparative phylogenetic analysis with uncertainty can be conducted in a reasonable time. We propose algorithms for both randomly expanding trees and calculating distance matrices. We made available the source code, which was written in the C++ language. The code may be used as a standalone program or as a shared object in the R system. The software can also be used as a web service through the link: http://purl.oclc.org/NET/sunplin/. We compare our implementations to similar solutions and show that significant performance gains can be obtained. Our results open up the possibility of accounting for phylogenetic uncertainty in evolutionary and ecological analyses of large datasets.

  19. Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    North, Steve; Hennessy, Joseph F. (Technical Monitor)

    2003-01-01

    The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.

  20. Observation of eight ancient olive trees (Olea europaea L.) growing in the Garden of Gethsemane.

    PubMed

    Petruccelli, Raffaella; Giordano, Cristiana; Salvatici, Maria Cristina; Capozzoli, Laura; Ciaccheri, Leonardo; Pazzini, Massimo; Lain, Orietta; Testolin, Raffaele; Cimato, Antonio

    2014-05-01

    For thousands of years, olive trees (Olea europaea L.) have been a significant presence and a symbol in the Garden of Gethsemane, a place located at the foot of the Mount of Olives, Jerusalem, remembered for the agony of Jesus Christ before his arrest. This investigation comprises the first morphological and genetic characterization of eight olive trees in the Garden of Gethsemane. Pomological traits, morphometric, and ultrastructural observations as well as SSR (Simple Sequence Repeat) analysis were performed to identify the olive trees. Statistical analyses were conducted to evaluate their morphological variability. The study revealed a low morphological variability and minimal dissimilarity among the olive trees. According to molecular analysis, these trees showed the same allelic profile at all microsatellite loci analyzed. Combining the results of the different analyses carried out in the frame of the present work, we could conclude that the eight olive trees of the Gethsemane Garden have been propagated from a single genotype. Copyright © 2014. Published by Elsevier SAS.

  1. Treetrimmer: a method for phylogenetic dataset size reduction.

    PubMed

    Maruyama, Shinichiro; Eveleigh, Robert J M; Archibald, John M

    2013-04-12

    With rapid advances in genome sequencing and bioinformatics, it is now possible to generate phylogenetic trees containing thousands of operational taxonomic units (OTUs) from a wide range of organisms. However, use of rigorous tree-building methods on such large datasets is prohibitive and manual 'pruning' of sequence alignments is time consuming and raises concerns over reproducibility. There is a need for bioinformatic tools with which to objectively carry out such pruning procedures. Here we present 'TreeTrimmer', a bioinformatics procedure that removes unnecessary redundancy in large phylogenetic datasets, alleviating the size effect on more rigorous downstream analyses. The method identifies and removes user-defined 'redundant' sequences, e.g., orthologous sequences from closely related organisms and 'recently' evolved lineage-specific paralogs. Representative OTUs are retained for more rigorous re-analysis. TreeTrimmer reduces the OTU density of phylogenetic trees without sacrificing taxonomic diversity while retaining the original tree topology, thereby speeding up downstream computer-intensive analyses, e.g., Bayesian and maximum likelihood tree reconstructions, in a reproducible fashion.

  2. Effect of Abscission Zone Formation on Orange ( Citrus sinensis) Fruit/Juice Quality for Trees Affected by Huanglongbing (HLB).

    PubMed

    Baldwin, Elizabeth; Plotto, Anne; Bai, Jinhe; Manthey, John; Zhao, Wei; Raithore, Smita; Irey, Mike

    2018-03-21

    Orange trees affected by huanglongbing (HLB) exhibit excessive fruit drop, and fruit loosely attached to the tree may have inferior flavor. Fruit were collected from healthy and HLB-infected ( Candidatus liberibacter asiaticus) 'Hamlin' and 'Valencia' trees. Prior to harvest, the trees were shaken, fruit that dropped collected, tree-retained fruit harvested, and all fruit juiced. For chemical analyses, sugars and acids were generally lowest in HLB dropped (HLB-D) fruit juice compared to nonshaken healthy (H), healthy retained (H-R), and healthy dropped fruit (H-D) in early season (December) but not for the late season (January) 'Hamlin' or 'Valencia' except for sugar/acid ratio. The bitter limonoids, many flavonoids, and terpenoid volatiles were generally higher in HLB juice, especially HLB-D juice, compared to the other samples. The lower sugars, higher bitter limonoids, flavonoids, and terpenoid volatiles in HLB-D fruit, loosely attached to the tree, contributed to off-flavor, as was confirmed by sensory analyses.

  3. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  4. Applying isozyme analyses in tree-breeding programs

    Treesearch

    W. T. Adams

    1981-01-01

    Four examples illustrate the potential for practical use of isozyme analyses in applied breeding programs. These include identifying parent trees and clones, seed sources, and parentage of controlled crosses, and evaluating the effectiveness of different procedures involving open-pollination to produce seed of specific crosses. The improved ability to assess the true...

  5. A systematic review of the quality of economic models comparing thrombosis inhibitors in patients with acute coronary syndrome undergoing percutaneous coronary intervention.

    PubMed

    Hatz, Maximilian H M; Leidl, Reiner; Yates, Nichola A; Stollenwerk, Björn

    2014-04-01

    Thrombosis inhibitors can be used to treat acute coronary syndromes (ACS). However, there are various alternative treatment strategies, of which some have been compared using health economic decision models. To assess the quality of health economic decision models comparing thrombosis inhibitors in patients with ACS undergoing percutaneous coronary intervention, and to identify areas for quality improvement. The literature databases MEDLINE, EMBASE, EconLit, National Health Service Economic Evaluation Database (NHS EED), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment (HTA). A review of the quality of health economic decision models was conducted by two independent reviewers, using the Philips checklist. Twenty-one relevant studies were identified. Differences were apparent regarding the model type (six decision trees, four Markov models, eight combinations, three undefined models), the model structure (types of events, Markov states) and the incorporation of data (efficacy, cost and utility data). Critical issues were the absence of particular events (e.g. thrombocytopenia, stroke) and questionable usage of utility values within some studies. As we restricted our search to health economic decision models comparing thrombosis inhibitors, interesting aspects related to the quality of studies of adjacent medical areas that compared stents or procedures could have been missed. This review identified areas where recommendations are indicated regarding the quality of future ACS decision models. For example, all critical events and relevant treatment options should be included. Models also need to allow for changing event probabilities to correctly reflect ACS and to incorporate appropriate, age-specific utility values and decrements when conducting cost-utility analyses.

  6. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Treesearch

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  7. [Study on extraction method of Panax notoginseng plots in Wenshan of Yunnan province based on decision tree model].

    PubMed

    Shi, Ting-Ting; Zhang, Xiao-Bo; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The herbs used as the material for traditional Chinese medicine are always planted in the mountainous area where the natural environment is suitable. As the mountain terrain is complex and the distribution of planting plots is scattered, the traditional survey method is difficult to obtain accurate planting area. It is of great significance to provide decision support for the conservation and utilization of traditional Chinese medicine resources by studying the method of extraction of Chinese herbal medicine planting area based on remote sensing and realizing the dynamic monitoring and reserve estimation of Chinese herbal medicines. In this paper, taking the Panax notoginseng plots in Wenshan prefecture of Yunnan province as an example, the China-made GF-1multispectral remote sensing images with a 16 m×16 m resolution were obtained. Then, the time series that can reflect the difference of spectrum of P. notoginseng shed and the background objects were selected to the maximum extent, and the decision tree model of extraction the of P. notoginseng plots was constructed according to the spectral characteristics of the surface features. The results showed that the remote sensing classification method based on the decision tree model could extract P. notoginseng plots in the study area effectively. The method can provide technical support for extraction of P. notoginseng plots at county level. Copyright© by the Chinese Pharmaceutical Association.

  8. A New Decision Tree to Solve the Puzzle of Alzheimer's Disease Pathogenesis Through Standard Diagnosis Scoring System.

    PubMed

    Kumar, Ashwani; Singh, Tiratha Raj

    2017-03-01

    Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

  9. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrato, M.; Jungho, I.; Jensen, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using threemore » different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.« less

  10. Triplet supertree heuristics for the tree of life

    PubMed Central

    Lin, Harris T; Burleigh, J Gordon; Eulenstein, Oliver

    2009-01-01

    Background There is much interest in developing fast and accurate supertree methods to infer the tree of life. Supertree methods combine smaller input trees with overlapping sets of taxa to make a comprehensive phylogenetic tree that contains all of the taxa in the input trees. The intrinsically hard triplet supertree problem takes a collection of input species trees and seeks a species tree (supertree) that maximizes the number of triplet subtrees that it shares with the input trees. However, the utility of this supertree problem has been limited by a lack of efficient and effective heuristics. Results We introduce fast hill-climbing heuristics for the triplet supertree problem that perform a step-wise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. To realize time efficient heuristics we designed the first nontrivial algorithms for two standard search problems, which greatly improve on the time complexity to the best known (naïve) solutions by a factor of n and n2 (the number of taxa in the supertree). These algorithms enable large-scale supertree analyses based on the triplet supertree problem that were previously not possible. We implemented hill-climbing heuristics that are based on our new algorithms, and in analyses of two published supertree data sets, we demonstrate that our new heuristics outperform other standard supertree methods in maximizing the number of triplets shared with the input trees. Conclusion With our new heuristics, the triplet supertree problem is now computationally more tractable for large-scale supertree analyses, and it provides a potentially more accurate alternative to existing supertree methods. PMID:19208181

  11. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.

    PubMed

    Subedi, Nirmal; Sharma, Mahadev

    2013-02-01

    To predict the long-term effects of climate change - global warming and changes in precipitation - on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed-effects approach. Our results showed that the variables long-term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041-2070) diameter growth rate may differ from current (1971-2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate-growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions. © 2012 Blackwell Publishing Ltd.

  12. Women's views of two interventions designed to assist in the prophylactic oophorectomy decision: a qualitative pilot evaluation

    PubMed Central

    Bhavnani, Vanita; Clarke, Aileen; Dowie, Jack; Kennedy, Andrew; Pell, Ian

    2002-01-01

    Abstract Introduction  A qualitative pilot evaluation of two different decision interventions for the prophylactic oophorectomy (PO) decision: a Decision Chart and a computerized clinical guidance programme (CGP) was undertaken. The Decision Chart, representing current practice in decision interventions, presents population‐based information. The CGP elicits individual values to allow for quality‐adjusted life years to be calculated and an explicit guidance statement is given. Prophylactic oophorectomy involves removal of the ovaries as an adjunct to hysterectomy to prevent ovarian cancer. The decision is complex because the operation can affect a number of long‐term outcomes including breast cancer, coronary heart disease and osteoporosis. Methods  Both interventions were based on the evidence and were administered by a facilitator. The Decision Chart is a file, which progressively reveals information in the form of bar charts. The CGP is a decision‐analysis based program integrating the results from a cluster of Markov cycle trees. The research evidence is incorporated with woman's individual risk factors, values and preferences. A purposive sample of 19 women awaiting hysterectomy used the decision interventions (10 CGP, nine Decision Chart). In‐depth semi‐structured interviews were undertaken. Interviews were transcribed and analysed to derive themes. Results  Reactions to the different decision interventions were mixed. Both were seen as clarifying the decision. Some women found some of the tasks difficult (e.g. rating health status). Some were surprised by the ‘individualized’ guidance, which the CGP offered. The Decision Chart provided some with a sense of empowerment, although some found that it provided too much information. Conclusions  Women were able to use both decision interventions. Both provided decision clarification. Problems were evident with both interventions, which give useful pointers for future development. These included the possibility for women to see how their individual risks of different outcomes are affected in the Decision Chart and enhanced explanation of the CGP tasks. Future design and evaluation of decision aids, will need to accommodate differences between patients in the desire for amount and type of information and level of involvement in the decision‐making process. PMID:12031056

  13. Universal artifacts affect the branching of phylogenetic trees, not universal scaling laws.

    PubMed

    Altaba, Cristian R

    2009-01-01

    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny? In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods. All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees. There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1.

  14. Asphalt concrete overlays on CRCP : decision criteria, tack coat evaluation, and asphalt concrete mixture evaluation.

    DOT National Transportation Integrated Search

    2005-02-01

    This report presents the research undertaken within two areas of study of thin asphalt concrete (AC) overlays to rehabilitate : continuously reinforced concrete pavements (CRCP). The first one is the development of a decision tree for the project : s...

  15. Cost-Effectiveness of Diagnostic Strategies for Suspected Scaphoid Fractures.

    PubMed

    Yin, Zhong-Gang; Zhang, Jian-Bing; Gong, Ke-Tong

    2015-08-01

    The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures. With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed. In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses. Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures. Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.

  16. Lessons Learned from Applications of a Climate Change Decision Tree toWater System Projects in Kenya and Nepal

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Bonzanigo, L.; Taner, M. U.; Wi, S.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Decision Tree Framework developed for the World Bank's Water Partnership Program provides resource-limited project planners and program managers with a cost-effective and effort-efficient, scientifically defensible, repeatable, and clear method for demonstrating the robustness of a project to climate change. At the conclusion of this process, the project planner is empowered to confidently communicate the method by which the vulnerabilities of the project have been assessed, and how the adjustments that were made (if any were necessary) improved the project's feasibility and profitability. The framework adopts a "bottom-up" approach to risk assessment that aims at a thorough understanding of a project's vulnerabilities to climate change in the context of other nonclimate uncertainties (e.g., economic, environmental, demographic, political). It helps identify projects that perform well across a wide range of potential future climate conditions, as opposed to seeking solutions that are optimal in expected conditions but fragile to conditions deviating from the expected. Lessons learned through application of the Decision Tree to case studies in Kenya and Nepal will be presented, and aspects of the framework requiring further refinement will be described.

  17. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  18. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.

    PubMed

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.

  19. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  20. hERG blocking potential of acids and zwitterions characterized by three thresholds for acidity, size and reactivity.

    PubMed

    Nikolov, Nikolai G; Dybdahl, Marianne; Jónsdóttir, Svava Ó; Wedebye, Eva B

    2014-11-01

    Ionization is a key factor in hERG K(+) channel blocking, and acids and zwitterions are known to be less probable hERG blockers than bases and neutral compounds. However, a considerable number of acidic compounds block hERG, and the physico-chemical attributes which discriminate acidic blockers from acidic non-blockers have not been fully elucidated. We propose a rule for prediction of hERG blocking by acids and zwitterionic ampholytes based on thresholds for only three descriptors related to acidity, size and reactivity. The training set of 153 acids and zwitterionic ampholytes was predicted with a concordance of 91% by a decision tree based on the rule. Two external validations were performed with sets of 35 and 48 observations, respectively, both showing concordances of 91%. In addition, a global QSAR model of hERG blocking was constructed based on a large diverse training set of 1374 chemicals covering all ionization classes, externally validated showing high predictivity and compared to the decision tree. The decision tree was found to be superior for the acids and zwitterionic ampholytes classes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Peripheral Exophytic Oral Lesions: A Clinical Decision Tree

    PubMed Central

    Safi, Yaser; Jafari, Soudeh

    2017-01-01

    Diagnosis of peripheral oral exophytic lesions might be quite challenging. This review article aimed to introduce a decision tree for oral exophytic lesions according to their clinical features. General search engines and specialized databases including PubMed, PubMed Central, Medline Plus, EBSCO, Science Direct, Scopus, Embase, and authenticated textbooks were used to find relevant topics by means of keywords such as “oral soft tissue lesion,” “oral tumor like lesion,” “oral mucosal enlargement,” and “oral exophytic lesion.” Related English-language articles published since 1988 to 2016 in both medical and dental journals were appraised. Upon compilation of data, peripheral oral exophytic lesions were categorized into two major groups according to their surface texture: smooth (mesenchymal or nonsquamous epithelium-originated) and rough (squamous epithelium-originated). Lesions with smooth surface were also categorized into three subgroups according to their general frequency: reactive hyperplastic lesions/inflammatory hyperplasia, salivary gland lesions (nonneoplastic and neoplastic), and mesenchymal lesions (benign and malignant neoplasms). In addition, lesions with rough surface were summarized in six more common lesions. In total, 29 entities were organized in the form of a decision tree in order to help clinicians establish a logical diagnosis by a stepwise progression method. PMID:28757870

  2. Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Lin, Chuan-Yao; Liau, Churn-Jung; Kuo, Yi-Ming

    2012-12-01

    Kaohsiung City and the suburban region of southwestern Taiwan have suffered from severe air pollution since becoming the largest center of heavy industry in Taiwan. The complex process of ozone (O3) formation and its precursor compounds (the volatile organic compounds (VOCs) and nitrogen oxide (NOx) emissions), accompanied by meteorological conditions, make controlling ozone difficult. Using a decision tree is especially appropriate for analyzing time series data that contain ozone levels and meteorological and explanatory variables for ozone formation. Results show that dominant variables such as temperature, wind speed, VOCs, and NOx can play vital roles in describing ozone variations among observations. That temperature and wind speed are highly correlated with ozone levels indicates that these meteorological conditions largely affect ozone variability. The results also demonstrate that spatial heterogeneity of ozone patterns are in coastal and inland areas caused by sea-land breeze and pollutant sources during high ozone episodes over southwestern Taiwan. This study used a decision tree to obtain quantitative insight into spatial distributions of precursor compound emissions and effects of meteorological conditions on ozone levels that are useful for refining monitoring plans and developing management strategies.

  3. A fuzzy decision tree for fault classification.

    PubMed

    Zio, Enrico; Baraldi, Piero; Popescu, Irina C

    2008-02-01

    In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.

  4. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  5. A structured approach to Exposure Based Waiving of human health endpoints under REACH developed in the OSIRIS project.

    PubMed

    Marquart, Hans; Meijster, Tim; Van de Bovenkamp, Marja; Ter Burg, Wouter; Spaan, Suzanne; Van Engelen, Jacqueline

    2012-03-01

    Exposure Based Waiving (EBW) is one of the options in REACH when there is insufficient hazard data on a specific endpoint. Rules for adaptation of test requirements are specified and a general option for EBW is given via Appendix XI of REACH, allowing waiving of repeated dose toxicity studies, reproductive toxicity studies and carcinogenicity studies under a number of conditions if exposure is very low. A decision tree is described that was developed in the European project OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test and Test Information) to help decide in what cases EBW can be justified. The decision tree uses specific criteria as well as more general questions. For the latter, guidance on interpretation and resulting conclusions is provided. Criteria and guidance are partly based on an expert elicitation process. Among the specific criteria a number of proposed Thresholds of Toxicological Concern are used. The decision tree, expanded with specific parts on absorption, distribution, metabolism and excretion that are not described in this paper, is implemented in the OSIRIS webtool on integrated testing strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Evaluating the Effectiveness of Science for Decision-Making: Water Managers and Tree- Ring Data in the Western United States

    NASA Astrophysics Data System (ADS)

    Rice, J. L.; Woodhouse, C.; Lukas, J.

    2008-12-01

    Current climate variability, potential impacts of climate change, and limited resources in the face of growing demand are increasingly prompting water managers in the western United States to consider and use data from climate-related research in water resource planning. Much of these data are produced by stakeholder- driven science programs, such as NOAA's Regional Integrated Science Assessments (RISAs), but there have been few efforts to evaluate the effectiveness of these science-to-application efforts. Over the past several years, researchers with the Western Water Assessment (WWA) RISA have been providing tree-ring reconstructions of streamflow to water managers in Colorado and other western states, and presenting technical workshops explaining the applications of these tree-ring data for water management and planning. Using in-depth interviews and a survey questionnaire, we have assessed the effectiveness and outcomes of these engagements, addressing (1) the factors that have prompted water managers to seek out tree-ring data, (2) how paleoclimate data has been made relevant and accessible for water resource planning, and (3) how tree-ring data and information have been utilized by water managers and other workshop participants. We also provide an assessment of challenges and opportunities that exist in the translation of climate science for decision-making, including how tree-ring data are interpreted in the context of water planning paradigms, issues of credibility and acceptance of tree ring data, and what data needs exist in different planning environments. These findings have broader application in improving and evaluating science-policy interactions related to climate and climate change.

  7. Estimation of Sub Hourly Glacier Albedo Values Using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Moya Quiroga, Vladimir; Mano, Akira; Asaoka, Yoshihiro; Udo, Keiko; Kure, Shuichi; Mendoza, Javier

    2013-04-01

    Glaciers are the most important fresh water reservoirs storing about 67% of total fresh water. Unfortunately, they are retreating and some small glaciers have already disappeared. Thus, snow glacier melt (SGM) estimation plays an important role in water resources management. Whether SGM is estimated by complete energy balance or a simplified method, albedo is an important data present in most of the methods. However, this is a variable value depending on the ground surface and local conditions. The present research presents a new approach for estimating sub hourly albedo values using different artificial intelligence techniques such as artificial neural networks and decision trees along with measured and easy to obtain data. . The models were developed using measured data from the Zongo-Ore station located in the Bolivian tropical glacier Zongo (68°10' W, 16°15' S). This station automatically records every 30 minutes several meteorological parameters such as incoming short wave radiation, outgoing short wave radiation, temperature or relative humidity. The ANN model used was the Multi Layer Perceptron, while the decision tree used was the M5 model. Both models were trained using the WEKA software and validated using the cross validation method. After analysing the model performances, it was concluded that the decision tree models have a better performance. The model with the best performance was then validated with measured data from the Equatorian tropical glacier Antizana (78°09'W, 0°28'S). The model predicts the sub hourly albedo with an overall mean absolute error of 0.103. The highest errors occur for albedo measured values higher than 0.9. Considering that this is an extreme value coincident with low measured values of incoming short wave radiation, it is reasonable to assume that such values include errors due to censored data. Assuming a maximum albedo of 0.9 improved the accuracy of the model reducing the MAE to less than 0.1. Considering that the model was successfully verified both in the inner tropics and the outer tropics, this model is a valuable contribution that may be used to project future scenarios in tropical glaciers. This research is developed within the GRANDE project (Glacier Retreat impact Assessment and National policy Development), financed by SATREPS from JST-JICA.

  8. Proposal of a Clinical Decision Tree Algorithm Using Factors Associated with Severe Dengue Infection.

    PubMed

    Tamibmaniam, Jayashamani; Hussin, Narwani; Cheah, Wee Kooi; Ng, Kee Sing; Muninathan, Prema

    2016-01-01

    WHO's new classification in 2009: dengue with or without warning signs and severe dengue, has necessitated large numbers of admissions to hospitals of dengue patients which in turn has been imposing a huge economical and physical burden on many hospitals around the globe, particularly South East Asia and Malaysia where the disease has seen a rapid surge in numbers in recent years. Lack of a simple tool to differentiate mild from life threatening infection has led to unnecessary hospitalization of dengue patients. We conducted a single-centre, retrospective study involving serologically confirmed dengue fever patients, admitted in a single ward, in Hospital Kuala Lumpur, Malaysia. Data was collected for 4 months from February to May 2014. Socio demography, co-morbidity, days of illness before admission, symptoms, warning signs, vital signs and laboratory result were all recorded. Descriptive statistics was tabulated and simple and multiple logistic regression analysis was done to determine significant risk factors associated with severe dengue. 657 patients with confirmed dengue were analysed, of which 59 (9.0%) had severe dengue. Overall, the commonest warning sign were vomiting (36.1%) and abdominal pain (32.1%). Previous co-morbid, vomiting, diarrhoea, pleural effusion, low systolic blood pressure, high haematocrit, low albumin and high urea were found as significant risk factors for severe dengue using simple logistic regression. However the significant risk factors for severe dengue with multiple logistic regressions were only vomiting, pleural effusion, and low systolic blood pressure. Using those 3 risk factors, we plotted an algorithm for predicting severe dengue. When compared to the classification of severe dengue based on the WHO criteria, the decision tree algorithm had a sensitivity of 0.81, specificity of 0.54, positive predictive value of 0.16 and negative predictive of 0.96. The decision tree algorithm proposed in this study showed high sensitivity and NPV in predicting patients with severe dengue that may warrant admission. This tool upon further validation study can be used to help clinicians decide on further managing a patient upon first encounter. It also will have a substantial impact on health resources as low risk patients can be managed as outpatients hence reserving the scarce hospital beds and medical resources for other patients in need.

  9. A regret theory approach to decision curve analysis: a novel method for eliciting decision makers' preferences and decision-making.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Vickers, Andrew; Djulbegovic, Benjamin

    2010-09-16

    Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc).

  10. A regret theory approach to decision curve analysis: A novel method for eliciting decision makers' preferences and decision-making

    PubMed Central

    2010-01-01

    Background Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. Methods First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. Results We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. Conclusions We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc). PMID:20846413

  11. i-Tree: Tools to assess and manage structure, function, and value of community forests

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.

  12. Is prevention of atopic eczema with hydrolyzed formulas cost-effective? A health economic evaluation from Germany.

    PubMed

    Mertens, Janina; Stock, Stephanie; Lüngen, Markus; von Berg, Andrea; Krämer, Ursula; Filipiak-Pittroff, Birgit; Heinrich, Joachim; Koletzko, Sibylle; Grübl, Armin; Wichmann, H-Erich; Bauer, Carl-P; Reinhardt, Dietrich; Berdel, Dietrich; Gerber, Andreas

    2012-09-01

    The German Infant Nutritional Intervention (GINI) trial, a prospective, randomized, double-blind intervention, enrolled children with a hereditary risk for atopy. When fed with certain hydrolyzed formulas for the first 4 months of life, the risk was reduced by 26-45% in PP and 8-29% in intention-to-treat (ITT) analyses compared with children fed with regular cow's milk at age 6. The objective was to assess the cost-effectiveness of feeding hydrolyzed formulas. Cost-effectiveness was assessed with a decision tree model programmed in TreeAge. Costs and effects over a 6-yr period were analyzed from the perspective of the German statutory health insurance (SHI) and a societal perspective at a 3% effective discount rate followed by sensitivity analyses. The extensively hydrolyzed casein formula would be the most cost-saving strategy with savings of 478 € per child treated in the ITT analysis (CI95%: 12 €; 852 €) and 979 € in the PP analysis (95%CI: 355 €; 1455 €) from a societal perspective. If prevented cases are considered, the partially whey hydrolyzed formula is cost-saving (ITT -5404 €, PP -6358 €). From an SHI perspective, the partially whey hydrolyzed formula is cost-effective, but may also be cost-saving depending on the scenario. An extensively hydrolyzed whey formula also included into the analysis was dominated in all analyses. For the prevention of AE, two formulas can be cost-effective or even cost-saving. We recommend that SHI should reimburse formula feeding or at least the difference between costs for cow's milk formula and the most cost-effective formula. © 2012 John Wiley & Sons A/S.

  13. One thousand years of fires: Integrating proxy and model data

    USGS Publications Warehouse

    Kehrwald, Natalie; Aleman, Julie C.; Coughlan, Michael; Courtney Mustaphi, Colin J.; Githumbi, Esther N.; Magi, Brian I.; Marlon, Jennifer R.; Power, Mitchell J.

    2016-01-01

    The expected increase in fire activity in the upcoming decades has led to a surge in research trying to understand their causes, the factors that may have influenced similar times of fire activity in the past, and the implications of such fire activity in the future. Multiple types of complementary data provide information on the impacts of current fires and the extent of past fires. The wide array of data encompasses different spatial and temporal resolutions (Figure 1) and includes fire proxy information such as charcoal and tree ring fire scars, observational records, satellite products, modern emissions data, fire models within global land cover and vegetation models, and sociodemographic data for modeling past human land use and ignition frequency. Any single data type is more powerful when combined with another source of information. Merging model and proxy data enables analyses of how fire activity modifies vegetation distribution, air and water quality, and proximity to cities; these analyses in turn support land management decisions relating to conservation and development.

  14. To core, or not to core: the impact of coring on tree health and a best-practice framework for collecting dendrochronological information from living trees.

    PubMed

    Tsen, Edward W J; Sitzia, Tommaso; Webber, Bruce L

    2016-11-01

    Trees are natural repositories of valuable environmental information that is preserved in the growth and structure of their stems, branches and roots. Dendrochronological analyses, based on the counting, crossdating and characterisation of incrementally formed wood rings, offer powerful insights for diverse fields including ecology, climatology and archaeology. The application of this toolset is likely to increase in popularity over coming decades due to advances in the field and a reduction in the cost of analyses. In research settings where the continued value of living trees subject to dendrochronological investigation is important, the use of an increment bore corer to extract trunk tissue is considered the best option to minimise negative impacts on tree health (e.g. stress and fitness). A small and fragmented body of literature, however, reports significant after-effects, and in some cases fatal outcomes, from this sampling technique. As it stands, the literature documenting increment bore coring (IBC) impacts lacks experimental consistency and is poorly replicated, making it difficult for prospective users of the method to assess likely tree responses to coring. This paucity of information has the potential to lead to destructive misuse of the method and also limits its safe implementation in circumstances where the risk of impacts may be appropriate. If IBC is to fulfil its potential as a method of choice across research fields, then we must first address our limited understanding of IBC impacts and provide a framework for its appropriate future use. Firstly, we review the historical context of studies examining the impacts of IBC on trees to identify known patterns, focal issues and biases in existing knowledge. IBC wound responses, particularly those that impact on lumber quality, have been the primary focus of prior studies. No universal treatment was identified that conclusively improved wound healing and few studies have linked wound responses to tree health impacts. Secondly, we build on literature insights using a theoretical approach to identify the most important factors to guide future research involving implementation of IBC, including innate tree characteristics and environmental factors. Thirdly, we synthesise and interrogate the quantitative data available through meta-analysis to identify risk factors for wound reactions. Although poor reporting standards, restricted scopes and a bias towards temperate ecosystems limited quantitative insight, we found that complete cambial wound closure could still harbour high rates of internal trunk decay, and that conditions favouring faster growth generally correlated with reduced indices of internal and external damage in broadleaved taxa. Finally, we propose a framework for guiding best-practice application of IBC to address knowledge gaps and maximise the utility of this method, including standardised reporting indices for identifying and minimising negative impacts on tree health. While IBC is an underutilised tool of ecological enquiry with broad applicability, the method will always incur some risk of negative impacts on the cored tree. We caution that the decision to core, or not to core, must be given careful consideration on a case-by-case basis. In time, we are confident that this choice will be better informed by evidence-based insight. © 2015 Cambridge Philosophical Society.

  15. Policy Tree Optimization for Adaptive Management of Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Herman, J. D.; Giuliani, M.

    2016-12-01

    Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points", which are threshold values of indicator variables that signal a change in policy. However, there remains a need for a general method to optimize the choice of indicators and their threshold values in a way that is easily interpretable for decision makers. Here we propose a conceptual framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. We demonstrate the approach using Folsom Reservoir, California as a case study, in which operating policies must balance the risk of both floods and droughts. Given a set of feature variables, such as reservoir level, inflow observations and forecasts, and time of year, the resulting policy defines the conditions under which flood control and water supply hedging operations should be triggered. Importantly, the tree-based rule sets are easy to interpret for decision making, and can be compared to historical operating policies to understand the adaptations needed under possible climate change scenarios. Several remaining challenges are discussed, including the empirical convergence properties of the method, and extensions to irreversible decisions such as infrastructure. Policy tree optimization, and corresponding open-source software, provide a generalizable, interpretable approach to designing adaptive policies under uncertainty for water resources systems.

  16. Establishing Decision Trees for Predicting Successful Postpyloric Nasoenteric Tube Placement in Critically Ill Patients.

    PubMed

    Chen, Weisheng; Sun, Cheng; Wei, Ru; Zhang, Yanlin; Ye, Heng; Chi, Ruibin; Zhang, Yichen; Hu, Bei; Lv, Bo; Chen, Lifang; Zhang, Xiunong; Lan, Huilan; Chen, Chunbo

    2016-08-31

    Despite the use of prokinetic agents, the overall success rate for postpyloric placement via a self-propelled spiral nasoenteric tube is quite low. This retrospective study was conducted in the intensive care units of 11 university hospitals from 2006 to 2016 among adult patients who underwent self-propelled spiral nasoenteric tube insertion. Success was defined as postpyloric nasoenteric tube placement confirmed by abdominal x-ray scan 24 hours after tube insertion. Chi-square automatic interaction detection (CHAID), simple classification and regression trees (SimpleCart), and J48 methodologies were used to develop decision tree models, and multiple logistic regression (LR) methodology was used to develop an LR model for predicting successful postpyloric nasoenteric tube placement. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models. Successful postpyloric nasoenteric tube placement was confirmed in 427 of 939 patients enrolled. For predicting successful postpyloric nasoenteric tube placement, the performance of the 3 decision trees was similar in terms of the AUCs: 0.715 for the CHAID model, 0.682 for the SimpleCart model, and 0.671 for the J48 model. The AUC of the LR model was 0.729, which outperformed the J48 model. Both the CHAID and LR models achieved an acceptable discrimination for predicting successful postpyloric nasoenteric tube placement and were useful for intensivists in the setting of self-propelled spiral nasoenteric tube insertion. © 2016 American Society for Parenteral and Enteral Nutrition.

  17. Establishing Decision Trees for Predicting Successful Postpyloric Nasoenteric Tube Placement in Critically Ill Patients.

    PubMed

    Chen, Weisheng; Sun, Cheng; Wei, Ru; Zhang, Yanlin; Ye, Heng; Chi, Ruibin; Zhang, Yichen; Hu, Bei; Lv, Bo; Chen, Lifang; Zhang, Xiunong; Lan, Huilan; Chen, Chunbo

    2018-01-01

    Despite the use of prokinetic agents, the overall success rate for postpyloric placement via a self-propelled spiral nasoenteric tube is quite low. This retrospective study was conducted in the intensive care units of 11 university hospitals from 2006 to 2016 among adult patients who underwent self-propelled spiral nasoenteric tube insertion. Success was defined as postpyloric nasoenteric tube placement confirmed by abdominal x-ray scan 24 hours after tube insertion. Chi-square automatic interaction detection (CHAID), simple classification and regression trees (SimpleCart), and J48 methodologies were used to develop decision tree models, and multiple logistic regression (LR) methodology was used to develop an LR model for predicting successful postpyloric nasoenteric tube placement. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of these models. Successful postpyloric nasoenteric tube placement was confirmed in 427 of 939 patients enrolled. For predicting successful postpyloric nasoenteric tube placement, the performance of the 3 decision trees was similar in terms of the AUCs: 0.715 for the CHAID model, 0.682 for the SimpleCart model, and 0.671 for the J48 model. The AUC of the LR model was 0.729, which outperformed the J48 model. Both the CHAID and LR models achieved an acceptable discrimination for predicting successful postpyloric nasoenteric tube placement and were useful for intensivists in the setting of self-propelled spiral nasoenteric tube insertion. © 2016 American Society for Parenteral and Enteral Nutrition.

  18. 76 FR 63719 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition To List a Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... species at that time. On October 28, 2008, we published a 90-day finding for the dusky tree vole in the... that live in conifer forests and spend almost all of their time in the tree canopy. Tree voles rarely... tree vole as a subspecies, the more recent research on tree vole genetics and analyses attempting to...

  19. Structural Equation Model Trees

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2015-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree structures that separate a data set recursively into subsets with significantly different parameter estimates in a SEM. SEM Trees provide means for finding covariates and covariate interactions that predict differences in structural parameters in observed as well as in latent space and facilitate theory-guided exploration of empirical data. We describe the methodology, discuss theoretical and practical implications, and demonstrate applications to a factor model and a linear growth curve model. PMID:22984789

  20. Enrolment Management in Graduate Business Programs: Predicting Student Retention

    ERIC Educational Resources Information Center

    Eshghi, Abdoloreza; Haughton, Dominique; Li, Mingfei; Senne, Linda; Skaletsky, Maria; Woolford, Sam

    2011-01-01

    The increasing competition for graduate students among business schools has resulted in a greater emphasis on graduate business student retention. In an effort to address this issue, the current article uses survival analysis, decision trees and TreeNet® to identify factors that can be used to identify students who are at risk of dropping out of a…

  1. Performance testing to identify climate-ready trees

    Treesearch

    E.Gregory McPherson; Alison M. Berry; Natalie S. van Doorn

    2018-01-01

    Urban forests produce ecosystem services that can benefit city dwellers, but are especially vulnerable to climate change stressors such as heat, drought, extreme winds and pests. Tree selection is an important decision point for managers wanting to transition to a more stable and resilient urban forest structure. This study describes a five-step process to identify and...

  2. Using Evidence-Based Decision Trees Instead of Formulas to Identify At-Risk Readers. REL 2014-036

    ERIC Educational Resources Information Center

    Koon, Sharon; Petscher, Yaacov; Foorman, Barbara R.

    2014-01-01

    This study examines whether the classification and regression tree (CART) model improves the early identification of students at risk for reading comprehension difficulties compared with the more difficult to interpret logistic regression model. CART is a type of predictive modeling that relies on nonparametric techniques. It presents results in…

  3. Tree diameter a poor indicator of age in West Virginia hardwoods

    Treesearch

    Carter B. Gibbs

    1963-01-01

    Foresters generally recognize that diameter growth, height growth, sprouting vigor, and seed production are partially related to age; so age often has an important bearing upon silvicultural decisions. But unless past stand histories are fully known, the ages of hardwood trees can be determined only by increment borings, which not only require excessive time but also...

  4. An object-oriented forest landscape model and its representation of tree species

    Treesearch

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  5. Leadership Strategies for Meeting New Challenges. Marketing.

    ERIC Educational Resources Information Center

    Knox, Alan B., Ed.

    1982-01-01

    Illustrates concepts and techniques available from marketing and related fields that can enrich decision making about marketing by continuing education administrators. They are concepts concerning marketing by nonprofit organizations, promotional techniques, highlights from a handbook on the use of direct mail, and the use of decision trees. (CT)

  6. Algorithms in the First-Line Treatment of Metastatic Clear Cell Renal Cell Carcinoma--Analysis Using Diagnostic Nodes.

    PubMed

    Rothermundt, Christian; Bailey, Alexandra; Cerbone, Linda; Eisen, Tim; Escudier, Bernard; Gillessen, Silke; Grünwald, Viktor; Larkin, James; McDermott, David; Oldenburg, Jan; Porta, Camillo; Rini, Brian; Schmidinger, Manuela; Sternberg, Cora; Putora, Paul M

    2015-09-01

    With the advent of targeted therapies, many treatment options in the first-line setting of metastatic clear cell renal cell carcinoma (mccRCC) have emerged. Guidelines and randomized trial reports usually do not elucidate the decision criteria for the different treatment options. In order to extract the decision criteria for the optimal therapy for patients, we performed an analysis of treatment algorithms from experts in the field. Treatment algorithms for the treatment of mccRCC from experts of 11 institutions were obtained, and decision trees were deduced. Treatment options were identified and a list of unified decision criteria determined. The final decision trees were analyzed with a methodology based on diagnostic nodes, which allows for an automated cross-comparison of decision trees. The most common treatment recommendations were determined, and areas of discordance were identified. The analysis revealed heterogeneity in most clinical scenarios. The recommendations selected for first-line treatment of mccRCC included sunitinib, pazopanib, temsirolimus, interferon-α combined with bevacizumab, high-dose interleukin-2, sorafenib, axitinib, everolimus, and best supportive care. The criteria relevant for treatment decisions were performance status, Memorial Sloan Kettering Cancer Center risk group, only or mainly lung metastases, cardiac insufficiency, hepatic insufficiency, age, and "zugzwang" (composite of multiple, related criteria). In the present study, we used diagnostic nodes to compare treatment algorithms in the first-line treatment of mccRCC. The results illustrate the heterogeneity of the decision criteria and treatment strategies for mccRCC and how available data are interpreted and implemented differently among experts. The data provided in the present report should not be considered to serve as treatment recommendations for the management of treatment-naïve patients with multiple metastases from metastatic clear cell renal cell carcinoma outside a clinical trial; however, the data highlight the different treatment options and the criteria used to select them. The diversity in decision making and how results from phase III trials can be interpreted and implemented differently in daily practice are demonstrated. ©AlphaMed Press.

  7. Chinese tallow tree (Sapium sebiferum) utilization: characterization of extractives and cell-wall chemistry

    Treesearch

    Thomasl L. Eberhardt; Xiaobo Li; Todd F. Shupe; Chung Y. Hse

    2007-01-01

    Wood, bark, and the wax-coated seeds from Chinese tallow tree (Sapium sebiferum (L.) Roxb. syn. Triadica sebifera (L.) Small), an invasive tree species in the southeastern United States, were subjected to extractions and degradative chemical analyses in an effort to better understand the mechanism(s) by which this tree species...

  8. Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees

    EPA Science Inventory

    We analysed the oxygen isotopic values of wood (δ18Ow) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with existing wood-based estimates of carbon isotope discrimination (∆13C), basal area increment (BAI), and g...

  9. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  10. Cost-effectiveness of precision medicine in the fourth-line treatment of metastatic lung adenocarcinoma: An early decision analytic model of multiplex targeted sequencing.

    PubMed

    Doble, Brett; John, Thomas; Thomas, David; Fellowes, Andrew; Fox, Stephen; Lorgelly, Paula

    2017-05-01

    To identify parameters that drive the cost-effectiveness of precision medicine by comparing the use of multiplex targeted sequencing (MTS) to select targeted therapy based on tumour genomic profiles to either no further testing with chemotherapy or no further testing with best supportive care in the fourth-line treatment of metastatic lung adenocarcinoma. A combined decision tree and Markov model to compare costs, life-years, and quality-adjusted life-years over a ten-year time horizon from an Australian healthcare payer perspective. Data sources included the published literature and a population-based molecular cohort study (Cancer 2015). Uncertainty was assessed using deterministic sensitivity analyses and quantified by estimating expected value of perfect/partial perfect information. Uncertainty due to technological/scientific advancement was assessed through a number of plausible future scenario analyses. Point estimate incremental cost-effective ratios indicate that MTS is not cost-effective for selecting fourth-line treatment of metastatic lung adenocarcinoma. Lower mortality rates during testing and for true positive patients, lower health state utility values for progressive disease, and targeted therapy resulting in reductions in inpatient visits, however, all resulted in more favourable cost-effectiveness estimates for MTS. The expected value to decision makers of removing all current decision uncertainty was estimated to be between AUD 5,962,843 and AUD 13,196,451, indicating that additional research to reduce uncertainty may be a worthwhile investment. Plausible future scenarios analyses revealed limited improvements in cost-effectiveness under scenarios of improved test performance, decreased costs of testing/interpretation, and no biopsy costs/adverse events. Reductions in off-label targeted therapy costs, when considered together with the other scenarios did, however, indicate more favourable cost-effectiveness of MTS. As more clinical evidence is generated for MTS, the model developed should be revisited and cost-effectiveness re-estimated under different testing scenarios to further understand the value of precision medicine and its potential impact on the overall health budget. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment.

    PubMed

    Bhatia, Sneha; Schultz, Terry; Roberts, David; Shen, Jie; Kromidas, Lambros; Marie Api, Anne

    2015-02-01

    The Threshold of Toxicological Concern (TTC) is a pragmatic approach in risk assessment. In the absence of data, it sets up levels of human exposure that are considered to have no appreciable risk to human health. The Cramer decision tree is used extensively to determine these exposure thresholds by categorizing non-carcinogenic chemicals into three different structural classes. Therefore, assigning an accurate Cramer class to a material is a crucial step to preserve the integrity of the risk assessment. In this study the Cramer class of over 1000 fragrance materials across diverse chemical classes were determined by using Toxtree (TT), the OECD QSAR Toolbox (TB), and expert judgment. Disconcordance was observed between TT and the TB. A total of 165 materials (16%) showed different results from the two programs. The overall concordance for Cramer classification between TT and expert judgment is 83%, while the concordance between the TB and expert judgment is 77%. Amines, lactones and heterocycles have the lowest percent agreement with expert judgment for TT and the TB. For amines, the expert judgment agreement is 45% for TT and 55% for the TB. For heterocycles, the expert judgment agreement is 55% for TT and the TB. For lactones, the expert judgment agreement is 56% for TT and 50% for the TB. Additional analyses were conducted to determine the concordance within various chemical classes. Critical checkpoints in the decision tree are identified. Strategies and guidance on determining the Cramer class for various chemical classes are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Decision analysis in clinical cardiology: When is coronary angiography required in aortic stenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgeson, S.; Meyer, K.B.; Pauker, S.G.

    1990-03-15

    Decision analysis offers a reproducible, explicit approach to complex clinical decisions. It consists of developing a model, typically a decision tree, that separates choices from chances and that specifies and assigns relative values to outcomes. Sensitivity analysis allows exploration of alternative assumptions. Cost-effectiveness analysis shows the relation between dollars spent and improved health outcomes achieved. In a tutorial format, this approach is applied to the decision whether to perform coronary angiography in a patient who requires aortic valve replacement for critical aortic stenosis.

  13. Theory of the decision/problem state

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    A theory of the decision-problem state was introduced and elaborated. Starting with the basic model of a decision-problem condition, an attempt was made to explain how a major decision-problem may consist of subsets of decision-problem conditions composing different condition sequences. In addition, the basic classical decision-tree model was modified to allow for the introduction of a series of characteristics that may be encountered in an analysis of a decision-problem state. The resulting hierarchical model reflects the unique attributes of the decision-problem state. The basic model of a decision-problem condition was used as a base to evolve a more complex model that is more representative of the decision-problem state and may be used to initiate research on decision-problem states.

  14. Recreation, resources, and right decisions

    Treesearch

    Elwood L. Shafer; George Moeller; Douglas A. Morrison; Russell Getty

    1974-01-01

    In the midst of national concern for preserving ecosystems, stimulating the economy, and providing outdoor recreation opportunities for the American public, the modern recreation-resource decision-maker faces a monumental task. The authors present a series of relevance trees that pinpoint, in terms of interacting social and physical site variables, the important...

  15. Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia).

    PubMed

    Pyron, R Alexander; Hendry, Catriona R; Chou, Vincent M; Lemmon, Emily M; Lemmon, Alan R; Burbrink, Frank T

    2014-12-01

    Next-generation genomic sequencing promises to quickly and cheaply resolve remaining contentious nodes in the Tree of Life, and facilitates species-tree estimation while taking into account stochastic genealogical discordance among loci. Recent methods for estimating species trees bypass full likelihood-based estimates of the multi-species coalescent, and approximate the true species-tree using simpler summary metrics. These methods converge on the true species-tree with sufficient genomic sampling, even in the anomaly zone. However, no studies have yet evaluated their efficacy on a large-scale phylogenomic dataset, and compared them to previous concatenation strategies. Here, we generate such a dataset for Caenophidian snakes, a group with >2500 species that contains several rapid radiations that were poorly resolved with fewer loci. We generate sequence data for 333 single-copy nuclear loci with ∼100% coverage (∼0% missing data) for 31 major lineages. We estimate phylogenies using neighbor joining, maximum parsimony, maximum likelihood, and three summary species-tree approaches (NJst, STAR, and MP-EST). All methods yield similar resolution and support for most nodes. However, not all methods support monophyly of Caenophidia, with Acrochordidae placed as the sister taxon to Pythonidae in some analyses. Thus, phylogenomic species-tree estimation may occasionally disagree with well-supported relationships from concatenated analyses of small numbers of nuclear or mitochondrial genes, a consideration for future studies. In contrast for at least two diverse, rapid radiations (Lamprophiidae and Colubridae), phylogenomic data and species-tree inference do little to improve resolution and support. Thus, certain nodes may lack strong signal, and larger datasets and more sophisticated analyses may still fail to resolve them. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cost-effectiveness of digital subtraction angiography in the setting of computed tomographic angiography negative subarachnoid hemorrhage.

    PubMed

    Jethwa, Pinakin R; Punia, Vineet; Patel, Tapan D; Duffis, E Jesus; Gandhi, Chirag D; Prestigiacomo, Charles J

    2013-04-01

    Recent studies have documented the high sensitivity of computed tomography angiography (CTA) in detecting a ruptured aneurysm in the presence of acute subarachnoid hemorrhage (SAH). The practice of digital subtraction angiography (DSA) when CTA does not reveal an aneurysm has thus been called into question. We examined this dilemma from a cost-effectiveness perspective by using current decision analysis techniques. A decision tree was created with the use of TreeAge Pro Suite 2012; in 1 arm, a CTA-negative SAH was followed up with DSA; in the other arm, patients were observed without further imaging. Based on literature review, costs and utilities were assigned to each potential outcome. Base-case and sensitivity analyses were performed to determine the cost-effectiveness of each strategy. A Monte Carlo simulation was then conducted by sampling each variable over a plausible distribution to evaluate the robustness of the model. With the use of a negative predictive value of 95.7% for CTA, observation was found to be the most cost-effective strategy ($6737/Quality Adjusted Life Year [QALY] vs $8460/QALY) in the base-case analysis. One-way sensitivity analysis demonstrated that DSA became the more cost-effective option if the negative predictive value of CTA fell below 93.72%. The Monte Carlo simulation produced an incremental cost-effectiveness ratio of $83 083/QALY. At the conventional willingness-to-pay threshold of $50 000/QALY, observation was the more cost-effective strategy in 83.6% of simulations. The decision to perform a DSA in CTA-negative SAH depends strongly on the sensitivity of CTA, and therefore must be evaluated at each center treating these types of patients. Given the high sensitivity of CTA reported in the current literature, performing DSA on all patients with CTA negative SAH may not be cost-effective at every institution.

  17. Analyzing and synthesizing phylogenies using tree alignment graphs.

    PubMed

    Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.

  18. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  19. Seeing the forest for the trees: utilizing modified random forests imputation of forest plot data for landscape-level analyses

    Treesearch

    Karin L. Riley; Isaac C. Grenfell; Mark A. Finney

    2015-01-01

    Mapping the number, size, and species of trees in forests across the western United States has utility for a number of research endeavors, ranging from estimation of terrestrial carbon resources to tree mortality following wildfires. For landscape fire and forest simulations that use the Forest Vegetation Simulator (FVS), a tree-level dataset, or “tree list”, is a...

  20. A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification.

    PubMed

    Krawczyk, Bartosz; Schaefer, Gerald; Woźniak, Michał

    2015-11-01

    Early recognition of breast cancer, the most commonly diagnosed form of cancer in women, is of crucial importance, given that it leads to significantly improved chances of survival. Medical thermography, which uses an infrared camera for thermal imaging, has been demonstrated as a particularly useful technique for early diagnosis, because it detects smaller tumors than the standard modality of mammography. In this paper, we analyse breast thermograms by extracting features describing bilateral symmetries between the two breast areas, and present a classification system for decision making. Clearly, the costs associated with missing a cancer case are much higher than those for mislabelling a benign case. At the same time, datasets contain significantly fewer malignant cases than benign ones. Standard classification approaches fail to consider either of these aspects. In this paper, we introduce a hybrid cost-sensitive classifier ensemble to address this challenging problem. Our approach entails a pool of cost-sensitive decision trees which assign a higher misclassification cost to the malignant class, thereby boosting its recognition rate. A genetic algorithm is employed for simultaneous feature selection and classifier fusion. As an optimisation criterion, we use a combination of misclassification cost and diversity to achieve both a high sensitivity and a heterogeneous ensemble. Furthermore, we prune our ensemble by discarding classifiers that contribute minimally to the decision making. For a challenging dataset of about 150 thermograms, our approach achieves an excellent sensitivity of 83.10%, while maintaining a high specificity of 89.44%. This not only signifies improved recognition of malignant cases, it also statistically outperforms other state-of-the-art algorithms designed for imbalanced classification, and hence provides an effective approach for analysing breast thermograms. Our proposed hybrid cost-sensitive ensemble can facilitate a highly accurate early diagnostic of breast cancer based on thermogram features. It overcomes the difficulties posed by the imbalanced distribution of patients in the two analysed groups. Copyright © 2015 Elsevier B.V. All rights reserved.

Top