A new approach to enhance the performance of decision tree for classifying gene expression data.
Hassan, Md; Kotagiri, Ramamohanarao
2013-12-20
Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.
Decision tree and ensemble learning algorithms with their applications in bioinformatics.
Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping
2011-01-01
Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.
The decision tree approach to classification
NASA Technical Reports Server (NTRS)
Wu, C.; Landgrebe, D. A.; Swain, P. H.
1975-01-01
A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.
Building of fuzzy decision trees using ID3 algorithm
NASA Astrophysics Data System (ADS)
Begenova, S. B.; Avdeenko, T. V.
2018-05-01
Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.
Personalized Modeling for Prediction with Decision-Path Models
Visweswaran, Shyam; Ferreira, Antonio; Ribeiro, Guilherme A.; Oliveira, Alexandre C.; Cooper, Gregory F.
2015-01-01
Deriving predictive models in medicine typically relies on a population approach where a single model is developed from a dataset of individuals. In this paper we describe and evaluate a personalized approach in which we construct a new type of decision tree model called decision-path model that takes advantage of the particular features of a given person of interest. We introduce three personalized methods that derive personalized decision-path models. We compared the performance of these methods to that of Classification And Regression Tree (CART) that is a population decision tree to predict seven different outcomes in five medical datasets. Two of the three personalized methods performed statistically significantly better on area under the ROC curve (AUC) and Brier skill score compared to CART. The personalized approach of learning decision path models is a new approach for predictive modeling that can perform better than a population approach. PMID:26098570
Shao, Q; Rowe, R C; York, P
2007-06-01
Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.
Comparative Issues and Methods in Organizational Diagnosis. Report II. The Decision Tree Approach.
organizational diagnosis . The advantages and disadvantages of the decision-tree approach generally, and in this study specifically, are examined. A pre-test, using a civilian sample of 174 work groups with Survey of Organizations data, was conducted to assess various decision-tree classification criteria, in terms of their similarity to the distance function used by Bowers and Hausser (1977). The results suggested the use of a large developmental sample, which should result in more distinctly defined boundary lines between classification profiles. Also, the decision matrix
Bioinformatics in proteomics: application, terminology, and pitfalls.
Wiemer, Jan C; Prokudin, Alexander
2004-01-01
Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.
An automated approach to the design of decision tree classifiers
NASA Technical Reports Server (NTRS)
Argentiero, P.; Chin, R.; Beaudet, P.
1982-01-01
An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.
Evolving optimised decision rules for intrusion detection using particle swarm paradigm
NASA Astrophysics Data System (ADS)
Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.
2012-12-01
The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.
A framework for sensitivity analysis of decision trees.
Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław
2018-01-01
In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.
The Decision Tree for Teaching Management of Uncertainty
ERIC Educational Resources Information Center
Knaggs, Sara J.; And Others
1974-01-01
A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)
The value of decision tree analysis in planning anaesthetic care in obstetrics.
Bamber, J H; Evans, S A
2016-08-01
The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang
2013-01-01
Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elter, M.; Schulz-Wendtland, R.; Wittenberg, T.
2007-11-15
Mammography is the most effective method for breast cancer screening available today. However, the low positive predictive value of breast biopsy resulting from mammogram interpretation leads to approximately 70% unnecessary biopsies with benign outcomes. To reduce the high number of unnecessary breast biopsies, several computer-aided diagnosis (CAD) systems have been proposed in the last several years. These systems help physicians in their decision to perform a breast biopsy on a suspicious lesion seen in a mammogram or to perform a short term follow-up examination instead. We present two novel CAD approaches that both emphasize an intelligible decision process to predictmore » breast biopsy outcomes from BI-RADS findings. An intelligible reasoning process is an important requirement for the acceptance of CAD systems by physicians. The first approach induces a global model based on decison-tree learning. The second approach is based on case-based reasoning and applies an entropic similarity measure. We have evaluated the performance of both CAD approaches on two large publicly available mammography reference databases using receiver operating characteristic (ROC) analysis, bootstrap sampling, and the ANOVA statistical significance test. Both approaches outperform the diagnosis decisions of the physicians. Hence, both systems have the potential to reduce the number of unnecessary breast biopsies in clinical practice. A comparison of the performance of the proposed decision tree and CBR approaches with a state of the art approach based on artificial neural networks (ANN) shows that the CBR approach performs slightly better than the ANN approach, which in turn results in slightly better performance than the decision-tree approach. The differences are statistically significant (p value <0.001). On 2100 masses extracted from the DDSM database, the CRB approach for example resulted in an area under the ROC curve of A(z)=0.89{+-}0.01, the decision-tree approach in A(z)=0.87{+-}0.01, and the ANN approach in A(z)=0.88{+-}0.01.« less
TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.
Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald
2018-01-01
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
An automated approach to the design of decision tree classifiers
NASA Technical Reports Server (NTRS)
Argentiero, P.; Chin, P.; Beaudet, P.
1980-01-01
The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.
Which Types of Leadership Styles Do Followers Prefer? A Decision Tree Approach
ERIC Educational Resources Information Center
Salehzadeh, Reza
2017-01-01
Purpose: The purpose of this paper is to propose a new method to find the appropriate leadership styles based on the followers' preferences using the decision tree technique. Design/methodology/approach: Statistical population includes the students of the University of Isfahan. In total, 750 questionnaires were distributed; out of which, 680…
A decision tree approach using silvics to guide planning for forest restoration
Sharon M. Hermann; John S. Kush; John C. Gilbert
2013-01-01
We created a decision tree based on silvics of longleaf pine (Pinus palustris) and historical descriptions to develop approaches for restoration management at Horseshoe Bend National Military Park located in central Alabama. A National Park Service goal is to promote structure and composition of a forest that likely surrounded the 1814 battlefield....
Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen
2017-10-11
Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.
NASA Astrophysics Data System (ADS)
Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica
2017-09-01
Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.
Learning from examples - Generation and evaluation of decision trees for software resource analysis
NASA Technical Reports Server (NTRS)
Selby, Richard W.; Porter, Adam A.
1988-01-01
A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.
Decision trees in epidemiological research.
Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone
2017-01-01
In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.
The Effect of Defense R&D Expenditures on Military Capability and Technological Spillover
2013-03-01
ix List of Figures Page Figure 1. Decision Tree for Sectoring R&D Units...approach, often called sectoring , categorizes R&D activities by funding source, and the functional approach categorizes R&D activities by their objective...economic objectives (defense, and control and care of environment) (OECD, 2002). Figure 1 shows the decision tree for sectoring R&D units and
Objective consensus from decision trees.
Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig
2014-12-05
Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.
Soft context clustering for F0 modeling in HMM-based speech synthesis
NASA Astrophysics Data System (ADS)
Khorram, Soheil; Sameti, Hossein; King, Simon
2015-12-01
This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.
Comprehensive decision tree models in bioinformatics.
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.
Comprehensive Decision Tree Models in Bioinformatics
Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter
2012-01-01
Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
Decision Tree Approach for Soil Liquefaction Assessment
Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.
2013-01-01
In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498
Decision tree approach for soil liquefaction assessment.
Gandomi, Amir H; Fridline, Mark M; Roke, David A
2013-01-01
In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.
Dias, Cláudia Camila; Pereira Rodrigues, Pedro; Fernandes, Samuel; Portela, Francisco; Ministro, Paula; Martins, Diana; Sousa, Paula; Lago, Paula; Rosa, Isadora; Correia, Luis; Moura Santos, Paula; Magro, Fernando
2017-01-01
Crohn's disease (CD) is a chronic inflammatory bowel disease known to carry a high risk of disabling and many times requiring surgical interventions. This article describes a decision-tree based approach that defines the CD patients' risk or undergoing disabling events, surgical interventions and reoperations, based on clinical and demographic variables. This multicentric study involved 1547 CD patients retrospectively enrolled and divided into two cohorts: a derivation one (80%) and a validation one (20%). Decision trees were built upon applying the CHAIRT algorithm for the selection of variables. Three-level decision trees were built for the risk of disabling and reoperation, whereas the risk of surgery was described in a two-level one. A receiver operating characteristic (ROC) analysis was performed, and the area under the curves (AUC) Was higher than 70% for all outcomes. The defined risk cut-off values show usefulness for the assessed outcomes: risk levels above 75% for disabling had an odds test positivity of 4.06 [3.50-4.71], whereas risk levels below 34% and 19% excluded surgery and reoperation with an odds test negativity of 0.15 [0.09-0.25] and 0.50 [0.24-1.01], respectively. Overall, patients with B2 or B3 phenotype had a higher proportion of disabling disease and surgery, while patients with later introduction of pharmacological therapeutic (1 months after initial surgery) had a higher proportion of reoperation. The decision-tree based approach used in this study, with demographic and clinical variables, has shown to be a valid and useful approach to depict such risks of disabling, surgery and reoperation.
What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis
ERIC Educational Resources Information Center
Thomas, Emily H.; Galambos, Nora
2004-01-01
To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…
Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J
2009-11-22
Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
NASA Astrophysics Data System (ADS)
Park, J.; Yoo, K.
2013-12-01
For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.
ERIC Educational Resources Information Center
Thomas, Emily H.; Galambos, Nora
To investigate how students' characteristics and experiences affect satisfaction, this study used regression and decision-tree analysis with the CHAID algorithm to analyze student opinion data from a sample of 1,783 college students. A data-mining approach identifies the specific aspects of students' university experience that most influence three…
NASA Astrophysics Data System (ADS)
Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.
2017-03-01
Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.
An Isometric Mapping Based Co-Location Decision Tree Algorithm
NASA Astrophysics Data System (ADS)
Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.
2018-05-01
Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.
Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto
2012-11-21
This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data
2012-01-01
Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000
NASA Astrophysics Data System (ADS)
de Barros, Felipe P. J.; Bolster, Diogo; Sanchez-Vila, Xavier; Nowak, Wolfgang
2011-05-01
Assessing health risk in hydrological systems is an interdisciplinary field. It relies on the expertise in the fields of hydrology and public health and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties and variabilities present in hydrological, physiological, and human behavioral parameters. Despite significant theoretical advancements in stochastic hydrology, there is still a dire need to further propagate these concepts to practical problems and to society in general. Following a recent line of work, we use fault trees to address the task of probabilistic risk analysis and to support related decision and management problems. Fault trees allow us to decompose the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural divide and conquer approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance, and stage of analysis. Three differences are highlighted in this paper when compared to previous works: (1) The fault tree proposed here accounts for the uncertainty in both hydrological and health components, (2) system failure within the fault tree is defined in terms of risk being above a threshold value, whereas previous studies that used fault trees used auxiliary events such as exceedance of critical concentration levels, and (3) we introduce a new form of stochastic fault tree that allows us to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; de Barros, F.; Bolster, D.; Nowak, W.
2010-12-01
Assessing the potential risk of hydro(geo)logical supply systems to human population is an interdisciplinary field. It relies on the expertise in fields as distant as hydrogeology, medicine, or anthropology, and needs powerful translation concepts to provide decision support and policy making. Reliable health risk estimates need to account for the uncertainties in hydrological, physiological and human behavioral parameters. We propose the use of fault trees to address the task of probabilistic risk analysis (PRA) and to support related management decisions. Fault trees allow decomposing the assessment of health risk into individual manageable modules, thus tackling a complex system by a structural “Divide and Conquer” approach. The complexity within each module can be chosen individually according to data availability, parsimony, relative importance and stage of analysis. The separation in modules allows for a true inter- and multi-disciplinary approach. This presentation highlights the three novel features of our work: (1) we define failure in terms of risk being above a threshold value, whereas previous studies used auxiliary events such as exceedance of critical concentration levels, (2) we plot an integrated fault tree that handles uncertainty in both hydrological and health components in a unified way, and (3) we introduce a new form of stochastic fault tree that allows to weaken the assumption of independent subsystems that is required by a classical fault tree approach. We illustrate our concept in a simple groundwater-related setting.
Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid
2018-05-12
Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.
Identifying Risk and Protective Factors in Recidivist Juvenile Offenders: A Decision Tree Approach
Ortega-Campos, Elena; García-García, Juan; Gil-Fenoy, Maria José; Zaldívar-Basurto, Flor
2016-01-01
Research on juvenile justice aims to identify profiles of risk and protective factors in juvenile offenders. This paper presents a study of profiles of risk factors that influence young offenders toward committing sanctionable antisocial behavior (S-ASB). Decision tree analysis is used as a multivariate approach to the phenomenon of repeated sanctionable antisocial behavior in juvenile offenders in Spain. The study sample was made up of the set of juveniles who were charged in a court case in the Juvenile Court of Almeria (Spain). The period of study of recidivism was two years from the baseline. The object of study is presented, through the implementation of a decision tree. Two profiles of risk and protective factors are found. Risk factors associated with higher rates of recidivism are antisocial peers, age at baseline S-ASB, problems in school and criminality in family members. PMID:27611313
Lee, Saro; Park, Inhye
2013-09-30
Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1991-01-01
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.
Erdoğan, Onur; Aydin Son, Yeşim
2014-01-01
Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.
An object-oriented forest landscape model and its representation of tree species
Hong S. He; David J. Mladenoff; Joel Boeder
1999-01-01
LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...
Finding structure in data using multivariate tree boosting
Miller, Patrick J.; Lubke, Gitta H.; McArtor, Daniel B.; Bergeman, C. S.
2016-01-01
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables which are often of interest in psychology. To find and interpret structure in data sets with multiple outcomes and many predictors (possibly exceeding the sample size), we introduce a multivariate extension to a decision tree ensemble method called gradient boosted regression trees (Friedman, 2001). Our extension, multivariate tree boosting, is a method for nonparametric regression that is useful for identifying important predictors, detecting predictors with nonlinear effects and interactions without specification of such effects, and for identifying predictors that cause two or more outcome variables to covary. We provide the R package ‘mvtboost’ to estimate, tune, and interpret the resulting model, which extends the implementation of univariate boosting in the R package ‘gbm’ (Ridgeway et al., 2015) to continuous, multivariate outcomes. To illustrate the approach, we analyze predictors of psychological well-being (Ryff & Keyes, 1995). Simulations verify that our approach identifies predictors with nonlinear effects and achieves high prediction accuracy, exceeding or matching the performance of (penalized) multivariate multiple regression and multivariate decision trees over a wide range of conditions. PMID:27918183
NASA Astrophysics Data System (ADS)
Dogon-Yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.
2016-09-01
Mapping of trees plays an important role in modern urban spatial data management, as many benefits and applications inherit from this detailed up-to-date data sources. Timely and accurate acquisition of information on the condition of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting trees include ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraints, such as labour intensive field work and a lot of financial requirement which can be overcome by means of integrated LiDAR and digital image datasets. Compared to predominant studies on trees extraction mainly in purely forested areas, this study concentrates on urban areas, which have a high structural complexity with a multitude of different objects. This paper presented a workflow about semi-automated approach for extracting urban trees from integrated processing of airborne based LiDAR point cloud and multispectral digital image datasets over Istanbul city of Turkey. The paper reveals that the integrated datasets is a suitable technology and viable source of information for urban trees management. As a conclusion, therefore, the extracted information provides a snapshot about location, composition and extent of trees in the study area useful to city planners and other decision makers in order to understand how much canopy cover exists, identify new planting, removal, or reforestation opportunities and what locations have the greatest need or potential to maximize benefits of return on investment. It can also help track trends or changes to the urban trees over time and inform future management decisions.
1983-03-01
Decision Tree -------------------- 62 4-E. PACKAGE unitrep Action/Area Selection flow Chart 82 4-7. PACKAGE unitrep Control Flow Chart...the originetor wculd manually draft simple, readable, formatted iressages using "-i predef.ined forms and decision logic trees . This alternative was...Study Analysis DATA CCNTENT ERRORS PERCENT OF ERRORS Character Type 2.1 Calcvlations/Associations 14.3 Message Identification 4.? Value Pisiratch 22.E
Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods
NASA Astrophysics Data System (ADS)
Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.
2012-12-01
Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.
Decision analysis in clinical cardiology: When is coronary angiography required in aortic stenosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgeson, S.; Meyer, K.B.; Pauker, S.G.
1990-03-15
Decision analysis offers a reproducible, explicit approach to complex clinical decisions. It consists of developing a model, typically a decision tree, that separates choices from chances and that specifies and assigns relative values to outcomes. Sensitivity analysis allows exploration of alternative assumptions. Cost-effectiveness analysis shows the relation between dollars spent and improved health outcomes achieved. In a tutorial format, this approach is applied to the decision whether to perform coronary angiography in a patient who requires aortic valve replacement for critical aortic stenosis.
A fuzzy decision tree for fault classification.
Zio, Enrico; Baraldi, Piero; Popescu, Irina C
2008-02-01
In plant accident management, the control room operators are required to identify the causes of the accident, based on the different patterns of evolution of the monitored process variables thereby developing. This task is often quite challenging, given the large number of process parameters monitored and the intense emotional states under which it is performed. To aid the operators, various techniques of fault classification have been engineered. An important requirement for their practical application is the physical interpretability of the relationships among the process variables underpinning the fault classification. In this view, the present work propounds a fuzzy approach to fault classification, which relies on fuzzy if-then rules inferred from the clustering of available preclassified signal data, which are then organized in a logical and transparent decision tree structure. The advantages offered by the proposed approach are precisely that a transparent fault classification model is mined out of the signal data and that the underlying physical relationships among the process variables are easily interpretable as linguistic if-then rules that can be explicitly visualized in the decision tree structure. The approach is applied to a case study regarding the classification of simulated faults in the feedwater system of a boiling water reactor.
Kernel and divergence techniques in high energy physics separations
NASA Astrophysics Data System (ADS)
Bouř, Petr; Kůs, Václav; Franc, Jiří
2017-10-01
Binary decision trees under the Bayesian decision technique are used for supervised classification of high-dimensional data. We present a great potential of adaptive kernel density estimation as the nested separation method of the supervised binary divergence decision tree. Also, we provide a proof of alternative computing approach for kernel estimates utilizing Fourier transform. Further, we apply our method to Monte Carlo data set from the particle accelerator Tevatron at DØ experiment in Fermilab and provide final top-antitop signal separation results. We have achieved up to 82 % AUC while using the restricted feature selection entering the signal separation procedure.
Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems
NASA Astrophysics Data System (ADS)
Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen
Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.
Predicting the probability of mortality of gastric cancer patients using decision tree.
Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R
2015-06-01
Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.
Using real options analysis to support strategic management decisions
NASA Astrophysics Data System (ADS)
Kabaivanov, Stanimir; Markovska, Veneta; Milev, Mariyan
2013-12-01
Decision making is a complex process that requires taking into consideration multiple heterogeneous sources of uncertainty. Standard valuation and financial analysis techniques often fail to properly account for all these sources of risk as well as for all sources of additional flexibility. In this paper we explore applications of a modified binomial tree method for real options analysis (ROA) in an effort to improve decision making process. Usual cases of use of real options are analyzed with elaborate study on the applications and advantages that company management can derive from their application. A numeric results based on extending simple binomial tree approach for multiple sources of uncertainty are provided to demonstrate the improvement effects on management decisions.
Louis R. Iverson; Anantha M. Prasad; Stephen N. Matthews; Matthew P. Peters
2010-01-01
Climate change will likely cause impacts that are species specific and significant; modeling is critical to better understand potential changes in suitable habitat. We use empirical, abundance-based habitat models utilizing decision tree-based ensemble methods to explore potential changes of 134 tree species habitats in the eastern United States (http://www.nrs.fs.fed....
Anantha M. Prasad; Louis R. Iverson; Stephen N. Matthews; Matthew P. Peters
2016-01-01
Context. No single model can capture the complex species range dynamics under changing climates--hence the need for a combination approach that addresses management concerns. Objective. A multistage approach is illustrated to manage forested landscapes under climate change. We combine a tree species habitat model--DISTRIB II, a species colonization model--SHIFT, and...
NASA Technical Reports Server (NTRS)
Lee, Charles; Alena, Richard L.; Robinson, Peter
2004-01-01
We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.
Scholz, Miklas; Uzomah, Vincent C
2013-08-01
The retrofitting of sustainable drainage systems (SuDS) such as permeable pavements is currently undertaken ad hoc using expert experience supported by minimal guidance based predominantly on hard engineering variables. There is a lack of practical decision support tools useful for a rapid assessment of the potential of ecosystem services when retrofitting permeable pavements in urban areas that either feature existing trees or should be planted with trees in the near future. Thus the aim of this paper is to develop an innovative rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems close to trees. This unique tool proposes the retrofitting of permeable pavements that obtained the highest ecosystem service score for a specific urban site enhanced by the presence of trees. This approach is based on a novel ecosystem service philosophy adapted to permeable pavements rather than on traditional engineering judgement associated with variables based on quick community and environment assessments. For an example case study area such as Greater Manchester, which was dominated by Sycamore and Common Lime, a comparison with the traditional approach of determining community and environment variables indicates that permeable pavements are generally a preferred SuDS option. Permeable pavements combined with urban trees received relatively high scores, because of their great potential impact in terms of water and air quality improvement, and flood control, respectively. The outcomes of this paper are likely to lead to more combined permeable pavement and tree systems in the urban landscape, which are beneficial for humans and the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Policy Tree Optimization for Adaptive Management of Water Resources Systems
NASA Astrophysics Data System (ADS)
Herman, J. D.; Giuliani, M.
2016-12-01
Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points", which are threshold values of indicator variables that signal a change in policy. However, there remains a need for a general method to optimize the choice of indicators and their threshold values in a way that is easily interpretable for decision makers. Here we propose a conceptual framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. We demonstrate the approach using Folsom Reservoir, California as a case study, in which operating policies must balance the risk of both floods and droughts. Given a set of feature variables, such as reservoir level, inflow observations and forecasts, and time of year, the resulting policy defines the conditions under which flood control and water supply hedging operations should be triggered. Importantly, the tree-based rule sets are easy to interpret for decision making, and can be compared to historical operating policies to understand the adaptations needed under possible climate change scenarios. Several remaining challenges are discussed, including the empirical convergence properties of the method, and extensions to irreversible decisions such as infrastructure. Policy tree optimization, and corresponding open-source software, provide a generalizable, interpretable approach to designing adaptive policies under uncertainty for water resources systems.
Using Decision Trees for Estimating Mode Choice of Trips in Buca-Izmir
NASA Astrophysics Data System (ADS)
Oral, L. O.; Tecim, V.
2013-05-01
Decision makers develop transportation plans and models for providing sustainable transport systems in urban areas. Mode Choice is one of the stages in transportation modelling. Data mining techniques can discover factors affecting the mode choice. These techniques can be applied with knowledge process approach. In this study a data mining process model is applied to determine the factors affecting the mode choice with decision trees techniques by considering individual trip behaviours from household survey data collected within Izmir Transportation Master Plan. From this perspective transport mode choice problem is solved on a case in district of Buca-Izmir, Turkey with CRISP-DM knowledge process model.
James, Lachlan P; Robertson, Sam; Haff, G Gregory; Beckman, Emma M; Kelly, Vincent G
2017-03-01
To determine those performance indicators that have the greatest influence on classifying outcome at the elite level of mixed martial arts (MMA). A secondary objective was to establish the efficacy of decision tree analysis in explaining the characteristics of victory when compared to alternate statistical methods. Cross-sectional observational. Eleven raw performance indicators from male Ultimate Fighting Championship bouts (n=234) from July 2014 to December 2014 were screened for analysis. Each raw performance indicator was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional performance indicators were calculated from the dataset and included in the analysis. Cohen's d effect sizes were employed to determine the magnitude of the differences between Wins and Losses, while decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses (DFA) were used to classify outcome (Win and Loss). Effect size comparisons revealed differences between Wins and Losses across a number of performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance indicators were the most influential in explaining outcome. The decision tree models also revealed multiple combinations of performance indicators leading to victory. The decision tree analyses suggest that grappling activity and technique accuracy are of particular importance in achieving victory in elite-level MMA competition. The DFA results supported the importance of these performance indicators. Decision tree induction represents an intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared to DFA. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Safety validation of decision trees for hepatocellular carcinoma.
Wang, Xian-Qiang; Liu, Zhe; Lv, Wen-Ping; Luo, Ying; Yang, Guang-Yun; Li, Chong-Hui; Meng, Xiang-Fei; Liu, Yang; Xu, Ke-Sen; Dong, Jia-Hong
2015-08-21
To evaluate a different decision tree for safe liver resection and verify its efficiency. A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital, and 634 hepatocellular carcinoma (HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure (PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L (the "50-50" criteria), which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree, Tokyo University-Makuuchi decision tree, and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence, and the PHLF rates were recorded. The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the Swiss-Clavien, Tokyo University-Makuuchi, and Chinese consensus decision trees were applied were 581, 573, and 622, and the PHLF rates were 2.75%, 2.62%, and 2.73%, respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree (P < 0.01,P < 0.01); nevertheless, the latter two shared no difference (P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees. The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo University-Makuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.
Ramezankhani, Azra; Pournik, Omid; Shahrabi, Jamal; Khalili, Davood; Azizi, Fereidoun; Hadaegh, Farzad
2014-09-01
The aim of this study was to create a prediction model using data mining approach to identify low risk individuals for incidence of type 2 diabetes, using the Tehran Lipid and Glucose Study (TLGS) database. For a 6647 population without diabetes, aged ≥20 years, followed for 12 years, a prediction model was developed using classification by the decision tree technique. Seven hundred and twenty-nine (11%) diabetes cases occurred during the follow-up. Predictor variables were selected from demographic characteristics, smoking status, medical and drug history and laboratory measures. We developed the predictive models by decision tree using 60 input variables and one output variable. The overall classification accuracy was 90.5%, with 31.1% sensitivity, 97.9% specificity; and for the subjects without diabetes, precision and f-measure were 92% and 0.95, respectively. The identified variables included fasting plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of diabetes, educational level and job status. In conclusion, decision tree analysis, using routine demographic, clinical, anthropometric and laboratory measurements, created a simple tool to predict individuals at low risk for type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Data mining for multiagent rules, strategies, and fuzzy decision tree structure
NASA Astrophysics Data System (ADS)
Smith, James F., III; Rhyne, Robert D., II; Fisher, Kristin
2002-03-01
A fuzzy logic based resource manager (RM) has been developed that automatically allocates electronic attack resources in real-time over many dissimilar platforms. Two different data mining algorithms have been developed to determine rules, strategies, and fuzzy decision tree structure. The first data mining algorithm uses a genetic algorithm as a data mining function and is called from an electronic game. The game allows a human expert to play against the resource manager in a simulated battlespace with each of the defending platforms being exclusively directed by the fuzzy resource manager and the attacking platforms being controlled by the human expert or operating autonomously under their own logic. This approach automates the data mining problem. The game automatically creates a database reflecting the domain expert's knowledge. It calls a data mining function, a genetic algorithm, for data mining of the database as required and allows easy evaluation of the information mined in the second step. The criterion for re- optimization is discussed as well as experimental results. Then a second data mining algorithm that uses a genetic program as a data mining function is introduced to automatically discover fuzzy decision tree structures. Finally, a fuzzy decision tree generated through this process is discussed.
Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%. PMID:25302338
Chen, Suduan; Goo, Yeong-Jia James; Shen, Zone-De
2014-01-01
As the fraudulent financial statement of an enterprise is increasingly serious with each passing day, establishing a valid forecasting fraudulent financial statement model of an enterprise has become an important question for academic research and financial practice. After screening the important variables using the stepwise regression, the study also matches the logistic regression, support vector machine, and decision tree to construct the classification models to make a comparison. The study adopts financial and nonfinancial variables to assist in establishment of the forecasting fraudulent financial statement model. Research objects are the companies to which the fraudulent and nonfraudulent financial statement happened between years 1998 to 2012. The findings are that financial and nonfinancial information are effectively used to distinguish the fraudulent financial statement, and decision tree C5.0 has the best classification effect 85.71%.
Health and climate related ecosystem services provided by street trees in the urban environment.
Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W
2016-03-08
Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
Using Unix system auditing for detecting network intrusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, M.J.
1993-03-01
Intrusion Detection Systems (IDSs) are designed to detect actions of individuals who use computer resources without authorization as well as legitimate users who exceed their privileges. This paper describes a novel approach to IDS research, namely a decision aiding approach to intrusion detection. The introduction of a decision tree represents the logical steps necessary to distinguish and identify different types of attacks. This tool, the Intrusion Decision Aiding Tool (IDAT), utilizes IDS-based attack models and standard Unix audit data. Since attacks have certain characteristics and are based on already developed signature attack models, experienced and knowledgeable Unix system administrators knowmore » what to look for in system audit logs to determine if a system has been attacked. Others, however, are usually less able to recognize common signatures of unauthorized access. Users can traverse the tree using available audit data displayed by IDAT and general knowledge they possess to reach a conclusion regarding suspicious activity. IDAT is an easy-to-use window based application that gathers, analyzes, and displays pertinent system data according to Unix attack characteristics. IDAT offers a more practical approach and allows the user to make an informed decision regarding suspicious activity.« less
A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.
Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A
2018-01-01
In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.
Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif
2017-01-01
Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.
Effective Rating Scale Development for Speaking Tests: Performance Decision Trees
ERIC Educational Resources Information Center
Fulcher, Glenn; Davidson, Fred; Kemp, Jenny
2011-01-01
Rating scale design and development for testing speaking is generally conducted using one of two approaches: the measurement-driven approach or the performance data-driven approach. The measurement-driven approach prioritizes the ordering of descriptors onto a single scale. Meaning is derived from the scaling methodology and the agreement of…
Extensions and applications of ensemble-of-trees methods in machine learning
NASA Astrophysics Data System (ADS)
Bleich, Justin
Ensemble-of-trees algorithms have emerged to the forefront of machine learning due to their ability to generate high forecasting accuracy for a wide array of regression and classification problems. Classic ensemble methodologies such as random forests (RF) and stochastic gradient boosting (SGB) rely on algorithmic procedures to generate fits to data. In contrast, more recent ensemble techniques such as Bayesian Additive Regression Trees (BART) and Dynamic Trees (DT) focus on an underlying Bayesian probability model to generate the fits. These new probability model-based approaches show much promise versus their algorithmic counterparts, but also offer substantial room for improvement. The first part of this thesis focuses on methodological advances for ensemble-of-trees techniques with an emphasis on the more recent Bayesian approaches. In particular, we focus on extensions of BART in four distinct ways. First, we develop a more robust implementation of BART for both research and application. We then develop a principled approach to variable selection for BART as well as the ability to naturally incorporate prior information on important covariates into the algorithm. Next, we propose a method for handling missing data that relies on the recursive structure of decision trees and does not require imputation. Last, we relax the assumption of homoskedasticity in the BART model to allow for parametric modeling of heteroskedasticity. The second part of this thesis returns to the classic algorithmic approaches in the context of classification problems with asymmetric costs of forecasting errors. First we consider the performance of RF and SGB more broadly and demonstrate its superiority to logistic regression for applications in criminology with asymmetric costs. Next, we use RF to forecast unplanned hospital readmissions upon patient discharge with asymmetric costs taken into account. Finally, we explore the construction of stable decision trees for forecasts of violence during probation hearings in court systems.
Interpretable Categorization of Heterogeneous Time Series Data
NASA Technical Reports Server (NTRS)
Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua
2017-01-01
We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.
Aydin, Ilhan; Karakose, Mehmet; Akin, Erhan
2014-03-01
Although reconstructed phase space is one of the most powerful methods for analyzing a time series, it can fail in fault diagnosis of an induction motor when the appropriate pre-processing is not performed. Therefore, boundary analysis based a new feature extraction method in phase space is proposed for diagnosis of induction motor faults. The proposed approach requires the measurement of one phase current signal to construct the phase space representation. Each phase space is converted into an image, and the boundary of each image is extracted by a boundary detection algorithm. A fuzzy decision tree has been designed to detect broken rotor bars and broken connector faults. The results indicate that the proposed approach has a higher recognition rate than other methods on the same dataset. © 2013 ISA Published by ISA All rights reserved.
Case-based explanation of non-case-based learning methods.
Caruana, R.; Kangarloo, H.; Dionisio, J. D.; Sinha, U.; Johnson, D.
1999-01-01
We show how to generate case-based explanations for non-case-based learning methods such as artificial neural nets or decision trees. The method uses the trained model (e.g., the neural net or the decision tree) as a distance metric to determine which cases in the training set are most similar to the case that needs to be explained. This approach is well suited to medical domains, where it is important to understand predictions made by complex machine learning models, and where training and clinical practice makes users adept at case interpretation. PMID:10566351
Decision-Tree Formulation With Order-1 Lateral Execution
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index
Protein attributes contribute to halo-stability, bioinformatics approach
2011-01-01
Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393
Bayesian averaging over Decision Tree models for trauma severity scoring.
Schetinin, V; Jakaite, L; Krzanowski, W
2018-01-01
Health care practitioners analyse possible risks of misleading decisions and need to estimate and quantify uncertainty in predictions. We have examined the "gold" standard of screening a patient's conditions for predicting survival probability, based on logistic regression modelling, which is used in trauma care for clinical purposes and quality audit. This methodology is based on theoretical assumptions about data and uncertainties. Models induced within such an approach have exposed a number of problems, providing unexplained fluctuation of predicted survival and low accuracy of estimating uncertainty intervals within which predictions are made. Bayesian method, which in theory is capable of providing accurate predictions and uncertainty estimates, has been adopted in our study using Decision Tree models. Our approach has been tested on a large set of patients registered in the US National Trauma Data Bank and has outperformed the standard method in terms of prediction accuracy, thereby providing practitioners with accurate estimates of the predictive posterior densities of interest that are required for making risk-aware decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.
2017-09-01
Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.
Tayefi, Maryam; Tajfard, Mohammad; Saffar, Sara; Hanachi, Parichehr; Amirabadizadeh, Ali Reza; Esmaeily, Habibollah; Taghipour, Ali; Ferns, Gordon A; Moohebati, Mohsen; Ghayour-Mobarhan, Majid
2017-04-01
Coronary heart disease (CHD) is an important public health problem globally. Algorithms incorporating the assessment of clinical biomarkers together with several established traditional risk factors can help clinicians to predict CHD and support clinical decision making with respect to interventions. Decision tree (DT) is a data mining model for extracting hidden knowledge from large databases. We aimed to establish a predictive model for coronary heart disease using a decision tree algorithm. Here we used a dataset of 2346 individuals including 1159 healthy participants and 1187 participant who had undergone coronary angiography (405 participants with negative angiography and 782 participants with positive angiography). We entered 10 variables of a total 12 variables into the DT algorithm (including age, sex, FBG, TG, hs-CRP, TC, HDL, LDL, SBP and DBP). Our model could identify the associated risk factors of CHD with sensitivity, specificity, accuracy of 96%, 87%, 94% and respectively. Serum hs-CRP levels was at top of the tree in our model, following by FBG, gender and age. Our model appears to be an accurate, specific and sensitive model for identifying the presence of CHD, but will require validation in prospective studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Esmaily, Habibollah; Tayefi, Maryam; Doosti, Hassan; Ghayour-Mobarhan, Majid; Nezami, Hossein; Amirabadizadeh, Alireza
2018-04-24
We aimed to identify the associated risk factors of type 2 diabetes mellitus (T2DM) using data mining approach, decision tree and random forest techniques using the Mashhad Stroke and Heart Atherosclerotic Disorders (MASHAD) Study program. A cross-sectional study. The MASHAD study started in 2010 and will continue until 2020. Two data mining tools, namely decision trees, and random forests, are used for predicting T2DM when some other characteristics are observed on 9528 subjects recruited from MASHAD database. This paper makes a comparison between these two models in terms of accuracy, sensitivity, specificity and the area under ROC curve. The prevalence rate of T2DM was 14% among these subjects. The decision tree model has 64.9% accuracy, 64.5% sensitivity, 66.8% specificity, and area under the ROC curve measuring 68.6%, while the random forest model has 71.1% accuracy, 71.3% sensitivity, 69.9% specificity, and area under the ROC curve measuring 77.3% respectively. The random forest model, when used with demographic, clinical, and anthropometric and biochemical measurements, can provide a simple tool to identify associated risk factors for type 2 diabetes. Such identification can substantially use for managing the health policy to reduce the number of subjects with T2DM .
Beauregard, Eric; Deslauriers-Varin, Nadine; St-Yves, Michel
2010-09-01
Most studies of confessions have looked at the influence of individual factors, neglecting the potential interactions between these factors and their impact on the decision to confess or not during an interrogation. Classification and regression tree analyses conducted on a sample of 624 convicted sex offenders showed that certain factors related to the offenders (e.g., personality, criminal career), victims (e.g., sex, relationship to offender), and case (e.g., time of day of the crime) were related to the decision to confess or not during the police interrogation. Several interactions were also observed between these factors. Results will be discussed in light of previous findings and interrogation strategies for sex offenders.
Purvis, Dianna; Aldaghlas, Tayseer; Trickey, Amber W; Rizzo, Anne; Sikdar, Siddhartha
2013-06-01
Early detection and treatment of blunt cervical vascular injuries prevent adverse neurologic sequelae. Current screening criteria can miss up to 22% of these injuries. The study objective was to investigate bedside transcranial Doppler sonography for detecting blunt cervical vascular injuries in trauma patients using a novel decision tree approach. This prospective pilot study was conducted at a level I trauma center. Patients undergoing computed tomographic angiography for suspected blunt cervical vascular injuries were studied with transcranial Doppler sonography. Extracranial and intracranial vasculatures were examined with a portable power M-mode transcranial Doppler unit. The middle cerebral artery mean flow velocity, pulsatility index, and their asymmetries were used to quantify flow patterns and develop an injury decision tree screening protocol. Student t tests validated associations between injuries and transcranial Doppler predictive measures. We evaluated 27 trauma patients with 13 injuries. Single vertebral artery injuries were most common (38.5%), followed by single internal carotid artery injuries (30%). Compared to patients without injuries, mean flow velocity asymmetry was higher for single internal carotid artery (P = .003) and single vertebral artery (P = .004) injuries. Similarly, pulsatility index asymmetry was higher in single internal carotid artery (P = .015) and single vertebral artery (P = .042) injuries, whereas the lowest pulsatility index was elevated for bilateral vertebral artery injuries (P = .006). The decision tree yielded 92% specificity, 93% sensitivity, and 93% correct classifications. In this pilot feasibility study, transcranial Doppler measures were significantly associated with the blunt cervical vascular injury status, suggesting that transcranial Doppler sonography might be a viable bedside screening tool for trauma. Patient-specific hemodynamic information from transcranial Doppler assessment has the potential to alter patient care pathways to improve outcomes.
Angelis, Aris; Kanavos, Panos
2017-09-01
Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and become readily adaptable across different settings, the Advance Value Framework could be offered as a decision-support tool for evaluators and payers to aid coverage and reimbursement of new medicines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bennema, S C; Molento, M B; Scholte, R G; Carvalho, O S; Pritsch, I
2017-11-01
Fascioliasis is a condition caused by the trematode Fasciola hepatica. In this paper, the spatial distribution of F. hepatica in bovines in Brazil was modelled using a decision tree approach and a logistic regression, combined with a geographic information system (GIS) query. In the decision tree and the logistic model, isothermality had the strongest influence on disease prevalence. Also, the 50-year average precipitation in the warmest quarter of the year was included as a risk factor, having a negative influence on the parasite prevalence. The risk maps developed using both techniques, showed a predicted higher prevalence mainly in the South of Brazil. The prediction performance seemed to be high, but both techniques failed to reach a high accuracy in predicting the medium and high prevalence classes to the entire country. The GIS query map, based on the range of isothermality, minimum temperature of coldest month, precipitation of warmest quarter of the year, altitude and the average dailyland surface temperature, showed a possibility of presence of F. hepatica in a very large area. The risk maps produced using these methods can be used to focus activities of animal and public health programmes, even on non-evaluated F. hepatica areas.
Joseph Buongiorno
2001-01-01
Faustmann's formula gives the land value, or the forest value of land with trees, under deterministic assumptions regarding future stand growth and prices, over an infinite horizon. Markov decision process (MDP) models generalize Faustmann's approach by recognizing that future stand states and prices are known only as probabilistic distributions. The...
Efficient discovery of risk patterns in medical data.
Li, Jiuyong; Fu, Ada Wai-chee; Fahey, Paul
2009-01-01
This paper studies a problem of efficiently discovering risk patterns in medical data. Risk patterns are defined by a statistical metric, relative risk, which has been widely used in epidemiological research. To avoid fruitless search in the complete exploration of risk patterns, we define optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns with lower relative risk than their corresponding simpler form patterns. We prove that mining optimal risk pattern sets conforms an anti-monotone property that supports an efficient mining algorithm. We propose an efficient algorithm for mining optimal risk pattern sets based on this property. We also propose a hierarchical structure to present discovered patterns for the easy perusal by domain experts. The proposed approach is compared with two well-known rule discovery methods, decision tree and association rule mining approaches on benchmark data sets and applied to a real world application. The proposed method discovers more and better quality risk patterns than a decision tree approach. The decision tree method is not designed for such applications and is inadequate for pattern exploring. The proposed method does not discover a large number of uninteresting superfluous patterns as an association mining approach does. The proposed method is more efficient than an association rule mining method. A real world case study shows that the method reveals some interesting risk patterns to medical practitioners. The proposed method is an efficient approach to explore risk patterns. It quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large data set. The proposed method is useful for exploratory study on large medical data to generate and refine hypotheses. The method is also useful for designing medical surveillance systems.
VC-dimension of univariate decision trees.
Yildiz, Olcay Taner
2015-02-01
In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.
The Decision Tree: A Tool for Achieving Behavioral Change.
ERIC Educational Resources Information Center
Saren, Dru
1999-01-01
Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…
Lee, Daniel Joseph; Veneri, Diana A
2018-05-01
The most common complaint lower limb prosthesis users report is inadequacy of a proper socket fit. Adjustments to the residual limb-socket interface can be made by the prosthesis user without consultation of a clinician in many scenarios through skilled self-management. Decision trees guide prosthesis wearers through the self-management process, empowering them to rectify fit issues, or referring them to a clinician when necessary. This study examines the development and acceptability testing of patient-centered decision trees for lower limb prosthesis users. Decision trees underwent a four-stage process: literature review and expert consultation, designing, two-rounds of expert panel review and revisions, and target audience testing. Fifteen lower limb prosthesis users (average age 61 years) reviewed the decision trees and completed an acceptability questionnaire. Participants reported agreement of 80% or above in five of the eight questions related to acceptability of the decision trees. Disagreement was related to the level of experience of the respondent. Decision trees were found to be easy to use, illustrate correct solutions to common issues, and have terminology consistent with that of a new prosthesis user. Some users with greater than 1.5 years of experience would not use the decision trees based on their own self-management skills. Implications for Rehabilitation Discomfort of the residual limb-prosthetic socket interface is the most common reason for clinician visits. Prosthesis users can use decision trees to guide them through the process of obtaining a proper socket fit independently. Newer users may benefit from using the decision trees more than experienced users.
Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael
2015-08-01
The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.
Bevilacqua, M; Ciarapica, F E; Giacchetta, G
2008-07-01
This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.
Model-Based Design of Tree WSNs for Decentralized Detection.
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-08-20
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches.
Creating ensembles of decision trees through sampling
Kamath, Chandrika; Cantu-Paz, Erick
2005-08-30
A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.
Goodman, Katherine E; Lessler, Justin; Cosgrove, Sara E; Harris, Anthony D; Lautenbach, Ebbing; Han, Jennifer H; Milstone, Aaron M; Massey, Colin J; Tamma, Pranita D
2016-10-01
Timely identification of extended-spectrum β-lactamase (ESBL) bacteremia can improve clinical outcomes while minimizing unnecessary use of broad-spectrum antibiotics, including carbapenems. However, most clinical microbiology laboratories currently require at least 24 additional hours from the time of microbial genus and species identification to confirm ESBL production. Our objective was to develop a user-friendly decision tree to predict which organisms are ESBL producing, to guide appropriate antibiotic therapy. We included patients ≥18 years of age with bacteremia due to Escherichia coli or Klebsiella species from October 2008 to March 2015 at Johns Hopkins Hospital. Isolates with ceftriaxone minimum inhibitory concentrations ≥2 µg/mL underwent ESBL confirmatory testing. Recursive partitioning was used to generate a decision tree to determine the likelihood that a bacteremic patient was infected with an ESBL producer. Discrimination of the original and cross-validated models was evaluated using receiver operating characteristic curves and by calculation of C-statistics. A total of 1288 patients with bacteremia met eligibility criteria. For 194 patients (15%), bacteremia was due to a confirmed ESBL producer. The final classification tree for predicting ESBL-positive bacteremia included 5 predictors: history of ESBL colonization/infection, chronic indwelling vascular hardware, age ≥43 years, recent hospitalization in an ESBL high-burden region, and ≥6 days of antibiotic exposure in the prior 6 months. The decision tree's positive and negative predictive values were 90.8% and 91.9%, respectively. Our findings suggest that a clinical decision tree can be used to estimate a bacteremic patient's likelihood of infection with ESBL-producing bacteria. Recursive partitioning offers a practical, user-friendly approach for addressing important diagnostic questions. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.
Hor, Soheil; Moradi, Mehdi
2016-12-01
Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.
Sankari, E Siva; Manimegalai, D
2017-12-21
Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.
2017-12-01
Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.
Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.
Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert
2015-11-01
Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.
Multi-test decision tree and its application to microarray data classification.
Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek
2014-05-01
The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees
NASA Astrophysics Data System (ADS)
Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.
2017-05-01
Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
NASA Astrophysics Data System (ADS)
Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.
2016-11-01
The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.
Probabilistic, meso-scale flood loss modelling
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2016-04-01
Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.
Model-Based Design of Tree WSNs for Decentralized Detection †
Tantawy, Ashraf; Koutsoukos, Xenofon; Biswas, Gautam
2015-01-01
The classical decentralized detection problem of finding the optimal decision rules at the sensor and fusion center, as well as variants that introduce physical channel impairments have been studied extensively in the literature. The deployment of WSNs in decentralized detection applications brings new challenges to the field. Protocols for different communication layers have to be co-designed to optimize the detection performance. In this paper, we consider the communication network design problem for a tree WSN. We pursue a system-level approach where a complete model for the system is developed that captures the interactions between different layers, as well as different sensor quality measures. For network optimization, we propose a hierarchical optimization algorithm that lends itself to the tree structure, requiring only local network information. The proposed design approach shows superior performance over several contentionless and contention-based network design approaches. PMID:26307989
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-02-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling
NASA Astrophysics Data System (ADS)
Galelli, S.; Castelletti, A.
2013-07-01
Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.
NASA Technical Reports Server (NTRS)
Sheridan, Thomas B.; Roseborough, James B.; Das, Hari; Chin, Kan-Ping; Inoue, Seiichi
1989-01-01
Four separate projects recently completed or in progress at the MIT Man-Machine Systems Laboratory are summarized. They are: a decision aid for retrieving a tumbling satellite in space; kinematic control and graphic display of redundant teleoperators; real time terrain/object generation: a quad-tree approach; and two dimensional control for three dimensional obstacle avoidance.
Using histograms to introduce randomization in the generation of ensembles of decision trees
Kamath, Chandrika; Cantu-Paz, Erick; Littau, David
2005-02-22
A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.
Linearly Adjustable International Portfolios
NASA Astrophysics Data System (ADS)
Fonseca, R. J.; Kuhn, D.; Rustem, B.
2010-09-01
We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.
Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine
NASA Technical Reports Server (NTRS)
Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.
2009-01-01
The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.
Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin
2015-08-01
Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.
Meta-Learning Approach for Automatic Parameter Tuning: A Case Study with Educational Datasets
ERIC Educational Resources Information Center
Molina, M. M.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes to the use of a meta-learning approach for automatic parameter tuning of a well-known decision tree algorithm by using past information about algorithm executions. Fourteen educational datasets were analysed using various combinations of parameter values to examine the effects of the parameter values on accuracy classification.…
ERIC Educational Resources Information Center
Hill, George B.; Sweeney, Joseph B.
2015-01-01
Reaction workup can be a complex problem for those facing novel synthesis of difficult compounds for the first time. Workup problem solving by systematic thinking should be inculcated as mid-graduate-level is reached. A structured approach is proposed, building decision tree flowcharts to analyze challenges, and an exemplar flowchart is presented…
A Decision Tree for Psychology Majors: Supplying Questions as Well as Answers.
ERIC Educational Resources Information Center
Poe, Retta E.
1988-01-01
Outlines the development of a psychology careers decision tree to help faculty advise students plan their program. States that students using the decision tree may benefit by learning more about their career options and by acquiring better question-asking skills. (GEA)
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Trainee Characteristics and Perceptions of HIV/AIDS Training Quality.
ERIC Educational Resources Information Center
Panter, A. T.; Huba, G. J.; Melchior, Lisa A.; Anderson, Donna; Driscoll, Mary; German, Victor F.; Henderson, Harold; Henderson, Ron; Lalonde, Bernadette; Uldall, Karnina K.; Zalumas, Jacqueline
2000-01-01
Reports findings from 7 HIV/AIDS education and training projects involving more than 600 training sessions. Trainee characteristics were related to their assessments of training quality, using a regression decision-tree analytic approach. Discusses implications for curriculum development. (SLD)
Parker, G; McCraw, S; Hadzi-Pavlovic, D
2015-07-15
Studies suggest that differentiating melancholic from non-melancholic depressive disorders is advanced by use of illness course as well as symptom variables but, in practice, potentially differentiating variables are generally positioned as having equal value. Judging that differentiating features are more likely to vary in their signal intensity, we sought to determine the number of features required to effect differentiation and their hierarchical order. The 24-item clinician-rated Sydney Melancholia Prototype Index (SMPI-CR) was completed for 364 unipolar depressed patients. The sample was divided into two cohorts according to the recruitment period. An RPART classification tree analysis identified the most discriminating SMPI items in the development sample of 197 patients, and examined the sensitivity and specificity of the diagnostic decisions, then sought to replicate findings in a validation sample of 169 patients. Independent analyses of putative SMPI items identified only seven items as required to discriminate those with clinically-diagnosed melancholic or non-melancholic depression when the conditions were examined separately. An RPART analysis considering differentiation of melancholic and non-melancholic depression in the total samples retained five of those items in the classification tree, three of which were non-symptom items, and with 92% sensitivity and 80% specificity in the development sample. This reduced item set showed 93% sensitivity and 82% specificity in the validation sample. Our clinical judgment of melancholic or non-melancholic depression may not correspond with the clinical logic employed by other clinicians. Only five SMPI items were required to derive a succinct and efficient decision tree, comprising high sensitivity and specificity in differentiating melancholic and non-melancholic depression. Current study findings provide an empirical model that could enrich clinicians׳ approach to differentiating melancholic and non-melancholic depression. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery
2007-09-21
a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios
PVEX: An expert system for producibility/value engineering
NASA Technical Reports Server (NTRS)
Lam, Chun S.; Moseley, Warren
1991-01-01
PVEX is described as an expert system that solves the problem of selection of the material and process in missile manufacturing. The producibility and the value problem has been deeply studied in the past years, and was written in dBase III and PROLOG before. A new approach is presented in that the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a stand-alone help facility and technical documentation is available through KMS. The system developed is considerably less development costly than any other comparable expert system.
Spam comments prediction using stacking with ensemble learning
NASA Astrophysics Data System (ADS)
Mehmood, Arif; On, Byung-Won; Lee, Ingyu; Ashraf, Imran; Choi, Gyu Sang
2018-01-01
Illusive comments of product or services are misleading for people in decision making. The current methodologies to predict deceptive comments are concerned for feature designing with single training model. Indigenous features have ability to show some linguistic phenomena but are hard to reveal the latent semantic meaning of the comments. We propose a prediction model on general features of documents using stacking with ensemble learning. Term Frequency/Inverse Document Frequency (TF/IDF) features are inputs to stacking of Random Forest and Gradient Boosted Trees and the outputs of the base learners are encapsulated with decision tree to make final training of the model. The results exhibits that our approach gives the accuracy of 92.19% which outperform the state-of-the-art method.
Creating ensembles of oblique decision trees with evolutionary algorithms and sampling
Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA
2006-06-13
A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.
The decision tree classifier - Design and potential. [for Landsat-1 data
NASA Technical Reports Server (NTRS)
Hauska, H.; Swain, P. H.
1975-01-01
A new classifier has been developed for the computerized analysis of remote sensor data. The decision tree classifier is essentially a maximum likelihood classifier using multistage decision logic. It is characterized by the fact that an unknown sample can be classified into a class using one or several decision functions in a successive manner. The classifier is applied to the analysis of data sensed by Landsat-1 over Kenosha Pass, Colorado. The classifier is illustrated by a tree diagram which for processing purposes is encoded as a string of symbols such that there is a unique one-to-one relationship between string and decision tree.
IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. W. Parry; J.A Forester; V.N. Dang
2013-09-01
This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure eventmore » (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.« less
Automated rule-base creation via CLIPS-Induce
NASA Technical Reports Server (NTRS)
Murphy, Patrick M.
1994-01-01
Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.
Decision tree methods: applications for classification and prediction.
Song, Yan-Yan; Lu, Ying
2015-04-25
Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.
A Decision-Tree Approach to Cost Comparison of Newborn Screening Strategies for Cystic Fibrosis
Wells, Janelle; Rosenberg, Marjorie; Hoffman, Gary; Anstead, Michael
2012-01-01
OBJECTIVE: Because cystic fibrosis can be difficult to diagnose and treat early, newborn screening programs have rapidly developed nationwide but methods vary widely. We therefore investigated the costs and consequences or specific outcomes of the 2 most commonly used methods. METHODS: With available data on screening and follow-up, we used a simulation approach with decision trees to compare immunoreactive trypsinogen (IRT) screening followed by a second IRT test against an IRT/DNA analysis. By using a Monte Carlo simulation program, variation in the model parameters for counts at various nodes of the decision trees, as well as for costs, are included and applied to fictional cohorts of 100 000 newborns. The outcome measures included the numbers of newborns given a diagnosis of cystic fibrosis and costs of screening strategy at each branch and cost per newborn. RESULTS: Simulations revealed a substantial number of potential missed diagnoses for the IRT/IRT system versus IRT/DNA. Although the IRT/IRT strategy with commonly used cutoff values offers an average overall cost savings of $2.30 per newborn, a breakdown of costs by societal segments demonstrated higher out-of-pocket costs for families. Two potential system failures causing delayed diagnoses were identified relating to the screening protocols and the follow-up system. CONCLUSIONS: The IRT/IRT screening algorithm reduces the costs to laboratories and insurance companies but has more system failures. IRT/DNA offers other advantages, including fewer delayed diagnoses and lower out-of-pocket costs to families. PMID:22291119
Setting Priorities for Monitoring and Managing Non-native Plants: Toward a Practical Approach.
Koch, Christiane; Jeschke, Jonathan M; Overbeck, Gerhard E; Kollmann, Johannes
2016-09-01
Land managers face the challenge to set priorities in monitoring and managing non-native plant species, as resources are limited and not all non-natives become invasive. Existing frameworks that have been proposed to rank non-native species require extensive information on their distribution, abundance, and impact. This information is difficult to obtain and often not available for many species and regions. National watch or priority lists are helpful, but it is questionable whether they provide sufficient information for environmental management on a regional scale. We therefore propose a decision tree that ranks species based on more simple albeit robust information, but still provides reliable management recommendations. To test the decision tree, we collected and evaluated distribution data from non-native plants in highland grasslands of Southern Brazil. We compared the results with a national list from the Brazilian Invasive Species Database for the state to discuss advantages and disadvantages of the different approaches on a regional scale. Out of 38 non-native species found, only four were also present on the national list. If management would solely rely on this list, many species that were identified as spreading based on the decision tree would go unnoticed. With the suggested scheme, it is possible to assign species to active management, to monitoring, or further evaluation. While national lists are certainly important, management on a regional scale should employ additional tools that adequately consider the actual risk of non-natives to become invasive.
Risk-Based Prioritization of Research for Aviation Security Using Logic-Evolved Decision Analysis
NASA Technical Reports Server (NTRS)
Eisenhawer, S. W.; Bott, T. F.; Sorokach, M. R.; Jones, F. P.; Foggia, J. R.
2004-01-01
The National Aeronautics and Space Administration is developing advanced technologies to reduce terrorist risk for the air transportation system. Decision support tools are needed to help allocate assets to the most promising research. An approach to rank ordering technologies (using logic-evolved decision analysis), with risk reduction as the metric, is presented. The development of a spanning set of scenarios using a logic-gate tree is described. Baseline risk for these scenarios is evaluated with an approximate reasoning model. Illustrative risk and risk reduction results are presented.
Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments
ERIC Educational Resources Information Center
Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.
2009-01-01
The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…
Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657
Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo
2015-01-01
Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.
Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity.
Clippinger, Amy J; Allen, David; Behrsing, Holger; BéruBé, Kelly A; Bolger, Michael B; Casey, Warren; DeLorme, Michael; Gaça, Marianna; Gehen, Sean C; Glover, Kyle; Hayden, Patrick; Hinderliter, Paul; Hotchkiss, Jon A; Iskandar, Anita; Keyser, Brian; Luettich, Karsta; Ma-Hock, Lan; Maione, Anna G; Makena, Patrudu; Melbourne, Jodie; Milchak, Lawrence; Ng, Sheung P; Paini, Alicia; Page, Kathryn; Patlewicz, Grace; Prieto, Pilar; Raabe, Hans; Reinke, Emily N; Roper, Clive; Rose, Jane; Sharma, Monita; Spoo, Wayne; Thorne, Peter S; Wilson, Daniel M; Jarabek, Annie M
2018-06-20
New approaches are needed to assess the effects of inhaled substances on human health. These approaches will be based on mechanisms of toxicity, an understanding of dosimetry, and the use of in silico modeling and in vitro test methods. In order to accelerate wider implementation of such approaches, development of adverse outcome pathways (AOPs) can help identify and address gaps in our understanding of relevant parameters for model input and mechanisms, and optimize non-animal approaches that can be used to investigate key events of toxicity. This paper describes the AOPs and the toolbox of in vitro and in silico models that can be used to assess the key events leading to toxicity following inhalation exposure. Because the optimal testing strategy will vary depending on the substance of interest, here we present a decision tree approach to identify an appropriate non-animal integrated testing strategy that incorporates consideration of a substance's physicochemical properties, relevant mechanisms of toxicity, and available in silico models and in vitro test methods. This decision tree can facilitate standardization of the testing approaches. Case study examples are presented to provide a basis for proof-of-concept testing to illustrate the utility of non-animal approaches to inform hazard identification and risk assessment of humans exposed to inhaled substances. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Ray, P. A.; Bonzanigo, L.; Taner, M. U.; Wi, S.; Yang, Y. C. E.; Brown, C.
2015-12-01
The Decision Tree Framework developed for the World Bank's Water Partnership Program provides resource-limited project planners and program managers with a cost-effective and effort-efficient, scientifically defensible, repeatable, and clear method for demonstrating the robustness of a project to climate change. At the conclusion of this process, the project planner is empowered to confidently communicate the method by which the vulnerabilities of the project have been assessed, and how the adjustments that were made (if any were necessary) improved the project's feasibility and profitability. The framework adopts a "bottom-up" approach to risk assessment that aims at a thorough understanding of a project's vulnerabilities to climate change in the context of other nonclimate uncertainties (e.g., economic, environmental, demographic, political). It helps identify projects that perform well across a wide range of potential future climate conditions, as opposed to seeking solutions that are optimal in expected conditions but fragile to conditions deviating from the expected. Lessons learned through application of the Decision Tree to case studies in Kenya and Nepal will be presented, and aspects of the framework requiring further refinement will be described.
Marquart, Hans; Meijster, Tim; Van de Bovenkamp, Marja; Ter Burg, Wouter; Spaan, Suzanne; Van Engelen, Jacqueline
2012-03-01
Exposure Based Waiving (EBW) is one of the options in REACH when there is insufficient hazard data on a specific endpoint. Rules for adaptation of test requirements are specified and a general option for EBW is given via Appendix XI of REACH, allowing waiving of repeated dose toxicity studies, reproductive toxicity studies and carcinogenicity studies under a number of conditions if exposure is very low. A decision tree is described that was developed in the European project OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-Test and Test Information) to help decide in what cases EBW can be justified. The decision tree uses specific criteria as well as more general questions. For the latter, guidance on interpretation and resulting conclusions is provided. Criteria and guidance are partly based on an expert elicitation process. Among the specific criteria a number of proposed Thresholds of Toxicological Concern are used. The decision tree, expanded with specific parts on absorption, distribution, metabolism and excretion that are not described in this paper, is implemented in the OSIRIS webtool on integrated testing strategies. Copyright © 2011 Elsevier Inc. All rights reserved.
Delgado-Gomez, D; Baca-Garcia, E; Aguado, D; Courtet, P; Lopez-Castroman, J
2016-12-01
Several Computerized Adaptive Tests (CATs) have been proposed to facilitate assessments in mental health. These tests are built in a standard way, disregarding useful and usually available information not included in the assessment scales that could increase the precision and utility of CATs, such as the history of suicide attempts. Using the items of a previously developed scale for suicidal risk, we compared the performance of a standard CAT and a decision tree in a support decision system to identify suicidal behavior. We included the history of past suicide attempts as a class for the separation of patients in the decision tree. The decision tree needed an average of four items to achieve a similar accuracy than a standard CAT with nine items. The accuracy of the decision tree, obtained after 25 cross-validations, was 81.4%. A shortened test adapted for the separation of suicidal and non-suicidal patients was developed. CATs can be very useful tools for the assessment of suicidal risk. However, standard CATs do not use all the information that is available. A decision tree can improve the precision of the assessment since they are constructed using a priori information. Copyright © 2016 Elsevier B.V. All rights reserved.
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat
2015-01-01
Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.
Brass, E P; Lofstedt, R; Renn, O
2011-12-01
Nonprescription drugs pose unique challenges to regulators. The fact that the barriers to access are lower for nonprescription drugs as compared with prescription drugs may permit additional consumers to obtain effective drugs. However, the use of these drugs by consumers in the absence of supervision by a health-care professional may result in unacceptable rates of misuse and suboptimal clinical outcomes. A value-tree method is proposed that defines important benefit and risk domains relevant to nonprescription drugs. This value tree can be used to comprehensively identify product-specific attributes in each domain and can also support formal benefit-risk assessment using a variety of tools. This is illustrated here, using a modification of the International Risk Governance Council (IRGC) framework, a flexible tool previously applied in a number of fields, which systematizes an approach to issue review, early alignment of stakeholders, evaluation, and risk mitigation/management. The proposed approach has the potential to provide structured, transparent tools for regulatory decision making for nonprescription drugs.
i-Tree: Tools to assess and manage structure, function, and value of community forests
NASA Astrophysics Data System (ADS)
Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.
2011-12-01
Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.
Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling.
Nakas, Christos T; Schütz, Narayan; Werners, Marcus; Leichtle, Alexander B
2016-01-01
Electronic Health Record (EHR) data can be a key resource for decision-making support in clinical practice in the "big data" era. The complete database from early 2012 to late 2015 involving hospital admissions to Inselspital Bern, the largest Swiss University Hospital, was used in this study, involving over 100,000 admissions. Age, sex, and initial laboratory test results were the features/variables of interest for each admission, the outcome being inpatient mortality. Computational decision support systems were utilized for the calculation of the risk of inpatient mortality. We assessed the recently proposed Acute Laboratory Risk of Mortality Score (ALaRMS) model, and further built generalized linear models, generalized estimating equations, artificial neural networks, and decision tree systems for the predictive modeling of the risk of inpatient mortality. The Area Under the ROC Curve (AUC) for ALaRMS marginally corresponded to the anticipated accuracy (AUC = 0.858). Penalized logistic regression methodology provided a better result (AUC = 0.872). Decision tree and neural network-based methodology provided even higher predictive performance (up to AUC = 0.912 and 0.906, respectively). Additionally, decision tree-based methods can efficiently handle Electronic Health Record (EHR) data that have a significant amount of missing records (in up to >50% of the studied features) eliminating the need for imputation in order to have complete data. In conclusion, we show that statistical learning methodology can provide superior predictive performance in comparison to existing methods and can also be production ready. Statistical modeling procedures provided unbiased, well-calibrated models that can be efficient decision support tools for predicting inpatient mortality and assigning preventive measures.
NASA Technical Reports Server (NTRS)
Shiffman, Smadar
2004-01-01
Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.
Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree
NASA Astrophysics Data System (ADS)
Wahyuni, Sri
2018-03-01
Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.
An Improved Decision Tree for Predicting a Major Product in Competing Reactions
ERIC Educational Resources Information Center
Graham, Kate J.
2014-01-01
When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…
Decision Tree Phytoremediation
1999-12-01
aromatic hydrocarbons, and landfill leachates . Phytoremediation has been used for point and nonpoint source hazardous waste control. 1.2 Types of... Phytoremediation Prepared by Interstate Technology and Regulatory Cooperation Work Group Phytoremediation Work Team December 1999 Decision Tree...1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Phytoremediation Decision Tree 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.
2014-01-01
Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187
Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman
2013-06-01
To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.
Application of preprocessing filtering on Decision Tree C4.5 and rough set theory
NASA Astrophysics Data System (ADS)
Chan, Joseph C. C.; Lin, Tsau Y.
2001-03-01
This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.
Heuristics: foundations for a novel approach to medical decision making.
Bodemer, Nicolai; Hanoch, Yaniv; Katsikopoulos, Konstantinos V
2015-03-01
Medical decision-making is a complex process that often takes place during uncertainty, that is, when knowledge, time, and resources are limited. How can we ensure good decisions? We present research on heuristics-simple rules of thumb-and discuss how medical decision-making can benefit from these tools. We challenge the common view that heuristics are only second-best solutions by showing that they can be more accurate, faster, and easier to apply in comparison to more complex strategies. Using the example of fast-and-frugal decision trees, we illustrate how heuristics can be studied and implemented in the medical context. Finally, we suggest how a heuristic-friendly culture supports the study and application of heuristics as complementary strategies to existing decision rules.
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
Hybridization and endangered species protection in the molecular era.
Wayne, Robert K; Shaffer, H Bradley
2016-06-01
After decades of discussion, there is little consensus on the extent to which hybrids between endangered and nonendangered species should be protected by US law. As increasingly larger, genome-scale data sets are developed, we can identify individuals and populations with even trace levels of genetic admixture, making the 'hybrid problem' all the more difficult. We developed a decision-tree framework for evaluating hybrid protection, including both the processes that produced hybrids (human-mediated or natural) and the ecological impact of hybrids on natural ecosystems. We then evaluated our decision tree for four case studies drawn from our own work and briefly discuss several other cases from the literature. Throughout, we highlight the management outcomes that our approach provides and the nuances of hybridization as a conservation problem. © 2016 John Wiley & Sons Ltd.
Multivariate analysis of flow cytometric data using decision trees.
Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver
2012-01-01
Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.
NASA Astrophysics Data System (ADS)
Freeman, Mary Pyott
ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.
A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928
A neuro-fuzzy approach in the classification of students' academic performance.
Do, Quang Hung; Chen, Jeng-Fung
2013-01-01
Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
15 CFR Supplement 1 to Part 732 - Decision Tree
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...
15 CFR Supplement No 1 to Part 732 - Decision Tree
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...
15 CFR Supplement No 1 to Part 732 - Decision Tree
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...
15 CFR Supplement 1 to Part 732 - Decision Tree
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...
15 CFR Supplement 1 to Part 732 - Decision Tree
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...
Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree
NASA Astrophysics Data System (ADS)
Kim, Jong Kyu; Kim, Nam Soo
In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.
Activity classification using realistic data from wearable sensors.
Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka
2006-01-01
Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.
A universal hybrid decision tree classifier design for human activity classification.
Chien, Chieh; Pottie, Gregory J
2012-01-01
A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.
Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang
2014-02-01
During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stonecipher, Karl; Parrish, Joseph; Stonecipher, Megan
2018-05-18
This review is intended to update and educate the reader on the currently available options for laser vision correction, more specifically, laser-assisted in-situ keratomileusis (LASIK). In addition, some related clinical outcomes data from over 1000 cases performed over a 1-year are presented to highlight some differences between the various treatment profiles currently available including the rapidity of visual recovery. The cases in question were performed on the basis of a decision tree to segregate patients on the basis of anatomical, topographic and aberrometry findings; the decision tree was formulated based on the data available in some of the reviewed articles. Numerous recent studies reported in the literature provide data related to the risks and benefits of LASIK; alternatives to a laser refractive procedure are also discussed. The results from these studies have been used to prepare a decision tree to assist the surgeon in choosing the best option for the patient based on the data from several standard preoperative diagnostic tests. The data presented here should aid surgeons in understanding the effects of currently available LASIK treatment profiles. Surgeons should also be able to appreciate how the findings were used to create a decision tree to help choose the most appropriate treatment profile for patients. Finally, the retrospective evaluation of clinical outcomes based on the decision tree should provide surgeons with a realistic expectation for their own outcomes should they adopt such a decision tree in their own practice.
Fraccaro, Paolo; Nicolo, Massimo; Bonetto, Monica; Giacomini, Mauro; Weller, Peter; Traverso, Carlo Enrico; Prosperi, Mattia; OSullivan, Dympna
2015-01-27
To investigate machine learning methods, ranging from simpler interpretable techniques to complex (non-linear) "black-box" approaches, for automated diagnosis of Age-related Macular Degeneration (AMD). Data from healthy subjects and patients diagnosed with AMD or other retinal diseases were collected during routine visits via an Electronic Health Record (EHR) system. Patients' attributes included demographics and, for each eye, presence/absence of major AMD-related clinical signs (soft drusen, retinal pigment epitelium, defects/pigment mottling, depigmentation area, subretinal haemorrhage, subretinal fluid, macula thickness, macular scar, subretinal fibrosis). Interpretable techniques known as white box methods including logistic regression and decision trees as well as less interpreitable techniques known as black box methods, such as support vector machines (SVM), random forests and AdaBoost, were used to develop models (trained and validated on unseen data) to diagnose AMD. The gold standard was confirmed diagnosis of AMD by physicians. Sensitivity, specificity and area under the receiver operating characteristic (AUC) were used to assess performance. Study population included 487 patients (912 eyes). In terms of AUC, random forests, logistic regression and adaboost showed a mean performance of (0.92), followed by SVM and decision trees (0.90). All machine learning models identified soft drusen and age as the most discriminating variables in clinicians' decision pathways to diagnose AMD. Both black-box and white box methods performed well in identifying diagnoses of AMD and their decision pathways. Machine learning models developed through the proposed approach, relying on clinical signs identified by retinal specialists, could be embedded into EHR to provide physicians with real time (interpretable) support.
NASA Astrophysics Data System (ADS)
Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian
2017-05-01
Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.
Classification of Liss IV Imagery Using Decision Tree Methods
NASA Astrophysics Data System (ADS)
Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.
2016-06-01
Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.
Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian
2017-05-01
Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.
Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H
2016-01-01
Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.
Simulation of California's Major Reservoirs Outflow Using Data Mining Technique
NASA Astrophysics Data System (ADS)
Yang, T.; Gao, X.; Sorooshian, S.
2014-12-01
The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.
Price, Paul; Zaleski, Rosemary; Hollnagel, Heli; Ketelslegers, Hans; Han, Xianglu
2014-01-01
Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture's toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
A survey of decision tree classifier methodology
NASA Technical Reports Server (NTRS)
Safavian, S. R.; Landgrebe, David
1991-01-01
Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.
A survey of decision tree classifier methodology
NASA Technical Reports Server (NTRS)
Safavian, S. Rasoul; Landgrebe, David
1990-01-01
Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.
2013-01-01
Background Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets. Results A multi-step decision tree-based method is described for defining endotypes based on gene expression, clinical covariates, and disease indicators using childhood asthma as a case study. We attempted to use alternative approaches such as the Student’s t-test, single data domain clustering and the Modk-prototypes algorithm, which incorporates multiple data domains into a single analysis and none performed as well as the novel multi-step decision tree method. This new method gave the best segregation of asthmatics and non-asthmatics, and it provides easy access to all genes and clinical covariates that distinguish the groups. Conclusions The multi-step decision tree method described here will lead to better understanding of complex disease in general by allowing purely data-driven disease endotypes to facilitate the discovery of new mechanisms underlying these diseases. This application should be considered a complement to ongoing efforts to better define and diagnose known endotypes. When coupled with existing methods developed to determine the genetics of gene expression, these methods provide a mechanism for linking genetics and exposomics data and thereby accounting for both major determinants of disease. PMID:24188919
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Using decision trees to understand structure in missing data
Tierney, Nicholas J; Harden, Fiona A; Harden, Maurice J; Mengersen, Kerrie L
2015-01-01
Objectives Demonstrate the application of decision trees—classification and regression trees (CARTs), and their cousins, boosted regression trees (BRTs)—to understand structure in missing data. Setting Data taken from employees at 3 different industrial sites in Australia. Participants 7915 observations were included. Materials and methods The approach was evaluated using an occupational health data set comprising results of questionnaires, medical tests and environmental monitoring. Statistical methods included standard statistical tests and the ‘rpart’ and ‘gbm’ packages for CART and BRT analyses, respectively, from the statistical software ‘R’. A simulation study was conducted to explore the capability of decision tree models in describing data with missingness artificially introduced. Results CART and BRT models were effective in highlighting a missingness structure in the data, related to the type of data (medical or environmental), the site in which it was collected, the number of visits, and the presence of extreme values. The simulation study revealed that CART models were able to identify variables and values responsible for inducing missingness. There was greater variation in variable importance for unstructured as compared to structured missingness. Discussion Both CART and BRT models were effective in describing structural missingness in data. CART models may be preferred over BRT models for exploratory analysis of missing data, and selecting variables important for predicting missingness. BRT models can show how values of other variables influence missingness, which may prove useful for researchers. Conclusions Researchers are encouraged to use CART and BRT models to explore and understand missing data. PMID:26124509
Foletti, Jean Marc; Graillon, Nicolas; Avignon, Simon; Guyot, Laurent; Chossegros, Cyrille
2018-01-01
To suggest a decision tree for the choice of the best minimally invasive technique to treat submandibular and parotid calculi, according to the diameter of the calculi and their position in the excretory duct. Submandibular and parotid ducts can both be divided into thirds, delineated by easily recognizable landmarks. The diameter of calculi is schematically classified into 1 of these 3 categories: floating, slightly impacted, or largely impacted. Using 3 criteria, the type of gland involved (G), the topography (T) of the calculus and its diameter (D), a 3-stage GTD classification of calculi was established. Next, the best indication for each available minimally invasive technique (sialendoscopy, transmucosal approach, a combined approach, intra- or extracorporeal stone fragmentation) was determined for each calculus stage. The minimally invasive treatment options are numerous and have replaced invasive resection surgical approaches (submandibulectomy and parotidectomy) in the management of salivary calculi, significantly improving the prognosis of these diseases. We emphasize the need for flexibility in the surgical indications and challenge the dogma of "all endoscopic" management of salivary calculi. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Improving clinical models based on knowledge extracted from current datasets: a new approach.
Mendes, D; Paredes, S; Rocha, T; Carvalho, P; Henriques, J; Morais, J
2016-08-01
The Cardiovascular Diseases (CVD) are the leading cause of death in the world, being prevention recognized to be a key intervention able to contradict this reality. In this context, although there are several models and scores currently used in clinical practice to assess the risk of a new cardiovascular event, they present some limitations. The goal of this paper is to improve the CVD risk prediction taking into account the current models as well as information extracted from real and recent datasets. This approach is based on a decision tree scheme in order to assure the clinical interpretability of the model. An innovative optimization strategy is developed in order to adjust the decision tree thresholds (rule structure is fixed) based on recent clinical datasets. A real dataset collected in the ambit of the National Registry on Acute Coronary Syndromes, Portuguese Society of Cardiology is applied to validate this work. In order to assess the performance of the new approach, the metrics sensitivity, specificity and accuracy are used. This new approach achieves sensitivity, a specificity and an accuracy values of, 80.52%, 74.19% and 77.27% respectively, which represents an improvement of about 26% in relation to the accuracy of the original score.
Incorporating the sampling design in weighting adjustments for panel attrition
Chen, Qixuan; Gelman, Andrew; Tracy, Melissa; Norris, Fran H.; Galea, Sandro
2015-01-01
We review weighting adjustment methods for panel attrition and suggest approaches for incorporating design variables, such as strata, clusters and baseline sample weights. Design information can typically be included in attrition analysis using multilevel models or decision tree methods such as the CHAID algorithm. We use simulation to show that these weighting approaches can effectively reduce bias in the survey estimates that would occur from omitting the effect of design factors on attrition while keeping the resulted weights stable. We provide a step-by-step illustration on creating weighting adjustments for panel attrition in the Galveston Bay Recovery Study, a survey of residents in a community following a disaster, and provide suggestions to analysts in decision making about weighting approaches. PMID:26239405
Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data
in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys
2016-01-01
The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177
A Decision Tree for Nonmetric Sex Assessment from the Skull.
Langley, Natalie R; Dudzik, Beatrix; Cloutier, Alesia
2018-01-01
This study uses five well-documented cranial nonmetric traits (glabella, mastoid process, mental eminence, supraorbital margin, and nuchal crest) and one additional trait (zygomatic extension) to develop a validated decision tree for sex assessment. The decision tree was built and cross-validated on a sample of 293 U.S. White individuals from the William M. Bass Donated Skeletal Collection. Ordinal scores from the six traits were analyzed using the partition modeling option in JMP Pro 12. A holdout sample of 50 skulls was used to test the model. The most accurate decision tree includes three variables: glabella, zygomatic extension, and mastoid process. This decision tree yielded 93.5% accuracy on the training sample, 94% on the cross-validated sample, and 96% on a holdout validation sample. Linear weighted kappa statistics indicate acceptable agreement among observers for these variables. Mental eminence should be avoided, and definitions and figures should be referenced carefully to score nonmetric traits. © 2017 American Academy of Forensic Sciences.
Post-fall decision tree development and implementation.
Gordon, Bonita M; Wnek, Theresa Frissora; Glorius, Nancy; Hasdorff, Carmen; Shiverski, Joyce; Ginn, Janet
2010-01-01
Care and evaluation after a patient's fall require a number of steps to ensure that appropriate care is given and injury is minimized. Astute and appropriate assessment skills with strategic interventions and communication can minimize the harm from a fall. Post-Fall Decision Guidelines were developed to guide care and treatment and to identify potential complications after a patient has fallen. This systematic approach mobilizes the steps of communication, using the Situation-Background-Assessment-Recommendation (SBAR) format, and guides assessment interventions.
A Swarm Optimization approach for clinical knowledge mining.
Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A
2015-10-01
Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree
2008-04-01
REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music
PCA based feature reduction to improve the accuracy of decision tree c4.5 classification
NASA Astrophysics Data System (ADS)
Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.
2018-03-01
Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.
Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens
2017-08-15
Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.
Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh
2012-07-01
Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.
Decision-analytic modeling studies: An overview for clinicians using multiple myeloma as an example.
Rochau, U; Jahn, B; Qerimi, V; Burger, E A; Kurzthaler, C; Kluibenschaedl, M; Willenbacher, E; Gastl, G; Willenbacher, W; Siebert, U
2015-05-01
The purpose of this study was to provide a clinician-friendly overview of decision-analytic models evaluating different treatment strategies for multiple myeloma (MM). We performed a systematic literature search to identify studies evaluating MM treatment strategies using mathematical decision-analytic models. We included studies that were published as full-text articles in English, and assessed relevant clinical endpoints, and summarized methodological characteristics (e.g., modeling approaches, simulation techniques, health outcomes, perspectives). Eleven decision-analytic modeling studies met our inclusion criteria. Five different modeling approaches were adopted: decision-tree modeling, Markov state-transition modeling, discrete event simulation, partitioned-survival analysis and area-under-the-curve modeling. Health outcomes included survival, number-needed-to-treat, life expectancy, and quality-adjusted life years. Evaluated treatment strategies included novel agent-based combination therapies, stem cell transplantation and supportive measures. Overall, our review provides a comprehensive summary of modeling studies assessing treatment of MM and highlights decision-analytic modeling as an important tool for health policy decision making. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.
Subedi, Nirmal; Sharma, Mahadev
2013-02-01
To predict the long-term effects of climate change - global warming and changes in precipitation - on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed-effects approach. Our results showed that the variables long-term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041-2070) diameter growth rate may differ from current (1971-2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate-growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions. © 2012 Blackwell Publishing Ltd.
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.
2017-12-01
Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity-based regionalization concept is not applicable.
Mohammed, Mohammed A.; Rudge, Gavin; Watson, Duncan; Wood, Gordon; Smith, Gary B.; Prytherch, David R.; Girling, Alan; Stevens, Andrew
2013-01-01
Background We explored the use of routine blood tests and national early warning scores (NEWS) reported within ±24 hours of admission to predict in-hospital mortality in emergency admissions, using empirical decision Tree models because they are intuitive and may ultimately be used to support clinical decision making. Methodology A retrospective analysis of adult emergency admissions to a large acute hospital during April 2009 to March 2010 in the West Midlands, England, with a full set of index blood tests results (albumin, creatinine, haemoglobin, potassium, sodium, urea, white cell count and an index NEWS undertaken within ±24 hours of admission). We developed a Tree model by randomly splitting the admissions into a training (50%) and validation dataset (50%) and assessed its accuracy using the concordance (c-) statistic. Emergency admissions (about 30%) did not have a full set of index blood tests and/or NEWS and so were not included in our analysis. Results There were 23248 emergency admissions with a full set of blood tests and NEWS with an in-hospital mortality of 5.69%. The Tree model identified age, NEWS, albumin, sodium, white cell count and urea as significant (p<0.001) predictors of death, which described 17 homogeneous subgroups of admissions with mortality ranging from 0.2% to 60%. The c-statistic for the training model was 0.864 (95%CI 0.852 to 0.87) and when applied to the testing data set this was 0.853 (95%CI 0.840 to 0.866). Conclusions An easy to interpret validated risk adjustment Tree model using blood test and NEWS taken within ±24 hours of admission provides good discrimination and offers a novel approach to risk adjustment which may potentially support clinical decision making. Given the nature of the clinical data, the results are likely to be generalisable but further research is required to investigate this promising approach. PMID:23734195
2016-12-01
chosen rather than complex ones , and responds to the criticism of the DTA approach. Chapter IV provides three separate case studies in defense R&D...defense R&D projects. To this end, the first section describes the case study method and the advantages of using simple models over more complex ones ...the analysis lacked empirical data and relied on subjective data, the analysis successfully combined the DTA approach with the case study method and
Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W
2014-12-01
Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.
MRI-based decision tree model for diagnosis of biliary atresia.
Kim, Yong Hee; Kim, Myung-Joon; Shin, Hyun Joo; Yoon, Haesung; Han, Seok Joo; Koh, Hong; Roh, Yun Ho; Lee, Mi-Jung
2018-02-23
To evaluate MRI findings and to generate a decision tree model for diagnosis of biliary atresia (BA) in infants with jaundice. We retrospectively reviewed features of MRI and ultrasonography (US) performed in infants with jaundice between January 2009 and June 2016 under approval of the institutional review board, including the maximum diameter of periportal signal change on MRI (MR triangular cord thickness, MR-TCT) or US (US-TCT), visibility of common bile duct (CBD) and abnormality of gallbladder (GB). Hepatic subcapsular flow was reviewed on Doppler US. We performed conditional inference tree analysis using MRI findings to generate a decision tree model. A total of 208 infants were included, 112 in the BA group and 96 in the non-BA group. Mean age at the time of MRI was 58.7 ± 36.6 days. Visibility of CBD, abnormality of GB and MR-TCT were good discriminators for the diagnosis of BA and the MRI-based decision tree using these findings with MR-TCT cut-off 5.1 mm showed 97.3 % sensitivity, 94.8 % specificity and 96.2 % accuracy. MRI-based decision tree model reliably differentiates BA in infants with jaundice. MRI can be an objective imaging modality for the diagnosis of BA. • MRI-based decision tree model reliably differentiates biliary atresia in neonatal cholestasis. • Common bile duct, gallbladder and periportal signal changes are the discriminators. • MRI has comparable performance to ultrasonography for diagnosis of biliary atresia.
Satomi, Junichiro; Ghaibeh, A Ammar; Moriguchi, Hiroki; Nagahiro, Shinji
2015-07-01
The severity of clinical signs and symptoms of cranial dural arteriovenous fistulas (DAVFs) are well correlated with their pattern of venous drainage. Although the presence of cortical venous drainage can be considered a potential predictor of aggressive DAVF behaviors, such as intracranial hemorrhage or progressive neurological deficits due to venous congestion, accurate statistical analyses are currently not available. Using a decision tree data mining method, the authors aimed at clarifying the predictability of the future development of aggressive behaviors of DAVF and at identifying the main causative factors. Of 266 DAVF patients, 89 were eligible for analysis. Under observational management, 51 patients presented with intracranial hemorrhage/infarction during the follow-up period. The authors created a decision tree able to assess the risk for the development of aggressive DAVF behavior. Evaluated by 10-fold cross-validation, the decision tree's accuracy, sensitivity, and specificity were 85.28%, 88.33%, and 80.83%, respectively. The tree shows that the main factor in symptomatic patients was the presence of cortical venous drainage. In its absence, the lesion location determined the risk of a DAVF developing aggressive behavior. Decision tree analysis accurately predicts the future development of aggressive DAVF behavior.
Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi
2013-02-01
The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.
Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.
Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin
2017-08-16
The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.
Belowground Microbiota and the Health of Tree Crops.
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.
Belowground Microbiota and the Health of Tree Crops
Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N.
2018-01-01
Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops. PMID:29922245
Parallel object-oriented decision tree system
Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA
2006-02-28
A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.
Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.
1984-10-01
O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state
EEG feature selection method based on decision tree.
Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun
2015-01-01
This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.
Random Forest as a Predictive Analytics Alternative to Regression in Institutional Research
ERIC Educational Resources Information Center
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne
2018-01-01
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
Climate analyses to assess risks from invasive forest insects: Simple matching to advanced models
Robert C. Venette
2017-01-01
Purpose of Review. The number of invasive alien insects that adversely affect trees and forests continues to increase as do associated ecological, economic, and sociological impacts. Prevention strategies remain the most cost-effective approach to address the issue, but risk management decisions, particularly those affecting international trade,...
A Developmental Perspective on the Virginia Student Threat Assessment Guidelines
ERIC Educational Resources Information Center
Cornell, Dewey G.
2011-01-01
The Virginia Student Threat Assessment Guidelines were developed to help multidisciplinary school-based teams use a decision tree to evaluate student threats and take appropriate preventive action. A main goal of this approach is to allow school-based teams to recognize and respond to the developmental complexities of children and adolescents…
Dynamic Attack Tree Tool for Risk Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Karl
2012-03-13
DATT enables interactive visualization, qualitative analysis and recording of cyber and other forms of risk. It facilitates dynamic risk-based approaches (as opposed to static compliance-based) to security and risk management in general. DATT allows decision makers to consistently prioritize risk mitigation strategies and quickly see where attention is most needed across the enterprise.
Predicting metabolic syndrome using decision tree and support vector machine methods.
Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh
2016-05-01
Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.
A data mining approach to optimize pellets manufacturing process based on a decision tree algorithm.
Ronowicz, Joanna; Thommes, Markus; Kleinebudde, Peter; Krysiński, Jerzy
2015-06-20
The present study is focused on the thorough analysis of cause-effect relationships between pellet formulation characteristics (pellet composition as well as process parameters) and the selected quality attribute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight different active pharmaceutical ingredients and several various excipients, using different extrusion/spheronization process conditions. The data set contained 14 input variables (both formulation and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consistent with the Quality by Design concept was applied to obtain deeper understanding and knowledge of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set of decision rules were generated. The spehronization speed, spheronization time, number of holes and water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The most spherical pellets were achieved by using a large number of holes during extrusion, a high spheronizer speed and longer time of spheronization. The described data mining approach enhances knowledge about pelletization process and simultaneously facilitates searching for the optimal process conditions which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data mining approach can be taken into consideration by industrial formulation scientists to support rational decision making in the field of pellets technology. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolutionary Data Mining Approach to Creating Digital Logic
2010-01-01
To deal with this problem a genetic program (GP) based data mining ( DM ) procedure has been invented (Smith 2005). A genetic program is an algorithm...that can operate on the variables. When a GP was used as a DM function in the past to automatically create fuzzy decision trees, the Report...rules represents an approach to the determining the effect of linguistic imprecision, i.e., the inability of experts to provide crisp rules. The
Cost-effectiveness Analysis with Influence Diagrams.
Arias, M; Díez, F J
2015-01-01
Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.
Ben-Assuli, Ofir; Leshno, Moshe
2016-09-01
In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments. © The Author(s) 2015.
Patients' Values in Clinical Decision-Making.
Faggion, Clovis Mariano; Pachur, Thorsten; Giannakopoulos, Nikolaos Nikitas
2017-09-01
Shared decision-making involves the participation of patient and dental practitioner. Well-informed decision-making requires that both parties understand important concepts that may influence the decision. This fourth article in a series of 4 aims to discuss the importance of patients' values when a clinical decision is made. We report on how to incorporate important concepts for well-informed, shared decision-making. Here, we present patient values as an important issue, in addition to previously established topics such as the risk of bias of a study, cost-effectiveness of treatment approaches, and a comparison of therapeutic benefit with potential side effects. We provide 2 clinical examples and suggestions for a decision tree, based on the available evidence. The information reported in this article may improve the relationship between patient and dental practitioner, resulting in more well-informed clinical decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Chen, Gwo-Dong; Liu, Chen-Chung; Ou, Kuo-Liang; Liu, Baw-Jhiune
2000-01-01
Discusses the use of Web logs to record student behavior that can assist teachers in assessing performance and making curriculum decisions for distance learning students who are using Web-based learning systems. Adopts decision tree and data cube information processing methodologies for developing more effective pedagogical strategies. (LRW)
Assessing School Readiness for a Practice Arrangement Using Decision Tree Methodology.
ERIC Educational Resources Information Center
Barger, Sara E.
1998-01-01
Questions in a decision-tree address mission, faculty interest, administrative support, and practice plan as a way of assessing arrangements for nursing faculty's clinical practice. Decisions should be based on congruence between the human resource allocation and the reward systems. (SK)
NASA Astrophysics Data System (ADS)
Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo
2016-04-01
This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In this context it is not surprising that the increased hydrologic variability and uncertainty produced by many climate risk analyses bedevil water resource decision making. The Climate Risk Informed Decision Analysis (CRIDA) approach builds on work found in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework" which provide guidance of vulnerability assessments. It guides practitioners through a "Level of Concern" analysis where climate vulnerabilities are analyzed to produce actionable alternatives and decisions.
Automated Decision Tree Classification of Corneal Shape
Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.
2011-01-01
Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645
Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman
2016-02-01
To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.
Decision support for the selection of reference sites using 137Cs as a soil erosion tracer
NASA Astrophysics Data System (ADS)
Arata, Laura; Meusburger, Katrin; Bürge, Alexandra; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine
2017-08-01
The classical approach of using 137Cs as a soil erosion tracer is based on the comparison between stable reference sites and sites affected by soil redistribution processes; it enables the derivation of soil erosion and deposition rates. The method is associated with potentially large sources of uncertainty with major parts of this uncertainty being associated with the selection of the reference sites. We propose a decision support tool to Check the Suitability of reference Sites (CheSS). Commonly, the variation among 137Cs inventories of spatial replicate reference samples is taken as the sole criterion to decide on the suitability of a reference inventory. Here we propose an extension of this procedure using a repeated sampling approach, in which the reference sites are resampled after a certain time period. Suitable reference sites are expected to present no significant temporal variation in their decay-corrected 137Cs depth profiles. Possible causes of variation are assessed by a decision tree. More specifically, the decision tree tests for (i) uncertainty connected to small-scale variability in 137Cs due to its heterogeneous initial fallout (such as in areas affected by the Chernobyl fallout), (ii) signs of erosion or deposition processes and (iii) artefacts due to the collection, preparation and measurement of the samples; (iv) finally, if none of the above can be assigned, this variation might be attributed to turbation
processes (e.g. bioturbation, cryoturbation and mechanical turbation, such as avalanches or rockfalls). CheSS was exemplarily applied in one Swiss alpine valley where the apparent temporal variability called into question the suitability of the selected reference sites. In general we suggest the application of CheSS as a first step towards a comprehensible approach to test for the suitability of reference sites.
On Parallelism and the Penman Natural Language Generation System.
1988-04-01
TagfiniteA Tagsubject L untag ed Figure 2-2: System network with choosers & realization statements 7 decision . We will give a more detailed account of...2: enter the current system. The chooser of the system is in charge of * selection of features. The chooser is itself a decision tree with certain...organization of a chooser is the same as a decision (discrimination) tree, and each branching point in the tree is defined by Ask operation. For example, in
Evaluation of Decision Trees for Cloud Detection from AVHRR Data
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Nemani, Ramakrishna
2005-01-01
Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.
Chen, Hsiu-Chin; Bennett, Sean
2016-08-01
Little evidence shows the use of decision-tree algorithms in identifying predictors and analyzing their associations with pass rates for the NCLEX-RN(®) in associate degree nursing students. This longitudinal and retrospective cohort study investigated whether a decision-tree algorithm could be used to develop an accurate prediction model for the students' passing or failing the NCLEX-RN. This study used archived data from 453 associate degree nursing students in a selected program. The chi-squared automatic interaction detection analysis of the decision trees module was used to examine the effect of the collected predictors on passing/failing the NCLEX-RN. The actual percentage scores of Assessment Technologies Institute®'s RN Comprehensive Predictor(®) accurately identified students at risk of failing. The classification model correctly classified 92.7% of the students for passing. This study applied the decision-tree model to analyze a sequence database for developing a prediction model for early remediation in preparation for the NCLEXRN. [J Nurs Educ. 2016;55(8):454-457.]. Copyright 2016, SLACK Incorporated.
Rajavel, Rajkumar; Thangarathinam, Mala
2015-01-01
Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework. PMID:26543899
Rajavel, Rajkumar; Thangarathinam, Mala
2015-01-01
Optimization of negotiation conflict in the cloud service negotiation framework is identified as one of the major challenging issues. This negotiation conflict occurs during the bilateral negotiation process between the participants due to the misperception, aggressive behavior, and uncertain preferences and goals about their opponents. Existing research work focuses on the prerequest context of negotiation conflict optimization by grouping similar negotiation pairs using distance, binary, context-dependent, and fuzzy similarity approaches. For some extent, these approaches can maximize the success rate and minimize the communication overhead among the participants. To further optimize the success rate and communication overhead, the proposed research work introduces a novel probabilistic decision making model for optimizing the negotiation conflict in the long-term negotiation context. This decision model formulates the problem of managing different types of negotiation conflict that occurs during negotiation process as a multistage Markov decision problem. At each stage of negotiation process, the proposed decision model generates the heuristic decision based on the past negotiation state information without causing any break-off among the participants. In addition, this heuristic decision using the stochastic decision tree scenario can maximize the revenue among the participants available in the cloud service negotiation framework.
Silva, Neuza; Moreira, Helena; Canavarro, Maria Cristina; Carona, Carlos
2018-01-01
Most children and adolescents with chronic health conditions have impaired health-related quality of life and are at high risk of internalizing and externalizing problems. However, few patients present clinically significant symptoms. Using a decision-tree approach, this study aimed to identify risk profiles for psychological problems based on measures that can be easily scored and interpreted by healthcare professionals in pediatric settings. The participants were 736 children and adolescents between 8–18 years of age with asthma, epilepsy, cerebral palsy, type-1diabetes or obesity. The children and adolescents completed self-report measures of health-related quality of life (DISABKIDS-10) and psychological problems (Strengths and Difficulties Questionnaire). Sociodemographic and clinical data were collected from their parents/ physicians. Children and adolescents were classified into the normal (78.5%) or borderline/clinical range (21.5%) according to the Strengths and Difficulties Questionnaire cut-off values for psychological problems. The overall accuracy of the decision-tree model was 78.1% (sensitivity = 71.5%; specificity = 79.9%), with 4 profiles predicting 71.5% of borderline/clinical cases. The strongest predictor of psychological problems was a health-related quality of life standardized score below the threshold of 57.5 for patients with cerebral palsy, epilepsy or obesity and below 70.0 for patients with asthma or diabetes. Other significant predictors were low socio-economic status, single-parent household, medication intake and younger age. The model showed adequate validity (risk = .28, SE = .02) and accuracy (area under the Receiver Operating Characteristic curve = .84; CI = .80/.87). The identification of pediatric patients at high risk for psychological problems may contribute to a more efficient allocation of health resources, particularly with regard to their referral to specialized psychological assessment and intervention. PMID:29852026
2009-01-01
Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426
Sequential decision tree using the analytic hierarchy process for decision support in rectal cancer.
Suner, Aslı; Çelikoğlu, Can Cengiz; Dicle, Oğuz; Sökmen, Selman
2012-09-01
The aim of the study is to determine the most appropriate method for construction of a sequential decision tree in the management of rectal cancer, using various patient-specific criteria and treatments such as surgery, chemotherapy, and radiotherapy. An analytic hierarchy process (AHP) was used to determine the priorities of variables. Relevant criteria used in two decision steps and their relative priorities were established by a panel of five general surgeons. Data were collected via a web-based application and analyzed using the "Expert Choice" software specifically developed for the AHP. Consistency ratios in the AHP method were calculated for each set of judgments, and the priorities of sub-criteria were determined. A sequential decision tree was constructed for the best treatment decision process, using priorities determined by the AHP method. Consistency ratios in the AHP method were calculated for each decision step, and the judgments were considered consistent. The tumor-related criterion "presence of perforation" (0.331) and the patient-surgeon-related criterion "surgeon's experience" (0.630) had the highest priority in the first decision step. In the second decision step, the tumor-related criterion "the stage of the disease" (0.230) and the patient-surgeon-related criterion "surgeon's experience" (0.281) were the paramount criteria. The results showed some variation in the ranking of criteria between the decision steps. In the second decision step, for instance, the tumor-related criterion "presence of perforation" was just the fifth. The consistency of decision support systems largely depends on the quality of the underlying decision tree. When several choices and variables have to be considered in a decision, it is very important to determine priorities. The AHP method seems to be effective for this purpose. The decision algorithm developed by this method is more realistic and will improve the quality of the decision tree. Copyright © 2012 Elsevier B.V. All rights reserved.
Östberg, Johan; Delshammar, Tim; Wiström, Björn; Nielsen, Anders Busse
2013-03-01
Tree inventories are expensive to conduct and update, so every inventory carried out must be maximized. However, increasing the number of constituent parameters increases the cost of performing and updating the inventory, illustrating the need for careful parameter selection. This article reports the results of a systematic expert rating of tree inventories aiming to quantify the relative importance of each parameter. Using the Delphi method, panels comprising city officials, arborists, and academics rated a total of 148 parameters. The total mean score, the top ranking parameters, which can serve as a guide for decision-making at practical level and for standardization of tree inventories, were: Scientific name of the tree species and genera, Vitality, Coordinates, Hazard class, and Identification number. The study also examined whether the different responsibilities and usage of urban tree databases among organizations and people engaged in urban tree inventories affected their prioritization. The results revealed noticeable dissimilarities in the ranking of parameters between the panels, underlining the need for collaboration between the research community and those commissioning, administrating, and conducting inventories. Only by applying such a transdisciplinary approach to parameter selection can urban tree inventories be strengthened and made more relevant.
NASA Astrophysics Data System (ADS)
Östberg, Johan; Delshammar, Tim; Wiström, Björn; Nielsen, Anders Busse
2013-03-01
Tree inventories are expensive to conduct and update, so every inventory carried out must be maximized. However, increasing the number of constituent parameters increases the cost of performing and updating the inventory, illustrating the need for careful parameter selection. This article reports the results of a systematic expert rating of tree inventories aiming to quantify the relative importance of each parameter. Using the Delphi method, panels comprising city officials, arborists, and academics rated a total of 148 parameters. The total mean score, the top ranking parameters, which can serve as a guide for decision-making at practical level and for standardization of tree inventories, were: Scientific name of the tree species and genera, Vitality, Coordinates, Hazard class, and Identification number. The study also examined whether the different responsibilities and usage of urban tree databases among organizations and people engaged in urban tree inventories affected their prioritization. The results revealed noticeable dissimilarities in the ranking of parameters between the panels, underlining the need for collaboration between the research community and those commissioning, administrating, and conducting inventories. Only by applying such a transdisciplinary approach to parameter selection can urban tree inventories be strengthened and made more relevant.
Comparison of Taxi Time Prediction Performance Using Different Taxi Speed Decision Trees
NASA Technical Reports Server (NTRS)
Lee, Hanbong
2017-01-01
In the STBO modeler and tactical surface scheduler for ATD-2 project, taxi speed decision trees are used to calculate the unimpeded taxi times of flights taxiing on the airport surface. The initial taxi speed values in these decision trees did not show good prediction accuracy of taxi times. Using the more recent, reliable surveillance data, new taxi speed values in ramp area and movement area were computed. Before integrating these values into the STBO system, we performed test runs using live data from Charlotte airport, with different taxi speed settings: 1) initial taxi speed values and 2) new ones. Taxi time prediction performance was evaluated by comparing various metrics. The results show that the new taxi speed decision trees can calculate the unimpeded taxi-out times more accurately.
Van Dessel, E; Fierens, K; Pattyn, P; Van Nieuwenhove, Y; Berrevoet, F; Troisi, R; Ceelen, W
2009-01-01
Approximately 5%-20% of colorectal cancer (CRC) patients present with synchronous potentially resectable liver metastatic disease. Preclinical and clinical studies suggest a benefit of the 'liver first' approach, i.e. resection of the liver metastasis followed by resection of the primary tumour. A formal decision analysis may support a rational choice between several therapy options. Survival and morbidity data were retrieved from relevant clinical studies identified by a Web of Science search. Data were entered into decision analysis software (TreeAge Pro 2009, Williamstown, MA, USA). Transition probabilities including the risk of death from complications or disease progression associated with individual therapy options were entered into the model. Sensitivity analysis was performed to evaluate the model's validity under a variety of assumptions. The result of the decision analysis confirms the superiority of the 'liver first' approach. Sensitivity analysis demonstrated that this assumption is valid on condition that the mortality associated with the hepatectomy first is < 4.5%, and that the mortality of colectomy performed after hepatectomy is < 3.2%. The results of this decision analysis suggest that, in patients with synchronous resectable colorectal liver metastases, the 'liver first' approach is to be preferred. Randomized trials will be needed to confirm the results of this simulation based outcome.
Mani, Ashutosh; Rao, Marepalli; James, Kelley; Bhattacharya, Amit
2015-01-01
The purpose of this study was to explore data-driven models, based on decision trees, to develop practical and easy to use predictive models for early identification of firefighters who are likely to cross the threshold of hyperthermia during live-fire training. Predictive models were created for three consecutive live-fire training scenarios. The final predicted outcome was a categorical variable: will a firefighter cross the upper threshold of hyperthermia - Yes/No. Two tiers of models were built, one with and one without taking into account the outcome (whether a firefighter crossed hyperthermia or not) from the previous training scenario. First tier of models included age, baseline heart rate and core body temperature, body mass index, and duration of training scenario as predictors. The second tier of models included the outcome of the previous scenario in the prediction space, in addition to all the predictors from the first tier of models. Classification and regression trees were used independently for prediction. The response variable for the regression tree was the quantitative variable: core body temperature at the end of each scenario. The predicted quantitative variable from regression trees was compared to the upper threshold of hyperthermia (38°C) to predict whether a firefighter would enter hyperthermia. The performance of classification and regression tree models was satisfactory for the second (success rate = 79%) and third (success rate = 89%) training scenarios but not for the first (success rate = 43%). Data-driven models based on decision trees can be a useful tool for predicting physiological response without modeling the underlying physiological systems. Early prediction of heat stress coupled with proactive interventions, such as pre-cooling, can help reduce heat stress in firefighters.
NASA Astrophysics Data System (ADS)
Wang, Hongcui; Kawahara, Tatsuya
CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.
Single-accelerometer-based daily physical activity classification.
Long, Xi; Yin, Bin; Aarts, Ronald M
2009-01-01
In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.
Concurrent approach for evolving compact decision rule sets
NASA Astrophysics Data System (ADS)
Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.
1999-02-01
The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.
Hierarchical screening for multiple mental disorders.
Batterham, Philip J; Calear, Alison L; Sunderland, Matthew; Carragher, Natacha; Christensen, Helen; Mackinnon, Andrew J
2013-10-01
There is a need for brief, accurate screening when assessing multiple mental disorders. Two-stage hierarchical screening, consisting of brief pre-screening followed by a battery of disorder-specific scales for those who meet diagnostic criteria, may increase the efficiency of screening without sacrificing precision. This study tested whether more efficient screening could be gained using two-stage hierarchical screening than by administering multiple separate tests. Two Australian adult samples (N=1990) with high rates of psychopathology were recruited using Facebook advertising to examine four methods of hierarchical screening for four mental disorders: major depressive disorder, generalised anxiety disorder, panic disorder and social phobia. Using K6 scores to determine whether full screening was required did not increase screening efficiency. However, pre-screening based on two decision tree approaches or item gating led to considerable reductions in the mean number of items presented per disorder screened, with estimated item reductions of up to 54%. The sensitivity of these hierarchical methods approached 100% relative to the full screening battery. Further testing of the hierarchical screening approach based on clinical criteria and in other samples is warranted. The results demonstrate that a two-phase hierarchical approach to screening multiple mental disorders leads to considerable increases efficiency gains without reducing accuracy. Screening programs should take advantage of prescreeners based on gating items or decision trees to reduce the burden on respondents. © 2013 Elsevier B.V. All rights reserved.
IND - THE IND DECISION TREE PACKAGE
NASA Technical Reports Server (NTRS)
Buntine, W.
1994-01-01
A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.
RE-Powering’s Electronic Decision Tree
Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations
NASA Astrophysics Data System (ADS)
Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd
2016-04-01
This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
NASA Astrophysics Data System (ADS)
Gessesse, B.; Bewket, W.; Bräuning, A.
2015-11-01
Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.
NASA Astrophysics Data System (ADS)
Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim
2016-04-01
Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.
Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.
ERIC Educational Resources Information Center
Beck, Kirk A.
2005-01-01
This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…
Comparison of a classical with a highly formularized body condition scoring system for dairy cattle.
Isensee, A; Leiber, F; Bieber, A; Spengler, A; Ivemeyer, S; Maurer, V; Klocke, P
2014-12-01
Body condition scoring is a common tool to assess the subcutaneous fat reserves of dairy cows. Because of its subjectivity, which causes limits in repeatability, it is often discussed controversially. Aim of the current study was to evaluate the impact of considering the cows overall appearance on the scoring process and on the validity of the results. Therefore, two different methods to reveal body condition scores (BCS), 'independent BCS' (iBCS) and 'dependent BCS' (dBCS), were used to assess 1111 Swiss Brown Cattle. The iBCS and the dBCS systems were both working with the same flowchart with a decision tree structure for visual and palpatory assessment using a scale from 2 to 5 with increment units of 0.25. The iBCS was created strictly complying with the defined frames of the decision tree structure. The system was chosen due to its formularized approach to reduce the influence of subjective impressions. By contrast, the dBCS system, which was in line with common practice, had a more open approach, where - besides the decision tree - the overall impression of the cow's physical appearance was taken into account for generating the final score. Ultrasound measurement of the back fat thickness (BFT) was applied as a validation method. The dBCS turned out to be the better predictor of BFT, explaining 67.3% of the variance. The iBCS was only able to explain 47.3% of the BFT variance. Within the whole data set, only 31.3% of the animals received identical dBCS and iBCS. The pin bone region caused the most deviations between dBCS and iBCS, but also assessing the pelvis line, the hook bones and the ligaments led to divergences in around 20% of the scored animals. The study showed that during the assessment of body condition a strict adherence to a decision tree is a possible source of inexact classifications. Some body regions, especially the pin bones, proved to be particularly challenging for scoring due to difficulties in assessing them. All the more, the inclusion of the overall appearance of the cow into the assessment process counteracted these errors and led to a fair predictability of BFT with the flowchart-based BCS. This might be particularly important, if different cattle types and breeds are assessed.
Coronal Mass Ejection Data Clustering and Visualization of Decision Trees
NASA Astrophysics Data System (ADS)
Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina
2018-05-01
Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.
Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M
2015-01-01
Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.
PRIA 3 Fee Determination Decision Tree
The PRIA 3 decision tree will help applicants requesting a pesticide registration or certain tolerance action to accurately identify the category of their application and the amount of the required fee before they submit the application.
Solar and Wind Site Screening Decision Trees
EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.
Stewart, Regan W; Tuerk, Peter W; Metzger, Isha W; Davidson, Tatiana M; Young, John
2016-02-01
Structured diagnostic interviews are widely considered to be the optimal method of assessing symptoms of posttraumatic stress; however, few clinicians report using structured assessments to guide clinical practice. One commonly cited impediment to these assessment approaches is the amount of time required for test administration and interpretation. Empirically keyed methods to reduce the administration time of structured assessments may be a viable solution to increase the use of standardized and reliable diagnostic tools. Thus, the present research conducted an initial feasibility study using a sample of treatment-seeking military veterans (N = 1,517) to develop a truncated assessment protocol based on the Clinician-Administered Posttraumatic Stress Disorder (PTSD) Scale (CAPS). Decision-tree analysis was utilized to identify a subset of predictor variables among the CAPS items that were most predictive of a diagnosis of PTSD. The algorithm-driven, atheoretical sequence of questions reduced the number of items administered by more than 75% and classified the validation sample at 92% accuracy. These results demonstrated the feasibility of developing a protocol to assess PTSD in a way that imposes little assessment burden while still providing a reliable categorization. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar
2017-10-01
Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2007-10-01
Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.
Multicriteria evaluation of simulated logging scenarios in a tropical rain forest.
Huth, Andreas; Drechsler, Martin; Köhler, Peter
2004-07-01
Forest growth models are useful tools for investigating the long-term impacts of logging. In this paper, the results of the rain forest growth model FORMIND were assessed by a multicriteria decision analysis. The main processes covered by FORMIND include tree growth, mortality, regeneration and competition. Tree growth is calculated based on a carbon balance approach. Trees compete for light and space; dying large trees fall down and create gaps in the forest. Sixty-four different logging scenarios for an initially undisturbed forest stand at Deramakot (Malaysia) were simulated. The scenarios differ regarding the logging cycle, logging method, cutting limit and logging intensity. We characterise the impacts with four criteria describing the yield, canopy opening and changes in species composition. Multicriteria decision analysis was used for the first time to evaluate the scenarios and identify the efficient ones. Our results plainly show that reduced-impact logging scenarios are more 'efficient' than the others, since in these scenarios forest damage is minimised without significantly reducing yield. Nevertheless, there is a trade-off between yield and achieving a desired ecological state of logged forest; the ecological state of the logged forests can only be improved by reducing yields and enlarging the logging cycles. Our study also demonstrates that high cutting limits or low logging intensities cannot compensate for the high level of damage caused by conventional logging techniques.
Moon, Mikyung; Lee, Soo-Kyoung
2017-01-01
The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. The data were extracted from the 2014 National Inpatient Sample (NIS)-data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89 * ). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, "injuries to the hip and thigh" was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data.
NASA Astrophysics Data System (ADS)
Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.
2016-10-01
Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.
Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.
Malehi, Amal Saki
2014-01-01
The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.
Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.
Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung
2015-01-01
To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.
2013-05-01
specifics of the correlation will be explored followed by discussion of new paradigms— the ordered event list (OEL) and the decision tree — that result from...4.2.1 Brief Overview of the Decision Tree Paradigm ................................................15 4.2.2 OEL Explained...6 Figure 3. A depiction of a notional fault/activation tree . ................................................................7
Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse
NASA Astrophysics Data System (ADS)
Padur, Kadi; Ilomets, Mati; Põder, Tõnis
2017-03-01
The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.
Identification of the Criteria for Decision Making of Cut-Away Peatland Reuse.
Padur, Kadi; Ilomets, Mati; Põder, Tõnis
2017-03-01
The total area of abandoned milled peatlands which need to be rehabilitated for sustainable land-use is nearly 10,000 ha in Estonia. According to the agreement between Estonia and the European Union, Estonia has to create suitable conditions for restoration of 2000 ha of abandoned cut-away peatlands by 2023. The decisions on rehabilitation of abandoned milled peatlands have so far relied on a limited knowledgebase with unestablished methodologies, thus the decision making process needs a significant improvement. This study aims to improve the methodology by identifying the criteria for optimal decision making to ensure sustainable land use planning after peat extraction. Therefore relevant environmental, social and economic restrictive and weighted comparison criteria, which assess reuse alternatives suitability for achieving the goal, is developed in cooperation with stakeholders. Restrictive criteria are arranged into a decision tree to help to determine the implementable reuse alternatives in various situations. Weighted comparison criteria are developed in cooperation with stakeholders to rank the reuse alternatives. The comparison criteria are organised hierarchically into a value tree. In the situation, where the selection of a suitable rehabilitation alternative for a specific milled peatland is going to be made, the weighted comparison criteria values need to be identified and the presented approach supports the optimal and transparent decision making. In addition to Estonian context the general results of the study could also be applied to a cut-away peatlands in other regions with need-based site-dependent modifications of criteria values and weights.
Tree detection in orchards from VHR satellite images using scale-space theory
NASA Astrophysics Data System (ADS)
Mahour, Milad; Tolpekin, Valentyn; Stein, Alfred
2016-10-01
This study focused on extracting reliable and detailed information from very High Resolution (VHR) satellite images for the detection of individual trees in orchards. The images contain detailed information on spectral and geometrical properties of trees. Their scale level, however, is insufficient for spectral properties of individual trees, because adjacent tree canopies interlock. We modeled trees using a bell shaped spectral profile. Identifying the brightest peak was challenging due to sun illumination effects caused 1 by differences in positions of the sun and the satellite sensor. Crown boundary detection was solved by using the NDVI from the same image. We used Gaussian scale-space methods that search for extrema in the scale-space domain. The procedures were tested on two orchards with different tree types, tree sizes and tree observation patterns in Iran. Validation was done using reference data derived from an UltraCam digital aerial photo. Local extrema of the determinant of the Hessian corresponded well to the geographical coordinates and the size of individual trees. False detections arising from a slight asymmetry of trees were distinguished from multiple detections of the same tree with different extents. Uncertainty assessment was carried out on the presence and spatial extents of individual trees. The study demonstrated how the suggested approach can be used for image segmentation for orchards with different types of trees. We concluded that Gaussian scale-space theory can be applied to extract information from VHR satellite images for individual tree detection. This may lead to improved decision making for irrigation and crop water requirement purposes in future studies.
Planning for ex situ conservation in the face of uncertainty
Canessa, Stefano; Converse, Sarah J.; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A
2016-01-01
Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species.
Space/age forestry: Implications of planting density and rotation age in SRIC management decisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merriam, R.A.; Phillips, V.D.; Liu, W.
1993-12-31
Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees inmore » a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.« less
Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.
2018-01-10
Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.
Martin, Michael A; Meyricke, Ramona; O'Neill, Terry; Roberts, Steven
2006-04-20
A critical choice facing breast cancer patients is which surgical treatment--mastectomy or breast conserving surgery (BCS)--is most appropriate. Several studies have investigated factors that impact the type of surgery chosen, identifying features such as place of residence, age at diagnosis, tumor size, socio-economic and racial/ethnic elements as relevant. Such assessment of "propensity" is important in understanding issues such as a reported under-utilisation of BCS among women for whom such treatment was not contraindicated. Using Western Australian (WA) data, we further examine the factors associated with the type of surgical treatment for breast cancer using a classification tree approach. This approach deals naturally with complicated interactions between factors, and so allows flexible and interpretable models for treatment choice to be built that add to the current understanding of this complex decision process. Data was extracted from the WA Cancer Registry on women diagnosed with breast cancer in WA from 1990 to 2000. Subjects' treatment preferences were predicted from covariates using both classification trees and logistic regression. Tumor size was the primary determinant of patient choice, subjects with tumors smaller than 20 mm in diameter preferring BCS. For subjects with tumors greater than 20 mm in diameter factors such as patient age, nodal status, and tumor histology become relevant as predictors of patient choice. Classification trees perform as well as logistic regression for predicting patient choice, but are much easier to interpret for clinical use. The selected tree can inform clinicians' advice to patients.
[Utilities: a solution of a decision problem?].
Koller, Michael; Ohmann, Christian; Lorenz, Wilfried
2008-01-01
Utility is a concept that originates from utilitarianism, a highly influential philosophical school in the Anglo-American world. The cornerstone of utilitarianism is the principle of maximum happiness or utility. In the medical sciences, this utility approach has been adopted and developed within the field of medical decision making. On an operational level, utility is the evaluation of a health state or an outcome on a one-dimensional scale ranging from 0 (death) to 1 (perfect health). By adding the concept of expectancy, the graphic representation of both concepts in a decision tree results in the specification of expected utilities and helps to resolve complex medical decision problems. Criticism of the utility approach relates to the rational perspective on humans (which is rejected by a considerable fraction of research in psychology) and to the artificial methods used in the evaluation of utility, such as Standard Gamble or Time Trade Off. These may well be the reason why the utility approach has never been accepted in Germany. Nevertheless, innovative concepts for defining goals in health care are urgently required, as the current debate in Germany on "Nutzen" (interestingly translated as 'benefit' instead of as 'utility') and integrated outcome models indicates. It remains to be seen whether this discussion will lead to a re-evaluation of the utility approach.
Vlsi implementation of flexible architecture for decision tree classification in data mining
NASA Astrophysics Data System (ADS)
Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak
2017-07-01
The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.
Visualizing speciation in artificial cichlid fish.
Clement, Ross
2006-01-01
The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.
Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah
2016-01-01
Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.
NASA Astrophysics Data System (ADS)
Eneva, Elena; Petrushin, Valery A.
2002-03-01
Taxonomies are valuable tools for structuring and representing our knowledge about the world. They are widely used in many domains, where information about species, products, customers, publications, etc. needs to be organized. In the absence of standards, many taxonomies of the same entities can co-exist. A problem arises when data categorized in a particular taxonomy needs to be used by a procedure (methodology or algorithm) that uses a different taxonomy. Usually, a labor-intensive manual approach is used to solve this problem. This paper describes a machine learning approach which aids domain experts in changing taxonomies. It allows learning relationships between two taxonomies and mapping the data from one taxonomy into another. The proposed approach uses decision trees and bootstrapping for learning mappings of instances from the source to the target taxonomies. A C4.5 decision tree classifier is trained on a small manually labeled training set and applied to a randomly selected sample from the unlabeled data. The classification results are analyzed and the misclassified items are corrected and all items are added to the training set. This procedure is iterated until unlabeled data is available or an acceptable error rate is reached. In the latter case the last classifier is used to label all the remaining data. We test our approach on a database of products obtained from as grocery store chain and find that it performs well, reaching 92.6% accuracy while requiring the human expert to explicitly label only 18% of the entire data.
Allergenic potential of novel foods.
Meredith, Clive
2005-11-01
Concerns have been expressed that the introduction of novel foods into the diet might lead to the development of new food allergies in consumers. Novel foods can be conveniently divided into GM and non-GM categories. Decision-tree approaches (e.g. International Life Sciences Institute-International Food Biotechnology Council and WHO/FAO) to assess the allergenic potential of GM foods were developed following the discovery, during product development, of the allergenic potential of GM soyabean expressing a gene encoding a storage protein from Brazil nut (Bertolletia excelsa). Within these decision trees considerations include: the source of the transgene; amino acid homology with known allergens; cross-reactivity with IgE from food-allergic individuals; resistance to proteolysis; prediction using animal models of food allergy. Such decision trees are under constant review as new knowledge and improved models emerge, but they provide a useful framework for the assessment of the allergenic potential of GM foods. For novel non-GM foods the assessment of allergenic potential is more subjective; some foods or food ingredients will need no assessment other than a robust protein assay to demonstrate the absence of protein. Where protein is present in the novel non-GM food, hazard and risk assessments need to be made in terms of the quantity of protein that might be consumed, the identity of individual protein components and their relationships to known food allergens. Where necessary, this assessment would extend to serum screening for potential cross-reactivities, skin-prick tests in previously-sensitised individuals and double-blind placebo-controlled food challenges.
Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.
Vannatta, A R; Hauer, R H; Schuettpelz, N M
2012-02-01
Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.
Scalable Regression Tree Learning on Hadoop using OpenPlanet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wei; Simmhan, Yogesh; Prasanna, Viktor
As scientific and engineering domains attempt to effectively analyze the deluge of data arriving from sensors and instruments, machine learning is becoming a key data mining tool to build prediction models. Regression tree is a popular learning model that combines decision trees and linear regression to forecast numerical target variables based on a set of input features. Map Reduce is well suited for addressing such data intensive learning applications, and a proprietary regression tree algorithm, PLANET, using MapReduce has been proposed earlier. In this paper, we describe an open source implement of this algorithm, OpenPlanet, on the Hadoop framework usingmore » a hybrid approach. Further, we evaluate the performance of OpenPlanet using realworld datasets from the Smart Power Grid domain to perform energy use forecasting, and propose tuning strategies of Hadoop parameters to improve the performance of the default configuration by 75% for a training dataset of 17 million tuples on a 64-core Hadoop cluster on FutureGrid.« less
Hierarchical classification in high dimensional numerous class cases
NASA Technical Reports Server (NTRS)
Kim, Byungyong; Landgrebe, D. A.
1990-01-01
As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.
The Utility of Decision Trees in Oncofertility Care in Japan.
Ito, Yuki; Shiraishi, Eriko; Kato, Atsuko; Haino, Takayuki; Sugimoto, Kouhei; Okamoto, Aikou; Suzuki, Nao
2017-03-01
To identify the utility and issues associated with the use of decision trees in oncofertility patient care in Japan. A total of 35 women who had been diagnosed with cancer, but had not begun anticancer treatment, were enrolled. We applied the oncofertility decision tree for women published by Gardino et al. to counsel a consecutive series of women on fertility preservation (FP) options following cancer diagnosis. Percentage of women who decided to undergo oocyte retrieval for embryo cryopreservation and the expected live-birth rate for these patients were calculated using the following equation: expected live-birth rate = pregnancy rate at each age per embryo transfer × (1 - miscarriage rate) × No. of cryopreserved embryos. Oocyte retrieval was performed for 17 patients (48.6%; mean ± standard deviation [SD] age, 36.35 ± 3.82 years). The mean ± SD number of cryopreserved embryos was 5.29 ± 4.63. The expected live-birth rate was 0.66. The expected live-birth rate with FP indicated that one in three oncofertility patients would not expect to have a live birth following oocyte retrieval and embryo cryopreservation. While the decision trees were useful as decision-making tools for women contemplating FP, in the context of the current restrictions on oocyte donation and the extremely small number of adoptions in Japan, the remaining options for fertility after cancer are limited. In order for cancer survivors to feel secure in their decisions, the decision tree may need to be adapted simultaneously with improvements to the social environment, such as greater support for adoption.
NASA Astrophysics Data System (ADS)
Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.
Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg
2014-01-01
Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests. PMID:25050914
Thorn, Simon; Bässler, Claus; Gottschalk, Thomas; Hothorn, Torsten; Bussler, Heinz; Raffa, Kenneth; Müller, Jörg
2014-01-01
Windstorms, bark beetle outbreaks and fires are important natural disturbances in coniferous forests worldwide. Wind-thrown trees promote biodiversity and restoration within production forests, but also cause large economic losses due to bark beetle infestation and accelerated fungal decomposition. Such damaged trees are often removed by salvage logging, which leads to decreased biodiversity and thus increasingly evokes discussions between economists and ecologists about appropriate strategies. To reveal the reasons behind species loss after salvage logging, we used a functional approach based on four habitat-related ecological traits and focused on saproxylic beetles. We predicted that salvage logging would decrease functional diversity (measured as effect sizes of mean pairwise distances using null models) as well as mean values of beetle body size, wood diameter niche and canopy cover niche, but would increase decay stage niche. As expected, salvage logging caused a decrease in species richness, but led to an increase in functional diversity by altering the species composition from habitat-filtered assemblages toward random assemblages. Even though salvage logging removes tree trunks, the most negative effects were found for small and heliophilous species and for species specialized on wood of small diameter. Our results suggested that salvage logging disrupts the natural assembly process on windthrown trees and that negative ecological impacts are caused more by microclimate alteration of the dead-wood objects than by loss of resource amount. These insights underline the power of functional approaches to detect ecosystem responses to anthropogenic disturbance and form a basis for management decisions in conservation. To mitigate negative effects on saproxylic beetle diversity after windthrows, we recommend preserving single windthrown trees or at least their tops with exposed branches during salvage logging. Such an extension of the green-tree retention approach to windthrown trees will preserve natural succession and associated communities of disturbed spruce forests.
Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H
2011-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
The application of a decision tree to establish the parameters associated with hypertension.
Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid
2017-02-01
Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bayesian Networks for Modeling Dredging Decisions
2011-10-01
change scenarios. Arctic Expert elicitation Netica Bacon et al . 2002 Identify factors that might lead to a change in land use from farming to...tree) algorithms developed by Lauritzen and Spiegelhalter (1988) and Jensen et al . (1990). Statistical inference is simply the process of...causality when constructing a Bayesian network (Kjaerulff and Madsen 2008, Darwiche 2009, Marcot et al . 2006). A knowledge representation approach is the
ERIC Educational Resources Information Center
Kayri, Murat; Gunuc, Selim
2010-01-01
Internet dependency is going to expand into social life in wide area whereas it has been accepted as a pathological and psychological disease. Knowing the basic effects of internet dependency is an inevitable approach to use the internet technology healthy. In this study, internet dependency levels of 754 students were examined with the Internet…
Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela
2018-01-19
OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.
Sancak, Eyup Burak; Kılınç, Muhammet Fatih; Yücebaş, Sait Can
2017-01-01
The decision on the choice of proximal ureteral stone therapy depends on many factors, and sometimes urologists have difficulty in choosing the treatment option. This study is aimed at evaluating the factors affecting the success of semirigid ureterorenoscopy (URS) using the "decision tree" method. From January 2005 to November 2015, the data of consecutive patients treated for proximal ureteral stone were retrospectively analyzed. A total of 920 patients with proximal ureteral stone treated with semirigid URS were included in the study. All statistically significant attributes were tested using the decision tree method. The model created using decision tree had a sensitivity of 0.993 and an accuracy of 0.857. While URS treatment was successful in 752 patients (81.7%), it was unsuccessful in 168 patients (18.3%). According to the decision tree method, the most important factor affecting the success of URS is whether the stone is impacted to the ureteral wall. The second most important factor affecting treatment was intramural stricture requiring dilatation if the stone is impacted, and the size of the stone if not impacted. Our study suggests that the impacted stone, intramural stricture requiring dilatation and stone size may have a significant effect on the success rate of semirigid URS for proximal ureteral stone. Further studies with population-based and longitudinal design should be conducted to confirm this finding. © 2017 S. Karger AG, Basel.
A hybrid approach to select features and classify diseases based on medical data
NASA Astrophysics Data System (ADS)
AbdelLatif, Hisham; Luo, Jiawei
2018-03-01
Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms
Collins, A.L; Pulley, S.; Foster, I.D.L; Gellis, Allen; Porto, P.; Horowitz, A.J.
2017-01-01
The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.
FCMPSO: An Imputation for Missing Data Features in Heart Disease Classification
NASA Astrophysics Data System (ADS)
Salleh, Mohd Najib Mohd; Ashikin Samat, Nurul
2017-08-01
The application of data mining and machine learning in directing clinical research into possible hidden knowledge is becoming greatly influential in medical areas. Heart Disease is a killer disease around the world, and early prevention through efficient methods can help to reduce the mortality number. Medical data may contain many uncertainties, as they are fuzzy and vague in nature. Nonetheless, imprecise features data such as no values and missing values can affect quality of classification results. Nevertheless, the other complete features are still capable to give information in certain features. Therefore, an imputation approach based on Fuzzy C-Means and Particle Swarm Optimization (FCMPSO) is developed in preprocessing stage to help fill in the missing values. Then, the complete dataset is trained in classification algorithm, Decision Tree. The experiment is trained with Heart Disease dataset and the performance is analysed using accuracy, precision, and ROC values. Results show that the performance of Decision Tree is increased after the application of FCMSPO for imputation.
Briggs, Andrew H; Ades, A E; Price, Martin J
2003-01-01
In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2016-04-01
Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.
Return to Work After Lumbar Microdiscectomy - Personalizing Approach Through Predictive Modeling.
Papić, Monika; Brdar, Sanja; Papić, Vladimir; Lončar-Turukalo, Tatjana
2016-01-01
Lumbar disc herniation (LDH) is the most common disease among working population requiring surgical intervention. This study aims to predict the return to work after operative treatment of LDH based on the observational study including 153 patients. The classification problem was approached using decision trees (DT), support vector machines (SVM) and multilayer perception (MLP) combined with RELIEF algorithm for feature selection. MLP provided best recall of 0.86 for the class of patients not returning to work, which combined with the selected features enables early identification and personalized targeted interventions towards subjects at risk of prolonged disability. The predictive modeling indicated at the most decisive risk factors in prolongation of work absence: psychosocial factors, mobility of the spine and structural changes of facet joints and professional factors including standing, sitting and microclimate.
C-fuzzy variable-branch decision tree with storage and classification error rate constraints
NASA Astrophysics Data System (ADS)
Yang, Shiueng-Bien
2009-10-01
The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.
A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem
Liu, Dong-sheng; Fan, Shu-jiang
2014-01-01
In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389
Planning effectiveness may grow on fault trees.
Chow, C W; Haddad, K; Mannino, B
1991-10-01
The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.
Prescriptive models to support decision making in genetics.
Pauker, S G; Pauker, S P
1987-01-01
Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.
Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy
2013-01-01
Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...
New Splitting Criteria for Decision Trees in Stationary Data Streams.
Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej
2018-06-01
The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.
An object-based approach for tree species extraction from digital orthophoto maps
NASA Astrophysics Data System (ADS)
Jamil, Akhtar; Bayram, Bulent
2018-05-01
Tree segmentation is an active and ongoing research area in the field of photogrammetry and remote sensing. It is more challenging due to both intra-class and inter-class similarities among various tree species. In this study, we exploited various statistical features for extraction of hazelnut trees from 1 : 5000 scaled digital orthophoto maps. Initially, the non-vegetation areas were eliminated using traditional normalized difference vegetation index (NDVI) followed by application of mean shift segmentation for transforming the pixels into meaningful homogeneous objects. In order to eliminate false positives, morphological opening and closing was employed on candidate objects. A number of heuristics were also derived to eliminate unwanted effects such as shadow and bounding box aspect ratios, before passing them into the classification stage. Finally, a knowledge based decision tree was constructed to distinguish the hazelnut trees from rest of objects which include manmade objects and other type of vegetation. We evaluated the proposed methodology on 10 sample orthophoto maps obtained from Giresun province in Turkey. The manually digitized hazelnut tree boundaries were taken as reference data for accuracy assessment. Both manually digitized and segmented tree borders were converted into binary images and the differences were calculated. According to the obtained results, the proposed methodology obtained an overall accuracy of more than 85 % for all sample images.
Tanaka, Tomohiro; Voigt, Michael D
2018-03-01
Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2 = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.
Assessment of the Thematic Accuracy of Land Cover Maps
NASA Astrophysics Data System (ADS)
Höhle, J.
2015-08-01
Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.
Interpretation of diagnostic data: 6. How to do it with more complex maths.
1983-11-15
We have now shown you how to use decision analysis in making those rare, tough diagnostic decisions that are not soluble through other, easier routes. In summary, to "use more complex maths" the following steps will be useful: Create a decision tree or map of all the pertinent courses of action and their consequences. Assign probabilities to the branches of each chance node. Assign utilities to each of the potential outcomes shown on the decision tree. Combine the probabilities and utilities for each node on the decision tree. Pick the decision that leads to the highest expected utility. Test your decision for its sensitivity to clinically sensible changes in probabilities and utilities. That concludes this series of clinical epidemiology rounds. You've come a long way from "doing it with pictures" and are now able to extract most of the diagnostic information that can be provided from signs, symptoms and laboratory investigations. We would appreciate learning whether you have found this series useful and how we can do a better job of presenting these and other elements of "the science of the art of medicine".
Policy Route Map for Academic Libraries' Digital Content
ERIC Educational Resources Information Center
Koulouris, Alexandros; Kapidakis, Sarantos
2012-01-01
This paper presents a policy decision tree for digital information management in academic libraries. The decision tree is a policy guide, which offers alternative access and reproduction policy solutions according to the prevailing circumstances (for example acquisition method, copyright ownership). It refers to the digital information life cycle,…
Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...
Korucu, M Kemal; Karademir, Aykan
2014-02-01
The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
2002-08-01
and Disease Registry (ATSDR). When conducting risk assessments , primary and secondary contaminants must be incorporated into the exposure...industry; acid production; textile bleaching; petroleum refining; refrigeration; production of pulp , paper , and rubber; as a catalytic agent in...memorandum from Michael Honeycutt, Ph.D., Toxicology and Risk Assessment Section, Office of Permitting, Remediation and Registration, Texas Natural Resource
Quantum computation with classical light: Implementation of the Deutsch-Jozsa algorithm
NASA Astrophysics Data System (ADS)
Perez-Garcia, Benjamin; McLaren, Melanie; Goyal, Sandeep K.; Hernandez-Aranda, Raul I.; Forbes, Andrew; Konrad, Thomas
2016-05-01
We propose an optical implementation of the Deutsch-Jozsa Algorithm using classical light in a binary decision-tree scheme. Our approach uses a ring cavity and linear optical devices in order to efficiently query the oracle functional values. In addition, we take advantage of the intrinsic Fourier transforming properties of a lens to read out whether the function given by the oracle is balanced or constant.
Scott D. Roberts; Thomas J. Dean; David L. Evans; John W. McCombs; Richard L. Harrington; Partick A. Glass
2005-01-01
Accurate estimates of leaf area index (LAI) could provide useful information to forest managers, but due to difficulties in measurement, leaf area is rarely used in decision-making. A reliable approach to remotely estimating LA1 would greatly facilitate its use in forest management. This study investigated the potential for using small-footprint iDAR, a laser-based...
Prediction of the effect of formulation on the toxicity of chemicals.
Mistry, Pritesh; Neagu, Daniel; Sanchez-Ruiz, Antonio; Trundle, Paul R; Vessey, Jonathan D; Gosling, John Paul
2017-01-01
Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.
A Mathematical Framework for Image Analysis
1991-08-01
The results reported here were derived from the research project ’A Mathematical Framework for Image Analysis ’ supported by the Office of Naval...Research, contract N00014-88-K-0289 to Brown University. A common theme for the work reported is the use of probabilistic methods for problems in image ... analysis and image reconstruction. Five areas of research are described: rigid body recognition using a decision tree/combinatorial approach; nonrigid
1993-07-01
GROUND RADIO ISSUES Multiple transmitters and receivers at a common site has been a dfficult integration issue for many communicaton systems...lower data rate vocoders become available. 10. Compatibility of modulation with channel availability and message integrity improvements, including...overrides can use in- frequency and path diversity, integrity improvements band signaling, busy channel overrides, and Frequency diversity and ARQ ARQ is
Poulos, H M; Camp, A E
2010-02-01
Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.
Shephard, Roy J
2015-04-01
Traditional approaches to exercise prescription have included a preliminary medical screening followed by exercise tests of varying sophistication. To maximize population involvement, qualified fitness and exercise professionals (QFEPs) have used a self-administered screening questionnaire (the Physical Activity Readiness Questionnaire, PAR-Q) and a simple measure of aerobic performance (the Canadian Aerobic Fitness Test, CAFT). However, problems have arisen in applying the original protocol to those with chronic disease. Recent developments have addressed these issues. Evolution of the PAR-Q and CAFT protocol is reviewed from their origins in 1974 to the current electronic decision tree model of exercise screening and prescription. About a fifth of apparently healthy adults responded positively to the original PAR-Q instrument, thus requiring an often unwarranted referral to a physician. Minor changes of wording did not overcome this problem. However, a consensus process has now developed an electronic decision tree for stratification of exercise risk not only for healthy individuals, but also for those with various types of chronic disease. The new approach to clearance greatly reduces physician referrals and extends the role of QFEPs. The availability of effective screening and simple fitness testing should contribute to the goal of maximizing physical activity in the entire population.
Decision tree modeling using R.
Zhang, Zhongheng
2016-08-01
In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
Szlosek, Donald A; Ferrett, Jonathan
2016-01-01
As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after accounting for 17 cases (0.66 percent) where the patient records had to be reviewed manually due to the NPL systems inability to capture the proper diagnosis. CDSSs incorporated into EMRs can be evaluated in an automatic fashion by using NLP and machine learning techniques.
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
Joshuva, A; Sugumaran, V
2017-03-01
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Pak, Kyoungjune; Kim, Keunyoung; Kim, Mi-Hyun; Eom, Jung Seop; Lee, Min Ki; Cho, Jeong Su; Kim, Yun Seong; Kim, Bum Soo; Kim, Seong Jang; Kim, In Joo
2018-01-01
We aimed to develop a decision tree model to improve diagnostic performance of positron emission tomography/computed tomography (PET/CT) to detect metastatic lymph nodes (LN) in non-small cell lung cancer (NSCLC). 115 patients with NSCLC were included in this study. The training dataset included 66 patients. A decision tree model was developed with 9 variables, and validated with 49 patients: short and long diameters of LNs, ratio of short and long diameters, maximum standardized uptake value (SUVmax) of LN, mean hounsfield unit, ratio of LN SUVmax and ascending aorta SUVmax (LN/AA), and ratio of LN SUVmax and superior vena cava SUVmax. A total of 301 LNs of 115 patients were evaluated in this study. Nodular calcification was applied as the initial imaging parameter, and LN SUVmax (≥3.95) was assessed as the second. LN/AA (≥2.92) was required to high LN SUVmax. Sensitivity was 50% for training dataset, and 40% for validation dataset. However, specificity was 99.28% for training dataset, and 96.23% for validation dataset. In conclusion, we have developed a new decision tree model for interpreting mediastinal LNs. All LNs with nodular calcification were benign, and LNs with high LN SUVmax and high LN/AA were metastatic Further studies are needed to incorporate subjective parameters and pathologic evaluations into a decision tree model to improve the test performance of PET/CT.
Phan, Thanh G; Chen, Jian; Singhal, Shaloo; Ma, Henry; Clissold, Benjamin B; Ly, John; Beare, Richard
2018-01-01
Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data. The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00). Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.
Phan, Thanh G; Chen, Jian; Beare, Richard; Ma, Henry; Clissold, Benjamin; Van Ly, John; Srikanth, Velandai
2017-01-01
Prognostication following intracerebral hemorrhage (ICH) has focused on poor outcome at the expense of lumping together mild and moderate disability. We aimed to develop a novel approach at classifying a range of disability following ICH. The Virtual International Stroke Trial Archive collaboration database was searched for patients with ICH and known volume of ICH on baseline CT scans. Disability was partitioned into mild [modified Rankin Scale (mRS) at 90 days of 0-2], moderate (mRS = 3-4), and severe disabilities (mRS = 5-6). We used binary and trichotomy decision tree methodology. The data were randomly divided into training (2/3 of data) and validation (1/3 data) datasets. The area under the receiver operating characteristic curve (AUC) was used to calculate the accuracy of the decision tree model. We identified 957 patients, age 65.9 ± 12.3 years, 63.7% males, and ICH volume 22.6 ± 22.1 ml. The binary tree showed that lower ICH volume (<13.7 ml), age (<66.5 years), serum glucose (<8.95 mmol/l), and systolic blood pressure (<170 mm Hg) discriminate between mild versus moderate-to-severe disabilities with AUC of 0.79 (95% CI 0.73-0.85). Large ICH volume (>27.9 ml), older age (>69.5 years), and low Glasgow Coma Scale (<15) classify severe disability with AUC of 0.80 (95% CI 0.75-0.86). The trichotomy tree showed that ICH volume, age, and serum glucose can separate mild, moderate, and severe disability groups with AUC 0.79 (95% CI 0.71-0.87). Both the binary and trichotomy methods provide equivalent discrimination of disability outcome after ICH. The trichotomy method can classify three categories at once, whereas this action was not possible with the binary method. The trichotomy method may be of use to clinicians and trialists for classifying a range of disability in ICH.
Gandhoke, Gurpreet S; Pease, Matthew; Smith, Kenneth J; Sekula, Raymond F
2017-09-01
To perform a cost-minimization study comparing the supraorbital and endoscopic endonasal (EEA) approach with or without craniotomy for the resection of olfactory groove meningiomas (OGMs). We built a decision tree using probabilities of gross total resection (GTR) and cerebrospinal fluid (CSF) leak rates with the supraorbital approach versus EEA with and without additional craniotomy. The cost (not charge or reimbursement) at each "stem" of this decision tree for both surgical options was obtained from our hospital's finance department. After a base case calculation, we applied plausible ranges to all parameters and carried out multiple 1-way sensitivity analyses. Probabilistic sensitivity analyses confirmed our results. The probabilities of GTR (0.8) and CSF leak (0.2) for the supraorbital craniotomy were obtained from our series of 5 patients who underwent a supraorbital approach for the resection of an OGM. The mean tumor volume was 54.6 cm 3 (range, 17-94.2 cm 3 ). Literature-reported rates of GTR (0.6) and CSF leak (0.3) with EEA were applied to our economic analysis. Supraorbital craniotomy was the preferred strategy, with an expected value of $29,423, compared with an EEA cost of $83,838. On multiple 1-way sensitivity analyses, supraorbital craniotomy remained the preferred strategy, with a minimum cost savings of $46,000 and a maximum savings of $64,000. Probabilistic sensitivity analysis found the lowest cost difference between the 2 surgical options to be $37,431. Compared with EEA, supraorbital craniotomy provides substantial cost savings in the treatment of OGMs. Given the potential differences in effectiveness between approaches, a cost-effectiveness analysis should be undertaken. Copyright © 2017 Elsevier Inc. All rights reserved.
Otsuka, Momoka; Uchida, Yuki; Kawaguchi, Takumi; Taniguchi, Eitaro; Kawaguchi, Atsushi; Kitani, Shingo; Itou, Minoru; Oriishi, Tetsuharu; Kakuma, Tatsuyuki; Tanaka, Suiko; Yagi, Minoru; Sata, Michio
2012-10-01
Dietary habits are involved in the development of chronic inflammation; however, the impact of dietary profiles of hepatitis C virus carriers with persistently normal alanine transaminase levels (HCV-PNALT) remains unclear. The decision-tree algorithm is a data-mining statistical technique, which uncovers meaningful profiles of factors from a data collection. We aimed to investigate dietary profiles associated with HCV-PNALT using a decision-tree algorithm. Twenty-seven HCV-PNALT and 41 patients with chronic hepatitis C were enrolled in this study. Dietary habit was assessed using a validated semiquantitative food frequency questionnaire. A decision-tree algorithm was created by dietary variables, and was evaluated by area under the receiver operating characteristic curve analysis (AUROC). In multivariate analysis, fish to meat ratio, dairy product and cooking oils were identified as independent variables associated with HCV-PNALT. The decision-tree algorithm was created with two variables: a fish to meat ratio and cooking oils/ideal bodyweight. When subjects showed a fish to meat ratio of 1.24 or more, 68.8% of the subjects were HCV-PNALT. On the other hand, 11.5% of the subjects were HCV-PNALT when subjects showed a fish to meat ratio of less than 1.24 and cooking oil/ideal bodyweight of less than 0.23 g/kg. The difference in the proportion of HCV-PNALT between these groups are significant (odds ratio 16.87, 95% CI 3.40-83.67, P = 0.0005). Fivefold cross-validation of the decision-tree algorithm showed an AUROC of 0.6947 (95% CI 0.5656-0.8238, P = 0.0067). The decision-tree algorithm disclosed that fish to meat ratio and cooking oil/ideal bodyweight were associated with HCV-PNALT. © 2012 The Japan Society of Hepatology.
Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles
2004-01-01
The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.
Intelligent data analysis: the best approach for chronic heart failure (CHF) follow up management.
Mohammadzadeh, Niloofar; Safdari, Reza; Baraani, Alireza; Mohammadzadeh, Farshid
2014-08-01
Intelligent data analysis has ability to prepare and present complex relations between symptoms and diseases, medical and treatment consequences and definitely has significant role in improving follow-up management of chronic heart failure (CHF) patients, increasing speed and accuracy in diagnosis and treatments; reducing costs, designing and implementation of clinical guidelines. The aim of this article is to describe intelligent data analysis methods in order to improve patient monitoring in follow and treatment of chronic heart failure patients as the best approach for CHF follow up management. Minimum data set (MDS) requirements for monitoring and follow up of CHF patient designed in checklist with six main parts. All CHF patients that discharged in 2013 from Tehran heart center have been selected. The MDS for monitoring CHF patient status were collected during 5 months in three different times of follow up. Gathered data was imported in RAPIDMINER 5 software. Modeling was based on decision trees methods such as C4.5, CHAID, ID3 and k-Nearest Neighbors algorithm (K-NN) with k=1. Final analysis was based on voting method. Decision trees and K-NN evaluate according to Cross-Validation. Creating and using standard terminologies and databases consistent with these terminologies help to meet the challenges related to data collection from various places and data application in intelligent data analysis. It should be noted that intelligent analysis of health data and intelligent system can never replace cardiologists. It can only act as a helpful tool for the cardiologist's decisions making.
Planning for ex situ conservation in the face of uncertainty.
Canessa, Stefano; Converse, Sarah J; West, Matt; Clemann, Nick; Gillespie, Graeme; McFadden, Michael; Silla, Aimee J; Parris, Kirsten M; McCarthy, Michael A
2016-06-01
Ex situ conservation strategies for threatened species often require long-term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex-situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species' persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Brown, Jeffrey S.; Petronis, Kenneth R.; Bate, Andrew; Zhang, Fang; Dashevsky, Inna; Kulldorff, Martin; Avery, Taliser R.; Davis, Robert L.; Chan, K. Arnold; Andrade, Susan E.; Boudreau, Denise; Gunter, Margaret J.; Herrinton, Lisa; Pawloski, Pamala A.; Raebel, Marsha A.; Roblin, Douglas; Smith, David; Reynolds, Robert
2013-01-01
Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds. PMID:24300404
Michelson, James D
2013-11-01
The development of a robust treatment algorithm for ankle fractures based on well-established stability criteria has been shown to be prognostic with respect to treatment and outcomes. In parallel with the development of improved understanding of the biomechanical rationale of ankle fracture treatment has been an increased emphasis on assessing the effectiveness of medical and surgical interventions. The purpose of this study was to investigate the use of using decision analysis in the assessment of the cost effectiveness of operative treatment of ankle fractures based on the existing clinical data in the literature. Using the data obtained from a previous structured review of the ankle fracture literature, decision analysis trees were constructed using standard software. The decision nodes for the trees were based on ankle fracture stability criteria previously published. The outcomes were assessed by calculated Quality-Adjusted Life Years (QALYs) assigned to achieving normal ankle function, developing posttraumatic arthritis, or sustaining a postoperative infection. Sensitivity analysis was undertaken by varying the patient's age, incidence of arthritis, and incidence or infection. Decision analysis trees captured the essential aspects of clinical decision making in ankle fracture treatment in a clinically useful manner. In general, stable fractures yielded better outcomes with nonoperative treatment, whereas unstable fractures had better outcomes with surgery. These were consistent results over a wide range of postoperative infection rates. Varying the age of the patient did not qualitatively change the results. Between the ages of 30 and 80 years, surgery yielded higher expected QALYs than nonoperative care for unstable fractures, and generated lower QALYs than nonoperative care for stable fractures. Using local cost estimates for operative and nonoperative treatment, the incremental cost of surgery for unstable fractures was less than $40,000 per QALY (the usual cutoff for the determination of cost effectiveness) for patients aged up to 90 years. Decision analysis is a useful methodology in developing treatment guidelines. Numerous previous studies have indicated superior clinical outcomes when unstable ankle fractures underwent operative reduction and stabilization. What has been lacking was an examination of the cost effectiveness of such an approach, particularly in older patients who have fewer expected years of life. In light of the evidence for satisfactory outcomes for surgery of severe ankle fractures in older people, the justification for operative intervention is an obvious question that can be asked in the current increasingly cost-conscious environment. Using a decision-tree decision analysis structured around the stability-based ankle fracture classification system, in conjunction with a relatively simple cost effectiveness analysis, this study was able to demonstrate that surgical treatment of unstable ankle fractures in elderly patients is in fact cost effective. The clinical implication of the present analysis is that these existing treatment protocols for ankle fracture treatment are also cost effective when quality of life outcome measures are taken into account. Economic Level II. See Instructions for Authors for a complete description of levels of evidence.
Verbakel, Jan Y; Lemiengre, Marieke B; De Burghgraeve, Tine; De Sutter, An; Aertgeerts, Bert; Bullens, Dominique M A; Shinkins, Bethany; Van den Bruel, Ann; Buntinx, Frank
2015-08-07
Acute infection is the most common presentation of children in primary care with only few having a serious infection (eg, sepsis, meningitis, pneumonia). To avoid complications or death, early recognition and adequate referral are essential. Clinical prediction rules have the potential to improve diagnostic decision-making for rare but serious conditions. In this study, we aimed to validate a recently developed decision tree in a new but similar population. Diagnostic accuracy study validating a clinical prediction rule. Acutely ill children presenting to ambulatory care in Flanders, Belgium, consisting of general practice and paediatric assessment in outpatient clinics or the emergency department. Physicians were asked to score the decision tree in every child. The outcome of interest was hospital admission for at least 24 h with a serious infection within 5 days after initial presentation. We report the diagnostic accuracy of the decision tree in sensitivity, specificity, likelihood ratios and predictive values. In total, 8962 acute illness episodes were included, of which 283 lead to admission to hospital with a serious infection. Sensitivity of the decision tree was 100% (95% CI 71.5% to 100%) at a specificity of 83.6% (95% CI 82.3% to 84.9%) in the general practitioner setting with 17% of children testing positive. In the paediatric outpatient and emergency department setting, sensitivities were below 92%, with specificities below 44.8%. In an independent validation cohort, this clinical prediction rule has shown to be extremely sensitive to identify children at risk of hospital admission for a serious infection in general practice, making it suitable for ruling out. NCT02024282. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Decay fungi of oaks and associated hardwoods for western arborists
Jessie A. Glaeser; Kevin T. Smith
2010-01-01
Examination of trees for the presence and extent of decay should be part of any hazard tree assessment. Identification of the fungi responsible for the decay improves prediction of tree performance and the quality of management decisions, including tree pruning or removal. Scouting for Sudden Oak Death (SOD) in the West has drawn attention to hardwood tree species,...
Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul
2012-06-01
Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.
A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence
Rey S. Ofren; Edward Harvey
2000-01-01
A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...
The Americans with Disabilities Act: A Decision Tree for Social Services Administrators
ERIC Educational Resources Information Center
O'Brien, Gerald V.; Ellegood, Christina
2005-01-01
The 1990 Americans with Disabilities Act has had a profound influence on social workers and social services administrators in virtually all work settings. Because of the multiple elements of the act, however, assessing the validity of claims can be a somewhat arduous and complicated task. This article provides a "decision tree" for…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Chu, Hui-Chun; Shih, Ju-Ling; Huang, Shu-Hsien; Tsai, Chin-Chung
2010-01-01
A context-aware ubiquitous learning environment is an authentic learning environment with personalized digital supports. While showing the potential of applying such a learning environment, researchers have also indicated the challenges of providing adaptive and dynamic support to individual students. In this paper, a decision-tree-oriented…
Vergara, Pablo M.; Soto, Gerardo E.; Rodewald, Amanda D.; Meneses, Luis O.; Pérez-Hernández, Christian G.
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox’s proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales. PMID:27416115
Vergara, Pablo M; Soto, Gerardo E; Moreira-Arce, Darío; Rodewald, Amanda D; Meneses, Luis O; Pérez-Hernández, Christian G
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox's proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales.
On Elementary Affective Decisions: To Like Or Not to Like, That Is the Question
Jacobs, Arthur; Hofmann, Markus J.; Kinder, Annette
2016-01-01
Perhaps the most ubiquitous and basic affective decision of daily life is deciding whether we like or dislike something/somebody, or, in terms of psychological emotion theories, whether the object/subject has positive or negative valence. Indeed, people constantly make such liking decisions within a glimpse and, importantly, often without expecting any obvious benefit or knowing the exact reasons for their judgment. In this paper, we review research on such elementary affective decisions (EADs) that entail no direct overt reward with a special focus on Neurocognitive Poetics and discuss methods and models for investigating the neuronal and cognitive-affective bases of EADs to verbal materials with differing degrees of complexity. In line with evolutionary and appraisal theories of (aesthetic) emotions and data from recent neurocognitive studies, the results of a decision tree modeling approach simulating EADs to single words suggest that a main driving force behind EADs is the extent to which such high-dimensional stimuli are associated with the “basic” emotions joy/happiness and disgust. PMID:27933013
Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities
NASA Astrophysics Data System (ADS)
Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.
2014-12-01
Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.
Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupriyanov, M. S., E-mail: mikhail.kupriyanov@gmail.com; Shukeilo, E. Y., E-mail: eyshukeylo@gmail.com; Shichkina, J. A., E-mail: strange.y@mail.ru
2015-11-17
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient’s health condition using data from a wearable device considers in this article.
NASA Astrophysics Data System (ADS)
Kupriyanov, M. S.; Shukeilo, E. Y.; Shichkina, J. A.
2015-11-01
Nowadays technologies which are used in traumatology are a combination of mechanical, electronic, calculating and programming tools. Relevance of development of mobile applications for an expeditious data processing which are received from medical devices (in particular, wearable devices), and formulation of management decisions increases. Using of a mathematical method of building of decision trees for an assessment of a patient's health condition using data from a wearable device considers in this article.
Classification tree for the assessment of sedentary lifestyle among hypertensive.
Castelo Guedes Martins, Larissa; Venícios de Oliveira Lopes, Marcos; Gomes Guedes, Nirla; Paixão de Menezes, Angélica; de Oliveira Farias, Odaleia; Alves Dos Santos, Naftale
2016-04-01
To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL) in people with high blood pressure (HTN). A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection). The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.
NASA Technical Reports Server (NTRS)
Tian, Jianhui; Porter, Adam; Zelkowitz, Marvin V.
1992-01-01
Identification of high cost modules has been viewed as one mechanism to improve overall system reliability, since such modules tend to produce more than their share of problems. A decision tree model was used to identify such modules. In this current paper, a previously developed axiomatic model of program complexity is merged with the previously developed decision tree process for an improvement in the ability to identify such modules. This improvement was tested using data from the NASA Software Engineering Laboratory.
A key for the Forest Service hardwood tree grades
Gary W. Miller; Leland F. Hanks; Harry V., Jr. Wiant
1986-01-01
A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paried choices that lead the user to a decision regarding tree grade.
Inferences from growing trees backwards
David W. Green; Kent A. McDonald
1997-01-01
The objective of this paper is to illustrate how longitudinal stress wave techniques can be useful in tracking the future quality of a growing tree. Monitoring the quality of selected trees in a plantation forest could provide early input to decisions on the effectiveness of management practices, or future utilization options, for trees in a plantation. There will...
Morales, Susana; Barros, Jorge; Echávarri, Orietta; García, Fabián; Osses, Alex; Moya, Claudia; Maino, María Paz; Fischman, Ronit; Núñez, Catalina; Szmulewicz, Tita; Tomicic, Alemka
2017-01-01
In efforts to develop reliable methods to detect the likelihood of impending suicidal behaviors, we have proposed the following. To gain a deeper understanding of the state of suicide risk by determining the combination of variables that distinguishes between groups with and without suicide risk. A study involving 707 patients consulting for mental health issues in three health centers in Greater Santiago, Chile. Using 345 variables, an analysis was carried out with artificial intelligence tools, Cross Industry Standard Process for Data Mining processes, and decision tree techniques. The basic algorithm was top-down, and the most suitable division produced by the tree was selected by using the lowest Gini index as a criterion and by looping it until the condition of belonging to the group with suicidal behavior was fulfilled. Four trees distinguishing the groups were obtained, of which the elements of one were analyzed in greater detail, since this tree included both clinical and personality variables. This specific tree consists of six nodes without suicide risk and eight nodes with suicide risk (tree decision 01, accuracy 0.674, precision 0.652, recall 0.678, specificity 0.670, F measure 0.665, receiver operating characteristic (ROC) area under the curve (AUC) 73.35%; tree decision 02, accuracy 0.669, precision 0.642, recall 0.694, specificity 0.647, F measure 0.667, ROC AUC 68.91%; tree decision 03, accuracy 0.681, precision 0.675, recall 0.638, specificity 0.721, F measure, 0.656, ROC AUC 65.86%; tree decision 04, accuracy 0.714, precision 0.734, recall 0.628, specificity 0.792, F measure 0.677, ROC AUC 58.85%). This study defines the interactions among a group of variables associated with suicidal ideation and behavior. By using these variables, it may be possible to create a quick and easy-to-use tool. As such, psychotherapeutic interventions could be designed to mitigate the impact of these variables on the emotional state of individuals, thereby reducing eventual risk of suicide. Such interventions may reinforce psychological well-being, feelings of self-worth, and reasons for living, for each individual in certain groups of patients.
NASA Astrophysics Data System (ADS)
Kaur, Parneet; Singh, Sukhwinder; Garg, Sushil; Harmanpreet
2010-11-01
In this paper we study about classification algorithms for farm DSS. By applying classification algorithms i.e. Limited search, ID3, CHAID, C4.5, Improved C4.5 and One VS all Decision Tree on common data set of crop with specified class, results are obtained. The tool used to derive results is SPINA. The graphical results obtained from tool are compared to suggest best technique to develop farm Decision Support System. This analysis would help to researchers to design effective and fast DSS for farmer to take decision for enhancing their yield.
Collins, A L; Pulley, S; Foster, I D L; Gellis, A; Porto, P; Horowitz, A J
2017-06-01
The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Uninjured trees - a meaningful guide to white-pine weevil control decisions
William E. Waters
1962-01-01
The white-pine weevil, Pissodes strobi, is a particularly insidious forest pest that can render a stand of host trees virtually worthless. It rarely, if ever, kills a tree; but the crooks, forks, and internal defects that develop in attacked trees over a period of years may reduce the merchantable volume and value of the tree at harvest age to zero. Dollar losses are...
Compensatory value of urban trees in the United States
David J. Nowak; Daniel E. Crane; John F. Dwyer
2002-01-01
Understanding the value of an urban forest can give decision makers a better foundation for urban tree namagement. Based on tree-valuation methods of the Council of Tree and Landscape Appraisers and field data from eight cities, total compensatory value of tree populations in U.S. cities ranges from $101 million in Jersey City, New Jersey, to $6.2 billion in New York,...
Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.
Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria
2017-12-04
The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.
2015-01-01
Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project. PMID:26339227
Shin, Yoonseok
2015-01-01
Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.
ERIC Educational Resources Information Center
Tansy, Michael
2009-01-01
The Emotional Disturbance Decision Tree (EDDT) is a teacher-completed norm-referenced rating scale published by Psychological Assessment Resources, Inc., in Lutz, Florida. The 156-item EDDT was developed for use as part of a broader assessment process to screen and assist in the identification of 5- to 18-year-old children for the special…
Phytotechnology Technical and Regulatory Guidance Document
2001-04-01
contaminated media is rather new. Throughout the development process of this document, we referred to the science as “ phytoremediation .” Recently...the media containing contaminants, we now refer to “phytotechnologies” as the overarching terminology, while using “ phytoremediation ” more...publication of the ITRC document, Phytoremediation Decision Tree. The decision tree was designed to allow potential users to take basic information
Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf
2018-05-01
Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.
Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.
Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab
2017-09-01
Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.
Amini, Payam; Maroufizadeh, Saman; Samani, Reza Omani; Hamidi, Omid; Sepidarkish, Mahdi
2017-06-01
Preterm birth (PTB) is a leading cause of neonatal death and the second biggest cause of death in children under five years of age. The objective of this study was to determine the prevalence of PTB and its associated factors using logistic regression and decision tree classification methods. This cross-sectional study was conducted on 4,415 pregnant women in Tehran, Iran, from July 6-21, 2015. Data were collected by a researcher-developed questionnaire through interviews with mothers and review of their medical records. To evaluate the accuracy of the logistic regression and decision tree methods, several indices such as sensitivity, specificity, and the area under the curve were used. The PTB rate was 5.5% in this study. The logistic regression outperformed the decision tree for the classification of PTB based on risk factors. Logistic regression showed that multiple pregnancies, mothers with preeclampsia, and those who conceived with assisted reproductive technology had an increased risk for PTB ( p < 0.05). Identifying and training mothers at risk as well as improving prenatal care may reduce the PTB rate. We also recommend that statisticians utilize the logistic regression model for the classification of risk groups for PTB.
Djulbegovic, Benjamin; Hozo, Iztok; Dale, William
2018-02-27
Contemporary delivery of health care is inappropriate in many ways, largely due to suboptimal Q5 decision-making. A typical approach to improve practitioners' decision-making is to develop evidence-based clinical practice guidelines (CPG) by guidelines panels, who are instructed to use their judgments to derive practice recommendations. However, mechanisms for the formulation of guideline judgments remains a "black-box" operation-a process with defined inputs and outputs but without sufficient knowledge of its internal workings. Increased explicitness and transparency in the process can be achieved by implementing CPG as clinical pathways (CPs) (also known as clinical algorithms or flow-charts). However, clinical recommendations thus derived are typically ad hoc and developed by experts in a theory-free environment. As any recommendation can be right (true positive or negative), or wrong (false positive or negative), the lack of theoretical structure precludes the quantitative assessment of the management strategies recommended by CPGs/CPs. To realize the full potential of CPGs/CPs, they need to be placed on more solid theoretical grounds. We believe this potential can be best realized by converting CPGs/CPs within the heuristic theory of decision-making, often implemented as fast-and-frugal (FFT) decision trees. This is possible because FFT heuristic strategy of decision-making can be linked to signal detection theory, evidence accumulation theory, and a threshold model of decision-making, which, in turn, allows quantitative analysis of the accuracy of clinical management strategies. Fast-and-frugal provides a simple and transparent, yet solid and robust, methodological framework connecting decision science to clinical care, a sorely needed missing link between CPGs/CPs and patient outcomes. We therefore advocate that all guidelines panels express their recommendations as CPs, which in turn should be converted into FFTs to guide clinical care. © 2018 John Wiley & Sons, Ltd.
Decision tree and PCA-based fault diagnosis of rotating machinery
NASA Astrophysics Data System (ADS)
Sun, Weixiang; Chen, Jin; Li, Jiaqing
2007-04-01
After analysing the flaws of conventional fault diagnosis methods, data mining technology is introduced to fault diagnosis field, and a new method based on C4.5 decision tree and principal component analysis (PCA) is proposed. In this method, PCA is used to reduce features after data collection, preprocessing and feature extraction. Then, C4.5 is trained by using the samples to generate a decision tree model with diagnosis knowledge. At last the tree model is used to make diagnosis analysis. To validate the method proposed, six kinds of running states (normal or without any defect, unbalance, rotor radial rub, oil whirl, shaft crack and a simultaneous state of unbalance and radial rub), are simulated on Bently Rotor Kit RK4 to test C4.5 and PCA-based method and back-propagation neural network (BPNN). The result shows that C4.5 and PCA-based diagnosis method has higher accuracy and needs less training time than BPNN.
The application of data mining techniques to oral cancer prognosis.
Tseng, Wan-Ting; Chiang, Wei-Fan; Liu, Shyun-Yeu; Roan, Jinsheng; Lin, Chun-Nan
2015-05-01
This study adopted an integrated procedure that combines the clustering and classification features of data mining technology to determine the differences between the symptoms shown in past cases where patients died from or survived oral cancer. Two data mining tools, namely decision tree and artificial neural network, were used to analyze the historical cases of oral cancer, and their performance was compared with that of logistic regression, the popular statistical analysis tool. Both decision tree and artificial neural network models showed superiority to the traditional statistical model. However, as to clinician, the trees created by the decision tree models are relatively easier to interpret compared to that of the artificial neural network models. Cluster analysis also discovers that those stage 4 patients whose also possess the following four characteristics are having an extremely low survival rate: pN is N2b, level of RLNM is level I-III, AJCC-T is T4, and cells mutate situation (G) is moderate.
A soil map of a large watershed in China: applying digital soil mapping in a data sparse region
NASA Astrophysics Data System (ADS)
Barthold, F.; Blank, B.; Wiesmeier, M.; Breuer, L.; Frede, H.-G.
2009-04-01
Prediction of soil classes in data sparse regions is a major research challenge. With the advent of machine learning the possibilities to spatially predict soil classes have increased tremendously and given birth to new possibilities in soil mapping. Digital soil mapping is a research field that has been established during the last decades and has been accepted widely. We now need to develop tools to reduce the uncertainty in soil predictions. This is especially challenging in data sparse regions. One approach to do this is to implement soil taxonomic distance as a classification error criterion in classification and regression trees (CART) as suggested by Minasny et al. (Geoderma 142 (2007) 285-293). This approach assumes that the classification error should be larger between soils that are more dissimilar, i.e. differ in a larger number of soil properties, and smaller between more similar soils. Our study area is the Xilin River Basin, which is located in central Inner Mongolia in China. It is characterized by semi arid climate conditions and is representative for the natural occurring steppe ecosystem. The study area comprises 3600 km2. We applied a random, stratified sampling design after McKenzie and Ryan (Geoderma 89 (1999) 67-94) with landuse and topography as stratifying variables. We defined 10 sampling classes, from each class 14 replicates were randomly drawn and sampled. The dataset was split into 100 soil profiles for training and 40 soil profiles for validation. We then applied classification and regression trees (CART) to quantify the relationships between soil classes and environmental covariates. The classification tree explained 75.5% of the variance with land use and geology as most important predictor variables. Among the 8 soil classes that we predicted, the Kastanozems cover most of the area. They are predominantly found in steppe areas. However, even some of the soils at sand dune sites, which were thought to show only little soil formation, can be classified as Kastanozems. Besides the Kastanozems, Regosols are most common at the sand dune sites as well as at sites that are defined as bare soil which are characterized by little or no vegetation. Gleysols are mostly found at sites in the vicinity of the Xilin river, which are connected to the groundwater. They can also be found in small valleys or depressions where sub-surface waters from neighboring areas collect. The richest soils are found in mountain meadow areas. Pedogenetic conditions here are most favorable and lead to the formation of Chernozems with deep humic Ah horizons. Other soil types that occur in the study area are Arenosols, Calcisols, Cambisol and Phaeozems. In addition, soil taxonomic distance is implemented into the decision tree procedure as a measure of classification error. The results of incorporating taxonomic distance as a loss function in the decision tree will be compared with the standard application of the decision tree.
E.H. Helmer; T.A. Kennaway; D.H. Pedreros; M.L. Clark; H. Marcano-Vega; L.L. Tieszen; S.R. Schill; C.M.S. Carrington
2008-01-01
Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius...
Mapping mountain pine beetle mortality through growth trend analysis of time-series landsat data
Liang, Lu; Chen, Yanlei; Hawbaker, Todd J.; Zhu, Zhi-Liang; Gong, Peng
2014-01-01
Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.
Machine Learning Through Signature Trees. Applications to Human Speech.
ERIC Educational Resources Information Center
White, George M.
A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…
Modeling individual tree survial
Quang V. Cao
2016-01-01
Information provided by growth and yield models is the basis for forest managers to make decisions on how to manage their forests. Among different types of growth models, whole-stand models offer predictions at stand level, whereas individual-tree models give detailed information at tree level. The well-known logistic regression is commonly used to predict tree...
Using decision tree models to depict primary care physicians CRC screening decision heuristics.
Wackerbarth, Sarah B; Tarasenko, Yelena N; Curtis, Laurel A; Joyce, Jennifer M; Haist, Steven A
2007-10-01
The purpose of this study was to identify decision heuristics utilized by primary care physicians in formulating colorectal cancer screening recommendations. Qualitative research using in-depth semi-structured interviews. We interviewed 66 primary care internists and family physicians evenly drawn from academic and community practices. A majority of physicians were male, and almost all were white, non-Hispanic. Three researchers independently reviewed each transcript to determine the physician's decision criteria and developed decision trees. Final trees were developed by consensus. The constant comparative methodology was used to define the categories. Physicians were found to use 1 of 4 heuristics ("age 50," "age 50, if family history, then earlier," "age 50, if family history, then screen at age 40," or "age 50, if family history, then adjust relative to reference case") for the timing recommendation and 5 heuristics ["fecal occult blood test" (FOBT), "colonoscopy," "if not colonoscopy, then...," "FOBT and another test," and "a choice between options"] for the type decision. No connection was found between timing and screening type heuristics. We found evidence of heuristic use. Further research is needed to determine the potential impact on quality of care.
Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim
2015-07-30
Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.
Using data mining to predict success in a weight loss trial.
Batterham, M; Tapsell, L; Charlton, K; O'Shea, J; Thorne, R
2017-08-01
Traditional methods for predicting weight loss success use regression approaches, which make the assumption that the relationships between the independent and dependent (or logit of the dependent) variable are linear. The aim of the present study was to investigate the relationship between common demographic and early weight loss variables to predict weight loss success at 12 months without making this assumption. Data mining methods (decision trees, generalised additive models and multivariate adaptive regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success (defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and predicted weight loss using an energy balance model. The methods were compared by assessing model parsimony and the area under the curve (AUC). The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720 95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg m -2 ) were more likely to be successful than those with a BMI between 25 and 27 kg m -2 . Data mining methods can provide a more accurate way of assessing relationships when conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious model. Given that early weight loss cannot be predicted before randomisation, incorporating this information into a post randomisation trial design may give better weight loss results. © 2017 The British Dietetic Association Ltd.
Understanding and planning ecological restoration of plant-pollinator networks.
Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane
2012-04-01
Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1994-01-01
IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.
Fang, H; Lu, B; Wang, X; Zheng, L; Sun, K; Cai, W
2017-08-17
This study proposed a decision tree model to screen upper urinary tract damage (UUTD) for patients with neurogenic bladder (NGB). Thirty-four NGB patients with UUTD were recruited in the case group, while 78 without UUTD were included in the control group. A decision tree method, classification and regression tree (CART), was then applied to develop the model in which UUTD was used as a dependent variable and history of urinary tract infections, bladder management, conservative treatment, and urodynamic findings were used as independent variables. The urethra function factor was found to be the primary screening information of patients and treated as the root node of the tree; Pabd max (maximum abdominal pressure, >14 cmH2O), Pves max (maximum intravesical pressure, ≤89 cmH2O), and gender (female) were also variables associated with UUTD. The accuracy of the proposed model was 84.8%, and the area under curve was 0.901 (95%CI=0.844-0.958), suggesting that the decision tree model might provide a new and convenient way to screen UUTD for NGB patients in both undeveloped and developing areas.
Graphic Representations as Tools for Decision Making.
ERIC Educational Resources Information Center
Howard, Judith
2001-01-01
Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)
Detailed forest formation mapping in the land cover map series for the Caribbean islands
NASA Astrophysics Data System (ADS)
Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.
2006-12-01
Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail than when IKONOS or Landsat imagery was hand-digitized, as it was for the Dominican Republic (7) and Barbados. 1. T. Kennaway, E. H. Helmer. (Intl Inst of Tropical Forestry, USDA Forest Service, Río Piedras, Puerto Rico, 2006). 2. A. Areces-Mallea et al. (The Nature Conservancy, 1999). 3. E. H. Helmer, O. Ramos, T. Lopez, M. Quiñones, W. Diaz, Carib J Sci 38, 165-183 (2002). 4. C. Daly, E. H. Helmer, M. Quiñones, Int J Climatology 23, 1359-1381 (2003). 5. T. G. Farr, M. Kobrick, Eos Transactions 81, 583-585 (2000). 6. E. H. Helmer, B. Ruefenacht, Photogrammetric Eng Rem Sens 71, 1079-1089 (2005). 7. S. Hernández, M. Pérez. (Secretaría de Estado de Medio Ambiente y Recursos Naturales de la República Dominicana, Santo Domingo, Dominican Republic, 2005).
Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng
2018-02-09
Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.
Detection of fraudulent financial statements using the hybrid data mining approach.
Chen, Suduan
2016-01-01
The purpose of this study is to construct a valid and rigorous fraudulent financial statement detection model. The research objects are companies which experienced both fraudulent and non-fraudulent financial statements between the years 2002 and 2013. In the first stage, two decision tree algorithms, including the classification and regression trees (CART) and the Chi squared automatic interaction detector (CHAID) are applied in the selection of major variables. The second stage combines CART, CHAID, Bayesian belief network, support vector machine and artificial neural network in order to construct fraudulent financial statement detection models. According to the results, the detection performance of the CHAID-CART model is the most effective, with an overall accuracy of 87.97 % (the FFS detection accuracy is 92.69 %).
Fernández, Leónides; Mediano, Pilar; García, Ricardo; Rodríguez, Juan M; Marín, María
2016-09-01
Objectives Lactational mastitis frequently leads to a premature abandonment of breastfeeding; its development has been associated with several risk factors. This study aims to use a decision tree (DT) approach to establish the main risk factors involved in mastitis and to compare its performance for predicting this condition with a stepwise logistic regression (LR) model. Methods Data from 368 cases (breastfeeding women with mastitis) and 148 controls were collected by a questionnaire about risk factors related to medical history of mother and infant, pregnancy, delivery, postpartum, and breastfeeding practices. The performance of the DT and LR analyses was compared using the area under the receiver operating characteristic (ROC) curve. Sensitivity, specificity and accuracy of both models were calculated. Results Cracked nipples, antibiotics and antifungal drugs during breastfeeding, infant age, breast pumps, familial history of mastitis and throat infection were significant risk factors associated with mastitis in both analyses. Bottle-feeding and milk supply were related to mastitis for certain subgroups in the DT model. The areas under the ROC curves were similar for LR and DT models (0.870 and 0.835, respectively). The LR model had better classification accuracy and sensitivity than the DT model, but the last one presented better specificity at the optimal threshold of each curve. Conclusions The DT and LR models constitute useful and complementary analytical tools to assess the risk of lactational infectious mastitis. The DT approach identifies high-risk subpopulations that need specific mastitis prevention programs and, therefore, it could be used to make the most of public health resources.
Ensemble stump classifiers and gene expression signatures in lung cancer.
Frey, Lewis; Edgerton, Mary; Fisher, Douglas; Levy, Shawn
2007-01-01
Microarray data sets for cancer tumor tissue generally have very few samples, each sample having thousands of probes (i.e., continuous variables). The sparsity of samples makes it difficult for machine learning techniques to discover probes relevant to the classification of tumor tissue. By combining data from different platforms (i.e., data sources), data sparsity is reduced, but this typically requires normalizing data from the different platforms, which can be non-trivial. This paper proposes a variant on the idea of ensemble learners to circumvent the need for normalization. To facilitate comprehension we build ensembles of very simple classifiers known as decision stumps--decision trees of one test each. The Ensemble Stump Classifier (ESC) identifies an mRNA signature having three probes and high accuracy for distinguishing between adenocarcinoma and squamous cell carcinoma of the lung across four data sets. In terms of accuracy, ESC outperforms a decision tree classifier on all four data sets, outperforms ensemble decision trees on three data sets, and simple stump classifiers on two data sets.
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-01-01
Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6–12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%–40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities. PMID:27174328
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-07
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
Ye, Fang; Chen, Zhi-Hua; Chen, Jie; Liu, Fang; Zhang, Yong; Fan, Qin-Ying; Wang, Lin
2016-05-20
In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1, 2013 to December 31, 2014. The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-01
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
ERIC Educational Resources Information Center
Braus, Judy, Ed.
1992-01-01
Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including…
MINER: exploratory analysis of gene interaction networks by machine learning from expression data.
Kadupitige, Sidath Randeni; Leung, Kin Chun; Sellmeier, Julia; Sivieng, Jane; Catchpoole, Daniel R; Bain, Michael E; Gaëta, Bruno A
2009-12-03
The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. We have developed MINER (Microarray Interactive Network Exploration and Representation), an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.
Khosravi, Khabat; Pham, Binh Thai; Chapi, Kamran; Shirzadi, Ataollah; Shahabi, Himan; Revhaug, Inge; Prakash, Indra; Tien Bui, Dieu
2018-06-15
Floods are one of the most damaging natural hazards causing huge loss of property, infrastructure and lives. Prediction of occurrence of flash flood locations is very difficult due to sudden change in climatic condition and manmade factors. However, prior identification of flood susceptible areas can be done with the help of machine learning techniques for proper timely management of flood hazards. In this study, we tested four decision trees based machine learning models namely Logistic Model Trees (LMT), Reduced Error Pruning Trees (REPT), Naïve Bayes Trees (NBT), and Alternating Decision Trees (ADT) for flash flood susceptibility mapping at the Haraz Watershed in the northern part of Iran. For this, a spatial database was constructed with 201 present and past flood locations and eleven flood-influencing factors namely ground slope, altitude, curvature, Stream Power Index (SPI), Topographic Wetness Index (TWI), land use, rainfall, river density, distance from river, lithology, and Normalized Difference Vegetation Index (NDVI). Statistical evaluation measures, the Receiver Operating Characteristic (ROC) curve, and Freidman and Wilcoxon signed-rank tests were used to validate and compare the prediction capability of the models. Results show that the ADT model has the highest prediction capability for flash flood susceptibility assessment, followed by the NBT, the LMT, and the REPT, respectively. These techniques have proven successful in quickly determining flood susceptible areas. Copyright © 2018 Elsevier B.V. All rights reserved.
Tools of the Future: How Decision Tree Analysis Will Impact Mission Planning
NASA Technical Reports Server (NTRS)
Otterstatter, Matthew R.
2005-01-01
The universe is infinitely complex; however, the human mind has a finite capacity. The multitude of possible variables, metrics, and procedures in mission planning are far too many to address exhaustively. This is unfortunate because, in general, considering more possibilities leads to more accurate and more powerful results. To compensate, we can get more insightful results by employing our greatest tool, the computer. The power of the computer will be utilized through a technology that considers every possibility, decision tree analysis. Although decision trees have been used in many other fields, this is innovative for space mission planning. Because this is a new strategy, no existing software is able to completely accommodate all of the requirements. This was determined through extensive research and testing of current technologies. It was necessary to create original software, for which a short-term model was finished this summer. The model was built into Microsoft Excel to take advantage of the familiar graphical interface for user input, computation, and viewing output. Macros were written to automate the process of tree construction, optimization, and presentation. The results are useful and promising. If this tool is successfully implemented in mission planning, our reliance on old-fashioned heuristics, an error-prone shortcut for handling complexity, will be reduced. The computer algorithms involved in decision trees will revolutionize mission planning. The planning will be faster and smarter, leading to optimized missions with the potential for more valuable data.
Barbosa, Rommel Melgaço; Nacano, Letícia Ramos; Freitas, Rodolfo; Batista, Bruno Lemos; Barbosa, Fernando
2014-09-01
This article aims to evaluate 2 machine learning algorithms, decision trees and naïve Bayes (NB), for egg classification (free-range eggs compared with battery eggs). The database used for the study consisted of 15 chemical elements (As, Ba, Cd, Co, Cs, Cu, Fe, Mg, Mn, Mo, Pb, Se, Sr, V, and Zn) determined in 52 eggs samples (20 free-range and 32 battery eggs) by inductively coupled plasma mass spectrometry. Our results demonstrated that decision trees and NB associated with the mineral contents of eggs provide a high level of accuracy (above 80% and 90%, respectively) for classification between free-range and battery eggs and can be used as an alternative method for adulteration evaluation. © 2014 Institute of Food Technologists®
Pollution mitigation and carbon sequestration by an urban forest.
Brack, C L
2002-01-01
At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.
Naturalistic Decision Making for Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2010-02-01
Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less
Mapping forest tree species over large areas with partially cloudy Landsat imagery
NASA Astrophysics Data System (ADS)
Turlej, K.; Radeloff, V.
2017-12-01
Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.
Towards automated sleep classification in infants using symbolic and subsymbolic approaches.
Kubat, M; Flotzinger, D; Pfurtscheller, G
1993-04-01
The paper addresses the problem of automatic sleep classification. A special effort is made to find a method of extracting reasonable descriptions of the individual sleep stages from sample measurements of EGG, EMG, EOG, etc., and from a classification of these measurements provided by an expert. The method should satisfy three requirements: classification accuracy, interpretability of the results, and the ability to select the relevant and discard the irrelevant variables. The solution suggested in this paper consists of a combination of the subsymbolic algorithm LVQ with the symbolic decision tree generator ID3. Results demonstrating the feasibility and utility of our approach are also presented.
Paradigms for machine learning
NASA Technical Reports Server (NTRS)
Schlimmer, Jeffrey C.; Langley, Pat
1991-01-01
Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.
A cost analysis of first-line chemotherapy for low-risk gestational trophoblastic neoplasia.
Shah, Neel T; Barroilhet, Lisa; Berkowitz, Ross S; Goldstein, Donald P; Horowitz, Neil
2012-01-01
To determine the optimal approach to first-line treatment for low-risk gestational trophoblastic neoplasia (GTN) using a cost analysis of 3 commonly used regimens. A decision tree of the 3 most commonly used first-line low-risk GTN treatment strategies was created, accounting for toxicities, response rates and need for second- or third-line therapy. These strategies included 8-day methotrexate (MTX)/folinic acid, weekly MTX, and pulsed actinomycin-D (act-D). Response rates, average number of cycles needed for remission, and toxicities were determined by review of the literature. Costs of each strategy were examined from a societal perspective, including the direct total treatment costs as well as the indirect lost labor production costs from work absences. Sensitivity analysis on these costs was performed using both deterministic and probabilistic cost-minimization models with the aid of decision tree software (TreeAge Pro 2011, TreeAge Inc., Williamstown, Massachusetts). We found that 8-day MTX/folinic acid is the least expensive to society, followed by pulsed act-D ($4,867 vs. $6,111 average societal cost per cure, respectively), with act-D becoming more favorable only with act-D per-cycle cost <$231, or response rate to first-line therapy > 99%. Weekly MTX is the most expensive first-line treatment strategy to society ($9,089 average cost per cure), despite being least expensive to administer per cycle, based on lower first-line response rate. Absolute societal cost of each strategy is driven by the probability of needing expensive third-line multiagent chemotherapy, however relative cost differences are robust to sensitivity analysis over the reported range of cycle number and response rate for all therapies. Based on similar efficacy and lower societal cost, we recommend 8-day MTX/folinic acid for first-line treatment of low-risk GTN.
Improving ensemble decision tree performance using Adaboost and Bagging
NASA Astrophysics Data System (ADS)
Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie
2015-12-01
Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.
Knowledge Quality Functions for Rule Discovery
1994-09-01
Managers in many organizations finding themselves in the possession of large and rapidly growing databases are beginning to suspect the information in their...missing values (Smyth and Goodman, 1992, p. 303). Decision trees "tend to grow very large for realistic applications and are thus difficult to interpret...by humans" (Holsheimer, 1994, p. 42). Decision trees also grow excessively complicated in the presence of noisy databases (Dhar and Tuzhilin, 1993, p
Structural Equation Model Trees
ERIC Educational Resources Information Center
Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman
2013-01-01
In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…
Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung
2015-12-01
This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.
2010-01-01
Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.
Brumen, Bostjan; Heričko, Marjan; Sevčnikar, Andrej; Završnik, Jernej; Hölbl, Marko
2013-12-16
Medical data are gold mines for deriving the knowledge that could change the course of a single patient's life or even the health of the entire population. A data analyst needs to have full access to relevant data, but full access may be denied by privacy and confidentiality of medical data legal regulations, especially when the data analyst is not affiliated with the data owner. Our first objective was to analyze the privacy and confidentiality issues and the associated regulations pertaining to medical data, and to identify technologies to properly address these issues. Our second objective was to develop a procedure to protect medical data in such a way that the outsourced analyst would be capable of doing analyses on protected data and the results would be comparable, if not the same, as if they had been done on the original data. Specifically, our hypothesis was there would not be a difference between the outsourced decision trees built on encrypted data and the ones built on original data. Using formal definitions, we developed an algorithm to protect medical data for outsourced analyses. The algorithm was applied to publicly available datasets (N=30) from the medical and life sciences fields. The analyses were performed on the original and the protected datasets and the results of the analyses were compared. Bootstrapped paired t tests for 2 dependent samples were used to test whether the mean differences in size, number of leaves, and the accuracy of the original and the encrypted decision trees were significantly different. The decision trees built on encrypted data were virtually the same as those built on original data. Out of 30 datasets, 100% of the trees had identical accuracy. The size of a tree and the number of leaves was different only once (1/30, 3%, P=.19). The proposed algorithm encrypts a file with plain text medical data into an encrypted file with the data protected in such a way that external data analyses are still possible. The results show that the results of analyses on original and on protected data are identical or comparably similar. The approach addresses the privacy and confidentiality issues that arise with medical data and is adherent to strict legal rules in the United States and Europe regarding the processing of the medical data.
2013-01-01
Background Medical data are gold mines for deriving the knowledge that could change the course of a single patient’s life or even the health of the entire population. A data analyst needs to have full access to relevant data, but full access may be denied by privacy and confidentiality of medical data legal regulations, especially when the data analyst is not affiliated with the data owner. Objective Our first objective was to analyze the privacy and confidentiality issues and the associated regulations pertaining to medical data, and to identify technologies to properly address these issues. Our second objective was to develop a procedure to protect medical data in such a way that the outsourced analyst would be capable of doing analyses on protected data and the results would be comparable, if not the same, as if they had been done on the original data. Specifically, our hypothesis was there would not be a difference between the outsourced decision trees built on encrypted data and the ones built on original data. Methods Using formal definitions, we developed an algorithm to protect medical data for outsourced analyses. The algorithm was applied to publicly available datasets (N=30) from the medical and life sciences fields. The analyses were performed on the original and the protected datasets and the results of the analyses were compared. Bootstrapped paired t tests for 2 dependent samples were used to test whether the mean differences in size, number of leaves, and the accuracy of the original and the encrypted decision trees were significantly different. Results The decision trees built on encrypted data were virtually the same as those built on original data. Out of 30 datasets, 100% of the trees had identical accuracy. The size of a tree and the number of leaves was different only once (1/30, 3%, P=.19). Conclusions The proposed algorithm encrypts a file with plain text medical data into an encrypted file with the data protected in such a way that external data analyses are still possible. The results show that the results of analyses on original and on protected data are identical or comparably similar. The approach addresses the privacy and confidentiality issues that arise with medical data and is adherent to strict legal rules in the United States and Europe regarding the processing of the medical data. PMID:24342053
Geoffrey H. Donovan; John Mills
2014-01-01
Many cities have policies encouraging homeowners to plant trees. For these policies to be effective, it is important to understand what motivates a homeownerâs tree-planting decision. Researchers address this question by identifying variables that influence participation in a tree-planting program in Portland, Oregon, U.S. According to the study, homeowners with street...
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei
2018-01-01
DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.
Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.
Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K
2008-07-01
A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.
Abbasitabar, Fatemeh; Zare-Shahabadi, Vahid
2017-04-01
Risk assessment of chemicals is an important issue in environmental protection; however, there is a huge lack of experimental data for a large number of end-points. The experimental determination of toxicity of chemicals involves high costs and time-consuming process. In silico tools such as quantitative structure-toxicity relationship (QSTR) models, which are constructed on the basis of computational molecular descriptors, can predict missing data for toxic end-points for existing or even not yet synthesized chemicals. Phenol derivatives are known to be aquatic pollutants. With this background, we aimed to develop an accurate and reliable QSTR model for the prediction of toxicity of 206 phenols to Tetrahymena pyriformis. A multiple linear regression (MLR)-based QSTR was obtained using a powerful descriptor selection tool named Memorized_ACO algorithm. Statistical parameters of the model were 0.72 and 0.68 for R training 2 and R test 2 , respectively. To develop a high-quality QSTR model, classification and regression tree (CART) was employed. Two approaches were considered: (1) phenols were classified into different modes of action using CART and (2) the phenols in the training set were partitioned to several subsets by a tree in such a manner that in each subset, a high-quality MLR could be developed. For the first approach, the statistical parameters of the resultant QSTR model were improved to 0.83 and 0.75 for R training 2 and R test 2 , respectively. Genetic algorithm was employed in the second approach to obtain an optimal tree, and it was shown that the final QSTR model provided excellent prediction accuracy for the training and test sets (R training 2 and R test 2 were 0.91 and 0.93, respectively). The mean absolute error for the test set was computed as 0.1615. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, R.; Wagener, T.; Crane, R.; Mann, M. E.; Ning, L.
2014-04-01
Large uncertainties in streamflow projections derived from downscaled climate projections of precipitation and temperature can render such simulations of limited value for decision making in the context of water resources management. New approaches are being sought to provide decision makers with robust information in the face of such large uncertainties. We present an alternative approach that starts with the stakeholder's definition of vulnerable ranges for relevant hydrologic indicators. Then the modeled system is analyzed to assess under what conditions these thresholds are exceeded. The space of possible climates and land use combinations for a watershed is explored to isolate subspaces that lead to vulnerability, while considering model parameter uncertainty in the analysis. We implement this concept using classification and regression trees (CART) that separate the input space of climate and land use change into those combinations that lead to vulnerability and those that do not. We test our method in a Pennsylvania watershed for nine ecological and water resources related streamflow indicators for which an increase in temperature between 3°C and 6°C and change in precipitation between -17% and 19% is projected. Our approach provides several new insights, for example, we show that even small decreases in precipitation (˜5%) combined with temperature increases greater than 2.5°C can push the mean annual runoff into a slightly vulnerable regime. Using this impact and stakeholder driven strategy, we explore the decision-relevant space more fully and provide information to the decision maker even if climate change projections are ambiguous.
Re-Construction of Reference Population and Generating Weights by Decision Tree
2017-07-21
2017 Claflin University Orangeburg, SC 29115 DEFENSE EQUAL OPPORTUNITY MANAGEMENT INSTITUTE RESEARCH, DEVELOPMENT, AND STRATEGIC...Original Dataset 32 List of Figures in Appendix B Figure 1: Flow and Components of Project 20 Figure 2: Decision Tree 31 Figure 3: Effects of Weight...can compare the sample data. The dataset of this project has the reference population on unit level for group and gender, which is in red-dotted box
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spacially filtered to enforce local consensus among neighboring pixels and the spacially filtered image is output.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-11-09
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities-for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals-were the main external sources of a large amount of Hg in the farmland soil.
Circum-Arctic petroleum systems identified using decision-tree chemometrics
Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.
2007-01-01
Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Three-dimensional object recognition using similar triangles and decision trees
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-01-01
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities—for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals—were the main external sources of a large amount of Hg in the farmland soil. PMID:27834884
A parallel decision tree-based method for user authentication based on keystroke patterns.
Sheng, Yong; Phoha, Vir V; Rovnyak, Steven M
2005-08-01
We propose a Monte Carlo approach to attain sufficient training data, a splitting method to improve effectiveness, and a system composed of parallel decision trees (DTs) to authenticate users based on keystroke patterns. For each user, approximately 19 times as much simulated data was generated to complement the 387 vectors of raw data. The training set, including raw and simulated data, is split into four subsets. For each subset, wavelet transforms are performed to obtain a total of eight training subsets for each user. Eight DTs are thus trained using the eight subsets. A parallel DT is constructed for each user, which contains all eight DTs with a criterion for its output that it authenticates the user if at least three DTs do so; otherwise it rejects the user. Training and testing data were collected from 43 users who typed the exact same string of length 37 nine consecutive times to provide data for training purposes. The users typed the same string at various times over a period from November through December 2002 to provide test data. The average false reject rate was 9.62% and the average false accept rate was 0.88%.
Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates
Jensen, Wyatt A.; Smith, Ken R.; Brewer, Simon C.; Amburgey, Jonathan W.; McIff, Brett
2017-01-01
Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale—Abbreviated, NEWS-A) and audited walkability (Irvine–Minnesota Inventory, IMI) measures for residents living within 2 km of a “complete street”—one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items (n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents’ active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions. PMID:28872595
Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates.
Jensen, Wyatt A; Brown, Barbara B; Smith, Ken R; Brewer, Simon C; Amburgey, Jonathan W; McIff, Brett
2017-09-05
Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale-Abbreviated, NEWS-A) and audited walkability (Irvine-Minnesota Inventory, IMI) measures for residents living within 2 km of a "complete street"-one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items ( n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents' active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions.
NASA Astrophysics Data System (ADS)
Jegadeeshwaran, R.; Sugumaran, V.
2015-02-01
Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.
Pattern extraction for high-risk accidents in the construction industry: a data-mining approach.
Amiri, Mehran; Ardeshir, Abdollah; Fazel Zarandi, Mohammad Hossein; Soltanaghaei, Elahe
2016-09-01
Accidents involving falls and falling objects (group I) are highly frequent accidents in the construction industry. While being hit by a vehicle, electric shock, collapse in the excavation and fire or explosion accidents (group II) are much less frequent, they make up a considerable proportion of severe accidents. In this study, multiple-correspondence analysis, decision tree, ensembles of decision tree and association rules methods are employed to analyse a database of construction accidents throughout Iran between 2007 and 2011. The findings indicate that in group I, there is a significant correspondence among these variables: time of accident, place of accident, body part affected, final consequence of accident and lost workdays. Moreover, the frequency of accidents in the night shift is less than others, and the frequency of injury to the head, back, spine and limbs are more. In group II, the variables time of accident and body part affected are mostly related and the frequency of accidents among married and older workers is more than single and young workers. There was a higher frequency in the evening, night shifts and weekends. The results of this study are totally in line with the previous research.
Tree value system: users guide.
J.K. Ayer Sachet; D.G. Briggs; R.D. Fight
1989-01-01
This paper instructs resource analysts on use of the Tree Value System (TREEVAL). TREEVAL is a microcomputer system of programs for calculating tree or stand values and volumes based on predicted product recovery. Designed for analyzing silvicultural decisions, the system can also be used for appraisals and for evaluating log bucking. The system calculates results...
Mailloux, Allan T; Cummings, Stephen W; Mugdh, Mrinal
2010-01-01
Our objective was to use Wisconsin's Medicaid Evaluation and Decision Support (MEDS) data warehouse to develop and validate a decision support tool (DST) that (1) identifies Wisconsin Medicaid fee-for-service recipients who are abusing controlled substances, (2) effectively replicates clinical pharmacist recommendations for interventions intended to curb abuse of physician and pharmacy services, and (3) automates data extraction, profile generation and tracking of recommendations and interventions. From pharmacist manual reviews of medication profiles, seven measures of overutilization of controlled substances were developed, including (1-2) 6-month and 2-month "shopping" scores, (3-4) 6-month and 2-month forgery scores, (5) duplicate/same day prescriptions, (6) count of controlled substance claims, and the (7) shopping 6-month score for the individual therapeutic class with the highest score. The pattern analysis logic for the measures was encoded into SQL and applied to the medication profiles of 190 recipients who had already undergone manual review. The scores for each measure and numbers of providers were analyzed by exhaustive chi-squared automatic interaction detection (CHAID) to determine significant thresholds and combinations of predictors of pharmacist recommendations, resulting in a decision tree to classify recipients by pharmacist recommendations. The overall correct classification rate of the decision tree was 95.3%, with a 2.4% false positive rate and 4.0% false negative rate for lock-in versus prescriber-alert letter recommendations. Measures used by the decision tree include the 2-month and 6-month shopping scores, and the number of pharmacies and prescribers. The number of pharmacies was the best predictor of abuse of controlled substances. When a Medicaid recipient receives prescriptions for controlled substances at 8 or more pharmacies, the likelihood of a lock-in recommendation is 90%. The availability of the Wisconsin MEDS data warehouse has enabled development and application of a decision tree for detecting recipient fraud and abuse of controlled substance medications. Using standard pharmacy claims data, the decision tree effectively replicates pharmacist manual review recommendations. The DST has automated extraction and evaluation of pharmacy claims data for creating recommendations for guiding pharmacists in the selection of profiles for manual review. The DST is now the primary method used by the Wisconsin Medicaid program to detect fraud and abuse of physician and pharmacy services committed by recipients.
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
Naturalistic Decision Making For Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2009-06-23
Abstract: Motivation -- As indicated by the Blackout of 2003, the North American interconnected electric system is vulnerable to cascading outages and widespread blackouts. Investigations of large scale outages often attribute the causes to the three T’s: Trees, Training and Tools. A systematic approach has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The approach has been developed and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine naturalistic decision making (NDM) processes, transcripts of operator-to-operatormore » conversations are analyzed to reveal and assess NDM-based performance criteria. Findings/Design -- The results of the study indicate that we can map the Situation Awareness Level of the operators at each point in the scenario. We can also identify clearly what mental models and mental simulations are being performed at different points in the scenario. As a result of this research we expect that we can identify improved training methods and improved analytical and visualization tools for power system operators. Originality/Value -- The research applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message -- The NDM approach provides an ideal framework for systematic training management and mitigation to accelerate learning in team-based training scenarios with high-fidelity power grid simulators.« less
Lucini, Filipe R; S Fogliatto, Flavio; C da Silveira, Giovani J; L Neyeloff, Jeruza; Anzanello, Michel J; de S Kuchenbecker, Ricardo; D Schaan, Beatriz
2017-04-01
Emergency department (ED) overcrowding is a serious issue for hospitals. Early information on short-term inward bed demand from patients receiving care at the ED may reduce the overcrowding problem, and optimize the use of hospital resources. In this study, we use text mining methods to process data from early ED patient records using the SOAP framework, and predict future hospitalizations and discharges. We try different approaches for pre-processing of text records and to predict hospitalization. Sets-of-words are obtained via binary representation, term frequency, and term frequency-inverse document frequency. Unigrams, bigrams and trigrams are tested for feature formation. Feature selection is based on χ 2 and F-score metrics. In the prediction module, eight text mining methods are tested: Decision Tree, Random Forest, Extremely Randomized Tree, AdaBoost, Logistic Regression, Multinomial Naïve Bayes, Support Vector Machine (Kernel linear) and Nu-Support Vector Machine (Kernel linear). Prediction performance is evaluated by F1-scores. Precision and Recall values are also informed for all text mining methods tested. Nu-Support Vector Machine was the text mining method with the best overall performance. Its average F1-score in predicting hospitalization was 77.70%, with a standard deviation (SD) of 0.66%. The method could be used to manage daily routines in EDs such as capacity planning and resource allocation. Text mining could provide valuable information and facilitate decision-making by inward bed management teams. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.
2014-01-01
In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2009-10-01
Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.
Ruch, Nicole; Joss, Franziska; Jimmy, Gerda; Melzer, Katarina; Hänggi, Johanna; Mäder, Urs
2013-11-01
The aim of this study was to compare the energy expenditure (EE) estimations of activity-specific prediction equations (ASPE) and of an artificial neural network (ANNEE) based on accelerometry with measured EE. Forty-three children (age: 9.8 ± 2.4 yr) performed eight different activities. They were equipped with one tri-axial accelerometer that collected data in 1-s epochs and a portable gas analyzer. The ASPE and the ANNEE were trained to estimate the EE by including accelerometry, age, gender, and weight of the participants. To provide the activity-specific information, a decision tree was trained to recognize the type of activity through accelerometer data. The ASPE were applied to the activity-type-specific data recognized by the tree (Tree-ASPE). The Tree-ASPE precisely estimated the EE of all activities except cycling [bias: -1.13 ± 1.33 metabolic equivalent (MET)] and walking (bias: 0.29 ± 0.64 MET; P < 0.05). The ANNEE overestimated the EE of stationary activities (bias: 0.31 ± 0.47 MET) and walking (bias: 0.61 ± 0.72 MET) and underestimated the EE of cycling (bias: -0.90 ± 1.18 MET; P < 0.05). Biases of EE in stationary activities (ANNEE: 0.31 ± 0.47 MET, Tree-ASPE: 0.08 ± 0.21 MET) and walking (ANNEE 0.61 ± 0.72 MET, Tree-ASPE: 0.29 ± 0.64 MET) were significantly smaller in the Tree-ASPE than in the ANNEE (P < 0.05). The Tree-ASPE was more precise in estimating the EE than the ANNEE. The use of activity-type-specific information for subsequent EE prediction equations might be a promising approach for future studies.
Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana
2017-04-01
Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests. © 2017 Society for Applied Microbiology and John Wiley and Sons Ltd.
2012-03-01
with each SVM discriminating between a pair of the N total speakers in the data set. The (( + 1))/2 classifiers then vote on the final...classification of a test sample. The Random Forest classifier is an ensemble classifier that votes amongst decision trees generated with each node using...Forest vote , and the effects of overtraining will be mitigated by the fact that each decision tree is overtrained differently (due to the random
Learning Optimal Individualized Treatment Rules from Electronic Health Record Data
Wang, Yuanjia; Wu, Peng; Liu, Ying; Weng, Chunhua; Zeng, Donglin
2016-01-01
Medical research is experiencing a paradigm shift from “one-size-fits-all” strategy to a precision medicine approach where the right therapy, for the right patient, and at the right time, will be prescribed. We propose a statistical method to estimate the optimal individualized treatment rules (ITRs) that are tailored according to subject-specific features using electronic health records (EHR) data. Our approach merges statistical modeling and medical domain knowledge with machine learning algorithms to assist personalized medical decision making using EHR. We transform the estimation of optimal ITR into a classification problem and account for the non-experimental features of the EHR data and confounding by clinical indication. We create a broad range of feature variables that reflect both patient health status and healthcare data collection process. Using EHR data collected at Columbia University clinical data warehouse, we construct a decision tree for choosing the best second line therapy for treating type 2 diabetes patients. PMID:28503676
A dynamic fault tree model of a propulsion system
NASA Technical Reports Server (NTRS)
Xu, Hong; Dugan, Joanne Bechta; Meshkat, Leila
2006-01-01
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and Binary Decision Diagram models. Galileo easily handles the complexities exhibited by the benchmark problem. In particular, Galileo is designed to model phased mission systems.
Including public-health benefits of trees in urban-forestry decision making
Geoffrey H. Donovan
2017-01-01
Research demonstrating the biophysical benefits of urban trees are often used to justify investments in urban forestry. Far less emphasis, however, is placed on the non-bio-physical benefits such as improvements in public health. Indeed, the public-health benefits of trees may be significantly larger than the biophysical benefits, and, therefore, failure to account for...
Goal Programming: A New Tool for the Christmas Tree Industry
Bruce G. Hansen
1977-01-01
Goal programing (GP) can be useful for decision making in the natural Christmas tree industry. Its usefulness is demonstrated through an analysis of a hypothetical problem in which two potential growers decide how to use 10 acres in growing Christmas trees. Though the physical settings are identical, distinct differences between their goals significantly influence the...
NASA Astrophysics Data System (ADS)
Ray, P. A.; Wi, S.; Bonzanigo, L.; Taner, M. U.; Rodriguez, D.; Garcia, L.; Brown, C.
2016-12-01
The Decision Tree for Confronting Climate Change Uncertainty is a hierarchical, staged framework for accomplishing climate change risk management in water resources system investments. Since its development for the World Bank Water Group two years ago, the framework has been applied to pilot demonstration projects in Nepal (hydropower generation), Mexico (water supply), Kenya (multipurpose reservoir operation), and Indonesia (flood risks to dam infrastructure). An important finding of the Decision Tree demonstration projects has been the need to present the risks/opportunities of climate change to stakeholders and investors in proportion to risks/opportunities and hazards of other kinds. This presentation will provide an overview of tools and techniques used to quantify risks/opportunities to each of the project types listed above, with special attention to those found most useful for exploration of the risk space. Careful exploration of the risk/opportunity space shows that some interventions would be better taken now, whereas risks/opportunities of other types would be better instituted incrementally in order to maintain reversibility and flexibility. A number of factors contribute to the robustness/flexibility tradeoff: available capital, magnitude and imminence of potential risk/opportunity, modular (or not) character of investment, and risk aversion of the decision maker, among others. Finally, in each case, nuance was required in the translation of Decision Tree findings into actionable policy recommendations. Though the narrative of stakeholder solicitation, engagement, and ultimate partnership is unique to each case, summary lessons are available from the portfolio that can serve as a guideline to the community of climate change risk managers.
Pinzón-Sánchez, C; Cabrera, V E; Ruegg, P L
2011-04-01
The objective of this study was to develop a decision tree to evaluate the economic impact of different durations of intramammary treatment for the first case of mild or moderate clinical mastitis (CM) occurring in early lactation with various scenarios of pathogen distributions and use of on-farm culture. The tree included 2 decision and 3 probability events. The first decision evaluated use of on-farm culture (OFC; 2 programs using OFC and 1 not using OFC) and the second decision evaluated treatment strategies (no intramammary antimicrobials or antimicrobials administered for 2, 5, or 8 d). The tree included probabilities for the distribution of etiologies (gram-positive, gram-negative, or no growth), bacteriological cure, and recurrence. The economic consequences of mastitis included costs of diagnosis and initial treatment, additional treatments, labor, discarded milk, milk production losses due to clinical and subclinical mastitis, culling, and transmission of infection to other cows (only for CM caused by Staphylococcus aureus). Pathogen-specific estimates for bacteriological cure and milk losses were used. The economically optimal path for several scenarios was determined by comparison of expected monetary values. For most scenarios, the optimal economic strategy was to treat CM caused by gram-positive pathogens for 2 d and to avoid antimicrobials for CM cases caused by gram-negative pathogens or when no pathogen was recovered. Use of extended intramammary antimicrobial therapy (5 or 8 d) resulted in the least expected monetary values. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa
2017-03-01
Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.
Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study
NASA Astrophysics Data System (ADS)
Obade, Vincent
The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes
Probabilistic short-term volcanic hazard in phases of unrest: A case study for tephra fallout
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Costa, Antonio; Sandri, Laura; Macedonio, Giovanni; Marzocchi, Warner
2014-12-01
During volcanic crises, volcanologists estimate the impact of possible imminent eruptions usually through deterministic modeling of the effects of one or a few preestablished scenarios. Despite such an approach may bring an important information to the decision makers, the sole use of deterministic scenarios does not allow scientists to properly take into consideration all uncertainties, and it cannot be used to assess quantitatively the risk because the latter unavoidably requires a probabilistic approach. We present a model based on the concept of Bayesian event tree (hereinafter named BET_VH_ST, standing for Bayesian event tree for short-term volcanic hazard), for short-term near-real-time probabilistic volcanic hazard analysis formulated for any potential hazardous phenomenon accompanying an eruption. The specific goal of BET_VH_ST is to produce a quantitative assessment of the probability of exceedance of any potential level of intensity for a given volcanic hazard due to eruptions within restricted time windows (hours to days) in any area surrounding the volcano, accounting for all natural and epistemic uncertainties. BET_VH_ST properly assesses the conditional probability at each level of the event tree accounting for any relevant information derived from the monitoring system, theoretical models, and the past history of the volcano, propagating any relevant epistemic uncertainty underlying these assessments. As an application example of the model, we apply BET_VH_ST to assess short-term volcanic hazard related to tephra loading during Major Emergency Simulation Exercise, a major exercise at Mount Vesuvius that took place from 19 to 23 October 2006, consisting in a blind simulation of Vesuvius reactivation, from the early warning phase up to the final eruption, including the evacuation of a sample of about 2000 people from the area at risk. The results show that BET_VH_ST is able to produce short-term forecasts of the impact of tephra fall during a rapidly evolving crisis, accurately accounting for and propagating all uncertainties and enabling rational decision making under uncertainty.
NASA Astrophysics Data System (ADS)
ShiouWei, L.
2014-12-01
Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan. Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating. Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.
Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson
2010-08-01
Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Type 2 Diabetes Mellitus Screening and Risk Factors Using Decision Tree: Results of Data Mining.
Habibi, Shafi; Ahmadi, Maryam; Alizadeh, Somayeh
2015-03-18
The aim of this study was to examine a predictive model using features related to the diabetes type 2 risk factors. The data were obtained from a database in a diabetes control system in Tabriz, Iran. The data included all people referred for diabetes screening between 2009 and 2011. The features considered as "Inputs" were: age, sex, systolic and diastolic blood pressure, family history of diabetes, and body mass index (BMI). Moreover, we used diagnosis as "Class". We applied the "Decision Tree" technique and "J48" algorithm in the WEKA (3.6.10 version) software to develop the model. After data preprocessing and preparation, we used 22,398 records for data mining. The model precision to identify patients was 0.717. The age factor was placed in the root node of the tree as a result of higher information gain. The ROC curve indicates the model function in identification of patients and those individuals who are healthy. The curve indicates high capability of the model, especially in identification of the healthy persons. We developed a model using the decision tree for screening T2DM which did not require laboratory tests for T2DM diagnosis.
Unsupervised individual tree crown detection in high-resolution satellite imagery
Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.
2016-01-26
Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less
Unsupervised individual tree crown detection in high-resolution satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.
Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less
Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.
Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward
2015-02-01
Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.
EURRECA: development of tools to improve the alignment of micronutrient recommendations.
Matthys, C; Bucchini, L; Busstra, M C; Cavelaars, A E J M; Eleftheriou, P; Garcia-Alvarez, A; Fairweather-Tait, S; Gurinović, M; van Ommen, B; Contor, L
2010-11-01
Approaches through which reference values for micronutrients are derived, as well as the reference values themselves, vary considerably across countries. Harmonisation is needed to improve nutrition policy and public health strategies. The EURRECA (EURopean micronutrient RECommendations Aligned, http://www.eurreca.org) Network of Excellence is developing generic tools for systematically establishing and updating micronutrient reference values or recommendations. Different types of instruments (including best practice guidelines, interlinked web pages, online databases and decision trees) have been identified. The first set of instruments is for training purposes and includes mainly interactive digital learning materials. The second set of instruments comprises collection and interlinkage of diverse information sources that have widely varying contents and purposes. In general, these sources are collections of existing information. The purpose of the majority of these information sources is to provide guidance on best practice for use in a wider scientific community or for users and stakeholders of reference values. The third set of instruments includes decision trees and frameworks. The purpose of these tools is to guide non-scientists in decision making based on scientific evidence. This platform of instruments will, in particular in Central and Eastern European countries, contribute to future capacity-building development in nutrition. The use of these tools by the scientific community, the European Food Safety Authority, bodies responsible for setting national nutrient requirements and others should ultimately help to align nutrient-based recommendations across Europe. Therefore, EURRECA can contribute towards nutrition policy development and public health strategies.
Orlando, Lori A.; Buchanan, Adam H.; Hahn, Susan E.; Christianson, Carol A.; Powell, Karen P.; Skinner, Celette Sugg; Chesnut, Blair; Blach, Colette; Due, Barbara; Ginsburg, Geoffrey S.; Henrich, Vincent C.
2016-01-01
INTRODUCTION Family health history is a strong predictor of disease risk. To reduce the morbidity and mortality of many chronic diseases, risk-stratified evidence-based guidelines strongly encourage the collection and synthesis of family health history to guide selection of primary prevention strategies. However, the collection and synthesis of such information is not well integrated into clinical practice. To address barriers to collection and use of family health histories, the Genomedical Connection developed and validated MeTree, a Web-based, patient-facing family health history collection and clinical decision support tool. MeTree is designed for integration into primary care practices as part of the genomic medicine model for primary care. METHODS We describe the guiding principles, operational characteristics, algorithm development, and coding used to develop MeTree. Validation was performed through stakeholder cognitive interviewing, a genetic counseling pilot program, and clinical practice pilot programs in 2 community-based primary care clinics. RESULTS Stakeholder feedback resulted in changes to MeTree’s interface and changes to the phrasing of clinical decision support documents. The pilot studies resulted in the identification and correction of coding errors and the reformatting of clinical decision support documents. MeTree’s strengths in comparison with other tools are its seamless integration into clinical practice and its provision of action-oriented recommendations guided by providers’ needs. LIMITATIONS The tool was validated in a small cohort. CONCLUSION MeTree can be integrated into primary care practices to help providers collect and synthesize family health history information from patients with the goal of improving adherence to risk-stratified evidence-based guidelines. PMID:24044145
Chetty, Mersha; Kenworthy, James J; Langham, Sue; Walker, Andrew; Dunlop, William C N
2017-02-24
Opioid dependence is a chronic condition with substantial health, economic and social costs. The study objective was to conduct a systematic review of published health-economic models of opioid agonist therapy for non-prescription opioid dependence, to review the different modelling approaches identified, and to inform future modelling studies. Literature searches were conducted in March 2015 in eight electronic databases, supplemented by hand-searching reference lists and searches on six National Health Technology Assessment Agency websites. Studies were included if they: investigated populations that were dependent on non-prescription opioids and were receiving opioid agonist or maintenance therapy; compared any pharmacological maintenance intervention with any other maintenance regimen (including placebo or no treatment); and were health-economic models of any type. A total of 18 unique models were included. These used a range of modelling approaches, including Markov models (n = 4), decision tree with Monte Carlo simulations (n = 3), decision analysis (n = 3), dynamic transmission models (n = 3), decision tree (n = 1), cohort simulation (n = 1), Bayesian (n = 1), and Monte Carlo simulations (n = 2). Time horizons ranged from 6 months to lifetime. The most common evaluation was cost-utility analysis reporting cost per quality-adjusted life-year (n = 11), followed by cost-effectiveness analysis (n = 4), budget-impact analysis/cost comparison (n = 2) and cost-benefit analysis (n = 1). Most studies took the healthcare provider's perspective. Only a few models included some wider societal costs, such as productivity loss or costs of drug-related crime, disorder and antisocial behaviour. Costs to individuals and impacts on family and social networks were not included in any model. A relatively small number of studies of varying quality were found. Strengths and weaknesses relating to model structure, inputs and approach were identified across all the studies. There was no indication of a single standard emerging as a preferred approach. Most studies omitted societal costs, an important issue since the implications of drug abuse extend widely beyond healthcare services. Nevertheless, elements from previous models could together form a framework for future economic evaluations in opioid agonist therapy including all relevant costs and outcomes. This could more adequately support decision-making and policy development for treatment of non-prescription opioid dependence.
Kamphuis, C; Mollenhorst, H; Heesterbeek, J A P; Hogeveen, H
2010-08-01
The objective was to develop and validate a clinical mastitis (CM) detection model by means of decision-tree induction. For farmers milking with an automatic milking system (AMS), it is desirable that the detection model has a high level of sensitivity (Se), especially for more severe cases of CM, at a very high specificity (Sp). In addition, an alert for CM should be generated preferably at the quarter milking (QM) at which the CM infection is visible for the first time. Data were collected from 9 Dutch dairy herds milking automatically during a 2.5-yr period. Data included sensor data (electrical conductivity, color, and yield) at the QM level and visual observations of quarters with CM recorded by the farmers. Visual observations of quarters with CM were combined with sensor data of the most recent automatic milking recorded for that same quarter, within a 24-h time window before the visual assessment time. Sensor data of 3.5 million QM were collected, of which 348 QM were combined with a CM observation. Data were divided into a training set, including two-thirds of all data, and a test set. Cows in the training set were not included in the test set and vice versa. A decision-tree model was trained using only clear examples of healthy (n=24,717) or diseased (n=243) QM. The model was tested on 105 QM with CM and a random sample of 50,000 QM without CM. While keeping the Se at a level comparable to that of models currently used by AMS, the decision-tree model was able to decrease the number of false-positive alerts by more than 50%. At an Sp of 99%, 40% of the CM cases were detected. Sixty-four percent of the severe CM cases were detected and only 12.5% of the CM that were scored as watery milk. The Se increased considerably from 40% to 66.7% when the time window increased from less than 24h before the CM observation, to a time window from 24h before to 24h after the CM observation. Even at very wide time windows, however, it was impossible to reach an Se of 100%. This indicates the inability to detect all CM cases based on sensor data alone. Sensitivity levels varied largely when the decision tree was validated per herd. This trend was confirmed when decision trees were trained using data from 8 herds and tested on data from the ninth herd. This indicates that when using the decision tree as a generic CM detection model in practice, some herds will continue having difficulties in detecting CM using mastitis alert lists, whereas others will perform well. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sharon Hood; Duncan Lutes
2017-01-01
Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...
Context-Sensitive Ethics in School Psychology
ERIC Educational Resources Information Center
Lasser, Jon; Klose, Laurie McGarry; Robillard, Rachel
2013-01-01
Ethical codes and licensing rules provide foundational guidance for practicing school psychologists, but these sources fall short in their capacity to facilitate effective decision-making. When faced with ethical dilemmas, school psychologists can turn to decision-making models, but step-wise decision trees frequently lack the situation…
Tsalatsanis, Athanasios; Hozo, Iztok; Vickers, Andrew; Djulbegovic, Benjamin
2010-09-16
Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc).
2010-01-01
Background Decision curve analysis (DCA) has been proposed as an alternative method for evaluation of diagnostic tests, prediction models, and molecular markers. However, DCA is based on expected utility theory, which has been routinely violated by decision makers. Decision-making is governed by intuition (system 1), and analytical, deliberative process (system 2), thus, rational decision-making should reflect both formal principles of rationality and intuition about good decisions. We use the cognitive emotion of regret to serve as a link between systems 1 and 2 and to reformulate DCA. Methods First, we analysed a classic decision tree describing three decision alternatives: treat, do not treat, and treat or no treat based on a predictive model. We then computed the expected regret for each of these alternatives as the difference between the utility of the action taken and the utility of the action that, in retrospect, should have been taken. For any pair of strategies, we measure the difference in net expected regret. Finally, we employ the concept of acceptable regret to identify the circumstances under which a potentially wrong strategy is tolerable to a decision-maker. Results We developed a novel dual visual analog scale to describe the relationship between regret associated with "omissions" (e.g. failure to treat) vs. "commissions" (e.g. treating unnecessary) and decision maker's preferences as expressed in terms of threshold probability. We then proved that the Net Expected Regret Difference, first presented in this paper, is equivalent to net benefits as described in the original DCA. Based on the concept of acceptable regret we identified the circumstances under which a decision maker tolerates a potentially wrong decision and expressed it in terms of probability of disease. Conclusions We present a novel method for eliciting decision maker's preferences and an alternative derivation of DCA based on regret theory. Our approach may be intuitively more appealing to a decision-maker, particularly in those clinical situations when the best management option is the one associated with the least amount of regret (e.g. diagnosis and treatment of advanced cancer, etc). PMID:20846413
Monte-Carlo Tree Search in Settlers of Catan
NASA Astrophysics Data System (ADS)
Szita, István; Chaslot, Guillaume; Spronck, Pieter
Games are considered important benchmark opportunities for artificial intelligence research. Modern strategic board games can typically be played by three or more people, which makes them suitable test beds for investigating multi-player strategic decision making. Monte-Carlo Tree Search (MCTS) is a recently published family of algorithms that achieved successful results with classical, two-player, perfect-information games such as Go. In this paper we apply MCTS to the multi-player, non-deterministic board game Settlers of Catan. We implemented an agent that is able to play against computer-controlled and human players. We show that MCTS can be adapted successfully to multi-agent environments, and present two approaches of providing the agent with a limited amount of domain knowledge. Our results show that the agent has a considerable playing strength when compared to game implementation with existing heuristics. So, we may conclude that MCTS is a suitable tool for achieving a strong Settlers of Catan player.
A fault tree model to assess probability of contaminant discharge from shipwrecks.
Landquist, H; Rosén, L; Lindhe, A; Norberg, T; Hassellöv, I-M; Lindgren, J F; Dahllöf, I
2014-11-15
Shipwrecks on the sea floor around the world may contain hazardous substances that can cause harm to the marine environment. Today there are no comprehensive methods for environmental risk assessment of shipwrecks, and thus there is poor support for decision-making on prioritization of mitigation measures. The purpose of this study was to develop a tool for quantitative risk estimation of potentially polluting shipwrecks, and in particular an estimation of the annual probability of hazardous substance discharge. The assessment of the probability of discharge is performed using fault tree analysis, facilitating quantification of the probability with respect to a set of identified hazardous events. This approach enables a structured assessment providing transparent uncertainty and sensitivity analyses. The model facilitates quantification of risk, quantification of the uncertainties in the risk calculation and identification of parameters to be investigated further in order to obtain a more reliable risk calculation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Problem-Oriented Corporate Knowledge Base Models on the Case-Based Reasoning Approach Basis
NASA Astrophysics Data System (ADS)
Gluhih, I. N.; Akhmadulin, R. K.
2017-07-01
One of the urgent directions of efficiency enhancement of production processes and enterprises activities management is creation and use of corporate knowledge bases. The article suggests a concept of problem-oriented corporate knowledge bases (PO CKB), in which knowledge is arranged around possible problem situations and represents a tool for making and implementing decisions in such situations. For knowledge representation in PO CKB a case-based reasoning approach is encouraged to use. Under this approach, the content of a case as a knowledge base component has been defined; based on the situation tree a PO CKB knowledge model has been developed, in which the knowledge about typical situations as well as specific examples of situations and solutions have been represented. A generalized problem-oriented corporate knowledge base structural chart and possible modes of its operation have been suggested. The obtained models allow creating and using corporate knowledge bases for support of decision making and implementing, training, staff skill upgrading and analysis of the decisions taken. The universal interpretation of terms “situation” and “solution” adopted in the work allows using the suggested models to develop problem-oriented corporate knowledge bases in different subject domains. It has been suggested to use the developed models for making corporate knowledge bases of the enterprises that operate engineer systems and networks at large production facilities.
Branch: an interactive, web-based tool for testing hypotheses and developing predictive models.
Gangavarapu, Karthik; Babji, Vyshakh; Meißner, Tobias; Su, Andrew I; Good, Benjamin M
2016-07-01
Branch is a web application that provides users with the ability to interact directly with large biomedical datasets. The interaction is mediated through a collaborative graphical user interface for building and evaluating decision trees. These trees can be used to compose and test sophisticated hypotheses and to develop predictive models. Decision trees are built and evaluated based on a library of imported datasets and can be stored in a collective area for sharing and re-use. Branch is hosted at http://biobranch.org/ and the open source code is available at http://bitbucket.org/sulab/biobranch/ asu@scripps.edu or bgood@scripps.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.
2011-09-23
In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less
Online adaptive decision trees: pattern classification and function approximation.
Basak, Jayanta
2006-09-01
Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
NASA Astrophysics Data System (ADS)
Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.
2018-03-01
A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.
The economic impact of pig-associated parasitic zoonosis in Northern Lao PDR.
Choudhury, Adnan Ali Khan; Conlan, James V; Racloz, Vanessa Nadine; Reid, Simon Andrew; Blacksell, Stuart D; Fenwick, Stanley G; Thompson, Andrew R C; Khamlome, Boualam; Vongxay, Khamphouth; Whittaker, Maxine
2013-03-01
The parasitic zoonoses human cysticercosis (Taenia solium), taeniasis (other Taenia species) and trichinellosis (Trichinella species) are endemic in the Lao People's Democratic Republic (Lao PDR). This study was designed to quantify the economic burden pig-associated zoonotic disease pose in Lao PDR. In particular, the analysis included estimation of the losses in the pork industry as well as losses due to human illness and lost productivity. A Markov-probability based decision-tree model was chosen to form the basis of the calculations to estimate the economic and public health impacts of taeniasis, trichinellosis and cysticercosis. Two different decision trees were run simultaneously on the model's human cohort. A third decision tree simulated the potential impacts on pig production. The human capital method was used to estimate productivity loss. The results found varied significantly depending on the rate of hospitalisation due to neurocysticerosis. This study is the first systematic estimate of the economic impact of pig-associated zoonotic diseases in Lao PDR that demonstrates the significance of the diseases in that country.
Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn
2017-11-15
A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
Wang, Changhong; Redmond, Stephen J; Lu, Wei; Stevens, Michael C; Lord, Stephen R; Lovell, Nigel H
2017-11-01
Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.
JOHNS
1999-01-01
/ In southern Bahia, Brazil, the traditional cocoa agroecosystem with a dense shade canopy of native trees is now recognized as a secondary conservation route for highly endangered Atlantic Rainforest species. This "chocolate forest" of the densely shaded farms persists despite a massive 20-year Brazilian government modernization program in which shade was seen as a chief impediment to raising cocoa production. The objective of this study was to determine how this traditional agroecosystem endured. Although dense shade limits cocoa yield, it provides several agroecological benefits: control of insect pests and weeds, microclimate stability, and soil fertility maintenance. A keycomponent of modernization efforts was a shade-tree removal program designed to maximize cocoa production by using low shade and fertilizer while substituting agrochemicals for many beneficial roles of the overhead trees. This research found that many farmers rejected, or only partially accepted, the shade reduction process although it promised much higher cocoa yield and profit. Farmers employing a wide range of shading were interviewed, and it was found that decisions to remove or maintain the shade trees were linked to both agroecological and risk-minimization factors. Farmers' perceptions of the agroecological functions of the shade trees and individual willingness to entertain the economic risk associated with substituting agrochemicals for these were important. A less-profitable, but lower-risk approach of occasional fertilizer and agrochemical use with the traditional shade intact was a rational and widespread choice. Policies designed to maintain the traditional agroecosystem through the current economic crisis should heed the multiple functions of the overhead trees. KEY WORDS: Conservation; Brazil; Atlantic Rainforest; Cocoa; Agroecology; Risk; Agroforestry
A scalable approach for tree segmentation within small-footprint airborne LiDAR data
NASA Astrophysics Data System (ADS)
Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun
2017-05-01
This paper presents a distributed approach that scales up to segment tree crowns within a LiDAR point cloud representing an arbitrarily large forested area. The approach uses a single-processor tree segmentation algorithm as a building block in order to process the data delivered in the shape of tiles in parallel. The distributed processing is performed in a master-slave manner, in which the master maintains the global map of the tiles and coordinates the slaves that segment tree crowns within and across the boundaries of the tiles. A minimal bias was introduced to the number of detected trees because of trees lying across the tile boundaries, which was quantified and adjusted for. Theoretical and experimental analyses of the runtime of the approach revealed a near linear speedup. The estimated number of trees categorized by crown class and the associated error margins as well as the height distribution of the detected trees aligned well with field estimations, verifying that the distributed approach works correctly. The approach enables providing information of individual tree locations and point cloud segments for a forest-level area in a timely manner, which can be used to create detailed remotely sensed forest inventories. Although the approach was presented for tree segmentation within LiDAR point clouds, the idea can also be generalized to scale up processing other big spatial datasets.
Market-based approaches to tree valuation
Geoffrey H. Donovan; David T. Butry
2008-01-01
A recent four-part series in Arborist News outlined different appraisal processes used to value urban trees. The final article in the series described the three generally accepted approaches to tree valuation: the sales comparison approach, the cost approach, and the income capitalization approach. The author, D. Logan Nelson, noted that the sales comparison approach...
NASA Astrophysics Data System (ADS)
Książek, Judyta
2015-10-01
At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.
Rezaei-Darzi, Ehsan; Farzadfar, Farshad; Hashemi-Meshkini, Amir; Navidi, Iman; Mahmoudi, Mahmoud; Varmaghani, Mehdi; Mehdipour, Parinaz; Soudi Alamdari, Mahsa; Tayefi, Batool; Naderimagham, Shohreh; Soleymani, Fatemeh; Mesdaghinia, Alireza; Delavari, Alireza; Mohammad, Kazem
2014-12-01
This study aimed to evaluate and compare the prediction accuracy of two data mining techniques, including decision tree and neural network models in labeling diagnosis to gastrointestinal prescriptions in Iran. This study was conducted in three phases: data preparation, training phase, and testing phase. A sample from a database consisting of 23 million pharmacy insurance claim records, from 2004 to 2011 was used, in which a total of 330 prescriptions were assessed and used to train and test the models simultaneously. In the training phase, the selected prescriptions were assessed by both a physician and a pharmacist separately and assigned a diagnosis. To test the performance of each model, a k-fold stratified cross validation was conducted in addition to measuring their sensitivity and specificity. Generally, two methods had very similar accuracies. Considering the weighted average of true positive rate (sensitivity) and true negative rate (specificity), the decision tree had slightly higher accuracy in its ability for correct classification (83.3% and 96% versus 80.3% and 95.1%, respectively). However, when the weighted average of ROC area (AUC between each class and all other classes) was measured, the ANN displayed higher accuracies in predicting the diagnosis (93.8% compared with 90.6%). According to the result of this study, artificial neural network and decision tree model represent similar accuracy in labeling diagnosis to GI prescription.
Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M
2014-03-01
This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.
Montorsi, Francesco; Oelke, Matthias; Henneges, Carsten; Brock, Gerald; Salonia, Andrea; d'Anzeo, Gianluca; Rossi, Andrea; Mulhall, John P; Büttner, Hartwig
2016-09-01
Understanding predictors for the recovery of erectile function (EF) after nerve-sparing radical prostatectomy (nsRP) might help clinicians and patients in preoperative counseling and expectation management of EF rehabilitation strategies. To describe the effect of potential predictors on EF recovery after nsRP by post hoc decision-tree modeling of data from A Study of Tadalafil After Radical Prostatectomy (REACTT). Randomized double-blind double-dummy placebo-controlled trial in 423 men aged <68 yr with adenocarcinoma of the prostate (Gleason ≤7, normal preoperative EF) who underwent nsRP at 50 centers from nine European countries and Canada. Postsurgery 1:1:1 randomization to 9-mo double-blind treatment with tadalafil 5mg once a day (OaD), tadalafil 20mg on demand, or placebo, followed by a 6-wk drug-free-washout, and a 3-mo open-label tadalafil OaD treatment. Three decision-tree models, using the International Index of Erectile Function-Erectile Function (IIEF-EF) domain score at the end of double-blind treatment, washout, and open-label treatment as response variable. Each model evaluated the association between potential predictors: presurgery IIEF domain and IIEF single-item scores, surgical approach, nerve-sparing score (NSS), and postsurgery randomized treatment group. The first decision-tree model (n=422, intention-to-treat population) identified high presurgery sexual desire (IIEF item 12: ≥3.5 and <3.5) as the key predictor for IIEF-EF at the end of double-blind treatment (mean IIEF-EF: 14.9 and 11.1), followed by high confidence to get and maintain an erection (IIEF item 15: ≥3.5 and <3.5; IIEF-EF: 15.4 and 7.1). For patients meeting these criteria, additional non-IIEF-related predictors included robot-assisted laparoscopic surgery (yes or no; IIEF-EF: 19.3 and 12.6), quality of nerve sparing (NSS: <2.5 and ≥2.5; IIEF-EF: 14.3 and 10.5), and treatment with tadalafil OaD (yes and no; IIEF-EF: 17.6 and 14.3). Additional analyses after washout and open-label treatment identified high presurgery intercourse satisfaction as the key predictor. Exploratory decision-tree analyses identified high presurgery sexual desire, confidence, and intercourse satisfaction as key predictors for EF recovery. Patients meeting these criteria might benefit the most from conserving surgery and early postsurgery EF rehabilitation. Strategies for improving EF after surgery should be discussed preoperatively with all patients; this information may support expectation management for functional recovery on an individual patient level. Understanding how patient characteristics and different treatment options affect the recovery of erectile function (EF) after radical surgery for prostate cancer might help physicians select the optimal treatment for their patients. This analysis of data from a clinical trial suggested that high presurgery sexual desire, sexual confidence, and intercourse satisfaction are key factors predicting EF recovery. Patients meeting these criteria might benefit the most from conserving surgery (robot-assisted surgery, perfect nerve sparing) and postsurgery medical rehabilitation of EF. ClinicalTrials.gov, NCT01026818. Copyright © 2016. Published by Elsevier B.V.
Insurance Contract Analysis for Company Decision Support in Acquisition Management
NASA Astrophysics Data System (ADS)
Chernovita, H. P.; Manongga, D.; Iriani, A.
2017-01-01
One of company activities to retain their business is marketing the products which include in acquisition management to get new customers. Insurance contract analysis using ID3 to produce decision tree and rules to be decision support for the insurance company. The decision tree shows 13 rules that lead to contract termination claim. This could be a guide for the insurance company in acquisition management to prevent contract binding with these contract condition because it has a big chance for the customer to terminate their insurance contract before its expired date. As the result, there are several strong points that could be the determinant of contract termination such as: 1) customer age whether too young or too old, 2) long insurance period (above 10 years), 3) big insurance amount, 4) big amount of premium charges, and 5) payment method.
Comparative seed-tree and selection harvesting costs in young-growth mixed-conifer stands
William A. Atkinson; Dale O. Hall
1963-01-01
Little difference was found between yarding and felling costs in seed-tree and selection harvest cuts. The volume per acre logged was 23,800 board feet on the seed-tree compartments and 10,600 board feet on the selection compartments. For a comparable operation with this range of volumes, cutting method decisions should be based on factors other than logging costs....
An integrated approach to system design, reliability, and diagnosis
NASA Technical Reports Server (NTRS)
Patterson-Hine, F. A.; Iverson, David L.
1990-01-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
An integrated approach to system design, reliability, and diagnosis
NASA Astrophysics Data System (ADS)
Patterson-Hine, F. A.; Iverson, David L.
1990-12-01
The requirement for ultradependability of computer systems in future avionics and space applications necessitates a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized.
Han, Lianyi; Wang, Yanli; Bryant, Stephen H
2008-09-25
Recent advances in high-throughput screening (HTS) techniques and readily available compound libraries generated using combinatorial chemistry or derived from natural products enable the testing of millions of compounds in a matter of days. Due to the amount of information produced by HTS assays, it is a very challenging task to mine the HTS data for potential interest in drug development research. Computational approaches for the analysis of HTS results face great challenges due to the large quantity of information and significant amounts of erroneous data produced. In this study, Decision Trees (DT) based models were developed to discriminate compound bioactivities by using their chemical structure fingerprints provided in the PubChem system http://pubchem.ncbi.nlm.nih.gov. The DT models were examined for filtering biological activity data contained in four assays deposited in the PubChem Bioassay Database including assays tested for 5HT1a agonists, antagonists, and HIV-1 RT-RNase H inhibitors. The 10-fold Cross Validation (CV) sensitivity, specificity and Matthews Correlation Coefficient (MCC) for the models are 57.2 approximately 80.5%, 97.3 approximately 99.0%, 0.4 approximately 0.5 respectively. A further evaluation was also performed for DT models built for two independent bioassays, where inhibitors for the same HIV RNase target were screened using different compound libraries, this experiment yields enrichment factor of 4.4 and 9.7. Our results suggest that the designed DT models can be used as a virtual screening technique as well as a complement to traditional approaches for hits selection.
NASA Astrophysics Data System (ADS)
Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd
2018-01-01
The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.
Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.
Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem
2015-09-01
We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.
NASA Astrophysics Data System (ADS)
Khalilinezhad, Mahdieh; Minaei, Behrooz; Vernazza, Gianni; Dellepiane, Silvana
2015-03-01
Data mining (DM) is the process of discovery knowledge from large databases. Applications of data mining in Blood Transfusion Organizations could be useful for improving the performance of blood donation service. The aim of this research is the prediction of healthiness of blood donors in Blood Transfusion Organization (BTO). For this goal, three famous algorithms such as Decision Tree C4.5, Naïve Bayesian classifier, and Support Vector Machine have been chosen and applied to a real database made of 11006 donors. Seven fields such as sex, age, job, education, marital status, type of donor, results of blood tests (doctors' comments and lab results about healthy or unhealthy blood donors) have been selected as input to these algorithms. The results of the three algorithms have been compared and an error cost analysis has been performed. According to this research and the obtained results, the best algorithm with low error cost and high accuracy is SVM. This research helps BTO to realize a model from blood donors in each area in order to predict the healthy blood or unhealthy blood of donors. This research could be useful if used in parallel with laboratory tests to better separate unhealthy blood.
[A prediction model for internet game addiction in adolescents: using a decision tree analysis].
Kim, Ki Sook; Kim, Kyung Hee
2010-06-01
This study was designed to build a theoretical frame to provide practical help to prevent and manage adolescent internet game addiction by developing a prediction model through a comprehensive analysis of related factors. The participants were 1,318 students studying in elementary, middle, and high schools in Seoul and Gyeonggi Province, Korea. Collected data were analyzed using the SPSS program. Decision Tree Analysis using the Clementine program was applied to build an optimum and significant prediction model to predict internet game addiction related to various factors, especially parent related factors. From the data analyses, the prediction model for factors related to internet game addiction presented with 5 pathways. Causative factors included gender, type of school, siblings, economic status, religion, time spent alone, gaming place, payment to Internet café, frequency, duration, parent's ability to use internet, occupation (mother), trust (father), expectations regarding adolescent's study (mother), supervising (both parents), rearing attitude (both parents). The results suggest preventive and managerial nursing programs for specific groups by path. Use of this predictive model can expand the role of school nurses, not only in counseling addicted adolescents but also, in developing and carrying out programs with parents and approaching adolescents individually through databases and computer programming.
Computational diagnosis of canine lymphoma
NASA Astrophysics Data System (ADS)
Mirkes, E. M.; Alexandrakis, I.; Slater, K.; Tuli, R.; Gorban, A. N.
2014-03-01
One out of four dogs will develop cancer in their lifetime and 20% of those will be lymphoma cases. PetScreen developed a lymphoma blood test using serum samples collected from several veterinary practices. The samples were fractionated and analysed by mass spectrometry. Two protein peaks, with the highest diagnostic power, were selected and further identified as acute phase proteins, C-Reactive Protein and Haptoglobin. Data mining methods were then applied to the collected data for the development of an online computer-assisted veterinary diagnostic tool. The generated software can be used as a diagnostic, monitoring and screening tool. Initially, the diagnosis of lymphoma was formulated as a classification problem and then later refined as a lymphoma risk estimation. Three methods, decision trees, kNN and probability density evaluation, were used for classification and risk estimation and several preprocessing approaches were implemented to create the diagnostic system. For the differential diagnosis the best solution gave a sensitivity and specificity of 83.5% and 77%, respectively (using three input features, CRP, Haptoglobin and standard clinical symptom). For the screening task, the decision tree method provided the best result, with sensitivity and specificity of 81.4% and >99%, respectively (using the same input features). Furthermore, the development and application of new techniques for the generation of risk maps allowed their user-friendly visualization.
Forecasting the Performance of Agroforestry Systems
NASA Astrophysics Data System (ADS)
Luedeling, E.; Shepherd, K.
2014-12-01
Agroforestry has received considerable attention from scientists and development practitioners in recent years. It is recognized as a cornerstone of many traditional agricultural systems, as well as a new option for sustainable land management in currently treeless agricultural landscapes. Agroforestry systems are diverse, but most manifestations supply substantial ecosystem services, including marketable tree products, soil fertility, water cycle regulation, wildlife habitat and carbon sequestration. While these benefits have been well documented for many existing systems, projecting the outcomes of introducing new agroforestry systems, or forecasting system performance under changing environmental or climatic conditions, remains a substantial challenge. Due to the various interactions between system components, the multiple benefits produced by trees and crops, and the host of environmental, socioeconomic and cultural factors that shape agroforestry systems, mechanistic models of such systems quickly become very complex. They then require a lot of data for site-specific calibration, which presents a challenge for their use in new environmental and climatic domains, especially in data-scarce environments. For supporting decisions on the scaling up of agroforestry technologies, new projection methods are needed that can capture system complexity to an adequate degree, while taking full account of the fact that data on many system variables will virtually always be highly uncertain. This paper explores what projection methods are needed for supplying decision-makers with useful information on the performance of agroforestry in new places or new climates. Existing methods are discussed in light of these methodological needs. Finally, a participatory approach to performance projection is proposed that captures system dynamics in a holistic manner and makes probabilistic projections about expected system performance. This approach avoids the temptation to take spuriously precise model results at face value, and it is able to make predictions even where data is scarce. It thus provides a rapid and honest assessment option that can quickly supply decision-makers with system performance estimates, offering an opportunity to improve the targeting of agroforestry interventions.
Modeling time-to-event (survival) data using classification tree analysis.
Linden, Ariel; Yarnold, Paul R
2017-12-01
Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.
E.G. McPherson
2007-01-01
Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...
Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam
2012-01-01
Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.
An ordinal classification approach for CTG categorization.
Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George
2017-07-01
Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.
Multi-Sensor Characterization of the Boreal Forest: Initial Findings
NASA Technical Reports Server (NTRS)
Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan
2001-01-01
Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.
Chin, Weng-Yee; Wan, Eric Yuk Fai; Dowrick, Christopher; Arroll, Bruce; Lam, Cindy Lo Kuen
2018-04-26
The aim of this study was to explore the relationship between patient self-reported Patient Health Questionnaire-9 (PHQ-9) symptoms and doctor diagnosis of depression using a tree analysis approach. This was a secondary analysis on a dataset obtained from 10 179 adult primary care patients and 59 primary care physicians (PCPs) across Hong Kong. Patients completed a waiting room survey collecting data on socio-demographics and the PHQ-9. Blinded doctors documented whether they thought the patient had depression. Data were analyzed using multiple logistic regression and conditional inference decision tree modeling. PCPs diagnosed 594 patients with depression. Logistic regression identified gender, age, employment status, past history of depression, family history of mental illness and recent doctor visit as factors associated with a depression diagnosis. Tree analyses revealed different pathways of association between PHQ-9 symptoms and depression diagnosis for patients with and without past depression. The PHQ-9 symptom model revealed low mood, sense of worthlessness, fatigue, sleep disturbance and functional impairment as early classifiers. The PHQ-9 total score model revealed cut-off scores of >12 and >15 were most frequently associated with depression diagnoses in patients with and without past depression. A past history of depression is the most significant factor associated with the diagnosis of depression. PCPs appear to utilize a hypothetical-deductive problem-solving approach incorporating pre-test probability, with different associated factors for patients with and without past depression. Diagnostic thresholds may be too low for patients with past depression and too high for those without, potentially leading to over and under diagnosis of depression.
Paleohydrology Workshops for Water Resource Managers Using an Iterative Evaluation Process
NASA Astrophysics Data System (ADS)
Woodhouse, C.; Lukas, J.
2008-12-01
Workshops can be an effective avenue for the exchange of information and ideas between scientists and decision-makers. The interactive aspects of workshops promote more active participation and interactions between the two groups. In 2006, at the suggestion of water resource managers, we began presenting a series of small workshops (10-25 participants) on the use and application of tree-ring data in water resource management. The one-day workshops cover the basic science behind tree-ring reconstructions of hydrology, resources available, and applications of the data to resource management, with presentations by both tree-ring scientists and water resource professionals. They also include plenty of time for informal discussion. We have now held ten workshops across the western U.S., and several more are planned. We use pre-workshop surveys to tailor the workshop to the needs of the participants, and we assess the workshop's effectiveness through participant evaluations completed at the end of the workshop. We also receive post-workshop feedback in the form of follow-up emails or via word of mouth. This iterative process of evaluation, with each workshop, has enabled us to fine-tune the format and content of the workshops and respond to additional needs such as data, web resources, online tools for using paleodata, as well as follow-up workshops. This approach has resulted in an improvement in the credibility, acceptance, and use of tree-ring data in water resource applications, as evidenced by an independent survey of workshop participants. Although the focus of these workshops has been on paleohydrologic data, this approach would be applicable to other climate-stakeholder issues as well.
NASA Astrophysics Data System (ADS)
Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn
2016-06-01
Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.
Wang, Bo; Ives, Anthony R
2017-03-01
Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.
Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics
Belo, David; Gamboa, Hugo
2017-01-01
The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239