Sample records for decision tree classifier

  1. Predicting membrane protein types using various decision tree classifiers based on various modes of general PseAAC for imbalanced datasets.

    PubMed

    Sankari, E Siva; Manimegalai, D

    2017-12-21

    Predicting membrane protein types is an important and challenging research area in bioinformatics and proteomics. Traditional biophysical methods are used to classify membrane protein types. Due to large exploration of uncharacterized protein sequences in databases, traditional methods are very time consuming, expensive and susceptible to errors. Hence, it is highly desirable to develop a robust, reliable, and efficient method to predict membrane protein types. Imbalanced datasets and large datasets are often handled well by decision tree classifiers. Since imbalanced datasets are taken, the performance of various decision tree classifiers such as Decision Tree (DT), Classification And Regression Tree (CART), C4.5, Random tree, REP (Reduced Error Pruning) tree, ensemble methods such as Adaboost, RUS (Random Under Sampling) boost, Rotation forest and Random forest are analysed. Among the various decision tree classifiers Random forest performs well in less time with good accuracy of 96.35%. Another inference is RUS boost decision tree classifier is able to classify one or two samples in the class with very less samples while the other classifiers such as DT, Adaboost, Rotation forest and Random forest are not sensitive for the classes with fewer samples. Also the performance of decision tree classifiers is compared with SVM (Support Vector Machine) and Naive Bayes classifier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The decision tree classifier - Design and potential. [for Landsat-1 data

    NASA Technical Reports Server (NTRS)

    Hauska, H.; Swain, P. H.

    1975-01-01

    A new classifier has been developed for the computerized analysis of remote sensor data. The decision tree classifier is essentially a maximum likelihood classifier using multistage decision logic. It is characterized by the fact that an unknown sample can be classified into a class using one or several decision functions in a successive manner. The classifier is applied to the analysis of data sensed by Landsat-1 over Kenosha Pass, Colorado. The classifier is illustrated by a tree diagram which for processing purposes is encoded as a string of symbols such that there is a unique one-to-one relationship between string and decision tree.

  3. A new approach to enhance the performance of decision tree for classifying gene expression data.

    PubMed

    Hassan, Md; Kotagiri, Ramamohanarao

    2013-12-20

    Gene expression data classification is a challenging task due to the large dimensionality and very small number of samples. Decision tree is one of the popular machine learning approaches to address such classification problems. However, the existing decision tree algorithms use a single gene feature at each node to split the data into its child nodes and hence might suffer from poor performance specially when classifying gene expression dataset. By using a new decision tree algorithm where, each node of the tree consists of more than one gene, we enhance the classification performance of traditional decision tree classifiers. Our method selects suitable genes that are combined using a linear function to form a derived composite feature. To determine the structure of the tree we use the area under the Receiver Operating Characteristics curve (AUC). Experimental analysis demonstrates higher classification accuracy using the new decision tree compared to the other existing decision trees in literature. We experimentally compare the effect of our scheme against other well known decision tree techniques. Experiments show that our algorithm can substantially boost the classification performance of the decision tree.

  4. The decision tree approach to classification

    NASA Technical Reports Server (NTRS)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  5. A universal hybrid decision tree classifier design for human activity classification.

    PubMed

    Chien, Chieh; Pottie, Gregory J

    2012-01-01

    A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.

  6. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. R.; Landgrebe, David

    1991-01-01

    Decision tree classifiers (DTCs) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps the most important feature of DTCs is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issues. After considering potential advantages of DTCs over single-state classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  7. A survey of decision tree classifier methodology

    NASA Technical Reports Server (NTRS)

    Safavian, S. Rasoul; Landgrebe, David

    1990-01-01

    Decision Tree Classifiers (DTC's) are used successfully in many diverse areas such as radar signal classification, character recognition, remote sensing, medical diagnosis, expert systems, and speech recognition. Perhaps, the most important feature of DTC's is their capability to break down a complex decision-making process into a collection of simpler decisions, thus providing a solution which is often easier to interpret. A survey of current methods is presented for DTC designs and the various existing issue. After considering potential advantages of DTC's over single stage classifiers, subjects of tree structure design, feature selection at each internal node, and decision and search strategies are discussed.

  8. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  9. Improving ensemble decision tree performance using Adaboost and Bagging

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rajib; Siraj, Fadzilah; Sainin, Mohd Shamrie

    2015-12-01

    Ensemble classifier systems are considered as one of the most promising in medical data classification and the performance of deceision tree classifier can be increased by the ensemble method as it is proven to be better than single classifiers. However, in a ensemble settings the performance depends on the selection of suitable base classifier. This research employed two prominent esemble s namely Adaboost and Bagging with base classifiers such as Random Forest, Random Tree, j48, j48grafts and Logistic Model Regression (LMT) that have been selected independently. The empirical study shows that the performance varries when different base classifiers are selected and even some places overfitting issue also been noted. The evidence shows that ensemble decision tree classfiers using Adaboost and Bagging improves the performance of selected medical data sets.

  10. A decision support system using combined-classifier for high-speed data stream in smart grid

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun

    2016-11-01

    Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.

  11. Activity classification using realistic data from wearable sensors.

    PubMed

    Pärkkä, Juha; Ermes, Miikka; Korpipää, Panu; Mäntyjärvi, Jani; Peltola, Johannes; Korhonen, Ilkka

    2006-01-01

    Automatic classification of everyday activities can be used for promotion of health-enhancing physical activities and a healthier lifestyle. In this paper, methods used for classification of everyday activities like walking, running, and cycling are described. The aim of the study was to find out how to recognize activities, which sensors are useful and what kind of signal processing and classification is required. A large and realistic data library of sensor data was collected. Sixteen test persons took part in the data collection, resulting in approximately 31 h of annotated, 35-channel data recorded in an everyday environment. The test persons carried a set of wearable sensors while performing several activities during the 2-h measurement session. Classification results of three classifiers are shown: custom decision tree, automatically generated decision tree, and artificial neural network. The classification accuracies using leave-one-subject-out cross validation range from 58 to 97% for custom decision tree classifier, from 56 to 97% for automatically generated decision tree, and from 22 to 96% for artificial neural network. Total classification accuracy is 82 % for custom decision tree classifier, 86% for automatically generated decision tree, and 82% for artificial neural network.

  12. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  13. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  14. Ensemble stump classifiers and gene expression signatures in lung cancer.

    PubMed

    Frey, Lewis; Edgerton, Mary; Fisher, Douglas; Levy, Shawn

    2007-01-01

    Microarray data sets for cancer tumor tissue generally have very few samples, each sample having thousands of probes (i.e., continuous variables). The sparsity of samples makes it difficult for machine learning techniques to discover probes relevant to the classification of tumor tissue. By combining data from different platforms (i.e., data sources), data sparsity is reduced, but this typically requires normalizing data from the different platforms, which can be non-trivial. This paper proposes a variant on the idea of ensemble learners to circumvent the need for normalization. To facilitate comprehension we build ensembles of very simple classifiers known as decision stumps--decision trees of one test each. The Ensemble Stump Classifier (ESC) identifies an mRNA signature having three probes and high accuracy for distinguishing between adenocarcinoma and squamous cell carcinoma of the lung across four data sets. In terms of accuracy, ESC outperforms a decision tree classifier on all four data sets, outperforms ensemble decision trees on three data sets, and simple stump classifiers on two data sets.

  15. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  16. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.

    PubMed

    Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin

    2015-08-01

    Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.

  17. Learning in data-limited multimodal scenarios: Scandent decision forests and tree-based features.

    PubMed

    Hor, Soheil; Moradi, Mehdi

    2016-12-01

    Incomplete and inconsistent datasets often pose difficulties in multimodal studies. We introduce the concept of scandent decision trees to tackle these difficulties. Scandent trees are decision trees that optimally mimic the partitioning of the data determined by another decision tree, and crucially, use only a subset of the feature set. We show how scandent trees can be used to enhance the performance of decision forests trained on a small number of multimodal samples when we have access to larger datasets with vastly incomplete feature sets. Additionally, we introduce the concept of tree-based feature transforms in the decision forest paradigm. When combined with scandent trees, the tree-based feature transforms enable us to train a classifier on a rich multimodal dataset, and use it to classify samples with only a subset of features of the training data. Using this methodology, we build a model trained on MRI and PET images of the ADNI dataset, and then test it on cases with only MRI data. We show that this is significantly more effective in staging of cognitive impairments compared to a similar decision forest model trained and tested on MRI only, or one that uses other kinds of feature transform applied to the MRI data. Copyright © 2016. Published by Elsevier B.V.

  18. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    PubMed

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  19. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  20. Advanced Subspace Techniques for Modeling Channel and Session Variability in a Speaker Recognition System

    DTIC Science & Technology

    2012-03-01

    with each SVM discriminating between a pair of the N total speakers in the data set. The (( + 1))/2 classifiers then vote on the final...classification of a test sample. The Random Forest classifier is an ensemble classifier that votes amongst decision trees generated with each node using...Forest vote , and the effects of overtraining will be mitigated by the fact that each decision tree is overtrained differently (due to the random

  1. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree.

    PubMed

    Özdemir, Merve Erkınay; Telatar, Ziya; Eroğul, Osman; Tunca, Yusuf

    2018-05-01

    Dysmorphic syndromes have different facial malformations. These malformations are significant to an early diagnosis of dysmorphic syndromes and contain distinctive information for face recognition. In this study we define the certain features of each syndrome by considering facial malformations and classify Fragile X, Hurler, Prader Willi, Down, Wolf Hirschhorn syndromes and healthy groups automatically. The reference points are marked on the face images and ratios between the points' distances are taken into consideration as features. We suggest a neural network based hierarchical decision tree structure in order to classify the syndrome types. We also implement k-nearest neighbor (k-NN) and artificial neural network (ANN) classifiers to compare classification accuracy with our hierarchical decision tree. The classification accuracy is 50, 73 and 86.7% with k-NN, ANN and hierarchical decision tree methods, respectively. Then, the same images are shown to a clinical expert who achieve a recognition rate of 46.7%. We develop an efficient system to recognize different syndrome types automatically in a simple, non-invasive imaging data, which is independent from the patient's age, sex and race at high accuracy. The promising results indicate that our method can be used for pre-diagnosis of the dysmorphic syndromes by clinical experts.

  2. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  3. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  5. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  6. [Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

    PubMed

    Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi

    2013-02-01

    The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

  7. Comparing ensemble learning methods based on decision tree classifiers for protein fold recognition.

    PubMed

    Bardsiri, Mahshid Khatibi; Eftekhari, Mahdi

    2014-01-01

    In this paper, some methods for ensemble learning of protein fold recognition based on a decision tree (DT) are compared and contrasted against each other over three datasets taken from the literature. According to previously reported studies, the features of the datasets are divided into some groups. Then, for each of these groups, three ensemble classifiers, namely, random forest, rotation forest and AdaBoost.M1 are employed. Also, some fusion methods are introduced for combining the ensemble classifiers obtained in the previous step. After this step, three classifiers are produced based on the combination of classifiers of types random forest, rotation forest and AdaBoost.M1. Finally, the three different classifiers achieved are combined to make an overall classifier. Experimental results show that the overall classifier obtained by the genetic algorithm (GA) weighting fusion method, is the best one in comparison to previously applied methods in terms of classification accuracy.

  8. Decision tree and ensemble learning algorithms with their applications in bioinformatics.

    PubMed

    Che, Dongsheng; Liu, Qi; Rasheed, Khaled; Tao, Xiuping

    2011-01-01

    Machine learning approaches have wide applications in bioinformatics, and decision tree is one of the successful approaches applied in this field. In this chapter, we briefly review decision tree and related ensemble algorithms and show the successful applications of such approaches on solving biological problems. We hope that by learning the algorithms of decision trees and ensemble classifiers, biologists can get the basic ideas of how machine learning algorithms work. On the other hand, by being exposed to the applications of decision trees and ensemble algorithms in bioinformatics, computer scientists can get better ideas of which bioinformatics topics they may work on in their future research directions. We aim to provide a platform to bridge the gap between biologists and computer scientists.

  9. Onboard Classifiers for Science Event Detection on a Remote Sensing Spacecraft

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Mazzoni, Dominic; Tang, Nghia; Greeley, Ron; Doggett, Thomas; Cichy, Ben; Chien, Steve; Davies, Ashley

    2006-01-01

    Typically, data collected by a spacecraft is downlinked to Earth and pre-processed before any analysis is performed. We have developed classifiers that can be used onboard a spacecraft to identify high priority data for downlink to Earth, providing a method for maximizing the use of a potentially bandwidth limited downlink channel. Onboard analysis can also enable rapid reaction to dynamic events, such as flooding, volcanic eruptions or sea ice break-up. Four classifiers were developed to identify cryosphere events using hyperspectral images. These classifiers include a manually constructed classifier, a Support Vector Machine (SVM), a Decision Tree and a classifier derived by searching over combinations of thresholded band ratios. Each of the classifiers was designed to run in the computationally constrained operating environment of the spacecraft. A set of scenes was hand-labeled to provide training and testing data. Performance results on the test data indicate that the SVM and manual classifiers outperformed the Decision Tree and band-ratio classifiers with the SVM yielding slightly better classifications than the manual classifier.

  10. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  11. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression.

    PubMed

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-08-01

    Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this review was to assess machine learning alternatives to logistic regression, which may accomplish the same goals but with fewer assumptions or greater accuracy. We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (classification and regression trees [CART]), and meta-classifiers (in particular, boosting). Although the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and, to a lesser extent, decision trees (particularly CART), appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Fast Image Texture Classification Using Decision Trees

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  13. Building of fuzzy decision trees using ID3 algorithm

    NASA Astrophysics Data System (ADS)

    Begenova, S. B.; Avdeenko, T. V.

    2018-05-01

    Decision trees are widely used in the field of machine learning and artificial intelligence. Such popularity is due to the fact that with the help of decision trees graphic models, text rules can be built and they are easily understood by the final user. Because of the inaccuracy of observations, uncertainties, the data, collected in the environment, often take an unclear form. Therefore, fuzzy decision trees becoming popular in the field of machine learning. This article presents a method that includes the features of the two above-mentioned approaches: a graphical representation of the rules system in the form of a tree and a fuzzy representation of the data. The approach uses such advantages as high comprehensibility of decision trees and the ability to cope with inaccurate and uncertain information in fuzzy representation. The received learning method is suitable for classifying problems with both numerical and symbolic features. In the article, solution illustrations and numerical results are given.

  14. Development of a tree classifier for discrimination of surface mine activity from Landsat digital data

    NASA Technical Reports Server (NTRS)

    Solomon, J. L.; Miller, W. F.; Quattrochi, D. A.

    1979-01-01

    In a cooperative project with the Geological Survey of Alabama, the Mississippi State Remote Sensing Applications Program has developed a single purpose, decision-tree classifier using band-ratioing techniques to discriminate various stages of surface mining activity. The tree classifier has four levels and employs only two channels in classification at each level. An accurate computation of the amount of disturbed land resulting from the mining activity can be made as a product of the classification output. The utilization of Landsat data provides a cost-efficient, rapid, and accurate means of monitoring surface mining activities.

  15. Decision tree methods: applications for classification and prediction.

    PubMed

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  16. Metric Sex Determination of the Human Coxal Bone on a Virtual Sample using Decision Trees.

    PubMed

    Savall, Frédéric; Faruch-Bilfeld, Marie; Dedouit, Fabrice; Sans, Nicolas; Rousseau, Hervé; Rougé, Daniel; Telmon, Norbert

    2015-11-01

    Decision trees provide an alternative to multivariate discriminant analysis, which is still the most commonly used in anthropometric studies. Our study analyzed the metric characterization of a recent virtual sample of 113 coxal bones using decision trees for sex determination. From 17 osteometric type I landmarks, a dataset was built with five classic distances traditionally reported in the literature and six new distances selected using the two-step ratio method. A ten-fold cross-validation was performed, and a decision tree was established on two subsamples (training and test sets). The decision tree established on the training set included three nodes and its application to the test set correctly classified 92% of individuals. This percentage was similar to the data of the literature. The usefulness of decision trees has been demonstrated in numerous fields. They have been already used in sex determination, body mass prediction, and ancestry estimation. This study shows another use of decision trees enabling simple and accurate sex determination. © 2015 American Academy of Forensic Sciences.

  17. Classification and Progression Based on CFS-GA and C5.0 Boost Decision Tree of TCM Zheng in Chronic Hepatitis B.

    PubMed

    Chen, Xiao Yu; Ma, Li Zhuang; Chu, Na; Zhou, Min; Hu, Yiyang

    2013-01-01

    Chronic hepatitis B (CHB) is a serious public health problem, and Traditional Chinese Medicine (TCM) plays an important role in the control and treatment for CHB. In the treatment of TCM, zheng discrimination is the most important step. In this paper, an approach based on CFS-GA (Correlation based Feature Selection and Genetic Algorithm) and C5.0 boost decision tree is used for zheng classification and progression in the TCM treatment of CHB. The CFS-GA performs better than the typical method of CFS. By CFS-GA, the acquired attribute subset is classified by C5.0 boost decision tree for TCM zheng classification of CHB, and C5.0 decision tree outperforms two typical decision trees of NBTree and REPTree on CFS-GA, CFS, and nonselection in comparison. Based on the critical indicators from C5.0 decision tree, important lab indicators in zheng progression are obtained by the method of stepwise discriminant analysis for expressing TCM zhengs in CHB, and alterations of the important indicators are also analyzed in zheng progression. In conclusion, all the three decision trees perform better on CFS-GA than on CFS and nonselection, and C5.0 decision tree outperforms the two typical decision trees both on attribute selection and nonselection.

  18. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  19. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  20. Spatial modeling and classification of corneal shape.

    PubMed

    Marsolo, Keith; Twa, Michael; Bullimore, Mark A; Parthasarathy, Srinivasan

    2007-03-01

    One of the most promising applications of data mining is in biomedical data used in patient diagnosis. Any method of data analysis intended to support the clinical decision-making process should meet several criteria: it should capture clinically relevant features, be computationally feasible, and provide easily interpretable results. In an initial study, we examined the feasibility of using Zernike polynomials to represent biomedical instrument data in conjunction with a decision tree classifier to distinguish between the diseased and non-diseased eyes. Here, we provide a comprehensive follow-up to that work, examining a second representation, pseudo-Zernike polynomials, to determine whether they provide any increase in classification accuracy. We compare the fidelity of both methods using residual root-mean-square (rms) error and evaluate accuracy using several classifiers: neural networks, C4.5 decision trees, Voting Feature Intervals, and Naïve Bayes. We also examine the effect of several meta-learning strategies: boosting, bagging, and Random Forests (RFs). We present results comparing accuracy as it relates to dataset and transformation resolution over a larger, more challenging, multi-class dataset. They show that classification accuracy is similar for both data transformations, but differs by classifier. We find that the Zernike polynomials provide better feature representation than the pseudo-Zernikes and that the decision trees yield the best balance of classification accuracy and interpretability.

  1. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  2. Personalization algorithm for real-time activity recognition using PDA, wireless motion bands, and binary decision tree.

    PubMed

    Pärkkä, Juha; Cluitmans, Luc; Ermes, Miikka

    2010-09-01

    Inactive and sedentary lifestyle is a major problem in many industrialized countries today. Automatic recognition of type of physical activity can be used to show the user the distribution of his daily activities and to motivate him into more active lifestyle. In this study, an automatic activity-recognition system consisting of wireless motion bands and a PDA is evaluated. The system classifies raw sensor data into activity types online. It uses a decision tree classifier, which has low computational cost and low battery consumption. The classifier parameters can be personalized online by performing a short bout of an activity and by telling the system which activity is being performed. Data were collected with seven volunteers during five everyday activities: lying, sitting/standing, walking, running, and cycling. The online system can detect these activities with overall 86.6% accuracy and with 94.0% accuracy after classifier personalization.

  3. Identifying the performance characteristics of a winning outcome in elite mixed martial arts competition.

    PubMed

    James, Lachlan P; Robertson, Sam; Haff, G Gregory; Beckman, Emma M; Kelly, Vincent G

    2017-03-01

    To determine those performance indicators that have the greatest influence on classifying outcome at the elite level of mixed martial arts (MMA). A secondary objective was to establish the efficacy of decision tree analysis in explaining the characteristics of victory when compared to alternate statistical methods. Cross-sectional observational. Eleven raw performance indicators from male Ultimate Fighting Championship bouts (n=234) from July 2014 to December 2014 were screened for analysis. Each raw performance indicator was also converted to a rate-dependent measure to be scaled to fight duration. Further, three additional performance indicators were calculated from the dataset and included in the analysis. Cohen's d effect sizes were employed to determine the magnitude of the differences between Wins and Losses, while decision tree (chi-square automatic interaction detector (CHAID)) and discriminant function analyses (DFA) were used to classify outcome (Win and Loss). Effect size comparisons revealed differences between Wins and Losses across a number of performance indicators. Decision tree (raw: 71.8%; rate-scaled: 76.3%) and DFA (raw: 71.4%; rate-scaled 71.2%) achieved similar classification accuracies. Grappling and accuracy performance indicators were the most influential in explaining outcome. The decision tree models also revealed multiple combinations of performance indicators leading to victory. The decision tree analyses suggest that grappling activity and technique accuracy are of particular importance in achieving victory in elite-level MMA competition. The DFA results supported the importance of these performance indicators. Decision tree induction represents an intuitive and slightly more accurate approach to explaining bout outcome in this sport when compared to DFA. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. IND - THE IND DECISION TREE PACKAGE

    NASA Technical Reports Server (NTRS)

    Buntine, W.

    1994-01-01

    A common approach to supervised classification and prediction in artificial intelligence and statistical pattern recognition is the use of decision trees. A tree is "grown" from data using a recursive partitioning algorithm to create a tree which has good prediction of classes on new data. Standard algorithms are CART (by Breiman Friedman, Olshen and Stone) and ID3 and its successor C4 (by Quinlan). As well as reimplementing parts of these algorithms and offering experimental control suites, IND also introduces Bayesian and MML methods and more sophisticated search in growing trees. These produce more accurate class probability estimates that are important in applications like diagnosis. IND is applicable to most data sets consisting of independent instances, each described by a fixed length vector of attribute values. An attribute value may be a number, one of a set of attribute specific symbols, or it may be omitted. One of the attributes is delegated the "target" and IND grows trees to predict the target. Prediction can then be done on new data or the decision tree printed out for inspection. IND provides a range of features and styles with convenience for the casual user as well as fine-tuning for the advanced user or those interested in research. IND can be operated in a CART-like mode (but without regression trees, surrogate splits or multivariate splits), and in a mode like the early version of C4. Advanced features allow more extensive search, interactive control and display of tree growing, and Bayesian and MML algorithms for tree pruning and smoothing. These often produce more accurate class probability estimates at the leaves. IND also comes with a comprehensive experimental control suite. IND consists of four basic kinds of routines: data manipulation routines, tree generation routines, tree testing routines, and tree display routines. The data manipulation routines are used to partition a single large data set into smaller training and test sets. The generation routines are used to build classifiers. The test routines are used to evaluate classifiers and to classify data using a classifier. And the display routines are used to display classifiers in various formats. IND is written in C-language for Sun4 series computers. It consists of several programs with controlling shell scripts. Extensive UNIX man entries are included. IND is designed to be used on any UNIX system, although it has only been thoroughly tested on SUN platforms. The standard distribution medium for IND is a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in PostScript format is included on the distribution medium. IND was developed in 1992.

  5. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  6. Application of the pessimistic pruning to increase the accuracy of C4.5 algorithm in diagnosing chronic kidney disease

    NASA Astrophysics Data System (ADS)

    Muslim, M. A.; Herowati, A. J.; Sugiharti, E.; Prasetiyo, B.

    2018-03-01

    A technique to dig valuable information buried or hidden in data collection which is so big to be found an interesting patterns that was previously unknown is called data mining. Data mining has been applied in the healthcare industry. One technique used data mining is classification. The decision tree included in the classification of data mining and algorithm developed by decision tree is C4.5 algorithm. A classifier is designed using applying pessimistic pruning in C4.5 algorithm in diagnosing chronic kidney disease. Pessimistic pruning use to identify and remove branches that are not needed, this is done to avoid overfitting the decision tree generated by the C4.5 algorithm. In this paper, the result obtained using these classifiers are presented and discussed. Using pessimistic pruning shows increase accuracy of C4.5 algorithm of 1.5% from 95% to 96.5% in diagnosing of chronic kidney disease.

  7. Privacy-Preserving Classifier Learning

    NASA Astrophysics Data System (ADS)

    Brickell, Justin; Shmatikov, Vitaly

    We present an efficient protocol for the privacy-preserving, distributed learning of decision-tree classifiers. Our protocol allows a user to construct a classifier on a database held by a remote server without learning any additional information about the records held in the database. The server does not learn anything about the constructed classifier, not even the user’s choice of feature and class attributes.

  8. Evaluation of supervised machine-learning algorithms to distinguish between inflammatory bowel disease and alimentary lymphoma in cats.

    PubMed

    Awaysheh, Abdullah; Wilcke, Jeffrey; Elvinger, François; Rees, Loren; Fan, Weiguo; Zimmerman, Kurt L

    2016-11-01

    Inflammatory bowel disease (IBD) and alimentary lymphoma (ALA) are common gastrointestinal diseases in cats. The very similar clinical signs and histopathologic features of these diseases make the distinction between them diagnostically challenging. We tested the use of supervised machine-learning algorithms to differentiate between the 2 diseases using data generated from noninvasive diagnostic tests. Three prediction models were developed using 3 machine-learning algorithms: naive Bayes, decision trees, and artificial neural networks. The models were trained and tested on data from complete blood count (CBC) and serum chemistry (SC) results for the following 3 groups of client-owned cats: normal, inflammatory bowel disease (IBD), or alimentary lymphoma (ALA). Naive Bayes and artificial neural networks achieved higher classification accuracy (sensitivities of 70.8% and 69.2%, respectively) than the decision tree algorithm (63%, p < 0.0001). The areas under the receiver-operating characteristic curve for classifying cases into the 3 categories was 83% by naive Bayes, 79% by decision tree, and 82% by artificial neural networks. Prediction models using machine learning provided a method for distinguishing between ALA-IBD, ALA-normal, and IBD-normal. The naive Bayes and artificial neural networks classifiers used 10 and 4 of the CBC and SC variables, respectively, to outperform the C4.5 decision tree, which used 5 CBC and SC variables in classifying cats into the 3 classes. These models can provide another noninvasive diagnostic tool to assist clinicians with differentiating between IBD and ALA, and between diseased and nondiseased cats. © 2016 The Author(s).

  9. Prognostic Factors and Decision Tree for Long-term Survival in Metastatic Uveal Melanoma.

    PubMed

    Lorenzo, Daniel; Ochoa, María; Piulats, Josep Maria; Gutiérrez, Cristina; Arias, Luis; Català, Jaum; Grau, María; Peñafiel, Judith; Cobos, Estefanía; Garcia-Bru, Pere; Rubio, Marcos Javier; Padrón-Pérez, Noel; Dias, Bruno; Pera, Joan; Caminal, Josep Maria

    2017-12-04

    The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree. The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristics were assessed in both groups. Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making. The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.

  10. Ventriculogram segmentation using boosted decision trees

    NASA Astrophysics Data System (ADS)

    McDonald, John A.; Sheehan, Florence H.

    2004-05-01

    Left ventricular status, reflected in ejection fraction or end systolic volume, is a powerful prognostic indicator in heart disease. Quantitative analysis of these and other parameters from ventriculograms (cine xrays of the left ventricle) is infrequently performed due to the labor required for manual segmentation. None of the many methods developed for automated segmentation has achieved clinical acceptance. We present a method for semi-automatic segmentation of ventriculograms based on a very accurate two-stage boosted decision-tree pixel classifier. The classifier determines which pixels are inside the ventricle at key ED (end-diastole) and ES (end-systole) frames. The test misclassification rate is about 1%. The classifier is semi-automatic, requiring a user to select 3 points in each frame: the endpoints of the aortic valve and the apex. The first classifier stage is 2 boosted decision-trees, trained using features such as gray-level statistics (e.g. median brightness) and image geometry (e.g. coordinates relative to user supplied 3 points). Second stage classifiers are trained using the same features as the first, plus the output of the first stage. Border pixels are determined from the segmented images using dilation and erosion. A curve is then fit to the border pixels, minimizing a penalty function that trades off fidelity to the border pixels with smoothness. ED and ES volumes, and ejection fraction are estimated from border curves using standard area-length formulas. On independent test data, the differences between automatic and manual volumes (and ejection fractions) are similar in size to the differences between two human observers.

  11. Single-accelerometer-based daily physical activity classification.

    PubMed

    Long, Xi; Yin, Bin; Aarts, Ronald M

    2009-01-01

    In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.

  12. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics.

  13. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly redundant attributes that are very common in bioinformatics. PMID:22479449

  14. Implementation of Data Mining to Analyze Drug Cases Using C4.5 Decision Tree

    NASA Astrophysics Data System (ADS)

    Wahyuni, Sri

    2018-03-01

    Data mining was the process of finding useful information from a large set of databases. One of the existing techniques in data mining was classification. The method used was decision tree method and algorithm used was C4.5 algorithm. The decision tree method was a method that transformed a very large fact into a decision tree which was presenting the rules. Decision tree method was useful for exploring data, as well as finding a hidden relationship between a number of potential input variables with a target variable. The decision tree of the C4.5 algorithm was constructed with several stages including the selection of attributes as roots, created a branch for each value and divided the case into the branch. These stages would be repeated for each branch until all the cases on the branch had the same class. From the solution of the decision tree there would be some rules of a case. In this case the researcher classified the data of prisoners at Labuhan Deli prison to know the factors of detainees committing criminal acts of drugs. By applying this C4.5 algorithm, then the knowledge was obtained as information to minimize the criminal acts of drugs. From the findings of the research, it was found that the most influential factor of the detainee committed the criminal act of drugs was from the address variable.

  15. An evaluation of consensus techniques for diagnostic interpretation

    NASA Astrophysics Data System (ADS)

    Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.

    2018-02-01

    Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.

  16. Decision-Tree Analysis for Predicting First-Time Pass/Fail Rates for the NCLEX-RN® in Associate Degree Nursing Students.

    PubMed

    Chen, Hsiu-Chin; Bennett, Sean

    2016-08-01

    Little evidence shows the use of decision-tree algorithms in identifying predictors and analyzing their associations with pass rates for the NCLEX-RN(®) in associate degree nursing students. This longitudinal and retrospective cohort study investigated whether a decision-tree algorithm could be used to develop an accurate prediction model for the students' passing or failing the NCLEX-RN. This study used archived data from 453 associate degree nursing students in a selected program. The chi-squared automatic interaction detection analysis of the decision trees module was used to examine the effect of the collected predictors on passing/failing the NCLEX-RN. The actual percentage scores of Assessment Technologies Institute®'s RN Comprehensive Predictor(®) accurately identified students at risk of failing. The classification model correctly classified 92.7% of the students for passing. This study applied the decision-tree model to analyze a sequence database for developing a prediction model for early remediation in preparation for the NCLEXRN. [J Nurs Educ. 2016;55(8):454-457.]. Copyright 2016, SLACK Incorporated.

  17. Using decision-tree classifier systems to extract knowledge from databases

    NASA Technical Reports Server (NTRS)

    St.clair, D. C.; Sabharwal, C. L.; Hacke, Keith; Bond, W. E.

    1990-01-01

    One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described.

  18. Ontology based decision system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra

    2018-04-01

    In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.

  19. An evaluation of several different classification schemes - Their parameters and performance. [maximum likelihood decision for crop identification

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.

    1979-01-01

    The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.

  20. Predicting Malignant and Paramalignant Pleural Effusions by Combining Clinical, Radiological and Pleural Fluid Analytical Parameters.

    PubMed

    Herrera Lara, Susana; Fernández-Fabrellas, Estrella; Juan Samper, Gustavo; Marco Buades, Josefa; Andreu Lapiedra, Rafael; Pinilla Moreno, Amparo; Morales Suárez-Varela, María

    2017-10-01

    The usefulness of clinical, radiological and pleural fluid analytical parameters for diagnosing malignant and paramalignant pleural effusion is not clearly stated. Hence this study aimed to identify possible predictor variables of diagnosing malignancy in pleural effusion of unknown aetiology. Clinical, radiological and pleural fluid analytical parameters were obtained from consecutive patients who had suffered pleural effusion of unknown aetiology. They were classified into three groups according to their final diagnosis: malignant, paramalignant and benign pleural effusion. The CHAID (Chi-square automatic interaction detector) methodology was used to estimate the implication of the clinical, radiological and analytical variables in daily practice through decision trees. Of 71 patients, malignant (n = 31), paramalignant (n = 15) and benign (n = 25), smoking habit, dyspnoea, weight loss, radiological characteristics (mass, node, adenopathies and pleural thickening) and pleural fluid analytical parameters (pH and glucose) distinguished malignant and paramalignant pleural effusions (all with a p < 0.05). Decision tree 1 classified 77.8% of malignant and paramalignant pleural effusions in step 2. Decision tree 2 classified 83.3% of malignant pleural effusions in step 2, 73.3% of paramalignant pleural effusions and 91.7% of benign ones. The data herein suggest that the identified predictor values applied to tree diagrams, which required no extraordinary measures, have a higher rate of correct identification of malignant, paramalignant and benign effusions when compared to techniques available today and proved most useful for usual clinical practice. Future studies are still needed to further improve the classification of patients.

  1. Classification of Liss IV Imagery Using Decision Tree Methods

    NASA Astrophysics Data System (ADS)

    Verma, Amit Kumar; Garg, P. K.; Prasad, K. S. Hari; Dadhwal, V. K.

    2016-06-01

    Image classification is a compulsory step in any remote sensing research. Classification uses the spectral information represented by the digital numbers in one or more spectral bands and attempts to classify each individual pixel based on this spectral information. Crop classification is the main concern of remote sensing applications for developing sustainable agriculture system. Vegetation indices computed from satellite images gives a good indication of the presence of vegetation. It is an indicator that describes the greenness, density and health of vegetation. Texture is also an important characteristics which is used to identifying objects or region of interest is an image. This paper illustrate the use of decision tree method to classify the land in to crop land and non-crop land and to classify different crops. In this paper we evaluate the possibility of crop classification using an integrated approach methods based on texture property with different vegetation indices for single date LISS IV sensor 5.8 meter high spatial resolution data. Eleven vegetation indices (NDVI, DVI, GEMI, GNDVI, MSAVI2, NDWI, NG, NR, NNIR, OSAVI and VI green) has been generated using green, red and NIR band and then image is classified using decision tree method. The other approach is used integration of texture feature (mean, variance, kurtosis and skewness) with these vegetation indices. A comparison has been done between these two methods. The results indicate that inclusion of textural feature with vegetation indices can be effectively implemented to produce classifiedmaps with 8.33% higher accuracy for Indian satellite IRS-P6, LISS IV sensor images.

  2. An Isometric Mapping Based Co-Location Decision Tree Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Wei, J.; Zhou, X.; Zhang, R.; Huang, W.; Sha, H.; Chen, J.

    2018-05-01

    Decision tree (DT) induction has been widely used in different pattern classification. However, most traditional DTs have the disadvantage that they consider only non-spatial attributes (ie, spectral information) as a result of classifying pixels, which can result in objects being misclassified. Therefore, some researchers have proposed a co-location decision tree (Cl-DT) method, which combines co-location and decision tree to solve the above the above-mentioned traditional decision tree problems. Cl-DT overcomes the shortcomings of the existing DT algorithms, which create a node for each value of a given attribute, which has a higher accuracy than the existing decision tree approach. However, for non-linearly distributed data instances, the euclidean distance between instances does not reflect the true positional relationship between them. In order to overcome these shortcomings, this paper proposes an isometric mapping method based on Cl-DT (called, (Isomap-based Cl-DT), which is a method that combines heterogeneous and Cl-DT together. Because isometric mapping methods use geodetic distances instead of Euclidean distances between non-linearly distributed instances, the true distance between instances can be reflected. The experimental results and several comparative analyzes show that: (1) The extraction method of exposed carbonate rocks is of high accuracy. (2) The proposed method has many advantages, because the total number of nodes, the number of leaf nodes and the number of nodes are greatly reduced compared to Cl-DT. Therefore, the Isomap -based Cl-DT algorithm can construct a more accurate and faster decision tree.

  3. Using Decision Trees to Detect and Isolate Simulated Leaks in the J-2X Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark A.; Aguilar, Robert; Figueroa, Fernando F.

    2009-01-01

    The goal of this work was to use data-driven methods to automatically detect and isolate faults in the J-2X rocket engine. It was decided to use decision trees, since they tend to be easier to interpret than other data-driven methods. The decision tree algorithm automatically "learns" a decision tree by performing a search through the space of possible decision trees to find one that fits the training data. The particular decision tree algorithm used is known as C4.5. Simulated J-2X data from a high-fidelity simulator developed at Pratt & Whitney Rocketdyne and known as the Detailed Real-Time Model (DRTM) was used to "train" and test the decision tree. Fifty-six DRTM simulations were performed for this purpose, with different leak sizes, different leak locations, and different times of leak onset. To make the simulations as realistic as possible, they included simulated sensor noise, and included a gradual degradation in both fuel and oxidizer turbine efficiency. A decision tree was trained using 11 of these simulations, and tested using the remaining 45 simulations. In the training phase, the C4.5 algorithm was provided with labeled examples of data from nominal operation and data including leaks in each leak location. From the data, it "learned" a decision tree that can classify unseen data as having no leak or having a leak in one of the five leak locations. In the test phase, the decision tree produced very low false alarm rates and low missed detection rates on the unseen data. It had very good fault isolation rates for three of the five simulated leak locations, but it tended to confuse the remaining two locations, perhaps because a large leak at one of these two locations can look very similar to a small leak at the other location.

  4. New Data Pre-processing on Assessing of Obstructive Sleep Apnea Syndrome: Line Based Normalization Method (LBNM)

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Güneş, Salih; Yosunkaya, Şebnem

    Sleep disorders are a very common unawareness illness among public. Obstructive Sleep Apnea Syndrome (OSAS) is characterized with decreased oxygen saturation level and repetitive upper respiratory tract obstruction episodes during full night sleep. In the present study, we have proposed a novel data normalization method called Line Based Normalization Method (LBNM) to evaluate OSAS using real data set obtained from Polysomnography device as a diagnostic tool in patients and clinically suspected of suffering OSAS. Here, we have combined the LBNM and classification methods comprising C4.5 decision tree classifier and Artificial Neural Network (ANN) to diagnose the OSAS. Firstly, each clinical feature in OSAS dataset is scaled by LBNM method in the range of [0,1]. Secondly, normalized OSAS dataset is classified using different classifier algorithms including C4.5 decision tree classifier and ANN, respectively. The proposed normalization method was compared with min-max normalization, z-score normalization, and decimal scaling methods existing in literature on the diagnosis of OSAS. LBNM has produced very promising results on the assessing of OSAS. Also, this method could be applied to other biomedical datasets.

  5. Binary Decision Trees for Preoperative Periapical Cyst Screening Using Cone-beam Computed Tomography.

    PubMed

    Pitcher, Brandon; Alaqla, Ali; Noujeim, Marcel; Wealleans, James A; Kotsakis, Georgios; Chrepa, Vanessa

    2017-03-01

    Cone-beam computed tomographic (CBCT) analysis allows for 3-dimensional assessment of periradicular lesions and may facilitate preoperative periapical cyst screening. The purpose of this study was to develop and assess the predictive validity of a cyst screening method based on CBCT volumetric analysis alone or combined with designated radiologic criteria. Three independent examiners evaluated 118 presurgical CBCT scans from cases that underwent apicoectomies and had an accompanying gold standard histopathological diagnosis of either a cyst or granuloma. Lesion volume, density, and specific radiologic characteristics were assessed using specialized software. Logistic regression models with histopathological diagnosis as the dependent variable were constructed for cyst prediction, and receiver operating characteristic curves were used to assess the predictive validity of the models. A conditional inference binary decision tree based on a recursive partitioning algorithm was constructed to facilitate preoperative screening. Interobserver agreement was excellent for volume and density, but it varied from poor to good for the radiologic criteria. Volume and root displacement were strong predictors for cyst screening in all analyses. The binary decision tree classifier determined that if the volume of the lesion was >247 mm 3 , there was 80% probability of a cyst. If volume was <247 mm 3 and root displacement was present, cyst probability was 60% (78% accuracy). The good accuracy and high specificity of the decision tree classifier renders it a useful preoperative cyst screening tool that can aid in clinical decision making but not a substitute for definitive histopathological diagnosis after biopsy. Confirmatory studies are required to validate the present findings. Published by Elsevier Inc.

  6. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  7. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    PubMed

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  8. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction.

    PubMed

    Hajiloo, Mohsen; Sapkota, Yadav; Mackey, John R; Robson, Paula; Greiner, Russell; Damaraju, Sambasivarao

    2013-02-22

    Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case-control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual's continental and sub-continental ancestry. To predict an individual's continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control's λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3.9%, 95.6% ± 2.1%, 98.3% ± 2.0%, and 95.9% ± 1.5%. However, ETHNOPRED was unable to produce a classifier that can accurately distinguish Chinese in Beijing vs. Chinese in Denver. ETHNOPRED is a novel technique for producing classifiers that can identify an individual's continental and sub-continental heritage, based on a small number of SNPs. We show that its learned classifiers are simple, cost-efficient, accurate, transparent, flexible, fast, applicable to large scale GWASs, and robust to missing values.

  9. Classification of Different Degrees of Disability Following Intracerebral Hemorrhage: A Decision Tree Analysis from VISTA-ICH Collaboration.

    PubMed

    Phan, Thanh G; Chen, Jian; Beare, Richard; Ma, Henry; Clissold, Benjamin; Van Ly, John; Srikanth, Velandai

    2017-01-01

    Prognostication following intracerebral hemorrhage (ICH) has focused on poor outcome at the expense of lumping together mild and moderate disability. We aimed to develop a novel approach at classifying a range of disability following ICH. The Virtual International Stroke Trial Archive collaboration database was searched for patients with ICH and known volume of ICH on baseline CT scans. Disability was partitioned into mild [modified Rankin Scale (mRS) at 90 days of 0-2], moderate (mRS = 3-4), and severe disabilities (mRS = 5-6). We used binary and trichotomy decision tree methodology. The data were randomly divided into training (2/3 of data) and validation (1/3 data) datasets. The area under the receiver operating characteristic curve (AUC) was used to calculate the accuracy of the decision tree model. We identified 957 patients, age 65.9 ± 12.3 years, 63.7% males, and ICH volume 22.6 ± 22.1 ml. The binary tree showed that lower ICH volume (<13.7 ml), age (<66.5 years), serum glucose (<8.95 mmol/l), and systolic blood pressure (<170 mm Hg) discriminate between mild versus moderate-to-severe disabilities with AUC of 0.79 (95% CI 0.73-0.85). Large ICH volume (>27.9 ml), older age (>69.5 years), and low Glasgow Coma Scale (<15) classify severe disability with AUC of 0.80 (95% CI 0.75-0.86). The trichotomy tree showed that ICH volume, age, and serum glucose can separate mild, moderate, and severe disability groups with AUC 0.79 (95% CI 0.71-0.87). Both the binary and trichotomy methods provide equivalent discrimination of disability outcome after ICH. The trichotomy method can classify three categories at once, whereas this action was not possible with the binary method. The trichotomy method may be of use to clinicians and trialists for classifying a range of disability in ICH.

  10. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  11. Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range

    NASA Astrophysics Data System (ADS)

    Dibb, S. D.; Ustin, S.; Grigsby, S.

    2015-12-01

    Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.

  12. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies

    PubMed Central

    2010-01-01

    Background All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences. Results The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%. Conclusions This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general. PMID:20144194

  13. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  14. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies.

    PubMed

    David, Maria Pamela C; Concepcion, Gisela P; Padlan, Eduardo A

    2010-02-08

    All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences. The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier, depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-amyloidogenic prediction accuracy is 75.00%. This exploratory study indicates that both classification methods may be promising in providing straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are considered. The development of this type of classifier has significant applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general.

  15. Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees

    NASA Astrophysics Data System (ADS)

    Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.

    2017-05-01

    Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.

  16. Circum-Arctic petroleum systems identified using decision-tree chemometrics

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.; Gautier, D.L.

    2007-01-01

    Source- and age-related biomarker and isotopic data were measured for more than 1000 crude oil samples from wells and seeps collected above approximately 55??N latitude. A unique, multitiered chemometric (multivariate statistical) decision tree was created that allowed automated classification of 31 genetically distinct circumArctic oil families based on a training set of 622 oil samples. The method, which we call decision-tree chemometrics, uses principal components analysis and multiple tiers of K-nearest neighbor and SIMCA (soft independent modeling of class analogy) models to classify and assign confidence limits for newly acquired oil samples and source rock extracts. Geochemical data for each oil sample were also used to infer the age, lithology, organic matter input, depositional environment, and identity of its source rock. These results demonstrate the value of large petroleum databases where all samples were analyzed using the same procedures and instrumentation. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  17. ETHNOPRED: a novel machine learning method for accurate continental and sub-continental ancestry identification and population stratification correction

    PubMed Central

    2013-01-01

    Background Population stratification is a systematic difference in allele frequencies between subpopulations. This can lead to spurious association findings in the case–control genome wide association studies (GWASs) used to identify single nucleotide polymorphisms (SNPs) associated with disease-linked phenotypes. Methods such as self-declared ancestry, ancestry informative markers, genomic control, structured association, and principal component analysis are used to assess and correct population stratification but each has limitations. We provide an alternative technique to address population stratification. Results We propose a novel machine learning method, ETHNOPRED, which uses the genotype and ethnicity data from the HapMap project to learn ensembles of disjoint decision trees, capable of accurately predicting an individual’s continental and sub-continental ancestry. To predict an individual’s continental ancestry, ETHNOPRED produced an ensemble of 3 decision trees involving a total of 10 SNPs, with 10-fold cross validation accuracy of 100% using HapMap II dataset. We extended this model to involve 29 disjoint decision trees over 149 SNPs, and showed that this ensemble has an accuracy of ≥ 99.9%, even if some of those 149 SNP values were missing. On an independent dataset, predominantly of Caucasian origin, our continental classifier showed 96.8% accuracy and improved genomic control’s λ from 1.22 to 1.11. We next used the HapMap III dataset to learn classifiers to distinguish European subpopulations (North-Western vs. Southern), East Asian subpopulations (Chinese vs. Japanese), African subpopulations (Eastern vs. Western), North American subpopulations (European vs. Chinese vs. African vs. Mexican vs. Indian), and Kenyan subpopulations (Luhya vs. Maasai). In these cases, ETHNOPRED produced ensembles of 3, 39, 21, 11, and 25 disjoint decision trees, respectively involving 31, 502, 526, 242 and 271 SNPs, with 10-fold cross validation accuracy of 86.5% ± 2.4%, 95.6% ± 3.9%, 95.6% ± 2.1%, 98.3% ± 2.0%, and 95.9% ± 1.5%. However, ETHNOPRED was unable to produce a classifier that can accurately distinguish Chinese in Beijing vs. Chinese in Denver. Conclusions ETHNOPRED is a novel technique for producing classifiers that can identify an individual’s continental and sub-continental heritage, based on a small number of SNPs. We show that its learned classifiers are simple, cost-efficient, accurate, transparent, flexible, fast, applicable to large scale GWASs, and robust to missing values. PMID:23432980

  18. Ultrasonographic Diagnosis of Biliary Atresia Based on a Decision-Making Tree Model.

    PubMed

    Lee, So Mi; Cheon, Jung-Eun; Choi, Young Hun; Kim, Woo Sun; Cho, Hyun-Hae; Cho, Hyun-Hye; Kim, In-One; You, Sun Kyoung

    2015-01-01

    To assess the diagnostic value of various ultrasound (US) findings and to make a decision-tree model for US diagnosis of biliary atresia (BA). From March 2008 to January 2014, the following US findings were retrospectively evaluated in 100 infants with cholestatic jaundice (BA, n = 46; non-BA, n = 54): length and morphology of the gallbladder, triangular cord thickness, hepatic artery and portal vein diameters, and visualization of the common bile duct. Logistic regression analyses were performed to determine the features that would be useful in predicting BA. Conditional inference tree analysis was used to generate a decision-making tree for classifying patients into the BA or non-BA groups. Multivariate logistic regression analysis showed that abnormal gallbladder morphology and greater triangular cord thickness were significant predictors of BA (p = 0.003 and 0.001; adjusted odds ratio: 345.6 and 65.6, respectively). In the decision-making tree using conditional inference tree analysis, gallbladder morphology and triangular cord thickness (optimal cutoff value of triangular cord thickness, 3.4 mm) were also selected as significant discriminators for differential diagnosis of BA, and gallbladder morphology was the first discriminator. The diagnostic performance of the decision-making tree was excellent, with sensitivity of 100% (46/46), specificity of 94.4% (51/54), and overall accuracy of 97% (97/100). Abnormal gallbladder morphology and greater triangular cord thickness (> 3.4 mm) were the most useful predictors of BA on US. We suggest that the gallbladder morphology should be evaluated first and that triangular cord thickness should be evaluated subsequently in cases with normal gallbladder morphology.

  19. Computer-aided diagnosis of focal liver lesions by use of physicians' subjective classification of echogenic patterns in baseline and contrast-enhanced ultrasonography.

    PubMed

    Sugimoto, Katsutoshi; Shiraishi, Junji; Moriyasu, Fuminori; Doi, Kunio

    2009-04-01

    To develop a computer-aided diagnostic (CAD) scheme for classifying focal liver lesions (FLLs) by use of physicians' subjective classification of echogenic patterns of FLLs on baseline and contrast-enhanced ultrasonography (US). A total of 137 hepatic lesions in 137 patients were evaluated with B-mode and NC100100 (Sonazoid)-enhanced pulse-inversion US; lesions included 74 hepatocellular carcinomas (HCCs) (23: well-differentiated, 36: moderately differentiated, 15: poorly differentiated HCCs), 33 liver metastases, and 30 liver hemangiomas. Three physicians evaluated single images at B-mode and arterial phases with a cine mode. Physicians were asked to classify each lesion into one of eight B-mode and one of eight enhancement patterns, but did not make a diagnosis. To classify five types of FLLs, we employed a decision tree model with four decision nodes and four artificial neural networks (ANNs). The results of the physicians' pattern classifications were used successively for four different ANNs in making decisions at each of the decision nodes in the decision tree model. The classification accuracies for the 137 FLLs were 84.8% for metastasis, 93.3% for hemangioma, and 98.6% for all HCCs. In addition, the classification accuracies for histological differentiation types of HCCs were 65.2% for well-differentiated HCC, 41.7% for moderately differentiated HCC, and 80.0% for poorly differentiated HCC. This CAD scheme has the potential to improve the diagnostic accuracy of liver lesions. However, the accuracy in the histologic differential diagnosis of HCC based on baseline and contrast-enhanced US is still limited.

  20. Rough Set Based Splitting Criterion for Binary Decision Tree Classifiers

    DTIC Science & Technology

    2006-09-26

    Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic Resonance Brain ...instinctual and learned responses in the brain , causing it to make decisions based on patterns in the stimuli. Using this deceptively simple process...2001. [2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function Approximation. In: Proceedings of the 1997 IEEE International

  1. An assessment of support vector machines for land cover classification

    USGS Publications Warehouse

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  2. Analysis of driver merging behavior at lane drops on freeways.

    DOT National Transportation Integrated Search

    2013-12-01

    Lane changing assistance systems advise drivers on safe gaps for making mandatory lane changes at lane drops. In this : study, such a system was developed using a Bayes classifier and a decision tree to model lane changes. Detailed vehicle : trajecto...

  3. Predicting Tillage Patterns in the Tiffin River Watershed Using Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Brooks, C.; McCarty, J. L.; Dean, D. B.; Mann, B. F.

    2012-12-01

    Previous research in tillage mapping has focused primarily on utilizing low to no-cost, moderate (30 m to 15 m) resolution satellite data. Successful data processing techniques published in the scientific literature have focused on extracting and/or classifying tillage patterns through manipulation of spectral bands. For instance, Daughtry et al. (2005) evaluated several spectral indices for crop residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields. A weak to moderate relationship between Landsat Thematic Mapper (TM) indices and crop residue cover was found; similar results were reported in Minnesota. Building on the findings from the scientific literature and previous work done by MTRI in the heavily agricultural Tiffin watershed of northwest Ohio and southeast Michigan, a decision tree classifier approach (also referred to as a classification tree) was used, linking several satellite data to on-the-ground tillage information in order to boost classification results. This approach included five tillage indices and derived products. A decision tree methodology enabled the development of statistically optimized (i.e., minimizing misclassification rates) classification algorithms at various desired time steps: monthly, seasonally, and annual over the 2006-2010 time period. Due to their flexibility, processing speed, and availability within all major remote sensing and statistical software packages, decision trees can ingest several data inputs from multiple sensors and satellite products, selecting only the bands, band ratios, indices, and products that further reduce misclassification errors. The project team created crop-specific tillage pattern classification trees whereby a training data set (~ 50% of available ground data) was created for production of the actual decision tree and a validation data set was set aside (~ 50% of available ground data) in order to assess the accuracy of the classification. A seasonal time step was used, optimizing a decision tree based on seasonal ground data for tillage patterns and satellite data and products for years 2006 through 2010. Annual crop type maps derived by the project team and the USDA Cropland Data Layer project was used an input to understand locations of corn, soybeans, wheat, etc. on a yearly basis. As previously stated, the robustness of the decision tree approach is the ability to implement various satellite data and products across temporal, spectral, and spatial resolutions, thereby improving the resulting classification and providing a reliable method that is not sensor-dependent. Tillage pattern classification from satellite imagery is not a simple task and has proven a challenge to previous researchers investigating this remote sensing topic. The team's decision tree method produced a practical, usable output within a focused project time period. Daughtry, C.S.T., Hunt Jr., E.R., Doraiswamy, P.C., McMurtrey III, J.E. 2005. Remote sensing the spatial distribution of crop residues. Agron. J. 97, 864-871.

  4. A hybrid approach to select features and classify diseases based on medical data

    NASA Astrophysics Data System (ADS)

    AbdelLatif, Hisham; Luo, Jiawei

    2018-03-01

    Feature selection is popular problem in the classification of diseases in clinical medicine. Here, we developing a hybrid methodology to classify diseases, based on three medical datasets, Arrhythmia, Breast cancer, and Hepatitis datasets. This methodology called k-means ANOVA Support Vector Machine (K-ANOVA-SVM) uses K-means cluster with ANOVA statistical to preprocessing data and selection the significant features, and Support Vector Machines in the classification process. To compare and evaluate the performance, we choice three classification algorithms, decision tree Naïve Bayes, Support Vector Machines and applied the medical datasets direct to these algorithms. Our methodology was a much better classification accuracy is given of 98% in Arrhythmia datasets, 92% in Breast cancer datasets and 88% in Hepatitis datasets, Compare to use the medical data directly with decision tree Naïve Bayes, and Support Vector Machines. Also, the ROC curve and precision with (K-ANOVA-SVM) Achieved best results than other algorithms

  5. Performance analysis of distributed applications using automatic classification of communication inefficiencies

    DOEpatents

    Vetter, Jeffrey S.

    2005-02-01

    The method and system described herein presents a technique for performance analysis that helps users understand the communication behavior of their message passing applications. The method and system described herein may automatically classifies individual communication operations and reveal the cause of communication inefficiencies in the application. This classification allows the developer to quickly focus on the culprits of truly inefficient behavior, rather than manually foraging through massive amounts of performance data. Specifically, the method and system described herein trace the message operations of Message Passing Interface (MPI) applications and then classify each individual communication event using a supervised learning technique: decision tree classification. The decision tree may be trained using microbenchmarks that demonstrate both efficient and inefficient communication. Since the method and system described herein adapt to the target system's configuration through these microbenchmarks, they simultaneously automate the performance analysis process and improve classification accuracy. The method and system described herein may improve the accuracy of performance analysis and dramatically reduce the amount of data that users must encounter.

  6. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  7. Neuropsychological Test Selection for Cognitive Impairment Classification: A Machine Learning Approach

    PubMed Central

    Williams, Jennifer A.; Schmitter-Edgecombe, Maureen; Cook, Diane J.

    2016-01-01

    Introduction Reducing the amount of testing required to accurately detect cognitive impairment is clinically relevant. The aim of this research was to determine the fewest number of clinical measures required to accurately classify participants as healthy older adult, mild cognitive impairment (MCI) or dementia using a suite of classification techniques. Methods Two variable selection machine learning models (i.e., naive Bayes, decision tree), a logistic regression, and two participant datasets (i.e., clinical diagnosis, clinical dementia rating; CDR) were explored. Participants classified using clinical diagnosis criteria included 52 individuals with dementia, 97 with MCI, and 161 cognitively healthy older adults. Participants classified using CDR included 154 individuals CDR = 0, 93 individuals with CDR = 0.5, and 25 individuals with CDR = 1.0+. Twenty-seven demographic, psychological, and neuropsychological variables were available for variable selection. Results No significant difference was observed between naive Bayes, decision tree, and logistic regression models for classification of both clinical diagnosis and CDR datasets. Participant classification (70.0 – 99.1%), geometric mean (60.9 – 98.1%), sensitivity (44.2 – 100%), and specificity (52.7 – 100%) were generally satisfactory. Unsurprisingly, the MCI/CDR = 0.5 participant group was the most challenging to classify. Through variable selection only 2 – 9 variables were required for classification and varied between datasets in a clinically meaningful way. Conclusions The current study results reveal that machine learning techniques can accurately classifying cognitive impairment and reduce the number of measures required for diagnosis. PMID:26332171

  8. The relationship between tree growth patterns and likelihood of mortality: A study of two tree species in the Sierra Nevada

    USGS Publications Warehouse

    Das, A.J.; Battles, J.J.; Stephenson, N.L.; van Mantgem, P.J.

    2007-01-01

    We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ???20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk. ?? 2007 NRC.

  9. Boosting bonsai trees for handwritten/printed text discrimination

    NASA Astrophysics Data System (ADS)

    Ricquebourg, Yann; Raymond, Christian; Poirriez, Baptiste; Lemaitre, Aurélie; Coüasnon, Bertrand

    2013-12-01

    Boosting over decision-stumps proved its efficiency in Natural Language Processing essentially with symbolic features, and its good properties (fast, few and not critical parameters, not sensitive to over-fitting) could be of great interest in the numeric world of pixel images. In this article we investigated the use of boosting over small decision trees, in image classification processing, for the discrimination of handwritten/printed text. Then, we conducted experiments to compare it to usual SVM-based classification revealing convincing results with very close performance, but with faster predictions and behaving far less as a black-box. Those promising results tend to make use of this classifier in more complex recognition tasks like multiclass problems.

  10. Using different classification models in wheat grading utilizing visual features

    NASA Astrophysics Data System (ADS)

    Basati, Zahra; Rasekh, Mansour; Abbaspour-Gilandeh, Yousef

    2018-04-01

    Wheat is one of the most important strategic crops in Iran and in the world. The major component that distinguishes wheat from other grains is the gluten section. In Iran, sunn pest is one of the most important factors influencing the characteristics of wheat gluten and in removing it from a balanced state. The existence of bug-damaged grains in wheat will reduce the quality and price of the product. In addition, damaged grains reduce the enrichment of wheat and the quality of bread products. In this study, after preprocessing and segmentation of images, 25 features including 9 colour features, 10 morphological features, and 6 textual statistical features were extracted so as to classify healthy and bug-damaged wheat grains of Azar cultivar of four levels of moisture content (9, 11.5, 14 and 16.5% w.b.) and two lighting colours (yellow light, the composition of yellow and white lights). Using feature selection methods in the WEKA software and the CfsSubsetEval evaluator, 11 features were chosen as inputs of artificial neural network, decision tree and discriment analysis classifiers. The results showed that the decision tree with the J.48 algorithm had the highest classification accuracy of 90.20%. This was followed by artificial neural network classifier with the topology of 11-19-2 and discrimient analysis classifier at 87.46 and 81.81%, respectively

  11. Interpretable Categorization of Heterogeneous Time Series Data

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Kochenderfer, Mykel J.; Mengshoel, Ole J.; Silbermann, Joshua

    2017-01-01

    We analyze data from simulated aircraft encounters to validate and inform the development of a prototype aircraft collision avoidance system. The high-dimensional and heterogeneous time series dataset is analyzed to discover properties of near mid-air collisions (NMACs) and categorize the NMAC encounters. Domain experts use these properties to better organize and understand NMAC occurrences. Existing solutions either are not capable of handling high-dimensional and heterogeneous time series datasets or do not provide explanations that are interpretable by a domain expert. The latter is critical to the acceptance and deployment of safety-critical systems. To address this gap, we propose grammar-based decision trees along with a learning algorithm. Our approach extends decision trees with a grammar framework for classifying heterogeneous time series data. A context-free grammar is used to derive decision expressions that are interpretable, application-specific, and support heterogeneous data types. In addition to classification, we show how grammar-based decision trees can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply grammar-based decision trees to a simulated aircraft encounter dataset and evaluate the performance of four variants of our learning algorithm. The best algorithm is used to analyze and categorize near mid-air collisions in the aircraft encounter dataset. We describe each discovered category in detail and discuss its relevance to aircraft collision avoidance.

  12. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.

    PubMed

    Chowdhury, Alok Kumar; Tjondronegoro, Dian; Chandran, Vinod; Trost, Stewart G

    2017-09-01

    To investigate whether the use of ensemble learning algorithms improve physical activity recognition accuracy compared to the single classifier algorithms, and to compare the classification accuracy achieved by three conventional ensemble machine learning methods (bagging, boosting, random forest) and a custom ensemble model comprising four algorithms commonly used for activity recognition (binary decision tree, k nearest neighbor, support vector machine, and neural network). The study used three independent data sets that included wrist-worn accelerometer data. For each data set, a four-step classification framework consisting of data preprocessing, feature extraction, normalization and feature selection, and classifier training and testing was implemented. For the custom ensemble, decisions from the single classifiers were aggregated using three decision fusion methods: weighted majority vote, naïve Bayes combination, and behavior knowledge space combination. Classifiers were cross-validated using leave-one subject out cross-validation and compared on the basis of average F1 scores. In all three data sets, ensemble learning methods consistently outperformed the individual classifiers. Among the conventional ensemble methods, random forest models provided consistently high activity recognition; however, the custom ensemble model using weighted majority voting demonstrated the highest classification accuracy in two of the three data sets. Combining multiple individual classifiers using conventional or custom ensemble learning methods can improve activity recognition accuracy from wrist-worn accelerometer data.

  13. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  14. A Neuro-Fuzzy Approach in the Classification of Students' Academic Performance

    PubMed Central

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions. PMID:24302928

  15. A neuro-fuzzy approach in the classification of students' academic performance.

    PubMed

    Do, Quang Hung; Chen, Jeng-Fung

    2013-01-01

    Classifying the student academic performance with high accuracy facilitates admission decisions and enhances educational services at educational institutions. The purpose of this paper is to present a neuro-fuzzy approach for classifying students into different groups. The neuro-fuzzy classifier used previous exam results and other related factors as input variables and labeled students based on their expected academic performance. The results showed that the proposed approach achieved a high accuracy. The results were also compared with those obtained from other well-known classification approaches, including support vector machine, Naive Bayes, neural network, and decision tree approaches. The comparative analysis indicated that the neuro-fuzzy approach performed better than the others. It is expected that this work may be used to support student admission procedures and to strengthen the services of educational institutions.

  16. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.

    PubMed

    Alghamdi, Manal; Al-Mallah, Mouaz; Keteyian, Steven; Brawner, Clinton; Ehrman, Jonathan; Sakr, Sherif

    2017-01-01

    Machine learning is becoming a popular and important approach in the field of medical research. In this study, we investigate the relative performance of various machine learning methods such as Decision Tree, Naïve Bayes, Logistic Regression, Logistic Model Tree and Random Forests for predicting incident diabetes using medical records of cardiorespiratory fitness. In addition, we apply different techniques to uncover potential predictors of diabetes. This FIT project study used data of 32,555 patients who are free of any known coronary artery disease or heart failure who underwent clinician-referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a complete 5-year follow-up. At the completion of the fifth year, 5,099 of those patients have developed diabetes. The dataset contained 62 attributes classified into four categories: demographic characteristics, disease history, medication use history, and stress test vital signs. We developed an Ensembling-based predictive model using 13 attributes that were selected based on their clinical importance, Multiple Linear Regression, and Information Gain Ranking methods. The negative effect of the imbalance class of the constructed model was handled by Synthetic Minority Oversampling Technique (SMOTE). The overall performance of the predictive model classifier was improved by the Ensemble machine learning approach using the Vote method with three Decision Trees (Naïve Bayes Tree, Random Forest, and Logistic Model Tree) and achieved high accuracy of prediction (AUC = 0.92). The study shows the potential of ensembling and SMOTE approaches for predicting incident diabetes using cardiorespiratory fitness data.

  18. Activity recognition using dynamic multiple sensor fusion in body sensor networks.

    PubMed

    Gao, Lei; Bourke, Alan K; Nelson, John

    2012-01-01

    Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.

  19. Error minimizing algorithms for nearest eighbor classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Hush, Don; Zimmer, G. Beate

    2011-01-03

    Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. Wemore » use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.« less

  20. Assessment of the Thematic Accuracy of Land Cover Maps

    NASA Astrophysics Data System (ADS)

    Höhle, J.

    2015-08-01

    Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (`building', `hedge and bush', `grass', `road and parking lot', `tree', `wall and car port') had to be derived. Two classification methods were applied (`Decision Tree' and `Support Vector Machine') using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures such as user's and producer's accuracy, and kappa coefficient. In addition, confidence intervals were computed for several accuracy measures. The achieved accuracies and confidence intervals are thoroughly analysed and recommendations are derived from the gained experiences. Reliable reference values are obtained using stereovision, false-colour image pairs, and positioning to the checkpoints with 3D coordinates. The influence of the training areas on the results is studied. Cross validation has been tested with a few reference points in order to derive approximate accuracy measures. The two classification methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width of the confidence interval of six classes was 14% of the user's accuracy.

  1. Propensity score estimation: machine learning and classification methods as alternatives to logistic regression

    PubMed Central

    Westreich, Daniel; Lessler, Justin; Funk, Michele Jonsson

    2010-01-01

    Summary Objective Propensity scores for the analysis of observational data are typically estimated using logistic regression. Our objective in this Review was to assess machine learning alternatives to logistic regression which may accomplish the same goals but with fewer assumptions or greater accuracy. Study Design and Setting We identified alternative methods for propensity score estimation and/or classification from the public health, biostatistics, discrete mathematics, and computer science literature, and evaluated these algorithms for applicability to the problem of propensity score estimation, potential advantages over logistic regression, and ease of use. Results We identified four techniques as alternatives to logistic regression: neural networks, support vector machines, decision trees (CART), and meta-classifiers (in particular, boosting). Conclusion While the assumptions of logistic regression are well understood, those assumptions are frequently ignored. All four alternatives have advantages and disadvantages compared with logistic regression. Boosting (meta-classifiers) and to a lesser extent decision trees (particularly CART) appear to be most promising for use in the context of propensity score analysis, but extensive simulation studies are needed to establish their utility in practice. PMID:20630332

  2. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  3. Bayesian Decision Tree for the Classification of the Mode of Motion in Single-Molecule Trajectories

    PubMed Central

    Türkcan, Silvan; Masson, Jean-Baptiste

    2013-01-01

    Membrane proteins move in heterogeneous environments with spatially (sometimes temporally) varying friction and with biochemical interactions with various partners. It is important to reliably distinguish different modes of motion to improve our knowledge of the membrane architecture and to understand the nature of interactions between membrane proteins and their environments. Here, we present an analysis technique for single molecule tracking (SMT) trajectories that can determine the preferred model of motion that best matches observed trajectories. The method is based on Bayesian inference to calculate the posteriori probability of an observed trajectory according to a certain model. Information theory criteria, such as the Bayesian information criterion (BIC), the Akaike information criterion (AIC), and modified AIC (AICc), are used to select the preferred model. The considered group of models includes free Brownian motion, and confined motion in 2nd or 4th order potentials. We determine the best information criteria for classifying trajectories. We tested its limits through simulations matching large sets of experimental conditions and we built a decision tree. This decision tree first uses the BIC to distinguish between free Brownian motion and confined motion. In a second step, it classifies the confining potential further using the AIC. We apply the method to experimental Clostridium Perfingens -toxin (CPT) receptor trajectories to show that these receptors are confined by a spring-like potential. An adaptation of this technique was applied on a sliding window in the temporal dimension along the trajectory. We applied this adaptation to experimental CPT trajectories that lose confinement due to disaggregation of confining domains. This new technique adds another dimension to the discussion of SMT data. The mode of motion of a receptor might hold more biologically relevant information than the diffusion coefficient or domain size and may be a better tool to classify and compare different SMT experiments. PMID:24376584

  4. Decision trees for the analysis of genes involved in Alzheimer's disease pathology.

    PubMed

    Mestizo Gutiérrez, Sonia L; Herrera Rivero, Marisol; Cruz Ramírez, Nicandro; Hernández, Elena; Aranda-Abreu, Gonzalo E

    2014-09-21

    Alzheimer's disease (AD) is characterized by a gradual loss of memory, orientation, judgement and language. There is still no cure for this disorder. AD pathogenesis remains fairly unknown and its underlying molecular mechanisms are not yet fully understood. Several studies have shown that the abnormal accumulation of beta-amyloid and tau proteins occurs 10 to 20 years before the onset of symptoms of the disease, so it is extremely important to identify changes in the brain before the first symptoms. We used decision trees to classify 31 individuals (9 healthy controls and 22 AD patients in three different stages of disease) according to the expression of 69 genes previously reported in a meta-analysis, plus the expression levels of APP, APOE, BACE1, NCSTN, PSEN1, PSEN2 and MAPT. We also included in our analysis the MMSE (Mini-Mental State Examination) scores and number of NFT (neurofibrillary tangles). Results allowed us to generate a model of classification values for different AD stages of severity, according to MMSE scores, and achieve the identification of the expression level of protein tau that may possibly determine the onset (incipient stage) of AD. We used decision trees to model the different stages of AD (severe, moderate, incipient and control) based on the meta-analysis of gene expression levels plus MMSE and NFT scores. Both classifiers reported the variable MMSE as most informative, however it we were found that the protein tau also an important role in the onset of AD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Detailed forest formation mapping in the land cover map series for the Caribbean islands

    NASA Astrophysics Data System (ADS)

    Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.

    2006-12-01

    Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail than when IKONOS or Landsat imagery was hand-digitized, as it was for the Dominican Republic (7) and Barbados. 1. T. Kennaway, E. H. Helmer. (Intl Inst of Tropical Forestry, USDA Forest Service, Río Piedras, Puerto Rico, 2006). 2. A. Areces-Mallea et al. (The Nature Conservancy, 1999). 3. E. H. Helmer, O. Ramos, T. Lopez, M. Quiñones, W. Diaz, Carib J Sci 38, 165-183 (2002). 4. C. Daly, E. H. Helmer, M. Quiñones, Int J Climatology 23, 1359-1381 (2003). 5. T. G. Farr, M. Kobrick, Eos Transactions 81, 583-585 (2000). 6. E. H. Helmer, B. Ruefenacht, Photogrammetric Eng Rem Sens 71, 1079-1089 (2005). 7. S. Hernández, M. Pérez. (Secretaría de Estado de Medio Ambiente y Recursos Naturales de la República Dominicana, Santo Domingo, Dominican Republic, 2005).

  6. Voxel-based plaque classification in coronary intravascular optical coherence tomography images using decision trees

    NASA Astrophysics Data System (ADS)

    Kolluru, Chaitanya; Prabhu, David; Gharaibeh, Yazan; Wu, Hao; Wilson, David L.

    2018-02-01

    Intravascular Optical Coherence Tomography (IVOCT) is a high contrast, 3D microscopic imaging technique that can be used to assess atherosclerosis and guide stent interventions. Despite its advantages, IVOCT image interpretation is challenging and time consuming with over 500 image frames generated in a single pullback volume. We have developed a method to classify voxel plaque types in IVOCT images using machine learning. To train and test the classifier, we have used our unique database of labeled cadaver vessel IVOCT images accurately registered to gold standard cryoimages. This database currently contains 300 images and is growing. Each voxel is labeled as fibrotic, lipid-rich, calcified or other. Optical attenuation, intensity and texture features were extracted for each voxel and were used to build a decision tree classifier for multi-class classification. Five-fold cross-validation across images gave accuracies of 96 % +/- 0.01 %, 90 +/- 0.02% and 90 % +/- 0.01 % for fibrotic, lipid-rich and calcified classes respectively. To rectify performance degradation seen in left out vessel specimens as opposed to left out images, we are adding data and reducing features to limit overfitting. Following spatial noise cleaning, important vascular regions were unambiguous in display. We developed displays that enable physicians to make rapid determination of calcified and lipid regions. This will inform treatment decisions such as the need for devices (e.g., atherectomy or scoring balloon in the case of calcifications) or extended stent lengths to ensure coverage of lipid regions prone to injury at the edge of a stent.

  7. Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand.

    PubMed

    Kurzynski, Marek; Krysmann, Maciej; Trajdos, Pawel; Wolczowski, Andrzej

    2016-02-01

    In this paper the problem of recognition of the intended hand movements for the control of bio-prosthetic hand is addressed. The proposed method is based on recognition of electromiographic (EMG) and mechanomiographic (MMG) biosignals using a multiclassifier system (MCS) working in a two-level structure with a dynamic ensemble selection (DES) scheme and original concepts of competence function. Additionally, feedback information coming from bioprosthesis sensors on the correct/incorrect classification is applied to the adjustment of the combining mechanism during MCS operation through adaptive tuning competences of base classifiers depending on their decisions. Three MCS systems operating in decision tree structure and with different tuning algorithms are developed. In the MCS1 system, competence is uniformly allocated to each class belonging to the group indicated by the feedback signal. In the MCS2 system, the modification of competence depends on the node of decision tree at which a correct/incorrect classification is made. In the MCS3 system, the randomized model of classifier and the concept of cross-competence are used in the tuning procedure. Experimental investigations on the real data and computer-simulated procedure of generating feedback signals are performed. In these investigations classification accuracy of the MCS systems developed is compared and furthermore, the MCS systems are evaluated with respect to the effectiveness of the procedure of tuning competence. The results obtained indicate that modification of competence of base classifiers during the working phase essentially improves performance of the MCS system and that this improvement depends on the MCS system and tuning method used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cost-effectiveness of different strategies for diagnosis of uncomplicated urinary tract infections in women presenting in primary care

    PubMed Central

    Coupé, Veerle M. H.; Knottnerus, Bart J.; Geerlings, Suzanne E.; Moll van Charante, Eric P.; ter Riet, Gerben

    2017-01-01

    Background Uncomplicated Urinary Tract Infections (UTIs) are common in primary care resulting in substantial costs. Since antimicrobial resistance against antibiotics for UTIs is rising, accurate diagnosis is needed in settings with low rates of multidrug-resistant bacteria. Objective To compare the cost-effectiveness of different strategies to diagnose UTIs in women who contacted their general practitioner (GP) with painful and/or frequent micturition between 2006 and 2008 in and around Amsterdam, The Netherlands. Methods This is a model-based cost-effectiveness analysis using data from 196 women who underwent four tests: history, urine stick, sediment, dipslide, and the gold standard, a urine culture. Decision trees were constructed reflecting 15 diagnostic strategies comprising different parallel and sequential combinations of the four tests. Using the decision trees, for each strategy the costs and the proportion of women with a correct positive or negative diagnosis were estimated. Probabilistic sensitivity analysis was used to estimate uncertainty surrounding costs and effects. Uncertainty was presented using cost-effectiveness planes and acceptability curves. Results Most sequential testing strategies resulted in higher proportions of correctly classified women and lower costs than parallel testing strategies. For different willingness to pay thresholds, the most cost-effective strategies were: 1) performing a dipstick after a positive history for thresholds below €10 per additional correctly classified patient, 2) performing both a history and dipstick for thresholds between €10 and €17 per additional correctly classified patient, 3) performing a dipstick if history was negative, followed by a sediment if the dipstick was negative for thresholds between €17 and €118 per additional correctly classified patient, 4) performing a dipstick if history was negative, followed by a dipslide if the dipstick was negative for thresholds above €118 per additional correctly classified patient. Conclusion Depending on decision makers’ willingness to pay for one additional correctly classified woman, the strategy consisting of performing a history and dipstick simultaneously (ceiling ratios between €10 and €17) or performing a sediment if history and subsequent dipstick are negative (ceiling ratios between €17 and €118) are the most cost-effective strategies to diagnose a UTI. PMID:29186185

  9. Cost-effectiveness of different strategies for diagnosis of uncomplicated urinary tract infections in women presenting in primary care.

    PubMed

    Bosmans, Judith E; Coupé, Veerle M H; Knottnerus, Bart J; Geerlings, Suzanne E; Moll van Charante, Eric P; Ter Riet, Gerben

    2017-01-01

    Uncomplicated Urinary Tract Infections (UTIs) are common in primary care resulting in substantial costs. Since antimicrobial resistance against antibiotics for UTIs is rising, accurate diagnosis is needed in settings with low rates of multidrug-resistant bacteria. To compare the cost-effectiveness of different strategies to diagnose UTIs in women who contacted their general practitioner (GP) with painful and/or frequent micturition between 2006 and 2008 in and around Amsterdam, The Netherlands. This is a model-based cost-effectiveness analysis using data from 196 women who underwent four tests: history, urine stick, sediment, dipslide, and the gold standard, a urine culture. Decision trees were constructed reflecting 15 diagnostic strategies comprising different parallel and sequential combinations of the four tests. Using the decision trees, for each strategy the costs and the proportion of women with a correct positive or negative diagnosis were estimated. Probabilistic sensitivity analysis was used to estimate uncertainty surrounding costs and effects. Uncertainty was presented using cost-effectiveness planes and acceptability curves. Most sequential testing strategies resulted in higher proportions of correctly classified women and lower costs than parallel testing strategies. For different willingness to pay thresholds, the most cost-effective strategies were: 1) performing a dipstick after a positive history for thresholds below €10 per additional correctly classified patient, 2) performing both a history and dipstick for thresholds between €10 and €17 per additional correctly classified patient, 3) performing a dipstick if history was negative, followed by a sediment if the dipstick was negative for thresholds between €17 and €118 per additional correctly classified patient, 4) performing a dipstick if history was negative, followed by a dipslide if the dipstick was negative for thresholds above €118 per additional correctly classified patient. Depending on decision makers' willingness to pay for one additional correctly classified woman, the strategy consisting of performing a history and dipstick simultaneously (ceiling ratios between €10 and €17) or performing a sediment if history and subsequent dipstick are negative (ceiling ratios between €17 and €118) are the most cost-effective strategies to diagnose a UTI.

  10. Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues.

    PubMed

    Dobbs, Jessica L; Mueller, Jenna L; Krishnamurthy, Savitri; Shin, Dongsuk; Kuerer, Henry; Yang, Wei; Ramanujam, Nirmala; Richards-Kortum, Rebecca

    2015-08-20

    Pathologists currently diagnose breast lesions through histologic assessment, which requires fixation and tissue preparation. The diagnostic criteria used to classify breast lesions are qualitative and subjective, and inter-observer discordance has been shown to be a significant challenge in the diagnosis of selected breast lesions, particularly for borderline proliferative lesions. Thus, there is an opportunity to develop tools to rapidly visualize and quantitatively interpret breast tissue morphology for a variety of clinical applications. Toward this end, we acquired images of freshly excised breast tissue specimens from a total of 34 patients using confocal fluorescence microscopy and proflavine as a topical stain. We developed computerized algorithms to segment and quantify nuclear and ductal parameters that characterize breast architectural features. A total of 33 parameters were evaluated and used as input to develop a decision tree model to classify benign and malignant breast tissue. Benign features were classified in tissue specimens acquired from 30 patients and malignant features were classified in specimens from 22 patients. The decision tree model that achieved the highest accuracy for distinguishing between benign and malignant breast features used the following parameters: standard deviation of inter-nuclear distance and number of duct lumens. The model achieved 81 % sensitivity and 93 % specificity, corresponding to an area under the curve of 0.93 and an overall accuracy of 90 %. The model classified IDC and DCIS with 92 % and 96 % accuracy, respectively. The cross-validated model achieved 75 % sensitivity and 93 % specificity and an overall accuracy of 88 %. These results suggest that proflavine staining and confocal fluorescence microscopy combined with image analysis strategies to segment morphological features could potentially be used to quantitatively diagnose freshly obtained breast tissue at the point of care without the need for tissue preparation.

  11. A Pattern-Based Definition of Urban Context Using Remote Sensing and GIS

    PubMed Central

    Benza, Magdalena; Weeks, John R.; Stow, Douglas A.; López-Carr, David; Clarke, Keith C.

    2016-01-01

    In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an alternative classification scheme for urban mapping based on a gradient approach for the southern portion of the West African country of Ghana. Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 meter uniform grid covering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree classifier to generate a nine class urban context map capturing the transition from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An overall classification agreement of 77% was determined for the nine-class urban context map, with user’s accuracy (commission errors) being lower than producer’s accuracy (omission errors). Nine urban contexts were classified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban gradient. PMID:27867227

  12. A Pattern-Based Definition of Urban Context Using Remote Sensing and GIS.

    PubMed

    Benza, Magdalena; Weeks, John R; Stow, Douglas A; López-Carr, David; Clarke, Keith C

    2016-09-15

    In Sub-Saharan Africa rapid urban growth combined with rising poverty is creating diverse urban environments, the nature of which are not adequately captured by a simple urban-rural dichotomy. This paper proposes an alternative classification scheme for urban mapping based on a gradient approach for the southern portion of the West African country of Ghana. Landsat Enhanced Thematic Mapper Plus (ETM+) and European Remote Sensing Satellite-2 (ERS-2) synthetic aperture radar (SAR) imagery are used to generate a pattern based definition of the urban context. Spectral mixture analysis (SMA) is used to classify a Landsat scene into Built, Vegetation and Other land covers. Landscape metrics are estimated for Built and Vegetation land covers for a 450 meter uniform grid covering the study area. A measure of texture is extracted from the SAR imagery and classified as Built/Non-built. SMA based measures of Built and Vegetation fragmentation are combined with SAR texture based Built/Non-built maps through a decision tree classifier to generate a nine class urban context map capturing the transition from unsettled land at one end of the gradient to the compact urban core at the other end. Training and testing of the decision tree classifier was done using very high spatial resolution reference imagery from Google Earth. An overall classification agreement of 77% was determined for the nine-class urban context map, with user's accuracy (commission errors) being lower than producer's accuracy (omission errors). Nine urban contexts were classified and then compared with data from the 2000 Census of Ghana. Results suggest that the urban classes appropriately differentiate areas along the urban gradient.

  13. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.

    PubMed

    Szlosek, Donald A; Ferrett, Jonathan

    2016-01-01

    As the number of clinical decision support systems (CDSSs) incorporated into electronic medical records (EMRs) increases, so does the need to evaluate their effectiveness. The use of medical record review and similar manual methods for evaluating decision rules is laborious and inefficient. The authors use machine learning and Natural Language Processing (NLP) algorithms to accurately evaluate a clinical decision support rule through an EMR system, and they compare it against manual evaluation. Modeled after the EMR system EPIC at Maine Medical Center, we developed a dummy data set containing physician notes in free text for 3,621 artificial patients records undergoing a head computed tomography (CT) scan for mild traumatic brain injury after the incorporation of an electronic best practice approach. We validated the accuracy of the Best Practice Advisories (BPA) using three machine learning algorithms-C-Support Vector Classification (SVC), Decision Tree Classifier (DecisionTreeClassifier), k-nearest neighbors classifier (KNeighborsClassifier)-by comparing their accuracy for adjudicating the occurrence of a mild traumatic brain injury against manual review. We then used the best of the three algorithms to evaluate the effectiveness of the BPA, and we compared the algorithm's evaluation of the BPA to that of manual review. The electronic best practice approach was found to have a sensitivity of 98.8 percent (96.83-100.0), specificity of 10.3 percent, PPV = 7.3 percent, and NPV = 99.2 percent when reviewed manually by abstractors. Though all the machine learning algorithms were observed to have a high level of prediction, the SVC displayed the highest with a sensitivity 93.33 percent (92.49-98.84), specificity of 97.62 percent (96.53-98.38), PPV = 50.00, NPV = 99.83. The SVC algorithm was observed to have a sensitivity of 97.9 percent (94.7-99.86), specificity 10.30 percent, PPV 7.25 percent, and NPV 99.2 percent for evaluating the best practice approach, after accounting for 17 cases (0.66 percent) where the patient records had to be reviewed manually due to the NPL systems inability to capture the proper diagnosis. CDSSs incorporated into EMRs can be evaluated in an automatic fashion by using NLP and machine learning techniques.

  14. Classification

    NASA Astrophysics Data System (ADS)

    Oza, Nikunj

    2012-03-01

    A supervised learning task involves constructing a mapping from input data (normally described by several features) to the appropriate outputs. A set of training examples— examples with known output values—is used by a learning algorithm to generate a model. This model is intended to approximate the mapping between the inputs and outputs. This model can be used to generate predicted outputs for inputs that have not been seen before. Within supervised learning, one type of task is a classification learning task, in which each output is one or more classes to which the input belongs. For example, we may have data consisting of observations of sunspots. In a classification learning task, our goal may be to learn to classify sunspots into one of several types. Each example may correspond to one candidate sunspot with various measurements or just an image. A learning algorithm would use the supplied examples to generate a model that approximates the mapping between each supplied set of measurements and the type of sunspot. This model can then be used to classify previously unseen sunspots based on the candidate’s measurements. The generalization performance of a learned model (how closely the target outputs and the model’s predicted outputs agree for patterns that have not been presented to the learning algorithm) would provide an indication of how well the model has learned the desired mapping. More formally, a classification learning algorithm L takes a training set T as its input. The training set consists of |T| examples or instances. It is assumed that there is a probability distribution D from which all training examples are drawn independently—that is, all the training examples are independently and identically distributed (i.i.d.). The ith training example is of the form (x_i, y_i), where x_i is a vector of values of several features and y_i represents the class to be predicted.* In the sunspot classification example given above, each training example would represent one sunspot’s classification (y_i) and the corresponding set of measurements (x_i). The output of a supervised learning algorithm is a model h that approximates the unknown mapping from the inputs to the outputs. In our example, h would map from the sunspot measurements to the type of sunspot. We may have a test set S—a set of examples not used in training that we use to test how well the model h predicts the outputs on new examples. Just as with the examples in T, the examples in S are assumed to be independent and identically distributed (i.i.d.) draws from the distribution D. We measure the error of h on the test set as the proportion of test cases that h misclassifies: 1/|S| Sigma(x,y union S)[I(h(x)!= y)] where I(v) is the indicator function—it returns 1 if v is true and 0 otherwise. In our sunspot classification example, we would identify additional examples of sunspots that were not used in generating the model, and use these to determine how accurate the model is—the fraction of the test samples that the model classifies correctly. An example of a classification model is the decision tree shown in Figure 23.1. We will discuss the decision tree learning algorithm in more detail later—for now, we assume that, given a training set with examples of sunspots, this decision tree is derived. This can be used to classify previously unseen examples of sunpots. For example, if a new sunspot’s inputs indicate that its "Group Length" is in the range 10-15, then the decision tree would classify the sunspot as being of type “E,” whereas if the "Group Length" is "NULL," the "Magnetic Type" is "bipolar," and the "Penumbra" is "rudimentary," then it would be classified as type "C." In this chapter, we will add to the above description of classification problems. We will discuss decision trees and several other classification models. In particular, we will discuss the learning algorithms that generate these classification models, how to use them to classify new examples, and the strengths and weaknesses of these models. We will end with pointers to further reading on classification methods applied to astronomy data.

  15. Protein classification based on text document classification techniques.

    PubMed

    Cheng, Betty Yee Man; Carbonell, Jaime G; Klein-Seetharaman, Judith

    2005-03-01

    The need for accurate, automated protein classification methods continues to increase as advances in biotechnology uncover new proteins. G-protein coupled receptors (GPCRs) are a particularly difficult superfamily of proteins to classify due to extreme diversity among its members. Previous comparisons of BLAST, k-nearest neighbor (k-NN), hidden markov model (HMM) and support vector machine (SVM) using alignment-based features have suggested that classifiers at the complexity of SVM are needed to attain high accuracy. Here, analogous to document classification, we applied Decision Tree and Naive Bayes classifiers with chi-square feature selection on counts of n-grams (i.e. short peptide sequences of length n) to this classification task. Using the GPCR dataset and evaluation protocol from the previous study, the Naive Bayes classifier attained an accuracy of 93.0 and 92.4% in level I and level II subfamily classification respectively, while SVM has a reported accuracy of 88.4 and 86.3%. This is a 39.7 and 44.5% reduction in residual error for level I and level II subfamily classification, respectively. The Decision Tree, while inferior to SVM, outperforms HMM in both level I and level II subfamily classification. For those GPCR families whose profiles are stored in the Protein FAMilies database of alignments and HMMs (PFAM), our method performs comparably to a search against those profiles. Finally, our method can be generalized to other protein families by applying it to the superfamily of nuclear receptors with 94.5, 97.8 and 93.6% accuracy in family, level I and level II subfamily classification respectively. Copyright 2005 Wiley-Liss, Inc.

  16. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.

    PubMed

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.

  17. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  18. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2007-10-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.

  19. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  20. Automated Classification of ROSAT Sources Using Heterogeneous Multiwavelength Source Catalogs

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas; Suchkov, A. A.; Winter, E. L.; Hanisch, R. J.; White, R. L.; Ochsenbein, F.; Derriere, S.; Voges, W.; Corcoran, M. F.

    2004-01-01

    We describe an on-line system for automated classification of X-ray sources, ClassX, and present preliminary results of classification of the three major catalogs of ROSAT sources, RASS BSC, RASS FSC, and WGACAT, into six class categories: stars, white dwarfs, X-ray binaries, galaxies, AGNs, and clusters of galaxies. ClassX is based on a machine learning technology. It represents a system of classifiers, each classifier consisting of a considerable number of oblique decision trees. These trees are built as the classifier is 'trained' to recognize various classes of objects using a training sample of sources of known object types. Each source is characterized by a preselected set of parameters, or attributes; the same set is then used as the classifier conducts classification of sources of unknown identity. The ClassX pipeline features an automatic search for X-ray source counterparts among heterogeneous data sets in on-line data archives using Virtual Observatory protocols; it retrieves from those archives all the attributes required by the selected classifier and inputs them to the classifier. The user input to ClassX is typically a file with target coordinates, optionally complemented with target IDs. The output contains the class name, attributes, and class probabilities for all classified targets. We discuss ways to characterize and assess the classifier quality and performance and present the respective validation procedures. Based on both internal and external validation, we conclude that the ClassX classifiers yield reasonable and reliable classifications for ROSAT sources and have the potential to broaden class representation significantly for rare object types.

  1. Predicting Rotator Cuff Tears Using Data Mining and Bayesian Likelihood Ratios

    PubMed Central

    Lu, Hsueh-Yi; Huang, Chen-Yuan; Su, Chwen-Tzeng; Lin, Chen-Chiang

    2014-01-01

    Objectives Rotator cuff tear is a common cause of shoulder diseases. Correct diagnosis of rotator cuff tears can save patients from further invasive, costly and painful tests. This study used predictive data mining and Bayesian theory to improve the accuracy of diagnosing rotator cuff tears by clinical examination alone. Methods In this retrospective study, 169 patients who had a preliminary diagnosis of rotator cuff tear on the basis of clinical evaluation followed by confirmatory MRI between 2007 and 2011 were identified. MRI was used as a reference standard to classify rotator cuff tears. The predictor variable was the clinical assessment results, which consisted of 16 attributes. This study employed 2 data mining methods (ANN and the decision tree) and a statistical method (logistic regression) to classify the rotator cuff diagnosis into “tear” and “no tear” groups. Likelihood ratio and Bayesian theory were applied to estimate the probability of rotator cuff tears based on the results of the prediction models. Results Our proposed data mining procedures outperformed the classic statistical method. The correction rate, sensitivity, specificity and area under the ROC curve of predicting a rotator cuff tear were statistical better in the ANN and decision tree models compared to logistic regression. Based on likelihood ratios derived from our prediction models, Fagan's nomogram could be constructed to assess the probability of a patient who has a rotator cuff tear using a pretest probability and a prediction result (tear or no tear). Conclusions Our predictive data mining models, combined with likelihood ratios and Bayesian theory, appear to be good tools to classify rotator cuff tears as well as determine the probability of the presence of the disease to enhance diagnostic decision making for rotator cuff tears. PMID:24733553

  2. Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping

    NASA Astrophysics Data System (ADS)

    Akay, A. E.; Erdoğan, A.

    2017-11-01

    The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.

  3. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.

    PubMed

    Baltzer, Pascal A T; Dietzel, Matthias; Kaiser, Werner A

    2013-08-01

    In the face of multiple available diagnostic criteria in MR-mammography (MRM), a practical algorithm for lesion classification is needed. Such an algorithm should be as simple as possible and include only important independent lesion features to differentiate benign from malignant lesions. This investigation aimed to develop a simple classification tree for differential diagnosis in MRM. A total of 1,084 lesions in standardised MRM with subsequent histological verification (648 malignant, 436 benign) were investigated. Seventeen lesion criteria were assessed by 2 readers in consensus. Classification analysis was performed using the chi-squared automatic interaction detection (CHAID) method. Results include the probability for malignancy for every descriptor combination in the classification tree. A classification tree incorporating 5 lesion descriptors with a depth of 3 ramifications (1, root sign; 2, delayed enhancement pattern; 3, border, internal enhancement and oedema) was calculated. Of all 1,084 lesions, 262 (40.4 %) and 106 (24.3 %) could be classified as malignant and benign with an accuracy above 95 %, respectively. Overall diagnostic accuracy was 88.4 %. The classification algorithm reduced the number of categorical descriptors from 17 to 5 (29.4 %), resulting in a high classification accuracy. More than one third of all lesions could be classified with accuracy above 95 %. • A practical algorithm has been developed to classify lesions found in MR-mammography. • A simple decision tree consisting of five criteria reaches high accuracy of 88.4 %. • Unique to this approach, each classification is associated with a diagnostic certainty. • Diagnostic certainty of greater than 95 % is achieved in 34 % of all cases.

  4. A Theoretical Analysis of Why Hybrid Ensembles Work.

    PubMed

    Hsu, Kuo-Wei

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  5. Concurrent approach for evolving compact decision rule sets

    NASA Astrophysics Data System (ADS)

    Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.

    1999-02-01

    The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.

  6. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis.

    PubMed

    Ozçift, Akin

    2011-05-01

    Supervised classification algorithms are commonly used in the designing of computer-aided diagnosis systems. In this study, we present a resampling strategy based Random Forests (RF) ensemble classifier to improve diagnosis of cardiac arrhythmia. Random forests is an ensemble classifier that consists of many decision trees and outputs the class that is the mode of the class's output by individual trees. In this way, an RF ensemble classifier performs better than a single tree from classification performance point of view. In general, multiclass datasets having unbalanced distribution of sample sizes are difficult to analyze in terms of class discrimination. Cardiac arrhythmia is such a dataset that has multiple classes with small sample sizes and it is therefore adequate to test our resampling based training strategy. The dataset contains 452 samples in fourteen types of arrhythmias and eleven of these classes have sample sizes less than 15. Our diagnosis strategy consists of two parts: (i) a correlation based feature selection algorithm is used to select relevant features from cardiac arrhythmia dataset. (ii) RF machine learning algorithm is used to evaluate the performance of selected features with and without simple random sampling to evaluate the efficiency of proposed training strategy. The resultant accuracy of the classifier is found to be 90.0% and this is a quite high diagnosis performance for cardiac arrhythmia. Furthermore, three case studies, i.e., thyroid, cardiotocography and audiology, are used to benchmark the effectiveness of the proposed method. The results of experiments demonstrated the efficiency of random sampling strategy in training RF ensemble classification algorithm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A New Decision Tree to Solve the Puzzle of Alzheimer's Disease Pathogenesis Through Standard Diagnosis Scoring System.

    PubMed

    Kumar, Ashwani; Singh, Tiratha Raj

    2017-03-01

    Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.

  8. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.

    In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters)more » and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.« less

  9. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  10. Analysis of data mining classification by comparison of C4.5 and ID algorithms

    NASA Astrophysics Data System (ADS)

    Sudrajat, R.; Irianingsih, I.; Krisnawan, D.

    2017-01-01

    The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.

  11. An effective method on pornographic images realtime recognition

    NASA Astrophysics Data System (ADS)

    Wang, Baosong; Lv, Xueqiang; Wang, Tao; Wang, Chengrui

    2013-03-01

    In this paper, skin detection, texture filtering and face detection are used to extract feature on an image library, training them with the decision tree arithmetic to create some rules as a decision tree classifier to distinguish an unknown image. Experiment based on more than twenty thousand images, the precision rate can get 76.21% when testing on 13025 pornographic images and elapsed time is less than 0.2s. This experiment shows it has a good popularity. Among the steps mentioned above, proposing a new skin detection model which called irregular polygon region skin detection model based on YCbCr color space. This skin detection model can lower the false detection rate on skin detection. A new method called sequence region labeling on binary connected area can calculate features on connected area, it is faster and needs less memory than other recursive methods.

  12. A survey of supervised machine learning models for mobile-phone based pathogen identification and classification

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Feng, Steve; Liang, Kyle; Nadkarni, Rohan; Tseng, Derek; Benien, Parul; Ozcan, Aydogan

    2017-03-01

    Giardia lamblia causes a disease known as giardiasis, which results in diarrhea, abdominal cramps, and bloating. Although conventional pathogen detection methods used in water analysis laboratories offer high sensitivity and specificity, they are time consuming, and need experts to operate bulky equipment and analyze the samples. Here we present a field-portable and cost-effective smartphone-based waterborne pathogen detection platform that can automatically classify Giardia cysts using machine learning. Our platform enables the detection and quantification of Giardia cysts in one hour, including sample collection, labeling, filtration, and automated counting steps. We evaluated the performance of three prototypes using Giardia-spiked water samples from different sources (e.g., reagent-grade, tap, non-potable, and pond water samples). We populated a training database with >30,000 cysts and estimated our detection sensitivity and specificity using 20 different classifier models, including decision trees, nearest neighbor classifiers, support vector machines (SVMs), and ensemble classifiers, and compared their speed of training and classification, as well as predicted accuracies. Among them, cubic SVM, medium Gaussian SVM, and bagged-trees were the most promising classifier types with accuracies of 94.1%, 94.2%, and 95%, respectively; we selected the latter as our preferred classifier for the detection and enumeration of Giardia cysts that are imaged using our mobile-phone fluorescence microscope. Without the need for any experts or microbiologists, this field-portable pathogen detection platform can present a useful tool for water quality monitoring in resource-limited-settings.

  13. Design of a hybrid model for cardiac arrhythmia classification based on Daubechies wavelet transform.

    PubMed

    Rajagopal, Rekha; Ranganathan, Vidhyapriya

    2018-06-05

    Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.

  14. Land cover map for map zones 8 and 9 developed from SAGEMAP, GNN, and SWReGAP: a pilot for NWGAP

    Treesearch

    James S. Kagan; Janet L. Ohmann; Matthew Gregory; Claudine Tobalske

    2008-01-01

    As part of the Northwest Gap Analysis Project, land cover maps were generated for most of eastern Washington and eastern Oregon. The maps were derived from regional SAGEMAP and SWReGAP data sets using decision tree classifiers for nonforest areas, and Gradient Nearest Neighbor imputation modeling for forests and woodlands. The maps integrate data from regional...

  15. Stratifying FIA Ground Plots Using A 3-Year Old MRLC Forest Cover Map and Current TM Derived Variables Selected By "Decision Tree" Classification

    Treesearch

    Michael Hoppus; Stan Arner; Andrew Lister

    2001-01-01

    A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to produce a forest/non-...

  16. Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage.

    PubMed

    Gantner, Melisa E; Peroni, Roxana N; Morales, Juan F; Villalba, María L; Ruiz, María E; Talevi, Alan

    2017-08-28

    Breast Cancer Resistance Protein (BCRP) is an ATP-dependent efflux transporter linked to the multidrug resistance phenomenon in many diseases such as epilepsy and cancer and a potential source of drug interactions. For these reasons, the early identification of substrates and nonsubstrates of this transporter during the drug discovery stage is of great interest. We have developed a computational nonlinear model ensemble based on conformational independent molecular descriptors using a combined strategy of genetic algorithms, J48 decision tree classifiers, and data fusion. The best model ensemble consists in averaging the ranking of the 12 decision trees that showed the best performance on the training set, which also demonstrated a good performance for the test set. It was experimentally validated using the ex vivo everted rat intestinal sac model. Five anticonvulsant drugs classified as nonsubstrates for BRCP by the model ensemble were experimentally evaluated, and none of them proved to be a BCRP substrate under the experimental conditions used, thus confirming the predictive ability of the model ensemble. The model ensemble reported here is a potentially valuable tool to be used as an in silico ADME filter in computer-aided drug discovery campaigns intended to overcome BCRP-mediated multidrug resistance issues and to prevent drug-drug interactions.

  17. Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotely-sensed data.

    PubMed

    Rotela, Camilo H; Spinsanti, Lorena I; Lamfri, Mario A; Contigiani, Marta S; Almirón, Walter R; Scavuzzo, Carlos M

    2011-11-01

    In response to the first human outbreak (January May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free.

  18. Landsat-derived cropland mask for Tanzania using 2010-2013 time series and decision tree classifier methods

    NASA Astrophysics Data System (ADS)

    Justice, C. J.

    2015-12-01

    80% of Tanzania's population is involved in the agriculture sector. Despite this national dependence, agricultural reporting is minimal and monitoring efforts are in their infancy. The cropland mask developed through this study provides the framework for agricultural monitoring through informing analysis of crop conditions, dispersion, and intensity at a national scale. Tanzania is dominated by smallholder agricultural systems with an average field size of less than one hectare (Sarris et al, 2006). At this field scale, previous classifications of agricultural land in Tanzania using MODIS course resolution data are insufficient to inform a working monitoring system. The nation-wide cropland mask in this study was developed using composited Landsat tiles from a 2010-2013 time series. Decision tree classifiers methods were used in the study with representative training areas collected for agriculture and no agriculture using appropriate indices to separate these classes (Hansen et al, 2013). Validation was done using random sample and high resolution satellite images to compare Agriculture and No agriculture samples from the study area. The techniques used in this study were successful and have the potential to be adapted for other countries, allowing targeted monitoring efforts to improve food security, market price, and inform agricultural policy.

  19. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Research on Classification of Chinese Text Data Based on SVM

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Yu, Hongzhi; Wan, Fucheng; Xu, Tao

    2017-09-01

    Data Mining has important application value in today’s industry and academia. Text classification is a very important technology in data mining. At present, there are many mature algorithms for text classification. KNN, NB, AB, SVM, decision tree and other classification methods all show good classification performance. Support Vector Machine’ (SVM) classification method is a good classifier in machine learning research. This paper will study the classification effect based on the SVM method in the Chinese text data, and use the support vector machine method in the chinese text to achieve the classify chinese text, and to able to combination of academia and practical application.

  1. A Theoretical Analysis of Why Hybrid Ensembles Work

    PubMed Central

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296

  2. A decision support tool for identifying abuse of controlled substances by ForwardHealth Medicaid members.

    PubMed

    Mailloux, Allan T; Cummings, Stephen W; Mugdh, Mrinal

    2010-01-01

    Our objective was to use Wisconsin's Medicaid Evaluation and Decision Support (MEDS) data warehouse to develop and validate a decision support tool (DST) that (1) identifies Wisconsin Medicaid fee-for-service recipients who are abusing controlled substances, (2) effectively replicates clinical pharmacist recommendations for interventions intended to curb abuse of physician and pharmacy services, and (3) automates data extraction, profile generation and tracking of recommendations and interventions. From pharmacist manual reviews of medication profiles, seven measures of overutilization of controlled substances were developed, including (1-2) 6-month and 2-month "shopping" scores, (3-4) 6-month and 2-month forgery scores, (5) duplicate/same day prescriptions, (6) count of controlled substance claims, and the (7) shopping 6-month score for the individual therapeutic class with the highest score. The pattern analysis logic for the measures was encoded into SQL and applied to the medication profiles of 190 recipients who had already undergone manual review. The scores for each measure and numbers of providers were analyzed by exhaustive chi-squared automatic interaction detection (CHAID) to determine significant thresholds and combinations of predictors of pharmacist recommendations, resulting in a decision tree to classify recipients by pharmacist recommendations. The overall correct classification rate of the decision tree was 95.3%, with a 2.4% false positive rate and 4.0% false negative rate for lock-in versus prescriber-alert letter recommendations. Measures used by the decision tree include the 2-month and 6-month shopping scores, and the number of pharmacies and prescribers. The number of pharmacies was the best predictor of abuse of controlled substances. When a Medicaid recipient receives prescriptions for controlled substances at 8 or more pharmacies, the likelihood of a lock-in recommendation is 90%. The availability of the Wisconsin MEDS data warehouse has enabled development and application of a decision tree for detecting recipient fraud and abuse of controlled substance medications. Using standard pharmacy claims data, the decision tree effectively replicates pharmacist manual review recommendations. The DST has automated extraction and evaluation of pharmacy claims data for creating recommendations for guiding pharmacists in the selection of profiles for manual review. The DST is now the primary method used by the Wisconsin Medicaid program to detect fraud and abuse of physician and pharmacy services committed by recipients.

  3. Large unbalanced credit scoring using Lasso-logistic regression ensemble.

    PubMed

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data.

  4. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Treesearch

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  5. Aid decision algorithms to estimate the risk in congenital heart surgery.

    PubMed

    Ruiz-Fernández, Daniel; Monsalve Torra, Ana; Soriano-Payá, Antonio; Marín-Alonso, Oscar; Triana Palencia, Eddy

    2016-04-01

    In this paper, we have tested the suitability of using different artificial intelligence-based algorithms for decision support when classifying the risk of congenital heart surgery. In this sense, classification of those surgical risks provides enormous benefits as the a priori estimation of surgical outcomes depending on either the type of disease or the type of repair, and other elements that influence the final result. This preventive estimation may help to avoid future complications, or even death. We have evaluated four machine learning algorithms to achieve our objective: multilayer perceptron, self-organizing map, radial basis function networks and decision trees. The architectures implemented have the aim of classifying among three types of surgical risk: low complexity, medium complexity and high complexity. Accuracy outcomes achieved range between 80% and 99%, being the multilayer perceptron method the one that offered a higher hit ratio. According to the results, it is feasible to develop a clinical decision support system using the evaluated algorithms. Such system would help cardiology specialists, paediatricians and surgeons to forecast the level of risk related to a congenital heart disease surgery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    NASA Astrophysics Data System (ADS)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  7. Automatic identification of inertial sensor placement on human body segments during walking

    PubMed Central

    2013-01-01

    Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757

  8. Automatic identification of inertial sensor placement on human body segments during walking.

    PubMed

    Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H

    2013-03-21

    Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.

  9. Deploying a quantum annealing processor to detect tree cover in aerial imagery of California

    PubMed Central

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Mukhopadhyay, Supratik; Nemani, Ramakrishna R.

    2017-01-01

    Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA. PMID:28241028

  10. Mapping tree and impervious cover using Ikonos imagery: links with water quality and stream health

    NASA Astrophysics Data System (ADS)

    Wright, R.; Goetz, S. J.; Smith, A.; Zinecker, E.

    2002-12-01

    Precision georeferened Ikonos satellite imagery was used to map tree cover and impervious surface area in Montgomery county Maryland. The derived maps were used to assess riparian zone stream buffer tree cover and to predict, with multivariate logistic regression, stream health ratings across 246 small watersheds averaging 472 km2 in size. Stream health was assessed by state and county experts using a combination of physical measurements (e.g., dissolved oxygen) and biological indicators (e.g., benthic macroinvertebrates). We found it possible to create highly accurate (90+ per cent) maps of tree and impervious cover using decision tree classifiers, provided extensive field data were available for algorithm training. Impervious surface area was found to be the primary predictor of stream health, followed by tree cover in riparian buffers, and total tree cover within entire watersheds. A number of issues associated with mapping using Ikonos imagery were encountered, including differences in phenological and atmospheric conditions, shadowing within canopies and between scene elements, and limited spectral discrimination of cover types. We report on both the capabilities and limitations of Ikonos imagery for these applications, and considerations for extending these analyses to other areas.

  11. Large Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble

    PubMed Central

    Wang, Hong; Xu, Qingsong; Zhou, Lifeng

    2015-01-01

    Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal with credit scoring problems. In this research, the data is first balanced and diversified by clustering and bagging algorithms. Then we apply a Lasso-logistic regression learning ensemble to evaluate the credit risks. We show that the proposed algorithm outperforms popular credit scoring models such as decision tree, Lasso-logistic regression and random forests in terms of AUC and F-measure. We also provide two importance measures for the proposed model to identify important variables in the data. PMID:25706988

  12. Two Trees: Migrating Fault Trees to Decision Trees for Real Time Fault Detection on International Space Station

    NASA Technical Reports Server (NTRS)

    Lee, Charles; Alena, Richard L.; Robinson, Peter

    2004-01-01

    We started from ISS fault trees example to migrate to decision trees, presented a method to convert fault trees to decision trees. The method shows that the visualizations of root cause of fault are easier and the tree manipulating becomes more programmatic via available decision tree programs. The visualization of decision trees for the diagnostic shows a format of straight forward and easy understands. For ISS real time fault diagnostic, the status of the systems could be shown by mining the signals through the trees and see where it stops at. The other advantage to use decision trees is that the trees can learn the fault patterns and predict the future fault from the historic data. The learning is not only on the static data sets but also can be online, through accumulating the real time data sets, the decision trees can gain and store faults patterns in the trees and recognize them when they come.

  13. Spatial distribution of block falls using volumetric GIS-decision-tree models

    NASA Astrophysics Data System (ADS)

    Abdallah, C.

    2010-10-01

    Block falls are considered a significant aspect of surficial instability contributing to losses in land and socio-economic aspects through their damaging effects to natural and human environments. This paper predicts and maps the geographic distribution and volumes of block falls in central Lebanon using remote sensing, geographic information systems (GIS) and decision-tree modeling (un-pruned and pruned trees). Eleven terrain parameters (lithology, proximity to fault line, karst type, soil type, distance to drainage line, elevation, slope gradient, slope aspect, slope curvature, land cover/use, and proximity to roads) were generated to statistically explain the occurrence of block falls. The latter were discriminated using SPOT4 satellite imageries, and their dimensions were determined during field surveys. The un-pruned tree model based on all considered parameters explained 86% of the variability in field block fall measurements. Once pruned, it classifies 50% in block falls' volumes by selecting just four parameters (lithology, slope gradient, soil type, and land cover/use). Both tree models (un-pruned and pruned) were converted to quantitative 1:50,000 block falls' maps with different classes; starting from Nil (no block falls) to more than 4000 m 3. These maps are fairly matching with coincidence value equal to 45%; however, both can be used to prioritize the choice of specific zones for further measurement and modeling, as well as for land-use management. The proposed tree models are relatively simple, and may also be applied to other areas (i.e. the choice of un-pruned or pruned model is related to the availability of terrain parameters in a given area).

  14. Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables

    NASA Astrophysics Data System (ADS)

    Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan

    2007-06-01

    Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).

  15. Spectral and spatial resolution analysis of multi sensor satellite data for coral reef mapping: Tioman Island, Malaysia

    NASA Astrophysics Data System (ADS)

    Pradhan, Biswajeet; Kabiri, Keivan

    2012-07-01

    This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island

  16. Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier.

    PubMed

    Vorovencii, Iosif

    2015-04-01

    The risk of the desertification of a part of Romania is increasingly evident, constituting a serious problem for the environment and the society. This article attempts to assess and monitor the risk of desertification in Dobrogea using Landsat Thematic Mapper (TM) satellite images acquired in 1987, 1994, 2000, 2007 and 2011. In order to assess the risk of desertification, we used as indicators the Modified Soil Adjustment Vegetation Index 1 (MSAVI1), the Moving Standard Deviation Index (MSDI) and the albedo, indices relating to the vegetation conditions, the landscape pattern and micrometeorology. The decision tree classifier (DTC) was also used on the basis of pre-established rules, and maps displaying six grades of desertification risk were obtained: non, very low, low, medium, high and severe. Land surface temperature (LST) was also used for the analysis. The results indicate that, according to pre-established rules for the period of 1987-2011, there are two grades of desertification risk that have an ascending trend in Dobrogea, namely very low and medium desertification. An investigation into the causes of the desertification risk revealed that high temperature is the main factor, accompanied by the destruction of forest shelterbelts and of the irrigation system and, to a smaller extent, by the fragmentation of agricultural land and the deforestation in the study area.

  17. Evaluation of synaptophysin as an immunohistochemical marker for equine grass sickness.

    PubMed

    Waggett, B E; McGorum, B C; Shaw, D J; Pirie, R S; MacIntyre, N; Wernery, U; Milne, E M

    2010-05-01

    It has been proposed that synaptophysin, an abundant integral membrane protein of synaptic vesicles, is an immunohistochemical marker for degenerating neurons in equine grass sickness (GS). In the present study, a statistically generated decision tree based on assessment of synaptophysin-immunolabelled ileal sections facilitated correct differentiation of all 20 cases of GS and 24 cases of non-GS disease (comprising eight horses with colic, six with neuroparalytic botulism and 10 controls). This technique also facilitated correct diagnosis of GS in all three cases that had been erroneously classified as having non-GS disease based on conventional interpretation of haematoxylin and eosin-stained cryostat sections of ileal surgical biopsies. Further prospective studies involving larger numbers of horses are required to fully validate this decision tree. In contrast to GS, botulism did not alter ileal neuron density or synaptophysin labelling, indicating that different mechanisms cause neuronal damage and/or dysfunction in GS and botulism. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  19. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    NASA Astrophysics Data System (ADS)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled with terrain variables produced better result, with the higher overall accuracy and kappa coefficient than first experiment. The results indicate that the Maximum Entropy method is an applicable, and to classify tree species using satellite imagery data coupled with terrain information can improve the classification of tree species in the study area.

  20. Building Diversified Multiple Trees for classification in high dimensional noisy biomedical data.

    PubMed

    Li, Jiuyong; Liu, Lin; Liu, Jixue; Green, Ryan

    2017-12-01

    It is common that a trained classification model is applied to the operating data that is deviated from the training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capability for classifying instances in a new laboratory using the classifier built on the instances of another laboratory. DMT is tested on three real world biomedical data sets from different laboratories in comparison with four benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been conducted on studying the limitation of DMT and its possible variations. Experimental results show that DMT is significantly more accurate than other benchmark ensemble classifiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the classifier. This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.

  1. Safety validation of decision trees for hepatocellular carcinoma.

    PubMed

    Wang, Xian-Qiang; Liu, Zhe; Lv, Wen-Ping; Luo, Ying; Yang, Guang-Yun; Li, Chong-Hui; Meng, Xiang-Fei; Liu, Yang; Xu, Ke-Sen; Dong, Jia-Hong

    2015-08-21

    To evaluate a different decision tree for safe liver resection and verify its efficiency. A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital, and 634 hepatocellular carcinoma (HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure (PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L (the "50-50" criteria), which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree, Tokyo University-Makuuchi decision tree, and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence, and the PHLF rates were recorded. The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the Swiss-Clavien, Tokyo University-Makuuchi, and Chinese consensus decision trees were applied were 581, 573, and 622, and the PHLF rates were 2.75%, 2.62%, and 2.73%, respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree (P < 0.01,P < 0.01); nevertheless, the latter two shared no difference (P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees. The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo University-Makuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.

  2. Classification of sodium MRI data of cartilage using machine learning.

    PubMed

    Madelin, Guillaume; Poidevin, Frederick; Makrymallis, Antonios; Regatte, Ravinder R

    2015-11-01

    To assess the possible utility of machine learning for classifying subjects with and subjects without osteoarthritis using sodium magnetic resonance imaging data. Theory: Support vector machine, k-nearest neighbors, naïve Bayes, discriminant analysis, linear regression, logistic regression, neural networks, decision tree, and tree bagging were tested. Sodium magnetic resonance imaging with and without fluid suppression by inversion recovery was acquired on the knee cartilage of 19 controls and 28 osteoarthritis patients. Sodium concentrations were measured in regions of interests in the knee for both acquisitions. Mean (MEAN) and standard deviation (STD) of these concentrations were measured in each regions of interest, and the minimum, maximum, and mean of these two measurements were calculated over all regions of interests for each subject. The resulting 12 variables per subject were used as predictors for classification. Either Min [STD] alone, or in combination with Mean [MEAN] or Min [MEAN], all from fluid suppressed data, were the best predictors with an accuracy >74%, mainly with linear logistic regression and linear support vector machine. Other good classifiers include discriminant analysis, linear regression, and naïve Bayes. Machine learning is a promising technique for classifying osteoarthritis patients and controls from sodium magnetic resonance imaging data. © 2014 Wiley Periodicals, Inc.

  3. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.

    PubMed

    Capela, N A; Lemaire, E D; Baddour, N; Rudolf, M; Goljar, N; Burger, H

    2016-01-20

    Mobile health monitoring using wearable sensors is a growing area of interest. As the world's population ages and locomotor capabilities decrease, the ability to report on a person's mobility activities outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier on fifteen able-bodied participants and fifteen participants who suffered a stroke. Participants performed a consecutive series of mobility tasks and daily living activities while wearing a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity and F-scores were calculated to evaluate HAR classifier performance. The classifier performed well for both populations when differentiating mobile from immobile states (F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased for the stroke population, particularly when using information derived from participant posture to make classification decisions. Human activity recognition using a smartphone based system can be accomplished for both able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in HAR performance with a stroke population. The study results can be used to guide smartphone HAR system development for populations with differing movement characteristics.

  4. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    PubMed Central

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  6. Optical diagnosis of cervical cancer by higher order spectra and boosting

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Barman, Ritwik; Pratiher, Souvik; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-03-01

    In this contribution, we report the application of higher order statistical moments using decision tree and ensemble based learning methodology for the development of diagnostic algorithms for optical diagnosis of cancer. The classification results were compared to those obtained with an independent feature extractors like linear discriminant analysis (LDA). The performance and efficacy of these methodology using higher order statistics as a classifier using boosting has higher specificity and sensitivity while being much faster as compared to other time-frequency domain based methods.

  7. Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency

    PubMed Central

    Druzhkov, Pavel; Zolotykh, Nikolay; Meyerov, Iosif; Alsaedi, Ahmed; Shutova, Maria; Ivanchenko, Mikhail; Zaikin, Alexey

    2015-01-01

    We demonstrate the potential of differentiating embryonic and induced pluripotent stem cells by the regularized linear and decision tree machine learning classification algorithms, based on a number of intragene methylation measures. The resulting average accuracy of classification has been proven to be above 95%, which overcomes the earlier achievements. We propose a constructive and transparent method of feature selection based on classifier accuracy. Enrichment analysis reveals statistically meaningful presence of stemness group and cancer discriminating genes among the selected best classifying features. These findings stimulate the further research on the functional consequences of these differences in methylation patterns. The presented approach can be broadly used to discriminate the cells of different phenotype or in different state by their methylation profiles, identify groups of genes constituting multifeature classifiers, and assess enrichment of these groups by the sets of genes with a functionality of interest. PMID:26618180

  8. Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System

    NASA Technical Reports Server (NTRS)

    Lin, Tsung Han (Hank)

    2011-01-01

    JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.

  9. Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses

    PubMed Central

    Kringel, D; Ultsch, A; Zimmermann, M; Jansen, J-P; Ilias, W; Freynhagen, R; Griessinger, N; Kopf, A; Stein, C; Doehring, A; Resch, E; Lötsch, J

    2017-01-01

    Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces ‘big data’ exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6±4%. This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics. PMID:27139154

  10. Emergent biomarker derived from next-generation sequencing to identify pain patients requiring uncommonly high opioid doses.

    PubMed

    Kringel, D; Ultsch, A; Zimmermann, M; Jansen, J-P; Ilias, W; Freynhagen, R; Griessinger, N; Kopf, A; Stein, C; Doehring, A; Resch, E; Lötsch, J

    2017-10-01

    Next-generation sequencing (NGS) provides unrestricted access to the genome, but it produces 'big data' exceeding in amount and complexity the classical analytical approaches. We introduce a bioinformatics-based classifying biomarker that uses emergent properties in genetics to separate pain patients requiring extremely high opioid doses from controls. Following precisely calculated selection of the 34 most informative markers in the OPRM1, OPRK1, OPRD1 and SIGMAR1 genes, pattern of genotypes belonging to either patient group could be derived using a k-nearest neighbor (kNN) classifier that provided a diagnostic accuracy of 80.6±4%. This outperformed alternative classifiers such as reportedly functional opioid receptor gene variants or complex biomarkers obtained via multiple regression or decision tree analysis. The accumulation of several genetic variants with only minor functional influences may result in a qualitative consequence affecting complex phenotypes, pointing at emergent properties in genetics.

  11. Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan

    2012-01-01

    In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

  12. The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma.

    PubMed

    Crawford, E D; Batuello, J T; Snow, P; Gamito, E J; McLeod, D G; Partin, A W; Stone, N; Montie, J; Stock, R; Lynch, J; Brandt, J

    2000-05-01

    The current study assesses artificial intelligence methods to identify prostate carcinoma patients at low risk for lymph node spread. If patients can be assigned accurately to a low risk group, unnecessary lymph node dissections can be avoided, thereby reducing morbidity and costs. A rule-derivation technology for simple decision-tree analysis was trained and validated using patient data from a large database (4,133 patients) to derive low risk cutoff values for Gleason sum and prostate specific antigen (PSA) level. An empiric analysis was used to derive a low risk cutoff value for clinical TNM stage. These cutoff values then were applied to 2 additional, smaller databases (227 and 330 patients, respectively) from separate institutions. The decision-tree protocol derived cutoff values of < or = 6 for Gleason sum and < or = 10.6 ng/mL for PSA. The empiric analysis yielded a clinical TNM stage low risk cutoff value of < or = T2a. When these cutoff values were applied to the larger database, 44% of patients were classified as being at low risk for lymph node metastases (0.8% false-negative rate). When the same cutoff values were applied to the smaller databases, between 11 and 43% of patients were classified as low risk with a false-negative rate of between 0.0 and 0.7%. The results of the current study indicate that a population of prostate carcinoma patients at low risk for lymph node metastases can be identified accurately using a simple decision algorithm that considers preoperative PSA, Gleason sum, and clinical TNM stage. The risk of lymph node metastases in these patients is < or = 1%; therefore, pelvic lymph node dissection may be avoided safely. The implications of these findings in surgical and nonsurgical treatment are significant.

  13. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    PubMed

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  14. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis.

    PubMed

    Koziol, James A; Feng, Anne C; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors.

  15. Learning to change taxonomies

    NASA Astrophysics Data System (ADS)

    Eneva, Elena; Petrushin, Valery A.

    2002-03-01

    Taxonomies are valuable tools for structuring and representing our knowledge about the world. They are widely used in many domains, where information about species, products, customers, publications, etc. needs to be organized. In the absence of standards, many taxonomies of the same entities can co-exist. A problem arises when data categorized in a particular taxonomy needs to be used by a procedure (methodology or algorithm) that uses a different taxonomy. Usually, a labor-intensive manual approach is used to solve this problem. This paper describes a machine learning approach which aids domain experts in changing taxonomies. It allows learning relationships between two taxonomies and mapping the data from one taxonomy into another. The proposed approach uses decision trees and bootstrapping for learning mappings of instances from the source to the target taxonomies. A C4.5 decision tree classifier is trained on a small manually labeled training set and applied to a randomly selected sample from the unlabeled data. The classification results are analyzed and the misclassified items are corrected and all items are added to the training set. This procedure is iterated until unlabeled data is available or an acceptable error rate is reached. In the latter case the last classifier is used to label all the remaining data. We test our approach on a database of products obtained from as grocery store chain and find that it performs well, reaching 92.6% accuracy while requiring the human expert to explicitly label only 18% of the entire data.

  16. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  17. Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed

    NASA Astrophysics Data System (ADS)

    Saran, Sameer; Sterk, Geert; Kumar, Suresh

    2009-10-01

    Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.

  18. Microscopic saw mark analysis: an empirical approach.

    PubMed

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  19. Decision-Tree Formulation With Order-1 Lateral Execution

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A compact symbolic formulation enables mapping of an arbitrarily complex decision tree of a certain type into a highly computationally efficient multidimensional software object. The type of decision trees to which this formulation applies is that known in the art as the Boolean class of balanced decision trees. Parallel lateral slices of an object created by means of this formulation can be executed in constant time considerably less time than would otherwise be required. Decision trees of various forms are incorporated into almost all large software systems. A decision tree is a way of hierarchically solving a problem, proceeding through a set of true/false responses to a conclusion. By definition, a decision tree has a tree-like structure, wherein each internal node denotes a test on an attribute, each branch from an internal node represents an outcome of a test, and leaf nodes represent classes or class distributions that, in turn represent possible conclusions. The drawback of decision trees is that execution of them can be computationally expensive (and, hence, time-consuming) because each non-leaf node must be examined to determine whether to progress deeper into a tree structure or to examine an alternative. The present formulation was conceived as an efficient means of representing a decision tree and executing it in as little time as possible. The formulation involves the use of a set of symbolic algorithms to transform a decision tree into a multi-dimensional object, the rank of which equals the number of lateral non-leaf nodes. The tree can then be executed in constant time by means of an order-one table lookup. The sequence of operations performed by the algorithms is summarized as follows: 1. Determination of whether the tree under consideration can be encoded by means of this formulation. 2. Extraction of decision variables. 3. Symbolic optimization of the decision tree to minimize its form. 4. Expansion and transformation of all nested conjunctive-disjunctive paths to a flattened conjunctive form composed only of equality checks when possible. If each reduced conjunctive form contains only equality checks and all of these forms use the same variables, then the decision tree can be reduced to an order-one operation through a table lookup. The speedup to order one is accomplished by distributing each decision variable over a surface of a multidimensional object by mapping the equality constant to an index

  20. Recognition of pornographic web pages by classifying texts and images.

    PubMed

    Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve

    2007-06-01

    With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.

  1. The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis

    PubMed Central

    Koziol, James A.; Feng, Anne C.; Jia, Zhenyu; Wang, Yipeng; Goodison, Seven; McClelland, Michael; Mercola, Dan

    2009-01-01

    Motivation: Classification and regression trees have long been used for cancer diagnosis and prognosis. Nevertheless, instability and variable selection bias, as well as overfitting, are well-known problems of tree-based methods. In this article, we investigate whether ensemble tree classifiers can ameliorate these difficulties, using data from two recent studies of radical prostatectomy in prostate cancer. Results: Using time to progression following prostatectomy as the relevant clinical endpoint, we found that ensemble tree classifiers robustly and reproducibly identified three subgroups of patients in the two clinical datasets: non-progressors, early progressors and late progressors. Moreover, the consensus classifications were independent predictors of time to progression compared to known clinical prognostic factors. Contact: dmercola@uci.edu PMID:18628288

  2. The CERAD Neuropsychological Assessment Battery Is Sensitive to Alcohol-Related Cognitive Deficiencies in Elderly Patients: A Retrospective Matched Case-Control Study.

    PubMed

    Kaufmann, Liane; Huber, Stefan; Mayer, Daniel; Moeller, Korbinian; Marksteiner, Josef

    2018-04-01

    Adverse effects of heavy drinking on cognition have frequently been reported. In the present study, we systematically examined for the first time whether clinical neuropsychological assessments may be sensitive to alcohol abuse in elderly patients with suspected minor neurocognitive disorder. A total of 144 elderly with and without alcohol abuse (each group n=72; mean age 66.7 years) were selected from a patient pool of n=738 by applying propensity score matching (a statistical method allowing to match participants in experimental and control group by balancing various covariates to reduce selection bias). Accordingly, study groups were almost perfectly matched regarding age, education, gender, and Mini Mental State Examination score. Neuropsychological performance was measured using the CERAD (Consortium to Establish a Registry for Alzheimer's Disease). Classification analyses (i.e., decision tree and boosted trees models) were conducted to examine whether CERAD variables or total score contributed to group classification. Decision tree models disclosed that groups could be reliably classified based on the CERAD variables "Word List Discriminability" (tapping verbal recognition memory, 64% classification accuracy) and "Trail Making Test A" (measuring visuo-motor speed, 59% classification accuracy). Boosted tree analyses further indicated the sensitivity of "Word List Recall" (measuring free verbal recall) for discriminating elderly with versus without a history of alcohol abuse. This indicates that specific CERAD variables seem to be sensitive to alcohol-related cognitive dysfunctions in elderly patients with suspected minor neurocognitive disorder. (JINS, 2018, 24, 360-371).

  3. Pixel-based skin segmentation in psoriasis images.

    PubMed

    George, Y; Aldeen, M; Garnavi, R

    2016-08-01

    In this paper, we present a detailed comparison study of skin segmentation methods for psoriasis images. Different techniques are modified and then applied to a set of psoriasis images acquired from the Royal Melbourne Hospital, Melbourne, Australia, with aim of finding the best technique suited for application to psoriasis images. We investigate the effect of different colour transformations on skin detection performance. In this respect, explicit skin thresholding is evaluated with three different decision boundaries (CbCr, HS and rgHSV). Histogram-based Bayesian classifier is applied to extract skin probability maps (SPMs) for different colour channels. This is then followed by using different approaches to find a binary skin map (SM) image from the SPMs. The approaches used include binary decision tree (DT) and Otsu's thresholding. Finally, a set of morphological operations are implemented to refine the resulted SM image. The paper provides detailed analysis and comparison of the performance of the Bayesian classifier in five different colour spaces (YCbCr, HSV, RGB, XYZ and CIELab). The results show that histogram-based Bayesian classifier is more effective than explicit thresholding, when applied to psoriasis images. It is also found that decision boundary CbCr outperforms HS and rgHSV. Another finding is that the SPMs of Cb, Cr, H and B-CIELab colour bands yield the best SMs for psoriasis images. In this study, we used a set of 100 psoriasis images for training and testing the presented methods. True Positive (TP) and True Negative (TN) are used as statistical evaluation measures.

  4. Classification of large-scale fundus image data sets: a cloud-computing framework.

    PubMed

    Roychowdhury, Sohini

    2016-08-01

    Large medical image data sets with high dimensionality require substantial amount of computation time for data creation and data processing. This paper presents a novel generalized method that finds optimal image-based feature sets that reduce computational time complexity while maximizing overall classification accuracy for detection of diabetic retinopathy (DR). First, region-based and pixel-based features are extracted from fundus images for classification of DR lesions and vessel-like structures. Next, feature ranking strategies are used to distinguish the optimal classification feature sets. DR lesion and vessel classification accuracies are computed using the boosted decision tree and decision forest classifiers in the Microsoft Azure Machine Learning Studio platform, respectively. For images from the DIARETDB1 data set, 40 of its highest-ranked features are used to classify four DR lesion types with an average classification accuracy of 90.1% in 792 seconds. Also, for classification of red lesion regions and hemorrhages from microaneurysms, accuracies of 85% and 72% are observed, respectively. For images from STARE data set, 40 high-ranked features can classify minor blood vessels with an accuracy of 83.5% in 326 seconds. Such cloud-based fundus image analysis systems can significantly enhance the borderline classification performances in automated screening systems.

  5. Artificial intelligence techniques applied to the development of a decision-support system for diagnosing celiac disease.

    PubMed

    Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar

    2011-11-01

    Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. To develop a clinical decision-support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision-support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k=0.68 (p<0.0001) with good agreement. The same accuracy was achieved in the comparison between the physician's diagnostic impression and the gold standard k=0. 64 (p<0.0001). There was moderate agreement between the physician's diagnostic impression and CDSS k=0.46 (p=0.0008). The study results suggest that CDSS could be used to help in diagnosing CD, since the algorithm tested achieved excellent accuracy in differentiating possible positive from negative CD diagnoses. This study may contribute towards developing of a computer-assisted environment to support CD diagnosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees.

    PubMed

    Muhlbacher, Thomas; Linhardt, Lorenz; Moller, Torsten; Piringer, Harald

    2018-01-01

    Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

  7. Automated detection of tuberculosis on sputum smeared slides using stepwise classification

    NASA Astrophysics Data System (ADS)

    Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean

    2012-03-01

    Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).

  8. Application of remote sensing to state and regional problems

    NASA Technical Reports Server (NTRS)

    Miller, W. F. (Principal Investigator); Quattrochi, D. A.; Carter, B. D.; Higgs, G. K.; Solomon, J. L.; Wax, C. L.

    1979-01-01

    The author has identified the following significant results. The Lowndes County data base is essentially complete with 18 primary variables and 16 proximity variables encoded into the geo-information system. The single purpose, decision tree classifier is now operational. Signatures for the thematic extraction of strip mines from LANDSAT Digital data were obtained by employing both supervised and nonsupervised procedures. Dry, blowing sand areas of beach were also identified from the LANDSAT data. The primary procedure was the analysis of analog data on the I2S signal slicer.

  9. Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.

    PubMed

    Anderson, Charles W; Knight, James N; O'Connor, Tim; Kirby, Michael J; Sokolov, Artem

    2006-06-01

    Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.

  10. Heterogeneous data fusion and intelligent techniques embedded in a mobile application for real-time chronic disease management.

    PubMed

    Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I

    2011-01-01

    CHRONIOUS system is an integrated platform aiming at the management of chronic disease patients. One of the most important components of the system is a Decision Support System (DSS) that has been developed in a Smart Device (SD). This component decides on patient's current health status by combining several data, which are acquired either by wearable sensors or manually inputted by the patient or retrieved from the specific database. In case no abnormal situation has been tracked, the DSS takes no action and remains deactivated until next abnormal situation pack of data are being acquired or next scheduled data being transmitted. The DSS that has been implemented is an integrated classification system with two parallel classifiers, combining an expert system (rule-based system) and a supervised classifier, such as Support Vector Machines (SVM), Random Forests, artificial Neural Networks (aNN like the Multi-Layer Perceptron), Decision Trees and Naïve Bayes. The above categorized system is useful for providing critical information about the health status of the patient.

  11. Comparisons and Selections of Features and Classifiers for Short Text Classification

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Zhou, Zhi; Jin, Shan; Liu, Debin; Lu, Mi

    2017-10-01

    Short text is considerably different from traditional long text documents due to its shortness and conciseness, which somehow hinders the applications of conventional machine learning and data mining algorithms in short text classification. According to traditional artificial intelligence methods, we divide short text classification into three steps, namely preprocessing, feature selection and classifier comparison. In this paper, we have illustrated step-by-step how we approach our goals. Specifically, in feature selection, we compared the performance and robustness of the four methods of one-hot encoding, tf-idf weighting, word2vec and paragraph2vec, and in the classification part, we deliberately chose and compared Naive Bayes, Logistic Regression, Support Vector Machine, K-nearest Neighbor and Decision Tree as our classifiers. Then, we compared and analysed the classifiers horizontally with each other and vertically with feature selections. Regarding the datasets, we crawled more than 400,000 short text files from Shanghai and Shenzhen Stock Exchanges and manually labeled them into two classes, the big and the small. There are eight labels in the big class, and 59 labels in the small class.

  12. D Semantic Labeling of ALS Data Based on Domain Adaption by Transferring and Fusing Random Forest Models

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yao, W.; Zhang, J.; Li, Y.

    2018-04-01

    Labeling 3D point cloud data with traditional supervised learning methods requires considerable labelled samples, the collection of which is cost and time expensive. This work focuses on adopting domain adaption concept to transfer existing trained random forest classifiers (based on source domain) to new data scenes (target domain), which aims at reducing the dependence of accurate 3D semantic labeling in point clouds on training samples from the new data scene. Firstly, two random forest classifiers were firstly trained with existing samples previously collected for other data. They were different from each other by using two different decision tree construction algorithms: C4.5 with information gain ratio and CART with Gini index. Secondly, four random forest classifiers adapted to the target domain are derived through transferring each tree in the source random forest models with two types of operations: structure expansion and reduction-SER and structure transfer-STRUT. Finally, points in target domain are labelled by fusing the four newly derived random forest classifiers using weights of evidence based fusion model. To validate our method, experimental analysis was conducted using 3 datasets: one is used as the source domain data (Vaihingen data for 3D Semantic Labelling); another two are used as the target domain data from two cities in China (Jinmen city and Dunhuang city). Overall accuracies of 85.5 % and 83.3 % for 3D labelling were achieved for Jinmen city and Dunhuang city data respectively, with only 1/3 newly labelled samples compared to the cases without domain adaption.

  13. VC-dimension of univariate decision trees.

    PubMed

    Yildiz, Olcay Taner

    2015-02-01

    In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.

  14. Developing collaborative classifiers using an expert-based model

    USGS Publications Warehouse

    Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan

    2009-01-01

    This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.

  15. The Decision Tree: A Tool for Achieving Behavioral Change.

    ERIC Educational Resources Information Center

    Saren, Dru

    1999-01-01

    Presents a "Decision Tree" process for structuring team decision making and problem solving about specific student behavioral goals. The Decision Tree involves a sequence of questions/decisions that can be answered in "yes/no" terms. Questions address reasonableness of the goal, time factors, importance of the goal, responsibilities, safety,…

  16. Development and acceptability testing of decision trees for self-management of prosthetic socket fit in adults with lower limb amputation.

    PubMed

    Lee, Daniel Joseph; Veneri, Diana A

    2018-05-01

    The most common complaint lower limb prosthesis users report is inadequacy of a proper socket fit. Adjustments to the residual limb-socket interface can be made by the prosthesis user without consultation of a clinician in many scenarios through skilled self-management. Decision trees guide prosthesis wearers through the self-management process, empowering them to rectify fit issues, or referring them to a clinician when necessary. This study examines the development and acceptability testing of patient-centered decision trees for lower limb prosthesis users. Decision trees underwent a four-stage process: literature review and expert consultation, designing, two-rounds of expert panel review and revisions, and target audience testing. Fifteen lower limb prosthesis users (average age 61 years) reviewed the decision trees and completed an acceptability questionnaire. Participants reported agreement of 80% or above in five of the eight questions related to acceptability of the decision trees. Disagreement was related to the level of experience of the respondent. Decision trees were found to be easy to use, illustrate correct solutions to common issues, and have terminology consistent with that of a new prosthesis user. Some users with greater than 1.5 years of experience would not use the decision trees based on their own self-management skills. Implications for Rehabilitation Discomfort of the residual limb-prosthetic socket interface is the most common reason for clinician visits. Prosthesis users can use decision trees to guide them through the process of obtaining a proper socket fit independently. Newer users may benefit from using the decision trees more than experienced users.

  17. Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.

    PubMed

    Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael

    2015-08-01

    The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.

  18. Soft context clustering for F0 modeling in HMM-based speech synthesis

    NASA Astrophysics Data System (ADS)

    Khorram, Soheil; Sameti, Hossein; King, Simon

    2015-12-01

    This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional `hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HMMs) are used, in which each model parameter is assigned to a single leaf node. However, this `divide-and-conquer' approach leads to data sparsity, with the consequence that it suffers from poor generalization, meaning that it is unable to accurately predict parameters for models of unseen contexts: the hard decision tree is a weak function approximator. To alleviate this, we propose the soft decision tree, which is a binary decision tree with soft decisions at the internal nodes. In this soft clustering method, internal nodes select both their children with certain membership degrees; therefore, each node can be viewed as a fuzzy set with a context-dependent membership function. The soft decision tree improves model generalization and provides a superior function approximator because it is able to assign each context to several overlapped leaves. In order to use such a soft decision tree to predict the parameters of the HMM output probability distribution, we derive the smoothest (maximum entropy) distribution which captures all partial first-order moments and a global second-order moment of the training samples. Employing such a soft decision tree architecture with maximum entropy distributions, a novel speech synthesis system is trained using maximum likelihood (ML) parameter re-estimation and synthesis is achieved via maximum output probability parameter generation. In addition, a soft decision tree construction algorithm optimizing a log-likelihood measure is developed. Both subjective and objective evaluations were conducted and indicate a considerable improvement over the conventional method.

  19. Decision trees in epidemiological research.

    PubMed

    Venkatasubramaniam, Ashwini; Wolfson, Julian; Mitchell, Nathan; Barnes, Timothy; JaKa, Meghan; French, Simone

    2017-01-01

    In many studies, it is of interest to identify population subgroups that are relatively homogeneous with respect to an outcome. The nature of these subgroups can provide insight into effect mechanisms and suggest targets for tailored interventions. However, identifying relevant subgroups can be challenging with standard statistical methods. We review the literature on decision trees, a family of techniques for partitioning the population, on the basis of covariates, into distinct subgroups who share similar values of an outcome variable. We compare two decision tree methods, the popular Classification and Regression tree (CART) technique and the newer Conditional Inference tree (CTree) technique, assessing their performance in a simulation study and using data from the Box Lunch Study, a randomized controlled trial of a portion size intervention. Both CART and CTree identify homogeneous population subgroups and offer improved prediction accuracy relative to regression-based approaches when subgroups are truly present in the data. An important distinction between CART and CTree is that the latter uses a formal statistical hypothesis testing framework in building decision trees, which simplifies the process of identifying and interpreting the final tree model. We also introduce a novel way to visualize the subgroups defined by decision trees. Our novel graphical visualization provides a more scientifically meaningful characterization of the subgroups identified by decision trees. Decision trees are a useful tool for identifying homogeneous subgroups defined by combinations of individual characteristics. While all decision tree techniques generate subgroups, we advocate the use of the newer CTree technique due to its simplicity and ease of interpretation.

  20. Automated detection of ventricular pre-excitation in pediatric 12-lead ECG.

    PubMed

    Gregg, Richard E; Zhou, Sophia H; Dubin, Anne M

    2016-01-01

    With increased interest in screening of young people for potential causes of sudden death, accurate automated detection of ventricular pre-excitation (VPE) or Wolff-Parkinson-White syndrome (WPW) in the pediatric resting ECG is important. Several recent studies have shown interobserver variability when reading screening ECGs and thus an accurate automated reading for this potential cause of sudden death is critical. We designed and tested an automated algorithm to detect pediatric VPE optimized for low prevalence. Digital ECGs with 12 leads or 15 leads (12-lead plus V3R, V4R and V7) were selected from multiple hospitals and separated into a testing and training database. Inclusion criterion was age less than 16 years. The reference for algorithm detection of VPE was cardiologist annotation of VPE for each ECG. The training database (n=772) consisted of VPE ECGs (n=37), normal ECGs (n=492) and a high concentration of conduction defects, RBBB (n=232) and LBBB (n=11). The testing database was a random sample (n=763). All ECGs were analyzed with the Philips DXL ECG Analysis algorithm for basic waveform measurements. Additional ECG features specific to VPE, mainly delta wave scoring, were calculated from the basic measurements and the average beat. A classifier based on decision tree bootstrap aggregation (tree bagger) was trained in multiple steps to select the number of decision trees and the 10 best features. The classifier accuracy was measured on the test database. The new algorithm detected pediatric VPE with a sensitivity of 78%, a specificity of 99.9%, a positive predictive value of 88% and negative predictive value of 99.7%. This new algorithm for detection of pediatric VPE performs well with a reasonable positive and negative predictive value despite the low prevalence in the general population. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Genetic programming based ensemble system for microarray data classification.

    PubMed

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved.

  2. Genetic Programming Based Ensemble System for Microarray Data Classification

    PubMed Central

    Liu, Kun-Hong; Tong, Muchenxuan; Xie, Shu-Tong; Yee Ng, Vincent To

    2015-01-01

    Recently, more and more machine learning techniques have been applied to microarray data analysis. The aim of this study is to propose a genetic programming (GP) based new ensemble system (named GPES), which can be used to effectively classify different types of cancers. Decision trees are deployed as base classifiers in this ensemble framework with three operators: Min, Max, and Average. Each individual of the GP is an ensemble system, and they become more and more accurate in the evolutionary process. The feature selection technique and balanced subsampling technique are applied to increase the diversity in each ensemble system. The final ensemble committee is selected by a forward search algorithm, which is shown to be capable of fitting data automatically. The performance of GPES is evaluated using five binary class and six multiclass microarray datasets, and results show that the algorithm can achieve better results in most cases compared with some other ensemble systems. By using elaborate base classifiers or applying other sampling techniques, the performance of GPES may be further improved. PMID:25810748

  3. Ensemble candidate classification for the LOTAAS pulsar survey

    NASA Astrophysics Data System (ADS)

    Tan, C. M.; Lyon, R. J.; Stappers, B. W.; Cooper, S.; Hessels, J. W. T.; Kondratiev, V. I.; Michilli, D.; Sanidas, S.

    2018-03-01

    One of the biggest challenges arising from modern large-scale pulsar surveys is the number of candidates generated. Here, we implemented several improvements to the machine learning (ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to look for new pulsars via filtering the candidates obtained during periodicity searches. To assist the ML algorithm, we have introduced new features which capture the frequency and time evolution of the signal and improved the signal-to-noise calculation accounting for broad profiles. We enhanced the ML classifier by including a third class characterizing RFI instances, allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We also introduced a new training data set used by the ML algorithm that includes a large sample of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier comprised of five different Decision Trees. Taken together these updates improve the pulsar recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse profiles, often misclassified by the previous classifier. The new ensemble classifier is also able to reduce the percentage of false positive candidates identified from each LOTAAS pointing from 2.5 per cent (˜500 candidates) to 1.1 per cent (˜220 candidates).

  4. Creating ensembles of decision trees through sampling

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick

    2005-08-30

    A system for decision tree ensembles that includes a module to read the data, a module to sort the data, a module to evaluate a potential split of the data according to some criterion using a random sample of the data, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method is based on statistical sampling techniques and includes the steps of reading the data; sorting the data; evaluating a potential split according to some criterion using a random sample of the data, splitting the data, and combining multiple decision trees in ensembles.

  5. Bioinformatics in proteomics: application, terminology, and pitfalls.

    PubMed

    Wiemer, Jan C; Prokudin, Alexander

    2004-01-01

    Bioinformatics applies data mining, i.e., modern computer-based statistics, to biomedical data. It leverages on machine learning approaches, such as artificial neural networks, decision trees and clustering algorithms, and is ideally suited for handling huge data amounts. In this article, we review the analysis of mass spectrometry data in proteomics, starting with common pre-processing steps and using single decision trees and decision tree ensembles for classification. Special emphasis is put on the pitfall of overfitting, i.e., of generating too complex single decision trees. Finally, we discuss the pros and cons of the two different decision tree usages.

  6. A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits.

    PubMed

    Kos, Gregor; Sieger, Markus; McMullin, David; Zahradnik, Celine; Sulyok, Michael; Öner, Tuba; Mizaikoff, Boris; Krska, Rudolf

    2016-10-01

    The rapid identification of mycotoxins such as deoxynivalenol and aflatoxin B 1 in agricultural commodities is an ongoing concern for food importers and processors. While sophisticated chromatography-based methods are well established for regulatory testing by food safety authorities, few techniques exist to provide a rapid assessment for traders. This study advances the development of a mid-infrared spectroscopic method, recording spectra with little sample preparation. Spectral data were classified using a bootstrap-aggregated (bagged) decision tree method, evaluating the protein and carbohydrate absorption regions of the spectrum. The method was able to classify 79% of 110 maize samples at the European Union regulatory limit for deoxynivalenol of 1750 µg kg -1 and, for the first time, 77% of 92 peanut samples at 8 µg kg -1 of aflatoxin B 1 . A subset model revealed a dependency on variety and type of fungal infection. The employed CRC and SBL maize varieties could be pooled in the model with a reduction of classification accuracy from 90% to 79%. Samples infected with Fusarium verticillioides were removed, leaving samples infected with F. graminearum and F. culmorum in the dataset improving classification accuracy from 73% to 79%. A 500 µg kg -1 classification threshold for deoxynivalenol in maize performed even better with 85% accuracy. This is assumed to be due to a larger number of samples around the threshold increasing representativity. Comparison with established principal component analysis classification, which consistently showed overlapping clusters, confirmed the superior performance of bagged decision tree classification.

  7. Topological Analysis and Gaussian Decision Tree: Effective Representation and Classification of Biosignals of Small Sample Size.

    PubMed

    Zhang, Zhifei; Song, Yang; Cui, Haochen; Wu, Jayne; Schwartz, Fernando; Qi, Hairong

    2017-09-01

    Bucking the trend of big data, in microdevice engineering, small sample size is common, especially when the device is still at the proof-of-concept stage. The small sample size, small interclass variation, and large intraclass variation, have brought biosignal analysis new challenges. Novel representation and classification approaches need to be developed to effectively recognize targets of interests with the absence of a large training set. Moving away from the traditional signal analysis in the spatiotemporal domain, we exploit the biosignal representation in the topological domain that would reveal the intrinsic structure of point clouds generated from the biosignal. Additionally, we propose a Gaussian-based decision tree (GDT), which can efficiently classify the biosignals even when the sample size is extremely small. This study is motivated by the application of mastitis detection using low-voltage alternating current electrokinetics (ACEK) where five categories of bisignals need to be recognized with only two samples in each class. Experimental results demonstrate the robustness of the topological features as well as the advantage of GDT over some conventional classifiers in handling small dataset. Our method reduces the voltage of ACEK to a safe level and still yields high-fidelity results with a short assay time. This paper makes two distinctive contributions to the field of biosignal analysis, including performing signal processing in the topological domain and handling extremely small dataset. Currently, there have been no related works that can efficiently tackle the dilemma between avoiding electrochemical reaction and accelerating assay process using ACEK.

  8. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  9. Decision tree for accurate infection timing in individuals newly diagnosed with HIV-1 infection.

    PubMed

    Verhofstede, Chris; Fransen, Katrien; Van Den Heuvel, Annelies; Van Laethem, Kristel; Ruelle, Jean; Vancutsem, Ellen; Stoffels, Karolien; Van den Wijngaert, Sigi; Delforge, Marie-Luce; Vaira, Dolores; Hebberecht, Laura; Schauvliege, Marlies; Mortier, Virginie; Dauwe, Kenny; Callens, Steven

    2017-11-29

    There is today no gold standard method to accurately define the time passed since infection at HIV diagnosis. Infection timing and incidence measurement is however essential to better monitor the dynamics of local epidemics and the effect of prevention initiatives. Three methods for infection timing were evaluated using 237 serial samples from documented seroconversions and 566 cross sectional samples from newly diagnosed patients: identification of antibodies against the HIV p31 protein in INNO-LIA, SediaTM BED CEIA and SediaTM LAg-Avidity EIA. A multi-assay decision tree for infection timing was developed. Clear differences in recency window between BED CEIA, LAg-Avidity EIA and p31 antibody presence were observed with a switch from recent to long term infection a median of 169.5, 108.0 and 64.5 days after collection of the pre-seroconversion sample respectively. BED showed high reliability for identification of long term infections while LAg-Avidity is highly accurate for identification of recent infections. Using BED as initial assay to identify the long term infections and LAg-Avidity as a confirmatory assay for those classified as recent infection by BED, explores the strengths of both while reduces the workload. The short recency window of p31 antibodies allows to discriminate very early from early infections based on this marker. BED recent infection results not confirmed by LAg-Avidity are considered to reflect a period more distant from the infection time. False recency predictions in this group can be minimized by elimination of patients with a CD4 count of less than 100 cells/mm3 or without no p31 antibodies. For 566 cross sectional sample the outcome of the decision tree confirmed the infection timing based on the results of all 3 markers but reduced the overall cost from 13.2 USD to 5.2 USD per sample. A step-wise multi assay decision tree allows accurate timing of the HIV infection at diagnosis at affordable effort and cost and can be an important new tool in studies analyzing the dynamics of local epidemics or the effects of prevention strategies.

  10. Technical Tree Climbing.

    ERIC Educational Resources Information Center

    Jenkins, Peter

    Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…

  11. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control.

    PubMed

    Mereta, Seid Tiku; Yewhalaw, Delenasaw; Boets, Pieter; Ahmed, Abdulhakim; Duchateau, Luc; Speybroeck, Niko; Vanwambeke, Sophie O; Legesse, Worku; De Meester, Luc; Goethals, Peter L M

    2013-11-04

    A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen's kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities.

  12. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control

    PubMed Central

    2013-01-01

    Background A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. Methods In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. Results The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. Conclusions The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and abundance of mosquito predators and competitors and promotes an increase in anopheline population densities. PMID:24499518

  13. Hierarchical classification in high dimensional numerous class cases

    NASA Technical Reports Server (NTRS)

    Kim, Byungyong; Landgrebe, D. A.

    1990-01-01

    As progress in new sensor technology continues, increasingly high resolution imaging sensors are being developed. These sensors give more detailed and complex data for each picture element and greatly increase the dimensionality of data over past systems. Three methods for designing a decision tree classifier are discussed: a top down approach, a bottom up approach, and a hybrid approach. Three feature extraction techniques are implemented. Canonical and extended canonical techniques are mainly dependent upon the mean difference between two classes. An autocorrelation technique is dependent upon the correlation differences. The mathematical relationship between sample size, dimensionality, and risk value is derived.

  14. Classifying smoking urges via machine learning

    PubMed Central

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-01-01

    Background and objective Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. Methods To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. Results The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. Conclusions In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms’ performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. PMID:28110725

  15. Classifying smoking urges via machine learning.

    PubMed

    Dumortier, Antoine; Beckjord, Ellen; Shiffman, Saul; Sejdić, Ervin

    2016-12-01

    Smoking is the largest preventable cause of death and diseases in the developed world, and advances in modern electronics and machine learning can help us deliver real-time intervention to smokers in novel ways. In this paper, we examine different machine learning approaches to use situational features associated with having or not having urges to smoke during a quit attempt in order to accurately classify high-urge states. To test our machine learning approaches, specifically, Bayes, discriminant analysis and decision tree learning methods, we used a dataset collected from over 300 participants who had initiated a quit attempt. The three classification approaches are evaluated observing sensitivity, specificity, accuracy and precision. The outcome of the analysis showed that algorithms based on feature selection make it possible to obtain high classification rates with only a few features selected from the entire dataset. The classification tree method outperformed the naive Bayes and discriminant analysis methods, with an accuracy of the classifications up to 86%. These numbers suggest that machine learning may be a suitable approach to deal with smoking cessation matters, and to predict smoking urges, outlining a potential use for mobile health applications. In conclusion, machine learning classifiers can help identify smoking situations, and the search for the best features and classifier parameters significantly improves the algorithms' performance. In addition, this study also supports the usefulness of new technologies in improving the effect of smoking cessation interventions, the management of time and patients by therapists, and thus the optimization of available health care resources. Future studies should focus on providing more adaptive and personalized support to people who really need it, in a minimum amount of time by developing novel expert systems capable of delivering real-time interventions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  17. A decision-tree approach to the assessment of posttraumatic stress disorder: Engineering empirically rigorous and ecologically valid assessment measures.

    PubMed

    Stewart, Regan W; Tuerk, Peter W; Metzger, Isha W; Davidson, Tatiana M; Young, John

    2016-02-01

    Structured diagnostic interviews are widely considered to be the optimal method of assessing symptoms of posttraumatic stress; however, few clinicians report using structured assessments to guide clinical practice. One commonly cited impediment to these assessment approaches is the amount of time required for test administration and interpretation. Empirically keyed methods to reduce the administration time of structured assessments may be a viable solution to increase the use of standardized and reliable diagnostic tools. Thus, the present research conducted an initial feasibility study using a sample of treatment-seeking military veterans (N = 1,517) to develop a truncated assessment protocol based on the Clinician-Administered Posttraumatic Stress Disorder (PTSD) Scale (CAPS). Decision-tree analysis was utilized to identify a subset of predictor variables among the CAPS items that were most predictive of a diagnosis of PTSD. The algorithm-driven, atheoretical sequence of questions reduced the number of items administered by more than 75% and classified the validation sample at 92% accuracy. These results demonstrated the feasibility of developing a protocol to assess PTSD in a way that imposes little assessment burden while still providing a reliable categorization. (c) 2016 APA, all rights reserved).

  18. Salivary Calculi Removal by Minimally Invasive Techniques: A Decision Tree Based on the Diameter of the Calculi and Their Position in the Excretory Duct.

    PubMed

    Foletti, Jean Marc; Graillon, Nicolas; Avignon, Simon; Guyot, Laurent; Chossegros, Cyrille

    2018-01-01

    To suggest a decision tree for the choice of the best minimally invasive technique to treat submandibular and parotid calculi, according to the diameter of the calculi and their position in the excretory duct. Submandibular and parotid ducts can both be divided into thirds, delineated by easily recognizable landmarks. The diameter of calculi is schematically classified into 1 of these 3 categories: floating, slightly impacted, or largely impacted. Using 3 criteria, the type of gland involved (G), the topography (T) of the calculus and its diameter (D), a 3-stage GTD classification of calculi was established. Next, the best indication for each available minimally invasive technique (sialendoscopy, transmucosal approach, a combined approach, intra- or extracorporeal stone fragmentation) was determined for each calculus stage. The minimally invasive treatment options are numerous and have replaced invasive resection surgical approaches (submandibulectomy and parotidectomy) in the management of salivary calculi, significantly improving the prognosis of these diseases. We emphasize the need for flexibility in the surgical indications and challenge the dogma of "all endoscopic" management of salivary calculi. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information

    NASA Astrophysics Data System (ADS)

    Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar

    2017-10-01

    Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.

  20. Random Forest-Based Recognition of Isolated Sign Language Subwords Using Data from Accelerometers and Surface Electromyographic Sensors.

    PubMed

    Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-01-14

    Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.

  1. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    NASA Astrophysics Data System (ADS)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  2. Using methods from the data mining and machine learning literature for disease classification and prediction: A case study examining classification of heart failure sub-types

    PubMed Central

    Austin, Peter C.; Tu, Jack V.; Ho, Jennifer E.; Levy, Daniel; Lee, Douglas S.

    2014-01-01

    Objective Physicians classify patients into those with or without a specific disease. Furthermore, there is often interest in classifying patients according to disease etiology or subtype. Classification trees are frequently used to classify patients according to the presence or absence of a disease. However, classification trees can suffer from limited accuracy. In the data-mining and machine learning literature, alternate classification schemes have been developed. These include bootstrap aggregation (bagging), boosting, random forests, and support vector machines. Study design and Setting We compared the performance of these classification methods with those of conventional classification trees to classify patients with heart failure according to the following sub-types: heart failure with preserved ejection fraction (HFPEF) vs. heart failure with reduced ejection fraction (HFREF). We also compared the ability of these methods to predict the probability of the presence of HFPEF with that of conventional logistic regression. Results We found that modern, flexible tree-based methods from the data mining literature offer substantial improvement in prediction and classification of heart failure sub-type compared to conventional classification and regression trees. However, conventional logistic regression had superior performance for predicting the probability of the presence of HFPEF compared to the methods proposed in the data mining literature. Conclusion The use of tree-based methods offers superior performance over conventional classification and regression trees for predicting and classifying heart failure subtypes in a population-based sample of patients from Ontario. However, these methods do not offer substantial improvements over logistic regression for predicting the presence of HFPEF. PMID:23384592

  3. Establishing priorities for psychological interventions in pediatric settings: A decision-tree approach using the DISABKIDS-10 Index as a screening instrument

    PubMed Central

    Silva, Neuza; Moreira, Helena; Canavarro, Maria Cristina; Carona, Carlos

    2018-01-01

    Most children and adolescents with chronic health conditions have impaired health-related quality of life and are at high risk of internalizing and externalizing problems. However, few patients present clinically significant symptoms. Using a decision-tree approach, this study aimed to identify risk profiles for psychological problems based on measures that can be easily scored and interpreted by healthcare professionals in pediatric settings. The participants were 736 children and adolescents between 8–18 years of age with asthma, epilepsy, cerebral palsy, type-1diabetes or obesity. The children and adolescents completed self-report measures of health-related quality of life (DISABKIDS-10) and psychological problems (Strengths and Difficulties Questionnaire). Sociodemographic and clinical data were collected from their parents/ physicians. Children and adolescents were classified into the normal (78.5%) or borderline/clinical range (21.5%) according to the Strengths and Difficulties Questionnaire cut-off values for psychological problems. The overall accuracy of the decision-tree model was 78.1% (sensitivity = 71.5%; specificity = 79.9%), with 4 profiles predicting 71.5% of borderline/clinical cases. The strongest predictor of psychological problems was a health-related quality of life standardized score below the threshold of 57.5 for patients with cerebral palsy, epilepsy or obesity and below 70.0 for patients with asthma or diabetes. Other significant predictors were low socio-economic status, single-parent household, medication intake and younger age. The model showed adequate validity (risk = .28, SE = .02) and accuracy (area under the Receiver Operating Characteristic curve = .84; CI = .80/.87). The identification of pediatric patients at high risk for psychological problems may contribute to a more efficient allocation of health resources, particularly with regard to their referral to specialized psychological assessment and intervention. PMID:29852026

  4. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    PubMed

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset proved representative enough to use simple statistical methods for testing the amylogenicity based only on six letter sequences. Statistical machine learning methods such as Alternating Decision Tree and Multilayer Perceptron can replace the energy based classifier, with advantage of very significantly reduced computational time and simplicity to perform the analysis. Additionally, a decision tree provides a set of very easily interpretable rules.

  5. Image Change Detection via Ensemble Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work,more » we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.« less

  6. Objective consensus from decision trees.

    PubMed

    Putora, Paul Martin; Panje, Cedric M; Papachristofilou, Alexandros; Dal Pra, Alan; Hundsberger, Thomas; Plasswilm, Ludwig

    2014-12-05

    Consensus-based approaches provide an alternative to evidence-based decision making, especially in situations where high-level evidence is limited. Our aim was to demonstrate a novel source of information, objective consensus based on recommendations in decision tree format from multiple sources. Based on nine sample recommendations in decision tree format a representative analysis was performed. The most common (mode) recommendations for each eventuality (each permutation of parameters) were determined. The same procedure was applied to real clinical recommendations for primary radiotherapy for prostate cancer. Data was collected from 16 radiation oncology centres, converted into decision tree format and analyzed in order to determine the objective consensus. Based on information from multiple sources in decision tree format, treatment recommendations can be assessed for every parameter combination. An objective consensus can be determined by means of mode recommendations without compromise or confrontation among the parties. In the clinical example involving prostate cancer therapy, three parameters were used with two cut-off values each (Gleason score, PSA, T-stage) resulting in a total of 27 possible combinations per decision tree. Despite significant variations among the recommendations, a mode recommendation could be found for specific combinations of parameters. Recommendations represented as decision trees can serve as a basis for objective consensus among multiple parties.

  7. Automated diagnosis of dry eye using infrared thermography images

    NASA Astrophysics Data System (ADS)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  8. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  9. Detection of chewing from piezoelectric film sensor signals using ensemble classifiers.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-08-01

    Selection and use of pattern recognition algorithms is application dependent. In this work, we explored the use of several ensembles of weak classifiers to classify signals captured from a wearable sensor system to detect food intake based on chewing. Three sensor signals (Piezoelectric sensor, accelerometer, and hand to mouth gesture) were collected from 12 subjects in free-living conditions for 24 hrs. Sensor signals were divided into 10 seconds epochs and for each epoch combination of time and frequency domain features were computed. In this work, we present a comparison of three different ensemble techniques: boosting (AdaBoost), bootstrap aggregation (bagging) and stacking, each trained with 3 different weak classifiers (Decision Trees, Linear Discriminant Analysis (LDA) and Logistic Regression). Type of feature normalization used can also impact the classification results. For each ensemble method, three feature normalization techniques: (no-normalization, z-score normalization, and minmax normalization) were tested. A 12 fold cross-validation scheme was used to evaluate the performance of each model where the performance was evaluated in terms of precision, recall, and accuracy. Best results achieved here show an improvement of about 4% over our previous algorithms.

  10. Right putamen and age are the most discriminant features to diagnose Parkinson's disease by using 123I-FP-CIT brain SPET data by using an artificial neural network classifier, a classification tree (ClT).

    PubMed

    Cascianelli, S; Tranfaglia, C; Fravolini, M L; Bianconi, F; Minestrini, M; Nuvoli, S; Tambasco, N; Dottorini, M E; Palumbo, B

    2017-01-01

    The differential diagnosis of Parkinson's disease (PD) and other conditions, such as essential tremor and drug-induced parkinsonian syndrome or normal aging brain, represents a diagnostic challenge. 123 I-FP-CIT brain SPET is able to contribute to the differential diagnosis. Semiquantitative analysis of radiopharmaceutical uptake in basal ganglia (caudate nuclei and putamina) is very useful to support the diagnostic process. An artificial neural network classifier using 123 I-FP-CIT brain SPET data, a classification tree (CIT), was applied. CIT is an automatic classifier composed of a set of logical rules, organized as a decision tree to produce an optimised threshold based classification of data to provide discriminative cut-off values. We applied a CIT to 123 I-FP-CIT brain SPET semiquantitave data, to obtain cut-off values of radiopharmaceutical uptake ratios in caudate nuclei and putamina with the aim to diagnose PD versus other conditions. We retrospectively investigated 187 patients undergoing 123 I-FP-CIT brain SPET (Millenium VG, G.E.M.S.) with semiquantitative analysis performed with Basal Ganglia (BasGan) V2 software according to EANM guidelines; among them 113 resulted affected by PD (PD group) and 74 (N group) by other non parkinsonian conditions, such as Essential Tremor and drug-induced PD. PD group included 113 subjects (60M and 53F of age: 60-81yrs) having Hoehn and Yahr score (HY): 0.5-1.5; Unified Parkinson Disease Rating Scale (UPDRS) score: 6-38; N group included 74 subjects (36M and 38 F range of age 60-80 yrs). All subjects were clinically followed for at least 6-18 months to confirm the diagnosis. To examinate data obtained by using CIT, for each of the 1,000 experiments carried out, 10% of patients were randomly selected as the CIT training set, while the remaining 90% validated the trained CIT, and the percentage of the validation data correctly classified in the two groups of patients was computed. The expected performance of an "average performance CIT" was evaluated. For CIT, the probability of correct classification in patients with PD was 84.19±11.67% (mean±SD) and in N patients 93.48±6.95%. For CIT, the first decision rule provided a value for the right putamen of 2.32±0.16. This means that patients with right putamen values <2.32 were classified as having PD. Patients with putamen values ≥2.32 underwent further analysis. They were classified as N if the right putamen uptake value was ≥3.02 or if the value for the right putamen was <3.02 and the age was ≥67.5 years. Otherwise the patients were classified as having PD. Other similar rules on the values of both caudate nuclei and left putamen could be used to refine the classification, but in our data analysis of these data did not significantly contribute to the differential diagnosis. This could be due to an increased number of more severe patients with initial prevalence of left clinical symptoms having a worsening in right putamen uptake distribution. These results show that CIT was able to accurately classify PD and non-PD patients by means of 123 I-FP-CIT brain SPET data and provided also cut-off values able to differentially diagnose these groups of patients. Right putamen uptake values resulted as the most discriminant to correctly classify our patients, probably due to a certain number of subjects with initial prevalence of left clinical symptoms. Finally, the selective evaluation of the group of subjects having putamen values ≥2.32 disclosed that age was a further important feature to classify patients for certain right putamen values.

  11. Diagnosis of periodontal diseases using different classification algorithms: a preliminary study.

    PubMed

    Ozden, F O; Özgönenel, O; Özden, B; Aydogdu, A

    2015-01-01

    The purpose of the proposed study was to develop an identification unit for classifying periodontal diseases using support vector machine (SVM), decision tree (DT), and artificial neural networks (ANNs). A total of 150 patients was divided into two groups such as training (100) and testing (50). The codes created for risk factors, periodontal data, and radiographically bone loss were formed as a matrix structure and regarded as inputs for the classification unit. A total of six periodontal conditions was the outputs of the classification unit. The accuracy of the suggested methods was compared according to their resolution and working time. DT and SVM were best to classify the periodontal diseases with a high accuracy according to the clinical research based on 150 patients. The performances of SVM and DT were found 98% with total computational time of 19.91 and 7.00 s, respectively. ANN had the worst correlation between input and output variable, and its performance was calculated as 46%. SVM and DT appeared to be sufficiently complex to reflect all the factors associated with the periodontal status, simple enough to be understandable and practical as a decision-making aid for prediction of periodontal disease.

  12. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers.

    PubMed

    Skoura, Angeliki; Bakic, Predrag R; Megalooikonomou, Vasilis

    2013-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis.

  13. Analyzing tree-shape anatomical structures using topological descriptors of branching and ensemble of classifiers

    PubMed Central

    Skoura, Angeliki; Bakic, Predrag R.; Megalooikonomou, Vasilis

    2014-01-01

    The analysis of anatomical tree-shape structures visualized in medical images provides insight into the relationship between tree topology and pathology of the corresponding organs. In this paper, we propose three methods to extract descriptive features of the branching topology; the asymmetry index, the encoding of branching patterns using a node labeling scheme and an extension of the Sholl analysis. Based on these descriptors, we present classification schemes for tree topologies with respect to the underlying pathology. Moreover, we present a classifier ensemble approach which combines the predictions of the individual classifiers to optimize the classification accuracy. We applied the proposed methodology to a dataset of x-ray galactograms, medical images which visualize the breast ductal tree, in order to recognize images with radiological findings regarding breast cancer. The experimental results demonstrate the effectiveness of the proposed framework compared to state-of-the-art techniques suggesting that the proposed descriptors provide more valuable information regarding the topological patterns of ductal trees and indicating the potential of facilitating early breast cancer diagnosis. PMID:25414850

  14. A Decision Tree for Psychology Majors: Supplying Questions as Well as Answers.

    ERIC Educational Resources Information Center

    Poe, Retta E.

    1988-01-01

    Outlines the development of a psychology careers decision tree to help faculty advise students plan their program. States that students using the decision tree may benefit by learning more about their career options and by acquiring better question-asking skills. (GEA)

  15. [Prediction of regional soil quality based on mutual information theory integrated with decision tree algorithm].

    PubMed

    Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu

    2012-02-01

    In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.

  16. An ordinal classification approach for CTG categorization.

    PubMed

    Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George

    2017-07-01

    Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.

  17. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan

    USGS Publications Warehouse

    Long, Jordan; Giri, Chandra; Primavera, Jurgene H.; Trivedi, Mandar

    2016-01-01

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30 m Landsat imagery and a supervised decision-tree classification. A time sequence of 250 m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18 months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons.

  18. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  19. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  20. Machine learning in soil classification.

    PubMed

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.

  1. The value of decision tree analysis in planning anaesthetic care in obstetrics.

    PubMed

    Bamber, J H; Evans, S A

    2016-08-01

    The use of decision tree analysis is discussed in the context of the anaesthetic and obstetric management of a young pregnant woman with joint hypermobility syndrome with a history of insensitivity to local anaesthesia and a previous difficult intubation due to a tongue tumour. The multidisciplinary clinical decision process resulted in the woman being delivered without complication by elective caesarean section under general anaesthesia after an awake fibreoptic intubation. The decision process used is reviewed and compared retrospectively to a decision tree analytical approach. The benefits and limitations of using decision tree analysis are reviewed and its application in obstetric anaesthesia is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evolutionary Algorithm Based Automated Reverse Engineering and Defect Discovery

    DTIC Science & Technology

    2007-09-21

    a previous application of a GP as a data mining function to evolve fuzzy decision trees symbolically [3-5], the terminal set consisted of fuzzy...of input and output information is required. In the case of fuzzy decision trees, the database represented a collection of scenarios about which the...fuzzy decision tree to be evolved would make decisions . The database also had entries created by experts representing decisions about the scenarios

  3. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  4. New Landsat derived cropland mask for Tanzania using 2010-2013 time series and decision tree classifier methods.

    NASA Astrophysics Data System (ADS)

    Justice, C. J.

    2016-12-01

    Eighty percent of Tanzania's population is involved in the agriculture sector. Despite this national dependence, agricultural reporting is minimal and monitoring efforts are in their infancy. The cropland mask developed through this study provides an underpinning for agricultural monitoring by informing analysis of crop conditions, dispersion, and intensity at a national scale. Tanzania is dominated by smallholder agricultural systems with an average field size of less than one hectare. At this field scale, previous classifications of agricultural land in Tanzania using MODIS coarse resolution data are insufficient to inform a working monitoring system. The nation-wide cropland mask in this study was developed using composited Landsat tiles from a 2010-2013 time-series. Decision tree classifier methods were used in the study with representative training areas collected for agriculture and no agriculture using appropriate indices to separate these classes. Validation was undertaken using a random sample and high resolution satellite images to compare agriculture and no agriculture samples from the study area. The cropland mask had high producer and user accuracy in the no agriculture class at 95.0% and 97.35% respectively. There was high producer accuracy in the agriculture class at 80.2% and moderate user accuracy at 67.9%. The principal metrics used for the classification support the theme that agriculture in Tanzania and Sub-Saharan Africa are less vegetated than surrounding areas and most similar to bare ground - emphasizing the need for improved access to inputs and irrigation to enhance productivity and smallholder livelihoods. The techniques used in this study were successful for developing a cropland mask and have the potential to be adapted for other countries, allowing targeted monitoring efforts to improve food security, market price, and inform agricultural policy.

  5. Application of data mining techniques to explore predictors of HCC in Egyptian patients with HCV-related chronic liver disease.

    PubMed

    Omran, Dalia Abd El Hamid; Awad, AbuBakr Hussein; Mabrouk, Mahasen Abd El Rahman; Soliman, Ahmad Fouad; Aziz, Ashraf Omar Abdel

    2015-01-01

    Hepatocellular carcinoma (HCC) is the second most common malignancy in Egypt. Data mining is a method of predictive analysis which can explore tremendous volumes of information to discover hidden patterns and relationships. Our aim here was to develop a non-invasive algorithm for prediction of HCC. Such an algorithm should be economical, reliable, easy to apply and acceptable by domain experts. This cross-sectional study enrolled 315 patients with hepatitis C virus (HCV) related chronic liver disease (CLD); 135 HCC, 116 cirrhotic patients without HCC and 64 patients with chronic hepatitis C. Using data mining analysis, we constructed a decision tree learning algorithm to predict HCC. The decision tree algorithm was able to predict HCC with recall (sensitivity) of 83.5% and precession (specificity) of 83.3% using only routine data. The correctly classified instances were 259 (82.2%), and the incorrectly classified instances were 56 (17.8%). Out of 29 attributes, serum alpha fetoprotein (AFP), with an optimal cutoff value of ≥50.3 ng/ml was selected as the best predictor of HCC. To a lesser extent, male sex, presence of cirrhosis, AST>64U/L, and ascites were variables associated with HCC. Data mining analysis allows discovery of hidden patterns and enables the development of models to predict HCC, utilizing routine data as an alternative to CT and liver biopsy. This study has highlighted a new cutoff for AFP (≥50.3 ng/ml). Presence of a score of >2 risk variables (out of 5) can successfully predict HCC with a sensitivity of 96% and specificity of 82%.

  6. Classification and Compression of Multi-Resolution Vectors: A Tree Structured Vector Quantizer Approach

    DTIC Science & Technology

    2002-01-01

    their expression profile and for classification of cells into tumerous and non- tumerous classes. Then we will present a parallel tree method for... cancerous cells. We will use the same dataset and use tree structured classifiers with multi-resolution analysis for classifying cancerous from non- cancerous ...cells. We have the expressions of 4096 genes from 98 different cell types. Of these 98, 72 are cancerous while 26 are non- cancerous . We are interested

  7. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    NASA Astrophysics Data System (ADS)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  8. Creating ensembles of oblique decision trees with evolutionary algorithms and sampling

    DOEpatents

    Cantu-Paz, Erick [Oakland, CA; Kamath, Chandrika [Tracy, CA

    2006-06-13

    A decision tree system that is part of a parallel object-oriented pattern recognition system, which in turn is part of an object oriented data mining system. A decision tree process includes the step of reading the data. If necessary, the data is sorted. A potential split of the data is evaluated according to some criterion. An initial split of the data is determined. The final split of the data is determined using evolutionary algorithms and statistical sampling techniques. The data is split. Multiple decision trees are combined in ensembles.

  9. Delineation of marsh types from Corpus Christi Bay, Texas, to Perdido Bay, Alabama, in 2010

    USGS Publications Warehouse

    Enwright, Nicholas M.; Hartley, Stephen B.; Couvillion, Brady R.; Michael G. Brasher,; Jenneke M. Visser,; Michael K. Mitchell,; Bart M. Ballard,; Mark W. Parr,; Barry C. Wilson,

    2015-07-23

    This study incorporates about 9,800 ground reference locations collected via helicopter surveys in coastal wetland areas. Decision-tree analyses were used to classify emergent marsh vegetation types by using ground reference data from helicopter vegetation surveys and independent variables such as multitemporal satellite-based multispectral imagery from 2009 to 2011, bare-earth digital elevation models based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables. Image objects were created from 2010 National Agriculture Imagery Program color-infrared aerial photography. The final classification is a 10-meter raster dataset that was produced by using a majority filter to classify image objects according to the marsh vegetation type covering the majority of each image object. The classification is dated 2010 because the year is both the midpoint of the classified multitemporal satellite-based imagery (2009–11) and the date of the high-resolution airborne imagery that was used to develop image objects. The seamless classification produced through this work can be used to help develop and refine conservation efforts for priority natural resources.

  10. Statistical classification of drug incidents due to look-alike sound-alike mix-ups.

    PubMed

    Wong, Zoie Shui Yee

    2016-06-01

    It has been recognised that medication names that look or sound similar are a cause of medication errors. This study builds statistical classifiers for identifying medication incidents due to look-alike sound-alike mix-ups. A total of 227 patient safety incident advisories related to medication were obtained from the Canadian Patient Safety Institute's Global Patient Safety Alerts system. Eight feature selection strategies based on frequent terms, frequent drug terms and constituent terms were performed. Statistical text classifiers based on logistic regression, support vector machines with linear, polynomial, radial-basis and sigmoid kernels and decision tree were trained and tested. The models developed achieved an average accuracy of above 0.8 across all the model settings. The receiver operating characteristic curves indicated the classifiers performed reasonably well. The results obtained in this study suggest that statistical text classification can be a feasible method for identifying medication incidents due to look-alike sound-alike mix-ups based on a database of advisories from Global Patient Safety Alerts. © The Author(s) 2014.

  11. Identifying typical physical activity on smartphone with varying positions and orientations.

    PubMed

    Miao, Fen; He, Yi; Liu, Jinlei; Li, Ye; Ayoola, Idowu

    2015-04-13

    Traditional activity recognition solutions are not widely applicable due to a high cost and inconvenience to use with numerous sensors. This paper aims to automatically recognize physical activity with the help of the built-in sensors of the widespread smartphone without any limitation of firm attachment to the human body. By introducing a method to judge whether the phone is in a pocket, we investigated the data collected from six positions of seven subjects, chose five signals that are insensitive to orientation for activity classification. Decision trees (J48), Naive Bayes and Sequential minimal optimization (SMO) were employed to recognize five activities: static, walking, running, walking upstairs and walking downstairs. The experimental results based on 8,097 activity data demonstrated that the J48 classifier produced the best performance with an average recognition accuracy of 89.6% during the three classifiers, and thus would serve as the optimal online classifier. The utilization of the built-in sensors of the smartphone to recognize typical physical activities without any limitation of firm attachment is feasible.

  12. Speaker gender identification based on majority vote classifiers

    NASA Astrophysics Data System (ADS)

    Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri

    2017-03-01

    Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.

  13. Classification of document page images based on visual similarity of layout structures

    NASA Astrophysics Data System (ADS)

    Shin, Christian K.; Doermann, David S.

    1999-12-01

    Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.

  14. Automated diagnosis of epilepsy using CWT, HOS and texture parameters.

    PubMed

    Acharya, U Rajendra; Yanti, Ratna; Zheng, Jia Wei; Krishnan, M Muthu Rama; Tan, Jen Hong; Martis, Roshan Joy; Lim, Choo Min

    2013-06-01

    Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.

  15. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  16. Learning from examples - Generation and evaluation of decision trees for software resource analysis

    NASA Technical Reports Server (NTRS)

    Selby, Richard W.; Porter, Adam A.

    1988-01-01

    A general solution method for the automatic generation of decision (or classification) trees is investigated. The approach is to provide insights through in-depth empirical characterization and evaluation of decision trees for software resource data analysis. The trees identify classes of objects (software modules) that had high development effort. Sixteen software systems ranging from 3,000 to 112,000 source lines were selected for analysis from a NASA production environment. The collection and analysis of 74 attributes (or metrics), for over 4,700 objects, captured information about the development effort, faults, changes, design style, and implementation style. A total of 9,600 decision trees were automatically generated and evaluated. The trees correctly identified 79.3 percent of the software modules that had high development effort or faults, and the trees generated from the best parameter combinations correctly identified 88.4 percent of the modules on the average.

  17. Bioimpedance Spectroscopy as a Practical Tool for the Early Detection and Prevention of Protein-Energy Wasting in Hemodialysis Patients.

    PubMed

    Arias-Guillén, Marta; Perez, Eduardo; Herrera, Patricia; Romano, Bárbara; Ojeda, Raquel; Vera, Manel; Ríos, José; Fontseré, Néstor; Maduell, Francisco

    2018-04-21

    To evaluate whether body composition monitor (BCM) could be a practical instrument for nephrologists to assess nutritional status in patients on hemodialysis (HD) and whether it is more effective in identifying patients at highest risk of developing protein-energy wasting (PEW) alone or in combination with other tools currently used for that purpose. Observational cross-sectional study in 91 HD patients (60 ± 14 years, 70.3% male, 24 ± 4.1 kg/m 2 body mass index) from 2 different locations. Nutritional status was evaluated by anthropometric methods (biceps and triceps skinfold thickness, waist circumference, and arm muscular circumference), biochemical nutritional markers, malnutrition-inflammation score (MIS), and BCM. The patients were grouped into those with and without PEW by using classical criteria and then classified as being adequately or inadequately nourished according to a BCM flow chart to detect those requiring preferential nutritional intervention. A multivariate approach was used to calculate the risk of developing PEW. Anthropometric measurements revealed significantly lower body mass index (<23 kg/m 2 ; odds ratios [OR] = 13.3 and P = 0.001) and arm muscular circumference < p10 (OR = 34, P < 0.001) in the PEW group. MIS was above 5 in all the patients classified as having PEW. BCM showed that fat tissue index < p10 was significantly lower in this group (OR = 1.52), and a decision tree using the lean tissue index < p10, fat tissue index < p10, and extracellular water > 15% revealed that 42.9% of the patients would need nutritional monitoring. On multivariate analysis, insufficient nutritional status detected by BCM decision tree was an independent prognostic factor for developing PEW. About 9.89% of the patients were classified as PEW, with MIS > 5, and insufficient nutritional status detected by BCM required preferential nutritional intervention. BCM is a practical instrument for nephrologists to assess nutritional status in patients on HD and is useful for the early prevention and detection of PEW, as is able to identify differences in body composition, predict clinically important outcomes, and classify patients requiring preferential nutritional intervention. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Decision-Tree Models of Categorization Response Times, Choice Proportions, and Typicality Judgments

    ERIC Educational Resources Information Center

    Lafond, Daniel; Lacouture, Yves; Cohen, Andrew L.

    2009-01-01

    The authors present 3 decision-tree models of categorization adapted from T. Trabasso, H. Rollins, and E. Shaughnessy (1971) and use them to provide a quantitative account of categorization response times, choice proportions, and typicality judgments at the individual-participant level. In Experiment 1, the decision-tree models were fit to…

  19. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process

    PubMed Central

    Masías, Víctor H.; Krause, Mariane; Valdés, Nelson; Pérez, J. C.; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice. PMID:25914657

  20. Using decision trees to characterize verbal communication during change and stuck episodes in the therapeutic process.

    PubMed

    Masías, Víctor H; Krause, Mariane; Valdés, Nelson; Pérez, J C; Laengle, Sigifredo

    2015-01-01

    Methods are needed for creating models to characterize verbal communication between therapists and their patients that are suitable for teaching purposes without losing analytical potential. A technique meeting these twin requirements is proposed that uses decision trees to identify both change and stuck episodes in therapist-patient communication. Three decision tree algorithms (C4.5, NBTree, and REPTree) are applied to the problem of characterizing verbal responses into change and stuck episodes in the therapeutic process. The data for the problem is derived from a corpus of 8 successful individual therapy sessions with 1760 speaking turns in a psychodynamic context. The decision tree model that performed best was generated by the C4.5 algorithm. It delivered 15 rules characterizing the verbal communication in the two types of episodes. Decision trees are a promising technique for analyzing verbal communication during significant therapy events and have much potential for use in teaching practice on changes in therapeutic communication. The development of pedagogical methods using decision trees can support the transmission of academic knowledge to therapeutic practice.

  1. Computerized Adaptive Test vs. decision trees: Development of a support decision system to identify suicidal behavior.

    PubMed

    Delgado-Gomez, D; Baca-Garcia, E; Aguado, D; Courtet, P; Lopez-Castroman, J

    2016-12-01

    Several Computerized Adaptive Tests (CATs) have been proposed to facilitate assessments in mental health. These tests are built in a standard way, disregarding useful and usually available information not included in the assessment scales that could increase the precision and utility of CATs, such as the history of suicide attempts. Using the items of a previously developed scale for suicidal risk, we compared the performance of a standard CAT and a decision tree in a support decision system to identify suicidal behavior. We included the history of past suicide attempts as a class for the separation of patients in the decision tree. The decision tree needed an average of four items to achieve a similar accuracy than a standard CAT with nine items. The accuracy of the decision tree, obtained after 25 cross-validations, was 81.4%. A shortened test adapted for the separation of suicidal and non-suicidal patients was developed. CATs can be very useful tools for the assessment of suicidal risk. However, standard CATs do not use all the information that is available. A decision tree can improve the precision of the assessment since they are constructed using a priori information. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. An evaluation of supervised classifiers for indirectly detecting salt-affected areas at irrigation scheme level

    NASA Astrophysics Data System (ADS)

    Muller, Sybrand Jacobus; van Niekerk, Adriaan

    2016-07-01

    Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.

  3. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    PubMed

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  4. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  5. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets

    PubMed Central

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662

  6. Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets.

    PubMed

    Doubravsky, Karel; Dohnal, Mirko

    2015-01-01

    Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.

  7. Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species

    USGS Publications Warehouse

    Kane, Jeffrey M.; van Mantgem, Phillip J.; Lalemand, Laura; Keifer, MaryBeth

    2017-01-01

    Managers require accurate models to predict post-fire tree mortality to plan prescribed fire treatments and examine their effectiveness. Here we assess the performance of a common post-fire tree mortality model with an independent dataset of 11 tree species from 13 National Park Service units in the western USA. Overall model discrimination was generally strong, but performance varied considerably among species and sites. The model tended to have higher sensitivity (proportion of correctly classified dead trees) and lower specificity (proportion of correctly classified live trees) for many species, indicating an overestimation of mortality. Variation in model accuracy (percentage of live and dead trees correctly classified) among species was not related to sample size or percentage observed mortality. However, we observed a positive relationship between specificity and a species-specific bark thickness multiplier, indicating that overestimation was more common in thin-barked species. Accuracy was also quite low for thinner bark classes (<1 cm) for many species, leading to poorer model performance. Our results indicate that a common post-fire mortality model generally performs well across a range of species and sites; however, some thin-barked species and size classes would benefit from further refinement to improve model specificity.

  8. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    PubMed

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  9. CompGC: Efficient Offline/Online Semi-Honest Two-Party Computation

    DTIC Science & Technology

    2017-02-03

    κ ∈ N : Pr [ ExptprivA,S(κ) = 1 ] ≤ 1 2 + µ(κ) 4.1. Component-Based Secure Two-Party Compu- tation We now briefly describe how to use component-based...number of classes and “F” is the number of features. Specs. Naive CompGC Bost et al. [BPTG15] Data Set N D Time Time* Comm. Time Time* Comm. Time Comm...Rounds Nursery 4 4 40 0.3 40 0.01 2085 21.6 15 ECG 6 4 40 0.4 40 0.1 8816 29.1 22 (c) Decision tree classifier. “ N ” is the number of internal nodes in

  10. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  11. Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning

    NASA Astrophysics Data System (ADS)

    Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.

    2017-12-01

    Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.

  12. Cloud Detection from Satellite Imagery: A Comparison of Expert-Generated and Automatically-Generated Decision Trees

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar

    2004-01-01

    Automated cloud detection and tracking is an important step in assessing global climate change via remote sensing. Cloud masks, which indicate whether individual pixels depict clouds, are included in many of the data products that are based on data acquired on- board earth satellites. Many cloud-mask algorithms have the form of decision trees, which employ sequential tests that scientists designed based on empirical astrophysics studies and astrophysics simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In this study we explored the potential benefits of automatically-learned decision trees for detecting clouds from images acquired using the Advanced Very High Resolution Radiometer (AVHRR) instrument on board the NOAA-14 weather satellite of the National Oceanic and Atmospheric Administration. We constructed three decision trees for a sample of 8km-daily AVHRR data from 2000 using a decision-tree learning procedure provided within MATLAB(R), and compared the accuracy of the decision trees to the accuracy of the cloud mask. We used ground observations collected by the National Aeronautics and Space Administration Clouds and the Earth s Radiant Energy Systems S COOL project as the gold standard. For the sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks included in the AVHRR data product.

  13. Modifiable risk factors predicting major depressive disorder at four year follow-up: a decision tree approach.

    PubMed

    Batterham, Philip J; Christensen, Helen; Mackinnon, Andrew J

    2009-11-22

    Relative to physical health conditions such as cardiovascular disease, little is known about risk factors that predict the prevalence of depression. The present study investigates the expected effects of a reduction of these risks over time, using the decision tree method favoured in assessing cardiovascular disease risk. The PATH through Life cohort was used for the study, comprising 2,105 20-24 year olds, 2,323 40-44 year olds and 2,177 60-64 year olds sampled from the community in the Canberra region, Australia. A decision tree methodology was used to predict the presence of major depressive disorder after four years of follow-up. The decision tree was compared with a logistic regression analysis using ROC curves. The decision tree was found to distinguish and delineate a wide range of risk profiles. Previous depressive symptoms were most highly predictive of depression after four years, however, modifiable risk factors such as substance use and employment status played significant roles in assessing the risk of depression. The decision tree was found to have better sensitivity and specificity than a logistic regression using identical predictors. The decision tree method was useful in assessing the risk of major depressive disorder over four years. Application of the model to the development of a predictive tool for tailored interventions is discussed.

  14. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    EPA Science Inventory

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  15. An Improved Decision Tree for Predicting a Major Product in Competing Reactions

    ERIC Educational Resources Information Center

    Graham, Kate J.

    2014-01-01

    When organic chemistry students encounter competing reactions, they are often overwhelmed by the task of evaluating multiple factors that affect the outcome of a reaction. The use of a decision tree is a useful tool to teach students to evaluate a complex situation and propose a likely outcome. Specifically, a decision tree can help students…

  16. Decision Tree Phytoremediation

    DTIC Science & Technology

    1999-12-01

    aromatic hydrocarbons, and landfill leachates . Phytoremediation has been used for point and nonpoint source hazardous waste control. 1.2 Types of... Phytoremediation Prepared by Interstate Technology and Regulatory Cooperation Work Group Phytoremediation Work Team December 1999 Decision Tree...1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Phytoremediation Decision Tree 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  17. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data.

    PubMed

    Barros, Rodrigo C; Winck, Ana T; Machado, Karina S; Basgalupp, Márcio P; de Carvalho, André C P L F; Ruiz, Duncan D; de Souza, Osmar Norberto

    2012-11-21

    This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.

  18. Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data

    PubMed Central

    2012-01-01

    Background This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor. PMID:23171000

  19. Tree Species Classification of Broadleaved Forests in Nagano, Central Japan, Using Airborne Laser Data and Multispectral Images

    NASA Astrophysics Data System (ADS)

    Deng, S.; Katoh, M.; Takenaka, Y.; Cheung, K.; Ishii, A.; Fujii, N.; Gao, T.

    2017-10-01

    This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS) data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS) device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB), 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees), four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees), and 13 classes for the third level (three coniferous and ten broadleaved species), using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  20. Application of preprocessing filtering on Decision Tree C4.5 and rough set theory

    NASA Astrophysics Data System (ADS)

    Chan, Joseph C. C.; Lin, Tsau Y.

    2001-03-01

    This paper compares two artificial intelligence methods: the Decision Tree C4.5 and Rough Set Theory on the stock market data. The Decision Tree C4.5 is reviewed with the Rough Set Theory. An enhanced window application is developed to facilitate the pre-processing filtering by introducing the feature (attribute) transformations, which allows users to input formulas and create new attributes. Also, the application produces three varieties of data set with delaying, averaging, and summation. The results prove the improvement of pre-processing by applying feature (attribute) transformations on Decision Tree C4.5. Moreover, the comparison between Decision Tree C4.5 and Rough Set Theory is based on the clarity, automation, accuracy, dimensionality, raw data, and speed, which is supported by the rules sets generated by both algorithms on three different sets of data.

  1. Prediction of healthy blood with data mining classification by using Decision Tree, Naive Baysian and SVM approaches

    NASA Astrophysics Data System (ADS)

    Khalilinezhad, Mahdieh; Minaei, Behrooz; Vernazza, Gianni; Dellepiane, Silvana

    2015-03-01

    Data mining (DM) is the process of discovery knowledge from large databases. Applications of data mining in Blood Transfusion Organizations could be useful for improving the performance of blood donation service. The aim of this research is the prediction of healthiness of blood donors in Blood Transfusion Organization (BTO). For this goal, three famous algorithms such as Decision Tree C4.5, Naïve Bayesian classifier, and Support Vector Machine have been chosen and applied to a real database made of 11006 donors. Seven fields such as sex, age, job, education, marital status, type of donor, results of blood tests (doctors' comments and lab results about healthy or unhealthy blood donors) have been selected as input to these algorithms. The results of the three algorithms have been compared and an error cost analysis has been performed. According to this research and the obtained results, the best algorithm with low error cost and high accuracy is SVM. This research helps BTO to realize a model from blood donors in each area in order to predict the healthy blood or unhealthy blood of donors. This research could be useful if used in parallel with laboratory tests to better separate unhealthy blood.

  2. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  3. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  4. Identifying and classifying water hyacinth (Eichhornia crassipes) using the HyMap sensor

    NASA Astrophysics Data System (ADS)

    Rajapakse, Sepalika S.; Khanna, Shruti; Andrew, Margaret E.; Ustin, Susan L.; Lay, Mui

    2006-08-01

    In recent years, the impact of aquatic invasive species on biodiversity has become a major global concern. In the Sacramento-San Joaquin Delta region in the Central Valley of California, USA, dense infestations of the invasive aquatic emergent weed, water hyacinth (Eichhornia crassipes) interfere with ecosystem functioning. This silent invader constantly encroaches into waterways, eventually making them unusable by people and uninhabitable to aquatic fauna. Quantifying and mapping invasive plant species in aquatic ecosystems is important for efficient management and implementation of mitigation measures. This paper evaluates the ability of hyperspectral imagery, acquired using the HyMap sensor, for mapping water hyacinth in the Sacramento-San Joaquin Delta region. Classification was performed on sixty-four flightlines acquired over the study site using a decision tree which incorporated Spectral Angle Mapper (SAM) algorithm, absorption feature parameters in the spectral region between 0.4 and 2.5μm, and spectral endmembers. The total image dataset was 130GB. Spectral signatures of other emergent aquatic species like pennywort (Hydrocotyle ranunculoides) and water primrose (Ludwigia peploides) showed close similarity with the water hyacinth spectrum, however, the decision tree successfully discriminated water hyacinth from other emergent aquatic vegetation species. The classification algorithm showed high accuracy (κ value = 0.8) in discriminating water hyacinth.

  5. Predicted seafloor facies of Central Santa Monica Bay, California

    USGS Publications Warehouse

    Dartnell, Peter; Gardner, James V.

    2004-01-01

    Summary -- Mapping surficial seafloor facies (sand, silt, muddy sand, rock, etc.) should be the first step in marine geological studies and is crucial when modeling sediment processes, pollution transport, deciphering tectonics, and defining benthic habitats. This report outlines an empirical technique that predicts the distribution of seafloor facies for a large area offshore Los Angeles, CA using high-resolution bathymetry and co-registered, calibrated backscatter from multibeam echosounders (MBES) correlated to ground-truth sediment samples. The technique uses a series of procedures that involve supervised classification and a hierarchical decision tree classification that are now available in advanced image-analysis software packages. Derivative variance images of both bathymetry and acoustic backscatter are calculated from the MBES data and then used in a hierarchical decision-tree framework to classify the MBES data into areas of rock, gravelly muddy sand, muddy sand, and mud. A quantitative accuracy assessment on the classification results is performed using ground-truth sediment samples. The predicted facies map is also ground-truthed using seafloor photographs and high-resolution sub-bottom seismic-reflection profiles. This Open-File Report contains the predicted seafloor facies map as a georeferenced TIFF image along with the multibeam bathymetry and acoustic backscatter data used in the study as well as an explanation of the empirical classification process.

  6. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  7. Multivariate analysis of flow cytometric data using decision trees.

    PubMed

    Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver

    2012-01-01

    Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.

  8. Application of recurrence quantification analysis for the automated identification of epileptic EEG signals.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Chattopadhyay, Subhagata; Yu, Wenwei; Ang, Peng Chuan Alvin

    2011-06-01

    Epilepsy is a common neurological disorder that is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals are widely used to diagnose seizures. Because of the non-linear and dynamic nature of the EEG signals, it is difficult to effectively decipher the subtle changes in these signals by visual inspection and by using linear techniques. Therefore, non-linear methods are being researched to analyze the EEG signals. In this work, we use the recorded EEG signals in Recurrence Plots (RP), and extract Recurrence Quantification Analysis (RQA) parameters from the RP in order to classify the EEG signals into normal, ictal, and interictal classes. Recurrence Plot (RP) is a graph that shows all the times at which a state of the dynamical system recurs. Studies have reported significantly different RQA parameters for the three classes. However, more studies are needed to develop classifiers that use these promising features and present good classification accuracy in differentiating the three types of EEG segments. Therefore, in this work, we have used ten RQA parameters to quantify the important features in the EEG signals.These features were fed to seven different classifiers: Support vector machine (SVM), Gaussian Mixture Model (GMM), Fuzzy Sugeno Classifier, K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree (DT), and Radial Basis Probabilistic Neural Network (RBPNN). Our results show that the SVM classifier was able to identify the EEG class with an average efficiency of 95.6%, sensitivity and specificity of 98.9% and 97.8%, respectively.

  9. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  10. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  11. 15 CFR Supplement No 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Decision Tree No Supplement No 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued... THE EAR Pt. 732, Supp. 1 Supplement No 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6...

  12. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  13. 15 CFR Supplement 1 to Part 732 - Decision Tree

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Decision Tree 1 Supplement 1 to Part 732 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU... THE EAR Pt. 732, Supp. 1 Supplement 1 to Part 732—Decision Tree ER06FE04.000 [69 FR 5687, Feb. 6, 2004] ...

  14. Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

    PubMed Central

    Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E.

    2013-01-01

    Purpose This study developed and tested an algorithm to classify accelerometer data as walking or non-walking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods Participants wore an accelerometer and a GPS unit, and concurrently completed a travel diary for 7 consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or non-walking based on a decision-tree algorithm consisting of 7 classification scenarios. Algorithm reliability was examined relative to two independent analysts’ classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results The 706 participants’ (mean age 51 years, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4,702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified physical activity into 8,170 (58.5 %) walking bouts and 5,337 (38.2%) non-walking bouts; 464 (3.3%) bouts were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the non-walking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean duration of PA bouts classified as walking was 15.2 min (SD=12.9). On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or non-walking behavior. PMID:23439414

  15. From Google Maps to a fine-grained catalog of street trees

    NASA Astrophysics Data System (ADS)

    Branson, Steve; Wegner, Jan Dirk; Hall, David; Lang, Nico; Schindler, Konrad; Perona, Pietro

    2018-01-01

    Up-to-date catalogs of the urban tree population are of importance for municipalities to monitor and improve quality of life in cities. Despite much research on automation of tree mapping, mainly relying on dedicated airborne LiDAR or hyperspectral campaigns, tree detection and species recognition is still mostly done manually in practice. We present a fully automated tree detection and species recognition pipeline that can process thousands of trees within a few hours using publicly available aerial and street view images of Google MapsTM. These data provide rich information from different viewpoints and at different scales from global tree shapes to bark textures. Our work-flow is built around a supervised classification that automatically learns the most discriminative features from thousands of trees and corresponding, publicly available tree inventory data. In addition, we introduce a change tracker that recognizes changes of individual trees at city-scale, which is essential to keep an urban tree inventory up-to-date. The system takes street-level images of the same tree location at two different times and classifies the type of change (e.g., tree has been removed). Drawing on recent advances in computer vision and machine learning, we apply convolutional neural networks (CNN) for all classification tasks. We propose the following pipeline: download all available panoramas and overhead images of an area of interest, detect trees per image and combine multi-view detections in a probabilistic framework, adding prior knowledge; recognize fine-grained species of detected trees. In a later, separate module, track trees over time, detect significant changes and classify the type of change. We believe this is the first work to exploit publicly available image data for city-scale street tree detection, species recognition and change tracking, exhaustively over several square kilometers, respectively many thousands of trees. Experiments in the city of Pasadena, California, USA show that we can detect >70% of the street trees, assign correct species to >80% for 40 different species, and correctly detect and classify changes in >90% of the cases.

  16. Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka

    Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.

  17. Classifying prosthetic use via accelerometry in persons with transtibial amputations.

    PubMed

    Redfield, Morgan T; Cagle, John C; Hafner, Brian J; Sanders, Joan E

    2013-01-01

    Knowledge of how persons with amputation use their prostheses and how this use changes over time may facilitate effective rehabilitation practices and enhance understanding of prosthesis functionality. Perpetual monitoring and classification of prosthesis use may also increase the health and quality of life for prosthetic users. Existing monitoring and classification systems are often limited in that they require the subject to manipulate the sensor (e.g., attach, remove, or reset a sensor), record data over relatively short time periods, and/or classify a limited number of activities and body postures of interest. In this study, a commercially available three-axis accelerometer (ActiLife ActiGraph GT3X+) was used to characterize the activities and body postures of individuals with transtibial amputation. Accelerometers were mounted on prosthetic pylons of 10 persons with transtibial amputation as they performed a preset routine of actions. Accelerometer data was postprocessed using a binary decision tree to identify when the prosthesis was being worn and to classify periods of use as movement (i.e., leg motion such as walking or stair climbing), standing (i.e., standing upright with limited leg motion), or sitting (i.e., seated with limited leg motion). Classifications were compared to visual observation by study researchers. The classifier achieved a mean +/- standard deviation accuracy of 96.6% +/- 3.0%.

  18. Classifying Prosthetic Use via Accelerometry in Persons with Trans-Tibial Amputations

    PubMed Central

    Redfield, Morgan T.; Cagle, John C.; Hafner, Brian J.; Sanders, Joan E.

    2014-01-01

    Knowledge of how persons with amputation use their prostheses and how this use changes over time may facilitate effective rehabilitation practices and enhance understanding of prosthesis functionality. Perpetual monitoring and classification of prosthesis use may also increase the health and quality of life for prosthetic users. Existing monitoring and classification systems are often limited in that they require the subject to manipulate the sensor (e.g., attach, remove, or reset a sensor), record data over relatively short time periods, and/or classify a limited number of activities and body postures of interest. In this study, a commercially-available three-axis accelerometer (ActiLife ActiGraph GT3X+) was used to characterize the activities and body postures of individuals with trans-tibial amputation. Accelerometers were mounted on prosthetic pylons of ten persons with trans-tibial amputation as they performed a preset routine of actions. Accelerometer data was post-processed using a Binary Decision Tree to identify when the prosthesis was being worn and to classify periods of use as movement (i.e., leg motion like walking or stair climbing), standing (i.e., standing upright with limited leg motion), or sitting (i.e., seated with limited leg motion). Classifications were compared to visual observation by study researchers. The classifier achieved a mean accuracy of 96.6% (SD=3.0%). PMID:24458961

  19. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparing wavefront-optimized, wavefront-guided and topography-guided laser vision correction: clinical outcomes using an objective decision tree.

    PubMed

    Stonecipher, Karl; Parrish, Joseph; Stonecipher, Megan

    2018-05-18

    This review is intended to update and educate the reader on the currently available options for laser vision correction, more specifically, laser-assisted in-situ keratomileusis (LASIK). In addition, some related clinical outcomes data from over 1000 cases performed over a 1-year are presented to highlight some differences between the various treatment profiles currently available including the rapidity of visual recovery. The cases in question were performed on the basis of a decision tree to segregate patients on the basis of anatomical, topographic and aberrometry findings; the decision tree was formulated based on the data available in some of the reviewed articles. Numerous recent studies reported in the literature provide data related to the risks and benefits of LASIK; alternatives to a laser refractive procedure are also discussed. The results from these studies have been used to prepare a decision tree to assist the surgeon in choosing the best option for the patient based on the data from several standard preoperative diagnostic tests. The data presented here should aid surgeons in understanding the effects of currently available LASIK treatment profiles. Surgeons should also be able to appreciate how the findings were used to create a decision tree to help choose the most appropriate treatment profile for patients. Finally, the retrospective evaluation of clinical outcomes based on the decision tree should provide surgeons with a realistic expectation for their own outcomes should they adopt such a decision tree in their own practice.

  2. Comparative analysis of tree classification models for detecting fusarium oxysporum f. sp cubense (TR4) based on multi soil sensor parameters

    NASA Astrophysics Data System (ADS)

    Estuar, Maria Regina Justina; Victorino, John Noel; Coronel, Andrei; Co, Jerelyn; Tiausas, Francis; Señires, Chiara Veronica

    2017-09-01

    Use of wireless sensor networks and smartphone integration design to monitor environmental parameters surrounding plantations is made possible because of readily available and affordable sensors. Providing low cost monitoring devices would be beneficial, especially to small farm owners, in a developing country like the Philippines, where agriculture covers a significant amount of the labor market. This study discusses the integration of wireless soil sensor devices and smartphones to create an application that will use multidimensional analysis to detect the presence or absence of plant disease. Specifically, soil sensors are designed to collect soil quality parameters in a sink node from which the smartphone collects data from via Bluetooth. Given these, there is a need to develop a classification model on the mobile phone that will report infection status of a soil. Though tree classification is the most appropriate approach for continuous parameter-based datasets, there is a need to determine whether tree models will result to coherent results or not. Soil sensor data that resides on the phone is modeled using several variations of decision tree, namely: decision tree (DT), best-fit (BF) decision tree, functional tree (FT), Naive Bayes (NB) decision tree, J48, J48graft and LAD tree, where decision tree approaches the problem by considering all sensor nodes as one. Results show that there are significant differences among soil sensor parameters indicating that there are variances in scores between the infected and uninfected sites. Furthermore, analysis of variance in accuracy, recall, precision and F1 measure scores from tree classification models homogeneity among NBTree, J48graft and J48 tree classification models.

  3. Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound

    PubMed Central

    Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.

    2012-01-01

    Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643

  4. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  5. Predictive Toxicology of cobalt ferrite nanoparticles: comparative in-vitro study of different cellular models using methods of knowledge discovery from data

    PubMed Central

    2013-01-01

    Background Cobalt-ferrite nanoparticles (Co-Fe NPs) are attractive for nanotechnology-based therapies. Thus, exploring their effect on viability of seven different cell lines representing different organs of the human body is highly important. Methods The toxicological effects of Co-Fe NPs were studied by in-vitro exposure of A549 and NCIH441 cell-lines (lung), precision-cut lung slices from rat, HepG2 cell-line (liver), MDCK cell-line (kidney), Caco-2 TC7 cell-line (intestine), TK6 (lymphoblasts) and primary mouse dendritic-cells. Toxicity was examined following exposure to Co-Fe NPs in the concentration range of 0.05 -1.2 mM for 24 and 72 h, using Alamar blue, MTT and neutral red assays. Changes in oxidative stress were determined by a dichlorodihydrofluorescein diacetate based assay. Data analysis and predictive modeling of the obtained data sets were executed by employing methods of Knowledge Discovery from Data with emphasis on a decision tree model (J48). Results Different dose–response curves of cell viability were obtained for each of the seven cell lines upon exposure to Co-Fe NPs. Increase of oxidative stress was induced by Co-Fe NPs and found to be dependent on the cell type. A high linear correlation (R2=0.97) was found between the toxicity of Co-Fe NPs and the extent of ROS generation following their exposure to Co-Fe NPs. The algorithm we applied to model the observed toxicity belongs to a type of supervised classifier. The decision tree model yielded the following order with decrease of the ranking parameter: NP concentrations (as the most influencing parameter), cell type (possessing the following hierarchy of cell sensitivity towards viability decrease: TK6 > Lung slices > NCIH441 > Caco-2 = MDCK > A549 > HepG2 = Dendritic) and time of exposure, where the highest-ranking parameter (NP concentration) provides the highest information gain with respect to toxicity. The validity of the chosen decision tree model J48 was established by yielding a higher accuracy than that of the well-known “naive bayes” classifier. Conclusions The observed correlation between the oxidative stress, caused by the presence of the Co-Fe NPs, with the hierarchy of sensitivity of the different cell types towards toxicity, suggests that oxidative stress is one possible mechanism for the toxicity of Co-Fe NPs. PMID:23895432

  6. Predicting serious complications in patients with cancer and pulmonary embolism using decision tree modelling: the EPIPHANY Index.

    PubMed

    Carmona-Bayonas, A; Jiménez-Fonseca, P; Font, C; Fenoy, F; Otero, R; Beato, C; Plasencia, J M; Biosca, M; Sánchez, M; Benegas, M; Calvo-Temprano, D; Varona, D; Faez, L; de la Haba, I; Antonio, M; Madridano, O; Solis, M P; Ramchandani, A; Castañón, E; Marchena, P J; Martín, M; Ayala de la Peña, F; Vicente, V

    2017-04-11

    Our objective was to develop a prognostic stratification tool that enables patients with cancer and pulmonary embolism (PE), whether incidental or symptomatic, to be classified according to the risk of serious complications within 15 days. The sample comprised cases from a national registry of pulmonary thromboembolism in patients with cancer (1075 patients from 14 Spanish centres). Diagnosis was incidental in 53.5% of the events in this registry. The Exhaustive CHAID analysis was applied with 10-fold cross-validation to predict development of serious complications following PE diagnosis. About 208 patients (19.3%, 95% confidence interval (CI), 17.1-21.8%) developed a serious complication after PE diagnosis. The 15-day mortality rate was 10.1%, (95% CI, 8.4-12.1%). The decision tree detected six explanatory covariates: Hestia-like clinical decision rule (any risk criterion present vs none), Eastern Cooperative Group performance scale (ECOG-PS; <2 vs ⩾2), O 2 saturation (<90 vs ⩾90%), presence of PE-specific symptoms, tumour response (progression, unknown, or not evaluated vs others), and primary tumour resection. Three risk classes were created (low, intermediate, and high risk). The risk of serious complications within 15 days increases according to the group: 1.6, 9.4, 30.6%; P<0.0001. Fifteen-day mortality rates also rise progressively in low-, intermediate-, and high-risk patients: 0.3, 6.1, and 17.1%; P<0.0001. The cross-validated risk estimate is 0.191 (s.e.=0.012). The optimism-corrected area under the receiver operating characteristic curve is 0.779 (95% CI, 0.717-0.840). We have developed and internally validated a prognostic index to predict serious complications with the potential to impact decision-making in patients with cancer and PE.

  7. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    PubMed

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P < 0.01). A clinically useful classification tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  8. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat

    PubMed Central

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A.; Kölzsch, Andrea; Prins, Herbert H. T.; de Boer, W. Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations in behaviour at the individual level. PMID:26107643

  9. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    PubMed

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A; Kölzsch, Andrea; Prins, Herbert H T; de Boer, W Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations in behaviour at the individual level.

  10. Development of a diagnostic decision tree for obstructive pulmonary diseases based on real-life data

    PubMed Central

    in ’t Veen, Johannes C.C.M.; Dekhuijzen, P.N. Richard; van Heijst, Ellen; Kocks, Janwillem W.H.; Muilwijk-Kroes, Jacqueline B.; Chavannes, Niels H.; van der Molen, Thys

    2016-01-01

    The aim of this study was to develop and explore the diagnostic accuracy of a decision tree derived from a large real-life primary care population. Data from 9297 primary care patients (45% male, mean age 53±17 years) with suspicion of an obstructive pulmonary disease was derived from an asthma/chronic obstructive pulmonary disease (COPD) service where patients were assessed using spirometry, the Asthma Control Questionnaire, the Clinical COPD Questionnaire, history data and medication use. All patients were diagnosed through the Internet by a pulmonologist. The Chi-squared Automatic Interaction Detection method was used to build the decision tree. The tree was externally validated in another real-life primary care population (n=3215). Our tree correctly diagnosed 79% of the asthma patients, 85% of the COPD patients and 32% of the asthma–COPD overlap syndrome (ACOS) patients. External validation showed a comparable pattern (correct: asthma 78%, COPD 83%, ACOS 24%). Our decision tree is considered to be promising because it was based on real-life primary care patients with a specialist's diagnosis. In most patients the diagnosis could be correctly predicted. Predicting ACOS, however, remained a challenge. The total decision tree can be implemented in computer-assisted diagnostic systems for individual patients. A simplified version of this tree can be used in daily clinical practice as a desk tool. PMID:27730177

  11. A Decision Tree for Nonmetric Sex Assessment from the Skull.

    PubMed

    Langley, Natalie R; Dudzik, Beatrix; Cloutier, Alesia

    2018-01-01

    This study uses five well-documented cranial nonmetric traits (glabella, mastoid process, mental eminence, supraorbital margin, and nuchal crest) and one additional trait (zygomatic extension) to develop a validated decision tree for sex assessment. The decision tree was built and cross-validated on a sample of 293 U.S. White individuals from the William M. Bass Donated Skeletal Collection. Ordinal scores from the six traits were analyzed using the partition modeling option in JMP Pro 12. A holdout sample of 50 skulls was used to test the model. The most accurate decision tree includes three variables: glabella, zygomatic extension, and mastoid process. This decision tree yielded 93.5% accuracy on the training sample, 94% on the cross-validated sample, and 96% on a holdout validation sample. Linear weighted kappa statistics indicate acceptable agreement among observers for these variables. Mental eminence should be avoided, and definitions and figures should be referenced carefully to score nonmetric traits. © 2017 American Academy of Forensic Sciences.

  12. A framework for sensitivity analysis of decision trees.

    PubMed

    Kamiński, Bogumił; Jakubczyk, Michał; Szufel, Przemysław

    2018-01-01

    In the paper, we consider sequential decision problems with uncertainty, represented as decision trees. Sensitivity analysis is always a crucial element of decision making and in decision trees it often focuses on probabilities. In the stochastic model considered, the user often has only limited information about the true values of probabilities. We develop a framework for performing sensitivity analysis of optimal strategies accounting for this distributional uncertainty. We design this robust optimization approach in an intuitive and not overly technical way, to make it simple to apply in daily managerial practice. The proposed framework allows for (1) analysis of the stability of the expected-value-maximizing strategy and (2) identification of strategies which are robust with respect to pessimistic/optimistic/mode-favoring perturbations of probabilities. We verify the properties of our approach in two cases: (a) probabilities in a tree are the primitives of the model and can be modified independently; (b) probabilities in a tree reflect some underlying, structural probabilities, and are interrelated. We provide a free software tool implementing the methods described.

  13. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists.

    PubMed

    Bonet, Isis; Franco-Montero, Pedro; Rivero, Virginia; Teijeira, Marta; Borges, Fernanda; Uriarte, Eugenio; Morales Helguera, Aliuska

    2013-12-23

    A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.

  14. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    DTIC Science & Technology

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  15. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    NASA Astrophysics Data System (ADS)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  16. [Comparison of Discriminant Analysis and Decision Trees for the Detection of Subclinical Keratoconus].

    PubMed

    Kleinhans, Sonja; Herrmann, Eva; Kohnen, Thomas; Bühren, Jens

    2017-08-15

    Background Iatrogenic keratectasia is one of the most dreaded complications of refractive surgery. In most cases, keratectasia develops after refractive surgery of eyes suffering from subclinical stages of keratoconus with few or no signs. Unfortunately, there has been no reliable procedure for the early detection of keratoconus. In this study, we used binary decision trees (recursive partitioning) to assess their suitability for discrimination between normal eyes and eyes with subclinical keratoconus. Patients and Methods The method of decision tree analysis was compared with discriminant analysis which has shown good results in previous studies. Input data were 32 eyes of 32 patients with newly diagnosed keratoconus in the contralateral eye and preoperative data of 10 eyes of 5 patients with keratectasia after laser in-situ keratomileusis (LASIK). The control group was made up of 245 normal eyes after LASIK and 12-month follow-up without any signs of iatrogenic keratectasia. Results Decision trees gave better accuracy and specificity than did discriminant analysis. The sensitivity of decision trees was lower than the sensitivity of discriminant analysis. Conclusion On the basis of the patient population of this study, decision trees did not prove to be superior to linear discriminant analysis for the detection of subclinical keratoconus. Georg Thieme Verlag KG Stuttgart · New York.

  17. Pruning a decision tree for selecting computer-related assistive devices for people with disabilities.

    PubMed

    Chi, Chia-Fen; Tseng, Li-Kai; Jang, Yuh

    2012-07-01

    Many disabled individuals lack extensive knowledge about assistive technology, which could help them use computers. In 1997, Denis Anson developed a decision tree of 49 evaluative questions designed to evaluate the functional capabilities of the disabled user and choose an appropriate combination of assistive devices, from a selection of 26, that enable the individual to use a computer. In general, occupational therapists guide the disabled users through this process. They often have to go over repetitive questions in order to find an appropriate device. A disabled user may require an alphanumeric entry device, a pointing device, an output device, a performance enhancement device, or some combination of these. Therefore, the current research eliminates redundant questions and divides Anson's decision tree into multiple independent subtrees to meet the actual demand of computer users with disabilities. The modified decision tree was tested by six disabled users to prove it can determine a complete set of assistive devices with a smaller number of evaluative questions. The means to insert new categories of computer-related assistive devices was included to ensure the decision tree can be expanded and updated. The current decision tree can help the disabled users and assistive technology practitioners to find appropriate computer-related assistive devices that meet with clients' individual needs in an efficient manner.

  18. Uncertain decision tree inductive inference

    NASA Astrophysics Data System (ADS)

    Zarban, L.; Jafari, S.; Fakhrahmad, S. M.

    2011-10-01

    Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.

  19. Search for s-channel single top-quark production in proton-proton collisions at √{ s} = 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Naranjo Garcia, R. F.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2015-01-01

    This Letter presents a search at the LHC for s-channel single top-quark production in proton-proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb-1. Selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads to an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σs = 5.0 ± 4.3 pb, consistent with the Standard Model expectation.

  20. Comparative study of classification algorithms for damage classification in smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Ryoo, Chang-Kyung; Kim, Heung Soo

    2017-04-01

    This paper presents a comparative study of different classification algorithms for the classification of various types of inter-ply delaminations in smart composite laminates. Improved layerwise theory is used to model delamination at different interfaces along the thickness and longitudinal directions of the smart composite laminate. The input-output data obtained through surface bonded piezoelectric sensor and actuator is analyzed by the system identification algorithm to get the system parameters. The identified parameters for the healthy and delaminated structure are supplied as input data to the classification algorithms. The classification algorithms considered in this study are ZeroR, Classification via regression, Naïve Bayes, Multilayer Perceptron, Sequential Minimal Optimization, Multiclass-Classifier, and Decision tree (J48). The open source software of Waikato Environment for Knowledge Analysis (WEKA) is used to evaluate the classification performance of the classifiers mentioned above via 75-25 holdout and leave-one-sample-out cross-validation regarding classification accuracy, precision, recall, kappa statistic and ROC Area.

  1. Damage and recovery assessment of the Philippines' mangroves following Super Typhoon Haiyan.

    PubMed

    Long, Jordan; Giri, Chandra; Primavera, Jurgenne; Trivedi, Mandar

    2016-08-30

    We quantified mangrove disturbance resulting from Super Typhoon Haiyan using a remote sensing approach. Mangrove areas were mapped prior to Haiyan using 30m Landsat imagery and a supervised decision-tree classification. A time sequence of 250m eMODIS data was used to monitor mangrove condition prior to, and following, Haiyan. Based on differences in eMODIS NDVI observations before and after the storm, we classified mangrove into three damage level categories: minimal, moderate, or severe. Mangrove damage in terms of extent and severity was greatest where Haiyan first made landfall on Eastern Samar and Western Samar provinces and lessened westward corresponding with decreasing storm intensity as Haiyan tracked from east to west across the Visayas region of the Philippines. However, within 18months following Haiyan, mangrove areas classified as severely, moderately, and minimally damaged decreased by 90%, 81%, and 57%, respectively, indicating mangroves resilience to powerful typhoons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A Height Estimation Approach for Terrain Following Flights from Monocular Vision.

    PubMed

    Campos, Igor S G; Nascimento, Erickson R; Freitas, Gustavo M; Chaimowicz, Luiz

    2016-12-06

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80 % for positives and 90 % for negatives, while the height estimation algorithm presented good accuracy.

  3. Identifying sports videos using replay, text, and camera motion features

    NASA Astrophysics Data System (ADS)

    Kobla, Vikrant; DeMenthon, Daniel; Doermann, David S.

    1999-12-01

    Automated classification of digital video is emerging as an important piece of the puzzle in the design of content management systems for digital libraries. The ability to classify videos into various classes such as sports, news, movies, or documentaries, increases the efficiency of indexing, browsing, and retrieval of video in large databases. In this paper, we discuss the extraction of features that enable identification of sports videos directly from the compressed domain of MPEG video. These features include detecting the presence of action replays, determining the amount of scene text in vide, and calculating various statistics on camera and/or object motion. The features are derived from the macroblock, motion,and bit-rate information that is readily accessible from MPEG video with very minimal decoding, leading to substantial gains in processing speeds. Full-decoding of selective frames is required only for text analysis. A decision tree classifier built using these features is able to identify sports clips with an accuracy of about 93 percent.

  4. A review of machine learning in obesity.

    PubMed

    DeGregory, K W; Kuiper, P; DeSilvio, T; Pleuss, J D; Miller, R; Roginski, J W; Fisher, C B; Harness, D; Viswanath, S; Heymsfield, S B; Dungan, I; Thomas, D M

    2018-05-01

    Rich sources of obesity-related data arising from sensors, smartphone apps, electronic medical health records and insurance data can bring new insights for understanding, preventing and treating obesity. For such large datasets, machine learning provides sophisticated and elegant tools to describe, classify and predict obesity-related risks and outcomes. Here, we review machine learning methods that predict and/or classify such as linear and logistic regression, artificial neural networks, deep learning and decision tree analysis. We also review methods that describe and characterize data such as cluster analysis, principal component analysis, network science and topological data analysis. We introduce each method with a high-level overview followed by examples of successful applications. The algorithms were then applied to National Health and Nutrition Examination Survey to demonstrate methodology, utility and outcomes. The strengths and limitations of each method were also evaluated. This summary of machine learning algorithms provides a unique overview of the state of data analysis applied specifically to obesity. © 2018 World Obesity Federation.

  5. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  6. Search for s-channel single top-quark production in proton-proton collisions at √ s=8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-01-05

    This Letter presents a search at the LHC for s-channel single top-quark production in proton–proton collisions at a centre-of-mass energy of 8 TeV. The analyzed data set was recorded by the ATLAS detector and corresponds to an integrated luminosity of 20.3 fb -1. The selected events contain one charged lepton, large missing transverse momentum and exactly two b-tagged jets. A multivariate event classifier based on boosted decision trees is developed to discriminate s-channel single top-quark events from the main background contributions. The signal extraction is based on a binned maximum-likelihood fit of the output classifier distribution. The analysis leads tomore » an upper limit on the s-channel single top-quark production cross-section of 14.6 pb at the 95% confidence level. The fit gives a cross-section of σ s=5.0 ± 4.3 pb, consistent with the Standard Model expectation.« less

  7. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection.

    PubMed

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-06-12

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities.

  8. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection †

    PubMed Central

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-01-01

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan–Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities. PMID:28604628

  9. Hierarchy-associated semantic-rule inference framework for classifying indoor scenes

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei

    2016-03-01

    Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.

  10. A Dictionary Approach to Electron Backscatter Diffraction Indexing.

    PubMed

    Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O

    2015-06-01

    We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.

  11. Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective

    PubMed Central

    Jacobs, Arthur M.

    2017-01-01

    In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials. PMID:29311877

  12. Quantifying the Beauty of Words: A Neurocognitive Poetics Perspective.

    PubMed

    Jacobs, Arthur M

    2017-01-01

    In this paper I would like to pave the ground for future studies in Computational Stylistics and (Neuro-)Cognitive Poetics by describing procedures for predicting the subjective beauty of words. A set of eight tentative word features is computed via Quantitative Narrative Analysis (QNA) and a novel metric for quantifying word beauty, the aesthetic potential is proposed. Application of machine learning algorithms fed with this QNA data shows that a classifier of the decision tree family excellently learns to split words into beautiful vs. ugly ones. The results shed light on surface and semantic features theoretically relevant for affective-aesthetic processes in literary reading and generate quantitative predictions for neuroaesthetic studies of verbal materials.

  13. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production. PMID:25927209

  14. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production.

  15. Comparative Issues and Methods in Organizational Diagnosis. Report II. The Decision Tree Approach.

    DTIC Science & Technology

    organizational diagnosis . The advantages and disadvantages of the decision-tree approach generally, and in this study specifically, are examined. A pre-test, using a civilian sample of 174 work groups with Survey of Organizations data, was conducted to assess various decision-tree classification criteria, in terms of their similarity to the distance function used by Bowers and Hausser (1977). The results suggested the use of a large developmental sample, which should result in more distinctly defined boundary lines between classification profiles. Also, the decision matrix

  16. FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

    PubMed

    Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W

    2014-12-01

    Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

  17. Analysis of composition-based metagenomic classification.

    PubMed

    Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro

    2012-01-01

    An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in contrast to our expectations, the variation of the measures did not change the configuration scores significantly. Finally, the hierarchical strategy was more effective than the conventional strategy, which suggests that, instead of using a single classifier, one should adopt multiple classifiers organized as a hierarchy.

  18. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  19. MRI-based decision tree model for diagnosis of biliary atresia.

    PubMed

    Kim, Yong Hee; Kim, Myung-Joon; Shin, Hyun Joo; Yoon, Haesung; Han, Seok Joo; Koh, Hong; Roh, Yun Ho; Lee, Mi-Jung

    2018-02-23

    To evaluate MRI findings and to generate a decision tree model for diagnosis of biliary atresia (BA) in infants with jaundice. We retrospectively reviewed features of MRI and ultrasonography (US) performed in infants with jaundice between January 2009 and June 2016 under approval of the institutional review board, including the maximum diameter of periportal signal change on MRI (MR triangular cord thickness, MR-TCT) or US (US-TCT), visibility of common bile duct (CBD) and abnormality of gallbladder (GB). Hepatic subcapsular flow was reviewed on Doppler US. We performed conditional inference tree analysis using MRI findings to generate a decision tree model. A total of 208 infants were included, 112 in the BA group and 96 in the non-BA group. Mean age at the time of MRI was 58.7 ± 36.6 days. Visibility of CBD, abnormality of GB and MR-TCT were good discriminators for the diagnosis of BA and the MRI-based decision tree using these findings with MR-TCT cut-off 5.1 mm showed 97.3 % sensitivity, 94.8 % specificity and 96.2 % accuracy. MRI-based decision tree model reliably differentiates BA in infants with jaundice. MRI can be an objective imaging modality for the diagnosis of BA. • MRI-based decision tree model reliably differentiates biliary atresia in neonatal cholestasis. • Common bile duct, gallbladder and periportal signal changes are the discriminators. • MRI has comparable performance to ultrasonography for diagnosis of biliary atresia.

  20. Predictability of the future development of aggressive behavior of cranial dural arteriovenous fistulas based on decision tree analysis.

    PubMed

    Satomi, Junichiro; Ghaibeh, A Ammar; Moriguchi, Hiroki; Nagahiro, Shinji

    2015-07-01

    The severity of clinical signs and symptoms of cranial dural arteriovenous fistulas (DAVFs) are well correlated with their pattern of venous drainage. Although the presence of cortical venous drainage can be considered a potential predictor of aggressive DAVF behaviors, such as intracranial hemorrhage or progressive neurological deficits due to venous congestion, accurate statistical analyses are currently not available. Using a decision tree data mining method, the authors aimed at clarifying the predictability of the future development of aggressive behaviors of DAVF and at identifying the main causative factors. Of 266 DAVF patients, 89 were eligible for analysis. Under observational management, 51 patients presented with intracranial hemorrhage/infarction during the follow-up period. The authors created a decision tree able to assess the risk for the development of aggressive DAVF behavior. Evaluated by 10-fold cross-validation, the decision tree's accuracy, sensitivity, and specificity were 85.28%, 88.33%, and 80.83%, respectively. The tree shows that the main factor in symptomatic patients was the presence of cortical venous drainage. In its absence, the lesion location determined the risk of a DAVF developing aggressive behavior. Decision tree analysis accurately predicts the future development of aggressive DAVF behavior.

  1. Applied Swarm-based medicine: collecting decision trees for patterns of algorithms analysis.

    PubMed

    Panje, Cédric M; Glatzer, Markus; von Rappard, Joscha; Rothermundt, Christian; Hundsberger, Thomas; Zumstein, Valentin; Plasswilm, Ludwig; Putora, Paul Martin

    2017-08-16

    The objective consensus methodology has recently been applied in consensus finding in several studies on medical decision-making among clinical experts or guidelines. The main advantages of this method are an automated analysis and comparison of treatment algorithms of the participating centers which can be performed anonymously. Based on the experience from completed consensus analyses, the main steps for the successful implementation of the objective consensus methodology were identified and discussed among the main investigators. The following steps for the successful collection and conversion of decision trees were identified and defined in detail: problem definition, population selection, draft input collection, tree conversion, criteria adaptation, problem re-evaluation, results distribution and refinement, tree finalisation, and analysis. This manuscript provides information on the main steps for successful collection of decision trees and summarizes important aspects at each point of the analysis.

  2. Comparison of neurofuzzy logic and decision trees in discovering knowledge from experimental data of an immediate release tablet formulation.

    PubMed

    Shao, Q; Rowe, R C; York, P

    2007-06-01

    Understanding of the cause-effect relationships between formulation ingredients, process conditions and product properties is essential for developing a quality product. However, the formulation knowledge is often hidden in experimental data and not easily interpretable. This study compares neurofuzzy logic and decision tree approaches in discovering hidden knowledge from an immediate release tablet formulation database relating formulation ingredients (silica aerogel, magnesium stearate, microcrystalline cellulose and sodium carboxymethylcellulose) and process variables (dwell time and compression force) to tablet properties (tensile strength, disintegration time, friability, capping and drug dissolution at various time intervals). Both approaches successfully generated useful knowledge in the form of either "if then" rules or decision trees. Although different strategies are employed by the two approaches in generating rules/trees, similar knowledge was discovered in most cases. However, as decision trees are not able to deal with continuous dependent variables, data discretisation procedures are generally required.

  3. Parallel object-oriented decision tree system

    DOEpatents

    Kamath,; Chandrika, Cantu-Paz [Dublin, CA; Erick, [Oakland, CA

    2006-02-28

    A data mining decision tree system that uncovers patterns, associations, anomalies, and other statistically significant structures in data by reading and displaying data files, extracting relevant features for each of the objects, and using a method of recognizing patterns among the objects based upon object features through a decision tree that reads the data, sorts the data if necessary, determines the best manner to split the data into subsets according to some criterion, and splits the data.

  4. Generation and Termination of Binary Decision Trees for Nonparametric Multiclass Classification.

    DTIC Science & Technology

    1984-10-01

    O M coF=F;; UMBER2. GOVT ACCE5SION NO.1 3 . REC,PINS :A7AL:,G NUMBER ( ’eneration and Terminat_,on :)f Binary D-ecision jC j ik; Trees for Nonnararetrc...1-I . v)IAMO 0~I4 EDvt" O F I 00 . 3 15I OR%.OL.ETL - S-S OCTOBER 1984 LIDS-P-1411 GENERATION AND TERMINATION OF BINARY DECISION TREES FOR...minimizes the Bayes risk. Tree generation and termination are based on the training and test samples, respectively. 0 0 0/ 6 0¢ A 3 I. Introduction We state

  5. The Decision Tree for Teaching Management of Uncertainty

    ERIC Educational Resources Information Center

    Knaggs, Sara J.; And Others

    1974-01-01

    A 'decision tree' consists of an outline of the patient's symptoms and a logic for decision and action. It is felt that this approach to the decisionmaking process better facilitates each learner's application of his own level of knowledge and skills. (Author)

  6. Predicting metabolic syndrome using decision tree and support vector machine methods.

    PubMed

    Karimi-Alavijeh, Farzaneh; Jalili, Saeed; Sadeghi, Masoumeh

    2016-05-01

    Metabolic syndrome which underlies the increased prevalence of cardiovascular disease and Type 2 diabetes is considered as a group of metabolic abnormalities including central obesity, hypertriglyceridemia, glucose intolerance, hypertension, and dyslipidemia. Recently, artificial intelligence based health-care systems are highly regarded because of its success in diagnosis, prediction, and choice of treatment. This study employs machine learning technics for predict the metabolic syndrome. This study aims to employ decision tree and support vector machine (SVM) to predict the 7-year incidence of metabolic syndrome. This research is a practical one in which data from 2107 participants of Isfahan Cohort Study has been utilized. The subjects without metabolic syndrome according to the ATPIII criteria were selected. The features that have been used in this data set include: gender, age, weight, body mass index, waist circumference, waist-to-hip ratio, hip circumference, physical activity, smoking, hypertension, antihypertensive medication use, systolic blood pressure (BP), diastolic BP, fasting blood sugar, 2-hour blood glucose, triglycerides (TGs), total cholesterol, low-density lipoprotein, high density lipoprotein-cholesterol, mean corpuscular volume, and mean corpuscular hemoglobin. Metabolic syndrome was diagnosed based on ATPIII criteria and two methods of decision tree and SVM were selected to predict the metabolic syndrome. The criteria of sensitivity, specificity and accuracy were used for validation. SVM and decision tree methods were examined according to the criteria of sensitivity, specificity and accuracy. Sensitivity, specificity and accuracy were 0.774 (0.758), 0.74 (0.72) and 0.757 (0.739) in SVM (decision tree) method. The results show that SVM method sensitivity, specificity and accuracy is more efficient than decision tree. The results of decision tree method show that the TG is the most important feature in predicting metabolic syndrome. According to this study, in cases where only the final result of the decision is regarded significant, SVM method can be used with acceptable accuracy in decision making medical issues. This method has not been implemented in the previous research.

  7. Cost-effectiveness Analysis with Influence Diagrams.

    PubMed

    Arias, M; Díez, F J

    2015-01-01

    Cost-effectiveness analysis (CEA) is used increasingly in medicine to determine whether the health benefit of an intervention is worth the economic cost. Decision trees, the standard decision modeling technique for non-temporal domains, can only perform CEA for very small problems. To develop a method for CEA in problems involving several dozen variables. We explain how to build influence diagrams (IDs) that explicitly represent cost and effectiveness. We propose an algorithm for evaluating cost-effectiveness IDs directly, i.e., without expanding an equivalent decision tree. The evaluation of an ID returns a set of intervals for the willingness to pay - separated by cost-effectiveness thresholds - and, for each interval, the cost, the effectiveness, and the optimal intervention. The algorithm that evaluates the ID directly is in general much more efficient than the brute-force method, which is in turn more efficient than the expansion of an equivalent decision tree. Using OpenMarkov, an open-source software tool that implements this algorithm, we have been able to perform CEAs on several IDs whose equivalent decision trees contain millions of branches. IDs can perform CEA on large problems that cannot be analyzed with decision trees.

  8. Discovering Decision Knowledge from Web Log Portfolio for Managing Classroom Processes by Applying Decision Tree and Data Cube Technology.

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Liu, Chen-Chung; Ou, Kuo-Liang; Liu, Baw-Jhiune

    2000-01-01

    Discusses the use of Web logs to record student behavior that can assist teachers in assessing performance and making curriculum decisions for distance learning students who are using Web-based learning systems. Adopts decision tree and data cube information processing methodologies for developing more effective pedagogical strategies. (LRW)

  9. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  10. Assessing School Readiness for a Practice Arrangement Using Decision Tree Methodology.

    ERIC Educational Resources Information Center

    Barger, Sara E.

    1998-01-01

    Questions in a decision-tree address mission, faculty interest, administrative support, and practice plan as a way of assessing arrangements for nursing faculty's clinical practice. Decisions should be based on congruence between the human resource allocation and the reward systems. (SK)

  11. Decision Trees Predicting Tumor Shrinkage for Head and Neck Cancer: Implications for Adaptive Radiotherapy.

    PubMed

    Surucu, Murat; Shah, Karan K; Mescioglu, Ibrahim; Roeske, John C; Small, William; Choi, Mehee; Emami, Bahman

    2016-02-01

    To develop decision trees predicting for tumor volume reduction in patients with head and neck (H&N) cancer using pretreatment clinical and pathological parameters. Forty-eight patients treated with definitive concurrent chemoradiotherapy for squamous cell carcinoma of the nasopharynx, oropharynx, oral cavity, or hypopharynx were retrospectively analyzed. These patients were rescanned at a median dose of 37.8 Gy and replanned to account for anatomical changes. The percentages of gross tumor volume (GTV) change from initial to rescan computed tomography (CT; %GTVΔ) were calculated. Two decision trees were generated to correlate %GTVΔ in primary and nodal volumes with 14 characteristics including age, gender, Karnofsky performance status (KPS), site, human papilloma virus (HPV) status, tumor grade, primary tumor growth pattern (endophytic/exophytic), tumor/nodal/group stages, chemotherapy regimen, and primary, nodal, and total GTV volumes in the initial CT scan. The C4.5 Decision Tree induction algorithm was implemented. The median %GTVΔ for primary, nodal, and total GTVs was 26.8%, 43.0%, and 31.2%, respectively. Type of chemotherapy, age, primary tumor growth pattern, site, KPS, and HPV status were the most predictive parameters for primary %GTVΔ decision tree, whereas for nodal %GTVΔ, KPS, site, age, primary tumor growth pattern, initial primary GTV, and total GTV volumes were predictive. Both decision trees had an accuracy of 88%. There can be significant changes in primary and nodal tumor volumes during the course of H&N chemoradiotherapy. Considering the proposed decision trees, radiation oncologists can select patients predicted to have high %GTVΔ, who would theoretically gain the most benefit from adaptive radiotherapy, in order to better use limited clinical resources. © The Author(s) 2015.

  12. On Parallelism and the Penman Natural Language Generation System.

    DTIC Science & Technology

    1988-04-01

    TagfiniteA Tagsubject L untag ed Figure 2-2: System network with choosers & realization statements 7 decision . We will give a more detailed account of...2: enter the current system. The chooser of the system is in charge of * selection of features. The chooser is itself a decision tree with certain...organization of a chooser is the same as a decision (discrimination) tree, and each branching point in the tree is defined by Ask operation. For example, in

  13. A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification.

    PubMed

    Krawczyk, Bartosz; Schaefer, Gerald; Woźniak, Michał

    2015-11-01

    Early recognition of breast cancer, the most commonly diagnosed form of cancer in women, is of crucial importance, given that it leads to significantly improved chances of survival. Medical thermography, which uses an infrared camera for thermal imaging, has been demonstrated as a particularly useful technique for early diagnosis, because it detects smaller tumors than the standard modality of mammography. In this paper, we analyse breast thermograms by extracting features describing bilateral symmetries between the two breast areas, and present a classification system for decision making. Clearly, the costs associated with missing a cancer case are much higher than those for mislabelling a benign case. At the same time, datasets contain significantly fewer malignant cases than benign ones. Standard classification approaches fail to consider either of these aspects. In this paper, we introduce a hybrid cost-sensitive classifier ensemble to address this challenging problem. Our approach entails a pool of cost-sensitive decision trees which assign a higher misclassification cost to the malignant class, thereby boosting its recognition rate. A genetic algorithm is employed for simultaneous feature selection and classifier fusion. As an optimisation criterion, we use a combination of misclassification cost and diversity to achieve both a high sensitivity and a heterogeneous ensemble. Furthermore, we prune our ensemble by discarding classifiers that contribute minimally to the decision making. For a challenging dataset of about 150 thermograms, our approach achieves an excellent sensitivity of 83.10%, while maintaining a high specificity of 89.44%. This not only signifies improved recognition of malignant cases, it also statistically outperforms other state-of-the-art algorithms designed for imbalanced classification, and hence provides an effective approach for analysing breast thermograms. Our proposed hybrid cost-sensitive ensemble can facilitate a highly accurate early diagnostic of breast cancer based on thermogram features. It overcomes the difficulties posed by the imbalanced distribution of patients in the two analysed groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Evaluation of Decision Trees for Cloud Detection from AVHRR Data

    NASA Technical Reports Server (NTRS)

    Shiffman, Smadar; Nemani, Ramakrishna

    2005-01-01

    Automated cloud detection and tracking is an important step in assessing changes in radiation budgets associated with global climate change via remote sensing. Data products based on satellite imagery are available to the scientific community for studying trends in the Earth's atmosphere. The data products include pixel-based cloud masks that assign cloud-cover classifications to pixels. Many cloud-mask algorithms have the form of decision trees. The decision trees employ sequential tests that scientists designed based on empirical astrophysics studies and simulations. Limitations of existing cloud masks restrict our ability to accurately track changes in cloud patterns over time. In a previous study we compared automatically learned decision trees to cloud masks included in Advanced Very High Resolution Radiometer (AVHRR) data products from the year 2000. In this paper we report the replication of the study for five-year data, and for a gold standard based on surface observations performed by scientists at weather stations in the British Islands. For our sample data, the accuracy of automatically learned decision trees was greater than the accuracy of the cloud masks p < 0.001.

  15. Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging.

    PubMed

    Charbonnier, S; Zoubek, L; Lesecq, S; Chapotot, F

    2011-06-01

    An automatic sleep/wake stages classifier that deals with the presence of artifacts and that provides a confidence index with each decision is proposed. The decision system is composed of two stages: the first stage checks the 20s epoch of polysomnographic signals (EEG, EOG and EMG) for the presence of artifacts and selects the artifact-free signals. The second stage classifies the epoch using one classifier selected out of four, using feature inputs extracted from the artifact-free signals only. A confidence index is associated with each decision made, depending on the classifier used and on the class assigned, so that the user's confidence in the automatic decision is increased. The two-stage system was tested on a large database of 46 night recordings. It reached 85.5% of overall accuracy with improved ability to discern NREM I stage from REM sleep. It was shown that only 7% of the database was classified with a low confidence index, and thus should be re-evaluated by a physiologist expert, which makes the system an efficient decision-support tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Sequential decision tree using the analytic hierarchy process for decision support in rectal cancer.

    PubMed

    Suner, Aslı; Çelikoğlu, Can Cengiz; Dicle, Oğuz; Sökmen, Selman

    2012-09-01

    The aim of the study is to determine the most appropriate method for construction of a sequential decision tree in the management of rectal cancer, using various patient-specific criteria and treatments such as surgery, chemotherapy, and radiotherapy. An analytic hierarchy process (AHP) was used to determine the priorities of variables. Relevant criteria used in two decision steps and their relative priorities were established by a panel of five general surgeons. Data were collected via a web-based application and analyzed using the "Expert Choice" software specifically developed for the AHP. Consistency ratios in the AHP method were calculated for each set of judgments, and the priorities of sub-criteria were determined. A sequential decision tree was constructed for the best treatment decision process, using priorities determined by the AHP method. Consistency ratios in the AHP method were calculated for each decision step, and the judgments were considered consistent. The tumor-related criterion "presence of perforation" (0.331) and the patient-surgeon-related criterion "surgeon's experience" (0.630) had the highest priority in the first decision step. In the second decision step, the tumor-related criterion "the stage of the disease" (0.230) and the patient-surgeon-related criterion "surgeon's experience" (0.281) were the paramount criteria. The results showed some variation in the ranking of criteria between the decision steps. In the second decision step, for instance, the tumor-related criterion "presence of perforation" was just the fifth. The consistency of decision support systems largely depends on the quality of the underlying decision tree. When several choices and variables have to be considered in a decision, it is very important to determine priorities. The AHP method seems to be effective for this purpose. The decision algorithm developed by this method is more realistic and will improve the quality of the decision tree. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Data mining application in customer relationship management for hospital inpatients.

    PubMed

    Lee, Eun Whan

    2012-09-01

    This study aims to discover patients loyal to a hospital and model their medical service usage patterns. Consequently, this study proposes a data mining application in customer relationship management (CRM) for hospital inpatients. A recency, frequency, monetary (RFM) model has been applied toward 14,072 patients discharged from a university hospital. Cluster analysis was conducted to segment customers, and it modeled the patterns of the loyal customers' medical services usage via a decision tree. Patients were divided into two groups according to the variables of the RFM model and the group which had significantly high frequency of medical use and expenses was defined as loyal customers, a target market. As a result of the decision tree, the predictable factors of the loyal clients were; length of stay, certainty of selectable treatment, surgery, number of accompanying treatments, kind of patient room, and department from which they were discharged. Particularly, this research showed that when a patient within the internal medicine department who did not have surgery stayed for more than 13.5 days, their probability of being a classified as a loyal customer was 70.0%. To discover a hospital's loyal patients and model their medical usage patterns, the application of data-mining has been suggested. This paper suggests practical use of combining segmentation, targeting, positioning (STP) strategy and the RFM model with data-mining in CRM.

  18. Discrimination of the sensory quality of the Coffea arabica L. (cv. Yellow Bourbon) produced in different altitudes using decision trees obtained by the CHAID method.

    PubMed

    Ramos, Mariana Figueira; Ribeiro, Diego Egídio; Cirillo, Marcelo Ângelo; Borém, Flávio Meira

    2016-08-01

    Knowledge of the sensory profile of coffee quality, associated with genetic and environmental factors, is of utmost importance for the international market, as well as for the productive sector. In this context, the goal of this study was to classify the quality of Coffea arabica L., cv. Yellow Bourbon, according to different scores obtained through sensory evaluations based on the Specialty Coffee Association of America protocol (SCAA), and by means of decision trees resulting from applying the CHAID method (chi-square automatic interaction detection). To that end, we used a database with the sensory characteristics of cv. Yellow Bourbon and the environmental characteristics of the Mantiqueira de Minas region, State of Minas Gerais, Brazil. The method used exhibited promising results regarding accuracy and success rates in order to discriminate coffee sensory quality as a function of the production environment. The results obtained clearly show the effect of the coffee growing environment on the Yellow Bourbon variety, resulting in notable sensory differences in the beverage. It was possible to discriminate cv. Yellow Bourbon coffee samples, the sensory evaluations of which resulted in scores of ≥88 points, which are associated with growing environments at altitudes of ≥1200 m. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Data Mining Application in Customer Relationship Management for Hospital Inpatients

    PubMed Central

    2012-01-01

    Objectives This study aims to discover patients loyal to a hospital and model their medical service usage patterns. Consequently, this study proposes a data mining application in customer relationship management (CRM) for hospital inpatients. Methods A recency, frequency, monetary (RFM) model has been applied toward 14,072 patients discharged from a university hospital. Cluster analysis was conducted to segment customers, and it modeled the patterns of the loyal customers' medical services usage via a decision tree. Results Patients were divided into two groups according to the variables of the RFM model and the group which had significantly high frequency of medical use and expenses was defined as loyal customers, a target market. As a result of the decision tree, the predictable factors of the loyal clients were; length of stay, certainty of selectable treatment, surgery, number of accompanying treatments, kind of patient room, and department from which they were discharged. Particularly, this research showed that when a patient within the internal medicine department who did not have surgery stayed for more than 13.5 days, their probability of being a classified as a loyal customer was 70.0%. Conclusions To discover a hospital's loyal patients and model their medical usage patterns, the application of data-mining has been suggested. This paper suggests practical use of combining segmentation, targeting, positioning (STP) strategy and the RFM model with data-mining in CRM. PMID:23115740

  20. Handwritten character recognition using background analysis

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Puliti, Paolo; Zingaretti, Primo

    1993-04-01

    The paper describes a low-cost handwritten character recognizer. It is constituted by three modules: the `acquisition' module, the `binarization' module, and the `core' module. The core module can be logically partitioned into six steps: character dilation, character circumscription, region and `profile' analysis, `cut' analysis, decision tree descent, and result validation. Firstly, it reduces the resolution of the binarized regions and detects the minimum rectangle (MR) which encloses the character; the MR partitions the background into regions that surround the character or are enclosed by it, and allows it to define features as `profiles' and `cuts;' a `profile' is the set of vertical or horizontal minimum distances between a side of the MR and the character itself; a `cut' is a vertical or horizontal image segment delimited by the MR. Then, the core module classifies the character by descending along the decision tree on the basis of the analysis of regions around the character, in particular of the `profiles' and `cuts,' and without using context information. Finally, it recognizes the character or reactivates the core module by analyzing validation test results. The recognizer is largely insensible to character discontinuity and is able to detect Arabic numerals and English alphabet capital letters. The recognition rate of a 32 X 32 pixel character is of about 97% after the first iteration, and of over 98% after the second iteration.

  1. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.

    PubMed

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2018-04-30

    Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Online breakage detection of multitooth tools using classifier ensembles for imbalanced data

    NASA Astrophysics Data System (ADS)

    Bustillo, Andrés; Rodríguez, Juan J.

    2014-12-01

    Cutting tool breakage detection is an important task, due to its economic impact on mass production lines in the automobile industry. This task presents a central limitation: real data-sets are extremely imbalanced because breakage occurs in very few cases compared with normal operation of the cutting process. In this paper, we present an analysis of different data-mining techniques applied to the detection of insert breakage in multitooth tools. The analysis applies only one experimental variable: the electrical power consumption of the tool drive. This restriction profiles real industrial conditions more accurately than other physical variables, such as acoustic or vibration signals, which are not so easily measured. Many efforts have been made to design a method that is able to identify breakages with a high degree of reliability within a short period of time. The solution is based on classifier ensembles for imbalanced data-sets. Classifier ensembles are combinations of classifiers, which in many situations are more accurate than individual classifiers. Six different base classifiers are tested: Decision Trees, Rules, Naïve Bayes, Nearest Neighbour, Multilayer Perceptrons and Logistic Regression. Three different balancing strategies are tested with each of the classifier ensembles and compared to their performance with the original data-set: Synthetic Minority Over-Sampling Technique (SMOTE), undersampling and a combination of SMOTE and undersampling. To identify the most suitable data-mining solution, Receiver Operating Characteristics (ROC) graph and Recall-precision graph are generated and discussed. The performance of logistic regression ensembles on the balanced data-set using the combination of SMOTE and undersampling turned out to be the most suitable technique. Finally a comparison using industrial performance measures is presented, which concludes that this technique is also more suited to this industrial problem than the other techniques presented in the bibliography.

  3. Comparison of Taxi Time Prediction Performance Using Different Taxi Speed Decision Trees

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    In the STBO modeler and tactical surface scheduler for ATD-2 project, taxi speed decision trees are used to calculate the unimpeded taxi times of flights taxiing on the airport surface. The initial taxi speed values in these decision trees did not show good prediction accuracy of taxi times. Using the more recent, reliable surveillance data, new taxi speed values in ramp area and movement area were computed. Before integrating these values into the STBO system, we performed test runs using live data from Charlotte airport, with different taxi speed settings: 1) initial taxi speed values and 2) new ones. Taxi time prediction performance was evaluated by comparing various metrics. The results show that the new taxi speed decision trees can calculate the unimpeded taxi-out times more accurately.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce ‘machine-z’, a redshift prediction algorithm and a ‘high-z’ classifier for Swift GRBs based on machine learning. Our method relies exclusively onmore » canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve ~100 per cent recall. As a result, the most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.« less

  5. Comparing Pattern Recognition Feature Sets for Sorting Triples in the FIRST Database

    NASA Astrophysics Data System (ADS)

    Proctor, D. D.

    2006-07-01

    Pattern recognition techniques have been used with increasing success for coping with the tremendous amounts of data being generated by automated surveys. Usually this process involves construction of training sets, the typical examples of data with known classifications. Given a feature set, along with the training set, statistical methods can be employed to generate a classifier. The classifier is then applied to process the remaining data. Feature set selection, however, is still an issue. This paper presents techniques developed for accommodating data for which a substantive portion of the training set cannot be classified unambiguously, a typical case for low-resolution data. Significance tests on the sort-ordered, sample-size-normalized vote distribution of an ensemble of decision trees is introduced as a method of evaluating relative quality of feature sets. The technique is applied to comparing feature sets for sorting a particular radio galaxy morphology, bent-doubles, from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) database. Also examined are alternative functional forms for feature sets. Associated standard deviations provide the means to evaluate the effect of the number of folds, the number of classifiers per fold, and the sample size on the resulting classifications. The technique also may be applied to situations for which, although accurate classifications are available, the feature set is clearly inadequate, but is desired nonetheless to make the best of available information.

  6. Machine-z: Rapid Machine-Learned Redshift Indicator for Swift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-01-01

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce 'machine-z', a redshift prediction algorithm and a 'high-z' classifier for Swift GRBs based on machine learning. Our method relies exclusively on canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve approximately 100 per cent recall. The most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.

  7. Active optical sensors for tree stem detection and classification in nurseries.

    PubMed

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C

    2014-06-19

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.

  8. An information-based network approach for protein classification

    PubMed Central

    Wan, Xiaogeng; Zhao, Xin; Yau, Stephen S. T.

    2017-01-01

    Protein classification is one of the critical problems in bioinformatics. Early studies used geometric distances and polygenetic-tree to classify proteins. These methods use binary trees to present protein classification. In this paper, we propose a new protein classification method, whereby theories of information and networks are used to classify the multivariate relationships of proteins. In this study, protein universe is modeled as an undirected network, where proteins are classified according to their connections. Our method is unsupervised, multivariate, and alignment-free. It can be applied to the classification of both protein sequences and structures. Nine examples are used to demonstrate the efficiency of our new method. PMID:28350835

  9. Bayesian additive decision trees of biomarker by treatment interactions for predictive biomarker detection and subgroup identification.

    PubMed

    Zhao, Yang; Zheng, Wei; Zhuo, Daisy Y; Lu, Yuefeng; Ma, Xiwen; Liu, Hengchang; Zeng, Zhen; Laird, Glen

    2017-10-11

    Personalized medicine, or tailored therapy, has been an active and important topic in recent medical research. Many methods have been proposed in the literature for predictive biomarker detection and subgroup identification. In this article, we propose a novel decision tree-based approach applicable in randomized clinical trials. We model the prognostic effects of the biomarkers using additive regression trees and the biomarker-by-treatment effect using a single regression tree. Bayesian approach is utilized to periodically revise the split variables and the split rules of the decision trees, which provides a better overall fitting. Gibbs sampler is implemented in the MCMC procedure, which updates the prognostic trees and the interaction tree separately. We use the posterior distribution of the interaction tree to construct the predictive scores of the biomarkers and to identify the subgroup where the treatment is superior to the control. Numerical simulations show that our proposed method performs well under various settings comparing to existing methods. We also demonstrate an application of our method in a real clinical trial.

  10. Quantifying construction and demolition waste: An analytical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zezhou; Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Shen, Liyin

    2014-09-15

    Highlights: • Prevailing C and D waste quantification methodologies are identified and compared. • One specific methodology cannot fulfill all waste quantification scenarios. • A relevance tree for appropriate quantification methodology selection is proposed. • More attentions should be paid to civil and infrastructural works. • Classified information is suggested for making an effective waste management plan. - Abstract: Quantifying construction and demolition (C and D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C and D waste generation at both regional and projectmore » levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C and D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.« less

  11. RE-Powering’s Electronic Decision Tree

    EPA Pesticide Factsheets

    Developed by US EPA's RE-Powering America's Land Initiative, the RE-Powering Decision Trees tool guides interested parties through a process to screen sites for their suitability for solar photovoltaics or wind installations

  12. Decision Tree Approach for Soil Liquefaction Assessment

    PubMed Central

    Gandomi, Amir H.; Fridline, Mark M.; Roke, David A.

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view. PMID:24489498

  13. Decision tree approach for soil liquefaction assessment.

    PubMed

    Gandomi, Amir H; Fridline, Mark M; Roke, David A

    2013-01-01

    In the current study, the performances of some decision tree (DT) techniques are evaluated for postearthquake soil liquefaction assessment. A database containing 620 records of seismic parameters and soil properties is used in this study. Three decision tree techniques are used here in two different ways, considering statistical and engineering points of view, to develop decision rules. The DT results are compared to the logistic regression (LR) model. The results of this study indicate that the DTs not only successfully predict liquefaction but they can also outperform the LR model. The best DT models are interpreted and evaluated based on an engineering point of view.

  14. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  15. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  16. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.

  17. Adjustments to forest inventory and analysis estimates of 2001 saw-log volumes for Kentucky

    Treesearch

    Stanley J. Zarnoch; Jeffery A. Turner

    2005-01-01

    The 2001 Kentucky Forest Inventory and Analysis survey overestimated hardwood saw-log volume in tree grade 1. This occurred because 2001 field crews classified too many trees as grade 1 trees. Data collected by quality assurance crews were used to generate two types of adjustments, one based on the proportion of trees misclassified and the other on the proportion of...

  18. Ethnographic Decision Tree Modeling: A Research Method for Counseling Psychology.

    ERIC Educational Resources Information Center

    Beck, Kirk A.

    2005-01-01

    This article describes ethnographic decision tree modeling (EDTM; C. H. Gladwin, 1989) as a mixed method design appropriate for counseling psychology research. EDTM is introduced and located within a postpositivist research paradigm. Decision theory that informs EDTM is reviewed, and the 2 phases of EDTM are highlighted. The 1st phase, model…

  19. Hydrochemical analysis of groundwater using a tree-based model

    NASA Astrophysics Data System (ADS)

    Litaor, M. Iggy; Brielmann, H.; Reichmann, O.; Shenker, M.

    2010-06-01

    SummaryHydrochemical indices are commonly used to ascertain aquifer characteristics, salinity problems, anthropogenic inputs and resource management, among others. This study was conducted to test the applicability of a binary decision tree model to aquifer evaluation using hydrochemical indices as input. The main advantage of the tree-based model compared to other commonly used statistical procedures such as cluster and factor analyses is the ability to classify groundwater samples with assigned probability and the reduction of a large data set into a few significant variables without creating new factors. We tested the model using data sets collected from headwater springs of the Jordan River, Israel. The model evaluation consisted of several levels of complexity, from simple separation between the calcium-magnesium-bicarbonate water type of karstic aquifers to the more challenging separation of calcium-sodium-bicarbonate water type flowing through perched and regional basaltic aquifers. In all cases, the model assigned measures for goodness of fit in the form of misclassification errors and singled out the most significant variable in the analysis. The model proceeded through a sequence of partitions providing insight into different possible pathways and changing lithology. The model results were extremely useful in constraining the interpretation of geological heterogeneity and constructing a conceptual flow model for a given aquifer. The tree model clearly identified the hydrochemical indices that were excluded from the analysis, thus providing information that can lead to a decrease in the number of routinely analyzed variables and a significant reduction in laboratory cost.

  20. PRIA 3 Fee Determination Decision Tree

    EPA Pesticide Factsheets

    The PRIA 3 decision tree will help applicants requesting a pesticide registration or certain tolerance action to accurately identify the category of their application and the amount of the required fee before they submit the application.

  1. Solar and Wind Site Screening Decision Trees

    EPA Pesticide Factsheets

    EPA and NREL created a decision tree to guide state and local governments and other stakeholders through a process for screening sites for their suitability for future redevelopment with solar photovoltaic (PV) energy and wind energy.

  2. An analysis of tree mortality using high resolution remotely-sensed data for mixed-conifer forests in San Diego county

    NASA Astrophysics Data System (ADS)

    Freeman, Mary Pyott

    ABSTRACT An Analysis of Tree Mortality Using High Resolution Remotely-Sensed Data for Mixed-Conifer Forests in San Diego County by Mary Pyott Freeman The montane mixed-conifer forests of San Diego County are currently experiencing extensive tree mortality, which is defined as dieback where whole stands are affected. This mortality is likely the result of the complex interaction of many variables, such as altered fire regimes, climatic conditions such as drought, as well as forest pathogens and past management strategies. Conifer tree mortality and its spatial pattern and change over time were examined in three components. In component 1, two remote sensing approaches were compared for their effectiveness in delineating dead trees, a spatial contextual approach and an OBIA (object based image analysis) approach, utilizing various dates and spatial resolutions of airborne image data. For each approach transforms and masking techniques were explored, which were found to improve classifications, and an object-based assessment approach was tested. In component 2, dead tree maps produced by the most effective techniques derived from component 1 were utilized for point pattern and vector analyses to further understand spatio-temporal changes in tree mortality for the years 1997, 2000, 2002, and 2005 for three study areas: Palomar, Volcan and Laguna mountains. Plot-based fieldwork was conducted to further assess mortality patterns. Results indicate that conifer mortality was significantly clustered, increased substantially between 2002 and 2005, and was non-random with respect to tree species and diameter class sizes. In component 3, multiple environmental variables were used in Generalized Linear Model (GLM-logistic regression) and decision tree classifier model development, revealing the importance of climate and topographic factors such as precipitation and elevation, in being able to predict areas of high risk for tree mortality. The results from this study highlight the importance of multi-scale spatial as well as temporal analyses, in order to understand mixed-conifer forest structure, dynamics, and processes of decline, which can lead to more sustainable management of forests with continued natural and anthropogenic disturbance.

  3. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data.

    PubMed

    Wang, Kung-Jeng; Makond, Bunjira; Wang, Kung-Min

    2013-11-09

    Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE), cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR.

  4. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data

    PubMed Central

    2013-01-01

    Background Breast cancer is one of the most critical cancers and is a major cause of cancer death among women. It is essential to know the survivability of the patients in order to ease the decision making process regarding medical treatment and financial preparation. Recently, the breast cancer data sets have been imbalanced (i.e., the number of survival patients outnumbers the number of non-survival patients) whereas the standard classifiers are not applicable for the imbalanced data sets. The methods to improve survivability prognosis of breast cancer need for study. Methods Two well-known five-year prognosis models/classifiers [i.e., logistic regression (LR) and decision tree (DT)] are constructed by combining synthetic minority over-sampling technique (SMOTE) ,cost-sensitive classifier technique (CSC), under-sampling, bagging, and boosting. The feature selection method is used to select relevant variables, while the pruning technique is applied to obtain low information-burden models. These methods are applied on data obtained from the Surveillance, Epidemiology, and End Results database. The improvements of survivability prognosis of breast cancer are investigated based on the experimental results. Results Experimental results confirm that the DT and LR models combined with SMOTE, CSC, and under-sampling generate higher predictive performance consecutively than the original ones. Most of the time, DT and LR models combined with SMOTE and CSC use less informative burden/features when a feature selection method and a pruning technique are applied. Conclusions LR is found to have better statistical power than DT in predicting five-year survivability. CSC is superior to SMOTE, under-sampling, bagging, and boosting to improve the prognostic performance of DT and LR. PMID:24207108

  5. Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers.

    PubMed

    Jitaree, Sirinapa; Phinyomark, Angkoon; Boonyaphiphat, Pleumjit; Phukpattaranont, Pornchai

    2015-01-01

    Having a classifier of cell types in a breast cancer microscopic image (BCMI), obtained with immunohistochemical staining, is required as part of a computer-aided system that counts the cancer cells in such BCMI. Such quantitation by cell counting is very useful in supporting decisions and planning of the medical treatment of breast cancer. This study proposes and evaluates features based on texture analysis by fractal dimension (FD), for the classification of histological structures in a BCMI into either cancer cells or non-cancer cells. The cancer cells include positive cells (PC) and negative cells (NC), while the normal cells comprise stromal cells (SC) and lymphocyte cells (LC). The FD feature values were calculated with the box-counting method from binarized images, obtained by automatic thresholding with Otsu's method of the grayscale images for various color channels. A total of 12 color channels from four color spaces (RGB, CIE-L*a*b*, HSV, and YCbCr) were investigated, and the FD feature values from them were used with decision tree classifiers. The BCMI data consisted of 1,400, 1,200, and 800 images with pixel resolutions 128 × 128, 192 × 192, and 256 × 256, respectively. The best cross-validated classification accuracy was 93.87%, for distinguishing between cancer and non-cancer cells, obtained using the Cr color channel with window size 256. The results indicate that the proposed algorithm, based on fractal dimension features extracted from a color channel, performs well in the automatic classification of the histology in a BCMI. This might support accurate automatic cell counting in a computer-assisted system for breast cancer diagnosis. © Wiley Periodicals, Inc.

  6. Recruiting Conventional Tree Architecture Models into State-of-the-Art LiDAR Mapping for Investigating Tree Growth Habits in Structure.

    PubMed

    Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne

    2018-01-01

    Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology-light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics.

  7. Recruiting Conventional Tree Architecture Models into State-of-the-Art LiDAR Mapping for Investigating Tree Growth Habits in Structure

    PubMed Central

    Lin, Yi; Jiang, Miao; Pellikka, Petri; Heiskanen, Janne

    2018-01-01

    Mensuration of tree growth habits is of considerable importance for understanding forest ecosystem processes and forest biophysical responses to climate changes. However, the complexity of tree crown morphology that is typically formed after many years of growth tends to render it a non-trivial task, even for the state-of-the-art 3D forest mapping technology—light detection and ranging (LiDAR). Fortunately, botanists have deduced the large structural diversity of tree forms into only a limited number of tree architecture models, which can present a-priori knowledge about tree structure, growth, and other attributes for different species. This study attempted to recruit Hallé architecture models (HAMs) into LiDAR mapping to investigate tree growth habits in structure. First, following the HAM-characterized tree structure organization rules, we run the kernel procedure of tree species classification based on the LiDAR-collected point clouds using a support vector machine classifier in the leave-one-out-for-cross-validation mode. Then, the HAM corresponding to each of the classified tree species was identified based on expert knowledge, assisted by the comparison of the LiDAR-derived feature parameters. Next, the tree growth habits in structure for each of the tree species were derived from the determined HAM. In the case of four tree species growing in the boreal environment, the tests indicated that the classification accuracy reached 85.0%, and their growth habits could be derived by qualitative and quantitative means. Overall, the strategy of recruiting conventional HAMs into LiDAR mapping for investigating tree growth habits in structure was validated, thereby paving a new way for efficiently reflecting tree growth habits and projecting forest structure dynamics. PMID:29515616

  8. A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data.

    PubMed

    Collell, Guillem; Prelec, Drazen; Patil, Kaustubh R

    2018-01-31

    Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori , i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.

  9. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure.

    PubMed

    Dagan-Wiener, Ayana; Nissim, Ido; Ben Abu, Natalie; Borgonovo, Gigliola; Bassoli, Angela; Niv, Masha Y

    2017-09-21

    Bitter taste is an innately aversive taste modality that is considered to protect animals from consuming toxic compounds. Yet, bitterness is not always noxious and some bitter compounds have beneficial effects on health. Hundreds of bitter compounds were reported (and are accessible via the BitterDB http://bitterdb.agri.huji.ac.il/dbbitter.php ), but numerous additional bitter molecules are still unknown. The dramatic chemical diversity of bitterants makes bitterness prediction a difficult task. Here we present a machine learning classifier, BitterPredict, which predicts whether a compound is bitter or not, based on its chemical structure. BitterDB was used as the positive set, and non-bitter molecules were gathered from literature to create the negative set. Adaptive Boosting (AdaBoost), based on decision trees machine-learning algorithm was applied to molecules that were represented using physicochemical and ADME/Tox descriptors. BitterPredict correctly classifies over 80% of the compounds in the hold-out test set, and 70-90% of the compounds in three independent external sets and in sensory test validation, providing a quick and reliable tool for classifying large sets of compounds into bitter and non-bitter groups. BitterPredict suggests that about 40% of random molecules, and a large portion (66%) of clinical and experimental drugs, and of natural products (77%) are bitter.

  10. Exploring Google Earth Engine platform for big data processing: classification of multi-temporal satellite imagery for crop mapping

    NASA Astrophysics Data System (ADS)

    Shelestov, Andrii; Lavreniuk, Mykola; Kussul, Nataliia; Novikov, Alexei; Skakun, Sergii

    2017-02-01

    Many applied problems arising in agricultural monitoring and food security require reliable crop maps at national or global scale. Large scale crop mapping requires processing and management of large amount of heterogeneous satellite imagery acquired by various sensors that consequently leads to a “Big Data” problem. The main objective of this study is to explore efficiency of using the Google Earth Engine (GEE) platform when classifying multi-temporal satellite imagery with potential to apply the platform for a larger scale (e.g. country level) and multiple sensors (e.g. Landsat-8 and Sentinel-2). In particular, multiple state-of-the-art classifiers available in the GEE platform are compared to produce a high resolution (30 m) crop classification map for a large territory ( 28,100 km2 and 1.0 M ha of cropland). Though this study does not involve large volumes of data, it does address efficiency of the GEE platform to effectively execute complex workflows of satellite data processing required with large scale applications such as crop mapping. The study discusses strengths and weaknesses of classifiers, assesses accuracies that can be achieved with different classifiers for the Ukrainian landscape, and compares them to the benchmark classifier using a neural network approach that was developed in our previous studies. The study is carried out for the Joint Experiment of Crop Assessment and Monitoring (JECAM) test site in Ukraine covering the Kyiv region (North of Ukraine) in 2013. We found that Google Earth Engine (GEE) provides very good performance in terms of enabling access to the remote sensing products through the cloud platform and providing pre-processing; however, in terms of classification accuracy, the neural network based approach outperformed support vector machine (SVM), decision tree and random forest classifiers available in GEE.

  11. Improving Classification of Cancer and Mining Biomarkers from Gene Expression Profiles Using Hybrid Optimization Algorithms and Fuzzy Support Vector Machine

    PubMed Central

    Moteghaed, Niloofar Yousefi; Maghooli, Keivan; Garshasbi, Masoud

    2018-01-01

    Background: Gene expression data are characteristically high dimensional with a small sample size in contrast to the feature size and variability inherent in biological processes that contribute to difficulties in analysis. Selection of highly discriminative features decreases the computational cost and complexity of the classifier and improves its reliability for prediction of a new class of samples. Methods: The present study used hybrid particle swarm optimization and genetic algorithms for gene selection and a fuzzy support vector machine (SVM) as the classifier. Fuzzy logic is used to infer the importance of each sample in the training phase and decrease the outlier sensitivity of the system to increase the ability to generalize the classifier. A decision-tree algorithm was applied to the most frequent genes to develop a set of rules for each type of cancer. This improved the abilities of the algorithm by finding the best parameters for the classifier during the training phase without the need for trial-and-error by the user. The proposed approach was tested on four benchmark gene expression profiles. Results: Good results have been demonstrated for the proposed algorithm. The classification accuracy for leukemia data is 100%, for colon cancer is 96.67% and for breast cancer is 98%. The results show that the best kernel used in training the SVM classifier is the radial basis function. Conclusions: The experimental results show that the proposed algorithm can decrease the dimensionality of the dataset, determine the most informative gene subset, and improve classification accuracy using the optimal parameters of the classifier with no user interface. PMID:29535919

  12. An assessment of the effectiveness of a random forest classifier for land-cover classification

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.

    2012-01-01

    Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.

  13. Binary space partitioning trees and their uses

    NASA Technical Reports Server (NTRS)

    Bell, Bradley N.

    1989-01-01

    Binary Space Partitioning (BSP) trees have some qualities that make them useful in solving many graphics related problems. The purpose is to describe what a BSP tree is, and how it can be used to solve the problem of hidden surface removal, and constructive solid geometry. The BSP tree is based on the idea that a plane acting as a divider subdivides space into two parts with one being on the positive side and the other on the negative. A polygonal solid is then represented as the volume defined by the collective interior half spaces of the solid's bounding surfaces. The nature of how the tree is organized lends itself well for sorting polygons relative to an arbitrary point in 3 space. The speed at which the tree can be traversed for depth sorting is fast enough to provide hidden surface removal at interactive speeds. The fact that a BSP tree actually represents a polygonal solid as a bounded volume also makes it quite useful in performing the boolean operations used in constructive solid geometry. Due to the nature of the BSP tree, polygons can be classified as they are subdivided. The ability to classify polygons as they are subdivided can enhance the simplicity of implementing constructive solid geometry.

  14. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    NASA Technical Reports Server (NTRS)

    Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.

    2015-01-01

    An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  15. Active Optical Sensors for Tree Stem Detection and Classification in Nurseries

    PubMed Central

    Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.

    2014-01-01

    Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graesser, Jordan B; Cheriyadat, Anil M; Vatsavai, Raju

    The high rate of global urbanization has resulted in a rapid increase in informal settlements, which can be de ned as unplanned, unauthorized, and/or unstructured housing. Techniques for ef ciently mapping these settlement boundaries can bene t various decision making bodies. From a remote sensing perspective, informal settlements share unique spatial characteristics that distinguish them from other types of structures (e.g., industrial, commercial, and formal residential). These spatial characteristics are often captured in high spatial resolution satellite imagery. We analyzed the role of spatial, structural, and contextual features (e.g., GLCM, Histogram of Oriented Gradients, Line Support Regions, Lacunarity) for urbanmore » neighborhood mapping, and computed several low-level image features at multiple scales to characterize local neighborhoods. The decision parameters to classify formal-, informal-, and non-settlement classes were learned under Decision Trees and a supervised classi cation framework. Experiments were conducted on high-resolution satellite imagery from the CitySphere collection, and four different cities (i.e., Caracas, Kabul, Kandahar, and La Paz) with varying spatial characteristics were represented. Overall accuracy ranged from 85% in La Paz, Bolivia, to 92% in Kandahar, Afghanistan. While the disparities between formal and informal neighborhoods varied greatly, many of the image statistics tested proved robust.« less

  17. Single trial decoding of belief decision making from EEG and fMRI data using independent components features

    PubMed Central

    Douglas, Pamela K.; Lau, Edward; Anderson, Ariana; Head, Austin; Kerr, Wesley; Wollner, Margalit; Moyer, Daniel; Li, Wei; Durnhofer, Mike; Bramen, Jennifer; Cohen, Mark S.

    2013-01-01

    The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM) results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities. PMID:23914164

  18. Applying of Decision Tree Analysis to Risk Factors Associated with Pressure Ulcers in Long-Term Care Facilities.

    PubMed

    Moon, Mikyung; Lee, Soo-Kyoung

    2017-01-01

    The purpose of this study was to use decision tree analysis to explore the factors associated with pressure ulcers (PUs) among elderly people admitted to Korean long-term care facilities. The data were extracted from the 2014 National Inpatient Sample (NIS)-data of Health Insurance Review and Assessment Service (HIRA). A MapReduce-based program was implemented to join and filter 5 tables of the NIS. The outcome predicted by the decision tree model was the prevalence of PUs as defined by the Korean Standard Classification of Disease-7 (KCD-7; code L89 * ). Using R 3.3.1, a decision tree was generated with the finalized 15,856 cases and 830 variables. The decision tree displayed 15 subgroups with 8 variables showing 0.804 accuracy, 0.820 sensitivity, and 0.787 specificity. The most significant primary predictor of PUs was length of stay less than 0.5 day. Other predictors were the presence of an infectious wound dressing, followed by having diagnoses numbering less than 3.5 and the presence of a simple dressing. Among diagnoses, "injuries to the hip and thigh" was the top predictor ranking 5th overall. Total hospital cost exceeding 2,200,000 Korean won (US $2,000) rounded out the top 7. These results support previous studies that showed length of stay, comorbidity, and total hospital cost were associated with PUs. Moreover, wound dressings were commonly used to treat PUs. They also show that machine learning, such as a decision tree, could effectively predict PUs using big data.

  19. Predicting the probability of mortality of gastric cancer patients using decision tree.

    PubMed

    Mohammadzadeh, F; Noorkojuri, H; Pourhoseingholi, M A; Saadat, S; Baghestani, A R

    2015-06-01

    Gastric cancer is the fourth most common cancer worldwide. This reason motivated us to investigate and introduce gastric cancer risk factors utilizing statistical methods. The aim of this study was to identify the most important factors influencing the mortality of patients who suffer from gastric cancer disease and to introduce a classification approach according to decision tree model for predicting the probability of mortality from this disease. Data on 216 patients with gastric cancer, who were registered in Taleghani hospital in Tehran,Iran, were analyzed. At first, patients were divided into two groups: the dead and alive. Then, to fit decision tree model to our data, we randomly selected 20% of dataset to the test sample and remaining dataset considered as the training sample. Finally, the validity of the model examined with sensitivity, specificity, diagnosis accuracy and the area under the receiver operating characteristic curve. The CART version 6.0 and SPSS version 19.0 softwares were used for the analysis of the data. Diabetes, ethnicity, tobacco, tumor size, surgery, pathologic stage, age at diagnosis, exposure to chemical weapons and alcohol consumption were determined as effective factors on mortality of gastric cancer. The sensitivity, specificity and accuracy of decision tree were 0.72, 0.75 and 0.74 respectively. The indices of sensitivity, specificity and accuracy represented that the decision tree model has acceptable accuracy to prediction the probability of mortality in gastric cancer patients. So a simple decision tree consisted of factors affecting on mortality of gastric cancer may help clinicians as a reliable and practical tool to predict the probability of mortality in these patients.

  20. Diagnostic classification scheme in Iranian breast cancer patients using a decision tree.

    PubMed

    Malehi, Amal Saki

    2014-01-01

    The objective of this study was to determine a diagnostic classification scheme using a decision tree based model. The study was conducted as a retrospective case-control study in Imam Khomeini hospital in Tehran during 2001 to 2009. Data, including demographic and clinical-pathological characteristics, were uniformly collected from 624 females, 312 of them were referred with positive diagnosis of breast cancer (cases) and 312 healthy women (controls). The decision tree was implemented to develop a diagnostic classification scheme using CART 6.0 Software. The AUC (area under curve), was measured as the overall performance of diagnostic classification of the decision tree. Five variables as main risk factors of breast cancer and six subgroups as high risk were identified. The results indicated that increasing age, low age at menarche, single and divorced statues, irregular menarche pattern and family history of breast cancer are the important diagnostic factors in Iranian breast cancer patients. The sensitivity and specificity of the analysis were 66% and 86.9% respectively. The high AUC (0.82) also showed an excellent classification and diagnostic performance of the model. Decision tree based model appears to be suitable for identifying risk factors and high or low risk subgroups. It can also assists clinicians in making a decision, since it can identify underlying prognostic relationships and understanding the model is very explicit.

  1. Correlation Between the System Capabilities Analytic Process (SCAP) and the Missions and Means Framework (MMF)

    DTIC Science & Technology

    2013-05-01

    specifics of the correlation will be explored followed by discussion of new paradigms— the ordered event list (OEL) and the decision tree — that result from...4.2.1  Brief Overview of the Decision Tree Paradigm ................................................15  4.2.2  OEL Explained...6  Figure 3. A depiction of a notional fault/activation tree . ................................................................7

  2. Personalized Modeling for Prediction with Decision-Path Models

    PubMed Central

    Visweswaran, Shyam; Ferreira, Antonio; Ribeiro, Guilherme A.; Oliveira, Alexandre C.; Cooper, Gregory F.

    2015-01-01

    Deriving predictive models in medicine typically relies on a population approach where a single model is developed from a dataset of individuals. In this paper we describe and evaluate a personalized approach in which we construct a new type of decision tree model called decision-path model that takes advantage of the particular features of a given person of interest. We introduce three personalized methods that derive personalized decision-path models. We compared the performance of these methods to that of Classification And Regression Tree (CART) that is a population decision tree to predict seven different outcomes in five medical datasets. Two of the three personalized methods performed statistically significantly better on area under the ROC curve (AUC) and Brier skill score compared to CART. The personalized approach of learning decision path models is a new approach for predictive modeling that can perform better than a population approach. PMID:26098570

  3. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images.

    PubMed

    Díaz, Gloria; González, Fabio A; Romero, Eduardo

    2009-04-01

    Visual quantification of parasitemia in thin blood films is a very tedious, subjective and time-consuming task. This study presents an original method for quantification and classification of erythrocytes in stained thin blood films infected with Plasmodium falciparum. The proposed approach is composed of three main phases: a preprocessing step, which corrects luminance differences. A segmentation step that uses the normalized RGB color space for classifying pixels either as erythrocyte or background followed by an Inclusion-Tree representation that structures the pixel information into objects, from which erythrocytes are found. Finally, a two step classification process identifies infected erythrocytes and differentiates the infection stage, using a trained bank of classifiers. Additionally, user intervention is allowed when the approach cannot make a proper decision. Four hundred fifty malaria images were used for training and evaluating the method. Automatic identification of infected erythrocytes showed a specificity of 99.7% and a sensitivity of 94%. The infection stage was determined with an average sensitivity of 78.8% and average specificity of 91.2%.

  4. Machine learning algorithms for meteorological event classification in the coastal area using in-situ data

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé

    2017-04-01

    The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.

  5. Sentiment analysis of Arabic tweets using text mining techniques

    NASA Astrophysics Data System (ADS)

    Al-Horaibi, Lamia; Khan, Muhammad Badruddin

    2016-07-01

    Sentiment analysis has become a flourishing field of text mining and natural language processing. Sentiment analysis aims to determine whether the text is written to express positive, negative, or neutral emotions about a certain domain. Most sentiment analysis researchers focus on English texts, with very limited resources available for other complex languages, such as Arabic. In this study, the target was to develop an initial model that performs satisfactorily and measures Arabic Twitter sentiment by using machine learning approach, Naïve Bayes and Decision Tree for classification algorithms. The datasets used contains more than 2,000 Arabic tweets collected from Twitter. We performed several experiments to check the performance of the two algorithms classifiers using different combinations of text-processing functions. We found that available facilities for Arabic text processing need to be made from scratch or improved to develop accurate classifiers. The small functionalities developed by us in a Python language environment helped improve the results and proved that sentiment analysis in the Arabic domain needs lot of work on the lexicon side.

  6. A Height Estimation Approach for Terrain Following Flights from Monocular Vision

    PubMed Central

    Campos, Igor S. G.; Nascimento, Erickson R.; Freitas, Gustavo M.; Chaimowicz, Luiz

    2016-01-01

    In this paper, we present a monocular vision-based height estimation algorithm for terrain following flights. The impressive growth of Unmanned Aerial Vehicle (UAV) usage, notably in mapping applications, will soon require the creation of new technologies to enable these systems to better perceive their surroundings. Specifically, we chose to tackle the terrain following problem, as it is still unresolved for consumer available systems. Virtually every mapping aircraft carries a camera; therefore, we chose to exploit this in order to use presently available hardware to extract the height information toward performing terrain following flights. The proposed methodology consists of using optical flow to track features from videos obtained by the UAV, as well as its motion information to estimate the flying height. To determine if the height estimation is reliable, we trained a decision tree that takes the optical flow information as input and classifies whether the output is trustworthy or not. The classifier achieved accuracies of 80% for positives and 90% for negatives, while the height estimation algorithm presented good accuracy. PMID:27929424

  7. Space/age forestry: Implications of planting density and rotation age in SRIC management decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merriam, R.A.; Phillips, V.D.; Liu, W.

    1993-12-31

    Short-rotation intensive-culture (SRIC) of promising tree crops is being evaluated worldwide for the production of methanol, ethanol, and electricity from renewable biomass resources. Planting density and rotation age are fundamental management decisions associated with SRIC energy plantations. Most studies of these variables have been conducted without the benefit of a unifying theory of the effects of growing space and rotation age on individual tree growth and stand level productivity. A modeling procedure based on field trials of Eucalyptus spp. is presented that evaluates the growth potential of a tree in the absence and presence of competition of neighboring trees inmore » a stand. The results of this analysis are useful in clarifying economic implications of different growing space and rotation age decisions that tree plantation managers must make. The procedure is readily applicable to other species under consideration for SRIC plantations at any location.« less

  8. Quantitative metrics for assessing predicted climate change pressure on North American tree species

    Treesearch

    Kevin M. Potter; William W. Hargrove

    2013-01-01

    Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...

  9. Urban trees and the risk of poor birth outcomes

    Treesearch

    Geoffrey H. Donovan; Yvonne L. Michael; David T. Butry; Amy D. Sullivan; John M. Chase

    2011-01-01

    This paper investigated whether greater tree-canopy cover is associated with reduced risk of poor birth outcomes in Portland, Oregon. Residential addresses were geocoded and linked to classified-aerial imagery to calculate tree-canopy cover in 50, 100, and 200 m buffers around each home in our sample (n=5696). Detailed data on maternal characteristics and additional...

  10. 75 FR 19936 - Medicine Bow-Routt National Forests, Brush Creek/Hayden Ranger District Saratoga, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... remove dead and dying trees that are posing a public safety hazard in high priority areas. The proposal...-killed) dead and dying trees; reduce hazardous fuels; provide forest products; promote forest... products for sale and to salvage and remove dead and dying trees from forested lands classified as being...

  11. Predicting serious complications in patients with cancer and pulmonary embolism using decision tree modelling: the EPIPHANY Index

    PubMed Central

    Carmona-Bayonas, A; Jiménez-Fonseca, P; Font, C; Fenoy, F; Otero, R; Beato, C; Plasencia, J M; Biosca, M; Sánchez, M; Benegas, M; Calvo-Temprano, D; Varona, D; Faez, L; de la Haba, I; Antonio, M; Madridano, O; Solis, M P; Ramchandani, A; Castañón, E; Marchena, P J; Martín, M; Ayala de la Peña, F; Vicente, V

    2017-01-01

    Background: Our objective was to develop a prognostic stratification tool that enables patients with cancer and pulmonary embolism (PE), whether incidental or symptomatic, to be classified according to the risk of serious complications within 15 days. Methods: The sample comprised cases from a national registry of pulmonary thromboembolism in patients with cancer (1075 patients from 14 Spanish centres). Diagnosis was incidental in 53.5% of the events in this registry. The Exhaustive CHAID analysis was applied with 10-fold cross-validation to predict development of serious complications following PE diagnosis. Results: About 208 patients (19.3%, 95% confidence interval (CI), 17.1–21.8%) developed a serious complication after PE diagnosis. The 15-day mortality rate was 10.1%, (95% CI, 8.4–12.1%). The decision tree detected six explanatory covariates: Hestia-like clinical decision rule (any risk criterion present vs none), Eastern Cooperative Group performance scale (ECOG-PS; <2 vs ⩾2), O2 saturation (<90 vs ⩾90%), presence of PE-specific symptoms, tumour response (progression, unknown, or not evaluated vs others), and primary tumour resection. Three risk classes were created (low, intermediate, and high risk). The risk of serious complications within 15 days increases according to the group: 1.6, 9.4, 30.6% P<0.0001. Fifteen-day mortality rates also rise progressively in low-, intermediate-, and high-risk patients: 0.3, 6.1, and 17.1% P<0.0001. The cross-validated risk estimate is 0.191 (s.e.=0.012). The optimism-corrected area under the receiver operating characteristic curve is 0.779 (95% CI, 0.717–0.840). Conclusions: We have developed and internally validated a prognostic index to predict serious complications with the potential to impact decision-making in patients with cancer and PE. PMID:28267709

  12. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables better decision making for future agricultural activities as a means to reduce current, and prevent new, water-quality issues.

  13. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    NASA Astrophysics Data System (ADS)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, AdaBoost, and Decision Tree) and is a good technique for automatic classification of exoplanet-transit-like signal.

  14. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    NASA Astrophysics Data System (ADS)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

  15. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.

    PubMed

    Guinness, Robert E

    2015-04-28

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.

  16. Beyond Where to How: A Machine Learning Approach for Sensing Mobility Contexts Using Smartphone Sensors †

    PubMed Central

    Guinness, Robert E.

    2015-01-01

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (<5 s). We investigated a wide range of supervised learning techniques for classification, including decision trees (DT), support vector machines (SVM), naive Bayes classifiers (NB), Bayesian networks (BN), logistic regression (LR), artificial neural networks (ANN) and several instance-based classifiers (KStar, LWLand IBk). Applying ten-fold cross-validation, the best performers in terms of correct classification rate (i.e., recall) were DT (96.5%), BN (90.9%), LWL (95.5%) and KStar (95.6%). In particular, the DT-algorithm RandomForest exhibited the best overall performance. After a feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity. PMID:25928060

  17. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Coops, Nicholas C.; Innes, John L.; Dai, Jinsong; Ruan, Honghua; She, Guanghui

    2016-07-01

    The accurate classification of tree species is critical for the management of forest ecosystems, particularly subtropical forests, which are highly diverse and complex ecosystems. While airborne Light Detection and Ranging (LiDAR) technology offers significant potential to estimate forest structural attributes, the capacity of this new tool to classify species is less well known. In this research, full-waveform metrics were extracted by a voxel-based composite waveform approach and examined with a Random Forests classifier to discriminate six subtropical tree species (i.e., Masson pine (Pinus massoniana Lamb.)), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), Slash pines (Pinus elliottii Engelm.), Sawtooth oak (Quercus acutissima Carruth.) and Chinese holly (Ilex chinensis Sims.) at three levels of discrimination. As part of the analysis, the optimal voxel size for modelling the composite waveforms was investigated, the most important predictor metrics for species classification assessed and the effect of scan angle on species discrimination examined. Results demonstrate that all tree species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species and 86.2% for conifers and broadleaved trees). Full-waveform metrics (based on height of median energy, waveform distance and number of waveform peaks) demonstrated high classification importance and were stable among various voxel sizes. The results also suggest that the voxel based approach can alleviate some of the issues associated with large scan angles. In summary, the results indicate that full-waveform LIDAR data have significant potential for tree species classification in the subtropical forests.

  18. Vlsi implementation of flexible architecture for decision tree classification in data mining

    NASA Astrophysics Data System (ADS)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  19. Machine- z: Rapid machine-learned redshift indicator for Swift gamma-ray bursts

    DOE PAGES

    Ukwatta, T. N.; Wozniak, P. R.; Gehrels, N.

    2016-03-08

    Studies of high-redshift gamma-ray bursts (GRBs) provide important information about the early Universe such as the rates of stellar collapsars and mergers, the metallicity content, constraints on the re-ionization period, and probes of the Hubble expansion. Rapid selection of high-z candidates from GRB samples reported in real time by dedicated space missions such as Swift is the key to identifying the most distant bursts before the optical afterglow becomes too dim to warrant a good spectrum. Here, we introduce ‘machine-z’, a redshift prediction algorithm and a ‘high-z’ classifier for Swift GRBs based on machine learning. Our method relies exclusively onmore » canonical data commonly available within the first few hours after the GRB trigger. Using a sample of 284 bursts with measured redshifts, we trained a randomized ensemble of decision trees (random forest) to perform both regression and classification. Cross-validated performance studies show that the correlation coefficient between machine-z predictions and the true redshift is nearly 0.6. At the same time, our high-z classifier can achieve 80 per cent recall of true high-redshift bursts, while incurring a false positive rate of 20 per cent. With 40 per cent false positive rate the classifier can achieve ~100 per cent recall. As a result, the most reliable selection of high-redshift GRBs is obtained by combining predictions from both the high-z classifier and the machine-z regressor.« less

  20. Construction accident narrative classification: An evaluation of text mining techniques.

    PubMed

    Goh, Yang Miang; Ubeynarayana, C U

    2017-11-01

    Learning from past accidents is fundamental to accident prevention. Thus, accident and near miss reporting are encouraged by organizations and regulators. However, for organizations managing large safety databases, the time taken to accurately classify accident and near miss narratives will be very significant. This study aims to evaluate the utility of various text mining classification techniques in classifying 1000 publicly available construction accident narratives obtained from the US OSHA website. The study evaluated six machine learning algorithms, including support vector machine (SVM), linear regression (LR), random forest (RF), k-nearest neighbor (KNN), decision tree (DT) and Naive Bayes (NB), and found that SVM produced the best performance in classifying the test set of 251 cases. Further experimentation with tokenization of the processed text and non-linear SVM were also conducted. In addition, a grid search was conducted on the hyperparameters of the SVM models. It was found that the best performing classifiers were linear SVM with unigram tokenization and radial basis function (RBF) SVM with uni-gram tokenization. In view of its relative simplicity, the linear SVM is recommended. Across the 11 labels of accident causes or types, the precision of the linear SVM ranged from 0.5 to 1, recall ranged from 0.36 to 0.9 and F1 score was between 0.45 and 0.92. The reasons for misclassification were discussed and suggestions on ways to improve the performance were provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  2. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System.

    PubMed

    Rau, Cheng-Shyuan; Wu, Shao-Chun; Chien, Peng-Chen; Kuo, Pao-Jen; Chen, Yi-Chun; Hsieh, Hsiao-Yun; Hsieh, Ching-Hua

    2017-11-22

    Background: In contrast to patients with traumatic subarachnoid hemorrhage (tSAH) in the presence of other types of intracranial hemorrhage, the prognosis of patients with isolated tSAH is good. The incidence of mortality in these patients ranges from 0-2.5%. However, few data or predictive models are available for the identification of patients with a high mortality risk. In this study, we aimed to construct a model for mortality prediction using a decision tree (DT) algorithm, along with data obtained from a population-based trauma registry, in a Level 1 trauma center. Methods: Five hundred and forty-five patients with isolated tSAH, including 533 patients who survived and 12 who died, between January 2009 and December 2016, were allocated to training ( n = 377) or test ( n = 168) sets. Using the data on demographics and injury characteristics, as well as laboratory data of the patients, classification and regression tree (CART) analysis was performed based on the Gini impurity index, using the rpart function in the rpart package in R. Results: In this established DT model, three nodes (head Abbreviated Injury Scale (AIS) score ≤4, creatinine (Cr) <1.4 mg/dL, and age <76 years) were identified as important determinative variables in the prediction of mortality. Of the patients with isolated tSAH, 60% of those with a head AIS >4 died, as did the 57% of those with an AIS score ≤4, but Cr ≥1.4 and age ≥76 years. All patients who did not meet the above-mentioned criteria survived. With all the variables in the model, the DT achieved an accuracy of 97.9% (sensitivity of 90.9% and specificity of 98.1%) and 97.7% (sensitivity of 100% and specificity of 97.7%), for the training set and test set, respectively. Conclusions: The study established a DT model with three nodes (head AIS score ≤4, Cr <1.4, and age <76 years) to predict fatal outcomes in patients with isolated tSAH. The proposed decision-making algorithm may help identify patients with a high risk of mortality.

  3. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plainmore » based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of quantifying degraded states and provides a series of hypotheses for future experimental restoration work. More broadly, our work provides a framework for developing and evaluating reference models that incorporate multiple, interactive anthropogenic drivers of ecosystem degradation.« less

  4. A decision tree-based combination of ezrin-interacting proteins to estimate the prognostic risk of patients with esophageal squamous cell carcinoma.

    PubMed

    He, Jian-Zhong; Wu, Zhi-Yong; Wang, Shao-Hong; Ji, Xia; Yang, Cui-Xia; Xu, Xiu-E; Liao, Lian-Di; Wu, Jian-Yi; Li, En-Min; Zhang, Kai; Xu, Li-Yan

    2017-08-01

    Our previous studies have highlighted the importance of ezrin in esophageal squamous cell carcinoma (ESCC). Here our objective was to explore the clinical significance of ezrin-interacting proteins, which would provide a theoretical basis for understanding the function of ezrin and potential therapeutic targets for ESCC. We used affinity purification and mass spectrometry to identify PDIA3, CNPY2, and STMN1 as potential ezrin-interacting proteins. Confocal microscopy and coimmunoprecipitation analysis further confirmed the colocalization and interaction of ezrin with PDIA3, CNPY2, and STMN1. Tissue microarray data of ESCC samples (n=263) showed that the 5-year overall survival (OS) and disease-free survival (DFS) were significantly lower for the CNPY2 (OS, P=.003; DFS, P=.011) and STMN1 (OS, P=.010; DFS, P=.002) high-expression groups compared with the low-expression groups. By contrast, overexpression of PDIA3 was significantly correlated with favorable survival (OS, P<.001; DFS, P=.001). Cox regression demonstrated the prognostic value of PDIA3, CNPY2, and STMN1 in ESCC. Furthermore, decision tree analysis revealed that the resulting classifier of both ezrin and its interacting proteins could be used to better predict OS and DFS of patients with ESCC. In conclusion, a signature of ezrin-interacting proteins accurately predicts ESCC patient survival or tumor recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Applying Data Mining Techniques to Extract Hidden Patterns about Breast Cancer Survival in an Iranian Cohort Study.

    PubMed

    Khalkhali, Hamid Reza; Lotfnezhad Afshar, Hadi; Esnaashari, Omid; Jabbari, Nasrollah

    2016-01-01

    Breast cancer survival has been analyzed by many standard data mining algorithms. A group of these algorithms belonged to the decision tree category. Ability of the decision tree algorithms in terms of visualizing and formulating of hidden patterns among study variables were main reasons to apply an algorithm from the decision tree category in the current study that has not studied already. The classification and regression trees (CART) was applied to a breast cancer database contained information on 569 patients in 2007-2010. The measurement of Gini impurity used for categorical target variables was utilized. The classification error that is a function of tree size was measured by 10-fold cross-validation experiments. The performance of created model was evaluated by the criteria as accuracy, sensitivity and specificity. The CART model produced a decision tree with 17 nodes, 9 of which were associated with a set of rules. The rules were meaningful clinically. They showed in the if-then format that Stage was the most important variable for predicting breast cancer survival. The scores of accuracy, sensitivity and specificity were: 80.3%, 93.5% and 53%, respectively. The current study model as the first one created by the CART was able to extract useful hidden rules from a relatively small size dataset.

  6. Quantum ensembles of quantum classifiers.

    PubMed

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  7. The Utility of Decision Trees in Oncofertility Care in Japan.

    PubMed

    Ito, Yuki; Shiraishi, Eriko; Kato, Atsuko; Haino, Takayuki; Sugimoto, Kouhei; Okamoto, Aikou; Suzuki, Nao

    2017-03-01

    To identify the utility and issues associated with the use of decision trees in oncofertility patient care in Japan. A total of 35 women who had been diagnosed with cancer, but had not begun anticancer treatment, were enrolled. We applied the oncofertility decision tree for women published by Gardino et al. to counsel a consecutive series of women on fertility preservation (FP) options following cancer diagnosis. Percentage of women who decided to undergo oocyte retrieval for embryo cryopreservation and the expected live-birth rate for these patients were calculated using the following equation: expected live-birth rate = pregnancy rate at each age per embryo transfer × (1 - miscarriage rate) × No. of cryopreserved embryos. Oocyte retrieval was performed for 17 patients (48.6%; mean ± standard deviation [SD] age, 36.35 ± 3.82 years). The mean ± SD number of cryopreserved embryos was 5.29 ± 4.63. The expected live-birth rate was 0.66. The expected live-birth rate with FP indicated that one in three oncofertility patients would not expect to have a live birth following oocyte retrieval and embryo cryopreservation. While the decision trees were useful as decision-making tools for women contemplating FP, in the context of the current restrictions on oocyte donation and the extremely small number of adoptions in Japan, the remaining options for fertility after cancer are limited. In order for cancer survivors to feel secure in their decisions, the decision tree may need to be adapted simultaneously with improvements to the social environment, such as greater support for adoption.

  8. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  9. Capturing species-level drought responses in a temperate deciduous forest using ratios of photochemical reflectance indices between sunlit and shaded canopies

    Treesearch

    Taehee Hwang; Hamed Gholizadeh; Daniel A. Sims; Kimberly A. Novick; Edward R. Brzostek; Richard P. Phillips; Daniel T. Roman; Scott M. Robeson; Abdullah F. Rahman

    2017-01-01

    To classify trees along a spectrum of isohydric to anisohydric behavior is a promising new framework for identifying tree species' sensitivities to drought stress, directly related to the vulnerability of carbon uptake of terrestrial ecosystems with increased hydroclimate variability. Trees with isohydric strategies regulate stomatal conductance to maintain...

  10. First-year growth and quality response of residual ahrdwood poletimber trees following thinning in an even-aged sawtimber stand

    Treesearch

    Daniel A. Jr. Skojac; Andrew W. Ezell; James S. Meadows; John D. Hodges

    2007-01-01

    First-year diameter growth and epicormic branching responses of hardwood poletimber trees retained following thinning- in a sawtimber stand are reported. Poletimber trees were classified as either superior or inferior poletimber, and then retained on separate plots receiving identical thinning treatments. Comparison of responses by the two classes of poletimber was...

  11. New Tree-Classification System Used by the Southern Forest Inventory and Analysis Unit

    Treesearch

    Dennis M. May; John S. Vissage; D. Vince Few

    1990-01-01

    Trees at USDA Forest Service, Southern Forest Inventory and Analysis, sample locations are classified as growing stock or cull based on their ability to produce sawlogs. The old and new classification systems are compared, and the impacts of the new system on the reporting of tree volumes are illustrated with inventory data from north Alabama.

  12. Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging.

    PubMed

    Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H

    2011-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.

  13. The application of a decision tree to establish the parameters associated with hypertension.

    PubMed

    Tayefi, Maryam; Esmaeili, Habibollah; Saberi Karimian, Maryam; Amirabadi Zadeh, Alireza; Ebrahimi, Mahmoud; Safarian, Mohammad; Nematy, Mohsen; Parizadeh, Seyed Mohammad Reza; Ferns, Gordon A; Ghayour-Mobarhan, Majid

    2017-02-01

    Hypertension is an important risk factor for cardiovascular disease (CVD). The goal of this study was to establish the factors associated with hypertension by using a decision-tree algorithm as a supervised classification method of data mining. Data from a cross-sectional study were used in this study. A total of 9078 subjects who met the inclusion criteria were recruited. 70% of these subjects (6358 cases) were randomly allocated to the training dataset for the constructing of the decision-tree. The remaining 30% (2720 cases) were used as the testing dataset to evaluate the performance of decision-tree. Two models were evaluated in this study. In model I, age, gender, body mass index, marital status, level of education, occupation status, depression and anxiety status, physical activity level, smoking status, LDL, TG, TC, FBG, uric acid and hs-CRP were considered as input variables and in model II, age, gender, WBC, RBC, HGB, HCT MCV, MCH, PLT, RDW and PDW were considered as input variables. The validation of the model was assessed by constructing a receiver operating characteristic (ROC) curve. The prevalence rates of hypertension were 32% in our population. For the decision-tree model I, the accuracy, sensitivity, specificity and area under the ROC curve (AUC) value for identifying the related risk factors of hypertension were 73%, 63%, 77% and 0.72, respectively. The corresponding values for model II were 70%, 61%, 74% and 0.68, respectively. We have developed a decision tree model to identify the risk factors associated with hypertension that maybe used to develop programs for hypertension management. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Generative model selection using a scalable and size-independent complex network classifier

    NASA Astrophysics Data System (ADS)

    Motallebi, Sadegh; Aliakbary, Sadegh; Habibi, Jafar

    2013-12-01

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree for model selection. Our proposed method, which is named "Generative Model Selection for Complex Networks," outperforms existing methods with respect to accuracy, scalability, and size-independence.

  15. Data mining: comparing the empiric CFS to the Canadian ME/CFS case definition.

    PubMed

    Jason, Leonard A; Skendrovic, Beth; Furst, Jacob; Brown, Abigail; Weng, Angela; Bronikowski, Christine

    2012-01-01

    This article contrasts two case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We compared the empiric CFS case definition (Reeves et al., 2005) and the Canadian ME/CFS clinical case definition (Carruthers et al., 2003) with a sample of individuals with CFS versus those without. Data mining with decision trees was used to identify the best items to identify patients with CFS. Data mining is a statistical technique that was used to help determine which of the survey questions were most effective for accurately classifying cases. The empiric criteria identified about 79% of patients with CFS and the Canadian criteria identified 87% of patients. Items identified by the Canadian criteria had more construct validity. The implications of these findings are discussed. © 2011 Wiley Periodicals, Inc.

  16. A fast image retrieval method based on SVM and imbalanced samples in filtering multimedia message spam

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Peng, Zhenming; Peng, Lingbing; Liao, Dongyi; He, Xin

    2011-11-01

    With the swift and violent development of the Multimedia Messaging Service (MMS), it becomes an urgent task to filter the Multimedia Message (MM) spam effectively in real-time. For the fact that most MMs contain images or videos, a method based on retrieving images is given in this paper for filtering MM spam. The detection method used in this paper is a combination of skin-color detection, texture detection, and face detection, and the classifier for this imbalanced problem is a very fast multi-classification combining Support vector machine (SVM) with unilateral binary decision tree. The experiments on 3 test sets show that the proposed method is effective, with the interception rate up to 60% and the average detection time for each image less than 1 second.

  17. Transportation Modes Classification Using Sensors on Smartphones.

    PubMed

    Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu

    2016-08-19

    This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user's transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  18. Transportation Modes Classification Using Sensors on Smartphones

    PubMed Central

    Fang, Shih-Hau; Liao, Hao-Hsiang; Fei, Yu-Xiang; Chen, Kai-Hsiang; Huang, Jen-Wei; Lu, Yu-Ding; Tsao, Yu

    2016-01-01

    This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes. PMID:27548182

  19. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis.

    PubMed

    Hostettler, Isabel Charlotte; Muroi, Carl; Richter, Johannes Konstantin; Schmid, Josef; Neidert, Marian Christoph; Seule, Martin; Boss, Oliver; Pangalu, Athina; Germans, Menno Robbert; Keller, Emanuela

    2018-01-19

    OBJECTIVE The aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS The database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7. RESULTS The overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission. CONCLUSIONS The multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.

  20. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  1. Evaluation with Decision Trees of Efficacy and Safety of Semirigid Ureteroscopy in the Treatment of Proximal Ureteral Calculi.

    PubMed

    Sancak, Eyup Burak; Kılınç, Muhammet Fatih; Yücebaş, Sait Can

    2017-01-01

    The decision on the choice of proximal ureteral stone therapy depends on many factors, and sometimes urologists have difficulty in choosing the treatment option. This study is aimed at evaluating the factors affecting the success of semirigid ureterorenoscopy (URS) using the "decision tree" method. From January 2005 to November 2015, the data of consecutive patients treated for proximal ureteral stone were retrospectively analyzed. A total of 920 patients with proximal ureteral stone treated with semirigid URS were included in the study. All statistically significant attributes were tested using the decision tree method. The model created using decision tree had a sensitivity of 0.993 and an accuracy of 0.857. While URS treatment was successful in 752 patients (81.7%), it was unsuccessful in 168 patients (18.3%). According to the decision tree method, the most important factor affecting the success of URS is whether the stone is impacted to the ureteral wall. The second most important factor affecting treatment was intramural stricture requiring dilatation if the stone is impacted, and the size of the stone if not impacted. Our study suggests that the impacted stone, intramural stricture requiring dilatation and stone size may have a significant effect on the success rate of semirigid URS for proximal ureteral stone. Further studies with population-based and longitudinal design should be conducted to confirm this finding. © 2017 S. Karger AG, Basel.

  2. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals.

    PubMed

    Sudarshan, Vidya K; Acharya, U Rajendra; Oh, Shu Lih; Adam, Muhammad; Tan, Jen Hong; Chua, Chua Kuang; Chua, Kok Poo; Tan, Ru San

    2017-04-01

    Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of noise in intelligent cellular decision making.

    PubMed

    Bates, Russell; Blyuss, Oleg; Alsaedi, Ahmed; Zaikin, Alexey

    2015-01-01

    Similar to intelligent multicellular neural networks controlling human brains, even single cells, surprisingly, are able to make intelligent decisions to classify several external stimuli or to associate them. This happens because of the fact that gene regulatory networks can perform as perceptrons, simple intelligent schemes known from studies on Artificial Intelligence. We study the role of genetic noise in intelligent decision making at the genetic level and show that noise can play a constructive role helping cells to make a proper decision. We show this using the example of a simple genetic classifier able to classify two external stimuli.

  4. Planning effectiveness may grow on fault trees.

    PubMed

    Chow, C W; Haddad, K; Mannino, B

    1991-10-01

    The first step of a strategic planning process--identifying and analyzing threats and opportunities--requires subjective judgments. By using an analytical tool known as a fault tree, healthcare administrators can reduce the unreliability of subjective decision making by creating a logical structure for problem solving and decision making. A case study of 11 healthcare administrators showed that an analysis technique called prospective hindsight can add to a fault tree's ability to improve a strategic planning process.

  5. Derivation and validation of the Personal Support Algorithm: an evidence-based framework to inform allocation of personal support services in home and community care.

    PubMed

    Sinn, Chi-Ling Joanna; Jones, Aaron; McMullan, Janet Legge; Ackerman, Nancy; Curtin-Telegdi, Nancy; Eckel, Leslie; Hirdes, John P

    2017-11-25

    Personal support services enable many individuals to stay in their homes, but there are no standard ways to classify need for functional support in home and community care settings. The goal of this project was to develop an evidence-based clinical tool to inform service planning while allowing for flexibility in care coordinator judgment in response to patient and family circumstances. The sample included 128,169 Ontario home care patients assessed in 2013 and 25,800 Ontario community support clients assessed between 2014 and 2016. Independent variables were drawn from the Resident Assessment Instrument-Home Care and interRAI Community Health Assessment that are standardised, comprehensive, and fully compatible clinical assessments. Clinical expertise and regression analyses identified candidate variables that were entered into decision tree models. The primary dependent variable was the weekly hours of personal support calculated based on the record of billed services. The Personal Support Algorithm classified need for personal support into six groups with a 32-fold difference in average billed hours of personal support services between the highest and lowest group. The algorithm explained 30.8% of the variability in billed personal support services. Care coordinators and managers reported that the guidelines based on the algorithm classification were consistent with their clinical judgment and current practice. The Personal Support Algorithm provides a structured yet flexible decision-support framework that may facilitate a more transparent and equitable approach to the allocation of personal support services.

  6. Local classifier weighting by quadratic programming.

    PubMed

    Cevikalp, Hakan; Polikar, Robi

    2008-10-01

    It has been widely accepted that the classification accuracy can be improved by combining outputs of multiple classifiers. However, how to combine multiple classifiers with various (potentially conflicting) decisions is still an open problem. A rich collection of classifier combination procedures -- many of which are heuristic in nature -- have been developed for this goal. In this brief, we describe a dynamic approach to combine classifiers that have expertise in different regions of the input space. To this end, we use local classifier accuracy estimates to weight classifier outputs. Specifically, we estimate local recognition accuracies of classifiers near a query sample by utilizing its nearest neighbors, and then use these estimates to find the best weights of classifiers to label the query. The problem is formulated as a convex quadratic optimization problem, which returns optimal nonnegative classifier weights with respect to the chosen objective function, and the weights ensure that locally most accurate classifiers are weighted more heavily for labeling the query sample. Experimental results on several data sets indicate that the proposed weighting scheme outperforms other popular classifier combination schemes, particularly on problems with complex decision boundaries. Hence, the results indicate that local classification-accuracy-based combination techniques are well suited for decision making when the classifiers are trained by focusing on different regions of the input space.

  7. Predicting the need for CT imaging in children with minor head injury using an ensemble of Naive Bayes classifiers.

    PubMed

    Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat

    2012-03-01

    Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Prescriptive models to support decision making in genetics.

    PubMed

    Pauker, S G; Pauker, S P

    1987-01-01

    Formal prescriptive models can help patients and clinicians better understand the risks and uncertainties they face and better formulate well-reasoned decisions. Using Bayes rule, the clinician can interpret pedigrees, historical data, physical findings and laboratory data, providing individualized probabilities of various diagnoses and outcomes of pregnancy. With the advent of screening programs for genetic disease, it becomes increasingly important to consider the prior probabilities of disease when interpreting an abnormal screening test result. Decision trees provide a convenient formalism for structuring diagnostic, therapeutic and reproductive decisions; such trees can also enhance communication between clinicians and patients. Utility theory provides a mechanism for patients to understand the choices they face and to communicate their attitudes about potential reproductive outcomes in a manner which encourages the integration of those attitudes into appropriate decisions. Using a decision tree, the relevant probabilities and the patients' utilities, physicians can estimate the relative worth of various medical and reproductive options by calculating the expected utility of each. By performing relevant sensitivity analyses, clinicians and patients can understand the impact of various soft data, including the patients' attitudes toward various health outcomes, on the decision making process. Formal clinical decision analytic models can provide deeper understanding and improved decision making in clinical genetics.

  9. A soil map of a large watershed in China: applying digital soil mapping in a data sparse region

    NASA Astrophysics Data System (ADS)

    Barthold, F.; Blank, B.; Wiesmeier, M.; Breuer, L.; Frede, H.-G.

    2009-04-01

    Prediction of soil classes in data sparse regions is a major research challenge. With the advent of machine learning the possibilities to spatially predict soil classes have increased tremendously and given birth to new possibilities in soil mapping. Digital soil mapping is a research field that has been established during the last decades and has been accepted widely. We now need to develop tools to reduce the uncertainty in soil predictions. This is especially challenging in data sparse regions. One approach to do this is to implement soil taxonomic distance as a classification error criterion in classification and regression trees (CART) as suggested by Minasny et al. (Geoderma 142 (2007) 285-293). This approach assumes that the classification error should be larger between soils that are more dissimilar, i.e. differ in a larger number of soil properties, and smaller between more similar soils. Our study area is the Xilin River Basin, which is located in central Inner Mongolia in China. It is characterized by semi arid climate conditions and is representative for the natural occurring steppe ecosystem. The study area comprises 3600 km2. We applied a random, stratified sampling design after McKenzie and Ryan (Geoderma 89 (1999) 67-94) with landuse and topography as stratifying variables. We defined 10 sampling classes, from each class 14 replicates were randomly drawn and sampled. The dataset was split into 100 soil profiles for training and 40 soil profiles for validation. We then applied classification and regression trees (CART) to quantify the relationships between soil classes and environmental covariates. The classification tree explained 75.5% of the variance with land use and geology as most important predictor variables. Among the 8 soil classes that we predicted, the Kastanozems cover most of the area. They are predominantly found in steppe areas. However, even some of the soils at sand dune sites, which were thought to show only little soil formation, can be classified as Kastanozems. Besides the Kastanozems, Regosols are most common at the sand dune sites as well as at sites that are defined as bare soil which are characterized by little or no vegetation. Gleysols are mostly found at sites in the vicinity of the Xilin river, which are connected to the groundwater. They can also be found in small valleys or depressions where sub-surface waters from neighboring areas collect. The richest soils are found in mountain meadow areas. Pedogenetic conditions here are most favorable and lead to the formation of Chernozems with deep humic Ah horizons. Other soil types that occur in the study area are Arenosols, Calcisols, Cambisol and Phaeozems. In addition, soil taxonomic distance is implemented into the decision tree procedure as a measure of classification error. The results of incorporating taxonomic distance as a loss function in the decision tree will be compared with the standard application of the decision tree.

  10. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Treesearch

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  11. Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed

    USGS Publications Warehouse

    Balk, Benjamin; Elder, Kelly

    2000-01-01

    We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.

  12. New Splitting Criteria for Decision Trees in Stationary Data Streams.

    PubMed

    Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej

    2018-06-01

    The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.

  13. Decision tree analysis to stratify risk of de novo non-melanoma skin cancer following liver transplantation.

    PubMed

    Tanaka, Tomohiro; Voigt, Michael D

    2018-03-01

    Non-melanoma skin cancer (NMSC) is the most common de novo malignancy in liver transplant (LT) recipients; it behaves more aggressively and it increases mortality. We used decision tree analysis to develop a tool to stratify and quantify risk of NMSC in LT recipients. We performed Cox regression analysis to identify which predictive variables to enter into the decision tree analysis. Data were from the Organ Procurement Transplant Network (OPTN) STAR files of September 2016 (n = 102984). NMSC developed in 4556 of the 105984 recipients, a mean of 5.6 years after transplant. The 5/10/20-year rates of NMSC were 2.9/6.3/13.5%, respectively. Cox regression identified male gender, Caucasian race, age, body mass index (BMI) at LT, and sirolimus use as key predictive or protective factors for NMSC. These factors were entered into a decision tree analysis. The final tree stratified non-Caucasians as low risk (0.8%), and Caucasian males > 47 years, BMI < 40 who did not receive sirolimus, as high risk (7.3% cumulative incidence of NMSC). The predictions in the derivation set were almost identical to those in the validation set (r 2  = 0.971, p < 0.0001). Cumulative incidence of NMSC in low, moderate and high risk groups at 5/10/20 year was 0.5/1.2/3.3, 2.1/4.8/11.7 and 5.6/11.6/23.1% (p < 0.0001). The decision tree model accurately stratifies the risk of developing NMSC in the long-term after LT.

  14. Bolt, log, and tree grades for birch

    Treesearch

    Roswell D. Carpenter

    1969-01-01

    A birch tree is made up of a variety of round pieces of wood that can be used to manufacture many different products. To convert the tree into its best end use, it is first necessary to classify the usable round pieces into major product classes. These product classes will vary from low-quality wood suitable only for pulpwood or charcoal to high-quality wood for making...

  15. Portable Language-Independent Adaptive Translation from OCR. Phase 1

    DTIC Science & Technology

    2009-04-01

    including brute-force k-Nearest Neighbors ( kNN ), fast approximate kNN using hashed k-d trees, classification and regression trees, and locality...achieved by refinements in ground-truthing protocols. Recent algorithmic improvements to our approximate kNN classifier using hashed k-D trees allows...recent years discriminative training has been shown to outperform phonetic HMMs estimated using ML for speech recognition. Standard ML estimation

  16. Introduction in IND and recursive partitioning

    NASA Technical Reports Server (NTRS)

    Buntine, Wray; Caruana, Rich

    1991-01-01

    This manual describes the IND package for learning tree classifiers from data. The package is an integrated C and C shell re-implementation of tree learning routines such as CART, C4, and various MDL and Bayesian variations. The package includes routines for experiment control, interactive operation, and analysis of tree building. The manual introduces the system and its many options, gives a basic review of tree learning, contains a guide to the literature and a glossary, and lists the manual pages for the routines and instructions on installation.

  17. Interpretation of diagnostic data: 6. How to do it with more complex maths.

    PubMed

    1983-11-15

    We have now shown you how to use decision analysis in making those rare, tough diagnostic decisions that are not soluble through other, easier routes. In summary, to "use more complex maths" the following steps will be useful: Create a decision tree or map of all the pertinent courses of action and their consequences. Assign probabilities to the branches of each chance node. Assign utilities to each of the potential outcomes shown on the decision tree. Combine the probabilities and utilities for each node on the decision tree. Pick the decision that leads to the highest expected utility. Test your decision for its sensitivity to clinically sensible changes in probabilities and utilities. That concludes this series of clinical epidemiology rounds. You've come a long way from "doing it with pictures" and are now able to extract most of the diagnostic information that can be provided from signs, symptoms and laboratory investigations. We would appreciate learning whether you have found this series useful and how we can do a better job of presenting these and other elements of "the science of the art of medicine".

  18. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    PubMed

    Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  19. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach.

    PubMed

    Hussain, Lal

    2018-06-01

    Epilepsy is a neurological disorder produced due to abnormal excitability of neurons in the brain. The research reveals that brain activity is monitored through electroencephalogram (EEG) of patients suffered from seizure to detect the epileptic seizure. The performance of EEG detection based epilepsy require feature extracting strategies. In this research, we have extracted varying features extracting strategies based on time and frequency domain characteristics, nonlinear, wavelet based entropy and few statistical features. A deeper study was undertaken using novel machine learning classifiers by considering multiple factors. The support vector machine kernels are evaluated based on multiclass kernel and box constraint level. Likewise, for K-nearest neighbors (KNN), we computed the different distance metrics, Neighbor weights and Neighbors. Similarly, the decision trees we tuned the paramours based on maximum splits and split criteria and ensemble classifiers are evaluated based on different ensemble methods and learning rate. For training/testing tenfold Cross validation was employed and performance was evaluated in form of TPR, NPR, PPV, accuracy and AUC. In this research, a deeper analysis approach was performed using diverse features extracting strategies using robust machine learning classifiers with more advanced optimal options. Support Vector Machine linear kernel and KNN with City block distance metric give the overall highest accuracy of 99.5% which was higher than using the default parameters for these classifiers. Moreover, highest separation (AUC = 0.9991, 0.9990) were obtained at different kernel scales using SVM. Additionally, the K-nearest neighbors with inverse squared distance weight give higher performance at different Neighbors. Moreover, to distinguish the postictal heart rate oscillations from epileptic ictal subjects, and highest performance of 100% was obtained using different machine learning classifiers.

  20. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients

    PubMed Central

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations. PMID:25885272

  1. Policy Route Map for Academic Libraries' Digital Content

    ERIC Educational Resources Information Center

    Koulouris, Alexandros; Kapidakis, Sarantos

    2012-01-01

    This paper presents a policy decision tree for digital information management in academic libraries. The decision tree is a policy guide, which offers alternative access and reproduction policy solutions according to the prevailing circumstances (for example acquisition method, copyright ownership). It refers to the digital information life cycle,…

  2. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    PubMed

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  3. Digging Deeper with Trees.

    ERIC Educational Resources Information Center

    Growing Ideas, 2001

    2001-01-01

    Describes hands-on science areas that focus on trees. A project on leaf pigmentation involves putting crushed leaves in a test tube with solvent acetone to dissolve pigment. In another project, students learn taxonomy by sorting and classifying leaves based on observable characteristics. Includes a language arts connection. (PVD)

  4. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.

    PubMed

    Galpert, Deborah; Fernández, Alberto; Herrera, Francisco; Antunes, Agostinho; Molina-Ruiz, Reinaldo; Agüero-Chapin, Guillermin

    2018-05-03

    The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.

  5. Decision support for mitigating the risk of tree induced transmission line failure in utility rights-of-way.

    PubMed

    Poulos, H M; Camp, A E

    2010-02-01

    Vegetation management is a critical component of rights-of-way (ROW) maintenance for preventing electrical outages and safety hazards resulting from tree contact with conductors during storms. Northeast Utility's (NU) transmission lines are a critical element of the nation's power grid; NU is therefore under scrutiny from federal agencies charged with protecting the electrical transmission infrastructure of the United States. We developed a decision support system to focus right-of-way maintenance and minimize the potential for a tree fall episode that disables transmission capacity across the state of Connecticut. We used field data on tree characteristics to develop a system for identifying hazard trees (HTs) in the field using limited equipment to manage Connecticut power line ROW. Results from this study indicated that the tree height-to-diameter ratio, total tree height, and live crown ratio were the key characteristics that differentiated potential risk trees (danger trees) from trees with a high probability of tree fall (HTs). Products from this research can be transferred to adaptive right-of-way management, and the methods we used have great potential for future application to other regions of the United States and elsewhere where tree failure can disrupt electrical power.

  6. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  7. Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications?

    PubMed Central

    2015-01-01

    Abstract Trees contribute to enormous plant oil reserves because many trees contain 50%–80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the “proline knot” motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs. PMID:26258573

  8. Genome-Wide Analysis of Oleosin Gene Family in 22 Tree Species: An Accelerator for Metabolic Engineering of BioFuel Crops and Agrigenomics Industrial Applications?

    PubMed

    Cao, Heping

    2015-09-01

    Trees contribute to enormous plant oil reserves because many trees contain 50%-80% of oil (triacylglycerols, TAGs) in the fruits and kernels. TAGs accumulate in subcellular structures called oil bodies/droplets, in which TAGs are covered by low-molecular-mass hydrophobic proteins called oleosins (OLEs). The OLEs/TAGs ratio determines the size and shape of intracellular oil bodies. There is a lack of comprehensive sequence analysis and structural information of OLEs among diverse trees. The objectives of this study were to identify OLEs from 22 tree species (e.g., tung tree, tea-oil tree, castor bean), perform genome-wide analysis of OLEs, classify OLEs, identify conserved sequence motifs and amino acid residues, and predict secondary and three-dimensional structures in tree OLEs and OLE subfamilies. Data mining identified 65 OLEs with perfect conservation of the "proline knot" motif (PX5SPX3P) from 19 trees. These OLEs contained >40% hydrophobic amino acid residues. They displayed similar properties and amino acid composition. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that these proteins could be classified into five OLE subfamilies. There were distinct patterns of sequence conservation among the OLE subfamilies and within individual tree species. Computational modeling indicated that OLEs were composed of at least three α-helixes connected with short coils without any β-strand and that they exhibited distinct 3D structures and ligand binding sites. These analyses provide fundamental information in the similarity and specificity of diverse OLE isoforms within the same subfamily and among the different species, which should facilitate studying the structure-function relationship and identify critical amino acid residues in OLEs for metabolic engineering of tree TAGs.

  9. Learn ++.NC: combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes.

    PubMed

    Muhlbaier, Michael D; Topalis, Apostolos; Polikar, Robi

    2009-01-01

    We have previously introduced an incremental learning algorithm Learn(++), which learns novel information from consecutive data sets by generating an ensemble of classifiers with each data set, and combining them by weighted majority voting. However, Learn(++) suffers from an inherent "outvoting" problem when asked to learn a new class omega(new) introduced by a subsequent data set, as earlier classifiers not trained on this class are guaranteed to misclassify omega(new) instances. The collective votes of earlier classifiers, for an inevitably incorrect decision, then outweigh the votes of the new classifiers' correct decision on omega(new) instances--until there are enough new classifiers to counteract the unfair outvoting. This forces Learn(++) to generate an unnecessarily large number of classifiers. This paper describes Learn(++).NC, specifically designed for efficient incremental learning of multiple new classes using significantly fewer classifiers. To do so, Learn (++).NC introduces dynamically weighted consult and vote (DW-CAV), a novel voting mechanism for combining classifiers: individual classifiers consult with each other to determine which ones are most qualified to classify a given instance, and decide how much weight, if any, each classifier's decision should carry. Experiments on real-world problems indicate that the new algorithm performs remarkably well with substantially fewer classifiers, not only as compared to its predecessor Learn(++), but also as compared to several other algorithms recently proposed for similar problems.

  10. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  11. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  12. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.

  13. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    USGS Publications Warehouse

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering lowland forest clearing for agriculture. Copyright 2008 College of Arts and Sciences.

  14. Time Series of Images to Improve Tree Species Classification

    NASA Astrophysics Data System (ADS)

    Miyoshi, G. T.; Imai, N. N.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26 %.

  15. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    NASA Astrophysics Data System (ADS)

    Adelabu, Samuel; Mutanga, Onisimo; Adam, Elhadi; Cho, Moses Azong

    2013-01-01

    Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management in semiarid environments. In this study, we examined the suitability of 5-band RapidEye satellite data for the classification of five tree species in mopane woodland of Botswana using machine leaning algorithms with limited training samples.We performed classification using random forest (RF) and support vector machines (SVM) based on EnMap box. The overall accuracies for classifying the five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in semiarid environments when integrated with other standard bands. Similarly, we observed that where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated that the two accuracy measures of quantity and allocation disagreement are simpler and more helpful for the vast majority of remote sensing classification process than the kappa coefficient. Overall, high species classification can be achieved using strategically located RapidEye bands integrated with advanced processing algorithms.

  16. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  17. Automatic Classification of Trees from Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2015-08-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatically classifying laser scanning point clouds into 'tree' and 'non-tree' classes. Our method uses the 3D coordinates of the laser scanning points as input and generates a new point cloud which holds a label for each point indicating if it belongs to the 'tree' or 'non-tree' class. To do so, a grid surface is assigned to the lowest height level of the point cloud. The grids are filled with probability values which are calculated by checking the point density above the grid. Since the tree trunk locations appear with very high values in the probability matrix, selecting the local maxima of the grid surface help to detect the tree trunks. Further points are assigned to tree trunks if they appear in the close proximity of trunks. Since heavy mathematical computations (such as point cloud organization, detailed shape 3D detection methods, graph network generation) are not required, the proposed algorithm works very fast compared to the existing methods. The tree classification results are found reliable even on point clouds of cities containing many different objects. As the most significant weakness, false detection of light poles, traffic signs and other objects close to trees cannot be prevented. Nevertheless, the experimental results on mobile and airborne laser scanning point clouds indicate the possible usage of the algorithm as an important step for tree growth observation, tree counting and similar applications. While the laser scanning point cloud is giving opportunity to classify even very small trees, accuracy of the results is reduced in the low point density areas further away than the scanning location. These advantages and disadvantages of two laser scanning point cloud sources are discussed in detail.

  18. What Satisfies Students?: Mining Student-Opinion Data with Regression and Decision Tree Analysis

    ERIC Educational Resources Information Center

    Thomas, Emily H.; Galambos, Nora

    2004-01-01

    To investigate how students' characteristics and experiences affect satisfaction, this study uses regression and decision tree analysis with the CHAID algorithm to analyze student-opinion data. A data mining approach identifies the specific aspects of students' university experience that most influence three measures of general satisfaction. The…

  19. Identification of pests and diseases of Dalbergia hainanensis based on EVI time series and classification of decision tree

    NASA Astrophysics Data System (ADS)

    Luo, Qiu; Xin, Wu; Qiming, Xiong

    2017-06-01

    In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.

  20. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments

    NASA Astrophysics Data System (ADS)

    Li, Manchun; Ma, Lei; Blaschke, Thomas; Cheng, Liang; Tiede, Dirk

    2016-07-01

    Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.

  1. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recent wetland land loss due to hurricanes: improved estimates based upon multiple source images

    USGS Publications Warehouse

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Barras, John A.; Brock, John C.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    The objective of this study was to provide a moderate resolution 30-m fractional water map of the Chenier Plain for 2003, 2006 and 2009 by using information contained in high-resolution satellite imagery of a subset of the study area. Indices and transforms pertaining to vegetation and water were created using the high-resolution imagery, and a threshold was applied to obtain a categorical land/water map. The high-resolution data was used to train a decision-tree classifier to estimate percent water in a lower resolution (Landsat) image. Two new water indices based on the tasseled cap transformation were proposed for IKONOS imagery in wetland environments and more than 700 input parameter combinations were considered for each Landsat image classified. Final selection and thresholding of the resulting percent water maps involved over 5,000 unambiguous classified random points using corresponding 1-m resolution aerial photographs, and a statistical optimization procedure to determine the threshold at which the maximum Kappa coefficient occurs. Each selected dataset has a Kappa coefficient, percent correctly classified (PCC) water, land and total greater than 90%. An accuracy assessment using 1,000 independent random points was performed. Using the validation points, the PCC values decreased to around 90%. The time series change analysis indicated that due to Hurricane Rita, the study area lost 6.5% of marsh area, and transient changes were less than 3% for either land or water. Hurricane Ike resulted in an additional 8% land loss, although not enough time has passed to discriminate between persistent and transient changes.

  3. A Hybrid Template-Based Composite Classification System

    DTIC Science & Technology

    2009-02-01

    Hybrid Classifier: Forced Decision . . . . 116 5.3.2 Forced Decision Experimental Results . . . . . 119 5.3.3 Test for Statistical Significance ...Results . . . . . . . . . . 127 5.4.2 Test for Statistical Significance : NDEC Option 129 5.5 Implementing the Hyrid Classifier with OOL Targets . 130...comple- mentary in nature . Complementary classifiers are observed by finding an optimal method for partitioning the problem space. For example, the

  4. A decision tree model for predicting mediastinal lymph node metastasis in non-small cell lung cancer with F-18 FDG PET/CT.

    PubMed

    Pak, Kyoungjune; Kim, Keunyoung; Kim, Mi-Hyun; Eom, Jung Seop; Lee, Min Ki; Cho, Jeong Su; Kim, Yun Seong; Kim, Bum Soo; Kim, Seong Jang; Kim, In Joo

    2018-01-01

    We aimed to develop a decision tree model to improve diagnostic performance of positron emission tomography/computed tomography (PET/CT) to detect metastatic lymph nodes (LN) in non-small cell lung cancer (NSCLC). 115 patients with NSCLC were included in this study. The training dataset included 66 patients. A decision tree model was developed with 9 variables, and validated with 49 patients: short and long diameters of LNs, ratio of short and long diameters, maximum standardized uptake value (SUVmax) of LN, mean hounsfield unit, ratio of LN SUVmax and ascending aorta SUVmax (LN/AA), and ratio of LN SUVmax and superior vena cava SUVmax. A total of 301 LNs of 115 patients were evaluated in this study. Nodular calcification was applied as the initial imaging parameter, and LN SUVmax (≥3.95) was assessed as the second. LN/AA (≥2.92) was required to high LN SUVmax. Sensitivity was 50% for training dataset, and 40% for validation dataset. However, specificity was 99.28% for training dataset, and 96.23% for validation dataset. In conclusion, we have developed a new decision tree model for interpreting mediastinal LNs. All LNs with nodular calcification were benign, and LNs with high LN SUVmax and high LN/AA were metastatic Further studies are needed to incorporate subjective parameters and pathologic evaluations into a decision tree model to improve the test performance of PET/CT.

  5. Identifying Risk Factors for Drug Use in an Iranian Treatment Sample: A Prediction Approach Using Decision Trees.

    PubMed

    Amirabadizadeh, Alireza; Nezami, Hossein; Vaughn, Michael G; Nakhaee, Samaneh; Mehrpour, Omid

    2018-05-12

    Substance abuse exacts considerable social and health care burdens throughout the world. The aim of this study was to create a prediction model to better identify risk factors for drug use. A prospective cross-sectional study was conducted in South Khorasan Province, Iran. Of the total of 678 eligible subjects, 70% (n: 474) were randomly selected to provide a training set for constructing decision tree and multiple logistic regression (MLR) models. The remaining 30% (n: 204) were employed in a holdout sample to test the performance of the decision tree and MLR models. Predictive performance of different models was analyzed by the receiver operating characteristic (ROC) curve using the testing set. Independent variables were selected from demographic characteristics and history of drug use. For the decision tree model, the sensitivity and specificity for identifying people at risk for drug abuse were 66% and 75%, respectively, while the MLR model was somewhat less effective at 60% and 73%. Key independent variables in the analyses included first substance experience, age at first drug use, age, place of residence, history of cigarette use, and occupational and marital status. While study findings are exploratory and lack generalizability they do suggest that the decision tree model holds promise as an effective classification approach for identifying risk factors for drug use. Convergent with prior research in Western contexts is that age of drug use initiation was a critical factor predicting a substance use disorder.

  6. Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic-Ischemic Brain Injury.

    PubMed

    Phan, Thanh G; Chen, Jian; Singhal, Shaloo; Ma, Henry; Clissold, Benjamin B; Ly, John; Beare, Richard

    2018-01-01

    Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data. The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00). Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

  7. Fish to meat intake ratio and cooking oils are associated with hepatitis C virus carriers with persistently normal alanine aminotransferase levels.

    PubMed

    Otsuka, Momoka; Uchida, Yuki; Kawaguchi, Takumi; Taniguchi, Eitaro; Kawaguchi, Atsushi; Kitani, Shingo; Itou, Minoru; Oriishi, Tetsuharu; Kakuma, Tatsuyuki; Tanaka, Suiko; Yagi, Minoru; Sata, Michio

    2012-10-01

      Dietary habits are involved in the development of chronic inflammation; however, the impact of dietary profiles of hepatitis C virus carriers with persistently normal alanine transaminase levels (HCV-PNALT) remains unclear. The decision-tree algorithm is a data-mining statistical technique, which uncovers meaningful profiles of factors from a data collection. We aimed to investigate dietary profiles associated with HCV-PNALT using a decision-tree algorithm.   Twenty-seven HCV-PNALT and 41 patients with chronic hepatitis C were enrolled in this study. Dietary habit was assessed using a validated semiquantitative food frequency questionnaire. A decision-tree algorithm was created by dietary variables, and was evaluated by area under the receiver operating characteristic curve analysis (AUROC).   In multivariate analysis, fish to meat ratio, dairy product and cooking oils were identified as independent variables associated with HCV-PNALT. The decision-tree algorithm was created with two variables: a fish to meat ratio and cooking oils/ideal bodyweight. When subjects showed a fish to meat ratio of 1.24 or more, 68.8% of the subjects were HCV-PNALT. On the other hand, 11.5% of the subjects were HCV-PNALT when subjects showed a fish to meat ratio of less than 1.24 and cooking oil/ideal bodyweight of less than 0.23 g/kg. The difference in the proportion of HCV-PNALT between these groups are significant (odds ratio 16.87, 95% CI 3.40-83.67, P = 0.0005). Fivefold cross-validation of the decision-tree algorithm showed an AUROC of 0.6947 (95% CI 0.5656-0.8238, P = 0.0067).   The decision-tree algorithm disclosed that fish to meat ratio and cooking oil/ideal bodyweight were associated with HCV-PNALT. © 2012 The Japan Society of Hepatology.

  8. Exploring the Taxonomy of Oaks and Related Tree Species

    ERIC Educational Resources Information Center

    McMaster, Robert T.

    2004-01-01

    A lab in Eastern North America conducted a study to determine the taxonomic relationship between deciduous trees and several species of oaks by calculating the similarity index of all species to be studied. The study enabled students to classify the different species of oaks according to their distinct characteristics.

  9. Instruction-matrix-based genetic programming.

    PubMed

    Li, Gang; Wang, Jin Feng; Lee, Kin Hong; Leung, Kwong-Sak

    2008-08-01

    In genetic programming (GP), evolving tree nodes separately would reduce the huge solution space. However, tree nodes are highly interdependent with respect to their fitness. In this paper, we propose a new GP framework, namely, instruction-matrix (IM)-based GP (IMGP), to handle their interactions. IMGP maintains an IM to evolve tree nodes and subtrees separately. IMGP extracts program trees from an IM and updates the IM with the information of the extracted program trees. As the IM actually keeps most of the information of the schemata of GP and evolves the schemata directly, IMGP is effective and efficient. Our experimental results on benchmark problems have verified that IMGP is not only better than those of canonical GP in terms of the qualities of the solutions and the number of program evaluations, but they are also better than some of the related GP algorithms. IMGP can also be used to evolve programs for classification problems. The classifiers obtained have higher classification accuracies than four other GP classification algorithms on four benchmark classification problems. The testing errors are also comparable to or better than those obtained with well-known classifiers. Furthermore, an extended version, called condition matrix for rule learning, has been used successfully to handle multiclass classification problems.

  10. Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics

    PubMed Central

    Belo, David; Gamboa, Hugo

    2017-01-01

    The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components. PMID:28831239

  11. Analysis of the Westland Data Set

    NASA Technical Reports Server (NTRS)

    Wen, Fang; Willett, Peter; Deb, Somnath

    2001-01-01

    The "Westland" set of empirical accelerometer helicopter data with seeded and labeled faults is analyzed with the aim of condition monitoring. The autoregressive (AR) coefficients from a simple linear model encapsulate a great deal of information in a relatively few measurements; and it has also been found that augmentation of these by harmonic and other parameters call improve classification significantly. Several techniques have been explored, among these restricted Coulomb energy (RCE) networks, learning vector quantization (LVQ), Gaussian mixture classifiers and decision trees. A problem with these approaches, and in common with many classification paradigms, is that augmentation of the feature dimension can degrade classification ability. Thus, we also introduce the Bayesian data reduction algorithm (BDRA), which imposes a Dirichlet prior oil training data and is thus able to quantify probability of error in all exact manner, such that features may be discarded or coarsened appropriately.

  12. Bayesian network modelling of upper gastrointestinal bleeding

    NASA Astrophysics Data System (ADS)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  13. Generative model selection using a scalable and size-independent complex network classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motallebi, Sadegh, E-mail: motallebi@ce.sharif.edu; Aliakbary, Sadegh, E-mail: aliakbary@ce.sharif.edu; Habibi, Jafar, E-mail: jhabibi@sharif.edu

    2013-12-15

    Real networks exhibit nontrivial topological features, such as heavy-tailed degree distribution, high clustering, and small-worldness. Researchers have developed several generative models for synthesizing artificial networks that are structurally similar to real networks. An important research problem is to identify the generative model that best fits to a target network. In this paper, we investigate this problem and our goal is to select the model that is able to generate graphs similar to a given network instance. By the means of generating synthetic networks with seven outstanding generative models, we have utilized machine learning methods to develop a decision tree formore » model selection. Our proposed method, which is named “Generative Model Selection for Complex Networks,” outperforms existing methods with respect to accuracy, scalability, and size-independence.« less

  14. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data

    NASA Astrophysics Data System (ADS)

    Gibril, Mohamed Barakat A.; Idrees, Mohammed Oludare; Yao, Kouame; Shafri, Helmi Zulhaidi Mohd

    2018-01-01

    The growing use of optimization for geographic object-based image analysis and the possibility to derive a wide range of information about the image in textual form makes machine learning (data mining) a versatile tool for information extraction from multiple data sources. This paper presents application of data mining for land-cover classification by fusing SPOT-6, RADARSAT-2, and derived dataset. First, the images and other derived indices (normalized difference vegetation index, normalized difference water index, and soil adjusted vegetation index) were combined and subjected to segmentation process with optimal segmentation parameters obtained using combination of spatial and Taguchi statistical optimization. The image objects, which carry all the attributes of the input datasets, were extracted and related to the target land-cover classes through data mining algorithms (decision tree) for classification. To evaluate the performance, the result was compared with two nonparametric classifiers: support vector machine (SVM) and random forest (RF). Furthermore, the decision tree classification result was evaluated against six unoptimized trials segmented using arbitrary parameter combinations. The result shows that the optimized process produces better land-use land-cover classification with overall classification accuracy of 91.79%, 87.25%, and 88.69% for SVM and RF, respectively, while the results of the six unoptimized classifications yield overall accuracy between 84.44% and 88.08%. Higher accuracy of the optimized data mining classification approach compared to the unoptimized results indicates that the optimization process has significant impact on the classification quality.

  15. Identifying high-cost patients using data mining techniques and a small set of non-trivial attributes.

    PubMed

    Izad Shenas, Seyed Abdolmotalleb; Raahemi, Bijan; Hossein Tekieh, Mohammad; Kuziemsky, Craig

    2014-10-01

    In this paper, we use data mining techniques, namely neural networks and decision trees, to build predictive models to identify very high-cost patients in the top 5 percentile among the general population. A large empirical dataset from the Medical Expenditure Panel Survey with 98,175 records was used in our study. After pre-processing, partitioning and balancing the data, the refined dataset of 31,704 records was modeled by Decision Trees (including C5.0 and CHAID), and Neural Networks. The performances of the models are analyzed using various measures including accuracy, G-mean, and Area under ROC curve. We concluded that the CHAID classifier returns the best G-mean and AUC measures for top performing predictive models ranging from 76% to 85%, and 0.812 to 0.942 units, respectively. We also identify a small set of 5 non-trivial attributes among a primary set of 66 attributes to identify the top 5% of the high cost population. The attributes are the individual׳s overall health perception, age, history of blood cholesterol check, history of physical/sensory/mental limitations, and history of colonic prevention measures. The small set of attributes are what we call non-trivial and does not include visits to care providers, doctors or hospitals, which are highly correlated with expenditures and does not offer new insight to the data. The results of this study can be used by healthcare data analysts, policy makers, insurer, and healthcare planners to improve the delivery of health services. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluating the High Risk Groups for Suicide: A Comparison of Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network

    PubMed Central

    AMINI, Payam; AHMADINIA, Hasan; POOROLAJAL, Jalal; MOQADDASI AMIRI, Mohammad

    2016-01-01

    Background: We aimed to assess the high-risk group for suicide using different classification methods includinglogistic regression (LR), decision tree (DT), artificial neural network (ANN), and support vector machine (SVM). Methods: We used the dataset of a study conducted to predict risk factors of completed suicide in Hamadan Province, the west of Iran, in 2010. To evaluate the high-risk groups for suicide, LR, SVM, DT and ANN were performed. The applied methods were compared using sensitivity, specificity, positive predicted value, negative predicted value, accuracy and the area under curve. Cochran-Q test was implied to check differences in proportion among methods. To assess the association between the observed and predicted values, Ø coefficient, contingency coefficient, and Kendall tau-b were calculated. Results: Gender, age, and job were the most important risk factors for fatal suicide attempts in common for four methods. SVM method showed the highest accuracy 0.68 and 0.67 for training and testing sample, respectively. However, this method resulted in the highest specificity (0.67 for training and 0.68 for testing sample) and the highest sensitivity for training sample (0.85), but the lowest sensitivity for the testing sample (0.53). Cochran-Q test resulted in differences between proportions in different methods (P<0.001). The association of SVM predictions and observed values, Ø coefficient, contingency coefficient, and Kendall tau-b were 0.239, 0.232 and 0.239, respectively. Conclusion: SVM had the best performance to classify fatal suicide attempts comparing to DT, LR and ANN. PMID:27957463

  17. Computerization of guidelines: a knowledge specification method to convert text to detailed decision tree for electronic implementation.

    PubMed

    Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles

    2004-01-01

    The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.

  18. Important LiDAR metrics for discriminating forest tree species in Central Europe

    NASA Astrophysics Data System (ADS)

    Shi, Yifang; Wang, Tiejun; Skidmore, Andrew K.; Heurich, Marco

    2018-03-01

    Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe.

  19. An automatic classifier of emotions built from entropy of noise.

    PubMed

    Ferreira, Jacqueline; Brás, Susana; Silva, Carlos F; Soares, Sandra C

    2017-04-01

    The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion. © 2016 Society for Psychophysiological Research.

  20. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

Top